expr.c (expand_expr_real_1): Avoid gimple_assign_rhs_to_tree during TER and instead...
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "machmode.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "stringpool.h"
28 #include "stor-layout.h"
29 #include "attribs.h"
30 #include "varasm.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "langhooks.h"
47 #include "intl.h"
48 #include "tm_p.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-ssa-alias.h"
52 #include "internal-fn.h"
53 #include "gimple-expr.h"
54 #include "is-a.h"
55 #include "gimple.h"
56 #include "gimple-ssa.h"
57 #include "cgraph.h"
58 #include "tree-ssanames.h"
59 #include "target.h"
60 #include "common/common-target.h"
61 #include "timevar.h"
62 #include "df.h"
63 #include "diagnostic.h"
64 #include "tree-ssa-live.h"
65 #include "tree-outof-ssa.h"
66 #include "target-globals.h"
67 #include "params.h"
68 #include "tree-ssa-address.h"
69 #include "cfgexpand.h"
70
71 /* Decide whether a function's arguments should be processed
72 from first to last or from last to first.
73
74 They should if the stack and args grow in opposite directions, but
75 only if we have push insns. */
76
77 #ifdef PUSH_ROUNDING
78
79 #ifndef PUSH_ARGS_REVERSED
80 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
81 #define PUSH_ARGS_REVERSED /* If it's last to first. */
82 #endif
83 #endif
84
85 #endif
86
87 #ifndef STACK_PUSH_CODE
88 #ifdef STACK_GROWS_DOWNWARD
89 #define STACK_PUSH_CODE PRE_DEC
90 #else
91 #define STACK_PUSH_CODE PRE_INC
92 #endif
93 #endif
94
95
96 /* If this is nonzero, we do not bother generating VOLATILE
97 around volatile memory references, and we are willing to
98 output indirect addresses. If cse is to follow, we reject
99 indirect addresses so a useful potential cse is generated;
100 if it is used only once, instruction combination will produce
101 the same indirect address eventually. */
102 int cse_not_expected;
103
104 /* This structure is used by move_by_pieces to describe the move to
105 be performed. */
106 struct move_by_pieces_d
107 {
108 rtx to;
109 rtx to_addr;
110 int autinc_to;
111 int explicit_inc_to;
112 rtx from;
113 rtx from_addr;
114 int autinc_from;
115 int explicit_inc_from;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 int reverse;
119 };
120
121 /* This structure is used by store_by_pieces to describe the clear to
122 be performed. */
123
124 struct store_by_pieces_d
125 {
126 rtx to;
127 rtx to_addr;
128 int autinc_to;
129 int explicit_inc_to;
130 unsigned HOST_WIDE_INT len;
131 HOST_WIDE_INT offset;
132 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
133 void *constfundata;
134 int reverse;
135 };
136
137 static void move_by_pieces_1 (insn_gen_fn, machine_mode,
138 struct move_by_pieces_d *);
139 static bool block_move_libcall_safe_for_call_parm (void);
140 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT,
141 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
142 unsigned HOST_WIDE_INT);
143 static tree emit_block_move_libcall_fn (int);
144 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
145 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
146 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
147 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
148 static void store_by_pieces_2 (insn_gen_fn, machine_mode,
149 struct store_by_pieces_d *);
150 static tree clear_storage_libcall_fn (int);
151 static rtx compress_float_constant (rtx, rtx);
152 static rtx get_subtarget (rtx);
153 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
154 HOST_WIDE_INT, enum machine_mode,
155 tree, int, alias_set_type);
156 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
157 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT,
158 unsigned HOST_WIDE_INT, unsigned HOST_WIDE_INT,
159 enum machine_mode, tree, alias_set_type, bool);
160
161 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
162
163 static int is_aligning_offset (const_tree, const_tree);
164 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
165 enum expand_modifier);
166 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
167 static rtx do_store_flag (sepops, rtx, enum machine_mode);
168 #ifdef PUSH_ROUNDING
169 static void emit_single_push_insn (enum machine_mode, rtx, tree);
170 #endif
171 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx, int);
172 static rtx const_vector_from_tree (tree);
173 static void write_complex_part (rtx, rtx, bool);
174
175 /* This macro is used to determine whether move_by_pieces should be called
176 to perform a structure copy. */
177 #ifndef MOVE_BY_PIECES_P
178 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
179 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
180 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
181 #endif
182
183 /* This macro is used to determine whether clear_by_pieces should be
184 called to clear storage. */
185 #ifndef CLEAR_BY_PIECES_P
186 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
187 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
188 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
189 #endif
190
191 /* This macro is used to determine whether store_by_pieces should be
192 called to "memset" storage with byte values other than zero. */
193 #ifndef SET_BY_PIECES_P
194 #define SET_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
197 #endif
198
199 /* This macro is used to determine whether store_by_pieces should be
200 called to "memcpy" storage when the source is a constant string. */
201 #ifndef STORE_BY_PIECES_P
202 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
203 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
204 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
205 #endif
206 \f
207 /* This is run to set up which modes can be used
208 directly in memory and to initialize the block move optab. It is run
209 at the beginning of compilation and when the target is reinitialized. */
210
211 void
212 init_expr_target (void)
213 {
214 rtx insn, pat;
215 enum machine_mode mode;
216 int num_clobbers;
217 rtx mem, mem1;
218 rtx reg;
219
220 /* Try indexing by frame ptr and try by stack ptr.
