expr.c (expand_expr_real_1): Only use BLKmode for volatile accesses which are not...
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if (insn_operand_matches (ic, 1, mem))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* Return the largest alignment we can use for doing a move (or store)
796 of MAX_PIECES. ALIGN is the largest alignment we could use. */
797
798 static unsigned int
799 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
800 {
801 enum machine_mode tmode;
802
803 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
804 if (align >= GET_MODE_ALIGNMENT (tmode))
805 align = GET_MODE_ALIGNMENT (tmode);
806 else
807 {
808 enum machine_mode tmode, xmode;
809
810 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
811 tmode != VOIDmode;
812 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
813 if (GET_MODE_SIZE (tmode) > max_pieces
814 || SLOW_UNALIGNED_ACCESS (tmode, align))
815 break;
816
817 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
818 }
819
820 return align;
821 }
822
823 /* Return the widest integer mode no wider than SIZE. If no such mode
824 can be found, return VOIDmode. */
825
826 static enum machine_mode
827 widest_int_mode_for_size (unsigned int size)
828 {
829 enum machine_mode tmode, mode = VOIDmode;
830
831 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
832 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
833 if (GET_MODE_SIZE (tmode) < size)
834 mode = tmode;
835
836 return mode;
837 }
838
839 /* STORE_MAX_PIECES is the number of bytes at a time that we can
840 store efficiently. Due to internal GCC limitations, this is
841 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
842 for an immediate constant. */
843
844 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845
846 /* Determine whether the LEN bytes can be moved by using several move
847 instructions. Return nonzero if a call to move_by_pieces should
848 succeed. */
849
850 int
851 can_move_by_pieces (unsigned HOST_WIDE_INT len,
852 unsigned int align ATTRIBUTE_UNUSED)
853 {
854 return MOVE_BY_PIECES_P (len, align);
855 }
856
857 /* Generate several move instructions to copy LEN bytes from block FROM to
858 block TO. (These are MEM rtx's with BLKmode).
859
860 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
861 used to push FROM to the stack.
862
863 ALIGN is maximum stack alignment we can assume.
864
865 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
866 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
867 stpcpy. */
868
869 rtx
870 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
871 unsigned int align, int endp)
872 {
873 struct move_by_pieces_d data;
874 enum machine_mode to_addr_mode, from_addr_mode
875 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
876 rtx to_addr, from_addr = XEXP (from, 0);
877 unsigned int max_size = MOVE_MAX_PIECES + 1;
878 enum insn_code icode;
879
880 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
881
882 data.offset = 0;
883 data.from_addr = from_addr;
884 if (to)
885 {
886 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
887 to_addr = XEXP (to, 0);
888 data.to = to;
889 data.autinc_to
890 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
891 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
892 data.reverse
893 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
894 }
895 else
896 {
897 to_addr_mode = VOIDmode;
898 to_addr = NULL_RTX;
899 data.to = NULL_RTX;
900 data.autinc_to = 1;
901 #ifdef STACK_GROWS_DOWNWARD
902 data.reverse = 1;
903 #else
904 data.reverse = 0;
905 #endif
906 }
907 data.to_addr = to_addr;
908 data.from = from;
909 data.autinc_from
910 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
911 || GET_CODE (from_addr) == POST_INC
912 || GET_CODE (from_addr) == POST_DEC);
913
914 data.explicit_inc_from = 0;
915 data.explicit_inc_to = 0;
916 if (data.reverse) data.offset = len;
917 data.len = len;
918
919 /* If copying requires more than two move insns,
920 copy addresses to registers (to make displacements shorter)
921 and use post-increment if available. */
922 if (!(data.autinc_from && data.autinc_to)
923 && move_by_pieces_ninsns (len, align, max_size) > 2)
924 {
925 /* Find the mode of the largest move...
926 MODE might not be used depending on the definitions of the
927 USE_* macros below. */
928 enum machine_mode mode ATTRIBUTE_UNUSED
929 = widest_int_mode_for_size (max_size);
930
931 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
932 {
933 data.from_addr = copy_to_mode_reg (from_addr_mode,
934 plus_constant (from_addr, len));
935 data.autinc_from = 1;
936 data.explicit_inc_from = -1;
937 }
938 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
941 data.autinc_from = 1;
942 data.explicit_inc_from = 1;
943 }
944 if (!data.autinc_from && CONSTANT_P (from_addr))
945 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
946 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
947 {
948 data.to_addr = copy_to_mode_reg (to_addr_mode,
949 plus_constant (to_addr, len));
950 data.autinc_to = 1;
951 data.explicit_inc_to = -1;
952 }
953 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
954 {
955 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
956 data.autinc_to = 1;
957 data.explicit_inc_to = 1;
958 }
959 if (!data.autinc_to && CONSTANT_P (to_addr))
960 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
961 }
962
963 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
964
965 /* First move what we can in the largest integer mode, then go to
966 successively smaller modes. */
967
968 while (max_size > 1)
969 {
970 enum machine_mode mode = widest_int_mode_for_size (max_size);
971
972 if (mode == VOIDmode)
973 break;
974
975 icode = optab_handler (mov_optab, mode);
976 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
977 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
978
979 max_size = GET_MODE_SIZE (mode);
980 }
981
982 /* The code above should have handled everything. */
983 gcc_assert (!data.len);
984
985 if (endp)
986 {
987 rtx to1;
988
989 gcc_assert (!data.reverse);
990 if (data.autinc_to)
991 {
992 if (endp == 2)
993 {
994 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
995 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
996 else
997 data.to_addr = copy_to_mode_reg (to_addr_mode,
998 plus_constant (data.to_addr,
999 -1));
1000 }
1001 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1002 data.offset);
1003 }
1004 else
1005 {
1006 if (endp == 2)
1007 --data.offset;
1008 to1 = adjust_address (data.to, QImode, data.offset);
1009 }
1010 return to1;
1011 }
1012 else
1013 return data.to;
1014 }
1015
1016 /* Return number of insns required to move L bytes by pieces.
1017 ALIGN (in bits) is maximum alignment we can assume. */
1018
1019 static unsigned HOST_WIDE_INT
1020 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1021 unsigned int max_size)
1022 {
1023 unsigned HOST_WIDE_INT n_insns = 0;
1024
1025 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1026
1027 while (max_size > 1)
1028 {
1029 enum machine_mode mode;
1030 enum insn_code icode;
1031
1032 mode = widest_int_mode_for_size (max_size);
1033
1034 if (mode == VOIDmode)
1035 break;
1036
1037 icode = optab_handler (mov_optab, mode);
1038 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1039 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1040
1041 max_size = GET_MODE_SIZE (mode);
1042 }
1043
1044 gcc_assert (!l);
1045 return n_insns;
1046 }
1047
1048 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1049 with move instructions for mode MODE. GENFUN is the gen_... function
1050 to make a move insn for that mode. DATA has all the other info. */
1051
1052 static void
1053 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1054 struct move_by_pieces_d *data)
1055 {
1056 unsigned int size = GET_MODE_SIZE (mode);
1057 rtx to1 = NULL_RTX, from1;
1058
1059 while (data->len >= size)
1060 {
1061 if (data->reverse)
1062 data->offset -= size;
1063
1064 if (data->to)
1065 {
1066 if (data->autinc_to)
1067 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1068 data->offset);
1069 else
1070 to1 = adjust_address (data->to, mode, data->offset);
1071 }
1072
1073 if (data->autinc_from)
1074 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1075 data->offset);
1076 else
1077 from1 = adjust_address (data->from, mode, data->offset);
1078
1079 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1080 emit_insn (gen_add2_insn (data->to_addr,
1081 GEN_INT (-(HOST_WIDE_INT)size)));
1082 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1083 emit_insn (gen_add2_insn (data->from_addr,
1084 GEN_INT (-(HOST_WIDE_INT)size)));
1085
1086 if (data->to)
1087 emit_insn ((*genfun) (to1, from1));
1088 else
1089 {
1090 #ifdef PUSH_ROUNDING
1091 emit_single_push_insn (mode, from1, NULL);
1092 #else
1093 gcc_unreachable ();
1094 #endif
1095 }
1096
1097 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1098 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1099 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1100 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1101
1102 if (! data->reverse)
1103 data->offset += size;
1104
1105 data->len -= size;
1106 }
1107 }
1108 \f
1109 /* Emit code to move a block Y to a block X. This may be done with
1110 string-move instructions, with multiple scalar move instructions,
1111 or with a library call.
1112
1113 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1114 SIZE is an rtx that says how long they are.
1115 ALIGN is the maximum alignment we can assume they have.
1116 METHOD describes what kind of copy this is, and what mechanisms may be used.
1117
1118 Return the address of the new block, if memcpy is called and returns it,
1119 0 otherwise. */
1120
1121 rtx
1122 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1123 unsigned int expected_align, HOST_WIDE_INT expected_size)
1124 {
1125 bool may_use_call;
1126 rtx retval = 0;
1127 unsigned int align;
1128
1129 gcc_assert (size);
1130 if (CONST_INT_P (size)
1131 && INTVAL (size) == 0)
1132 return 0;
1133
1134 switch (method)
1135 {
1136 case BLOCK_OP_NORMAL:
1137 case BLOCK_OP_TAILCALL:
1138 may_use_call = true;
1139 break;
1140
1141 case BLOCK_OP_CALL_PARM:
1142 may_use_call = block_move_libcall_safe_for_call_parm ();
1143
1144 /* Make inhibit_defer_pop nonzero around the library call
1145 to force it to pop the arguments right away. */
1146 NO_DEFER_POP;
1147 break;
1148
1149 case BLOCK_OP_NO_LIBCALL:
1150 may_use_call = false;
1151 break;
1152
1153 default:
1154 gcc_unreachable ();
1155 }
1156
1157 gcc_assert (MEM_P (x) && MEM_P (y));
1158 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1159 gcc_assert (align >= BITS_PER_UNIT);
1160
1161 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1162 block copy is more efficient for other large modes, e.g. DCmode. */
1163 x = adjust_address (x, BLKmode, 0);
1164 y = adjust_address (y, BLKmode, 0);
1165
1166 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1167 can be incorrect is coming from __builtin_memcpy. */
1168 if (CONST_INT_P (size))
1169 {
1170 x = shallow_copy_rtx (x);
1171 y = shallow_copy_rtx (y);
1172 set_mem_size (x, size);
1173 set_mem_size (y, size);
1174 }
1175
1176 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1177 move_by_pieces (x, y, INTVAL (size), align, 0);
1178 else if (emit_block_move_via_movmem (x, y, size, align,
1179 expected_align, expected_size))
1180 ;
1181 else if (may_use_call
1182 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1183 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1184 retval = emit_block_move_via_libcall (x, y, size,
1185 method == BLOCK_OP_TAILCALL);
1186 else
1187 emit_block_move_via_loop (x, y, size, align);
1188
1189 if (method == BLOCK_OP_CALL_PARM)
1190 OK_DEFER_POP;
1191
1192 return retval;
1193 }
1194
1195 rtx
1196 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1197 {
1198 return emit_block_move_hints (x, y, size, method, 0, -1);
1199 }
1200
1201 /* A subroutine of emit_block_move. Returns true if calling the
1202 block move libcall will not clobber any parameters which may have
1203 already been placed on the stack. */
1204
1205 static bool
1206 block_move_libcall_safe_for_call_parm (void)
1207 {
1208 #if defined (REG_PARM_STACK_SPACE)
1209 tree fn;
1210 #endif
1211
1212 /* If arguments are pushed on the stack, then they're safe. */
1213 if (PUSH_ARGS)
1214 return true;
1215
1216 /* If registers go on the stack anyway, any argument is sure to clobber
1217 an outgoing argument. */
1218 #if defined (REG_PARM_STACK_SPACE)
1219 fn = emit_block_move_libcall_fn (false);
1220 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1221 depend on its argument. */
1222 (void) fn;
1223 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1224 && REG_PARM_STACK_SPACE (fn) != 0)
1225 return false;
1226 #endif
1227
1228 /* If any argument goes in memory, then it might clobber an outgoing
1229 argument. */
1230 {
1231 CUMULATIVE_ARGS args_so_far;
1232 tree fn, arg;
1233
1234 fn = emit_block_move_libcall_fn (false);
1235 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1236
1237 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1238 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1239 {
1240 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1241 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1242 NULL_TREE, true);
1243 if (!tmp || !REG_P (tmp))
1244 return false;
1245 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1246 return false;
1247 targetm.calls.function_arg_advance (&args_so_far, mode,
1248 NULL_TREE, true);
1249 }
1250 }
1251 return true;
1252 }
1253
1254 /* A subroutine of emit_block_move. Expand a movmem pattern;
1255 return true if successful. */
1256
1257 static bool
1258 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1259 unsigned int expected_align, HOST_WIDE_INT expected_size)
1260 {
1261 int save_volatile_ok = volatile_ok;
1262 enum machine_mode mode;
1263
1264 if (expected_align < align)
1265 expected_align = align;
1266
1267 /* Since this is a move insn, we don't care about volatility. */
1268 volatile_ok = 1;
1269
1270 /* Try the most limited insn first, because there's no point
1271 including more than one in the machine description unless
1272 the more limited one has some advantage. */
1273
1274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1275 mode = GET_MODE_WIDER_MODE (mode))
1276 {
1277 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1278
1279 if (code != CODE_FOR_nothing
1280 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1281 here because if SIZE is less than the mode mask, as it is
1282 returned by the macro, it will definitely be less than the
1283 actual mode mask. */
1284 && ((CONST_INT_P (size)
1285 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1286 <= (GET_MODE_MASK (mode) >> 1)))
1287 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
1288 {
1289 struct expand_operand ops[6];
1290 unsigned int nops;
1291
1292 /* ??? When called via emit_block_move_for_call, it'd be
1293 nice if there were some way to inform the backend, so
1294 that it doesn't fail the expansion because it thinks
1295 emitting the libcall would be more efficient. */
1296 nops = insn_data[(int) code].n_operands;
1297 create_fixed_operand (&ops[0], x);
1298 create_fixed_operand (&ops[1], y);
1299 /* The check above guarantees that this size conversion is valid. */
1300 create_convert_operand_to (&ops[2], size, mode, true);
1301 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1302 if (nops != 4)
1303 {
1304 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1305 create_integer_operand (&ops[5], expected_size);
1306 nops = 6;
1307 }
1308 if (maybe_expand_insn (code, nops, ops))
1309 {
1310 volatile_ok = save_volatile_ok;
1311 return true;
1312 }
1313 }
1314 }
1315
1316 volatile_ok = save_volatile_ok;
1317 return false;
1318 }
1319
1320 /* A subroutine of emit_block_move. Expand a call to memcpy.
1321 Return the return value from memcpy, 0 otherwise. */
1322
1323 rtx
1324 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1325 {
1326 rtx dst_addr, src_addr;
1327 tree call_expr, fn, src_tree, dst_tree, size_tree;
1328 enum machine_mode size_mode;
1329 rtx retval;
1330
1331 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1332 pseudos. We can then place those new pseudos into a VAR_DECL and
1333 use them later. */
1334
1335 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1336 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1337
1338 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1339 src_addr = convert_memory_address (ptr_mode, src_addr);
1340
1341 dst_tree = make_tree (ptr_type_node, dst_addr);
1342 src_tree = make_tree (ptr_type_node, src_addr);
1343
1344 size_mode = TYPE_MODE (sizetype);
1345
1346 size = convert_to_mode (size_mode, size, 1);
1347 size = copy_to_mode_reg (size_mode, size);
1348
1349 /* It is incorrect to use the libcall calling conventions to call
1350 memcpy in this context. This could be a user call to memcpy and
1351 the user may wish to examine the return value from memcpy. For
1352 targets where libcalls and normal calls have different conventions
1353 for returning pointers, we could end up generating incorrect code. */
1354
1355 size_tree = make_tree (sizetype, size);
1356
1357 fn = emit_block_move_libcall_fn (true);
1358 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1359 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1360
1361 retval = expand_normal (call_expr);
1362
1363 return retval;
1364 }
1365
1366 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1367 for the function we use for block copies. The first time FOR_CALL
1368 is true, we call assemble_external. */
1369
1370 static GTY(()) tree block_move_fn;
1371
1372 void
1373 init_block_move_fn (const char *asmspec)
1374 {
1375 if (!block_move_fn)
1376 {
1377 tree args, fn;
1378
1379 fn = get_identifier ("memcpy");
1380 args = build_function_type_list (ptr_type_node, ptr_type_node,
1381 const_ptr_type_node, sizetype,
1382 NULL_TREE);
1383
1384 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1385 DECL_EXTERNAL (fn) = 1;
1386 TREE_PUBLIC (fn) = 1;
1387 DECL_ARTIFICIAL (fn) = 1;
1388 TREE_NOTHROW (fn) = 1;
1389 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1390 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1391
1392 block_move_fn = fn;
1393 }
1394
1395 if (asmspec)
1396 set_user_assembler_name (block_move_fn, asmspec);
1397 }
1398
1399 static tree
1400 emit_block_move_libcall_fn (int for_call)
1401 {
1402 static bool emitted_extern;
1403
1404 if (!block_move_fn)
1405 init_block_move_fn (NULL);
1406
1407 if (for_call && !emitted_extern)
1408 {
1409 emitted_extern = true;
1410 make_decl_rtl (block_move_fn);
1411 assemble_external (block_move_fn);
1412 }
1413
1414 return block_move_fn;
1415 }
1416
1417 /* A subroutine of emit_block_move. Copy the data via an explicit
1418 loop. This is used only when libcalls are forbidden. */
1419 /* ??? It'd be nice to copy in hunks larger than QImode. */
1420
1421 static void
1422 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1423 unsigned int align ATTRIBUTE_UNUSED)
1424 {
1425 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1426 enum machine_mode x_addr_mode
1427 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1428 enum machine_mode y_addr_mode
1429 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1430 enum machine_mode iter_mode;
1431
1432 iter_mode = GET_MODE (size);
1433 if (iter_mode == VOIDmode)
1434 iter_mode = word_mode;
1435
1436 top_label = gen_label_rtx ();
1437 cmp_label = gen_label_rtx ();
1438 iter = gen_reg_rtx (iter_mode);
1439
1440 emit_move_insn (iter, const0_rtx);
1441
1442 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1443 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1444 do_pending_stack_adjust ();
1445
1446 emit_jump (cmp_label);
1447 emit_label (top_label);
1448
1449 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1450 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1451
1452 if (x_addr_mode != y_addr_mode)
1453 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1454 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1455
1456 x = change_address (x, QImode, x_addr);
1457 y = change_address (y, QImode, y_addr);
1458
1459 emit_move_insn (x, y);
1460
1461 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1462 true, OPTAB_LIB_WIDEN);
1463 if (tmp != iter)
1464 emit_move_insn (iter, tmp);
1465
1466 emit_label (cmp_label);
1467
1468 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1469 true, top_label);
1470 }
1471 \f
1472 /* Copy all or part of a value X into registers starting at REGNO.
1473 The number of registers to be filled is NREGS. */
1474
1475 void
1476 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1477 {
1478 int i;
1479 #ifdef HAVE_load_multiple
1480 rtx pat;
1481 rtx last;
1482 #endif
1483
1484 if (nregs == 0)
1485 return;
1486
1487 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1488 x = validize_mem (force_const_mem (mode, x));
1489
1490 /* See if the machine can do this with a load multiple insn. */
1491 #ifdef HAVE_load_multiple
1492 if (HAVE_load_multiple)
1493 {
1494 last = get_last_insn ();
1495 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1496 GEN_INT (nregs));
1497 if (pat)
1498 {
1499 emit_insn (pat);
1500 return;
1501 }
1502 else
1503 delete_insns_since (last);
1504 }
1505 #endif
1506
1507 for (i = 0; i < nregs; i++)
1508 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1509 operand_subword_force (x, i, mode));
1510 }
1511
1512 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1513 The number of registers to be filled is NREGS. */
1514
1515 void
1516 move_block_from_reg (int regno, rtx x, int nregs)
1517 {
1518 int i;
1519
1520 if (nregs == 0)
1521 return;
1522
1523 /* See if the machine can do this with a store multiple insn. */
1524 #ifdef HAVE_store_multiple
1525 if (HAVE_store_multiple)
1526 {
1527 rtx last = get_last_insn ();
1528 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1529 GEN_INT (nregs));
1530 if (pat)
1531 {
1532 emit_insn (pat);
1533 return;
1534 }
1535 else
1536 delete_insns_since (last);
1537 }
1538 #endif
1539
1540 for (i = 0; i < nregs; i++)
1541 {
1542 rtx tem = operand_subword (x, i, 1, BLKmode);
1543
1544 gcc_assert (tem);
1545
1546 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1547 }
1548 }
1549
1550 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1551 ORIG, where ORIG is a non-consecutive group of registers represented by
1552 a PARALLEL. The clone is identical to the original except in that the
1553 original set of registers is replaced by a new set of pseudo registers.
1554 The new set has the same modes as the original set. */
1555
1556 rtx
1557 gen_group_rtx (rtx orig)
1558 {
1559 int i, length;
1560 rtx *tmps;
1561
1562 gcc_assert (GET_CODE (orig) == PARALLEL);
1563
1564 length = XVECLEN (orig, 0);
1565 tmps = XALLOCAVEC (rtx, length);
1566
1567 /* Skip a NULL entry in first slot. */
1568 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1569
1570 if (i)
1571 tmps[0] = 0;
1572
1573 for (; i < length; i++)
1574 {
1575 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1576 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1577
1578 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1579 }
1580
1581 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1582 }
1583
1584 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1585 except that values are placed in TMPS[i], and must later be moved
1586 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1587
1588 static void
1589 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1590 {
1591 rtx src;
1592 int start, i;
1593 enum machine_mode m = GET_MODE (orig_src);
1594
1595 gcc_assert (GET_CODE (dst) == PARALLEL);
1596
1597 if (m != VOIDmode
1598 && !SCALAR_INT_MODE_P (m)
1599 && !MEM_P (orig_src)
1600 && GET_CODE (orig_src) != CONCAT)
1601 {
1602 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1603 if (imode == BLKmode)
1604 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1605 else
1606 src = gen_reg_rtx (imode);
1607 if (imode != BLKmode)
1608 src = gen_lowpart (GET_MODE (orig_src), src);
1609 emit_move_insn (src, orig_src);
1610 /* ...and back again. */
1611 if (imode != BLKmode)
1612 src = gen_lowpart (imode, src);
1613 emit_group_load_1 (tmps, dst, src, type, ssize);
1614 return;
1615 }
1616
1617 /* Check for a NULL entry, used to indicate that the parameter goes
1618 both on the stack and in registers. */
1619 if (XEXP (XVECEXP (dst, 0, 0), 0))
1620 start = 0;
1621 else
1622 start = 1;
1623
1624 /* Process the pieces. */
1625 for (i = start; i < XVECLEN (dst, 0); i++)
1626 {
1627 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1628 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1629 unsigned int bytelen = GET_MODE_SIZE (mode);
1630 int shift = 0;
1631
1632 /* Handle trailing fragments that run over the size of the struct. */
1633 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1634 {
1635 /* Arrange to shift the fragment to where it belongs.
1636 extract_bit_field loads to the lsb of the reg. */
1637 if (
1638 #ifdef BLOCK_REG_PADDING
1639 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1640 == (BYTES_BIG_ENDIAN ? upward : downward)
1641 #else
1642 BYTES_BIG_ENDIAN
1643 #endif
1644 )
1645 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1646 bytelen = ssize - bytepos;
1647 gcc_assert (bytelen > 0);
1648 }
1649
1650 /* If we won't be loading directly from memory, protect the real source
1651 from strange tricks we might play; but make sure that the source can
1652 be loaded directly into the destination. */
1653 src = orig_src;
1654 if (!MEM_P (orig_src)
1655 && (!CONSTANT_P (orig_src)
1656 || (GET_MODE (orig_src) != mode
1657 && GET_MODE (orig_src) != VOIDmode)))
1658 {
1659 if (GET_MODE (orig_src) == VOIDmode)
1660 src = gen_reg_rtx (mode);
1661 else
1662 src = gen_reg_rtx (GET_MODE (orig_src));
1663
1664 emit_move_insn (src, orig_src);
1665 }
1666
1667 /* Optimize the access just a bit. */
1668 if (MEM_P (src)
1669 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1670 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1671 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1672 && bytelen == GET_MODE_SIZE (mode))
1673 {
1674 tmps[i] = gen_reg_rtx (mode);
1675 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1676 }
1677 else if (COMPLEX_MODE_P (mode)
1678 && GET_MODE (src) == mode
1679 && bytelen == GET_MODE_SIZE (mode))
1680 /* Let emit_move_complex do the bulk of the work. */
1681 tmps[i] = src;
1682 else if (GET_CODE (src) == CONCAT)
1683 {
1684 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1685 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1686
1687 if ((bytepos == 0 && bytelen == slen0)
1688 || (bytepos != 0 && bytepos + bytelen <= slen))
1689 {
1690 /* The following assumes that the concatenated objects all
1691 have the same size. In this case, a simple calculation
1692 can be used to determine the object and the bit field
1693 to be extracted. */
1694 tmps[i] = XEXP (src, bytepos / slen0);
1695 if (! CONSTANT_P (tmps[i])
1696 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1697 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1698 (bytepos % slen0) * BITS_PER_UNIT,
1699 1, false, NULL_RTX, mode, mode);
1700 }
1701 else
1702 {
1703 rtx mem;
1704
1705 gcc_assert (!bytepos);
1706 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1707 emit_move_insn (mem, src);
1708 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1709 0, 1, false, NULL_RTX, mode, mode);
1710 }
1711 }
1712 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1713 SIMD register, which is currently broken. While we get GCC
1714 to emit proper RTL for these cases, let's dump to memory. */
1715 else if (VECTOR_MODE_P (GET_MODE (dst))
1716 && REG_P (src))
1717 {
1718 int slen = GET_MODE_SIZE (GET_MODE (src));
1719 rtx mem;
1720
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1724 }
1725 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1726 && XVECLEN (dst, 0) > 1)
1727 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1728 else if (CONSTANT_P (src))
1729 {
1730 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1731
1732 if (len == ssize)
1733 tmps[i] = src;
1734 else
1735 {
1736 rtx first, second;
1737
1738 gcc_assert (2 * len == ssize);
1739 split_double (src, &first, &second);
1740 if (i)
1741 tmps[i] = second;
1742 else
1743 tmps[i] = first;
1744 }
1745 }
1746 else if (REG_P (src) && GET_MODE (src) == mode)
1747 tmps[i] = src;
1748 else
1749 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1750 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1751 mode, mode);
1752
1753 if (shift)
1754 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1755 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1756 }
1757 }
1758
1759 /* Emit code to move a block SRC of type TYPE to a block DST,
1760 where DST is non-consecutive registers represented by a PARALLEL.
1761 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1762 if not known. */
1763
1764 void
1765 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1766 {
1767 rtx *tmps;
1768 int i;
1769
1770 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1771 emit_group_load_1 (tmps, dst, src, type, ssize);
1772
1773 /* Copy the extracted pieces into the proper (probable) hard regs. */
1774 for (i = 0; i < XVECLEN (dst, 0); i++)
1775 {
1776 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1777 if (d == NULL)
1778 continue;
1779 emit_move_insn (d, tmps[i]);
1780 }
1781 }
1782
1783 /* Similar, but load SRC into new pseudos in a format that looks like
1784 PARALLEL. This can later be fed to emit_group_move to get things
1785 in the right place. */
1786
1787 rtx
1788 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1789 {
1790 rtvec vec;
1791 int i;
1792
1793 vec = rtvec_alloc (XVECLEN (parallel, 0));
1794 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1795
1796 /* Convert the vector to look just like the original PARALLEL, except
1797 with the computed values. */
1798 for (i = 0; i < XVECLEN (parallel, 0); i++)
1799 {
1800 rtx e = XVECEXP (parallel, 0, i);
1801 rtx d = XEXP (e, 0);
1802
1803 if (d)
1804 {
1805 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1806 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1807 }
1808 RTVEC_ELT (vec, i) = e;
1809 }
1810
1811 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812 }
1813
1814 /* Emit code to move a block SRC to block DST, where SRC and DST are
1815 non-consecutive groups of registers, each represented by a PARALLEL. */
1816
1817 void
1818 emit_group_move (rtx dst, rtx src)
1819 {
1820 int i;
1821
1822 gcc_assert (GET_CODE (src) == PARALLEL
1823 && GET_CODE (dst) == PARALLEL
1824 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1825
1826 /* Skip first entry if NULL. */
1827 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1828 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1829 XEXP (XVECEXP (src, 0, i), 0));
1830 }
1831
1832 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833
1834 rtx
1835 emit_group_move_into_temps (rtx src)
1836 {
1837 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1838 int i;
1839
1840 for (i = 0; i < XVECLEN (src, 0); i++)
1841 {
1842 rtx e = XVECEXP (src, 0, i);
1843 rtx d = XEXP (e, 0);
1844
1845 if (d)
1846 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1847 RTVEC_ELT (vec, i) = e;
1848 }
1849
1850 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851 }
1852
1853 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1854 where SRC is non-consecutive registers represented by a PARALLEL.
1855 SSIZE represents the total size of block ORIG_DST, or -1 if not
1856 known. */
1857
1858 void
1859 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1860 {
1861 rtx *tmps, dst;
1862 int start, finish, i;
1863 enum machine_mode m = GET_MODE (orig_dst);
1864
1865 gcc_assert (GET_CODE (src) == PARALLEL);
1866
1867 if (!SCALAR_INT_MODE_P (m)
1868 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1869 {
1870 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1871 if (imode == BLKmode)
1872 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1873 else
1874 dst = gen_reg_rtx (imode);
1875 emit_group_store (dst, src, type, ssize);
1876 if (imode != BLKmode)
1877 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1878 emit_move_insn (orig_dst, dst);
1879 return;
1880 }
1881
1882 /* Check for a NULL entry, used to indicate that the parameter goes
1883 both on the stack and in registers. */
1884 if (XEXP (XVECEXP (src, 0, 0), 0))
1885 start = 0;
1886 else
1887 start = 1;
1888 finish = XVECLEN (src, 0);
1889
1890 tmps = XALLOCAVEC (rtx, finish);
1891
1892 /* Copy the (probable) hard regs into pseudos. */
1893 for (i = start; i < finish; i++)
1894 {
1895 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1896 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1897 {
1898 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1899 emit_move_insn (tmps[i], reg);
1900 }
1901 else
1902 tmps[i] = reg;
1903 }
1904
1905 /* If we won't be storing directly into memory, protect the real destination
1906 from strange tricks we might play. */
1907 dst = orig_dst;
1908 if (GET_CODE (dst) == PARALLEL)
1909 {
1910 rtx temp;
1911
1912 /* We can get a PARALLEL dst if there is a conditional expression in
1913 a return statement. In that case, the dst and src are the same,
1914 so no action is necessary. */
1915 if (rtx_equal_p (dst, src))
1916 return;
1917
1918 /* It is unclear if we can ever reach here, but we may as well handle
1919 it. Allocate a temporary, and split this into a store/load to/from
1920 the temporary. */
1921
1922 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1923 emit_group_store (temp, src, type, ssize);
1924 emit_group_load (dst, temp, type, ssize);
1925 return;
1926 }
1927 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1928 {
1929 enum machine_mode outer = GET_MODE (dst);
1930 enum machine_mode inner;
1931 HOST_WIDE_INT bytepos;
1932 bool done = false;
1933 rtx temp;
1934
1935 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1936 dst = gen_reg_rtx (outer);
1937
1938 /* Make life a bit easier for combine. */
1939 /* If the first element of the vector is the low part
1940 of the destination mode, use a paradoxical subreg to
1941 initialize the destination. */
1942 if (start < finish)
1943 {
1944 inner = GET_MODE (tmps[start]);
1945 bytepos = subreg_lowpart_offset (inner, outer);
1946 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1947 {
1948 temp = simplify_gen_subreg (outer, tmps[start],
1949 inner, 0);
1950 if (temp)
1951 {
1952 emit_move_insn (dst, temp);
1953 done = true;
1954 start++;
1955 }
1956 }
1957 }
1958
1959 /* If the first element wasn't the low part, try the last. */
1960 if (!done
1961 && start < finish - 1)
1962 {
1963 inner = GET_MODE (tmps[finish - 1]);
1964 bytepos = subreg_lowpart_offset (inner, outer);
1965 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1966 {
1967 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1968 inner, 0);
1969 if (temp)
1970 {
1971 emit_move_insn (dst, temp);
1972 done = true;
1973 finish--;
1974 }
1975 }
1976 }
1977
1978 /* Otherwise, simply initialize the result to zero. */
1979 if (!done)
1980 emit_move_insn (dst, CONST0_RTX (outer));
1981 }
1982
1983 /* Process the pieces. */
1984 for (i = start; i < finish; i++)
1985 {
1986 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1987 enum machine_mode mode = GET_MODE (tmps[i]);
1988 unsigned int bytelen = GET_MODE_SIZE (mode);
1989 unsigned int adj_bytelen = bytelen;
1990 rtx dest = dst;
1991
1992 /* Handle trailing fragments that run over the size of the struct. */
1993 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1994 adj_bytelen = ssize - bytepos;
1995
1996 if (GET_CODE (dst) == CONCAT)
1997 {
1998 if (bytepos + adj_bytelen
1999 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2000 dest = XEXP (dst, 0);
2001 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2002 {
2003 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2004 dest = XEXP (dst, 1);
2005 }
2006 else
2007 {
2008 enum machine_mode dest_mode = GET_MODE (dest);
2009 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2010
2011 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2012
2013 if (GET_MODE_ALIGNMENT (dest_mode)
2014 >= GET_MODE_ALIGNMENT (tmp_mode))
2015 {
2016 dest = assign_stack_temp (dest_mode,
2017 GET_MODE_SIZE (dest_mode),
2018 0);
2019 emit_move_insn (adjust_address (dest,
2020 tmp_mode,
2021 bytepos),
2022 tmps[i]);
2023 dst = dest;
2024 }
2025 else
2026 {
2027 dest = assign_stack_temp (tmp_mode,
2028 GET_MODE_SIZE (tmp_mode),
2029 0);
2030 emit_move_insn (dest, tmps[i]);
2031 dst = adjust_address (dest, dest_mode, bytepos);
2032 }
2033 break;
2034 }
2035 }
2036
2037 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2038 {
2039 /* store_bit_field always takes its value from the lsb.
2040 Move the fragment to the lsb if it's not already there. */
2041 if (
2042 #ifdef BLOCK_REG_PADDING
2043 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2044 == (BYTES_BIG_ENDIAN ? upward : downward)
2045 #else
2046 BYTES_BIG_ENDIAN
2047 #endif
2048 )
2049 {
2050 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2051 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2052 build_int_cst (NULL_TREE, shift),
2053 tmps[i], 0);
2054 }
2055 bytelen = adj_bytelen;
2056 }
2057
2058 /* Optimize the access just a bit. */
2059 if (MEM_P (dest)
2060 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2061 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2062 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2063 && bytelen == GET_MODE_SIZE (mode))
2064 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2065 else
2066 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2067 mode, tmps[i]);
2068 }
2069
2070 /* Copy from the pseudo into the (probable) hard reg. */
2071 if (orig_dst != dst)
2072 emit_move_insn (orig_dst, dst);
2073 }
2074
2075 /* Generate code to copy a BLKmode object of TYPE out of a
2076 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2077 is null, a stack temporary is created. TGTBLK is returned.
2078
2079 The purpose of this routine is to handle functions that return
2080 BLKmode structures in registers. Some machines (the PA for example)
2081 want to return all small structures in registers regardless of the
2082 structure's alignment. */
2083
2084 rtx
2085 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2086 {
2087 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2088 rtx src = NULL, dst = NULL;
2089 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2090 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2091 enum machine_mode copy_mode;
2092
2093 if (tgtblk == 0)
2094 {
2095 tgtblk = assign_temp (build_qualified_type (type,
2096 (TYPE_QUALS (type)
2097 | TYPE_QUAL_CONST)),
2098 0, 1, 1);
2099 preserve_temp_slots (tgtblk);
2100 }
2101
2102 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2103 into a new pseudo which is a full word. */
2104
2105 if (GET_MODE (srcreg) != BLKmode
2106 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2107 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2108
2109 /* If the structure doesn't take up a whole number of words, see whether
2110 SRCREG is padded on the left or on the right. If it's on the left,
2111 set PADDING_CORRECTION to the number of bits to skip.
2112
2113 In most ABIs, the structure will be returned at the least end of
2114 the register, which translates to right padding on little-endian
2115 targets and left padding on big-endian targets. The opposite
2116 holds if the structure is returned at the most significant
2117 end of the register. */
2118 if (bytes % UNITS_PER_WORD != 0
2119 && (targetm.calls.return_in_msb (type)
2120 ? !BYTES_BIG_ENDIAN
2121 : BYTES_BIG_ENDIAN))
2122 padding_correction
2123 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2124
2125 /* Copy the structure BITSIZE bits at a time. If the target lives in
2126 memory, take care of not reading/writing past its end by selecting
2127 a copy mode suited to BITSIZE. This should always be possible given
2128 how it is computed.
2129
2130 We could probably emit more efficient code for machines which do not use
2131 strict alignment, but it doesn't seem worth the effort at the current
2132 time. */
2133
2134 copy_mode = word_mode;
2135 if (MEM_P (tgtblk))
2136 {
2137 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2138 if (mem_mode != BLKmode)
2139 copy_mode = mem_mode;
2140 }
2141
2142 for (bitpos = 0, xbitpos = padding_correction;
2143 bitpos < bytes * BITS_PER_UNIT;
2144 bitpos += bitsize, xbitpos += bitsize)
2145 {
2146 /* We need a new source operand each time xbitpos is on a
2147 word boundary and when xbitpos == padding_correction
2148 (the first time through). */
2149 if (xbitpos % BITS_PER_WORD == 0
2150 || xbitpos == padding_correction)
2151 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2152 GET_MODE (srcreg));
2153
2154 /* We need a new destination operand each time bitpos is on
2155 a word boundary. */
2156 if (bitpos % BITS_PER_WORD == 0)
2157 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2158
2159 /* Use xbitpos for the source extraction (right justified) and
2160 bitpos for the destination store (left justified). */
2161 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2162 extract_bit_field (src, bitsize,
2163 xbitpos % BITS_PER_WORD, 1, false,
2164 NULL_RTX, copy_mode, copy_mode));
2165 }
2166
2167 return tgtblk;
2168 }
2169
2170 /* Add a USE expression for REG to the (possibly empty) list pointed
2171 to by CALL_FUSAGE. REG must denote a hard register. */
2172
2173 void
2174 use_reg (rtx *call_fusage, rtx reg)
2175 {
2176 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2177
2178 *call_fusage
2179 = gen_rtx_EXPR_LIST (VOIDmode,
2180 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2181 }
2182
2183 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2184 starting at REGNO. All of these registers must be hard registers. */
2185
2186 void
2187 use_regs (rtx *call_fusage, int regno, int nregs)
2188 {
2189 int i;
2190
2191 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2192
2193 for (i = 0; i < nregs; i++)
2194 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2195 }
2196
2197 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2198 PARALLEL REGS. This is for calls that pass values in multiple
2199 non-contiguous locations. The Irix 6 ABI has examples of this. */
2200
2201 void
2202 use_group_regs (rtx *call_fusage, rtx regs)
2203 {
2204 int i;
2205
2206 for (i = 0; i < XVECLEN (regs, 0); i++)
2207 {
2208 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2209
2210 /* A NULL entry means the parameter goes both on the stack and in
2211 registers. This can also be a MEM for targets that pass values
2212 partially on the stack and partially in registers. */
2213 if (reg != 0 && REG_P (reg))
2214 use_reg (call_fusage, reg);
2215 }
2216 }
2217
2218 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2219 assigment and the code of the expresion on the RHS is CODE. Return
2220 NULL otherwise. */
2221
2222 static gimple
2223 get_def_for_expr (tree name, enum tree_code code)
2224 {
2225 gimple def_stmt;
2226
2227 if (TREE_CODE (name) != SSA_NAME)
2228 return NULL;
2229
2230 def_stmt = get_gimple_for_ssa_name (name);
2231 if (!def_stmt
2232 || gimple_assign_rhs_code (def_stmt) != code)
2233 return NULL;
2234
2235 return def_stmt;
2236 }
2237 \f
2238
2239 /* Determine whether the LEN bytes generated by CONSTFUN can be
2240 stored to memory using several move instructions. CONSTFUNDATA is
2241 a pointer which will be passed as argument in every CONSTFUN call.
2242 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2243 a memset operation and false if it's a copy of a constant string.
2244 Return nonzero if a call to store_by_pieces should succeed. */
2245
2246 int
2247 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2248 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2249 void *constfundata, unsigned int align, bool memsetp)
2250 {
2251 unsigned HOST_WIDE_INT l;
2252 unsigned int max_size;
2253 HOST_WIDE_INT offset = 0;
2254 enum machine_mode mode;
2255 enum insn_code icode;
2256 int reverse;
2257 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2258 rtx cst ATTRIBUTE_UNUSED;
2259
2260 if (len == 0)
2261 return 1;
2262
2263 if (! (memsetp
2264 ? SET_BY_PIECES_P (len, align)
2265 : STORE_BY_PIECES_P (len, align)))
2266 return 0;
2267
2268 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2269
2270 /* We would first store what we can in the largest integer mode, then go to
2271 successively smaller modes. */
2272
2273 for (reverse = 0;
2274 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2275 reverse++)
2276 {
2277 l = len;
2278 max_size = STORE_MAX_PIECES + 1;
2279 while (max_size > 1)
2280 {
2281 mode = widest_int_mode_for_size (max_size);
2282
2283 if (mode == VOIDmode)
2284 break;
2285
2286 icode = optab_handler (mov_optab, mode);
2287 if (icode != CODE_FOR_nothing
2288 && align >= GET_MODE_ALIGNMENT (mode))
2289 {
2290 unsigned int size = GET_MODE_SIZE (mode);
2291
2292 while (l >= size)
2293 {
2294 if (reverse)
2295 offset -= size;
2296
2297 cst = (*constfun) (constfundata, offset, mode);
2298 if (!LEGITIMATE_CONSTANT_P (cst))
2299 return 0;
2300
2301 if (!reverse)
2302 offset += size;
2303
2304 l -= size;
2305 }
2306 }
2307
2308 max_size = GET_MODE_SIZE (mode);
2309 }
2310
2311 /* The code above should have handled everything. */
2312 gcc_assert (!l);
2313 }
2314
2315 return 1;
2316 }
2317
2318 /* Generate several move instructions to store LEN bytes generated by
2319 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2320 pointer which will be passed as argument in every CONSTFUN call.
2321 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2322 a memset operation and false if it's a copy of a constant string.
2323 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2324 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2325 stpcpy. */
2326
2327 rtx
2328 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2329 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2330 void *constfundata, unsigned int align, bool memsetp, int endp)
2331 {
2332 enum machine_mode to_addr_mode
2333 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2334 struct store_by_pieces_d data;
2335
2336 if (len == 0)
2337 {
2338 gcc_assert (endp != 2);
2339 return to;
2340 }
2341
2342 gcc_assert (memsetp
2343 ? SET_BY_PIECES_P (len, align)
2344 : STORE_BY_PIECES_P (len, align));
2345 data.constfun = constfun;
2346 data.constfundata = constfundata;
2347 data.len = len;
2348 data.to = to;
2349 store_by_pieces_1 (&data, align);
2350 if (endp)
2351 {
2352 rtx to1;
2353
2354 gcc_assert (!data.reverse);
2355 if (data.autinc_to)
2356 {
2357 if (endp == 2)
2358 {
2359 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2360 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2361 else
2362 data.to_addr = copy_to_mode_reg (to_addr_mode,
2363 plus_constant (data.to_addr,
2364 -1));
2365 }
2366 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2367 data.offset);
2368 }
2369 else
2370 {
2371 if (endp == 2)
2372 --data.offset;
2373 to1 = adjust_address (data.to, QImode, data.offset);
2374 }
2375 return to1;
2376 }
2377 else
2378 return data.to;
2379 }
2380
2381 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2382 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2383
2384 static void
2385 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2386 {
2387 struct store_by_pieces_d data;
2388
2389 if (len == 0)
2390 return;
2391
2392 data.constfun = clear_by_pieces_1;
2393 data.constfundata = NULL;
2394 data.len = len;
2395 data.to = to;
2396 store_by_pieces_1 (&data, align);
2397 }
2398
2399 /* Callback routine for clear_by_pieces.
2400 Return const0_rtx unconditionally. */
2401
2402 static rtx
2403 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2404 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2405 enum machine_mode mode ATTRIBUTE_UNUSED)
2406 {
2407 return const0_rtx;
2408 }
2409
2410 /* Subroutine of clear_by_pieces and store_by_pieces.
2411 Generate several move instructions to store LEN bytes of block TO. (A MEM
2412 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2413
2414 static void
2415 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2416 unsigned int align ATTRIBUTE_UNUSED)
2417 {
2418 enum machine_mode to_addr_mode
2419 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2420 rtx to_addr = XEXP (data->to, 0);
2421 unsigned int max_size = STORE_MAX_PIECES + 1;
2422 enum insn_code icode;
2423
2424 data->offset = 0;
2425 data->to_addr = to_addr;
2426 data->autinc_to
2427 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2428 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2429
2430 data->explicit_inc_to = 0;
2431 data->reverse
2432 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2433 if (data->reverse)
2434 data->offset = data->len;
2435
2436 /* If storing requires more than two move insns,
2437 copy addresses to registers (to make displacements shorter)
2438 and use post-increment if available. */
2439 if (!data->autinc_to
2440 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2441 {
2442 /* Determine the main mode we'll be using.
2443 MODE might not be used depending on the definitions of the
2444 USE_* macros below. */
2445 enum machine_mode mode ATTRIBUTE_UNUSED
2446 = widest_int_mode_for_size (max_size);
2447
2448 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2449 {
2450 data->to_addr = copy_to_mode_reg (to_addr_mode,
2451 plus_constant (to_addr, data->len));
2452 data->autinc_to = 1;
2453 data->explicit_inc_to = -1;
2454 }
2455
2456 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2457 && ! data->autinc_to)
2458 {
2459 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2460 data->autinc_to = 1;
2461 data->explicit_inc_to = 1;
2462 }
2463
2464 if ( !data->autinc_to && CONSTANT_P (to_addr))
2465 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2466 }
2467
2468 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2469
2470 /* First store what we can in the largest integer mode, then go to
2471 successively smaller modes. */
2472
2473 while (max_size > 1)
2474 {
2475 enum machine_mode mode = widest_int_mode_for_size (max_size);
2476
2477 if (mode == VOIDmode)
2478 break;
2479
2480 icode = optab_handler (mov_optab, mode);
2481 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2482 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2483
2484 max_size = GET_MODE_SIZE (mode);
2485 }
2486
2487 /* The code above should have handled everything. */
2488 gcc_assert (!data->len);
2489 }
2490
2491 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2492 with move instructions for mode MODE. GENFUN is the gen_... function
2493 to make a move insn for that mode. DATA has all the other info. */
2494
2495 static void
2496 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2497 struct store_by_pieces_d *data)
2498 {
2499 unsigned int size = GET_MODE_SIZE (mode);
2500 rtx to1, cst;
2501
2502 while (data->len >= size)
2503 {
2504 if (data->reverse)
2505 data->offset -= size;
2506
2507 if (data->autinc_to)
2508 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2509 data->offset);
2510 else
2511 to1 = adjust_address (data->to, mode, data->offset);
2512
2513 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2514 emit_insn (gen_add2_insn (data->to_addr,
2515 GEN_INT (-(HOST_WIDE_INT) size)));
2516
2517 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2518 emit_insn ((*genfun) (to1, cst));
2519
2520 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2521 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2522
2523 if (! data->reverse)
2524 data->offset += size;
2525
2526 data->len -= size;
2527 }
2528 }
2529 \f
2530 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2531 its length in bytes. */
2532
2533 rtx
2534 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2535 unsigned int expected_align, HOST_WIDE_INT expected_size)
2536 {
2537 enum machine_mode mode = GET_MODE (object);
2538 unsigned int align;
2539
2540 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2541
2542 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2543 just move a zero. Otherwise, do this a piece at a time. */
2544 if (mode != BLKmode
2545 && CONST_INT_P (size)
2546 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2547 {
2548 rtx zero = CONST0_RTX (mode);
2549 if (zero != NULL)
2550 {
2551 emit_move_insn (object, zero);
2552 return NULL;
2553 }
2554
2555 if (COMPLEX_MODE_P (mode))
2556 {
2557 zero = CONST0_RTX (GET_MODE_INNER (mode));
2558 if (zero != NULL)
2559 {
2560 write_complex_part (object, zero, 0);
2561 write_complex_part (object, zero, 1);
2562 return NULL;
2563 }
2564 }
2565 }
2566
2567 if (size == const0_rtx)
2568 return NULL;
2569
2570 align = MEM_ALIGN (object);
2571
2572 if (CONST_INT_P (size)
2573 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2574 clear_by_pieces (object, INTVAL (size), align);
2575 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2576 expected_align, expected_size))
2577 ;
2578 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2579 return set_storage_via_libcall (object, size, const0_rtx,
2580 method == BLOCK_OP_TAILCALL);
2581 else
2582 gcc_unreachable ();
2583
2584 return NULL;
2585 }
2586
2587 rtx
2588 clear_storage (rtx object, rtx size, enum block_op_methods method)
2589 {
2590 return clear_storage_hints (object, size, method, 0, -1);
2591 }
2592
2593
2594 /* A subroutine of clear_storage. Expand a call to memset.
2595 Return the return value of memset, 0 otherwise. */
2596
2597 rtx
2598 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2599 {
2600 tree call_expr, fn, object_tree, size_tree, val_tree;
2601 enum machine_mode size_mode;
2602 rtx retval;
2603
2604 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2605 place those into new pseudos into a VAR_DECL and use them later. */
2606
2607 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2608
2609 size_mode = TYPE_MODE (sizetype);
2610 size = convert_to_mode (size_mode, size, 1);
2611 size = copy_to_mode_reg (size_mode, size);
2612
2613 /* It is incorrect to use the libcall calling conventions to call
2614 memset in this context. This could be a user call to memset and
2615 the user may wish to examine the return value from memset. For
2616 targets where libcalls and normal calls have different conventions
2617 for returning pointers, we could end up generating incorrect code. */
2618
2619 object_tree = make_tree (ptr_type_node, object);
2620 if (!CONST_INT_P (val))
2621 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2622 size_tree = make_tree (sizetype, size);
2623 val_tree = make_tree (integer_type_node, val);
2624
2625 fn = clear_storage_libcall_fn (true);
2626 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2627 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2628
2629 retval = expand_normal (call_expr);
2630
2631 return retval;
2632 }
2633
2634 /* A subroutine of set_storage_via_libcall. Create the tree node
2635 for the function we use for block clears. The first time FOR_CALL
2636 is true, we call assemble_external. */
2637
2638 tree block_clear_fn;
2639
2640 void
2641 init_block_clear_fn (const char *asmspec)
2642 {
2643 if (!block_clear_fn)
2644 {
2645 tree fn, args;
2646
2647 fn = get_identifier ("memset");
2648 args = build_function_type_list (ptr_type_node, ptr_type_node,
2649 integer_type_node, sizetype,
2650 NULL_TREE);
2651
2652 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2653 DECL_EXTERNAL (fn) = 1;
2654 TREE_PUBLIC (fn) = 1;
2655 DECL_ARTIFICIAL (fn) = 1;
2656 TREE_NOTHROW (fn) = 1;
2657 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2658 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2659
2660 block_clear_fn = fn;
2661 }
2662
2663 if (asmspec)
2664 set_user_assembler_name (block_clear_fn, asmspec);
2665 }
2666
2667 static tree
2668 clear_storage_libcall_fn (int for_call)
2669 {
2670 static bool emitted_extern;
2671
2672 if (!block_clear_fn)
2673 init_block_clear_fn (NULL);
2674
2675 if (for_call && !emitted_extern)
2676 {
2677 emitted_extern = true;
2678 make_decl_rtl (block_clear_fn);
2679 assemble_external (block_clear_fn);
2680 }
2681
2682 return block_clear_fn;
2683 }
2684 \f
2685 /* Expand a setmem pattern; return true if successful. */
2686
2687 bool
2688 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2689 unsigned int expected_align, HOST_WIDE_INT expected_size)
2690 {
2691 /* Try the most limited insn first, because there's no point
2692 including more than one in the machine description unless
2693 the more limited one has some advantage. */
2694
2695 enum machine_mode mode;
2696
2697 if (expected_align < align)
2698 expected_align = align;
2699
2700 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2701 mode = GET_MODE_WIDER_MODE (mode))
2702 {
2703 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2704
2705 if (code != CODE_FOR_nothing
2706 /* We don't need MODE to be narrower than
2707 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2708 the mode mask, as it is returned by the macro, it will
2709 definitely be less than the actual mode mask. */
2710 && ((CONST_INT_P (size)
2711 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2712 <= (GET_MODE_MASK (mode) >> 1)))
2713 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD))
2714 {
2715 struct expand_operand ops[6];
2716 unsigned int nops;
2717
2718 nops = insn_data[(int) code].n_operands;
2719 create_fixed_operand (&ops[0], object);
2720 /* The check above guarantees that this size conversion is valid. */
2721 create_convert_operand_to (&ops[1], size, mode, true);
2722 create_convert_operand_from (&ops[2], val, byte_mode, true);
2723 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2724 if (nops != 4)
2725 {
2726 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2727 create_integer_operand (&ops[5], expected_size);
2728 nops = 6;
2729 }
2730 if (maybe_expand_insn (code, nops, ops))
2731 return true;
2732 }
2733 }
2734
2735 return false;
2736 }
2737
2738 \f
2739 /* Write to one of the components of the complex value CPLX. Write VAL to
2740 the real part if IMAG_P is false, and the imaginary part if its true. */
2741
2742 static void
2743 write_complex_part (rtx cplx, rtx val, bool imag_p)
2744 {
2745 enum machine_mode cmode;
2746 enum machine_mode imode;
2747 unsigned ibitsize;
2748
2749 if (GET_CODE (cplx) == CONCAT)
2750 {
2751 emit_move_insn (XEXP (cplx, imag_p), val);
2752 return;
2753 }
2754
2755 cmode = GET_MODE (cplx);
2756 imode = GET_MODE_INNER (cmode);
2757 ibitsize = GET_MODE_BITSIZE (imode);
2758
2759 /* For MEMs simplify_gen_subreg may generate an invalid new address
2760 because, e.g., the original address is considered mode-dependent
2761 by the target, which restricts simplify_subreg from invoking
2762 adjust_address_nv. Instead of preparing fallback support for an
2763 invalid address, we call adjust_address_nv directly. */
2764 if (MEM_P (cplx))
2765 {
2766 emit_move_insn (adjust_address_nv (cplx, imode,
2767 imag_p ? GET_MODE_SIZE (imode) : 0),
2768 val);
2769 return;
2770 }
2771
2772 /* If the sub-object is at least word sized, then we know that subregging
2773 will work. This special case is important, since store_bit_field
2774 wants to operate on integer modes, and there's rarely an OImode to
2775 correspond to TCmode. */
2776 if (ibitsize >= BITS_PER_WORD
2777 /* For hard regs we have exact predicates. Assume we can split
2778 the original object if it spans an even number of hard regs.
2779 This special case is important for SCmode on 64-bit platforms
2780 where the natural size of floating-point regs is 32-bit. */
2781 || (REG_P (cplx)
2782 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2783 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2784 {
2785 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2786 imag_p ? GET_MODE_SIZE (imode) : 0);
2787 if (part)
2788 {
2789 emit_move_insn (part, val);
2790 return;
2791 }
2792 else
2793 /* simplify_gen_subreg may fail for sub-word MEMs. */
2794 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2795 }
2796
2797 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2798 }
2799
2800 /* Extract one of the components of the complex value CPLX. Extract the
2801 real part if IMAG_P is false, and the imaginary part if it's true. */
2802
2803 static rtx
2804 read_complex_part (rtx cplx, bool imag_p)
2805 {
2806 enum machine_mode cmode, imode;
2807 unsigned ibitsize;
2808
2809 if (GET_CODE (cplx) == CONCAT)
2810 return XEXP (cplx, imag_p);
2811
2812 cmode = GET_MODE (cplx);
2813 imode = GET_MODE_INNER (cmode);
2814 ibitsize = GET_MODE_BITSIZE (imode);
2815
2816 /* Special case reads from complex constants that got spilled to memory. */
2817 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2818 {
2819 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2820 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2821 {
2822 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2823 if (CONSTANT_CLASS_P (part))
2824 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2825 }
2826 }
2827
2828 /* For MEMs simplify_gen_subreg may generate an invalid new address
2829 because, e.g., the original address is considered mode-dependent
2830 by the target, which restricts simplify_subreg from invoking
2831 adjust_address_nv. Instead of preparing fallback support for an
2832 invalid address, we call adjust_address_nv directly. */
2833 if (MEM_P (cplx))
2834 return adjust_address_nv (cplx, imode,
2835 imag_p ? GET_MODE_SIZE (imode) : 0);
2836
2837 /* If the sub-object is at least word sized, then we know that subregging
2838 will work. This special case is important, since extract_bit_field
2839 wants to operate on integer modes, and there's rarely an OImode to
2840 correspond to TCmode. */
2841 if (ibitsize >= BITS_PER_WORD
2842 /* For hard regs we have exact predicates. Assume we can split
2843 the original object if it spans an even number of hard regs.
2844 This special case is important for SCmode on 64-bit platforms
2845 where the natural size of floating-point regs is 32-bit. */
2846 || (REG_P (cplx)
2847 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2848 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2849 {
2850 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2851 imag_p ? GET_MODE_SIZE (imode) : 0);
2852 if (ret)
2853 return ret;
2854 else
2855 /* simplify_gen_subreg may fail for sub-word MEMs. */
2856 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2857 }
2858
2859 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2860 true, false, NULL_RTX, imode, imode);
2861 }
2862 \f
2863 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2864 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2865 represented in NEW_MODE. If FORCE is true, this will never happen, as
2866 we'll force-create a SUBREG if needed. */
2867
2868 static rtx
2869 emit_move_change_mode (enum machine_mode new_mode,
2870 enum machine_mode old_mode, rtx x, bool force)
2871 {
2872 rtx ret;
2873
2874 if (push_operand (x, GET_MODE (x)))
2875 {
2876 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2877 MEM_COPY_ATTRIBUTES (ret, x);
2878 }
2879 else if (MEM_P (x))
2880 {
2881 /* We don't have to worry about changing the address since the
2882 size in bytes is supposed to be the same. */
2883 if (reload_in_progress)
2884 {
2885 /* Copy the MEM to change the mode and move any
2886 substitutions from the old MEM to the new one. */
2887 ret = adjust_address_nv (x, new_mode, 0);
2888 copy_replacements (x, ret);
2889 }
2890 else
2891 ret = adjust_address (x, new_mode, 0);
2892 }
2893 else
2894 {
2895 /* Note that we do want simplify_subreg's behavior of validating
2896 that the new mode is ok for a hard register. If we were to use
2897 simplify_gen_subreg, we would create the subreg, but would
2898 probably run into the target not being able to implement it. */
2899 /* Except, of course, when FORCE is true, when this is exactly what
2900 we want. Which is needed for CCmodes on some targets. */
2901 if (force)
2902 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2903 else
2904 ret = simplify_subreg (new_mode, x, old_mode, 0);
2905 }
2906
2907 return ret;
2908 }
2909
2910 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2911 an integer mode of the same size as MODE. Returns the instruction
2912 emitted, or NULL if such a move could not be generated. */
2913
2914 static rtx
2915 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2916 {
2917 enum machine_mode imode;
2918 enum insn_code code;
2919
2920 /* There must exist a mode of the exact size we require. */
2921 imode = int_mode_for_mode (mode);
2922 if (imode == BLKmode)
2923 return NULL_RTX;
2924
2925 /* The target must support moves in this mode. */
2926 code = optab_handler (mov_optab, imode);
2927 if (code == CODE_FOR_nothing)
2928 return NULL_RTX;
2929
2930 x = emit_move_change_mode (imode, mode, x, force);
2931 if (x == NULL_RTX)
2932 return NULL_RTX;
2933 y = emit_move_change_mode (imode, mode, y, force);
2934 if (y == NULL_RTX)
2935 return NULL_RTX;
2936 return emit_insn (GEN_FCN (code) (x, y));
2937 }
2938
2939 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2940 Return an equivalent MEM that does not use an auto-increment. */
2941
2942 static rtx
2943 emit_move_resolve_push (enum machine_mode mode, rtx x)
2944 {
2945 enum rtx_code code = GET_CODE (XEXP (x, 0));
2946 HOST_WIDE_INT adjust;
2947 rtx temp;
2948
2949 adjust = GET_MODE_SIZE (mode);
2950 #ifdef PUSH_ROUNDING
2951 adjust = PUSH_ROUNDING (adjust);
2952 #endif
2953 if (code == PRE_DEC || code == POST_DEC)
2954 adjust = -adjust;
2955 else if (code == PRE_MODIFY || code == POST_MODIFY)
2956 {
2957 rtx expr = XEXP (XEXP (x, 0), 1);
2958 HOST_WIDE_INT val;
2959
2960 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2961 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
2962 val = INTVAL (XEXP (expr, 1));
2963 if (GET_CODE (expr) == MINUS)
2964 val = -val;
2965 gcc_assert (adjust == val || adjust == -val);
2966 adjust = val;
2967 }
2968
2969 /* Do not use anti_adjust_stack, since we don't want to update
2970 stack_pointer_delta. */
2971 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2972 GEN_INT (adjust), stack_pointer_rtx,
2973 0, OPTAB_LIB_WIDEN);
2974 if (temp != stack_pointer_rtx)
2975 emit_move_insn (stack_pointer_rtx, temp);
2976
2977 switch (code)
2978 {
2979 case PRE_INC:
2980 case PRE_DEC:
2981 case PRE_MODIFY:
2982 temp = stack_pointer_rtx;
2983 break;
2984 case POST_INC:
2985 case POST_DEC:
2986 case POST_MODIFY:
2987 temp = plus_constant (stack_pointer_rtx, -adjust);
2988 break;
2989 default:
2990 gcc_unreachable ();
2991 }
2992
2993 return replace_equiv_address (x, temp);
2994 }
2995
2996 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2997 X is known to satisfy push_operand, and MODE is known to be complex.
2998 Returns the last instruction emitted. */
2999
3000 rtx
3001 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3002 {
3003 enum machine_mode submode = GET_MODE_INNER (mode);
3004 bool imag_first;
3005
3006 #ifdef PUSH_ROUNDING
3007 unsigned int submodesize = GET_MODE_SIZE (submode);
3008
3009 /* In case we output to the stack, but the size is smaller than the
3010 machine can push exactly, we need to use move instructions. */
3011 if (PUSH_ROUNDING (submodesize) != submodesize)
3012 {
3013 x = emit_move_resolve_push (mode, x);
3014 return emit_move_insn (x, y);
3015 }
3016 #endif
3017
3018 /* Note that the real part always precedes the imag part in memory
3019 regardless of machine's endianness. */
3020 switch (GET_CODE (XEXP (x, 0)))
3021 {
3022 case PRE_DEC:
3023 case POST_DEC:
3024 imag_first = true;
3025 break;
3026 case PRE_INC:
3027 case POST_INC:
3028 imag_first = false;
3029 break;
3030 default:
3031 gcc_unreachable ();
3032 }
3033
3034 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3035 read_complex_part (y, imag_first));
3036 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3037 read_complex_part (y, !imag_first));
3038 }
3039
3040 /* A subroutine of emit_move_complex. Perform the move from Y to X
3041 via two moves of the parts. Returns the last instruction emitted. */
3042
3043 rtx
3044 emit_move_complex_parts (rtx x, rtx y)
3045 {
3046 /* Show the output dies here. This is necessary for SUBREGs
3047 of pseudos since we cannot track their lifetimes correctly;
3048 hard regs shouldn't appear here except as return values. */
3049 if (!reload_completed && !reload_in_progress
3050 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3051 emit_clobber (x);
3052
3053 write_complex_part (x, read_complex_part (y, false), false);
3054 write_complex_part (x, read_complex_part (y, true), true);
3055
3056 return get_last_insn ();
3057 }
3058
3059 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3060 MODE is known to be complex. Returns the last instruction emitted. */
3061
3062 static rtx
3063 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3064 {
3065 bool try_int;
3066
3067 /* Need to take special care for pushes, to maintain proper ordering
3068 of the data, and possibly extra padding. */
3069 if (push_operand (x, mode))
3070 return emit_move_complex_push (mode, x, y);
3071
3072 /* See if we can coerce the target into moving both values at once. */
3073
3074 /* Move floating point as parts. */
3075 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3076 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3077 try_int = false;
3078 /* Not possible if the values are inherently not adjacent. */
3079 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3080 try_int = false;
3081 /* Is possible if both are registers (or subregs of registers). */
3082 else if (register_operand (x, mode) && register_operand (y, mode))
3083 try_int = true;
3084 /* If one of the operands is a memory, and alignment constraints
3085 are friendly enough, we may be able to do combined memory operations.
3086 We do not attempt this if Y is a constant because that combination is
3087 usually better with the by-parts thing below. */
3088 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3089 && (!STRICT_ALIGNMENT
3090 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3091 try_int = true;
3092 else
3093 try_int = false;
3094
3095 if (try_int)
3096 {
3097 rtx ret;
3098
3099 /* For memory to memory moves, optimal behavior can be had with the
3100 existing block move logic. */
3101 if (MEM_P (x) && MEM_P (y))
3102 {
3103 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3104 BLOCK_OP_NO_LIBCALL);
3105 return get_last_insn ();
3106 }
3107
3108 ret = emit_move_via_integer (mode, x, y, true);
3109 if (ret)
3110 return ret;
3111 }
3112
3113 return emit_move_complex_parts (x, y);
3114 }
3115
3116 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3117 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3118
3119 static rtx
3120 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3121 {
3122 rtx ret;
3123
3124 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3125 if (mode != CCmode)
3126 {
3127 enum insn_code code = optab_handler (mov_optab, CCmode);
3128 if (code != CODE_FOR_nothing)
3129 {
3130 x = emit_move_change_mode (CCmode, mode, x, true);
3131 y = emit_move_change_mode (CCmode, mode, y, true);
3132 return emit_insn (GEN_FCN (code) (x, y));
3133 }
3134 }
3135
3136 /* Otherwise, find the MODE_INT mode of the same width. */
3137 ret = emit_move_via_integer (mode, x, y, false);
3138 gcc_assert (ret != NULL);
3139 return ret;
3140 }
3141
3142 /* Return true if word I of OP lies entirely in the
3143 undefined bits of a paradoxical subreg. */
3144
3145 static bool
3146 undefined_operand_subword_p (const_rtx op, int i)
3147 {
3148 enum machine_mode innermode, innermostmode;
3149 int offset;
3150 if (GET_CODE (op) != SUBREG)
3151 return false;
3152 innermode = GET_MODE (op);
3153 innermostmode = GET_MODE (SUBREG_REG (op));
3154 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3155 /* The SUBREG_BYTE represents offset, as if the value were stored in
3156 memory, except for a paradoxical subreg where we define
3157 SUBREG_BYTE to be 0; undo this exception as in
3158 simplify_subreg. */
3159 if (SUBREG_BYTE (op) == 0
3160 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3161 {
3162 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3163 if (WORDS_BIG_ENDIAN)
3164 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3165 if (BYTES_BIG_ENDIAN)
3166 offset += difference % UNITS_PER_WORD;
3167 }
3168 if (offset >= GET_MODE_SIZE (innermostmode)
3169 || offset <= -GET_MODE_SIZE (word_mode))
3170 return true;
3171 return false;
3172 }
3173
3174 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3175 MODE is any multi-word or full-word mode that lacks a move_insn
3176 pattern. Note that you will get better code if you define such
3177 patterns, even if they must turn into multiple assembler instructions. */
3178
3179 static rtx
3180 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3181 {
3182 rtx last_insn = 0;
3183 rtx seq, inner;
3184 bool need_clobber;
3185 int i;
3186
3187 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3188
3189 /* If X is a push on the stack, do the push now and replace
3190 X with a reference to the stack pointer. */
3191 if (push_operand (x, mode))
3192 x = emit_move_resolve_push (mode, x);
3193
3194 /* If we are in reload, see if either operand is a MEM whose address
3195 is scheduled for replacement. */
3196 if (reload_in_progress && MEM_P (x)
3197 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3198 x = replace_equiv_address_nv (x, inner);
3199 if (reload_in_progress && MEM_P (y)
3200 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3201 y = replace_equiv_address_nv (y, inner);
3202
3203 start_sequence ();
3204
3205 need_clobber = false;
3206 for (i = 0;
3207 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3208 i++)
3209 {
3210 rtx xpart = operand_subword (x, i, 1, mode);
3211 rtx ypart;
3212
3213 /* Do not generate code for a move if it would come entirely
3214 from the undefined bits of a paradoxical subreg. */
3215 if (undefined_operand_subword_p (y, i))
3216 continue;
3217
3218 ypart = operand_subword (y, i, 1, mode);
3219
3220 /* If we can't get a part of Y, put Y into memory if it is a
3221 constant. Otherwise, force it into a register. Then we must
3222 be able to get a part of Y. */
3223 if (ypart == 0 && CONSTANT_P (y))
3224 {
3225 y = use_anchored_address (force_const_mem (mode, y));
3226 ypart = operand_subword (y, i, 1, mode);
3227 }
3228 else if (ypart == 0)
3229 ypart = operand_subword_force (y, i, mode);
3230
3231 gcc_assert (xpart && ypart);
3232
3233 need_clobber |= (GET_CODE (xpart) == SUBREG);
3234
3235 last_insn = emit_move_insn (xpart, ypart);
3236 }
3237
3238 seq = get_insns ();
3239 end_sequence ();
3240
3241 /* Show the output dies here. This is necessary for SUBREGs
3242 of pseudos since we cannot track their lifetimes correctly;
3243 hard regs shouldn't appear here except as return values.
3244 We never want to emit such a clobber after reload. */
3245 if (x != y
3246 && ! (reload_in_progress || reload_completed)
3247 && need_clobber != 0)
3248 emit_clobber (x);
3249
3250 emit_insn (seq);
3251
3252 return last_insn;
3253 }
3254
3255 /* Low level part of emit_move_insn.
3256 Called just like emit_move_insn, but assumes X and Y
3257 are basically valid. */
3258
3259 rtx
3260 emit_move_insn_1 (rtx x, rtx y)
3261 {
3262 enum machine_mode mode = GET_MODE (x);
3263 enum insn_code code;
3264
3265 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3266
3267 code = optab_handler (mov_optab, mode);
3268 if (code != CODE_FOR_nothing)
3269 return emit_insn (GEN_FCN (code) (x, y));
3270
3271 /* Expand complex moves by moving real part and imag part. */
3272 if (COMPLEX_MODE_P (mode))
3273 return emit_move_complex (mode, x, y);
3274
3275 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3276 || ALL_FIXED_POINT_MODE_P (mode))
3277 {
3278 rtx result = emit_move_via_integer (mode, x, y, true);
3279
3280 /* If we can't find an integer mode, use multi words. */
3281 if (result)
3282 return result;
3283 else
3284 return emit_move_multi_word (mode, x, y);
3285 }
3286
3287 if (GET_MODE_CLASS (mode) == MODE_CC)
3288 return emit_move_ccmode (mode, x, y);
3289
3290 /* Try using a move pattern for the corresponding integer mode. This is
3291 only safe when simplify_subreg can convert MODE constants into integer
3292 constants. At present, it can only do this reliably if the value
3293 fits within a HOST_WIDE_INT. */
3294 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3295 {
3296 rtx ret = emit_move_via_integer (mode, x, y, false);
3297 if (ret)
3298 return ret;
3299 }
3300
3301 return emit_move_multi_word (mode, x, y);
3302 }
3303
3304 /* Generate code to copy Y into X.