221 It is known that on the Convex the stack ptr isn't a valid index.
222 With luck, one or the other is valid on any machine. */
223 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
224 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
225
226 /* A scratch register we can modify in-place below to avoid
227 useless RTL allocations. */
228 reg = gen_rtx_REG (VOIDmode, -1);
229
230 insn = rtx_alloc (INSN);
231 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
232 PATTERN (insn) = pat;
233
234 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
235 mode = (enum machine_mode) ((int) mode + 1))
236 {
237 int regno;
238
239 direct_load[(int) mode] = direct_store[(int) mode] = 0;
240 PUT_MODE (mem, mode);
241 PUT_MODE (mem1, mode);
242 PUT_MODE (reg, mode);
243
244 /* See if there is some register that can be used in this mode and
245 directly loaded or stored from memory. */
246
247 if (mode != VOIDmode && mode != BLKmode)
248 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
249 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
250 regno++)
251 {
252 if (! HARD_REGNO_MODE_OK (regno, mode))
253 continue;
254
255 SET_REGNO (reg, regno);
256
257 SET_SRC (pat) = mem;
258 SET_DEST (pat) = reg;
259 if (recog (pat, insn, &num_clobbers) >= 0)
260 direct_load[(int) mode] = 1;
261
262 SET_SRC (pat) = mem1;
263 SET_DEST (pat) = reg;
264 if (recog (pat, insn, &num_clobbers) >= 0)
265 direct_load[(int) mode] = 1;
266
267 SET_SRC (pat) = reg;
268 SET_DEST (pat) = mem;
269 if (recog (pat, insn, &num_clobbers) >= 0)
270 direct_store[(int) mode] = 1;
271
272 SET_SRC (pat) = reg;
273 SET_DEST (pat) = mem1;
274 if (recog (pat, insn, &num_clobbers) >= 0)
275 direct_store[(int) mode] = 1;
276 }
277 }
278
279 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
280
281 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
282 mode = GET_MODE_WIDER_MODE (mode))
283 {
284 enum machine_mode srcmode;
285 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
286 srcmode = GET_MODE_WIDER_MODE (srcmode))
287 {
288 enum insn_code ic;
289
290 ic = can_extend_p (mode, srcmode, 0);
291 if (ic == CODE_FOR_nothing)
292 continue;
293
294 PUT_MODE (mem, srcmode);
295
296 if (insn_operand_matches (ic, 1, mem))
297 float_extend_from_mem[mode][srcmode] = true;
298 }
299 }
300 }
301
302 /* This is run at the start of compiling a function. */
303
304 void
305 init_expr (void)
306 {
307 memset (&crtl->expr, 0, sizeof (crtl->expr));
308 }
309 \f
310 /* Copy data from FROM to TO, where the machine modes are not the same.
311 Both modes may be integer, or both may be floating, or both may be
312 fixed-point.