3305 Both Y and X must have the same mode, except that
3306 Y can be a constant with VOIDmode.
3307 This mode cannot be BLKmode; use emit_block_move for that.
3308
3309 Return the last instruction emitted. */
3310
3311 rtx
3312 emit_move_insn (rtx x, rtx y)
3313 {
3314 enum machine_mode mode = GET_MODE (x);
3315 rtx y_cst = NULL_RTX;
3316 rtx last_insn, set;
3317
3318 gcc_assert (mode != BLKmode
3319 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3320
3321 if (CONSTANT_P (y))
3322 {
3323 if (optimize
3324 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3325 && (last_insn = compress_float_constant (x, y)))
3326 return last_insn;
3327
3328 y_cst = y;
3329
3330 if (!LEGITIMATE_CONSTANT_P (y))
3331 {
3332 y = force_const_mem (mode, y);
3333
3334 /* If the target's cannot_force_const_mem prevented the spill,
3335 assume that the target's move expanders will also take care
3336 of the non-legitimate constant. */
3337 if (!y)
3338 y = y_cst;
3339 else
3340 y = use_anchored_address (y);
3341 }
3342 }
3343
3344 /* If X or Y are memory references, verify that their addresses are valid
3345 for the machine. */
3346 if (MEM_P (x)
3347 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3348 MEM_ADDR_SPACE (x))
3349 && ! push_operand (x, GET_MODE (x))))
3350 x = validize_mem (x);
3351
3352 if (MEM_P (y)
3353 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3354 MEM_ADDR_SPACE (y)))
3355 y = validize_mem (y);
3356
3357 gcc_assert (mode != BLKmode);
3358
3359 last_insn = emit_move_insn_1 (x, y);
3360
3361 if (y_cst && REG_P (x)
3362 && (set = single_set (last_insn)) != NULL_RTX
3363 && SET_DEST (set) == x
3364 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3365 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3366
3367 return last_insn;
3368 }
3369
3370 /* If Y is representable exactly in a narrower mode, and the target can
3371 perform the extension directly from constant or memory, then emit the
3372 move as an extension. */
3373
3374 static rtx
3375 compress_float_constant (rtx x, rtx y)
3376 {
3377 enum machine_mode dstmode = GET_MODE (x);
3378 enum machine_mode orig_srcmode = GET_MODE (y);
3379 enum machine_mode srcmode;
3380 REAL_VALUE_TYPE r;
3381 int oldcost, newcost;
3382 bool speed = optimize_insn_for_speed_p ();
3383
3384 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3385
3386 if (LEGITIMATE_CONSTANT_P (y))
3387 oldcost = rtx_cost (y, SET, speed);
3388 else
3389 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3390
3391 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3392 srcmode != orig_srcmode;
3393 srcmode = GET_MODE_WIDER_MODE (srcmode))
3394 {
3395 enum insn_code ic;
3396 rtx trunc_y, last_insn;
3397
3398 /* Skip if the target can't extend this way. */
3399 ic = can_extend_p (dstmode, srcmode, 0);
3400 if (ic == CODE_FOR_nothing)
3401 continue;
3402
3403 /* Skip if the narrowed value isn't exact. */
3404 if (! exact_real_truncate (srcmode, &r))
3405 continue;
3406
3407 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3408
3409 if (LEGITIMATE_CONSTANT_P (trunc_y))
3410 {
3411 /* Skip if the target needs extra instructions to perform
3412 the extension. */
3413 if (!insn_operand_matches (ic, 1, trunc_y))
3414 continue;
3415 /* This is valid, but may not be cheaper than the original. */
3416 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3417 if (oldcost < newcost)
3418 continue;
3419 }
3420 else if (float_extend_from_mem[dstmode][srcmode])
3421 {
3422 trunc_y = force_const_mem (srcmode, trunc_y);
3423 /* This is valid, but may not be cheaper than the original. */
3424 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3425 if (oldcost < newcost)
3426 continue;
3427 trunc_y = validize_mem (trunc_y);
3428 }
3429 else
3430 continue;
3431
3432 /* For CSE's benefit, force the compressed constant pool entry
3433 into a new pseudo. This constant may be used in different modes,
3434 and if not, combine will put things back together for us. */
3435 trunc_y = force_reg (srcmode, trunc_y);
3436 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3437 last_insn = get_last_insn ();
3438
3439 if (REG_P (x))
3440 set_unique_reg_note (last_insn, REG_EQUAL, y);
3441
3442 return last_insn;
3443 }
3444
3445 return NULL_RTX;
3446 }
3447 \f
3448 /* Pushing data onto the stack. */
3449
3450 /* Push a block of length SIZE (perhaps variable)
3451 and return an rtx to address the beginning of the block.
3452 The value may be virtual_outgoing_args_rtx.
3453
3454 EXTRA is the number of bytes of padding to push in addition to SIZE.
3455 BELOW nonzero means this padding comes at low addresses;
3456 otherwise, the padding comes at high addresses. */
3457
3458 rtx
3459 push_block (rtx size, int extra, int below)
3460 {
3461 rtx temp;
3462
3463 size = convert_modes (Pmode, ptr_mode, size, 1);
3464 if (CONSTANT_P (size))
3465 anti_adjust_stack (plus_constant (size, extra));
3466 else if (REG_P (size) && extra == 0)
3467 anti_adjust_stack (size);
3468 else
3469 {
3470 temp = copy_to_mode_reg (Pmode, size);
3471 if (extra != 0)
3472 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3473 temp, 0, OPTAB_LIB_WIDEN);
3474 anti_adjust_stack (temp);
3475 }
3476
3477 #ifndef STACK_GROWS_DOWNWARD
3478 if (0)
3479 #else
3480 if (1)
3481 #endif
3482 {
3483 temp = virtual_outgoing_args_rtx;
3484 if (extra != 0 && below)
3485 temp = plus_constant (temp, extra);
3486 }
3487 else
3488 {
3489 if (CONST_INT_P (size))
3490 temp = plus_constant (virtual_outgoing_args_rtx,
3491 -INTVAL (size) - (below ? 0 : extra));
3492 else if (extra != 0 && !below)
3493 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3494 negate_rtx (Pmode, plus_constant (size, extra)));
3495 else
3496 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3497 negate_rtx (Pmode, size));
3498 }
3499
3500 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3501 }
3502
3503 #ifdef PUSH_ROUNDING
3504
3505 /* Emit single push insn. */
3506
3507 static void
3508 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3509 {
3510 rtx dest_addr;
3511 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3512 rtx dest;
3513 enum insn_code icode;
3514
3515 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3516 /* If there is push pattern, use it. Otherwise try old way of throwing
3517 MEM representing push operation to move expander. */
3518 icode = optab_handler (push_optab, mode);
3519 if (icode != CODE_FOR_nothing)
3520 {
3521 struct expand_operand ops[1];
3522
3523 create_input_operand (&ops[0], x, mode);
3524 if (maybe_expand_insn (icode, 1, ops))
3525 return;
3526 }
3527 if (GET_MODE_SIZE (mode) == rounded_size)
3528 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3529 /* If we are to pad downward, adjust the stack pointer first and
3530 then store X into the stack location using an offset. This is
3531 because emit_move_insn does not know how to pad; it does not have
3532 access to type. */
3533 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3534 {
3535 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3536 HOST_WIDE_INT offset;
3537
3538 emit_move_insn (stack_pointer_rtx,
3539 expand_binop (Pmode,
3540 #ifdef STACK_GROWS_DOWNWARD
3541 sub_optab,
3542 #else
3543 add_optab,
3544 #endif
3545 stack_pointer_rtx,
3546 GEN_INT (rounded_size),
3547 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3548
3549 offset = (HOST_WIDE_INT) padding_size;
3550 #ifdef STACK_GROWS_DOWNWARD
3551 if (STACK_PUSH_CODE == POST_DEC)
3552 /* We have already decremented the stack pointer, so get the
3553 previous value. */
3554 offset += (HOST_WIDE_INT) rounded_size;
3555 #else
3556 if (STACK_PUSH_CODE == POST_INC)
3557 /* We have already incremented the stack pointer, so get the
3558 previous value. */
3559 offset -= (HOST_WIDE_INT) rounded_size;
3560 #endif
3561 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3562 }
3563 else
3564 {
3565 #ifdef STACK_GROWS_DOWNWARD
3566 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3567 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3568 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3569 #else
3570 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3571 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3572 GEN_INT (rounded_size));
3573 #endif
3574 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3575 }
3576
3577 dest = gen_rtx_MEM (mode, dest_addr);
3578
3579 if (type != 0)
3580 {
3581 set_mem_attributes (dest, type, 1);
3582
3583 if (flag_optimize_sibling_calls)
3584 /* Function incoming arguments may overlap with sibling call
3585 outgoing arguments and we cannot allow reordering of reads
3586 from function arguments with stores to outgoing arguments
3587 of sibling calls. */
3588 set_mem_alias_set (dest, 0);
3589 }
3590 emit_move_insn (dest, x);
3591 }
3592 #endif
3593
3594 /* Generate code to push X onto the stack, assuming it has mode MODE and
3595 type TYPE.
3596 MODE is redundant except when X is a CONST_INT (since they don't
3597 carry mode info).
3598 SIZE is an rtx for the size of data to be copied (in bytes),
3599 needed only if X is BLKmode.
3600
3601 ALIGN (in bits) is maximum alignment we can assume.
3602
3603 If PARTIAL and REG are both nonzero, then copy that many of the first
3604 bytes of X into registers starting with REG, and push the rest of X.
3605 The amount of space pushed is decreased by PARTIAL bytes.
3606 REG must be a hard register in this case.
3607 If REG is zero but PARTIAL is not, take any all others actions for an
3608 argument partially in registers, but do not actually load any
3609 registers.
3610
3611 EXTRA is the amount in bytes of extra space to leave next to this arg.
3612 This is ignored if an argument block has already been allocated.
3613
3614 On a machine that lacks real push insns, ARGS_ADDR is the address of
3615 the bottom of the argument block for this call. We use indexing off there
3616 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3617 argument block has not been preallocated.
3618
3619 ARGS_SO_FAR is the size of args previously pushed for this call.
3620
3621 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3622 for arguments passed in registers. If nonzero, it will be the number
3623 of bytes required. */
3624
3625 void
3626 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3627 unsigned int align, int partial, rtx reg, int extra,
3628 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3629 rtx alignment_pad)
3630 {
3631 rtx xinner;
3632 enum direction stack_direction
3633 #ifdef STACK_GROWS_DOWNWARD
3634 = downward;
3635 #else
3636 = upward;
3637 #endif
3638
3639 /* Decide where to pad the argument: `downward' for below,
3640 `upward' for above, or `none' for don't pad it.
3641 Default is below for small data on big-endian machines; else above. */
3642 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3643
3644 /* Invert direction if stack is post-decrement.
3645 FIXME: why? */
3646 if (STACK_PUSH_CODE == POST_DEC)
3647 if (where_pad != none)
3648 where_pad = (where_pad == downward ? upward : downward);
3649
3650 xinner = x;
3651
3652 if (mode == BLKmode
3653 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3654 {
3655 /* Copy a block into the stack, entirely or partially. */
3656
3657 rtx temp;
3658 int used;
3659 int offset;
3660 int skip;
3661
3662 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3663 used = partial - offset;
3664
3665 if (mode != BLKmode)
3666 {
3667 /* A value is to be stored in an insufficiently aligned
3668 stack slot; copy via a suitably aligned slot if
3669 necessary. */
3670 size = GEN_INT (GET_MODE_SIZE (mode));
3671 if (!MEM_P (xinner))
3672 {
3673 temp = assign_temp (type, 0, 1, 1);
3674 emit_move_insn (temp, xinner);
3675 xinner = temp;
3676 }
3677 }
3678
3679 gcc_assert (size);
3680
3681 /* USED is now the # of bytes we need not copy to the stack
3682 because registers will take care of them. */
3683
3684 if (partial != 0)
3685 xinner = adjust_address (xinner, BLKmode, used);
3686
3687 /* If the partial register-part of the arg counts in its stack size,
3688 skip the part of stack space corresponding to the registers.
3689 Otherwise, start copying to the beginning of the stack space,
3690 by setting SKIP to 0. */
3691 skip = (reg_parm_stack_space == 0) ? 0 : used;
3692
3693 #ifdef PUSH_ROUNDING
3694 /* Do it with several push insns if that doesn't take lots of insns
3695 and if there is no difficulty with push insns that skip bytes
3696 on the stack for alignment purposes. */
3697 if (args_addr == 0
3698 && PUSH_ARGS
3699 && CONST_INT_P (size)
3700 && skip == 0
3701 && MEM_ALIGN (xinner) >= align
3702 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3703 /* Here we avoid the case of a structure whose weak alignment
3704 forces many pushes of a small amount of data,
3705 and such small pushes do rounding that causes trouble. */
3706 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3707 || align >= BIGGEST_ALIGNMENT
3708 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3709 == (align / BITS_PER_UNIT)))
3710 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3711 {
3712 /* Push padding now if padding above and stack grows down,
3713 or if padding below and stack grows up.
3714 But if space already allocated, this has already been done. */
3715 if (extra && args_addr == 0
3716 && where_pad != none && where_pad != stack_direction)
3717 anti_adjust_stack (GEN_INT (extra));
3718
3719 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3720 }
3721 else
3722 #endif /* PUSH_ROUNDING */
3723 {
3724 rtx target;
3725
3726 /* Otherwise make space on the stack and copy the data
3727 to the address of that space. */
3728
3729 /* Deduct words put into registers from the size we must copy. */
3730 if (partial != 0)
3731 {
3732 if (CONST_INT_P (size))
3733 size = GEN_INT (INTVAL (size) - used);
3734 else
3735 size = expand_binop (GET_MODE (size), sub_optab, size,
3736 GEN_INT (used), NULL_RTX, 0,
3737 OPTAB_LIB_WIDEN);
3738 }
3739
3740 /* Get the address of the stack space.
3741 In this case, we do not deal with EXTRA separately.
3742 A single stack adjust will do. */
3743 if (! args_addr)
3744 {
3745 temp = push_block (size, extra, where_pad == downward);
3746 extra = 0;
3747 }
3748 else if (CONST_INT_P (args_so_far))
3749 temp = memory_address (BLKmode,
3750 plus_constant (args_addr,
3751 skip + INTVAL (args_so_far)));
3752 else
3753 temp = memory_address (BLKmode,
3754 plus_constant (gen_rtx_PLUS (Pmode,
3755 args_addr,
3756 args_so_far),
3757 skip));
3758
3759 if (!ACCUMULATE_OUTGOING_ARGS)
3760 {
3761 /* If the source is referenced relative to the stack pointer,
3762 copy it to another register to stabilize it. We do not need
3763 to do this if we know that we won't be changing sp. */
3764
3765 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3766 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3767 temp = copy_to_reg (temp);
3768 }
3769
3770 target = gen_rtx_MEM (BLKmode, temp);
3771
3772 /* We do *not* set_mem_attributes here, because incoming arguments
3773 may overlap with sibling call outgoing arguments and we cannot
3774 allow reordering of reads from function arguments with stores
3775 to outgoing arguments of sibling calls. We do, however, want
3776 to record the alignment of the stack slot. */
3777 /* ALIGN may well be better aligned than TYPE, e.g. due to
3778 PARM_BOUNDARY. Assume the caller isn't lying. */
3779 set_mem_align (target, align);
3780
3781 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3782 }
3783 }
3784 else if (partial > 0)
3785 {
3786 /* Scalar partly in registers. */
3787
3788 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3789 int i;
3790 int not_stack;
3791 /* # bytes of start of argument
3792 that we must make space for but need not store. */
3793 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3794 int args_offset = INTVAL (args_so_far);
3795 int skip;
3796
3797 /* Push padding now if padding above and stack grows down,
3798 or if padding below and stack grows up.
3799 But if space already allocated, this has already been done. */
3800 if (extra && args_addr == 0
3801 && where_pad != none && where_pad != stack_direction)
3802 anti_adjust_stack (GEN_INT (extra));
3803
3804 /* If we make space by pushing it, we might as well push
3805 the real data. Otherwise, we can leave OFFSET nonzero
3806 and leave the space uninitialized. */
3807 if (args_addr == 0)
3808 offset = 0;
3809
3810 /* Now NOT_STACK gets the number of words that we don't need to
3811 allocate on the stack. Convert OFFSET to words too. */
3812 not_stack = (partial - offset) / UNITS_PER_WORD;
3813 offset /= UNITS_PER_WORD;
3814
3815 /* If the partial register-part of the arg counts in its stack size,
3816 skip the part of stack space corresponding to the registers.
3817 Otherwise, start copying to the beginning of the stack space,
3818 by setting SKIP to 0. */
3819 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3820
3821 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3822 x = validize_mem (force_const_mem (mode, x));
3823
3824 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3825 SUBREGs of such registers are not allowed. */
3826 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3827 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3828 x = copy_to_reg (x);
3829
3830 /* Loop over all the words allocated on the stack for this arg. */
3831 /* We can do it by words, because any scalar bigger than a word
3832 has a size a multiple of a word. */
3833 #ifndef PUSH_ARGS_REVERSED
3834 for (i = not_stack; i < size; i++)
3835 #else
3836 for (i = size - 1; i >= not_stack; i--)
3837 #endif
3838 if (i >= not_stack + offset)
3839 emit_push_insn (operand_subword_force (x, i, mode),
3840 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3841 0, args_addr,
3842 GEN_INT (args_offset + ((i - not_stack + skip)
3843 * UNITS_PER_WORD)),
3844 reg_parm_stack_space, alignment_pad);
3845 }
3846 else
3847 {
3848 rtx addr;
3849 rtx dest;
3850
3851 /* Push padding now if padding above and stack grows down,
3852 or if padding below and stack grows up.
3853 But if space already allocated, this has already been done. */
3854 if (extra && args_addr == 0
3855 && where_pad != none && where_pad != stack_direction)
3856 anti_adjust_stack (GEN_INT (extra));
3857
3858 #ifdef PUSH_ROUNDING
3859 if (args_addr == 0 && PUSH_ARGS)
3860 emit_single_push_insn (mode, x, type);
3861 else
3862 #endif
3863 {
3864 if (CONST_INT_P (args_so_far))
3865 addr
3866 = memory_address (mode,
3867 plus_constant (args_addr,
3868 INTVAL (args_so_far)));
3869 else
3870 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3871 args_so_far));
3872 dest = gen_rtx_MEM (mode, addr);
3873
3874 /* We do *not* set_mem_attributes here, because incoming arguments
3875 may overlap with sibling call outgoing arguments and we cannot
3876 allow reordering of reads from function arguments with stores
3877 to outgoing arguments of sibling calls. We do, however, want
3878 to record the alignment of the stack slot. */
3879 /* ALIGN may well be better aligned than TYPE, e.g. due to
3880 PARM_BOUNDARY. Assume the caller isn't lying. */
3881 set_mem_align (dest, align);
3882
3883 emit_move_insn (dest, x);
3884 }
3885 }
3886
3887 /* If part should go in registers, copy that part
3888 into the appropriate registers. Do this now, at the end,
3889 since mem-to-mem copies above may do function calls. */
3890 if (partial > 0 && reg != 0)
3891 {
3892 /* Handle calls that pass values in multiple non-contiguous locations.
3893 The Irix 6 ABI has examples of this. */
3894 if (GET_CODE (reg) == PARALLEL)
3895 emit_group_load (reg, x, type, -1);
3896 else
3897 {
3898 gcc_assert (partial % UNITS_PER_WORD == 0);
3899 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3900 }
3901 }
3902
3903 if (extra && args_addr == 0 && where_pad == stack_direction)
3904 anti_adjust_stack (GEN_INT (extra));
3905
3906 if (alignment_pad && args_addr == 0)
3907 anti_adjust_stack (alignment_pad);
3908 }
3909 \f
3910 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3911 operations. */
3912
3913 static rtx
3914 get_subtarget (rtx x)
3915 {
3916 return (optimize
3917 || x == 0
3918 /* Only registers can be subtargets. */
3919 || !REG_P (x)
3920 /* Don't use hard regs to avoid extending their life. */
3921 || REGNO (x) < FIRST_PSEUDO_REGISTER
3922 ? 0 : x);
3923 }
3924
3925 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3926 FIELD is a bitfield. Returns true if the optimization was successful,
3927 and there's nothing else to do. */
3928
3929 static bool
3930 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3931 unsigned HOST_WIDE_INT bitpos,
3932 enum machine_mode mode1, rtx str_rtx,
3933 tree to, tree src)
3934 {
3935 enum machine_mode str_mode = GET_MODE (str_rtx);
3936 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3937 tree op0, op1;
3938 rtx value, result;
3939 optab binop;
3940 gimple srcstmt;
3941 enum tree_code code;
3942
3943 if (mode1 != VOIDmode
3944 || bitsize >= BITS_PER_WORD
3945 || str_bitsize > BITS_PER_WORD
3946 || TREE_SIDE_EFFECTS (to)
3947 || TREE_THIS_VOLATILE (to))
3948 return false;
3949
3950 STRIP_NOPS (src);
3951 if (TREE_CODE (src) != SSA_NAME)
3952 return false;
3953 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3954 return false;
3955
3956 srcstmt = get_gimple_for_ssa_name (src);
3957 if (!srcstmt
3958 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
3959 return false;
3960
3961 code = gimple_assign_rhs_code (srcstmt);
3962
3963 op0 = gimple_assign_rhs1 (srcstmt);
3964
3965 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
3966 to find its initialization. Hopefully the initialization will
3967 be from a bitfield load. */
3968 if (TREE_CODE (op0) == SSA_NAME)
3969 {
3970 gimple op0stmt = get_gimple_for_ssa_name (op0);
3971
3972 /* We want to eventually have OP0 be the same as TO, which
3973 should be a bitfield. */
3974 if (!op0stmt
3975 || !is_gimple_assign (op0stmt)
3976 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
3977 return false;
3978 op0 = gimple_assign_rhs1 (op0stmt);
3979 }
3980
3981 op1 = gimple_assign_rhs2 (srcstmt);
3982
3983 if (!operand_equal_p (to, op0, 0))
3984 return false;
3985
3986 if (MEM_P (str_rtx))
3987 {
3988 unsigned HOST_WIDE_INT offset1;
3989
3990 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3991 str_mode = word_mode;
3992 str_mode = get_best_mode (bitsize, bitpos,
3993 MEM_ALIGN (str_rtx), str_mode, 0);
3994 if (str_mode == VOIDmode)
3995 return false;
3996 str_bitsize = GET_MODE_BITSIZE (str_mode);
3997
3998 offset1 = bitpos;
3999 bitpos %= str_bitsize;
4000 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4001 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4002 }
4003 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4004 return false;
4005
4006 /* If the bit field covers the whole REG/MEM, store_field
4007 will likely generate better code. */
4008 if (bitsize >= str_bitsize)
4009 return false;
4010
4011 /* We can't handle fields split across multiple entities. */
4012 if (bitpos + bitsize > str_bitsize)
4013 return false;
4014
4015 if (BYTES_BIG_ENDIAN)
4016 bitpos = str_bitsize - bitpos - bitsize;
4017
4018 switch (code)
4019 {
4020 case PLUS_EXPR:
4021 case MINUS_EXPR:
4022 /* For now, just optimize the case of the topmost bitfield
4023 where we don't need to do any masking and also
4024 1 bit bitfields where xor can be used.
4025 We might win by one instruction for the other bitfields
4026 too if insv/extv instructions aren't used, so that
4027 can be added later. */
4028 if (bitpos + bitsize != str_bitsize
4029 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4030 break;
4031
4032 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4033 value = convert_modes (str_mode,
4034 TYPE_MODE (TREE_TYPE (op1)), value,
4035 TYPE_UNSIGNED (TREE_TYPE (op1)));
4036
4037 /* We may be accessing data outside the field, which means
4038 we can alias adjacent data. */
4039 if (MEM_P (str_rtx))
4040 {
4041 str_rtx = shallow_copy_rtx (str_rtx);
4042 set_mem_alias_set (str_rtx, 0);
4043 set_mem_expr (str_rtx, 0);
4044 }
4045
4046 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4047 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4048 {
4049 value = expand_and (str_mode, value, const1_rtx, NULL);
4050 binop = xor_optab;
4051 }
4052 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4053 build_int_cst (NULL_TREE, bitpos),
4054 NULL_RTX, 1);
4055 result = expand_binop (str_mode, binop, str_rtx,
4056 value, str_rtx, 1, OPTAB_WIDEN);
4057 if (result != str_rtx)
4058 emit_move_insn (str_rtx, result);
4059 return true;
4060
4061 case BIT_IOR_EXPR:
4062 case BIT_XOR_EXPR:
4063 if (TREE_CODE (op1) != INTEGER_CST)
4064 break;
4065 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4066 value = convert_modes (GET_MODE (str_rtx),
4067 TYPE_MODE (TREE_TYPE (op1)), value,
4068 TYPE_UNSIGNED (TREE_TYPE (op1)));
4069
4070 /* We may be accessing data outside the field, which means
4071 we can alias adjacent data. */
4072 if (MEM_P (str_rtx))
4073 {
4074 str_rtx = shallow_copy_rtx (str_rtx);
4075 set_mem_alias_set (str_rtx, 0);
4076 set_mem_expr (str_rtx, 0);
4077 }
4078
4079 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4080 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4081 {
4082 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4083 - 1);
4084 value = expand_and (GET_MODE (str_rtx), value, mask,
4085 NULL_RTX);
4086 }
4087 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4088 build_int_cst (NULL_TREE, bitpos),
4089 NULL_RTX, 1);
4090 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4091 value, str_rtx, 1, OPTAB_WIDEN);
4092 if (result != str_rtx)
4093 emit_move_insn (str_rtx, result);
4094 return true;
4095
4096 default:
4097 break;
4098 }
4099
4100 return false;
4101 }
4102
4103
4104 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4105 is true, try generating a nontemporal store. */
4106
4107 void
4108 expand_assignment (tree to, tree from, bool nontemporal)
4109 {
4110 rtx to_rtx = 0;
4111 rtx result;
4112 enum machine_mode mode;
4113 int align;
4114 enum insn_code icode;
4115
4116 /* Don't crash if the lhs of the assignment was erroneous. */
4117 if (TREE_CODE (to) == ERROR_MARK)
4118 {
4119 result = expand_normal (from);
4120 return;
4121 }
4122
4123 /* Optimize away no-op moves without side-effects. */
4124 if (operand_equal_p (to, from, 0))
4125 return;
4126
4127 mode = TYPE_MODE (TREE_TYPE (to));
4128 if ((TREE_CODE (to) == MEM_REF
4129 || TREE_CODE (to) == TARGET_MEM_REF)
4130 && mode != BLKmode
4131 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4132 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4133 < (signed) GET_MODE_ALIGNMENT (mode))
4134 && ((icode = optab_handler (movmisalign_optab, mode))
4135 != CODE_FOR_nothing))
4136 {
4137 struct expand_operand ops[2];
4138 enum machine_mode address_mode;
4139 rtx reg, op0, mem;
4140
4141 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4142 reg = force_not_mem (reg);
4143
4144 if (TREE_CODE (to) == MEM_REF)
4145 {
4146 addr_space_t as
4147 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4148 tree base = TREE_OPERAND (to, 0);
4149 address_mode = targetm.addr_space.address_mode (as);
4150 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4151 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4152 if (!integer_zerop (TREE_OPERAND (to, 1)))
4153 {
4154 rtx off
4155 = immed_double_int_const (mem_ref_offset (to), address_mode);
4156 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4157 }
4158 op0 = memory_address_addr_space (mode, op0, as);
4159 mem = gen_rtx_MEM (mode, op0);
4160 set_mem_attributes (mem, to, 0);
4161 set_mem_addr_space (mem, as);
4162 }
4163 else if (TREE_CODE (to) == TARGET_MEM_REF)
4164 {
4165 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4166 struct mem_address addr;
4167
4168 get_address_description (to, &addr);
4169 op0 = addr_for_mem_ref (&addr, as, true);
4170 op0 = memory_address_addr_space (mode, op0, as);
4171 mem = gen_rtx_MEM (mode, op0);
4172 set_mem_attributes (mem, to, 0);
4173 set_mem_addr_space (mem, as);
4174 }
4175 else
4176 gcc_unreachable ();
4177 if (TREE_THIS_VOLATILE (to))
4178 MEM_VOLATILE_P (mem) = 1;
4179
4180 create_fixed_operand (&ops[0], mem);
4181 create_input_operand (&ops[1], reg, mode);
4182 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4183 silently be omitted. */
4184 expand_insn (icode, 2, ops);
4185 return;
4186 }
4187
4188 /* Assignment of a structure component needs special treatment
4189 if the structure component's rtx is not simply a MEM.
4190 Assignment of an array element at a constant index, and assignment of
4191 an array element in an unaligned packed structure field, has the same
4192 problem. */
4193 if (handled_component_p (to)
4194 /* ??? We only need to handle MEM_REF here if the access is not
4195 a full access of the base object. */
4196 || (TREE_CODE (to) == MEM_REF
4197 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4198 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4199 {
4200 enum machine_mode mode1;
4201 HOST_WIDE_INT bitsize, bitpos;
4202 tree offset;
4203 int unsignedp;
4204 int volatilep = 0;
4205 tree tem;
4206
4207 push_temp_slots ();
4208 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4209 &unsignedp, &volatilep, true);
4210
4211 /* If we are going to use store_bit_field and extract_bit_field,
4212 make sure to_rtx will be safe for multiple use. */
4213
4214 to_rtx = expand_normal (tem);
4215
4216 /* If the bitfield is volatile, we want to access it in the
4217 field's mode, not the computed mode.
4218 If a MEM has VOIDmode (external with incomplete type),
4219 use BLKmode for it instead. */
4220 if (MEM_P (to_rtx))
4221 {
4222 if (volatilep && flag_strict_volatile_bitfields > 0)
4223 to_rtx = adjust_address (to_rtx, mode1, 0);
4224 else if (GET_MODE (to_rtx) == VOIDmode)
4225 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4226 }
4227
4228 if (offset != 0)
4229 {
4230 enum machine_mode address_mode;
4231 rtx offset_rtx;
4232
4233 if (!MEM_P (to_rtx))
4234 {
4235 /* We can get constant negative offsets into arrays with broken
4236 user code. Translate this to a trap instead of ICEing. */
4237 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4238 expand_builtin_trap ();
4239 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4240 }
4241
4242 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4243 address_mode
4244 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4245 if (GET_MODE (offset_rtx) != address_mode)
4246 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4247
4248 /* A constant address in TO_RTX can have VOIDmode, we must not try
4249 to call force_reg for that case. Avoid that case. */
4250 if (MEM_P (to_rtx)
4251 && GET_MODE (to_rtx) == BLKmode
4252 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4253 && bitsize > 0
4254 && (bitpos % bitsize) == 0
4255 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4256 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4257 {
4258 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4259 bitpos = 0;
4260 }
4261
4262 to_rtx = offset_address (to_rtx, offset_rtx,
4263 highest_pow2_factor_for_target (to,
4264 offset));
4265 }
4266
4267 /* No action is needed if the target is not a memory and the field
4268 lies completely outside that target. This can occur if the source
4269 code contains an out-of-bounds access to a small array. */
4270 if (!MEM_P (to_rtx)
4271 && GET_MODE (to_rtx) != BLKmode
4272 && (unsigned HOST_WIDE_INT) bitpos
4273 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4274 {
4275 expand_normal (from);
4276 result = NULL;
4277 }
4278 /* Handle expand_expr of a complex value returning a CONCAT. */
4279 else if (GET_CODE (to_rtx) == CONCAT)
4280 {
4281 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4282 {
4283 gcc_assert (bitpos == 0);
4284 result = store_expr (from, to_rtx, false, nontemporal);
4285 }
4286 else
4287 {
4288 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4289 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4290 nontemporal);
4291 }
4292 }
4293 else
4294 {
4295 if (MEM_P (to_rtx))
4296 {
4297 /* If the field is at offset zero, we could have been given the
4298 DECL_RTX of the parent struct. Don't munge it. */
4299 to_rtx = shallow_copy_rtx (to_rtx);
4300
4301 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4302
4303 /* Deal with volatile and readonly fields. The former is only
4304 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4305 if (volatilep)
4306 MEM_VOLATILE_P (to_rtx) = 1;
4307 if (component_uses_parent_alias_set (to))
4308 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4309 }
4310
4311 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4312 to_rtx, to, from))
4313 result = NULL;
4314 else
4315 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4316 TREE_TYPE (tem), get_alias_set (to),
4317 nontemporal);
4318 }
4319
4320 if (result)
4321 preserve_temp_slots (result);
4322 free_temp_slots ();
4323 pop_temp_slots ();
4324 return;
4325 }
4326
4327 /* If the rhs is a function call and its value is not an aggregate,
4328 call the function before we start to compute the lhs.
4329 This is needed for correct code for cases such as
4330 val = setjmp (buf) on machines where reference to val
4331 requires loading up part of an address in a separate insn.
4332
4333 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4334 since it might be a promoted variable where the zero- or sign- extension
4335 needs to be done. Handling this in the normal way is safe because no
4336 computation is done before the call. The same is true for SSA names. */
4337 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4338 && COMPLETE_TYPE_P (TREE_TYPE (from))
4339 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4340 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4341 && REG_P (DECL_RTL (to)))
4342 || TREE_CODE (to) == SSA_NAME))
4343 {
4344 rtx value;
4345
4346 push_temp_slots ();
4347 value = expand_normal (from);
4348 if (to_rtx == 0)
4349 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4350
4351 /* Handle calls that return values in multiple non-contiguous locations.
4352 The Irix 6 ABI has examples of this. */
4353 if (GET_CODE (to_rtx) == PARALLEL)
4354 emit_group_load (to_rtx, value, TREE_TYPE (from),
4355 int_size_in_bytes (TREE_TYPE (from)));
4356 else if (GET_MODE (to_rtx) == BLKmode)
4357 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4358 else
4359 {
4360 if (POINTER_TYPE_P (TREE_TYPE (to)))
4361 value = convert_memory_address_addr_space
4362 (GET_MODE (to_rtx), value,
4363 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4364
4365 emit_move_insn (to_rtx, value);
4366 }
4367 preserve_temp_slots (to_rtx);
4368 free_temp_slots ();
4369 pop_temp_slots ();
4370 return;
4371 }
4372
4373 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4374 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4375
4376 if (to_rtx == 0)
4377 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4378
4379 /* Don't move directly into a return register. */
4380 if (TREE_CODE (to) == RESULT_DECL
4381 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4382 {
4383 rtx temp;
4384
4385 push_temp_slots ();
4386 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4387
4388 if (GET_CODE (to_rtx) == PARALLEL)
4389 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4390 int_size_in_bytes (TREE_TYPE (from)));
4391 else
4392 emit_move_insn (to_rtx, temp);
4393
4394 preserve_temp_slots (to_rtx);
4395 free_temp_slots ();
4396 pop_temp_slots ();
4397 return;
4398 }
4399
4400 /* In case we are returning the contents of an object which overlaps
4401 the place the value is being stored, use a safe function when copying
4402 a value through a pointer into a structure value return block. */
4403 if (TREE_CODE (to) == RESULT_DECL
4404 && TREE_CODE (from) == INDIRECT_REF
4405 && ADDR_SPACE_GENERIC_P
4406 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4407 && refs_may_alias_p (to, from)
4408 && cfun->returns_struct
4409 && !cfun->returns_pcc_struct)
4410 {
4411 rtx from_rtx, size;
4412
4413 push_temp_slots ();
4414 size = expr_size (from);
4415 from_rtx = expand_normal (from);
4416
4417 emit_library_call (memmove_libfunc, LCT_NORMAL,
4418 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4419 XEXP (from_rtx, 0), Pmode,
4420 convert_to_mode (TYPE_MODE (sizetype),
4421 size, TYPE_UNSIGNED (sizetype)),
4422 TYPE_MODE (sizetype));
4423
4424 preserve_temp_slots (to_rtx);
4425 free_temp_slots ();
4426 pop_temp_slots ();
4427 return;
4428 }
4429
4430 /* Compute FROM and store the value in the rtx we got. */
4431
4432 push_temp_slots ();
4433 result = store_expr (from, to_rtx, 0, nontemporal);
4434 preserve_temp_slots (result);
4435 free_temp_slots ();
4436 pop_temp_slots ();
4437 return;
4438 }
4439
4440 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4441 succeeded, false otherwise. */
4442
4443 bool
4444 emit_storent_insn (rtx to, rtx from)
4445 {
4446 struct expand_operand ops[2];
4447 enum machine_mode mode = GET_MODE (to);
4448 enum insn_code code = optab_handler (storent_optab, mode);
4449
4450 if (code == CODE_FOR_nothing)
4451 return false;
4452
4453 create_fixed_operand (&ops[0], to);
4454 create_input_operand (&ops[1], from, mode);
4455 return maybe_expand_insn (code, 2, ops);
4456 }
4457
4458 /* Generate code for computing expression EXP,
4459 and storing the value into TARGET.
4460
4461 If the mode is BLKmode then we may return TARGET itself.
4462 It turns out that in BLKmode it doesn't cause a problem.
4463 because C has no operators that could combine two different
4464 assignments into the same BLKmode object with different values
4465 with no sequence point. Will other languages need this to
4466 be more thorough?
4467
4468 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4469 stack, and block moves may need to be treated specially.
4470
4471 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4472
4473 rtx
4474 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4475 {
4476 rtx temp;
4477 rtx alt_rtl = NULL_RTX;
4478 location_t loc = EXPR_LOCATION (exp);
4479
4480 if (VOID_TYPE_P (TREE_TYPE (exp)))
4481 {
4482 /* C++ can generate ?: expressions with a throw expression in one
4483 branch and an rvalue in the other. Here, we resolve attempts to
4484 store the throw expression's nonexistent result. */
4485 gcc_assert (!call_param_p);
4486 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4487 return NULL_RTX;
4488 }
4489 if (TREE_CODE (exp) == COMPOUND_EXPR)
4490 {
4491 /* Perform first part of compound expression, then assign from second
4492 part. */
4493 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4494 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4495 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4496 nontemporal);
4497 }
4498 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4499 {
4500 /* For conditional expression, get safe form of the target. Then
4501 test the condition, doing the appropriate assignment on either
4502 side. This avoids the creation of unnecessary temporaries.