313 UNSIGNEDP should be nonzero if FROM is an unsigned type.
314 This causes zero-extension instead of sign-extension. */
315
316 void
317 convert_move (rtx to, rtx from, int unsignedp)
318 {
319 enum machine_mode to_mode = GET_MODE (to);
320 enum machine_mode from_mode = GET_MODE (from);
321 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
322 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
323 enum insn_code code;
324 rtx libcall;
325
326 /* rtx code for making an equivalent value. */
327 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
328 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
329
330
331 gcc_assert (to_real == from_real);
332 gcc_assert (to_mode != BLKmode);
333 gcc_assert (from_mode != BLKmode);
334
335 /* If the source and destination are already the same, then there's
336 nothing to do. */
337 if (to == from)
338 return;
339
340 /* If FROM is a SUBREG that indicates that we have already done at least
341 the required extension, strip it. We don't handle such SUBREGs as
342 TO here. */
343
344 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
345 && (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (from)))
346 >= GET_MODE_PRECISION (to_mode))
347 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
348 from = gen_lowpart (to_mode, from), from_mode = to_mode;
349
350 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
351
352 if (to_mode == from_mode
353 || (from_mode == VOIDmode && CONSTANT_P (from)))
354 {
355 emit_move_insn (to, from);
356 return;
357 }
358
359 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
360 {
361 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
362
363 if (VECTOR_MODE_P (to_mode))
364 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
365 else
366 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
367
368 emit_move_insn (to, from);
369 return;
370 }
371
372 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
373 {
374 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
375 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
376 return;
377 }
378
379 if (to_real)
380 {
381 rtx value, insns;
382 convert_optab tab;
383
384 gcc_assert ((GET_MODE_PRECISION (from_mode)
385 != GET_MODE_PRECISION (to_mode))
386 || (DECIMAL_FLOAT_MODE_P (from_mode)
387 != DECIMAL_FLOAT_MODE_P (to_mode)));
388
389 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
390 /* Conversion between decimal float and binary float, same size. */
391 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
392 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
393 tab = sext_optab;
394 else
395 tab = trunc_optab;
396
397 /* Try converting directly if the insn is supported. */
398
399 code = convert_optab_handler (tab, to_mode, from_mode);
400 if (code != CODE_FOR_nothing)
401 {
402 emit_unop_insn (code, to, from,
403 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
404 return;
405 }
406
407 /* Otherwise use a libcall. */
408 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
409
410 /* Is this conversion implemented yet? */
411 gcc_assert (libcall);
412
413 start_sequence ();
414 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
415 1, from, from_mode);
416 insns = get_insns ();
417 end_sequence ();
418 emit_libcall_block (insns, to, value,
419 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
420 from)
421 : gen_rtx_FLOAT_EXTEND (to_mode, from));
422 return;
423 }
424
425 /* Handle pointer conversion. */ /* SPEE 900220. */
426 /* Targets are expected to provide conversion insns between PxImode and
427 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
428 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
429 {
430 enum machine_mode full_mode
431 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
432
433 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
434 != CODE_FOR_nothing);
435
436 if (full_mode != from_mode)
437 from = convert_to_mode (full_mode, from, unsignedp);
438 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
439 to, from, UNKNOWN);
440 return;
441 }
442 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
443 {
444 rtx new_from;
445 enum machine_mode full_mode
446 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
447 convert_optab ctab = unsignedp ? zext_optab : sext_optab;
448 enum insn_code icode;
449
450 icode = convert_optab_handler (ctab, full_mode, from_mode);
451 gcc_assert (icode != CODE_FOR_nothing);
452
453 if (to_mode == full_mode)
454 {
455 emit_unop_insn (icode, to, from, UNKNOWN);
456 return;
457 }
458
459 new_from = gen_reg_rtx (full_mode);
460 emit_unop_insn (icode, new_from, from, UNKNOWN);
461
462 /* else proceed to integer conversions below. */
463 from_mode = full_mode;
464 from = new_from;
465 }
466
467 /* Make sure both are fixed-point modes or both are not. */
468 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
469 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
470 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
471 {
472 /* If we widen from_mode to to_mode and they are in the same class,
473 we won't saturate the result.