4503 For non-BLKmode, it is more efficient not to do this. */
4504
4505 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4506
4507 do_pending_stack_adjust ();
4508 NO_DEFER_POP;
4509 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4510 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4511 nontemporal);
4512 emit_jump_insn (gen_jump (lab2));
4513 emit_barrier ();
4514 emit_label (lab1);
4515 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4516 nontemporal);
4517 emit_label (lab2);
4518 OK_DEFER_POP;
4519
4520 return NULL_RTX;
4521 }
4522 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4523 /* If this is a scalar in a register that is stored in a wider mode
4524 than the declared mode, compute the result into its declared mode
4525 and then convert to the wider mode. Our value is the computed
4526 expression. */
4527 {
4528 rtx inner_target = 0;
4529
4530 /* We can do the conversion inside EXP, which will often result
4531 in some optimizations. Do the conversion in two steps: first
4532 change the signedness, if needed, then the extend. But don't
4533 do this if the type of EXP is a subtype of something else
4534 since then the conversion might involve more than just
4535 converting modes. */
4536 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4537 && TREE_TYPE (TREE_TYPE (exp)) == 0
4538 && GET_MODE_PRECISION (GET_MODE (target))
4539 == TYPE_PRECISION (TREE_TYPE (exp)))
4540 {
4541 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4542 != SUBREG_PROMOTED_UNSIGNED_P (target))
4543 {
4544 /* Some types, e.g. Fortran's logical*4, won't have a signed
4545 version, so use the mode instead. */
4546 tree ntype
4547 = (signed_or_unsigned_type_for
4548 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4549 if (ntype == NULL)
4550 ntype = lang_hooks.types.type_for_mode
4551 (TYPE_MODE (TREE_TYPE (exp)),
4552 SUBREG_PROMOTED_UNSIGNED_P (target));
4553
4554 exp = fold_convert_loc (loc, ntype, exp);
4555 }
4556
4557 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4558 (GET_MODE (SUBREG_REG (target)),
4559 SUBREG_PROMOTED_UNSIGNED_P (target)),
4560 exp);
4561
4562 inner_target = SUBREG_REG (target);
4563 }
4564
4565 temp = expand_expr (exp, inner_target, VOIDmode,
4566 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4567
4568 /* If TEMP is a VOIDmode constant, use convert_modes to make
4569 sure that we properly convert it. */
4570 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4571 {
4572 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4573 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4574 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4575 GET_MODE (target), temp,
4576 SUBREG_PROMOTED_UNSIGNED_P (target));
4577 }
4578
4579 convert_move (SUBREG_REG (target), temp,
4580 SUBREG_PROMOTED_UNSIGNED_P (target));
4581
4582 return NULL_RTX;
4583 }
4584 else if ((TREE_CODE (exp) == STRING_CST
4585 || (TREE_CODE (exp) == MEM_REF
4586 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4587 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4588 == STRING_CST
4589 && integer_zerop (TREE_OPERAND (exp, 1))))
4590 && !nontemporal && !call_param_p
4591 && MEM_P (target))
4592 {
4593 /* Optimize initialization of an array with a STRING_CST. */
4594 HOST_WIDE_INT exp_len, str_copy_len;
4595 rtx dest_mem;
4596 tree str = TREE_CODE (exp) == STRING_CST
4597 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4598
4599 exp_len = int_expr_size (exp);
4600 if (exp_len <= 0)
4601 goto normal_expr;
4602
4603 if (TREE_STRING_LENGTH (str) <= 0)
4604 goto normal_expr;
4605
4606 str_copy_len = strlen (TREE_STRING_POINTER (str));
4607 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4608 goto normal_expr;
4609
4610 str_copy_len = TREE_STRING_LENGTH (str);
4611 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4612 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4613 {
4614 str_copy_len += STORE_MAX_PIECES - 1;
4615 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4616 }
4617 str_copy_len = MIN (str_copy_len, exp_len);
4618 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4619 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4620 MEM_ALIGN (target), false))
4621 goto normal_expr;
4622
4623 dest_mem = target;
4624
4625 dest_mem = store_by_pieces (dest_mem,
4626 str_copy_len, builtin_strncpy_read_str,
4627 CONST_CAST (char *,
4628 TREE_STRING_POINTER (str)),
4629 MEM_ALIGN (target), false,
4630 exp_len > str_copy_len ? 1 : 0);
4631 if (exp_len > str_copy_len)
4632 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4633 GEN_INT (exp_len - str_copy_len),
4634 BLOCK_OP_NORMAL);
4635 return NULL_RTX;
4636 }
4637 else
4638 {
4639 rtx tmp_target;
4640
4641 normal_expr:
4642 /* If we want to use a nontemporal store, force the value to
4643 register first. */
4644 tmp_target = nontemporal ? NULL_RTX : target;
4645 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4646 (call_param_p
4647 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4648 &alt_rtl);
4649 }
4650
4651 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4652 the same as that of TARGET, adjust the constant. This is needed, for
4653 example, in case it is a CONST_DOUBLE and we want only a word-sized
4654 value. */
4655 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4656 && TREE_CODE (exp) != ERROR_MARK
4657 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4658 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4659 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4660
4661 /* If value was not generated in the target, store it there.
4662 Convert the value to TARGET's type first if necessary and emit the
4663 pending incrementations that have been queued when expanding EXP.
4664 Note that we cannot emit the whole queue blindly because this will
4665 effectively disable the POST_INC optimization later.
4666
4667 If TEMP and TARGET compare equal according to rtx_equal_p, but
4668 one or both of them are volatile memory refs, we have to distinguish
4669 two cases:
4670 - expand_expr has used TARGET. In this case, we must not generate
4671 another copy. This can be detected by TARGET being equal according
4672 to == .
4673 - expand_expr has not used TARGET - that means that the source just
4674 happens to have the same RTX form. Since temp will have been created
4675 by expand_expr, it will compare unequal according to == .
4676 We must generate a copy in this case, to reach the correct number
4677 of volatile memory references. */
4678
4679 if ((! rtx_equal_p (temp, target)
4680 || (temp != target && (side_effects_p (temp)
4681 || side_effects_p (target))))
4682 && TREE_CODE (exp) != ERROR_MARK
4683 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4684 but TARGET is not valid memory reference, TEMP will differ
4685 from TARGET although it is really the same location. */
4686 && !(alt_rtl
4687 && rtx_equal_p (alt_rtl, target)
4688 && !side_effects_p (alt_rtl)
4689 && !side_effects_p (target))
4690 /* If there's nothing to copy, don't bother. Don't call
4691 expr_size unless necessary, because some front-ends (C++)
4692 expr_size-hook must not be given objects that are not
4693 supposed to be bit-copied or bit-initialized. */
4694 && expr_size (exp) != const0_rtx)
4695 {
4696 if (GET_MODE (temp) != GET_MODE (target)
4697 && GET_MODE (temp) != VOIDmode)
4698 {
4699 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4700 if (GET_MODE (target) == BLKmode
4701 && GET_MODE (temp) == BLKmode)
4702 emit_block_move (target, temp, expr_size (exp),
4703 (call_param_p
4704 ? BLOCK_OP_CALL_PARM
4705 : BLOCK_OP_NORMAL));
4706 else if (GET_MODE (target) == BLKmode)
4707 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4708 0, GET_MODE (temp), temp);
4709 else
4710 convert_move (target, temp, unsignedp);
4711 }
4712
4713 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4714 {
4715 /* Handle copying a string constant into an array. The string
4716 constant may be shorter than the array. So copy just the string's
4717 actual length, and clear the rest. First get the size of the data
4718 type of the string, which is actually the size of the target. */
4719 rtx size = expr_size (exp);
4720
4721 if (CONST_INT_P (size)
4722 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4723 emit_block_move (target, temp, size,
4724 (call_param_p
4725 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4726 else
4727 {
4728 enum machine_mode pointer_mode
4729 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4730 enum machine_mode address_mode
4731 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4732
4733 /* Compute the size of the data to copy from the string. */
4734 tree copy_size
4735 = size_binop_loc (loc, MIN_EXPR,
4736 make_tree (sizetype, size),
4737 size_int (TREE_STRING_LENGTH (exp)));
4738 rtx copy_size_rtx
4739 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4740 (call_param_p
4741 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4742 rtx label = 0;
4743
4744 /* Copy that much. */
4745 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4746 TYPE_UNSIGNED (sizetype));
4747 emit_block_move (target, temp, copy_size_rtx,
4748 (call_param_p
4749 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4750
4751 /* Figure out how much is left in TARGET that we have to clear.
4752 Do all calculations in pointer_mode. */
4753 if (CONST_INT_P (copy_size_rtx))
4754 {
4755 size = plus_constant (size, -INTVAL (copy_size_rtx));
4756 target = adjust_address (target, BLKmode,
4757 INTVAL (copy_size_rtx));
4758 }
4759 else
4760 {
4761 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4762 copy_size_rtx, NULL_RTX, 0,
4763 OPTAB_LIB_WIDEN);
4764
4765 if (GET_MODE (copy_size_rtx) != address_mode)
4766 copy_size_rtx = convert_to_mode (address_mode,
4767 copy_size_rtx,
4768 TYPE_UNSIGNED (sizetype));
4769
4770 target = offset_address (target, copy_size_rtx,
4771 highest_pow2_factor (copy_size));
4772 label = gen_label_rtx ();
4773 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4774 GET_MODE (size), 0, label);
4775 }
4776
4777 if (size != const0_rtx)
4778 clear_storage (target, size, BLOCK_OP_NORMAL);
4779
4780 if (label)
4781 emit_label (label);
4782 }
4783 }
4784 /* Handle calls that return values in multiple non-contiguous locations.
4785 The Irix 6 ABI has examples of this. */
4786 else if (GET_CODE (target) == PARALLEL)
4787 emit_group_load (target, temp, TREE_TYPE (exp),
4788 int_size_in_bytes (TREE_TYPE (exp)));
4789 else if (GET_MODE (temp) == BLKmode)
4790 emit_block_move (target, temp, expr_size (exp),
4791 (call_param_p
4792 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4793 else if (nontemporal
4794 && emit_storent_insn (target, temp))
4795 /* If we managed to emit a nontemporal store, there is nothing else to
4796 do. */
4797 ;
4798 else
4799 {
4800 temp = force_operand (temp, target);
4801 if (temp != target)
4802 emit_move_insn (target, temp);
4803 }
4804 }
4805
4806 return NULL_RTX;
4807 }
4808 \f
4809 /* Helper for categorize_ctor_elements. Identical interface. */
4810
4811 static bool
4812 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4813 HOST_WIDE_INT *p_elt_count,
4814 bool *p_must_clear)
4815 {
4816 unsigned HOST_WIDE_INT idx;
4817 HOST_WIDE_INT nz_elts, elt_count;
4818 tree value, purpose;
4819
4820 /* Whether CTOR is a valid constant initializer, in accordance with what
4821 initializer_constant_valid_p does. If inferred from the constructor
4822 elements, true until proven otherwise. */
4823 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4824 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4825
4826 nz_elts = 0;
4827 elt_count = 0;
4828
4829 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4830 {
4831 HOST_WIDE_INT mult = 1;
4832
4833 if (TREE_CODE (purpose) == RANGE_EXPR)
4834 {
4835 tree lo_index = TREE_OPERAND (purpose, 0);
4836 tree hi_index = TREE_OPERAND (purpose, 1);
4837
4838 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4839 mult = (tree_low_cst (hi_index, 1)
4840 - tree_low_cst (lo_index, 1) + 1);
4841 }
4842
4843 switch (TREE_CODE (value))
4844 {
4845 case CONSTRUCTOR:
4846 {
4847 HOST_WIDE_INT nz = 0, ic = 0;
4848
4849 bool const_elt_p
4850 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4851
4852 nz_elts += mult * nz;
4853 elt_count += mult * ic;
4854
4855 if (const_from_elts_p && const_p)
4856 const_p = const_elt_p;
4857 }
4858 break;
4859
4860 case INTEGER_CST:
4861 case REAL_CST:
4862 case FIXED_CST:
4863 if (!initializer_zerop (value))
4864 nz_elts += mult;
4865 elt_count += mult;
4866 break;
4867
4868 case STRING_CST:
4869 nz_elts += mult * TREE_STRING_LENGTH (value);
4870 elt_count += mult * TREE_STRING_LENGTH (value);
4871 break;
4872
4873 case COMPLEX_CST:
4874 if (!initializer_zerop (TREE_REALPART (value)))
4875 nz_elts += mult;
4876 if (!initializer_zerop (TREE_IMAGPART (value)))
4877 nz_elts += mult;
4878 elt_count += mult;
4879 break;
4880
4881 case VECTOR_CST:
4882 {
4883 tree v;
4884 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4885 {
4886 if (!initializer_zerop (TREE_VALUE (v)))
4887 nz_elts += mult;
4888 elt_count += mult;
4889 }
4890 }
4891 break;
4892
4893 default:
4894 {
4895 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4896 if (tc < 1)
4897 tc = 1;
4898 nz_elts += mult * tc;
4899 elt_count += mult * tc;
4900
4901 if (const_from_elts_p && const_p)
4902 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4903 != NULL_TREE;
4904 }
4905 break;
4906 }
4907 }
4908
4909 if (!*p_must_clear
4910 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4911 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4912 {
4913 tree init_sub_type;
4914 bool clear_this = true;
4915
4916 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4917 {
4918 /* We don't expect more than one element of the union to be
4919 initialized. Not sure what we should do otherwise... */
4920 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4921 == 1);
4922
4923 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4924 CONSTRUCTOR_ELTS (ctor),
4925 0)->value);
4926
4927 /* ??? We could look at each element of the union, and find the
4928 largest element. Which would avoid comparing the size of the
4929 initialized element against any tail padding in the union.
4930 Doesn't seem worth the effort... */
4931 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4932 TYPE_SIZE (init_sub_type)) == 1)
4933 {
4934 /* And now we have to find out if the element itself is fully
4935 constructed. E.g. for union { struct { int a, b; } s; } u
4936 = { .s = { .a = 1 } }. */
4937 if (elt_count == count_type_elements (init_sub_type, false))
4938 clear_this = false;
4939 }
4940 }
4941
4942 *p_must_clear = clear_this;
4943 }
4944
4945 *p_nz_elts += nz_elts;
4946 *p_elt_count += elt_count;
4947
4948 return const_p;
4949 }
4950
4951 /* Examine CTOR to discover:
4952 * how many scalar fields are set to nonzero values,
4953 and place it in *P_NZ_ELTS;
4954 * how many scalar fields in total are in CTOR,
4955 and place it in *P_ELT_COUNT.
4956 * if a type is a union, and the initializer from the constructor
4957 is not the largest element in the union, then set *p_must_clear.
4958
4959 Return whether or not CTOR is a valid static constant initializer, the same
4960 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4961
4962 bool
4963 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4964 HOST_WIDE_INT *p_elt_count,
4965 bool *p_must_clear)
4966 {
4967 *p_nz_elts = 0;
4968 *p_elt_count = 0;
4969 *p_must_clear = false;
4970
4971 return
4972 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4973 }
4974
4975 /* Count the number of scalars in TYPE. Return -1 on overflow or
4976 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4977 array member at the end of the structure. */
4978
4979 HOST_WIDE_INT
4980 count_type_elements (const_tree type, bool allow_flexarr)
4981 {
4982 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4983 switch (TREE_CODE (type))
4984 {
4985 case ARRAY_TYPE:
4986 {
4987 tree telts = array_type_nelts (type);
4988 if (telts && host_integerp (telts, 1))
4989 {
4990 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4991 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4992 if (n == 0)
4993 return 0;
4994 else if (max / n > m)
4995 return n * m;
4996 }
4997 return -1;
4998 }
4999
5000 case RECORD_TYPE:
5001 {
5002 HOST_WIDE_INT n = 0, t;
5003 tree f;
5004
5005 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5006 if (TREE_CODE (f) == FIELD_DECL)
5007 {
5008 t = count_type_elements (TREE_TYPE (f), false);
5009 if (t < 0)
5010 {
5011 /* Check for structures with flexible array member. */
5012 tree tf = TREE_TYPE (f);
5013 if (allow_flexarr
5014 && DECL_CHAIN (f) == NULL
5015 && TREE_CODE (tf) == ARRAY_TYPE
5016 && TYPE_DOMAIN (tf)
5017 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5018 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5019 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5020 && int_size_in_bytes (type) >= 0)
5021 break;
5022
5023 return -1;
5024 }
5025 n += t;
5026 }
5027
5028 return n;
5029 }
5030
5031 case UNION_TYPE:
5032 case QUAL_UNION_TYPE:
5033 return -1;
5034
5035 case COMPLEX_TYPE:
5036 return 2;
5037
5038 case VECTOR_TYPE:
5039 return TYPE_VECTOR_SUBPARTS (type);
5040
5041 case INTEGER_TYPE:
5042 case REAL_TYPE:
5043 case FIXED_POINT_TYPE:
5044 case ENUMERAL_TYPE:
5045 case BOOLEAN_TYPE:
5046 case POINTER_TYPE:
5047 case OFFSET_TYPE:
5048 case REFERENCE_TYPE:
5049 return 1;
5050
5051 case ERROR_MARK:
5052 return 0;
5053
5054 case VOID_TYPE:
5055 case METHOD_TYPE:
5056 case FUNCTION_TYPE:
5057 case LANG_TYPE:
5058 default:
5059 gcc_unreachable ();
5060 }
5061 }
5062
5063 /* Return 1 if EXP contains mostly (3/4) zeros. */
5064
5065 static int
5066 mostly_zeros_p (const_tree exp)
5067 {
5068 if (TREE_CODE (exp) == CONSTRUCTOR)
5069
5070 {
5071 HOST_WIDE_INT nz_elts, count, elts;
5072 bool must_clear;
5073
5074 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5075 if (must_clear)
5076 return 1;
5077
5078 elts = count_type_elements (TREE_TYPE (exp), false);
5079
5080 return nz_elts < elts / 4;
5081 }
5082
5083 return initializer_zerop (exp);
5084 }
5085
5086 /* Return 1 if EXP contains all zeros. */
5087
5088 static int
5089 all_zeros_p (const_tree exp)
5090 {
5091 if (TREE_CODE (exp) == CONSTRUCTOR)
5092
5093 {
5094 HOST_WIDE_INT nz_elts, count;
5095 bool must_clear;
5096
5097 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5098 return nz_elts == 0;
5099 }
5100
5101 return initializer_zerop (exp);
5102 }
5103 \f
5104 /* Helper function for store_constructor.
5105 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5106 TYPE is the type of the CONSTRUCTOR, not the element type.
5107 CLEARED is as for store_constructor.
5108 ALIAS_SET is the alias set to use for any stores.
5109
5110 This provides a recursive shortcut back to store_constructor when it isn't
5111 necessary to go through store_field. This is so that we can pass through
5112 the cleared field to let store_constructor know that we may not have to
5113 clear a substructure if the outer structure has already been cleared. */
5114
5115 static void
5116 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5117 HOST_WIDE_INT bitpos, enum machine_mode mode,
5118 tree exp, tree type, int cleared,
5119 alias_set_type alias_set)
5120 {
5121 if (TREE_CODE (exp) == CONSTRUCTOR
5122 /* We can only call store_constructor recursively if the size and
5123 bit position are on a byte boundary. */
5124 && bitpos % BITS_PER_UNIT == 0
5125 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5126 /* If we have a nonzero bitpos for a register target, then we just
5127 let store_field do the bitfield handling. This is unlikely to
5128 generate unnecessary clear instructions anyways. */
5129 && (bitpos == 0 || MEM_P (target)))
5130 {
5131 if (MEM_P (target))
5132 target
5133 = adjust_address (target,
5134 GET_MODE (target) == BLKmode
5135 || 0 != (bitpos
5136 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5137 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5138
5139
5140 /* Update the alias set, if required. */
5141 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5142 && MEM_ALIAS_SET (target) != 0)
5143 {
5144 target = copy_rtx (target);
5145 set_mem_alias_set (target, alias_set);
5146 }
5147
5148 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5149 }
5150 else
5151 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5152 }
5153
5154 /* Store the value of constructor EXP into the rtx TARGET.
5155 TARGET is either a REG or a MEM; we know it cannot conflict, since
5156 safe_from_p has been called.
5157 CLEARED is true if TARGET is known to have been zero'd.
5158 SIZE is the number of bytes of TARGET we are allowed to modify: this
5159 may not be the same as the size of EXP if we are assigning to a field
5160 which has been packed to exclude padding bits. */
5161
5162 static void
5163 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5164 {
5165 tree type = TREE_TYPE (exp);
5166 #ifdef WORD_REGISTER_OPERATIONS
5167 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5168 #endif
5169
5170 switch (TREE_CODE (type))
5171 {
5172 case RECORD_TYPE:
5173 case UNION_TYPE:
5174 case QUAL_UNION_TYPE:
5175 {
5176 unsigned HOST_WIDE_INT idx;
5177 tree field, value;
5178
5179 /* If size is zero or the target is already cleared, do nothing. */
5180 if (size == 0 || cleared)
5181 cleared = 1;
5182 /* We either clear the aggregate or indicate the value is dead. */
5183 else if ((TREE_CODE (type) == UNION_TYPE
5184 || TREE_CODE (type) == QUAL_UNION_TYPE)
5185 && ! CONSTRUCTOR_ELTS (exp))
5186 /* If the constructor is empty, clear the union. */
5187 {
5188 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5189 cleared = 1;
5190 }
5191
5192 /* If we are building a static constructor into a register,
5193 set the initial value as zero so we can fold the value into
5194 a constant. But if more than one register is involved,
5195 this probably loses. */
5196 else if (REG_P (target) && TREE_STATIC (exp)
5197 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5198 {
5199 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5200 cleared = 1;
5201 }
5202
5203 /* If the constructor has fewer fields than the structure or
5204 if we are initializing the structure to mostly zeros, clear
5205 the whole structure first. Don't do this if TARGET is a
5206 register whose mode size isn't equal to SIZE since
5207 clear_storage can't handle this case. */
5208 else if (size > 0
5209 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5210 != fields_length (type))
5211 || mostly_zeros_p (exp))
5212 && (!REG_P (target)
5213 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5214 == size)))
5215 {
5216 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5217 cleared = 1;
5218 }
5219
5220 if (REG_P (target) && !cleared)
5221 emit_clobber (target);
5222
5223 /* Store each element of the constructor into the
5224 corresponding field of TARGET. */
5225 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5226 {
5227 enum machine_mode mode;
5228 HOST_WIDE_INT bitsize;
5229 HOST_WIDE_INT bitpos = 0;
5230 tree offset;
5231 rtx to_rtx = target;
5232
5233 /* Just ignore missing fields. We cleared the whole
5234 structure, above, if any fields are missing. */
5235 if (field == 0)
5236 continue;
5237
5238 if (cleared && initializer_zerop (value))
5239 continue;
5240
5241 if (host_integerp (DECL_SIZE (field), 1))
5242 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5243 else
5244 bitsize = -1;
5245
5246 mode = DECL_MODE (field);
5247 if (DECL_BIT_FIELD (field))
5248 mode = VOIDmode;
5249
5250 offset = DECL_FIELD_OFFSET (field);
5251 if (host_integerp (offset, 0)
5252 && host_integerp (bit_position (field), 0))
5253 {
5254 bitpos = int_bit_position (field);
5255 offset = 0;
5256 }
5257 else
5258 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5259
5260 if (offset)
5261 {
5262 enum machine_mode address_mode;
5263 rtx offset_rtx;
5264
5265 offset
5266 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5267 make_tree (TREE_TYPE (exp),
5268 target));
5269
5270 offset_rtx = expand_normal (offset);
5271 gcc_assert (MEM_P (to_rtx));
5272
5273 address_mode
5274 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5275 if (GET_MODE (offset_rtx) != address_mode)
5276 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5277
5278 to_rtx = offset_address (to_rtx, offset_rtx,
5279 highest_pow2_factor (offset));
5280 }
5281
5282 #ifdef WORD_REGISTER_OPERATIONS
5283 /* If this initializes a field that is smaller than a
5284 word, at the start of a word, try to widen it to a full
5285 word. This special case allows us to output C++ member
5286 function initializations in a form that the optimizers
5287 can understand. */
5288 if (REG_P (target)
5289 && bitsize < BITS_PER_WORD
5290 && bitpos % BITS_PER_WORD == 0
5291 && GET_MODE_CLASS (mode) == MODE_INT
5292 && TREE_CODE (value) == INTEGER_CST
5293 && exp_size >= 0
5294 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5295 {
5296 tree type = TREE_TYPE (value);
5297
5298 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5299 {
5300 type = lang_hooks.types.type_for_size
5301 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5302 value = fold_convert (type, value);
5303 }
5304
5305 if (BYTES_BIG_ENDIAN)
5306 value
5307 = fold_build2 (LSHIFT_EXPR, type, value,
5308 build_int_cst (type,
5309 BITS_PER_WORD - bitsize));
5310 bitsize = BITS_PER_WORD;
5311 mode = word_mode;
5312 }
5313 #endif
5314
5315 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5316 && DECL_NONADDRESSABLE_P (field))
5317 {
5318 to_rtx = copy_rtx (to_rtx);
5319 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5320 }
5321
5322 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5323 value, type, cleared,
5324 get_alias_set (TREE_TYPE (field)));
5325 }
5326 break;
5327 }
5328 case ARRAY_TYPE:
5329 {
5330 tree value, index;
5331 unsigned HOST_WIDE_INT i;
5332 int need_to_clear;
5333 tree domain;
5334 tree elttype = TREE_TYPE (type);
5335 int const_bounds_p;
5336 HOST_WIDE_INT minelt = 0;
5337 HOST_WIDE_INT maxelt = 0;
5338
5339 domain = TYPE_DOMAIN (type);
5340 const_bounds_p = (TYPE_MIN_VALUE (domain)
5341 && TYPE_MAX_VALUE (domain)
5342 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5343 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5344
5345 /* If we have constant bounds for the range of the type, get them. */
5346 if (const_bounds_p)
5347 {
5348 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5349 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5350 }
5351
5352 /* If the constructor has fewer elements than the array, clear
5353 the whole array first. Similarly if this is static
5354 constructor of a non-BLKmode object. */
5355 if (cleared)
5356 need_to_clear = 0;
5357 else if (REG_P (target) && TREE_STATIC (exp))
5358 need_to_clear = 1;
5359 else
5360 {
5361 unsigned HOST_WIDE_INT idx;
5362 tree index, value;
5363 HOST_WIDE_INT count = 0, zero_count = 0;
5364 need_to_clear = ! const_bounds_p;
5365
5366 /* This loop is a more accurate version of the loop in
5367 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5368 is also needed to check for missing elements. */
5369 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5370 {
5371 HOST_WIDE_INT this_node_count;
5372
5373 if (need_to_clear)
5374 break;
5375
5376 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5377 {
5378 tree lo_index = TREE_OPERAND (index, 0);
5379 tree hi_index = TREE_OPERAND (index, 1);
5380
5381 if (! host_integerp (lo_index, 1)
5382 || ! host_integerp (hi_index, 1))
5383 {
5384 need_to_clear = 1;
5385 break;
5386 }
5387
5388 this_node_count = (tree_low_cst (hi_index, 1)
5389 - tree_low_cst (lo_index, 1) + 1);
5390 }
5391 else
5392 this_node_count = 1;
5393
5394 count += this_node_count;
5395 if (mostly_zeros_p (value))
5396 zero_count += this_node_count;
5397 }
5398
5399 /* Clear the entire array first if there are any missing
5400 elements, or if the incidence of zero elements is >=
5401 75%. */
5402 if (! need_to_clear
5403 && (count < maxelt - minelt + 1
5404 || 4 * zero_count >= 3 * count))
5405 need_to_clear = 1;
5406 }
5407
5408 if (need_to_clear && size > 0)
5409 {
5410 if (REG_P (target))
5411 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5412 else
5413 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5414 cleared = 1;
5415 }
5416
5417 if (!cleared && REG_P (target))
5418 /* Inform later passes that the old value is dead. */
5419 emit_clobber (target);
5420
5421 /* Store each element of the constructor into the
5422 corresponding element of TARGET, determined by counting the
5423 elements. */
5424 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5425 {
5426 enum machine_mode mode;
5427 HOST_WIDE_INT bitsize;
5428 HOST_WIDE_INT bitpos;
5429 rtx xtarget = target;
5430
5431 if (cleared && initializer_zerop (value))
5432 continue;
5433
5434 mode = TYPE_MODE (elttype);
5435 if (mode == BLKmode)
5436 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5437 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5438 : -1);
5439 else
5440 bitsize = GET_MODE_BITSIZE (mode);
5441
5442 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5443 {
5444 tree lo_index = TREE_OPERAND (index, 0);
5445 tree hi_index = TREE_OPERAND (index, 1);
5446 rtx index_r, pos_rtx;
5447 HOST_WIDE_INT lo, hi, count;
5448 tree position;
5449
5450 /* If the range is constant and "small", unroll the loop. */
5451 if (const_bounds_p
5452 && host_integerp (lo_index, 0)
5453 && host_integerp (hi_index, 0)
5454 && (lo = tree_low_cst (lo_index, 0),
5455 hi = tree_low_cst (hi_index, 0),
5456 count = hi - lo + 1,
5457 (!MEM_P (target)
5458 || count <= 2
5459 || (host_integerp (TYPE_SIZE (elttype), 1)
5460 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5461 <= 40 * 8)))))
5462 {
5463 lo -= minelt; hi -= minelt;
5464 for (; lo <= hi; lo++)
5465 {
5466 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5467
5468 if (MEM_P (target)
5469 && !MEM_KEEP_ALIAS_SET_P (target)
5470 && TREE_CODE (type) == ARRAY_TYPE
5471 && TYPE_NONALIASED_COMPONENT (type))
5472 {
5473 target = copy_rtx (target);
5474 MEM_KEEP_ALIAS_SET_P (target) = 1;
5475 }
5476
5477 store_constructor_field
5478 (target, bitsize, bitpos, mode, value, type, cleared,
5479 get_alias_set (elttype));
5480 }
5481 }
5482 else
5483 {
5484 rtx loop_start = gen_label_rtx ();
5485 rtx loop_end = gen_label_rtx ();
5486 tree exit_cond;
5487
5488 expand_normal (hi_index);
5489
5490 index = build_decl (EXPR_LOCATION (exp),
5491 VAR_DECL, NULL_TREE, domain);
5492 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5493 SET_DECL_RTL (index, index_r);
5494 store_expr (lo_index, index_r, 0, false);
5495
5496 /* Build the head of the loop. */
5497 do_pending_stack_adjust ();
5498 emit_label (loop_start);
5499
5500 /* Assign value to element index. */
5501 position =
5502 fold_convert (ssizetype,
5503 fold_build2 (MINUS_EXPR,
5504 TREE_TYPE (index),
5505 index,
5506 TYPE_MIN_VALUE (domain)));
5507
5508 position =
5509 size_binop (MULT_EXPR, position,
5510 fold_convert (ssizetype,
5511 TYPE_SIZE_UNIT (elttype)));
5512
5513 pos_rtx = expand_normal (position);
5514 xtarget = offset_address (target, pos_rtx,
5515 highest_pow2_factor (position));
5516 xtarget = adjust_address (xtarget, mode, 0);
5517 if (TREE_CODE (value) == CONSTRUCTOR)
5518 store_constructor (value, xtarget, cleared,
5519 bitsize / BITS_PER_UNIT);
5520 else
5521 store_expr (value, xtarget, 0, false);
5522
5523 /* Generate a conditional jump to exit the loop. */
5524 exit_cond = build2 (LT_EXPR, integer_type_node,
5525 index, hi_index);
5526 jumpif (exit_cond, loop_end, -1);
5527
5528 /* Update the loop counter, and jump to the head of
5529 the loop. */
5530 expand_assignment (index,
5531 build2 (PLUS_EXPR, TREE_TYPE (index),
5532 index, integer_one_node),
5533 false);
5534
5535 emit_jump (loop_start);
5536
5537 /* Build the end of the loop. */
5538 emit_label (loop_end);
5539 }
5540 }
5541 else if ((index != 0 && ! host_integerp (index, 0))
5542 || ! host_integerp (TYPE_SIZE (elttype), 1))
5543 {
5544 tree position;
5545
5546 if (index == 0)
5547 index = ssize_int (1);
5548
5549 if (minelt)
5550 index = fold_convert (ssizetype,
5551 fold_build2 (MINUS_EXPR,
5552 TREE_TYPE (index),
5553 index,
5554 TYPE_MIN_VALUE (domain)));
5555
5556 position =
5557 size_binop (MULT_EXPR, index,
5558 fold_convert (ssizetype,
5559 TYPE_SIZE_UNIT (elttype)));
5560 xtarget = offset_address (target,
5561 expand_normal (position),
5562 highest_pow2_factor (position));
5563 xtarget = adjust_address (xtarget, mode, 0);
5564 store_expr (value, xtarget, 0, false);
5565 }
5566 else
5567 {
5568 if (index != 0)
5569 bitpos = ((tree_low_cst (index, 0) - minelt)
5570 * tree_low_cst (TYPE_SIZE (elttype), 1));
5571 else
5572 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5573
5574 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5575 && TREE_CODE (type) == ARRAY_TYPE
5576 && TYPE_NONALIASED_COMPONENT (type))
5577 {
5578 target = copy_rtx (target);
5579 MEM_KEEP_ALIAS_SET_P (target) = 1;
5580 }
5581 store_constructor_field (target, bitsize, bitpos, mode, value,
5582 type, cleared, get_alias_set (elttype));
5583 }
5584 }
5585 break;
5586 }
5587
5588 case VECTOR_TYPE:
5589 {
5590 unsigned HOST_WIDE_INT idx;
5591 constructor_elt *ce;
5592 int i;
5593 int need_to_clear;
5594 int icode = 0;
5595 tree elttype = TREE_TYPE (type);
5596 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5597 enum machine_mode eltmode = TYPE_MODE (elttype);
5598 HOST_WIDE_INT bitsize;
5599 HOST_WIDE_INT bitpos;
5600 rtvec vector = NULL;
5601 unsigned n_elts;
5602 alias_set_type alias;
5603
5604 gcc_assert (eltmode != BLKmode);
5605
5606 n_elts = TYPE_VECTOR_SUBPARTS (type);
5607 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5608 {
5609 enum machine_mode mode = GET_MODE (target);
5610
5611 icode = (int) optab_handler (vec_init_optab, mode);
5612 if (icode != CODE_FOR_nothing)
5613 {
5614 unsigned int i;
5615
5616 vector = rtvec_alloc (n_elts);
5617 for (i = 0; i < n_elts; i++)
5618 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5619 }
5620 }
5621
5622 /* If the constructor has fewer elements than the vector,
5623 clear the whole array first. Similarly if this is static
5624 constructor of a non-BLKmode object. */
5625 if (cleared)
5626 need_to_clear = 0;
5627 else if (REG_P (target) && TREE_STATIC (exp))
5628 need_to_clear = 1;
5629 else
5630 {
5631 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5632 tree value;
5633
5634 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5635 {
5636 int n_elts_here = tree_low_cst
5637 (int_const_binop (TRUNC_DIV_EXPR,
5638 TYPE_SIZE (TREE_TYPE (value)),
5639 TYPE_SIZE (elttype), 0), 1);
5640
5641 count += n_elts_here;
5642 if (mostly_zeros_p (value))
5643 zero_count += n_elts_here;
5644 }
5645
5646 /* Clear the entire vector first if there are any missing elements,
5647 or if the incidence of zero elements is >= 75%. */
5648 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5649 }
5650
5651 if (need_to_clear && size > 0 && !vector)
5652 {
5653 if (REG_P (target))
5654 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5655 else
5656 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5657 cleared = 1;
5658 }
5659
5660 /* Inform later passes that the old value is dead. */
5661 if (!cleared && !vector && REG_P (target))
5662 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5663
5664 if (MEM_P (target))
5665 alias = MEM_ALIAS_SET (target);
5666 else
5667 alias = get_alias_set (elttype);
5668
5669 /* Store each element of the constructor into the corresponding
5670 element of TARGET, determined by counting the elements. */
5671 for (idx = 0, i = 0;
5672 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5673 idx++, i += bitsize / elt_size)
5674 {
5675 HOST_WIDE_INT eltpos;
5676 tree value = ce->value;
5677
5678 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5679 if (cleared && initializer_zerop (value))
5680 continue;
5681
5682 if (ce->index)
5683 eltpos = tree_low_cst (ce->index, 1);
5684 else
5685 eltpos = i;
5686
5687 if (vector)
5688 {
5689 /* Vector CONSTRUCTORs should only be built from smaller
5690 vectors in the case of BLKmode vectors. */
5691 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5692 RTVEC_ELT (vector, eltpos)
5693 = expand_normal (value);
5694 }
5695 else
5696 {
5697 enum machine_mode value_mode =
5698 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5699 ? TYPE_MODE (TREE_TYPE (value))
5700 : eltmode;
5701 bitpos = eltpos * elt_size;
5702 store_constructor_field (target, bitsize, bitpos,
5703 value_mode, value, type,
5704 cleared, alias);
5705 }
5706 }
5707
5708 if (vector)
5709 emit_insn (GEN_FCN (icode)
5710 (target,
5711 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5712 break;
5713 }
5714
5715 default:
5716 gcc_unreachable ();
5717 }
5718 }
5719
5720 /* Store the value of EXP (an expression tree)
5721 into a subfield of TARGET which has mode MODE and occupies
5722 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5723 If MODE is VOIDmode, it means that we are storing into a bit-field.