474 Otherwise, always saturate the result to play safe. */
475 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
476 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
477 expand_fixed_convert (to, from, 0, 0);
478 else
479 expand_fixed_convert (to, from, 0, 1);
480 return;
481 }
482
483 /* Now both modes are integers. */
484
485 /* Handle expanding beyond a word. */
486 if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
487 && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
488 {
489 rtx insns;
490 rtx lowpart;
491 rtx fill_value;
492 rtx lowfrom;
493 int i;
494 enum machine_mode lowpart_mode;
495 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
496
497 /* Try converting directly if the insn is supported. */
498 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
499 != CODE_FOR_nothing)
500 {
501 /* If FROM is a SUBREG, put it into a register. Do this
502 so that we always generate the same set of insns for
503 better cse'ing; if an intermediate assignment occurred,
504 we won't be doing the operation directly on the SUBREG. */
505 if (optimize > 0 && GET_CODE (from) == SUBREG)
506 from = force_reg (from_mode, from);
507 emit_unop_insn (code, to, from, equiv_code);
508 return;
509 }
510 /* Next, try converting via full word. */
511 else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
512 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
513 != CODE_FOR_nothing))
514 {
515 rtx word_to = gen_reg_rtx (word_mode);
516 if (REG_P (to))
517 {
518 if (reg_overlap_mentioned_p (to, from))
519 from = force_reg (from_mode, from);
520 emit_clobber (to);
521 }
522 convert_move (word_to, from, unsignedp);
523 emit_unop_insn (code, to, word_to, equiv_code);
524 return;
525 }
526
527 /* No special multiword conversion insn; do it by hand. */
528 start_sequence ();
529
530 /* Since we will turn this into a no conflict block, we must ensure the
531 the source does not overlap the target so force it into an isolated
532 register when maybe so. Likewise for any MEM input, since the
533 conversion sequence might require several references to it and we
534 must ensure we're getting the same value every time. */
535
536 if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
537 from = force_reg (from_mode, from);
538
539 /* Get a copy of FROM widened to a word, if necessary. */
540 if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
541 lowpart_mode = word_mode;
542 else
543 lowpart_mode = from_mode;
544
545 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
546
547 lowpart = gen_lowpart (lowpart_mode, to);
548 emit_move_insn (lowpart, lowfrom);
549
550 /* Compute the value to put in each remaining word. */
551 if (unsignedp)
552 fill_value = const0_rtx;
553 else
554 fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
555 LT, lowfrom, const0_rtx,
556 lowpart_mode, 0, -1);
557
558 /* Fill the remaining words. */
559 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
560 {
561 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
562 rtx subword = operand_subword (to, index, 1, to_mode);
563
564 gcc_assert (subword);
565
566 if (fill_value != subword)
567 emit_move_insn (subword, fill_value);
568 }
569
570 insns = get_insns ();
571 end_sequence ();
572
573 emit_insn (insns);
574 return;
575 }
576
577 /* Truncating multi-word to a word or less. */
578 if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
579 && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
580 {
581 if (!((MEM_P (from)
582 && ! MEM_VOLATILE_P (from)
583 && direct_load[(int) to_mode]
584 && ! mode_dependent_address_p (XEXP (from, 0),
585 MEM_ADDR_SPACE (from)))
586 || REG_P (from)
587 || GET_CODE (from) == SUBREG))
588 from = force_reg (from_mode, from);
589 convert_move (to, gen_lowpart (word_mode, from), 0);
590 return;
591 }
592
593 /* Now follow all the conversions between integers
594 no more than a word long. */
595
596 /* For truncation, usually we can just refer to FROM in a narrower mode. */
597 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
598 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
599 {
600 if (!((MEM_P (from)
601 && ! MEM_VOLATILE_P (from)
602 && direct_load[(int) to_mode]
603 && ! mode_dependent_address_p (XEXP (from, 0),
604 MEM_ADDR_SPACE (from)))
605 || REG_P (from)
606 || GET_CODE (from) == SUBREG))
607 from = force_reg (from_mode, from);
608 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
609 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
610 from = copy_to_reg (from);
611 emit_move_insn (to, gen_lowpart (to_mode, from));
612 return;
613 }
614
615 /* Handle extension. */
616 if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
617 {
618 /* Convert directly if that works. */
619 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
620 != CODE_FOR_nothing)
621 {
622 emit_unop_insn (code, to, from, equiv_code);
623 return;
624 }
625 else
626 {
627 enum machine_mode intermediate;
628 rtx tmp;
629 int shift_amount;
630
631 /* Search for a mode to convert via. */
632 for (intermediate = from_mode; intermediate != VOIDmode;
633 intermediate = GET_MODE_WIDER_MODE (intermediate))
634 if (((can_extend_p (to_mode, intermediate, unsignedp)
635 != CODE_FOR_nothing)
636 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
637 && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, intermediate)))
638 && (can_extend_p (intermediate, from_mode, unsignedp)
639 != CODE_FOR_nothing))
640 {
641 convert_move (to, convert_to_mode (intermediate, from,
642 unsignedp), unsignedp);
643 return;
644 }
645
646 /* No suitable intermediate mode.