5724
5725 Always return const0_rtx unless we have something particular to
5726 return.
5727
5728 TYPE is the type of the underlying object,
5729
5730 ALIAS_SET is the alias set for the destination. This value will
5731 (in general) be different from that for TARGET, since TARGET is a
5732 reference to the containing structure.
5733
5734 If NONTEMPORAL is true, try generating a nontemporal store. */
5735
5736 static rtx
5737 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5738 enum machine_mode mode, tree exp, tree type,
5739 alias_set_type alias_set, bool nontemporal)
5740 {
5741 if (TREE_CODE (exp) == ERROR_MARK)
5742 return const0_rtx;
5743
5744 /* If we have nothing to store, do nothing unless the expression has
5745 side-effects. */
5746 if (bitsize == 0)
5747 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5748
5749 /* If we are storing into an unaligned field of an aligned union that is
5750 in a register, we may have the mode of TARGET being an integer mode but
5751 MODE == BLKmode. In that case, get an aligned object whose size and
5752 alignment are the same as TARGET and store TARGET into it (we can avoid
5753 the store if the field being stored is the entire width of TARGET). Then
5754 call ourselves recursively to store the field into a BLKmode version of
5755 that object. Finally, load from the object into TARGET. This is not
5756 very efficient in general, but should only be slightly more expensive
5757 than the otherwise-required unaligned accesses. Perhaps this can be
5758 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5759 twice, once with emit_move_insn and once via store_field. */
5760
5761 if (mode == BLKmode
5762 && (REG_P (target) || GET_CODE (target) == SUBREG))
5763 {
5764 rtx object = assign_temp (type, 0, 1, 1);
5765 rtx blk_object = adjust_address (object, BLKmode, 0);
5766
5767 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5768 emit_move_insn (object, target);
5769
5770 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5771 nontemporal);
5772
5773 emit_move_insn (target, object);
5774
5775 /* We want to return the BLKmode version of the data. */
5776 return blk_object;
5777 }
5778
5779 if (GET_CODE (target) == CONCAT)
5780 {
5781 /* We're storing into a struct containing a single __complex. */
5782
5783 gcc_assert (!bitpos);
5784 return store_expr (exp, target, 0, nontemporal);
5785 }
5786
5787 /* If the structure is in a register or if the component
5788 is a bit field, we cannot use addressing to access it.
5789 Use bit-field techniques or SUBREG to store in it. */
5790
5791 if (mode == VOIDmode
5792 || (mode != BLKmode && ! direct_store[(int) mode]
5793 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5794 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5795 || REG_P (target)
5796 || GET_CODE (target) == SUBREG
5797 /* If the field isn't aligned enough to store as an ordinary memref,
5798 store it as a bit field. */
5799 || (mode != BLKmode
5800 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5801 || bitpos % GET_MODE_ALIGNMENT (mode))
5802 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5803 || (bitpos % BITS_PER_UNIT != 0)))
5804 /* If the RHS and field are a constant size and the size of the
5805 RHS isn't the same size as the bitfield, we must use bitfield
5806 operations. */
5807 || (bitsize >= 0
5808 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5809 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5810 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5811 decl we must use bitfield operations. */
5812 || (bitsize >= 0
5813 && TREE_CODE (exp) == MEM_REF
5814 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5815 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5816 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5817 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5818 {
5819 rtx temp;
5820 gimple nop_def;
5821
5822 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5823 implies a mask operation. If the precision is the same size as
5824 the field we're storing into, that mask is redundant. This is
5825 particularly common with bit field assignments generated by the
5826 C front end. */
5827 nop_def = get_def_for_expr (exp, NOP_EXPR);
5828 if (nop_def)
5829 {
5830 tree type = TREE_TYPE (exp);
5831 if (INTEGRAL_TYPE_P (type)
5832 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5833 && bitsize == TYPE_PRECISION (type))
5834 {
5835 tree op = gimple_assign_rhs1 (nop_def);
5836 type = TREE_TYPE (op);
5837 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5838 exp = op;
5839 }
5840 }
5841
5842 temp = expand_normal (exp);
5843
5844 /* If BITSIZE is narrower than the size of the type of EXP
5845 we will be narrowing TEMP. Normally, what's wanted are the
5846 low-order bits. However, if EXP's type is a record and this is
5847 big-endian machine, we want the upper BITSIZE bits. */
5848 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5849 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5850 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5851 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5852 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5853 - bitsize),
5854 NULL_RTX, 1);
5855
5856 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5857 MODE. */
5858 if (mode != VOIDmode && mode != BLKmode
5859 && mode != TYPE_MODE (TREE_TYPE (exp)))
5860 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5861
5862 /* If the modes of TEMP and TARGET are both BLKmode, both
5863 must be in memory and BITPOS must be aligned on a byte
5864 boundary. If so, we simply do a block copy. Likewise
5865 for a BLKmode-like TARGET. */
5866 if (GET_MODE (temp) == BLKmode
5867 && (GET_MODE (target) == BLKmode
5868 || (MEM_P (target)
5869 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5870 && (bitpos % BITS_PER_UNIT) == 0
5871 && (bitsize % BITS_PER_UNIT) == 0)))
5872 {
5873 gcc_assert (MEM_P (target) && MEM_P (temp)
5874 && (bitpos % BITS_PER_UNIT) == 0);
5875
5876 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5877 emit_block_move (target, temp,
5878 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5879 / BITS_PER_UNIT),
5880 BLOCK_OP_NORMAL);
5881
5882 return const0_rtx;
5883 }
5884
5885 /* Store the value in the bitfield. */
5886 store_bit_field (target, bitsize, bitpos, mode, temp);
5887
5888 return const0_rtx;
5889 }
5890 else
5891 {
5892 /* Now build a reference to just the desired component. */
5893 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5894
5895 if (to_rtx == target)
5896 to_rtx = copy_rtx (to_rtx);
5897
5898 if (!MEM_SCALAR_P (to_rtx))
5899 MEM_IN_STRUCT_P (to_rtx) = 1;
5900 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5901 set_mem_alias_set (to_rtx, alias_set);
5902
5903 return store_expr (exp, to_rtx, 0, nontemporal);
5904 }
5905 }
5906 \f
5907 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5908 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5909 codes and find the ultimate containing object, which we return.
5910
5911 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5912 bit position, and *PUNSIGNEDP to the signedness of the field.
5913 If the position of the field is variable, we store a tree
5914 giving the variable offset (in units) in *POFFSET.
5915 This offset is in addition to the bit position.
5916 If the position is not variable, we store 0 in *POFFSET.
5917
5918 If any of the extraction expressions is volatile,
5919 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5920
5921 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5922 Otherwise, it is a mode that can be used to access the field.
5923
5924 If the field describes a variable-sized object, *PMODE is set to
5925 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5926 this case, but the address of the object can be found.
5927
5928 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5929 look through nodes that serve as markers of a greater alignment than
5930 the one that can be deduced from the expression. These nodes make it
5931 possible for front-ends to prevent temporaries from being created by
5932 the middle-end on alignment considerations. For that purpose, the
5933 normal operating mode at high-level is to always pass FALSE so that
5934 the ultimate containing object is really returned; moreover, the
5935 associated predicate handled_component_p will always return TRUE
5936 on these nodes, thus indicating that they are essentially handled
5937 by get_inner_reference. TRUE should only be passed when the caller
5938 is scanning the expression in order to build another representation
5939 and specifically knows how to handle these nodes; as such, this is
5940 the normal operating mode in the RTL expanders. */
5941
5942 tree
5943 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5944 HOST_WIDE_INT *pbitpos, tree *poffset,
5945 enum machine_mode *pmode, int *punsignedp,
5946 int *pvolatilep, bool keep_aligning)
5947 {
5948 tree size_tree = 0;
5949 enum machine_mode mode = VOIDmode;
5950 bool blkmode_bitfield = false;
5951 tree offset = size_zero_node;
5952 double_int bit_offset = double_int_zero;
5953
5954 /* First get the mode, signedness, and size. We do this from just the
5955 outermost expression. */
5956 *pbitsize = -1;
5957 if (TREE_CODE (exp) == COMPONENT_REF)
5958 {
5959 tree field = TREE_OPERAND (exp, 1);
5960 size_tree = DECL_SIZE (field);
5961 if (!DECL_BIT_FIELD (field))
5962 mode = DECL_MODE (field);
5963 else if (DECL_MODE (field) == BLKmode)
5964 blkmode_bitfield = true;
5965 else if (TREE_THIS_VOLATILE (exp)
5966 && flag_strict_volatile_bitfields > 0)
5967 /* Volatile bitfields should be accessed in the mode of the
5968 field's type, not the mode computed based on the bit
5969 size. */
5970 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
5971
5972 *punsignedp = DECL_UNSIGNED (field);
5973 }
5974 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5975 {
5976 size_tree = TREE_OPERAND (exp, 1);
5977 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5978 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5979
5980 /* For vector types, with the correct size of access, use the mode of
5981 inner type. */
5982 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5983 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5984 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5985 mode = TYPE_MODE (TREE_TYPE (exp));
5986 }
5987 else
5988 {
5989 mode = TYPE_MODE (TREE_TYPE (exp));
5990 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5991
5992 if (mode == BLKmode)
5993 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5994 else
5995 *pbitsize = GET_MODE_BITSIZE (mode);
5996 }
5997
5998 if (size_tree != 0)
5999 {
6000 if (! host_integerp (size_tree, 1))
6001 mode = BLKmode, *pbitsize = -1;
6002 else
6003 *pbitsize = tree_low_cst (size_tree, 1);
6004 }
6005
6006 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6007 and find the ultimate containing object. */
6008 while (1)
6009 {
6010 switch (TREE_CODE (exp))
6011 {
6012 case BIT_FIELD_REF:
6013 bit_offset
6014 = double_int_add (bit_offset,
6015 tree_to_double_int (TREE_OPERAND (exp, 2)));
6016 break;
6017
6018 case COMPONENT_REF:
6019 {
6020 tree field = TREE_OPERAND (exp, 1);
6021 tree this_offset = component_ref_field_offset (exp);
6022
6023 /* If this field hasn't been filled in yet, don't go past it.
6024 This should only happen when folding expressions made during
6025 type construction. */
6026 if (this_offset == 0)
6027 break;
6028
6029 offset = size_binop (PLUS_EXPR, offset, this_offset);
6030 bit_offset = double_int_add (bit_offset,
6031 tree_to_double_int
6032 (DECL_FIELD_BIT_OFFSET (field)));
6033
6034 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6035 }
6036 break;
6037
6038 case ARRAY_REF:
6039 case ARRAY_RANGE_REF:
6040 {
6041 tree index = TREE_OPERAND (exp, 1);
6042 tree low_bound = array_ref_low_bound (exp);
6043 tree unit_size = array_ref_element_size (exp);
6044
6045 /* We assume all arrays have sizes that are a multiple of a byte.
6046 First subtract the lower bound, if any, in the type of the
6047 index, then convert to sizetype and multiply by the size of
6048 the array element. */
6049 if (! integer_zerop (low_bound))
6050 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6051 index, low_bound);
6052
6053 offset = size_binop (PLUS_EXPR, offset,
6054 size_binop (MULT_EXPR,
6055 fold_convert (sizetype, index),
6056 unit_size));
6057 }
6058 break;
6059
6060 case REALPART_EXPR:
6061 break;
6062
6063 case IMAGPART_EXPR:
6064 bit_offset = double_int_add (bit_offset,
6065 uhwi_to_double_int (*pbitsize));
6066 break;
6067
6068 case VIEW_CONVERT_EXPR:
6069 if (keep_aligning && STRICT_ALIGNMENT
6070 && (TYPE_ALIGN (TREE_TYPE (exp))
6071 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6072 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6073 < BIGGEST_ALIGNMENT)
6074 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6075 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6076 goto done;
6077 break;
6078
6079 case MEM_REF:
6080 /* Hand back the decl for MEM[&decl, off]. */
6081 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6082 {
6083 tree off = TREE_OPERAND (exp, 1);
6084 if (!integer_zerop (off))
6085 {
6086 double_int boff, coff = mem_ref_offset (exp);
6087 boff = double_int_lshift (coff,
6088 BITS_PER_UNIT == 8
6089 ? 3 : exact_log2 (BITS_PER_UNIT),
6090 HOST_BITS_PER_DOUBLE_INT, true);
6091 bit_offset = double_int_add (bit_offset, boff);
6092 }
6093 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6094 }
6095 goto done;
6096
6097 default:
6098 goto done;
6099 }
6100
6101 /* If any reference in the chain is volatile, the effect is volatile. */
6102 if (TREE_THIS_VOLATILE (exp))
6103 *pvolatilep = 1;
6104
6105 exp = TREE_OPERAND (exp, 0);
6106 }
6107 done:
6108
6109 /* If OFFSET is constant, see if we can return the whole thing as a
6110 constant bit position. Make sure to handle overflow during
6111 this conversion. */
6112 if (host_integerp (offset, 0))
6113 {
6114 double_int tem = double_int_lshift (tree_to_double_int (offset),
6115 BITS_PER_UNIT == 8
6116 ? 3 : exact_log2 (BITS_PER_UNIT),
6117 HOST_BITS_PER_DOUBLE_INT, true);
6118 tem = double_int_add (tem, bit_offset);
6119 if (double_int_fits_in_shwi_p (tem))
6120 {
6121 *pbitpos = double_int_to_shwi (tem);
6122 *poffset = offset = NULL_TREE;
6123 }
6124 }
6125
6126 /* Otherwise, split it up. */
6127 if (offset)
6128 {
6129 *pbitpos = double_int_to_shwi (bit_offset);
6130 *poffset = offset;
6131 }
6132
6133 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6134 if (mode == VOIDmode
6135 && blkmode_bitfield
6136 && (*pbitpos % BITS_PER_UNIT) == 0
6137 && (*pbitsize % BITS_PER_UNIT) == 0)
6138 *pmode = BLKmode;
6139 else
6140 *pmode = mode;
6141
6142 return exp;
6143 }
6144
6145 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6146 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6147 EXP is marked as PACKED. */
6148
6149 bool
6150 contains_packed_reference (const_tree exp)
6151 {
6152 bool packed_p = false;
6153
6154 while (1)
6155 {
6156 switch (TREE_CODE (exp))
6157 {
6158 case COMPONENT_REF:
6159 {
6160 tree field = TREE_OPERAND (exp, 1);
6161 packed_p = DECL_PACKED (field)
6162 || TYPE_PACKED (TREE_TYPE (field))
6163 || TYPE_PACKED (TREE_TYPE (exp));
6164 if (packed_p)
6165 goto done;
6166 }
6167 break;
6168
6169 case BIT_FIELD_REF:
6170 case ARRAY_REF:
6171 case ARRAY_RANGE_REF:
6172 case REALPART_EXPR:
6173 case IMAGPART_EXPR:
6174 case VIEW_CONVERT_EXPR:
6175 break;
6176
6177 default:
6178 goto done;
6179 }
6180 exp = TREE_OPERAND (exp, 0);
6181 }
6182 done:
6183 return packed_p;
6184 }
6185
6186 /* Return a tree of sizetype representing the size, in bytes, of the element
6187 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6188
6189 tree
6190 array_ref_element_size (tree exp)
6191 {
6192 tree aligned_size = TREE_OPERAND (exp, 3);
6193 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6194 location_t loc = EXPR_LOCATION (exp);
6195
6196 /* If a size was specified in the ARRAY_REF, it's the size measured
6197 in alignment units of the element type. So multiply by that value. */
6198 if (aligned_size)
6199 {
6200 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6201 sizetype from another type of the same width and signedness. */
6202 if (TREE_TYPE (aligned_size) != sizetype)
6203 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6204 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6205 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6206 }
6207
6208 /* Otherwise, take the size from that of the element type. Substitute
6209 any PLACEHOLDER_EXPR that we have. */
6210 else
6211 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6212 }
6213
6214 /* Return a tree representing the lower bound of the array mentioned in
6215 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6216
6217 tree
6218 array_ref_low_bound (tree exp)
6219 {
6220 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6221
6222 /* If a lower bound is specified in EXP, use it. */
6223 if (TREE_OPERAND (exp, 2))
6224 return TREE_OPERAND (exp, 2);
6225
6226 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6227 substituting for a PLACEHOLDER_EXPR as needed. */
6228 if (domain_type && TYPE_MIN_VALUE (domain_type))
6229 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6230
6231 /* Otherwise, return a zero of the appropriate type. */
6232 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6233 }
6234
6235 /* Return a tree representing the upper bound of the array mentioned in
6236 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6237
6238 tree
6239 array_ref_up_bound (tree exp)
6240 {
6241 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6242
6243 /* If there is a domain type and it has an upper bound, use it, substituting
6244 for a PLACEHOLDER_EXPR as needed. */
6245 if (domain_type && TYPE_MAX_VALUE (domain_type))
6246 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6247
6248 /* Otherwise fail. */
6249 return NULL_TREE;
6250 }
6251
6252 /* Return a tree representing the offset, in bytes, of the field referenced
6253 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6254
6255 tree
6256 component_ref_field_offset (tree exp)
6257 {
6258 tree aligned_offset = TREE_OPERAND (exp, 2);
6259 tree field = TREE_OPERAND (exp, 1);
6260 location_t loc = EXPR_LOCATION (exp);
6261
6262 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6263 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6264 value. */
6265 if (aligned_offset)
6266 {
6267 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6268 sizetype from another type of the same width and signedness. */
6269 if (TREE_TYPE (aligned_offset) != sizetype)
6270 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6271 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6272 size_int (DECL_OFFSET_ALIGN (field)
6273 / BITS_PER_UNIT));
6274 }
6275
6276 /* Otherwise, take the offset from that of the field. Substitute
6277 any PLACEHOLDER_EXPR that we have. */
6278 else
6279 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6280 }
6281
6282 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6283
6284 static unsigned HOST_WIDE_INT
6285 target_align (const_tree target)
6286 {
6287 /* We might have a chain of nested references with intermediate misaligning
6288 bitfields components, so need to recurse to find out. */
6289
6290 unsigned HOST_WIDE_INT this_align, outer_align;
6291
6292 switch (TREE_CODE (target))
6293 {
6294 case BIT_FIELD_REF:
6295 return 1;
6296
6297 case COMPONENT_REF:
6298 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6299 outer_align = target_align (TREE_OPERAND (target, 0));
6300 return MIN (this_align, outer_align);
6301
6302 case ARRAY_REF:
6303 case ARRAY_RANGE_REF:
6304 this_align = TYPE_ALIGN (TREE_TYPE (target));
6305 outer_align = target_align (TREE_OPERAND (target, 0));
6306 return MIN (this_align, outer_align);
6307
6308 CASE_CONVERT:
6309 case NON_LVALUE_EXPR:
6310 case VIEW_CONVERT_EXPR:
6311 this_align = TYPE_ALIGN (TREE_TYPE (target));
6312 outer_align = target_align (TREE_OPERAND (target, 0));
6313 return MAX (this_align, outer_align);
6314
6315 default:
6316 return TYPE_ALIGN (TREE_TYPE (target));
6317 }
6318 }
6319
6320 \f
6321 /* Given an rtx VALUE that may contain additions and multiplications, return
6322 an equivalent value that just refers to a register, memory, or constant.
6323 This is done by generating instructions to perform the arithmetic and
6324 returning a pseudo-register containing the value.
6325
6326 The returned value may be a REG, SUBREG, MEM or constant. */
6327
6328 rtx
6329 force_operand (rtx value, rtx target)
6330 {
6331 rtx op1, op2;
6332 /* Use subtarget as the target for operand 0 of a binary operation. */
6333 rtx subtarget = get_subtarget (target);
6334 enum rtx_code code = GET_CODE (value);
6335
6336 /* Check for subreg applied to an expression produced by loop optimizer. */
6337 if (code == SUBREG
6338 && !REG_P (SUBREG_REG (value))
6339 && !MEM_P (SUBREG_REG (value)))
6340 {
6341 value
6342 = simplify_gen_subreg (GET_MODE (value),
6343 force_reg (GET_MODE (SUBREG_REG (value)),
6344 force_operand (SUBREG_REG (value),
6345 NULL_RTX)),
6346 GET_MODE (SUBREG_REG (value)),
6347 SUBREG_BYTE (value));
6348 code = GET_CODE (value);
6349 }
6350
6351 /* Check for a PIC address load. */
6352 if ((code == PLUS || code == MINUS)
6353 && XEXP (value, 0) == pic_offset_table_rtx
6354 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6355 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6356 || GET_CODE (XEXP (value, 1)) == CONST))
6357 {
6358 if (!subtarget)
6359 subtarget = gen_reg_rtx (GET_MODE (value));
6360 emit_move_insn (subtarget, value);
6361 return subtarget;
6362 }
6363
6364 if (ARITHMETIC_P (value))
6365 {
6366 op2 = XEXP (value, 1);
6367 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6368 subtarget = 0;
6369 if (code == MINUS && CONST_INT_P (op2))
6370 {
6371 code = PLUS;
6372 op2 = negate_rtx (GET_MODE (value), op2);
6373 }
6374
6375 /* Check for an addition with OP2 a constant integer and our first
6376 operand a PLUS of a virtual register and something else. In that
6377 case, we want to emit the sum of the virtual register and the
6378 constant first and then add the other value. This allows virtual
6379 register instantiation to simply modify the constant rather than
6380 creating another one around this addition. */
6381 if (code == PLUS && CONST_INT_P (op2)
6382 && GET_CODE (XEXP (value, 0)) == PLUS
6383 && REG_P (XEXP (XEXP (value, 0), 0))
6384 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6385 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6386 {
6387 rtx temp = expand_simple_binop (GET_MODE (value), code,
6388 XEXP (XEXP (value, 0), 0), op2,
6389 subtarget, 0, OPTAB_LIB_WIDEN);
6390 return expand_simple_binop (GET_MODE (value), code, temp,
6391 force_operand (XEXP (XEXP (value,
6392 0), 1), 0),
6393 target, 0, OPTAB_LIB_WIDEN);
6394 }
6395
6396 op1 = force_operand (XEXP (value, 0), subtarget);
6397 op2 = force_operand (op2, NULL_RTX);
6398 switch (code)
6399 {
6400 case MULT:
6401 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6402 case DIV:
6403 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6404 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6405 target, 1, OPTAB_LIB_WIDEN);
6406 else
6407 return expand_divmod (0,
6408 FLOAT_MODE_P (GET_MODE (value))
6409 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6410 GET_MODE (value), op1, op2, target, 0);
6411 case MOD:
6412 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6413 target, 0);
6414 case UDIV:
6415 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6416 target, 1);
6417 case UMOD:
6418 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6419 target, 1);
6420 case ASHIFTRT:
6421 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6422 target, 0, OPTAB_LIB_WIDEN);
6423 default:
6424 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6425 target, 1, OPTAB_LIB_WIDEN);
6426 }
6427 }
6428 if (UNARY_P (value))
6429 {
6430 if (!target)
6431 target = gen_reg_rtx (GET_MODE (value));
6432 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6433 switch (code)
6434 {
6435 case ZERO_EXTEND:
6436 case SIGN_EXTEND:
6437 case TRUNCATE:
6438 case FLOAT_EXTEND:
6439 case FLOAT_TRUNCATE:
6440 convert_move (target, op1, code == ZERO_EXTEND);
6441 return target;
6442
6443 case FIX:
6444 case UNSIGNED_FIX:
6445 expand_fix (target, op1, code == UNSIGNED_FIX);
6446 return target;
6447
6448 case FLOAT:
6449 case UNSIGNED_FLOAT:
6450 expand_float (target, op1, code == UNSIGNED_FLOAT);
6451 return target;
6452
6453 default:
6454 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6455 }
6456 }
6457
6458 #ifdef INSN_SCHEDULING
6459 /* On machines that have insn scheduling, we want all memory reference to be
6460 explicit, so we need to deal with such paradoxical SUBREGs. */
6461 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6462 && (GET_MODE_SIZE (GET_MODE (value))
6463 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6464 value
6465 = simplify_gen_subreg (GET_MODE (value),
6466 force_reg (GET_MODE (SUBREG_REG (value)),
6467 force_operand (SUBREG_REG (value),
6468 NULL_RTX)),
6469 GET_MODE (SUBREG_REG (value)),
6470 SUBREG_BYTE (value));
6471 #endif
6472
6473 return value;
6474 }
6475 \f
6476 /* Subroutine of expand_expr: return nonzero iff there is no way that
6477 EXP can reference X, which is being modified. TOP_P is nonzero if this
6478 call is going to be used to determine whether we need a temporary
6479 for EXP, as opposed to a recursive call to this function.
6480
6481 It is always safe for this routine to return zero since it merely
6482 searches for optimization opportunities. */
6483
6484 int
6485 safe_from_p (const_rtx x, tree exp, int top_p)
6486 {
6487 rtx exp_rtl = 0;
6488 int i, nops;
6489
6490 if (x == 0
6491 /* If EXP has varying size, we MUST use a target since we currently
6492 have no way of allocating temporaries of variable size
6493 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6494 So we assume here that something at a higher level has prevented a
6495 clash. This is somewhat bogus, but the best we can do. Only
6496 do this when X is BLKmode and when we are at the top level. */
6497 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6498 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6499 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6500 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6501 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6502 != INTEGER_CST)
6503 && GET_MODE (x) == BLKmode)
6504 /* If X is in the outgoing argument area, it is always safe. */
6505 || (MEM_P (x)
6506 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6507 || (GET_CODE (XEXP (x, 0)) == PLUS
6508 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6509 return 1;
6510
6511 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6512 find the underlying pseudo. */
6513 if (GET_CODE (x) == SUBREG)
6514 {
6515 x = SUBREG_REG (x);
6516 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6517 return 0;
6518 }
6519
6520 /* Now look at our tree code and possibly recurse. */
6521 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6522 {
6523 case tcc_declaration:
6524 exp_rtl = DECL_RTL_IF_SET (exp);
6525 break;
6526
6527 case tcc_constant:
6528 return 1;
6529
6530 case tcc_exceptional:
6531 if (TREE_CODE (exp) == TREE_LIST)
6532 {
6533 while (1)
6534 {
6535 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6536 return 0;
6537 exp = TREE_CHAIN (exp);
6538 if (!exp)
6539 return 1;
6540 if (TREE_CODE (exp) != TREE_LIST)
6541 return safe_from_p (x, exp, 0);
6542 }
6543 }
6544 else if (TREE_CODE (exp) == CONSTRUCTOR)
6545 {
6546 constructor_elt *ce;
6547 unsigned HOST_WIDE_INT idx;
6548
6549 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6550 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6551 || !safe_from_p (x, ce->value, 0))
6552 return 0;
6553 return 1;
6554 }
6555 else if (TREE_CODE (exp) == ERROR_MARK)
6556 return 1; /* An already-visited SAVE_EXPR? */
6557 else
6558 return 0;
6559
6560 case tcc_statement:
6561 /* The only case we look at here is the DECL_INITIAL inside a
6562 DECL_EXPR. */
6563 return (TREE_CODE (exp) != DECL_EXPR
6564 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6565 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6566 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6567
6568 case tcc_binary:
6569 case tcc_comparison:
6570 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6571 return 0;
6572 /* Fall through. */
6573
6574 case tcc_unary:
6575 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6576
6577 case tcc_expression:
6578 case tcc_reference:
6579 case tcc_vl_exp:
6580 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6581 the expression. If it is set, we conflict iff we are that rtx or
6582 both are in memory. Otherwise, we check all operands of the
6583 expression recursively. */
6584
6585 switch (TREE_CODE (exp))
6586 {
6587 case ADDR_EXPR:
6588 /* If the operand is static or we are static, we can't conflict.
6589 Likewise if we don't conflict with the operand at all. */
6590 if (staticp (TREE_OPERAND (exp, 0))
6591 || TREE_STATIC (exp)
6592 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6593 return 1;
6594
6595 /* Otherwise, the only way this can conflict is if we are taking
6596 the address of a DECL a that address if part of X, which is
6597 very rare. */
6598 exp = TREE_OPERAND (exp, 0);
6599 if (DECL_P (exp))
6600 {
6601 if (!DECL_RTL_SET_P (exp)
6602 || !MEM_P (DECL_RTL (exp)))
6603 return 0;
6604 else
6605 exp_rtl = XEXP (DECL_RTL (exp), 0);
6606 }
6607 break;
6608
6609 case MEM_REF:
6610 if (MEM_P (x)
6611 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6612 get_alias_set (exp)))
6613 return 0;
6614 break;
6615
6616 case CALL_EXPR:
6617 /* Assume that the call will clobber all hard registers and
6618 all of memory. */
6619 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6620 || MEM_P (x))
6621 return 0;
6622 break;
6623
6624 case WITH_CLEANUP_EXPR:
6625 case CLEANUP_POINT_EXPR:
6626 /* Lowered by gimplify.c. */
6627 gcc_unreachable ();
6628
6629 case SAVE_EXPR:
6630 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6631
6632 default:
6633 break;
6634 }
6635
6636 /* If we have an rtx, we do not need to scan our operands. */
6637 if (exp_rtl)
6638 break;
6639
6640 nops = TREE_OPERAND_LENGTH (exp);
6641 for (i = 0; i < nops; i++)
6642 if (TREE_OPERAND (exp, i) != 0
6643 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6644 return 0;
6645
6646 break;
6647
6648 case tcc_type:
6649 /* Should never get a type here. */
6650 gcc_unreachable ();
6651 }
6652
6653 /* If we have an rtl, find any enclosed object. Then see if we conflict
6654 with it. */
6655 if (exp_rtl)
6656 {
6657 if (GET_CODE (exp_rtl) == SUBREG)
6658 {
6659 exp_rtl = SUBREG_REG (exp_rtl);
6660 if (REG_P (exp_rtl)
6661 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6662 return 0;
6663 }
6664
6665 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6666 are memory and they conflict. */
6667 return ! (rtx_equal_p (x, exp_rtl)
6668 || (MEM_P (x) && MEM_P (exp_rtl)
6669 && true_dependence (exp_rtl, VOIDmode, x,
6670 rtx_addr_varies_p)));
6671 }
6672
6673 /* If we reach here, it is safe. */
6674 return 1;
6675 }
6676
6677 \f
6678 /* Return the highest power of two that EXP is known to be a multiple of.
6679 This is used in updating alignment of MEMs in array references. */
6680
6681 unsigned HOST_WIDE_INT
6682 highest_pow2_factor (const_tree exp)
6683 {
6684 unsigned HOST_WIDE_INT c0, c1;
6685
6686 switch (TREE_CODE (exp))
6687 {
6688 case INTEGER_CST:
6689 /* We can find the lowest bit that's a one. If the low
6690 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6691 We need to handle this case since we can find it in a COND_EXPR,
6692 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6693 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6694 later ICE. */
6695 if (TREE_OVERFLOW (exp))
6696 return BIGGEST_ALIGNMENT;
6697 else
6698 {
6699 /* Note: tree_low_cst is intentionally not used here,
6700 we don't care about the upper bits. */
6701 c0 = TREE_INT_CST_LOW (exp);
6702 c0 &= -c0;
6703 return c0 ? c0 : BIGGEST_ALIGNMENT;
6704 }
6705 break;
6706
6707 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6708 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6709 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6710 return MIN (c0, c1);
6711
6712 case MULT_EXPR:
6713 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6714 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6715 return c0 * c1;
6716
6717 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6718 case CEIL_DIV_EXPR:
6719 if (integer_pow2p (TREE_OPERAND (exp, 1))
6720 && host_integerp (TREE_OPERAND (exp, 1), 1))
6721 {
6722 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6723 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6724 return MAX (1, c0 / c1);
6725 }
6726 break;
6727
6728 case BIT_AND_EXPR:
6729 /* The highest power of two of a bit-and expression is the maximum of
6730 that of its operands. We typically get here for a complex LHS and
6731 a constant negative power of two on the RHS to force an explicit
6732 alignment, so don't bother looking at the LHS. */
6733 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6734
6735 CASE_CONVERT:
6736 case SAVE_EXPR:
6737 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6738
6739 case COMPOUND_EXPR:
6740 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6741
6742 case COND_EXPR:
6743 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6744 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6745 return MIN (c0, c1);
6746
6747 default:
6748 break;
6749 }
6750
6751 return 1;
6752 }
6753
6754 /* Similar, except that the alignment requirements of TARGET are
6755 taken into account. Assume it is at least as aligned as its
6756 type, unless it is a COMPONENT_REF in which case the layout of
6757 the structure gives the alignment. */
6758
6759 static unsigned HOST_WIDE_INT
6760 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6761 {
6762 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6763 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6764
6765 return MAX (factor, talign);
6766 }
6767 \f
6768 /* Subroutine of expand_expr. Expand the two operands of a binary
6769 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6770 The value may be stored in TARGET if TARGET is nonzero. The
6771 MODIFIER argument is as documented by expand_expr. */
6772
6773 static void
6774 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6775 enum expand_modifier modifier)
6776 {
6777 if (! safe_from_p (target, exp1, 1))
6778 target = 0;
6779 if (operand_equal_p (exp0, exp1, 0))
6780 {
6781 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6782 *op1 = copy_rtx (*op0);
6783 }
6784 else
6785 {
6786 /* If we need to preserve evaluation order, copy exp0 into its own
6787 temporary variable so that it can't be clobbered by exp1. */
6788 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6789 exp0 = save_expr (exp0);
6790 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6791 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6792 }
6793 }
6794
6795 \f
6796 /* Return a MEM that contains constant EXP. DEFER is as for
6797 output_constant_def and MODIFIER is as for expand_expr. */
6798
6799 static rtx
6800 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6801 {
6802 rtx mem;
6803
6804 mem = output_constant_def (exp, defer);
6805 if (modifier != EXPAND_INITIALIZER)
6806 mem = use_anchored_address (mem);
6807 return mem;
6808 }
6809
6810 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6811 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6812
6813 static rtx
6814 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6815 enum expand_modifier modifier, addr_space_t as)
6816 {
6817 rtx result, subtarget;
6818 tree inner, offset;
6819 HOST_WIDE_INT bitsize, bitpos;
6820 int volatilep, unsignedp;
6821 enum machine_mode mode1;
6822
6823 /* If we are taking the address of a constant and are at the top level,
6824 we have to use output_constant_def since we can't call force_const_mem
6825 at top level. */
6826 /* ??? This should be considered a front-end bug. We should not be
6827 generating ADDR_EXPR of something that isn't an LVALUE. The only
6828 exception here is STRING_CST. */
6829 if (CONSTANT_CLASS_P (exp))
6830 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6831
6832 /* Everything must be something allowed by is_gimple_addressable. */
6833 switch (TREE_CODE (exp))
6834 {
6835 case INDIRECT_REF:
6836 /* This case will happen via recursion for &a->b. */
6837 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6838
6839 case MEM_REF:
6840 {
6841 tree tem = TREE_OPERAND (exp, 0);
6842 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6843 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6844 tem,
6845 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6846 return expand_expr (tem, target, tmode, modifier);
6847 }
6848
6849 case CONST_DECL:
6850 /* Expand the initializer like constants above. */
6851 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6852
6853 case REALPART_EXPR:
6854 /* The real part of the complex number is always first, therefore
6855 the address is the same as the address of the parent object. */
6856 offset = 0;
6857 bitpos = 0;
6858 inner = TREE_OPERAND (exp, 0);
6859 break;
6860
6861 case IMAGPART_EXPR:
6862 /* The imaginary part of the complex number is always second.