647 Generate what we need with shifts. */
648 shift_amount = (GET_MODE_PRECISION (to_mode)
649 - GET_MODE_PRECISION (from_mode));
650 from = gen_lowpart (to_mode, force_reg (from_mode, from));
651 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
652 to, unsignedp);
653 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
654 to, unsignedp);
655 if (tmp != to)
656 emit_move_insn (to, tmp);
657 return;
658 }
659 }
660
661 /* Support special truncate insns for certain modes. */
662 if (convert_optab_handler (trunc_optab, to_mode,
663 from_mode) != CODE_FOR_nothing)
664 {
665 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
666 to, from, UNKNOWN);
667 return;
668 }
669
670 /* Handle truncation of volatile memrefs, and so on;
671 the things that couldn't be truncated directly,
672 and for which there was no special instruction.
673
674 ??? Code above formerly short-circuited this, for most integer
675 mode pairs, with a force_reg in from_mode followed by a recursive
676 call to this routine. Appears always to have been wrong. */
677 if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
678 {
679 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
680 emit_move_insn (to, temp);
681 return;
682 }
683
684 /* Mode combination is not recognized. */
685 gcc_unreachable ();
686 }
687
688 /* Return an rtx for a value that would result
689 from converting X to mode MODE.
690 Both X and MODE may be floating, or both integer.
691 UNSIGNEDP is nonzero if X is an unsigned value.
692 This can be done by referring to a part of X in place
693 or by copying to a new temporary with conversion. */
694
695 rtx
696 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
697 {
698 return convert_modes (mode, VOIDmode, x, unsignedp);
699 }
700
701 /* Return an rtx for a value that would result
702 from converting X from mode OLDMODE to mode MODE.
703 Both modes may be floating, or both integer.
704 UNSIGNEDP is nonzero if X is an unsigned value.
705
706 This can be done by referring to a part of X in place
707 or by copying to a new temporary with conversion.
708
709 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
710
711 rtx
712 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
713 {
714 rtx temp;
715
716 /* If FROM is a SUBREG that indicates that we have already done at least
717 the required extension, strip it. */
718
719 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
720 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
721 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
722 x = gen_lowpart (mode, SUBREG_REG (x));
723
724 if (GET_MODE (x) != VOIDmode)
725 oldmode = GET_MODE (x);
726
727 if (mode == oldmode)
728 return x;
729
730 /* There is one case that we must handle specially: If we are converting
731 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
732 we are to interpret the constant as unsigned, gen_lowpart will do
733 the wrong if the constant appears negative. What we want to do is
734 make the high-order word of the constant zero, not all ones. */
735
736 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
737 && GET_MODE_BITSIZE (mode) == HOST_BITS_PER_DOUBLE_INT
738 && CONST_INT_P (x) && INTVAL (x) < 0)
739 {
740 double_int val = double_int::from_uhwi (INTVAL (x));
741
742 /* We need to zero extend VAL. */
743 if (oldmode != VOIDmode)
744 val = val.zext (GET_MODE_BITSIZE (oldmode));
745
746 return immed_double_int_const (val, mode);
747 }
748
749 /* We can do this with a gen_lowpart if both desired and current modes
750 are integer, and this is either a constant integer, a register, or a
751 non-volatile MEM. Except for the constant case where MODE is no
752 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
753
754 if ((CONST_INT_P (x)
755 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT)
756 || (GET_MODE_CLASS (mode) == MODE_INT
757 && GET_MODE_CLASS (oldmode) == MODE_INT
758 && (CONST_DOUBLE_AS_INT_P (x)
759 || (GET_MODE_PRECISION (mode) <= GET_MODE_PRECISION (oldmode)
760 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
761 && direct_load[(int) mode])
762 || (REG_P (x)
763 && (! HARD_REGISTER_P (x)
764 || HARD_REGNO_MODE_OK (REGNO (x), mode))
765 && TRULY_NOOP_TRUNCATION_MODES_P (mode,
766 GET_MODE (x))))))))
767 {
768 /* ?? If we don't know OLDMODE, we have to assume here that
769 X does not need sign- or zero-extension. This may not be
770 the case, but it's the best we can do. */
771 if (CONST_INT_P (x) && oldmode != VOIDmode