6863 The expression is therefore always offset by the size of the
6864 scalar type. */
6865 offset = 0;
6866 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6867 inner = TREE_OPERAND (exp, 0);
6868 break;
6869
6870 default:
6871 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6872 expand_expr, as that can have various side effects; LABEL_DECLs for
6873 example, may not have their DECL_RTL set yet. Expand the rtl of
6874 CONSTRUCTORs too, which should yield a memory reference for the
6875 constructor's contents. Assume language specific tree nodes can
6876 be expanded in some interesting way. */
6877 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6878 if (DECL_P (exp)
6879 || TREE_CODE (exp) == CONSTRUCTOR
6880 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6881 {
6882 result = expand_expr (exp, target, tmode,
6883 modifier == EXPAND_INITIALIZER
6884 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6885
6886 /* If the DECL isn't in memory, then the DECL wasn't properly
6887 marked TREE_ADDRESSABLE, which will be either a front-end
6888 or a tree optimizer bug. */
6889 gcc_assert (MEM_P (result));
6890 result = XEXP (result, 0);
6891
6892 /* ??? Is this needed anymore? */
6893 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6894 {
6895 assemble_external (exp);
6896 TREE_USED (exp) = 1;
6897 }
6898
6899 if (modifier != EXPAND_INITIALIZER
6900 && modifier != EXPAND_CONST_ADDRESS)
6901 result = force_operand (result, target);
6902 return result;
6903 }
6904
6905 /* Pass FALSE as the last argument to get_inner_reference although
6906 we are expanding to RTL. The rationale is that we know how to
6907 handle "aligning nodes" here: we can just bypass them because
6908 they won't change the final object whose address will be returned
6909 (they actually exist only for that purpose). */
6910 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6911 &mode1, &unsignedp, &volatilep, false);
6912 break;
6913 }
6914
6915 /* We must have made progress. */
6916 gcc_assert (inner != exp);
6917
6918 subtarget = offset || bitpos ? NULL_RTX : target;
6919 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6920 inner alignment, force the inner to be sufficiently aligned. */
6921 if (CONSTANT_CLASS_P (inner)
6922 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6923 {
6924 inner = copy_node (inner);
6925 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6926 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6927 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6928 }
6929 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6930
6931 if (offset)
6932 {
6933 rtx tmp;
6934
6935 if (modifier != EXPAND_NORMAL)
6936 result = force_operand (result, NULL);
6937 tmp = expand_expr (offset, NULL_RTX, tmode,
6938 modifier == EXPAND_INITIALIZER
6939 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6940
6941 result = convert_memory_address_addr_space (tmode, result, as);
6942 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6943
6944 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6945 result = simplify_gen_binary (PLUS, tmode, result, tmp);
6946 else
6947 {
6948 subtarget = bitpos ? NULL_RTX : target;
6949 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6950 1, OPTAB_LIB_WIDEN);
6951 }
6952 }
6953
6954 if (bitpos)
6955 {
6956 /* Someone beforehand should have rejected taking the address
6957 of such an object. */
6958 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6959
6960 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6961 if (modifier < EXPAND_SUM)
6962 result = force_operand (result, target);
6963 }
6964
6965 return result;
6966 }
6967
6968 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6969 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6970
6971 static rtx
6972 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6973 enum expand_modifier modifier)
6974 {
6975 addr_space_t as = ADDR_SPACE_GENERIC;
6976 enum machine_mode address_mode = Pmode;
6977 enum machine_mode pointer_mode = ptr_mode;
6978 enum machine_mode rmode;
6979 rtx result;
6980
6981 /* Target mode of VOIDmode says "whatever's natural". */
6982 if (tmode == VOIDmode)
6983 tmode = TYPE_MODE (TREE_TYPE (exp));
6984
6985 if (POINTER_TYPE_P (TREE_TYPE (exp)))
6986 {
6987 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
6988 address_mode = targetm.addr_space.address_mode (as);
6989 pointer_mode = targetm.addr_space.pointer_mode (as);
6990 }
6991
6992 /* We can get called with some Weird Things if the user does silliness
6993 like "(short) &a". In that case, convert_memory_address won't do
6994 the right thing, so ignore the given target mode. */
6995 if (tmode != address_mode && tmode != pointer_mode)
6996 tmode = address_mode;
6997
6998 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6999 tmode, modifier, as);
7000
7001 /* Despite expand_expr claims concerning ignoring TMODE when not
7002 strictly convenient, stuff breaks if we don't honor it. Note
7003 that combined with the above, we only do this for pointer modes. */
7004 rmode = GET_MODE (result);
7005 if (rmode == VOIDmode)
7006 rmode = tmode;
7007 if (rmode != tmode)
7008 result = convert_memory_address_addr_space (tmode, result, as);
7009
7010 return result;
7011 }
7012
7013 /* Generate code for computing CONSTRUCTOR EXP.
7014 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7015 is TRUE, instead of creating a temporary variable in memory
7016 NULL is returned and the caller needs to handle it differently. */
7017
7018 static rtx
7019 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7020 bool avoid_temp_mem)
7021 {
7022 tree type = TREE_TYPE (exp);
7023 enum machine_mode mode = TYPE_MODE (type);
7024
7025 /* Try to avoid creating a temporary at all. This is possible
7026 if all of the initializer is zero.
7027 FIXME: try to handle all [0..255] initializers we can handle
7028 with memset. */
7029 if (TREE_STATIC (exp)
7030 && !TREE_ADDRESSABLE (exp)
7031 && target != 0 && mode == BLKmode
7032 && all_zeros_p (exp))
7033 {
7034 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7035 return target;
7036 }
7037
7038 /* All elts simple constants => refer to a constant in memory. But
7039 if this is a non-BLKmode mode, let it store a field at a time
7040 since that should make a CONST_INT or CONST_DOUBLE when we
7041 fold. Likewise, if we have a target we can use, it is best to
7042 store directly into the target unless the type is large enough
7043 that memcpy will be used. If we are making an initializer and
7044 all operands are constant, put it in memory as well.
7045
7046 FIXME: Avoid trying to fill vector constructors piece-meal.
7047 Output them with output_constant_def below unless we're sure
7048 they're zeros. This should go away when vector initializers
7049 are treated like VECTOR_CST instead of arrays. */
7050 if ((TREE_STATIC (exp)
7051 && ((mode == BLKmode
7052 && ! (target != 0 && safe_from_p (target, exp, 1)))
7053 || TREE_ADDRESSABLE (exp)
7054 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7055 && (! MOVE_BY_PIECES_P
7056 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7057 TYPE_ALIGN (type)))
7058 && ! mostly_zeros_p (exp))))
7059 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7060 && TREE_CONSTANT (exp)))
7061 {
7062 rtx constructor;
7063
7064 if (avoid_temp_mem)
7065 return NULL_RTX;
7066
7067 constructor = expand_expr_constant (exp, 1, modifier);
7068
7069 if (modifier != EXPAND_CONST_ADDRESS
7070 && modifier != EXPAND_INITIALIZER
7071 && modifier != EXPAND_SUM)
7072 constructor = validize_mem (constructor);
7073
7074 return constructor;
7075 }
7076
7077 /* Handle calls that pass values in multiple non-contiguous
7078 locations. The Irix 6 ABI has examples of this. */
7079 if (target == 0 || ! safe_from_p (target, exp, 1)
7080 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7081 {
7082 if (avoid_temp_mem)
7083 return NULL_RTX;
7084
7085 target
7086 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7087 | (TREE_READONLY (exp)
7088 * TYPE_QUAL_CONST))),
7089 0, TREE_ADDRESSABLE (exp), 1);
7090 }
7091
7092 store_constructor (exp, target, 0, int_expr_size (exp));
7093 return target;
7094 }
7095
7096
7097 /* expand_expr: generate code for computing expression EXP.
7098 An rtx for the computed value is returned. The value is never null.
7099 In the case of a void EXP, const0_rtx is returned.
7100
7101 The value may be stored in TARGET if TARGET is nonzero.
7102 TARGET is just a suggestion; callers must assume that
7103 the rtx returned may not be the same as TARGET.
7104
7105 If TARGET is CONST0_RTX, it means that the value will be ignored.
7106
7107 If TMODE is not VOIDmode, it suggests generating the
7108 result in mode TMODE. But this is done only when convenient.
7109 Otherwise, TMODE is ignored and the value generated in its natural mode.
7110 TMODE is just a suggestion; callers must assume that
7111 the rtx returned may not have mode TMODE.
7112
7113 Note that TARGET may have neither TMODE nor MODE. In that case, it
7114 probably will not be used.
7115
7116 If MODIFIER is EXPAND_SUM then when EXP is an addition
7117 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7118 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7119 products as above, or REG or MEM, or constant.
7120 Ordinarily in such cases we would output mul or add instructions
7121 and then return a pseudo reg containing the sum.
7122
7123 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7124 it also marks a label as absolutely required (it can't be dead).
7125 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7126 This is used for outputting expressions used in initializers.
7127
7128 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7129 with a constant address even if that address is not normally legitimate.
7130 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7131
7132 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7133 a call parameter. Such targets require special care as we haven't yet
7134 marked TARGET so that it's safe from being trashed by libcalls. We
7135 don't want to use TARGET for anything but the final result;
7136 Intermediate values must go elsewhere. Additionally, calls to
7137 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7138
7139 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7140 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7141 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7142 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7143 recursively. */
7144
7145 rtx
7146 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7147 enum expand_modifier modifier, rtx *alt_rtl)
7148 {
7149 rtx ret;
7150
7151 /* Handle ERROR_MARK before anybody tries to access its type. */
7152 if (TREE_CODE (exp) == ERROR_MARK
7153 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7154 {
7155 ret = CONST0_RTX (tmode);
7156 return ret ? ret : const0_rtx;
7157 }
7158
7159 /* If this is an expression of some kind and it has an associated line
7160 number, then emit the line number before expanding the expression.
7161
7162 We need to save and restore the file and line information so that
7163 errors discovered during expansion are emitted with the right
7164 information. It would be better of the diagnostic routines
7165 used the file/line information embedded in the tree nodes rather
7166 than globals. */
7167 if (cfun && EXPR_HAS_LOCATION (exp))
7168 {
7169 location_t saved_location = input_location;
7170 location_t saved_curr_loc = get_curr_insn_source_location ();
7171 tree saved_block = get_curr_insn_block ();
7172 input_location = EXPR_LOCATION (exp);
7173 set_curr_insn_source_location (input_location);
7174
7175 /* Record where the insns produced belong. */
7176 set_curr_insn_block (TREE_BLOCK (exp));
7177
7178 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7179
7180 input_location = saved_location;
7181 set_curr_insn_block (saved_block);
7182 set_curr_insn_source_location (saved_curr_loc);
7183 }
7184 else
7185 {
7186 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7187 }
7188
7189 return ret;
7190 }
7191
7192 rtx
7193 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7194 enum expand_modifier modifier)
7195 {
7196 rtx op0, op1, op2, temp;
7197 tree type;
7198 int unsignedp;
7199 enum machine_mode mode;
7200 enum tree_code code = ops->code;
7201 optab this_optab;
7202 rtx subtarget, original_target;
7203 int ignore;
7204 bool reduce_bit_field;
7205 location_t loc = ops->location;
7206 tree treeop0, treeop1, treeop2;
7207 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7208 ? reduce_to_bit_field_precision ((expr), \
7209 target, \
7210 type) \
7211 : (expr))
7212
7213 type = ops->type;
7214 mode = TYPE_MODE (type);
7215 unsignedp = TYPE_UNSIGNED (type);
7216
7217 treeop0 = ops->op0;
7218 treeop1 = ops->op1;
7219 treeop2 = ops->op2;
7220
7221 /* We should be called only on simple (binary or unary) expressions,
7222 exactly those that are valid in gimple expressions that aren't
7223 GIMPLE_SINGLE_RHS (or invalid). */
7224 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7225 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7226 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7227
7228 ignore = (target == const0_rtx
7229 || ((CONVERT_EXPR_CODE_P (code)
7230 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7231 && TREE_CODE (type) == VOID_TYPE));
7232
7233 /* We should be called only if we need the result. */
7234 gcc_assert (!ignore);
7235
7236 /* An operation in what may be a bit-field type needs the
7237 result to be reduced to the precision of the bit-field type,
7238 which is narrower than that of the type's mode. */
7239 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7240 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7241
7242 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7243 target = 0;
7244
7245 /* Use subtarget as the target for operand 0 of a binary operation. */
7246 subtarget = get_subtarget (target);
7247 original_target = target;
7248
7249 switch (code)
7250 {
7251 case NON_LVALUE_EXPR:
7252 case PAREN_EXPR:
7253 CASE_CONVERT:
7254 if (treeop0 == error_mark_node)
7255 return const0_rtx;
7256
7257 if (TREE_CODE (type) == UNION_TYPE)
7258 {
7259 tree valtype = TREE_TYPE (treeop0);
7260
7261 /* If both input and output are BLKmode, this conversion isn't doing
7262 anything except possibly changing memory attribute. */
7263 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7264 {
7265 rtx result = expand_expr (treeop0, target, tmode,
7266 modifier);
7267
7268 result = copy_rtx (result);
7269 set_mem_attributes (result, type, 0);
7270 return result;
7271 }
7272
7273 if (target == 0)
7274 {
7275 if (TYPE_MODE (type) != BLKmode)
7276 target = gen_reg_rtx (TYPE_MODE (type));
7277 else
7278 target = assign_temp (type, 0, 1, 1);
7279 }
7280
7281 if (MEM_P (target))
7282 /* Store data into beginning of memory target. */
7283 store_expr (treeop0,
7284 adjust_address (target, TYPE_MODE (valtype), 0),
7285 modifier == EXPAND_STACK_PARM,
7286 false);
7287
7288 else
7289 {
7290 gcc_assert (REG_P (target));
7291
7292 /* Store this field into a union of the proper type. */
7293 store_field (target,
7294 MIN ((int_size_in_bytes (TREE_TYPE
7295 (treeop0))
7296 * BITS_PER_UNIT),
7297 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7298 0, TYPE_MODE (valtype), treeop0,
7299 type, 0, false);
7300 }
7301
7302 /* Return the entire union. */
7303 return target;
7304 }
7305
7306 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7307 {
7308 op0 = expand_expr (treeop0, target, VOIDmode,
7309 modifier);
7310
7311 /* If the signedness of the conversion differs and OP0 is
7312 a promoted SUBREG, clear that indication since we now
7313 have to do the proper extension. */
7314 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7315 && GET_CODE (op0) == SUBREG)
7316 SUBREG_PROMOTED_VAR_P (op0) = 0;
7317
7318 return REDUCE_BIT_FIELD (op0);
7319 }
7320
7321 op0 = expand_expr (treeop0, NULL_RTX, mode,
7322 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7323 if (GET_MODE (op0) == mode)
7324 ;
7325
7326 /* If OP0 is a constant, just convert it into the proper mode. */
7327 else if (CONSTANT_P (op0))
7328 {
7329 tree inner_type = TREE_TYPE (treeop0);
7330 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7331
7332 if (modifier == EXPAND_INITIALIZER)
7333 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7334 subreg_lowpart_offset (mode,
7335 inner_mode));
7336 else
7337 op0= convert_modes (mode, inner_mode, op0,
7338 TYPE_UNSIGNED (inner_type));
7339 }
7340
7341 else if (modifier == EXPAND_INITIALIZER)
7342 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7343
7344 else if (target == 0)
7345 op0 = convert_to_mode (mode, op0,
7346 TYPE_UNSIGNED (TREE_TYPE
7347 (treeop0)));
7348 else
7349 {
7350 convert_move (target, op0,
7351 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7352 op0 = target;
7353 }
7354
7355 return REDUCE_BIT_FIELD (op0);
7356
7357 case ADDR_SPACE_CONVERT_EXPR:
7358 {
7359 tree treeop0_type = TREE_TYPE (treeop0);
7360 addr_space_t as_to;
7361 addr_space_t as_from;
7362
7363 gcc_assert (POINTER_TYPE_P (type));
7364 gcc_assert (POINTER_TYPE_P (treeop0_type));
7365
7366 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7367 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7368
7369 /* Conversions between pointers to the same address space should
7370 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7371 gcc_assert (as_to != as_from);
7372
7373 /* Ask target code to handle conversion between pointers
7374 to overlapping address spaces. */
7375 if (targetm.addr_space.subset_p (as_to, as_from)
7376 || targetm.addr_space.subset_p (as_from, as_to))
7377 {
7378 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7379 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7380 gcc_assert (op0);
7381 return op0;
7382 }
7383
7384 /* For disjoint address spaces, converting anything but
7385 a null pointer invokes undefined behaviour. We simply
7386 always return a null pointer here. */
7387 return CONST0_RTX (mode);
7388 }
7389
7390 case POINTER_PLUS_EXPR:
7391 /* Even though the sizetype mode and the pointer's mode can be different
7392 expand is able to handle this correctly and get the correct result out
7393 of the PLUS_EXPR code. */
7394 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7395 if sizetype precision is smaller than pointer precision. */
7396 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7397 treeop1 = fold_convert_loc (loc, type,
7398 fold_convert_loc (loc, ssizetype,
7399 treeop1));
7400 case PLUS_EXPR:
7401 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7402 something else, make sure we add the register to the constant and
7403 then to the other thing. This case can occur during strength
7404 reduction and doing it this way will produce better code if the
7405 frame pointer or argument pointer is eliminated.
7406
7407 fold-const.c will ensure that the constant is always in the inner
7408 PLUS_EXPR, so the only case we need to do anything about is if
7409 sp, ap, or fp is our second argument, in which case we must swap
7410 the innermost first argument and our second argument. */
7411
7412 if (TREE_CODE (treeop0) == PLUS_EXPR
7413 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7414 && TREE_CODE (treeop1) == VAR_DECL
7415 && (DECL_RTL (treeop1) == frame_pointer_rtx
7416 || DECL_RTL (treeop1) == stack_pointer_rtx
7417 || DECL_RTL (treeop1) == arg_pointer_rtx))
7418 {
7419 tree t = treeop1;
7420
7421 treeop1 = TREE_OPERAND (treeop0, 0);
7422 TREE_OPERAND (treeop0, 0) = t;
7423 }
7424
7425 /* If the result is to be ptr_mode and we are adding an integer to
7426 something, we might be forming a constant. So try to use
7427 plus_constant. If it produces a sum and we can't accept it,
7428 use force_operand. This allows P = &ARR[const] to generate
7429 efficient code on machines where a SYMBOL_REF is not a valid
7430 address.
7431
7432 If this is an EXPAND_SUM call, always return the sum. */
7433 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7434 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7435 {
7436 if (modifier == EXPAND_STACK_PARM)
7437 target = 0;
7438 if (TREE_CODE (treeop0) == INTEGER_CST
7439 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7440 && TREE_CONSTANT (treeop1))
7441 {
7442 rtx constant_part;
7443
7444 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7445 EXPAND_SUM);
7446 /* Use immed_double_const to ensure that the constant is
7447 truncated according to the mode of OP1, then sign extended
7448 to a HOST_WIDE_INT. Using the constant directly can result
7449 in non-canonical RTL in a 64x32 cross compile. */
7450 constant_part
7451 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7452 (HOST_WIDE_INT) 0,
7453 TYPE_MODE (TREE_TYPE (treeop1)));
7454 op1 = plus_constant (op1, INTVAL (constant_part));
7455 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7456 op1 = force_operand (op1, target);
7457 return REDUCE_BIT_FIELD (op1);
7458 }
7459
7460 else if (TREE_CODE (treeop1) == INTEGER_CST
7461 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7462 && TREE_CONSTANT (treeop0))
7463 {
7464 rtx constant_part;
7465
7466 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7467 (modifier == EXPAND_INITIALIZER
7468 ? EXPAND_INITIALIZER : EXPAND_SUM));
7469 if (! CONSTANT_P (op0))
7470 {
7471 op1 = expand_expr (treeop1, NULL_RTX,
7472 VOIDmode, modifier);
7473 /* Return a PLUS if modifier says it's OK. */
7474 if (modifier == EXPAND_SUM
7475 || modifier == EXPAND_INITIALIZER)
7476 return simplify_gen_binary (PLUS, mode, op0, op1);
7477 goto binop2;
7478 }
7479 /* Use immed_double_const to ensure that the constant is
7480 truncated according to the mode of OP1, then sign extended
7481 to a HOST_WIDE_INT. Using the constant directly can result
7482 in non-canonical RTL in a 64x32 cross compile. */
7483 constant_part
7484 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7485 (HOST_WIDE_INT) 0,
7486 TYPE_MODE (TREE_TYPE (treeop0)));
7487 op0 = plus_constant (op0, INTVAL (constant_part));
7488 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7489 op0 = force_operand (op0, target);
7490 return REDUCE_BIT_FIELD (op0);
7491 }
7492 }
7493
7494 /* Use TER to expand pointer addition of a negated value
7495 as pointer subtraction. */
7496 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7497 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7498 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7499 && TREE_CODE (treeop1) == SSA_NAME
7500 && TYPE_MODE (TREE_TYPE (treeop0))
7501 == TYPE_MODE (TREE_TYPE (treeop1)))
7502 {
7503 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7504 if (def)
7505 {
7506 treeop1 = gimple_assign_rhs1 (def);
7507 code = MINUS_EXPR;
7508 goto do_minus;
7509 }
7510 }
7511
7512 /* No sense saving up arithmetic to be done
7513 if it's all in the wrong mode to form part of an address.
7514 And force_operand won't know whether to sign-extend or
7515 zero-extend. */
7516 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7517 || mode != ptr_mode)
7518 {
7519 expand_operands (treeop0, treeop1,
7520 subtarget, &op0, &op1, EXPAND_NORMAL);
7521 if (op0 == const0_rtx)
7522 return op1;
7523 if (op1 == const0_rtx)
7524 return op0;
7525 goto binop2;
7526 }
7527
7528 expand_operands (treeop0, treeop1,
7529 subtarget, &op0, &op1, modifier);
7530 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7531
7532 case MINUS_EXPR:
7533 do_minus:
7534 /* For initializers, we are allowed to return a MINUS of two
7535 symbolic constants. Here we handle all cases when both operands
7536 are constant. */
7537 /* Handle difference of two symbolic constants,
7538 for the sake of an initializer. */
7539 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7540 && really_constant_p (treeop0)
7541 && really_constant_p (treeop1))
7542 {
7543 expand_operands (treeop0, treeop1,
7544 NULL_RTX, &op0, &op1, modifier);
7545
7546 /* If the last operand is a CONST_INT, use plus_constant of
7547 the negated constant. Else make the MINUS. */
7548 if (CONST_INT_P (op1))
7549 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7550 else
7551 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7552 }
7553
7554 /* No sense saving up arithmetic to be done
7555 if it's all in the wrong mode to form part of an address.
7556 And force_operand won't know whether to sign-extend or
7557 zero-extend. */
7558 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7559 || mode != ptr_mode)
7560 goto binop;
7561
7562 expand_operands (treeop0, treeop1,
7563 subtarget, &op0, &op1, modifier);
7564
7565 /* Convert A - const to A + (-const). */
7566 if (CONST_INT_P (op1))
7567 {
7568 op1 = negate_rtx (mode, op1);
7569 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7570 }
7571
7572 goto binop2;
7573
7574 case WIDEN_MULT_PLUS_EXPR:
7575 case WIDEN_MULT_MINUS_EXPR:
7576 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7577 op2 = expand_normal (treeop2);
7578 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7579 target, unsignedp);
7580 return target;
7581
7582 case WIDEN_MULT_EXPR:
7583 /* If first operand is constant, swap them.
7584 Thus the following special case checks need only
7585 check the second operand. */
7586 if (TREE_CODE (treeop0) == INTEGER_CST)
7587 {
7588 tree t1 = treeop0;
7589 treeop0 = treeop1;
7590 treeop1 = t1;
7591 }
7592
7593 /* First, check if we have a multiplication of one signed and one
7594 unsigned operand. */
7595 if (TREE_CODE (treeop1) != INTEGER_CST
7596 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7597 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7598 {
7599 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7600 this_optab = usmul_widen_optab;
7601 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7602 {
7603 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7604 {
7605 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7606 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7607 EXPAND_NORMAL);
7608 else
7609 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
7610 EXPAND_NORMAL);
7611 goto binop3;
7612 }
7613 }
7614 }
7615 /* Check for a multiplication with matching signedness. */
7616 else if ((TREE_CODE (treeop1) == INTEGER_CST
7617 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7618 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7619 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7620 {
7621 tree op0type = TREE_TYPE (treeop0);
7622 enum machine_mode innermode = TYPE_MODE (op0type);
7623 bool zextend_p = TYPE_UNSIGNED (op0type);
7624 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7625 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7626
7627 if (mode == GET_MODE_2XWIDER_MODE (innermode)
7628 && TREE_CODE (treeop0) != INTEGER_CST)
7629 {
7630 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7631 {
7632 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7633 EXPAND_NORMAL);
7634 temp = expand_widening_mult (mode, op0, op1, target,
7635 unsignedp, this_optab);
7636 return REDUCE_BIT_FIELD (temp);
7637 }
7638 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7639 && innermode == word_mode)
7640 {
7641 rtx htem, hipart;
7642 op0 = expand_normal (treeop0);
7643 if (TREE_CODE (treeop1) == INTEGER_CST)
7644 op1 = convert_modes (innermode, mode,
7645 expand_normal (treeop1), unsignedp);
7646 else
7647 op1 = expand_normal (treeop1);
7648 temp = expand_binop (mode, other_optab, op0, op1, target,
7649 unsignedp, OPTAB_LIB_WIDEN);
7650 hipart = gen_highpart (innermode, temp);
7651 htem = expand_mult_highpart_adjust (innermode, hipart,
7652 op0, op1, hipart,
7653 zextend_p);
7654 if (htem != hipart)
7655 emit_move_insn (hipart, htem);
7656 return REDUCE_BIT_FIELD (temp);
7657 }
7658 }
7659 }
7660 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7661 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7662 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7663 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7664
7665 case FMA_EXPR:
7666 {
7667 optab opt = fma_optab;
7668 gimple def0, def2;
7669
7670 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
7671 call. */
7672 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
7673 {
7674 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
7675 tree call_expr;
7676
7677 gcc_assert (fn != NULL_TREE);
7678 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
7679 return expand_builtin (call_expr, target, subtarget, mode, false);
7680 }
7681
7682 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7683 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7684
7685 op0 = op2 = NULL;
7686
7687 if (def0 && def2
7688 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7689 {
7690 opt = fnms_optab;
7691 op0 = expand_normal (gimple_assign_rhs1 (def0));
7692 op2 = expand_normal (gimple_assign_rhs1 (def2));
7693 }
7694 else if (def0
7695 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7696 {
7697 opt = fnma_optab;
7698 op0 = expand_normal (gimple_assign_rhs1 (def0));
7699 }
7700 else if (def2
7701 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7702 {
7703 opt = fms_optab;
7704 op2 = expand_normal (gimple_assign_rhs1 (def2));
7705 }
7706
7707 if (op0 == NULL)
7708 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7709 if (op2 == NULL)
7710 op2 = expand_normal (treeop2);
7711 op1 = expand_normal (treeop1);
7712
7713 return expand_ternary_op (TYPE_MODE (type), opt,
7714 op0, op1, op2, target, 0);
7715 }
7716
7717 case MULT_EXPR:
7718 /* If this is a fixed-point operation, then we cannot use the code
7719 below because "expand_mult" doesn't support sat/no-sat fixed-point
7720 multiplications. */
7721 if (ALL_FIXED_POINT_MODE_P (mode))
7722 goto binop;
7723
7724 /* If first operand is constant, swap them.
7725 Thus the following special case checks need only
7726 check the second operand. */
7727 if (TREE_CODE (treeop0) == INTEGER_CST)
7728 {
7729 tree t1 = treeop0;
7730 treeop0 = treeop1;
7731 treeop1 = t1;
7732 }
7733
7734 /* Attempt to return something suitable for generating an
7735 indexed address, for machines that support that. */
7736
7737 if (modifier == EXPAND_SUM && mode == ptr_mode
7738 && host_integerp (treeop1, 0))
7739 {
7740 tree exp1 = treeop1;
7741
7742 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7743 EXPAND_SUM);
7744
7745 if (!REG_P (op0))
7746 op0 = force_operand (op0, NULL_RTX);
7747 if (!REG_P (op0))
7748 op0 = copy_to_mode_reg (mode, op0);
7749
7750 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7751 gen_int_mode (tree_low_cst (exp1, 0),
7752 TYPE_MODE (TREE_TYPE (exp1)))));
7753 }
7754
7755 if (modifier == EXPAND_STACK_PARM)
7756 target = 0;
7757
7758 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7759 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7760
7761 case TRUNC_DIV_EXPR:
7762 case FLOOR_DIV_EXPR:
7763 case CEIL_DIV_EXPR:
7764 case ROUND_DIV_EXPR:
7765 case EXACT_DIV_EXPR:
7766 /* If this is a fixed-point operation, then we cannot use the code
7767 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7768 divisions. */
7769 if (ALL_FIXED_POINT_MODE_P (mode))
7770 goto binop;
7771
7772 if (modifier == EXPAND_STACK_PARM)
7773 target = 0;
7774 /* Possible optimization: compute the dividend with EXPAND_SUM
7775 then if the divisor is constant can optimize the case
7776 where some terms of the dividend have coeffs divisible by it. */
7777 expand_operands (treeop0, treeop1,
7778 subtarget, &op0, &op1, EXPAND_NORMAL);
7779 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7780
7781 case RDIV_EXPR:
7782 goto binop;
7783
7784 case TRUNC_MOD_EXPR:
7785 case FLOOR_MOD_EXPR:
7786 case CEIL_MOD_EXPR:
7787 case ROUND_MOD_EXPR:
7788 if (modifier == EXPAND_STACK_PARM)
7789 target = 0;
7790 expand_operands (treeop0, treeop1,
7791 subtarget, &op0, &op1, EXPAND_NORMAL);
7792 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7793
7794 case FIXED_CONVERT_EXPR:
7795 op0 = expand_normal (treeop0);
7796 if (target == 0 || modifier == EXPAND_STACK_PARM)
7797 target = gen_reg_rtx (mode);
7798
7799 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7800 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7801 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7802 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7803 else
7804 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7805 return target;
7806
7807 case FIX_TRUNC_EXPR:
7808 op0 = expand_normal (treeop0);
7809 if (target == 0 || modifier == EXPAND_STACK_PARM)
7810 target = gen_reg_rtx (mode);
7811 expand_fix (target, op0, unsignedp);
7812 return target;
7813
7814 case FLOAT_EXPR:
7815 op0 = expand_normal (treeop0);
7816 if (target == 0 || modifier == EXPAND_STACK_PARM)
7817 target = gen_reg_rtx (mode);
7818 /* expand_float can't figure out what to do if FROM has VOIDmode.
7819 So give it the correct mode. With -O, cse will optimize this. */
7820 if (GET_MODE (op0) == VOIDmode)
7821 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7822 op0);
7823 expand_float (target, op0,
7824 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7825 return target;
7826
7827 case NEGATE_EXPR:
7828 op0 = expand_expr (treeop0, subtarget,
7829 VOIDmode, EXPAND_NORMAL);
7830 if (modifier == EXPAND_STACK_PARM)
7831 target = 0;
7832 temp = expand_unop (mode,
7833 optab_for_tree_code (NEGATE_EXPR, type,
7834 optab_default),
7835 op0, target, 0);
7836 gcc_assert (temp);
7837 return REDUCE_BIT_FIELD (temp);
7838
7839 case ABS_EXPR:
7840 op0 = expand_expr (treeop0, subtarget,
7841 VOIDmode, EXPAND_NORMAL);
7842 if (modifier == EXPAND_STACK_PARM)
7843 target = 0;
7844
7845 /* ABS_EXPR is not valid for complex arguments. */
7846 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7847 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7848
7849 /* Unsigned abs is simply the operand. Testing here means we don't
7850 risk generating incorrect code below. */
7851 if (TYPE_UNSIGNED (type))
7852 return op0;
7853
7854 return expand_abs (mode, op0, target, unsignedp,
7855 safe_from_p (target, treeop0, 1));
7856
7857 case MAX_EXPR:
7858 case MIN_EXPR:
7859 target = original_target;
7860 if (target == 0
7861 || modifier == EXPAND_STACK_PARM
7862 || (MEM_P (target) && MEM_VOLATILE_P (target))
7863 || GET_MODE (target) != mode
7864 || (REG_P (target)
7865 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7866 target = gen_reg_rtx (mode);
7867 expand_operands (treeop0, treeop1,
7868 target, &op0, &op1, EXPAND_NORMAL);
7869
7870 /* First try to do it with a special MIN or MAX instruction.
7871 If that does not win, use a conditional jump to select the proper
7872 value. */
7873 this_optab = optab_for_tree_code (code, type, optab_default);
7874 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7875 OPTAB_WIDEN);
7876 if (temp != 0)
7877 return temp;
7878
7879 /* At this point, a MEM target is no longer useful; we will get better
7880 code without it. */
7881
7882 if (! REG_P (target))
7883 target = gen_reg_rtx (mode);
7884
7885 /* If op1 was placed in target, swap op0 and op1. */
7886 if (target != op0 && target == op1)
7887 {
7888 temp = op0;
7889 op0 = op1;
7890 op1 = temp;
7891 }
7892
7893 /* We generate better code and avoid problems with op1 mentioning
7894 target by forcing op1 into a pseudo if it isn't a constant. */
7895 if (! CONSTANT_P (op1))
7896 op1 = force_reg (mode, op1);
7897
7898 {
7899 enum rtx_code comparison_code;
7900 rtx cmpop1 = op1;
7901
7902 if (code == MAX_EXPR)
7903 comparison_code = unsignedp ? GEU : GE;
7904 else
7905 comparison_code = unsignedp ? LEU : LE;
7906
7907 /* Canonicalize to comparisons against 0. */
7908 if (op1 == const1_rtx)
7909 {
7910 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7911 or (a != 0 ? a : 1) for unsigned.
7912 For MIN we are safe converting (a <= 1 ? a : 1)
7913 into (a <= 0 ? a : 1) */
7914 cmpop1 = const0_rtx;
7915 if (code == MAX_EXPR)
7916 comparison_code = unsignedp ? NE : GT;
7917 }
7918 if (op1 == constm1_rtx && !unsignedp)
7919 {
7920 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7921 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7922 cmpop1 = const0_rtx;
7923 if (code == MIN_EXPR)
7924 comparison_code = LT;
7925 }
7926 #ifdef HAVE_conditional_move
7927 /* Use a conditional move if possible. */
7928 if (can_conditionally_move_p (mode))
7929 {
7930 rtx insn;
7931
7932 /* ??? Same problem as in expmed.c: emit_conditional_move
7933 forces a stack adjustment via compare_from_rtx, and we
7934 lose the stack adjustment if the sequence we are about
7935 to create is discarded. */
7936 do_pending_stack_adjust ();
7937
7938 start_sequence ();
7939
7940 /* Try to emit the conditional move. */
7941 insn = emit_conditional_move (target, comparison_code,
7942 op0, cmpop1, mode,
7943 op0, op1, mode,
7944 unsignedp);
7945
7946 /* If we could do the conditional move, emit the sequence,
7947 and return. */
7948 if (insn)
7949 {
7950 rtx seq = get_insns ();
7951 end_sequence ();
7952 emit_insn (seq);
7953 return target;
7954 }
7955
7956 /* Otherwise discard the sequence and fall back to code with
7957 branches. */
7958 end_sequence ();
7959 }
7960 #endif
7961 if (target != op0)
7962 emit_move_insn (target, op0);
7963
7964 temp = gen_label_rtx ();
7965 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
7966 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
7967 -1);
7968 }
7969 emit_move_insn (target, op1);
7970 emit_label (temp);
7971 return target;
7972
7973 case BIT_NOT_EXPR:
7974 op0 = expand_expr (treeop0, subtarget,
7975 VOIDmode, EXPAND_NORMAL);
7976 if (modifier == EXPAND_STACK_PARM)
7977 target = 0;
7978 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
7979 gcc_assert (temp);
7980 return temp;
7981
7982 /* ??? Can optimize bitwise operations with one arg constant.
7983 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
7984 and (a bitwise1 b) bitwise2 b (etc)
7985 but that is probably not worth while. */
7986
7987 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
7988 boolean values when we want in all cases to compute both of them. In
7989 general it is fastest to do TRUTH_AND_EXPR by computing both operands
7990 as actual zero-or-1 values and then bitwise anding. In cases where
7991 there cannot be any side effects, better code would be made by
7992 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
7993 how to recognize those cases. */
7994
7995 case TRUTH_AND_EXPR:
7996 code = BIT_AND_EXPR;
7997 case BIT_AND_EXPR:
7998 goto binop;
7999
8000 case TRUTH_OR_EXPR:
8001 code = BIT_IOR_EXPR;
8002 case BIT_IOR_EXPR:
8003 goto binop;
8004
8005 case TRUTH_XOR_EXPR:
8006 code = BIT_XOR_EXPR;
8007 case BIT_XOR_EXPR:
8008 goto binop;
8009
8010 case LROTATE_EXPR:
8011 case RROTATE_EXPR:
8012 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8013 || (GET_MODE_PRECISION (TYPE_MODE (type))
8014 == TYPE_PRECISION (type)));
8015 /* fall through */
8016
8017 case LSHIFT_EXPR:
8018 case RSHIFT_EXPR:
8019 /* If this is a fixed-point operation, then we cannot use the code
8020 below because "expand_shift" doesn't support sat/no-sat fixed-point
8021 shifts. */
8022 if (ALL_FIXED_POINT_MODE_P (mode))
8023 goto binop;
8024
8025 if (! safe_from_p (subtarget, treeop1, 1))
8026 subtarget = 0;
8027 if (modifier == EXPAND_STACK_PARM)
8028 target = 0;
8029 op0 = expand_expr (treeop0, subtarget,
8030 VOIDmode, EXPAND_NORMAL);
8031 temp = expand_shift (code, mode, op0, treeop1, target,
8032 unsignedp);
8033 if (code == LSHIFT_EXPR)
8034 temp = REDUCE_BIT_FIELD (temp);
8035 return temp;
8036
8037 /* Could determine the answer when only additive constants differ. Also,
8038 the addition of one can be handled by changing the condition. */
8039 case LT_EXPR:
8040 case LE_EXPR:
8041 case GT_EXPR:
8042 case GE_EXPR:
8043 case EQ_EXPR:
8044 case NE_EXPR:
8045 case UNORDERED_EXPR:
8046 case ORDERED_EXPR:
8047 case UNLT_EXPR:
8048 case UNLE_EXPR:
8049 case UNGT_EXPR:
8050 case UNGE_EXPR:
8051 case UNEQ_EXPR:
8052 case LTGT_EXPR:
8053 temp = do_store_flag (ops,
8054 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8055 tmode != VOIDmode ? tmode : mode);
8056 if (temp)
8057 return temp;
8058
8059 /* Use a compare and a jump for BLKmode comparisons, or for function
8060 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8061
8062 if ((target == 0
8063 || modifier == EXPAND_STACK_PARM
8064 || ! safe_from_p (target, treeop0, 1)
8065 || ! safe_from_p (target, treeop1, 1)
8066 /* Make sure we don't have a hard reg (such as function's return
8067 value) live across basic blocks, if not optimizing. */
8068 || (!optimize && REG_P (target)
8069 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8070 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8071
8072 emit_move_insn (target, const0_rtx);
8073
8074 op1 = gen_label_rtx ();
8075 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8076
8077 emit_move_insn (target, const1_rtx);
8078
8079 emit_label (op1);
8080 return target;
8081
8082 case TRUTH_NOT_EXPR:
8083 if (modifier == EXPAND_STACK_PARM)
8084 target = 0;
8085 op0 = expand_expr (treeop0, target,
8086 VOIDmode, EXPAND_NORMAL);
8087 /* The parser is careful to generate TRUTH_NOT_EXPR
8088 only with operands that are always zero or one. */
8089 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8090 target, 1, OPTAB_LIB_WIDEN);
8091 gcc_assert (temp);
8092 return temp;
8093
8094 case COMPLEX_EXPR:
8095 /* Get the rtx code of the operands. */
8096 op0 = expand_normal (treeop0);
8097 op1 = expand_normal (treeop1);
8098
8099 if (!target)
8100 target = gen_reg_rtx (TYPE_MODE (type));
8101
8102 /* Move the real (op0) and imaginary (op1) parts to their location. */
8103 write_complex_part (target, op0, false);
8104 write_complex_part (target, op1, true);
8105
8106 return target;
8107
8108 case WIDEN_SUM_EXPR:
8109 {
8110 tree oprnd0 = treeop0;
8111 tree oprnd1 = treeop1;
8112
8113 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8114 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8115 target, unsignedp);
8116 return target;
8117 }
8118
8119 case REDUC_MAX_EXPR:
8120 case REDUC_MIN_EXPR:
8121 case REDUC_PLUS_EXPR:
8122 {
8123 op0 = expand_normal (treeop0);
8124 this_optab = optab_for_tree_code (code, type, optab_default);
8125 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8126 gcc_assert (temp);
8127 return temp;
8128 }
8129
8130 case VEC_EXTRACT_EVEN_EXPR:
8131 case VEC_EXTRACT_ODD_EXPR:
8132 {
8133 expand_operands (treeop0, treeop1,
8134 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8135 this_optab = optab_for_tree_code (code, type, optab_default);
8136 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8137 OPTAB_WIDEN);
8138 gcc_assert (temp);
8139 return temp;
8140 }
8141
8142 case VEC_INTERLEAVE_HIGH_EXPR:
8143 case VEC_INTERLEAVE_LOW_EXPR:
8144 {
8145 expand_operands (treeop0, treeop1,
8146 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8147 this_optab = optab_for_tree_code (code, type, optab_default);
8148 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8149 OPTAB_WIDEN);
8150 gcc_assert (temp);
8151 return temp;
8152 }
8153
8154 case VEC_LSHIFT_EXPR:
8155 case VEC_RSHIFT_EXPR:
8156 {
8157 target = expand_vec_shift_expr (ops, target);
8158 return target;
8159 }
8160
8161 case VEC_UNPACK_HI_EXPR:
8162 case VEC_UNPACK_LO_EXPR:
8163 {
8164 op0 = expand_normal (treeop0);
8165 this_optab = optab_for_tree_code (code, type, optab_default);
8166 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8167 target, unsignedp);
8168 gcc_assert (temp);
8169 return temp;
8170 }
8171
8172 case VEC_UNPACK_FLOAT_HI_EXPR:
8173 case VEC_UNPACK_FLOAT_LO_EXPR:
8174 {
8175 op0 = expand_normal (treeop0);
8176 /* The signedness is determined from input operand. */
8177 this_optab = optab_for_tree_code (code,
8178 TREE_TYPE (treeop0),
8179 optab_default);
8180 temp = expand_widen_pattern_expr
8181 (ops, op0, NULL_RTX, NULL_RTX,
8182 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8183
8184 gcc_assert (temp);
8185 return temp;
8186 }
8187
8188 case VEC_WIDEN_MULT_HI_EXPR:
8189 case VEC_WIDEN_MULT_LO_EXPR:
8190 {
8191 tree oprnd0 = treeop0;
8192 tree oprnd1 = treeop1;
8193
8194 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8195 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8196 target, unsignedp);
8197 gcc_assert (target);
8198 return target;
8199 }
8200
8201 case VEC_PACK_TRUNC_EXPR:
8202 case VEC_PACK_SAT_EXPR:
8203 case VEC_PACK_FIX_TRUNC_EXPR:
8204 mode = TYPE_MODE (TREE_TYPE (treeop0));
8205 goto binop;
8206
8207 case DOT_PROD_EXPR:
8208 {
8209 tree oprnd0 = treeop0;
8210 tree oprnd1 = treeop1;
8211 tree oprnd2 = treeop2;
8212 rtx op2;
8213
8214 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8215 op2 = expand_normal (oprnd2);
8216 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8217 target, unsignedp);
8218 return target;
8219 }
8220
8221 case REALIGN_LOAD_EXPR:
8222 {
8223 tree oprnd0 = treeop0;
8224 tree oprnd1 = treeop1;
8225 tree oprnd2 = treeop2;
8226 rtx op2;
8227
8228 this_optab = optab_for_tree_code (code, type, optab_default);
8229 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8230 op2 = expand_normal (oprnd2);
8231 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8232 target, unsignedp);
8233 gcc_assert (temp);
8234 return temp;
8235 }
8236
8237 default:
8238 gcc_unreachable ();
8239 }
8240
8241 /* Here to do an ordinary binary operator. */
8242 binop:
8243 expand_operands (treeop0, treeop1,
8244 subtarget, &op0, &op1, EXPAND_NORMAL);
8245 binop2:
8246 this_optab = optab_for_tree_code (code, type, optab_default);
8247 binop3:
8248 if (modifier == EXPAND_STACK_PARM)
8249 target = 0;
8250 temp = expand_binop (mode, this_optab, op0, op1, target,
8251 unsignedp, OPTAB_LIB_WIDEN);
8252 gcc_assert (temp);
8253 return REDUCE_BIT_FIELD (temp);
8254 }
8255 #undef REDUCE_BIT_FIELD
8256
8257 rtx
8258 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8259 enum expand_modifier modifier, rtx *alt_rtl)
8260 {
8261 rtx op0, op1, temp, decl_rtl;
8262 tree type;
8263 int unsignedp;
8264 enum machine_mode mode;
8265 enum tree_code code = TREE_CODE (exp);
8266 rtx subtarget, original_target;
8267 int ignore;
8268 tree context;
8269 bool reduce_bit_field;
8270 location_t loc = EXPR_LOCATION (exp);
8271 struct separate_ops ops;
8272 tree treeop0, treeop1, treeop2;
8273 tree ssa_name = NULL_TREE;
8274 gimple g;
8275
8276 type = TREE_TYPE (exp);
8277 mode = TYPE_MODE (type);
8278 unsignedp = TYPE_UNSIGNED (type);
8279
8280 treeop0 = treeop1 = treeop2 = NULL_TREE;
8281 if (!VL_EXP_CLASS_P (exp))
8282 switch (TREE_CODE_LENGTH (code))
8283 {
8284 default:
8285 case 3: treeop2 = TREE_OPERAND (exp, 2);
8286 case 2: treeop1 = TREE_OPERAND (exp, 1);
8287 case 1: treeop0 = TREE_OPERAND (exp, 0);
8288 case 0: break;
8289 }
8290 ops.code = code;
8291 ops.type = type;
8292 ops.op0 = treeop0;
8293 ops.op1 = treeop1;
8294 ops.op2 = treeop2;
8295 ops.location = loc;
8296
8297 ignore = (target == const0_rtx
8298 || ((CONVERT_EXPR_CODE_P (code)
8299 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8300 && TREE_CODE (type) == VOID_TYPE));
8301
8302 /* An operation in what may be a bit-field type needs the
8303 result to be reduced to the precision of the bit-field type,
8304 which is narrower than that of the type's mode. */
8305 reduce_bit_field = (!ignore
8306 && TREE_CODE (type) == INTEGER_TYPE
8307 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8308
8309 /* If we are going to ignore this result, we need only do something
8310 if there is a side-effect somewhere in the expression. If there
8311 is, short-circuit the most common cases here. Note that we must
8312 not call expand_expr with anything but const0_rtx in case this
8313 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8314
8315 if (ignore)
8316 {
8317 if (! TREE_SIDE_EFFECTS (exp))
8318 return const0_rtx;
8319
8320 /* Ensure we reference a volatile object even if value is ignored, but
8321 don't do this if all we are doing is taking its address. */
8322 if (TREE_THIS_VOLATILE (exp)
8323 && TREE_CODE (exp) != FUNCTION_DECL
8324 && mode != VOIDmode && mode != BLKmode
8325 && modifier != EXPAND_CONST_ADDRESS)
8326 {
8327 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8328 if (MEM_P (temp))
8329 temp = copy_to_reg (temp);
8330 return const0_rtx;
8331 }
8332
8333 if (TREE_CODE_CLASS (code) == tcc_unary
8334 || code == COMPONENT_REF || code == INDIRECT_REF)
8335 return expand_expr (treeop0, const0_rtx, VOIDmode,
8336 modifier);
8337
8338 else if (TREE_CODE_CLASS (code) == tcc_binary
8339 || TREE_CODE_CLASS (code) == tcc_comparison
8340 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8341 {
8342 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8343 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8344 return const0_rtx;
8345 }
8346 else if (code == BIT_FIELD_REF)
8347 {
8348 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8349 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8350 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8351 return const0_rtx;
8352 }
8353
8354 target = 0;
8355 }
8356
8357 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8358 target = 0;
8359
8360 /* Use subtarget as the target for operand 0 of a binary operation. */
8361 subtarget = get_subtarget (target);
8362 original_target = target;
8363
8364 switch (code)
8365 {
8366 case LABEL_DECL:
8367 {
8368 tree function = decl_function_context (exp);
8369
8370 temp = label_rtx (exp);
8371 temp = gen_rtx_LABEL_REF (Pmode, temp);
8372
8373 if (function != current_function_decl
8374 && function != 0)
8375 LABEL_REF_NONLOCAL_P (temp) = 1;
8376
8377 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8378 return temp;
8379 }
8380
8381 case SSA_NAME:
8382 /* ??? ivopts calls expander, without any preparation from
8383 out-of-ssa. So fake instructions as if this was an access to the
8384 base variable. This unnecessarily allocates a pseudo, see how we can
8385 reuse it, if partition base vars have it set already. */
8386 if (!currently_expanding_to_rtl)
8387 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8388 NULL);
8389
8390 g = get_gimple_for_ssa_name (exp);
8391 /* For EXPAND_INITIALIZER try harder to get something simpler. */
8392 if (g == NULL
8393 && modifier == EXPAND_INITIALIZER
8394 && !SSA_NAME_IS_DEFAULT_DEF (exp)
8395 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
8396 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
8397 g = SSA_NAME_DEF_STMT (exp);
8398 if (g)
8399 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8400 modifier, NULL);
8401
8402 ssa_name = exp;
8403 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8404 exp = SSA_NAME_VAR (ssa_name);
8405 goto expand_decl_rtl;
8406
8407 case PARM_DECL:
8408 case VAR_DECL:
8409 /* If a static var's type was incomplete when the decl was written,
8410 but the type is complete now, lay out the decl now. */
8411 if (DECL_SIZE (exp) == 0
8412 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8413 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8414 layout_decl (exp, 0);
8415
8416 /* ... fall through ... */
8417
8418 case FUNCTION_DECL:
8419 case RESULT_DECL:
8420 decl_rtl = DECL_RTL (exp);
8421 expand_decl_rtl:
8422 gcc_assert (decl_rtl);
8423 decl_rtl = copy_rtx (decl_rtl);
8424 /* Record writes to register variables. */
8425 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8426 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8427 {
8428 int i = REGNO (decl_rtl);
8429 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8430 while (nregs)
8431 {
8432 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8433 i++;
8434 nregs--;
8435 }
8436 }
8437
8438 /* Ensure variable marked as used even if it doesn't go through
8439 a parser. If it hasn't be used yet, write out an external
8440 definition. */
8441 if (! TREE_USED (exp))
8442 {
8443 assemble_external (exp);
8444 TREE_USED (exp) = 1;
8445 }
8446
8447 /* Show we haven't gotten RTL for this yet. */
8448 temp = 0;
8449
8450 /* Variables inherited from containing functions should have
8451 been lowered by this point. */
8452 context = decl_function_context (exp);
8453 gcc_assert (!context
8454 || context == current_function_decl
8455 || TREE_STATIC (exp)
8456 || DECL_EXTERNAL (exp)
8457 /* ??? C++ creates functions that are not TREE_STATIC. */
8458 || TREE_CODE (exp) == FUNCTION_DECL);
8459
8460 /* This is the case of an array whose size is to be determined
8461 from its initializer, while the initializer is still being parsed.
8462 See expand_decl. */
8463
8464 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8465 temp = validize_mem (decl_rtl);
8466
8467 /* If DECL_RTL is memory, we are in the normal case and the
8468 address is not valid, get the address into a register. */
8469
8470 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8471 {
8472 if (alt_rtl)
8473 *alt_rtl = decl_rtl;
8474 decl_rtl = use_anchored_address (decl_rtl);
8475 if (modifier != EXPAND_CONST_ADDRESS
8476 && modifier != EXPAND_SUM
8477 && !memory_address_addr_space_p (DECL_MODE (exp),
8478 XEXP (decl_rtl, 0),
8479 MEM_ADDR_SPACE (decl_rtl)))
8480 temp = replace_equiv_address (decl_rtl,
8481 copy_rtx (XEXP (decl_rtl, 0)));
8482 }
8483
8484 /* If we got something, return it. But first, set the alignment
8485 if the address is a register. */
8486 if (temp != 0)
8487 {
8488 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8489 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8490
8491 return temp;
8492 }
8493
8494 /* If the mode of DECL_RTL does not match that of the decl, it
8495 must be a promoted value. We return a SUBREG of the wanted mode,
8496 but mark it so that we know that it was already extended. */
8497 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8498 {
8499 enum machine_mode pmode;
8500
8501 /* Get the signedness to be used for this variable. Ensure we get
8502 the same mode we got when the variable was declared. */
8503 if (code == SSA_NAME
8504 && (g = SSA_NAME_DEF_STMT (ssa_name))
8505 && gimple_code (g) == GIMPLE_CALL)
8506 pmode = promote_function_mode (type, mode, &unsignedp,
8507 TREE_TYPE
8508 (TREE_TYPE (gimple_call_fn (g))),
8509 2);
8510 else
8511 pmode = promote_decl_mode (exp, &unsignedp);
8512 gcc_assert (GET_MODE (decl_rtl) == pmode);
8513
8514 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8515 SUBREG_PROMOTED_VAR_P (temp) = 1;
8516 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8517 return temp;
8518 }
8519
8520 return decl_rtl;
8521
8522 case INTEGER_CST:
8523 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8524 TREE_INT_CST_HIGH (exp), mode);
8525
8526 return temp;
8527
8528 case VECTOR_CST:
8529 {
8530 tree tmp = NULL_TREE;
8531 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8532 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8533 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8534 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8535 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8536 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8537 return const_vector_from_tree (exp);
8538 if (GET_MODE_CLASS (mode) == MODE_INT)
8539 {
8540 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8541 if (type_for_mode)
8542 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8543 }
8544 if (!tmp)
8545 tmp = build_constructor_from_list (type,
8546 TREE_VECTOR_CST_ELTS (exp));
8547 return expand_expr (tmp, ignore ? const0_rtx : target,
8548 tmode, modifier);
8549 }
8550
8551 case CONST_DECL:
8552 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8553
8554 case REAL_CST:
8555 /* If optimized, generate immediate CONST_DOUBLE
8556 which will be turned into memory by reload if necessary.
8557
8558 We used to force a register so that loop.c could see it. But
8559 this does not allow gen_* patterns to perform optimizations with
8560 the constants. It also produces two insns in cases like "x = 1.0;".
8561 On most machines, floating-point constants are not permitted in
8562 many insns, so we'd end up copying it to a register in any case.
8563
8564 Now, we do the copying in expand_binop, if appropriate. */
8565 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8566 TYPE_MODE (TREE_TYPE (exp)));
8567
8568 case FIXED_CST:
8569 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8570 TYPE_MODE (TREE_TYPE (exp)));
8571
8572 case COMPLEX_CST:
8573 /* Handle evaluating a complex constant in a CONCAT target. */
8574 if (original_target && GET_CODE (original_target) == CONCAT)
8575 {
8576 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8577 rtx rtarg, itarg;
8578
8579 rtarg = XEXP (original_target, 0);
8580 itarg = XEXP (original_target, 1);
8581
8582 /* Move the real and imaginary parts separately. */
8583 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8584 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8585
8586 if (op0 != rtarg)
8587 emit_move_insn (rtarg, op0);
8588 if (op1 != itarg)
8589 emit_move_insn (itarg, op1);
8590
8591 return original_target;
8592 }
8593
8594 /* ... fall through ... */
8595
8596 case STRING_CST:
8597 temp = expand_expr_constant (exp, 1, modifier);
8598
8599 /* temp contains a constant address.
8600 On RISC machines where a constant address isn't valid,
8601 make some insns to get that address into a register. */
8602 if (modifier != EXPAND_CONST_ADDRESS
8603 && modifier != EXPAND_INITIALIZER
8604 && modifier != EXPAND_SUM
8605 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8606 MEM_ADDR_SPACE (temp)))
8607 return replace_equiv_address (temp,
8608 copy_rtx (XEXP (temp, 0)));
8609 return temp;
8610
8611 case SAVE_EXPR:
8612 {
8613 tree val = treeop0;
8614 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8615
8616 if (!SAVE_EXPR_RESOLVED_P (exp))
8617 {
8618 /* We can indeed still hit this case, typically via builtin
8619 expanders calling save_expr immediately before expanding
8620 something. Assume this means that we only have to deal
8621 with non-BLKmode values. */
8622 gcc_assert (GET_MODE (ret) != BLKmode);
8623
8624 val = build_decl (EXPR_LOCATION (exp),
8625 VAR_DECL, NULL, TREE_TYPE (exp));
8626 DECL_ARTIFICIAL (val) = 1;
8627 DECL_IGNORED_P (val) = 1;
8628 treeop0 = val;
8629 TREE_OPERAND (exp, 0) = treeop0;
8630 SAVE_EXPR_RESOLVED_P (exp) = 1;
8631
8632 if (!CONSTANT_P (ret))
8633 ret = copy_to_reg (ret);
8634 SET_DECL_RTL (val, ret);
8635 }
8636
8637 return ret;
8638 }
8639
8640
8641 case CONSTRUCTOR:
8642 /* If we don't need the result, just ensure we evaluate any
8643 subexpressions. */
8644 if (ignore)
8645 {
8646 unsigned HOST_WIDE_INT idx;
8647 tree value;
8648
8649 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8650 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8651
8652 return const0_rtx;
8653 }
8654
8655 return expand_constructor (exp, target, modifier, false);
8656
8657 case TARGET_MEM_REF:
8658 {
8659 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8660 struct mem_address addr;
8661 int icode, align;
8662
8663 get_address_description (exp, &addr);
8664 op0 = addr_for_mem_ref (&addr, as, true);
8665 op0 = memory_address_addr_space (mode, op0, as);
8666 temp = gen_rtx_MEM (mode, op0);
8667 set_mem_attributes (temp, exp, 0);
8668 set_mem_addr_space (temp, as);
8669 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8670 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8671 if (mode != BLKmode
8672 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8673 /* If the target does not have special handling for unaligned
8674 loads of mode then it can use regular moves for them. */
8675 && ((icode = optab_handler (movmisalign_optab, mode))
8676 != CODE_FOR_nothing))
8677 {
8678 rtx reg, insn;
8679
8680 /* We've already validated the memory, and we're creating a
8681 new pseudo destination. The predicates really can't fail. */
8682 reg = gen_reg_rtx (mode);
8683
8684 /* Nor can the insn generator. */
8685 insn = GEN_FCN (icode) (reg, temp);
8686 gcc_assert (insn != NULL_RTX);
8687 emit_insn (insn);
8688
8689 return reg;
8690 }
8691 return temp;
8692 }
8693
8694 case MEM_REF:
8695 {
8696 addr_space_t as
8697 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8698 enum machine_mode address_mode;
8699 tree base = TREE_OPERAND (exp, 0);
8700 gimple def_stmt;
8701 int icode, align;
8702 /* Handle expansion of non-aliased memory with non-BLKmode. That
8703 might end up in a register. */
8704 if (TREE_CODE (base) == ADDR_EXPR)
8705 {
8706 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8707 tree bit_offset;
8708 base = TREE_OPERAND (base, 0);
8709 if (!DECL_P (base))
8710 {
8711 HOST_WIDE_INT off;
8712 base = get_addr_base_and_unit_offset (base, &off);
8713 gcc_assert (base);
8714 offset += off;
8715 }
8716 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8717 decl we must use bitfield operations. */
8718 if (DECL_P (base)
8719 && !TREE_ADDRESSABLE (base)
8720 && DECL_MODE (base) != BLKmode
8721 && DECL_RTL_SET_P (base)
8722 && !MEM_P (DECL_RTL (base)))
8723 {
8724 tree bftype;
8725 if (offset == 0
8726 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8727 && (GET_MODE_BITSIZE (DECL_MODE (base))
8728 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8729 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8730 TREE_TYPE (exp), base),
8731 target, tmode, modifier);
8732 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8733 bftype = TREE_TYPE (base);
8734 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8735 bftype = TREE_TYPE (exp);
8736 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8737 base,
8738 TYPE_SIZE (TREE_TYPE (exp)),
8739 bit_offset),
8740 target, tmode, modifier);
8741 }
8742 }
8743 address_mode = targetm.addr_space.address_mode (as);
8744 base = TREE_OPERAND (exp, 0);
8745 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8746 {
8747 tree mask = gimple_assign_rhs2 (def_stmt);
8748 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8749 gimple_assign_rhs1 (def_stmt), mask);
8750 TREE_OPERAND (exp, 0) = base;
8751 }
8752 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8753 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8754 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8755 op0 = memory_address_addr_space (address_mode, op0, as);
8756 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8757 {
8758 rtx off
8759 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8760 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8761 }
8762 op0 = memory_address_addr_space (mode, op0, as);
8763 temp = gen_rtx_MEM (mode, op0);
8764 set_mem_attributes (temp, exp, 0);
8765 set_mem_addr_space (temp, as);
8766 if (TREE_THIS_VOLATILE (exp))
8767 MEM_VOLATILE_P (temp) = 1;
8768 if (mode != BLKmode
8769 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8770 /* If the target does not have special handling for unaligned
8771 loads of mode then it can use regular moves for them. */
8772 && ((icode = optab_handler (movmisalign_optab, mode))
8773 != CODE_FOR_nothing))
8774 {
8775 rtx reg, insn;
8776
8777 /* We've already validated the memory, and we're creating a
8778 new pseudo destination. The predicates really can't fail. */
8779 reg = gen_reg_rtx (mode);
8780
8781 /* Nor can the insn generator. */
8782 insn = GEN_FCN (icode) (reg, temp);
8783 emit_insn (insn);
8784
8785 return reg;
8786 }
8787 return temp;
8788 }
8789
8790 case ARRAY_REF:
8791
8792 {
8793 tree array = treeop0;
8794 tree index = treeop1;
8795
8796 /* Fold an expression like: "foo"[2].
8797 This is not done in fold so it won't happen inside &.
8798 Don't fold if this is for wide characters since it's too
8799 difficult to do correctly and this is a very rare case. */
8800
8801 if (modifier != EXPAND_CONST_ADDRESS
8802 && modifier != EXPAND_INITIALIZER
8803 && modifier != EXPAND_MEMORY)
8804 {
8805 tree t = fold_read_from_constant_string (exp);
8806
8807 if (t)
8808 return expand_expr (t, target, tmode, modifier);
8809 }
8810
8811 /* If this is a constant index into a constant array,
8812 just get the value from the array. Handle both the cases when
8813 we have an explicit constructor and when our operand is a variable
8814 that was declared const. */
8815
8816 if (modifier != EXPAND_CONST_ADDRESS
8817 && modifier != EXPAND_INITIALIZER
8818 && modifier != EXPAND_MEMORY
8819 && TREE_CODE (array) == CONSTRUCTOR
8820 && ! TREE_SIDE_EFFECTS (array)
8821 && TREE_CODE (index) == INTEGER_CST)
8822 {
8823 unsigned HOST_WIDE_INT ix;
8824 tree field, value;
8825
8826 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8827 field, value)
8828 if (tree_int_cst_equal (field, index))
8829 {
8830 if (!TREE_SIDE_EFFECTS (value))
8831 return expand_expr (fold (value), target, tmode, modifier);
8832 break;
8833 }
8834 }
8835
8836 else if (optimize >= 1
8837 && modifier != EXPAND_CONST_ADDRESS
8838 && modifier != EXPAND_INITIALIZER
8839 && modifier != EXPAND_MEMORY
8840 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8841 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8842 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8843 && const_value_known_p (array))
8844 {
8845 if (TREE_CODE (index) == INTEGER_CST)
8846 {
8847 tree init = DECL_INITIAL (array);
8848
8849 if (TREE_CODE (init) == CONSTRUCTOR)
8850 {
8851 unsigned HOST_WIDE_INT ix;
8852 tree field, value;
8853
8854 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8855 field, value)
8856 if (tree_int_cst_equal (field, index))
8857 {
8858 if (TREE_SIDE_EFFECTS (value))
8859 break;
8860
8861 if (TREE_CODE (value) == CONSTRUCTOR)
8862 {
8863 /* If VALUE is a CONSTRUCTOR, this
8864 optimization is only useful if
8865 this doesn't store the CONSTRUCTOR
8866 into memory. If it does, it is more
8867 efficient to just load the data from
8868 the array directly. */
8869 rtx ret = expand_constructor (value, target,
8870 modifier, true);
8871 if (ret == NULL_RTX)
8872 break;
8873 }
8874
8875 return expand_expr (fold (value), target, tmode,
8876 modifier);
8877 }
8878 }
8879 else if(TREE_CODE (init) == STRING_CST)
8880 {
8881 tree index1 = index;
8882 tree low_bound = array_ref_low_bound (exp);
8883 index1 = fold_convert_loc (loc, sizetype,
8884 treeop1);
8885
8886 /* Optimize the special-case of a zero lower bound.
8887
8888 We convert the low_bound to sizetype to avoid some problems
8889 with constant folding. (E.g. suppose the lower bound is 1,
8890 and its mode is QI. Without the conversion,l (ARRAY
8891 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8892 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8893
8894 if (! integer_zerop (low_bound))
8895 index1 = size_diffop_loc (loc, index1,
8896 fold_convert_loc (loc, sizetype,
8897 low_bound));
8898
8899 if (0 > compare_tree_int (index1,
8900 TREE_STRING_LENGTH (init)))
8901 {
8902 tree type = TREE_TYPE (TREE_TYPE (init));
8903 enum machine_mode mode = TYPE_MODE (type);
8904
8905 if (GET_MODE_CLASS (mode) == MODE_INT
8906 && GET_MODE_SIZE (mode) == 1)
8907 return gen_int_mode (TREE_STRING_POINTER (init)
8908 [TREE_INT_CST_LOW (index1)],
8909 mode);
8910 }
8911 }
8912 }
8913 }
8914 }
8915 goto normal_inner_ref;
8916
8917 case COMPONENT_REF:
8918 /* If the operand is a CONSTRUCTOR, we can just extract the
8919 appropriate field if it is present. */
8920 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8921 {
8922 unsigned HOST_WIDE_INT idx;
8923 tree field, value;
8924
8925 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8926 idx, field, value)
8927 if (field == treeop1
8928 /* We can normally use the value of the field in the
8929 CONSTRUCTOR. However, if this is a bitfield in
8930 an integral mode that we can fit in a HOST_WIDE_INT,
8931 we must mask only the number of bits in the bitfield,
8932 since this is done implicitly by the constructor. If
8933 the bitfield does not meet either of those conditions,
8934 we can't do this optimization. */
8935 && (! DECL_BIT_FIELD (field)
8936 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8937 && (GET_MODE_BITSIZE (DECL_MODE (field))
8938 <= HOST_BITS_PER_WIDE_INT))))
8939 {
8940 if (DECL_BIT_FIELD (field)
8941 && modifier == EXPAND_STACK_PARM)
8942 target = 0;
8943 op0 = expand_expr (value, target, tmode, modifier);
8944 if (DECL_BIT_FIELD (field))
8945 {
8946 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8947 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8948
8949 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8950 {
8951 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8952 op0 = expand_and (imode, op0, op1, target);
8953 }
8954 else
8955 {
8956 tree count
8957 = build_int_cst (NULL_TREE,
8958 GET_MODE_BITSIZE (imode) - bitsize);
8959
8960 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8961 target, 0);
8962 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8963 target, 0);
8964 }
8965 }
8966
8967 return op0;
8968 }
8969 }
8970 goto normal_inner_ref;
8971
8972 case BIT_FIELD_REF:
8973 case ARRAY_RANGE_REF:
8974 normal_inner_ref:
8975 {
8976 enum machine_mode mode1, mode2;
8977 HOST_WIDE_INT bitsize, bitpos;
8978 tree offset;
8979 int volatilep = 0, must_force_mem;
8980 bool packedp = false;
8981 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8982 &mode1, &unsignedp, &volatilep, true);
8983 rtx orig_op0, memloc;
8984
8985 /* If we got back the original object, something is wrong. Perhaps
8986 we are evaluating an expression too early. In any event, don't
8987 infinitely recurse. */
8988 gcc_assert (tem != exp);
8989
8990 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8991 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
8992 && DECL_PACKED (TREE_OPERAND (exp, 1))))
8993 packedp = true;
8994
8995 /* If TEM's type is a union of variable size, pass TARGET to the inner
8996 computation, since it will need a temporary and TARGET is known
8997 to have to do. This occurs in unchecked conversion in Ada. */
8998 orig_op0 = op0
8999 = expand_expr (tem,
9000 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9001 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9002 != INTEGER_CST)
9003 && modifier != EXPAND_STACK_PARM
9004 ? target : NULL_RTX),
9005 VOIDmode,
9006 (modifier == EXPAND_INITIALIZER
9007 || modifier == EXPAND_CONST_ADDRESS
9008 || modifier == EXPAND_STACK_PARM)
9009 ? modifier : EXPAND_NORMAL);
9010
9011
9012 /* If the bitfield is volatile, we want to access it in the
9013 field's mode, not the computed mode.
9014 If a MEM has VOIDmode (external with incomplete type),
9015 use BLKmode for it instead. */
9016 if (MEM_P (op0))
9017 {
9018 if (volatilep && flag_strict_volatile_bitfields > 0)
9019 op0 = adjust_address (op0, mode1, 0);
9020 else if (GET_MODE (op0) == VOIDmode)
9021 op0 = adjust_address (op0, BLKmode, 0);
9022 }
9023
9024 mode2
9025 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9026
9027 /* If we have either an offset, a BLKmode result, or a reference
9028 outside the underlying object, we must force it to memory.
9029 Such a case can occur in Ada if we have unchecked conversion
9030 of an expression from a scalar type to an aggregate type or
9031 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9032 passed a partially uninitialized object or a view-conversion
9033 to a larger size. */
9034 must_force_mem = (offset
9035 || mode1 == BLKmode
9036 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9037
9038 /* Handle CONCAT first. */
9039 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9040 {
9041 if (bitpos == 0
9042 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9043 return op0;
9044 if (bitpos == 0
9045 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9046 && bitsize)
9047 {
9048 op0 = XEXP (op0, 0);
9049 mode2 = GET_MODE (op0);
9050 }
9051 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9052 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9053 && bitpos
9054 && bitsize)
9055 {
9056 op0 = XEXP (op0, 1);
9057 bitpos = 0;
9058 mode2 = GET_MODE (op0);
9059 }
9060 else
9061 /* Otherwise force into memory. */
9062 must_force_mem = 1;
9063 }
9064
9065 /* If this is a constant, put it in a register if it is a legitimate
9066 constant and we don't need a memory reference. */
9067 if (CONSTANT_P (op0)
9068 && mode2 != BLKmode
9069 && LEGITIMATE_CONSTANT_P (op0)
9070 && !must_force_mem)
9071 op0 = force_reg (mode2, op0);
9072
9073 /* Otherwise, if this is a constant, try to force it to the constant
9074 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9075 is a legitimate constant. */
9076 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9077 op0 = validize_mem (memloc);
9078
9079 /* Otherwise, if this is a constant or the object is not in memory
9080 and need be, put it there. */
9081 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9082 {
9083 tree nt = build_qualified_type (TREE_TYPE (tem),
9084 (TYPE_QUALS (TREE_TYPE (tem))
9085 | TYPE_QUAL_CONST));
9086 memloc = assign_temp (nt, 1, 1, 1);
9087 emit_move_insn (memloc, op0);
9088 op0 = memloc;
9089 }
9090
9091 if (offset)
9092 {
9093 enum machine_mode address_mode;
9094 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9095 EXPAND_SUM);
9096
9097 gcc_assert (MEM_P (op0));
9098
9099 address_mode
9100 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9101 if (GET_MODE (offset_rtx) != address_mode)
9102 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9103
9104 if (GET_MODE (op0) == BLKmode
9105 /* A constant address in OP0 can have VOIDmode, we must
9106 not try to call force_reg in that case. */
9107 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9108 && bitsize != 0
9109 && (bitpos % bitsize) == 0
9110 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9111 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9112 {
9113 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9114 bitpos = 0;
9115 }
9116
9117 op0 = offset_address (op0, offset_rtx,
9118 highest_pow2_factor (offset));
9119 }
9120
9121 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9122 record its alignment as BIGGEST_ALIGNMENT. */
9123 if (MEM_P (op0) && bitpos == 0 && offset != 0
9124 && is_aligning_offset (offset, tem))
9125 set_mem_align (op0, BIGGEST_ALIGNMENT);
9126
9127 /* Don't forget about volatility even if this is a bitfield. */
9128 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9129 {
9130 if (op0 == orig_op0)
9131 op0 = copy_rtx (op0);
9132
9133 MEM_VOLATILE_P (op0) = 1;
9134 }
9135
9136 /* In cases where an aligned union has an unaligned object
9137 as a field, we might be extracting a BLKmode value from
9138 an integer-mode (e.g., SImode) object. Handle this case
9139 by doing the extract into an object as wide as the field
9140 (which we know to be the width of a basic mode), then
9141 storing into memory, and changing the mode to BLKmode. */
9142 if (mode1 == VOIDmode
9143 || REG_P (op0) || GET_CODE (op0) == SUBREG
9144 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9145 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9146 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9147 && modifier != EXPAND_CONST_ADDRESS
9148 && modifier != EXPAND_INITIALIZER)
9149 /* If the field is volatile, we always want an aligned
9150 access. Only do this if the access is not already naturally
9151 aligned, otherwise "normal" (non-bitfield) volatile fields
9152 become non-addressable. */
9153 || (volatilep && flag_strict_volatile_bitfields > 0
9154 && (bitpos % GET_MODE_ALIGNMENT (mode) != 0))
9155 /* If the field isn't aligned enough to fetch as a memref,
9156 fetch it as a bit field. */
9157 || (mode1 != BLKmode
9158 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9159 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9160 || (MEM_P (op0)
9161 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9162 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9163 && ((modifier == EXPAND_CONST_ADDRESS
9164 || modifier == EXPAND_INITIALIZER)
9165 ? STRICT_ALIGNMENT
9166 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9167 || (bitpos % BITS_PER_UNIT != 0)))
9168 /* If the type and the field are a constant size and the
9169 size of the type isn't the same size as the bitfield,
9170 we must use bitfield operations. */
9171 || (bitsize >= 0
9172 && TYPE_SIZE (TREE_TYPE (exp))
9173 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9174 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9175 bitsize)))
9176 {
9177 enum machine_mode ext_mode = mode;
9178
9179 if (ext_mode == BLKmode
9180 && ! (target != 0 && MEM_P (op0)
9181 && MEM_P (target)
9182 && bitpos % BITS_PER_UNIT == 0))
9183 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9184
9185 if (ext_mode == BLKmode)
9186 {
9187 if (target == 0)
9188 target = assign_temp (type, 0, 1, 1);
9189
9190 if (bitsize == 0)
9191 return target;
9192
9193 /* In this case, BITPOS must start at a byte boundary and
9194 TARGET, if specified, must be a MEM. */
9195 gcc_assert (MEM_P (op0)
9196 && (!target || MEM_P (target))
9197 && !(bitpos % BITS_PER_UNIT));
9198
9199 emit_block_move (target,
9200 adjust_address (op0, VOIDmode,
9201 bitpos / BITS_PER_UNIT),
9202 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9203 / BITS_PER_UNIT),
9204 (modifier == EXPAND_STACK_PARM
9205 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9206
9207 return target;
9208 }
9209
9210 op0 = validize_mem (op0);
9211
9212 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9213 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9214
9215 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9216 (modifier == EXPAND_STACK_PARM
9217 ? NULL_RTX : target),
9218 ext_mode, ext_mode);
9219
9220 /* If the result is a record type and BITSIZE is narrower than
9221 the mode of OP0, an integral mode, and this is a big endian
9222 machine, we must put the field into the high-order bits. */
9223 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9224 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9225 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9226 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9227 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9228 - bitsize),
9229 op0, 1);
9230
9231 /* If the result type is BLKmode, store the data into a temporary
9232 of the appropriate type, but with the mode corresponding to the
9233 mode for the data we have (op0's mode). It's tempting to make
9234 this a constant type, since we know it's only being stored once,
9235 but that can cause problems if we are taking the address of this
9236 COMPONENT_REF because the MEM of any reference via that address
9237 will have flags corresponding to the type, which will not
9238 necessarily be constant. */
9239 if (mode == BLKmode)
9240 {
9241 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9242 rtx new_rtx;
9243
9244 /* If the reference doesn't use the alias set of its type,
9245 we cannot create the temporary using that type. */
9246 if (component_uses_parent_alias_set (exp))
9247 {
9248 new_rtx = assign_stack_local (ext_mode, size, 0);
9249 set_mem_alias_set (new_rtx, get_alias_set (exp));
9250 }
9251 else
9252 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9253
9254 emit_move_insn (new_rtx, op0);
9255 op0 = copy_rtx (new_rtx);
9256 PUT_MODE (op0, BLKmode);
9257 set_mem_attributes (op0, exp, 1);
9258 }
9259
9260 return op0;
9261 }
9262
9263 /* If the result is BLKmode, use that to access the object
9264 now as well. */
9265 if (mode == BLKmode)
9266 mode1 = BLKmode;
9267
9268 /* Get a reference to just this component. */
9269 if (modifier == EXPAND_CONST_ADDRESS
9270 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9271 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9272 else
9273 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9274
9275 if (op0 == orig_op0)
9276 op0 = copy_rtx (op0);
9277
9278 set_mem_attributes (op0, exp, 0);
9279 if (REG_P (XEXP (op0, 0)))
9280 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9281
9282 MEM_VOLATILE_P (op0) |= volatilep;
9283 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9284 || modifier == EXPAND_CONST_ADDRESS
9285 || modifier == EXPAND_INITIALIZER)
9286 return op0;
9287 else if (target == 0)
9288 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9289
9290 convert_move (target, op0, unsignedp);
9291 return target;
9292 }
9293
9294 case OBJ_TYPE_REF:
9295 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9296
9297 case CALL_EXPR:
9298 /* All valid uses of __builtin_va_arg_pack () are removed during
9299 inlining. */
9300 if (CALL_EXPR_VA_ARG_PACK (exp))
9301 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9302 {
9303 tree fndecl = get_callee_fndecl (exp), attr;
9304
9305 if (fndecl
9306 && (attr = lookup_attribute ("error",
9307 DECL_ATTRIBUTES (fndecl))) != NULL)
9308 error ("%Kcall to %qs declared with attribute error: %s",
9309 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9310 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9311 if (fndecl
9312 && (attr = lookup_attribute ("warning",
9313 DECL_ATTRIBUTES (fndecl))) != NULL)
9314 warning_at (tree_nonartificial_location (exp),
9315 0, "%Kcall to %qs declared with attribute warning: %s",
9316 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9317 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9318
9319 /* Check for a built-in function. */
9320 if (fndecl && DECL_BUILT_IN (fndecl))
9321 {
9322 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9323 return expand_builtin (exp, target, subtarget, tmode, ignore);
9324 }
9325 }
9326 return expand_call (exp, target, ignore);
9327
9328 case VIEW_CONVERT_EXPR:
9329 op0 = NULL_RTX;
9330
9331 /* If we are converting to BLKmode, try to avoid an intermediate
9332 temporary by fetching an inner memory reference. */
9333 if (mode == BLKmode
9334 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9335 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9336 && handled_component_p (treeop0))
9337 {
9338 enum machine_mode mode1;
9339 HOST_WIDE_INT bitsize, bitpos;
9340 tree offset;
9341 int unsignedp;
9342 int volatilep = 0;
9343 tree tem
9344 = get_inner_reference (treeop0, &bitsize, &bitpos,
9345 &offset, &mode1, &unsignedp, &volatilep,
9346 true);
9347 rtx orig_op0;
9348
9349 /* ??? We should work harder and deal with non-zero offsets. */
9350 if (!offset
9351 && (bitpos % BITS_PER_UNIT) == 0
9352 && bitsize >= 0
9353 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9354 {
9355 /* See the normal_inner_ref case for the rationale. */
9356 orig_op0
9357 = expand_expr (tem,
9358 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9359 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9360 != INTEGER_CST)
9361 && modifier != EXPAND_STACK_PARM
9362 ? target : NULL_RTX),
9363 VOIDmode,
9364 (modifier == EXPAND_INITIALIZER
9365 || modifier == EXPAND_CONST_ADDRESS
9366 || modifier == EXPAND_STACK_PARM)
9367 ? modifier : EXPAND_NORMAL);
9368
9369 if (MEM_P (orig_op0))
9370 {
9371 op0 = orig_op0;
9372
9373 /* Get a reference to just this component. */
9374 if (modifier == EXPAND_CONST_ADDRESS
9375 || modifier == EXPAND_SUM
9376 || modifier == EXPAND_INITIALIZER)
9377 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9378 else
9379 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9380
9381 if (op0 == orig_op0)
9382 op0 = copy_rtx (op0);
9383
9384 set_mem_attributes (op0, treeop0, 0);
9385 if (REG_P (XEXP (op0, 0)))
9386 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9387
9388 MEM_VOLATILE_P (op0) |= volatilep;
9389 }
9390 }
9391 }
9392
9393 if (!op0)
9394 op0 = expand_expr (treeop0,
9395 NULL_RTX, VOIDmode, modifier);
9396
9397 /* If the input and output modes are both the same, we are done. */
9398 if (mode == GET_MODE (op0))
9399 ;
9400 /* If neither mode is BLKmode, and both modes are the same size
9401 then we can use gen_lowpart. */
9402 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9403 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9404 && !COMPLEX_MODE_P (GET_MODE (op0)))
9405 {
9406 if (GET_CODE (op0) == SUBREG)
9407 op0 = force_reg (GET_MODE (op0), op0);
9408 temp = gen_lowpart_common (mode, op0);
9409 if (temp)
9410 op0 = temp;
9411 else
9412 {
9413 if (!REG_P (op0) && !MEM_P (op0))
9414 op0 = force_reg (GET_MODE (op0), op0);
9415 op0 = gen_lowpart (mode, op0);
9416 }
9417 }
9418 /* If both types are integral, convert from one mode to the other. */
9419 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9420 op0 = convert_modes (mode, GET_MODE (op0), op0,
9421 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9422 /* As a last resort, spill op0 to memory, and reload it in a
9423 different mode. */
9424 else if (!MEM_P (op0))
9425 {
9426 /* If the operand is not a MEM, force it into memory. Since we
9427 are going to be changing the mode of the MEM, don't call
9428 force_const_mem for constants because we don't allow pool
9429 constants to change mode. */
9430 tree inner_type = TREE_TYPE (treeop0);
9431
9432 gcc_assert (!TREE_ADDRESSABLE (exp));
9433
9434 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9435 target
9436 = assign_stack_temp_for_type
9437 (TYPE_MODE (inner_type),
9438 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9439
9440 emit_move_insn (target, op0);
9441 op0 = target;
9442 }
9443
9444 /* At this point, OP0 is in the correct mode. If the output type is
9445 such that the operand is known to be aligned, indicate that it is.
9446 Otherwise, we need only be concerned about alignment for non-BLKmode
9447 results. */
9448 if (MEM_P (op0))
9449 {
9450 op0 = copy_rtx (op0);
9451
9452 if (TYPE_ALIGN_OK (type))
9453 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9454 else if (STRICT_ALIGNMENT
9455 && mode != BLKmode
9456 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9457 {
9458 tree inner_type = TREE_TYPE (treeop0);
9459 HOST_WIDE_INT temp_size
9460 = MAX (int_size_in_bytes (inner_type),
9461 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9462 rtx new_rtx
9463 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9464 rtx new_with_op0_mode
9465 = adjust_address (new_rtx, GET_MODE (op0), 0);
9466
9467 gcc_assert (!TREE_ADDRESSABLE (exp));
9468
9469 if (GET_MODE (op0) == BLKmode)
9470 emit_block_move (new_with_op0_mode, op0,
9471 GEN_INT (GET_MODE_SIZE (mode)),
9472 (modifier == EXPAND_STACK_PARM
9473 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9474 else
9475 emit_move_insn (new_with_op0_mode, op0);
9476
9477 op0 = new_rtx;
9478 }
9479
9480 op0 = adjust_address (op0, mode, 0);
9481 }
9482
9483 return op0;
9484
9485 /* Use a compare and a jump for BLKmode comparisons, or for function
9486 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9487
9488 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9489 are occassionally created by folding during expansion. */
9490 case TRUTH_ANDIF_EXPR:
9491 case TRUTH_ORIF_EXPR:
9492 if (! ignore
9493 && (target == 0
9494 || modifier == EXPAND_STACK_PARM
9495 || ! safe_from_p (target, treeop0, 1)
9496 || ! safe_from_p (target, treeop1, 1)
9497 /* Make sure we don't have a hard reg (such as function's return
9498 value) live across basic blocks, if not optimizing. */
9499 || (!optimize && REG_P (target)
9500 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9501 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9502
9503 if (target)
9504 emit_move_insn (target, const0_rtx);
9505
9506 op1 = gen_label_rtx ();
9507 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9508
9509 if (target)
9510 emit_move_insn (target, const1_rtx);
9511
9512 emit_label (op1);
9513 return ignore ? const0_rtx : target;
9514
9515 case STATEMENT_LIST:
9516 {
9517 tree_stmt_iterator iter;
9518
9519 gcc_assert (ignore);
9520
9521 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9522 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9523 }
9524 return const0_rtx;
9525
9526 case COND_EXPR:
9527 /* A COND_EXPR with its type being VOID_TYPE represents a
9528 conditional jump and is handled in
9529 expand_gimple_cond_expr. */
9530 gcc_assert (!VOID_TYPE_P (type));
9531
9532 /* Note that COND_EXPRs whose type is a structure or union
9533 are required to be constructed to contain assignments of
9534 a temporary variable, so that we can evaluate them here
9535 for side effect only. If type is void, we must do likewise. */
9536
9537 gcc_assert (!TREE_ADDRESSABLE (type)
9538 && !ignore
9539 && TREE_TYPE (treeop1) != void_type_node
9540 && TREE_TYPE (treeop2) != void_type_node);
9541
9542 /* If we are not to produce a result, we have no target. Otherwise,
9543 if a target was specified use it; it will not be used as an
9544 intermediate target unless it is safe. If no target, use a
9545 temporary. */
9546
9547 if (modifier != EXPAND_STACK_PARM
9548 && original_target
9549 && safe_from_p (original_target, treeop0, 1)
9550 && GET_MODE (original_target) == mode
9551 #ifdef HAVE_conditional_move
9552 && (! can_conditionally_move_p (mode)
9553 || REG_P (original_target))
9554 #endif
9555 && !MEM_P (original_target))
9556 temp = original_target;
9557 else
9558 temp = assign_temp (type, 0, 0, 1);
9559
9560 do_pending_stack_adjust ();
9561 NO_DEFER_POP;
9562 op0 = gen_label_rtx ();
9563 op1 = gen_label_rtx ();
9564 jumpifnot (treeop0, op0, -1);
9565 store_expr (treeop1, temp,
9566 modifier == EXPAND_STACK_PARM,
9567 false);
9568
9569 emit_jump_insn (gen_jump (op1));
9570 emit_barrier ();
9571 emit_label (op0);
9572 store_expr (treeop2, temp,
9573 modifier == EXPAND_STACK_PARM,
9574 false);
9575
9576 emit_label (op1);
9577 OK_DEFER_POP;
9578 return temp;
9579
9580 case VEC_COND_EXPR:
9581 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9582 return target;
9583
9584 case MODIFY_EXPR:
9585 {
9586 tree lhs = treeop0;
9587 tree rhs = treeop1;
9588 gcc_assert (ignore);
9589
9590 /* Check for |= or &= of a bitfield of size one into another bitfield
9591 of size 1. In this case, (unless we need the result of the
9592 assignment) we can do this more efficiently with a
9593 test followed by an assignment, if necessary.
9594
9595 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9596 things change so we do, this code should be enhanced to
9597 support it. */
9598 if (TREE_CODE (lhs) == COMPONENT_REF
9599 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9600 || TREE_CODE (rhs) == BIT_AND_EXPR)
9601 && TREE_OPERAND (rhs, 0) == lhs
9602 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9603 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9604 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9605 {
9606 rtx label = gen_label_rtx ();
9607 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9608 do_jump (TREE_OPERAND (rhs, 1),
9609 value ? label : 0,
9610 value ? 0 : label, -1);
9611 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9612 MOVE_NONTEMPORAL (exp));
9613 do_pending_stack_adjust ();
9614 emit_label (label);
9615 return const0_rtx;
9616 }
9617
9618 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9619 return const0_rtx;
9620 }
9621
9622 case ADDR_EXPR:
9623 return expand_expr_addr_expr (exp, target, tmode, modifier);
9624
9625 case REALPART_EXPR:
9626 op0 = expand_normal (treeop0);
9627 return read_complex_part (op0, false);
9628
9629 case IMAGPART_EXPR:
9630 op0 = expand_normal (treeop0);
9631 return read_complex_part (op0, true);
9632
9633 case RETURN_EXPR:
9634 case LABEL_EXPR:
9635 case GOTO_EXPR:
9636 case SWITCH_EXPR:
9637 case ASM_EXPR:
9638 /* Expanded in cfgexpand.c. */
9639 gcc_unreachable ();
9640
9641 case TRY_CATCH_EXPR:
9642 case CATCH_EXPR:
9643 case EH_FILTER_EXPR:
9644 case TRY_FINALLY_EXPR:
9645 /* Lowered by tree-eh.c. */
9646 gcc_unreachable ();
9647
9648 case WITH_CLEANUP_EXPR:
9649 case CLEANUP_POINT_EXPR:
9650 case TARGET_EXPR:
9651 case CASE_LABEL_EXPR:
9652 case VA_ARG_EXPR:
9653 case BIND_EXPR:
9654 case INIT_EXPR:
9655 case CONJ_EXPR:
9656 case COMPOUND_EXPR:
9657 case PREINCREMENT_EXPR:
9658 case PREDECREMENT_EXPR:
9659 case POSTINCREMENT_EXPR:
9660 case POSTDECREMENT_EXPR:
9661 case LOOP_EXPR:
9662 case EXIT_EXPR:
9663 /* Lowered by gimplify.c. */
9664 gcc_unreachable ();
9665
9666 case FDESC_EXPR:
9667 /* Function descriptors are not valid except for as
9668 initialization constants, and should not be expanded. */
9669 gcc_unreachable ();
9670
9671 case WITH_SIZE_EXPR:
9672 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9673 have pulled out the size to use in whatever context it needed. */
9674 return expand_expr_real (treeop0, original_target, tmode,
9675 modifier, alt_rtl);
9676
9677 case COMPOUND_LITERAL_EXPR:
9678 {
9679 /* Initialize the anonymous variable declared in the compound
9680 literal, then return the variable. */
9681 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9682
9683 /* Create RTL for this variable. */
9684 if (!DECL_RTL_SET_P (decl))
9685 {
9686 if (DECL_HARD_REGISTER (decl))
9687 /* The user specified an assembler name for this variable.
9688 Set that up now. */
9689 rest_of_decl_compilation (decl, 0, 0);
9690 else
9691 expand_decl (decl);
9692 }
9693
9694 return expand_expr_real (decl, original_target, tmode,
9695 modifier, alt_rtl);
9696 }
9697
9698 default:
9699 return expand_expr_real_2 (&ops, target, tmode, modifier);
9700 }
9701 }
9702 \f
9703 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9704 signedness of TYPE), possibly returning the result in TARGET. */
9705 static rtx
9706 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9707 {
9708 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9709 if (target && GET_MODE (target) != GET_MODE (exp))
9710 target = 0;
9711 /* For constant values, reduce using build_int_cst_type. */
9712 if (CONST_INT_P (exp))
9713 {
9714 HOST_WIDE_INT value = INTVAL (exp);
9715 tree t = build_int_cst_type (type, value);
9716 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9717 }
9718 else if (TYPE_UNSIGNED (type))
9719 {
9720 rtx mask = immed_double_int_const (double_int_mask (prec),
9721 GET_MODE (exp));
9722 return expand_and (GET_MODE (exp), exp, mask, target);
9723 }
9724 else
9725 {
9726 tree count = build_int_cst (NULL_TREE,
9727 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9728 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9729 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9730 }
9731 }
9732 \f
9733 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9734 when applied to the address of EXP produces an address known to be
9735 aligned more than BIGGEST_ALIGNMENT. */
9736
9737 static int
9738 is_aligning_offset (const_tree offset, const_tree exp)
9739 {
9740 /* Strip off any conversions. */
9741 while (CONVERT_EXPR_P (offset))
9742 offset = TREE_OPERAND (offset, 0);
9743
9744 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9745 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9746 if (TREE_CODE (offset) != BIT_AND_EXPR
9747 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9748 || compare_tree_int (TREE_OPERAND (offset, 1),
9749 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9750 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9751 return 0;
9752
9753 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9754 It must be NEGATE_EXPR. Then strip any more conversions. */
9755 offset = TREE_OPERAND (offset, 0);
9756 while (CONVERT_EXPR_P (offset))
9757 offset = TREE_OPERAND (offset, 0);
9758
9759 if (TREE_CODE (offset) != NEGATE_EXPR)
9760 return 0;
9761
9762 offset = TREE_OPERAND (offset, 0);
9763 while (CONVERT_EXPR_P (offset))
9764 offset = TREE_OPERAND (offset, 0);
9765
9766 /* This must now be the address of EXP. */
9767 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9768 }
9769 \f
9770 /* Return the tree node if an ARG corresponds to a string constant or zero
9771 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9772 in bytes within the string that ARG is accessing. The type of the
9773 offset will be `sizetype'. */
9774
9775 tree
9776 string_constant (tree arg, tree *ptr_offset)
9777 {
9778 tree array, offset, lower_bound;
9779 STRIP_NOPS (arg);
9780
9781 if (TREE_CODE (arg) == ADDR_EXPR)
9782 {
9783 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9784 {
9785 *ptr_offset = size_zero_node;
9786 return TREE_OPERAND (arg, 0);
9787 }
9788 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9789 {
9790 array = TREE_OPERAND (arg, 0);
9791 offset = size_zero_node;
9792 }
9793 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9794 {
9795 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9796 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9797 if (TREE_CODE (array) != STRING_CST
9798 && TREE_CODE (array) != VAR_DECL)
9799 return 0;
9800
9801 /* Check if the array has a nonzero lower bound. */
9802 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9803 if (!integer_zerop (lower_bound))
9804 {
9805 /* If the offset and base aren't both constants, return 0. */
9806 if (TREE_CODE (lower_bound) != INTEGER_CST)
9807 return 0;
9808 if (TREE_CODE (offset) != INTEGER_CST)
9809 return 0;
9810 /* Adjust offset by the lower bound. */
9811 offset = size_diffop (fold_convert (sizetype, offset),
9812 fold_convert (sizetype, lower_bound));
9813 }
9814 }
9815 else
9816 return 0;
9817 }
9818 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9819 {
9820 tree arg0 = TREE_OPERAND (arg, 0);
9821 tree arg1 = TREE_OPERAND (arg, 1);
9822
9823 STRIP_NOPS (arg0);
9824 STRIP_NOPS (arg1);
9825
9826 if (TREE_CODE (arg0) == ADDR_EXPR
9827 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9828 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9829 {
9830 array = TREE_OPERAND (arg0, 0);
9831 offset = arg1;
9832 }
9833 else if (TREE_CODE (arg1) == ADDR_EXPR
9834 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9835 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9836 {
9837 array = TREE_OPERAND (arg1, 0);
9838 offset = arg0;
9839 }
9840 else
9841 return 0;
9842 }
9843 else
9844 return 0;
9845
9846 if (TREE_CODE (array) == STRING_CST)
9847 {
9848 *ptr_offset = fold_convert (sizetype, offset);
9849 return array;
9850 }
9851 else if (TREE_CODE (array) == VAR_DECL
9852 || TREE_CODE (array) == CONST_DECL)
9853 {
9854 int length;
9855
9856 /* Variables initialized to string literals can be handled too. */
9857 if (!const_value_known_p (array)
9858 || !DECL_INITIAL (array)
9859 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9860 return 0;
9861
9862 /* Avoid const char foo[4] = "abcde"; */
9863 if (DECL_SIZE_UNIT (array) == NULL_TREE
9864 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9865 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9866 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9867 return 0;
9868
9869 /* If variable is bigger than the string literal, OFFSET must be constant
9870 and inside of the bounds of the string literal. */
9871 offset = fold_convert (sizetype, offset);
9872 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9873 && (! host_integerp (offset, 1)
9874 || compare_tree_int (offset, length) >= 0))
9875 return 0;
9876
9877 *ptr_offset = offset;
9878 return DECL_INITIAL (array);
9879 }
9880
9881 return 0;
9882 }
9883 \f
9884 /* Generate code to calculate OPS, and exploded expression
9885 using a store-flag instruction and return an rtx for the result.
9886 OPS reflects a comparison.
9887
9888 If TARGET is nonzero, store the result there if convenient.
9889
9890 Return zero if there is no suitable set-flag instruction
9891 available on this machine.
9892
9893 Once expand_expr has been called on the arguments of the comparison,
9894 we are committed to doing the store flag, since it is not safe to
9895 re-evaluate the expression. We emit the store-flag insn by calling
9896 emit_store_flag, but only expand the arguments if we have a reason
9897 to believe that emit_store_flag will be successful. If we think that
9898 it will, but it isn't, we have to simulate the store-flag with a
9899 set/jump/set sequence. */
9900
9901 static rtx
9902 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9903 {
9904 enum rtx_code code;
9905 tree arg0, arg1, type;
9906 tree tem;
9907 enum machine_mode operand_mode;
9908 int unsignedp;
9909 rtx op0, op1;
9910 rtx subtarget = target;
9911 location_t loc = ops->location;
9912
9913 arg0 = ops->op0;
9914 arg1 = ops->op1;
9915
9916 /* Don't crash if the comparison was erroneous. */
9917 if (arg0 == error_mark_node || arg1 == error_mark_node)
9918 return const0_rtx;
9919
9920 type = TREE_TYPE (arg0);
9921 operand_mode = TYPE_MODE (type);
9922 unsignedp = TYPE_UNSIGNED (type);
9923
9924 /* We won't bother with BLKmode store-flag operations because it would mean
9925 passing a lot of information to emit_store_flag. */
9926 if (operand_mode == BLKmode)
9927 return 0;
9928
9929 /* We won't bother with store-flag operations involving function pointers
9930 when function pointers must be canonicalized before comparisons. */
9931 #ifdef HAVE_canonicalize_funcptr_for_compare
9932 if (HAVE_canonicalize_funcptr_for_compare
9933 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9934 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9935 == FUNCTION_TYPE))
9936 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9937 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9938 == FUNCTION_TYPE))))
9939 return 0;
9940 #endif
9941
9942 STRIP_NOPS (arg0);
9943 STRIP_NOPS (arg1);
9944
9945 /* Get the rtx comparison code to use. We know that EXP is a comparison
9946 operation of some type. Some comparisons against 1 and -1 can be
9947 converted to comparisons with zero. Do so here so that the tests
9948 below will be aware that we have a comparison with zero. These
9949 tests will not catch constants in the first operand, but constants
9950 are rarely passed as the first operand. */
9951
9952 switch (ops->code)
9953 {
9954 case EQ_EXPR:
9955 code = EQ;
9956 break;
9957 case NE_EXPR:
9958 code = NE;
9959 break;
9960 case LT_EXPR:
9961 if (integer_onep (arg1))
9962 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9963 else
9964 code = unsignedp ? LTU : LT;
9965 break;
9966 case LE_EXPR:
9967 if (! unsignedp && integer_all_onesp (arg1))
9968 arg1 = integer_zero_node, code = LT;
9969 else
9970 code = unsignedp ? LEU : LE;
9971 break;
9972 case GT_EXPR:
9973 if (! unsignedp && integer_all_onesp (arg1))
9974 arg1 = integer_zero_node, code = GE;
9975 else
9976 code = unsignedp ? GTU : GT;
9977 break;
9978 case GE_EXPR:
9979 if (integer_onep (arg1))
9980 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9981 else
9982 code = unsignedp ? GEU : GE;
9983 break;
9984
9985 case UNORDERED_EXPR:
9986 code = UNORDERED;
9987 break;
9988 case ORDERED_EXPR:
9989 code = ORDERED;
9990 break;
9991 case UNLT_EXPR:
9992 code = UNLT;
9993 break;
9994 case UNLE_EXPR:
9995 code = UNLE;
9996 break;
9997 case UNGT_EXPR:
9998 code = UNGT;
9999 break;
10000 case UNGE_EXPR:
10001 code = UNGE;
10002 break;
10003 case UNEQ_EXPR:
10004 code = UNEQ;
10005 break;
10006 case LTGT_EXPR:
10007 code = LTGT;
10008 break;
10009
10010 default:
10011 gcc_unreachable ();
10012 }
10013
10014 /* Put a constant second. */
10015 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10016 || TREE_CODE (arg0) == FIXED_CST)
10017 {
10018 tem = arg0; arg0 = arg1; arg1 = tem;
10019 code = swap_condition (code);
10020 }
10021
10022 /* If this is an equality or inequality test of a single bit, we can
10023 do this by shifting the bit being tested to the low-order bit and
10024 masking the result with the constant 1. If the condition was EQ,
10025 we xor it with 1. This does not require an scc insn and is faster
10026 than an scc insn even if we have it.
10027
10028 The code to make this transformation was moved into fold_single_bit_test,
10029 so we just call into the folder and expand its result. */
10030
10031 if ((code == NE || code == EQ)
10032 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10033 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10034 {
10035 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10036 return expand_expr (fold_single_bit_test (loc,
10037 code == NE ? NE_EXPR : EQ_EXPR,
10038 arg0, arg1, type),
10039 target, VOIDmode, EXPAND_NORMAL);
10040 }
10041
10042 if (! get_subtarget (target)
10043 || GET_MODE (subtarget) != operand_mode)
10044 subtarget = 0;
10045
10046 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10047
10048 if (target == 0)
10049 target = gen_reg_rtx (mode);
10050
10051 /* Try a cstore if possible. */
10052 return emit_store_flag_force (target, code, op0, op1,
10053 operand_mode, unsignedp, 1);
10054 }
10055 \f
10056
10057 /* Stubs in case we haven't got a casesi insn. */
10058 #ifndef HAVE_casesi
10059 # define HAVE_casesi 0
10060 # define gen_casesi(a, b, c, d, e) (0)
10061 # define CODE_FOR_casesi CODE_FOR_nothing
10062 #endif
10063
10064 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10065 0 otherwise (i.e. if there is no casesi instruction). */
10066 int
10067 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10068 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10069 rtx fallback_label ATTRIBUTE_UNUSED)
10070 {
10071 struct expand_operand ops[5];
10072 enum machine_mode index_mode = SImode;
10073 int index_bits = GET_MODE_BITSIZE (index_mode);
10074 rtx op1, op2, index;
10075
10076 if (! HAVE_casesi)
10077 return 0;
10078
10079 /* Convert the index to SImode. */
10080 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10081 {
10082 enum machine_mode omode = TYPE_MODE (index_type);
10083 rtx rangertx = expand_normal (range);
10084
10085 /* We must handle the endpoints in the original mode. */
10086 index_expr = build2 (MINUS_EXPR, index_type,
10087 index_expr, minval);
10088 minval = integer_zero_node;
10089 index = expand_normal (index_expr);
10090 if (default_label)
10091 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10092 omode, 1, default_label);
10093 /* Now we can safely truncate. */
10094 index = convert_to_mode (index_mode, index, 0);
10095 }
10096 else
10097 {
10098 if (TYPE_MODE (index_type) != index_mode)
10099 {
10100 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10101 index_expr = fold_convert (index_type, index_expr);
10102 }
10103
10104 index = expand_normal (index_expr);
10105 }
10106
10107 do_pending_stack_adjust ();
10108
10109 op1 = expand_normal (minval);
10110 op2 = expand_normal (range);
10111
10112 create_input_operand (&ops[0], index, index_mode);
10113 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
10114 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
10115 create_fixed_operand (&ops[3], table_label);
10116 create_fixed_operand (&ops[4], (default_label
10117 ? default_label
10118 : fallback_label));
10119 expand_jump_insn (CODE_FOR_casesi, 5, ops);
10120 return 1;
10121 }
10122
10123 /* Attempt to generate a tablejump instruction; same concept. */
10124 #ifndef HAVE_tablejump
10125 #define HAVE_tablejump 0
10126 #define gen_tablejump(x, y) (0)
10127 #endif
10128
10129 /* Subroutine of the next function.
10130
10131 INDEX is the value being switched on, with the lowest value
10132 in the table already subtracted.
10133 MODE is its expected mode (needed if INDEX is constant).
10134 RANGE is the length of the jump table.
10135 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10136
10137 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10138 index value is out of range. */
10139
10140 static void
10141 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10142 rtx default_label)
10143 {
10144 rtx temp, vector;
10145
10146 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10147 cfun->cfg->max_jumptable_ents = INTVAL (range);
10148
10149 /* Do an unsigned comparison (in the proper mode) between the index
10150 expression and the value which represents the length of the range.
10151 Since we just finished subtracting the lower bound of the range
10152 from the index expression, this comparison allows us to simultaneously
10153 check that the original index expression value is both greater than
10154 or equal to the minimum value of the range and less than or equal to
10155 the maximum value of the range. */
10156
10157 if (default_label)
10158 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10159 default_label);
10160
10161 /* If index is in range, it must fit in Pmode.
10162 Convert to Pmode so we can index with it. */
10163 if (mode != Pmode)
10164 index = convert_to_mode (Pmode, index, 1);
10165
10166 /* Don't let a MEM slip through, because then INDEX that comes
10167 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10168 and break_out_memory_refs will go to work on it and mess it up. */
10169 #ifdef PIC_CASE_VECTOR_ADDRESS
10170 if (flag_pic && !REG_P (index))
10171 index = copy_to_mode_reg (Pmode, index);
10172 #endif
10173
10174 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10175 GET_MODE_SIZE, because this indicates how large insns are. The other
10176 uses should all be Pmode, because they are addresses. This code
10177 could fail if addresses and insns are not the same size. */
10178 index = gen_rtx_PLUS (Pmode,
10179 gen_rtx_MULT (Pmode, index,
10180 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10181 gen_rtx_LABEL_REF (Pmode, table_label));
10182 #ifdef PIC_CASE_VECTOR_ADDRESS
10183 if (flag_pic)
10184 index = PIC_CASE_VECTOR_ADDRESS (index);
10185 else
10186 #endif
10187 index = memory_address (CASE_VECTOR_MODE, index);
10188 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10189 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10190 convert_move (temp, vector, 0);
10191
10192 emit_jump_insn (gen_tablejump (temp, table_label));
10193
10194 /* If we are generating PIC code or if the table is PC-relative, the
10195 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10196 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10197 emit_barrier ();
10198 }
10199
10200 int
10201 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10202 rtx table_label, rtx default_label)
10203 {
10204 rtx index;
10205
10206 if (! HAVE_tablejump)
10207 return 0;
10208
10209 index_expr = fold_build2 (MINUS_EXPR, index_type,
10210 fold_convert (index_type, index_expr),
10211 fold_convert (index_type, minval));
10212 index = expand_normal (index_expr);
10213 do_pending_stack_adjust ();
10214
10215 do_tablejump (index, TYPE_MODE (index_type),
10216 convert_modes (TYPE_MODE (index_type),
10217 TYPE_MODE (TREE_TYPE (range)),
10218 expand_normal (range),
10219 TYPE_UNSIGNED (TREE_TYPE (range))),
10220 table_label, default_label);
10221 return 1;
10222 }
10223
10224 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10225 static rtx
10226 const_vector_from_tree (tree exp)
10227 {
10228 rtvec v;
10229 int units, i;
10230 tree link, elt;
10231 enum machine_mode inner, mode;
10232
10233 mode = TYPE_MODE (TREE_TYPE (exp));
10234
10235 if (initializer_zerop (exp))
10236 return CONST0_RTX (mode);
10237
10238 units = GET_MODE_NUNITS (mode);
10239 inner = GET_MODE_INNER (mode);
10240
10241 v = rtvec_alloc (units);
10242
10243 link = TREE_VECTOR_CST_ELTS (exp);
10244 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10245 {
10246 elt = TREE_VALUE (link);
10247
10248 if (TREE_CODE (elt) == REAL_CST)
10249 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10250 inner);
10251 else if (TREE_CODE (elt) == FIXED_CST)
10252 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10253 inner);
10254 else
10255 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10256 inner);
10257 }
10258
10259 /* Initialize remaining elements to 0. */
10260 for (; i < units; ++i)
10261 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10262
10263 return gen_rtx_CONST_VECTOR (mode, v);
10264 }
10265
10266 /* Build a decl for a personality function given a language prefix. */
10267
10268 tree
10269 build_personality_function (const char *lang)
10270 {
10271 const char *unwind_and_version;
10272 tree decl, type;
10273 char *name;
10274
10275 switch (targetm.except_unwind_info (&global_options))
10276 {
10277 case UI_NONE:
10278 return NULL;
10279 case UI_SJLJ:
10280 unwind_and_version = "_sj0";
10281 break;
10282 case UI_DWARF2:
10283 case UI_TARGET:
10284 unwind_and_version = "_v0";
10285 break;
10286 default:
10287 gcc_unreachable ();
10288 }
10289
10290 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10291
10292 type = build_function_type_list (integer_type_node, integer_type_node,
10293 long_long_unsigned_type_node,
10294 ptr_type_node, ptr_type_node, NULL_TREE);
10295 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10296 get_identifier (name), type);
10297 DECL_ARTIFICIAL (decl) = 1;
10298 DECL_EXTERNAL (decl) = 1;
10299 TREE_PUBLIC (decl) = 1;
10300
10301 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10302 are the flags assigned by targetm.encode_section_info. */
10303 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10304
10305 return decl;
10306 }
10307
10308 /* Extracts the personality function of DECL and returns the corresponding
10309 libfunc. */
10310
10311 rtx
10312 get_personality_function (tree decl)
10313 {
10314 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10315 enum eh_personality_kind pk;
10316
10317 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10318 if (pk == eh_personality_none)
10319 return NULL;
10320
10321 if (!personality
10322 && pk == eh_personality_any)
10323 personality = lang_hooks.eh_personality ();
10324
10325 if (pk == eh_personality_lang)
10326 gcc_assert (personality != NULL_TREE);
10327
10328 return XEXP (DECL_RTL (personality), 0);
10329 }
10330
10331 #include "gt-expr.h"