772 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (oldmode))
773 {
774 HOST_WIDE_INT val = INTVAL (x);
775
776 /* We must sign or zero-extend in this case. Start by
777 zero-extending, then sign extend if we need to. */
778 val &= GET_MODE_MASK (oldmode);
779 if (! unsignedp
780 && val_signbit_known_set_p (oldmode, val))
781 val |= ~GET_MODE_MASK (oldmode);
782
783 return gen_int_mode (val, mode);
784 }
785
786 return gen_lowpart (mode, x);
787 }
788
789 /* Converting from integer constant into mode is always equivalent to an
790 subreg operation. */
791 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
792 {
793 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
794 return simplify_gen_subreg (mode, x, oldmode, 0);
795 }
796
797 temp = gen_reg_rtx (mode);
798 convert_move (temp, x, unsignedp);
799 return temp;
800 }
801 \f
802 /* Return the largest alignment we can use for doing a move (or store)
803 of MAX_PIECES. ALIGN is the largest alignment we could use. */
804
805 static unsigned int
806 alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
807 {
808 enum machine_mode tmode;
809
810 tmode = mode_for_size (max_pieces * BITS_PER_UNIT, MODE_INT, 1);
811 if (align >= GET_MODE_ALIGNMENT (tmode))
812 align = GET_MODE_ALIGNMENT (tmode);
813 else
814 {
815 enum machine_mode tmode, xmode;
816
817 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
818 tmode != VOIDmode;
819 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
820 if (GET_MODE_SIZE (tmode) > max_pieces
821 || SLOW_UNALIGNED_ACCESS (tmode, align))
822 break;
823
824 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
825 }
826
827 return align;
828 }
829
830 /* Return the widest integer mode no wider than SIZE. If no such mode
831 can be found, return VOIDmode. */
832
833 static enum machine_mode
834 widest_int_mode_for_size (unsigned int size)
835 {
836 enum machine_mode tmode, mode = VOIDmode;
837
838 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
839 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
840 if (GET_MODE_SIZE (tmode) < size)
841 mode = tmode;
842
843 return mode;
844 }
845
846 /* STORE_MAX_PIECES is the number of bytes at a time that we can
847 store efficiently. Due to internal GCC limitations, this is
848 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
849 for an immediate constant. */
850
851 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
852
853 /* Determine whether the LEN bytes can be moved by using several move
854 instructions. Return nonzero if a call to move_by_pieces should
855 succeed. */
856
857 int
858 can_move_by_pieces (unsigned HOST_WIDE_INT len ATTRIBUTE_UNUSED,
859 unsigned int align ATTRIBUTE_UNUSED)
860 {
861 return MOVE_BY_PIECES_P (len, align);
862 }
863
864 /* Generate several move instructions to copy LEN bytes from block FROM to
865 block TO. (These are MEM rtx's with BLKmode).
866
867 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
868 used to push FROM to the stack.
869
870 ALIGN is maximum stack alignment we can assume.
871
872 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
873 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
874 stpcpy. */
875
876 rtx
877 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
878 unsigned int align, int endp)
879 {
880 struct move_by_pieces_d data;
881 enum machine_mode to_addr_mode;
882 enum machine_mode from_addr_mode = get_address_mode (from);
883 rtx to_addr, from_addr = XEXP (from, 0);
884 unsigned int max_size = MOVE_MAX_PIECES + 1;
885 enum insn_code icode;
886
887 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
888
889 data.offset = 0;
890 data.from_addr = from_addr;
891 if (to)
892 {
893 to_addr_mode = get_address_mode (to);
894 to_addr = XEXP (to, 0);
895 data.to = to;
896 data.autinc_to
897 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
898 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
899 data.reverse
900 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
901 }
902 else
903 {
904 to_addr_mode = VOIDmode;
905 to_addr = NULL_RTX;
906 data.to = NULL_RTX;
907 data.autinc_to = 1;
908 #ifdef STACK_GROWS_DOWNWARD
909 data.reverse = 1;
910 #else
911 data.reverse = 0;
912 #endif
913 }
914 data.to_addr = to_addr;
915 data.from = from;
916 data.autinc_from
917 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
918 || GET_CODE (from_addr) == POST_INC
919 || GET_CODE (from_addr) == POST_DEC);
920
921 data.explicit_inc_from = 0;
922 data.explicit_inc_to = 0;
923 if (data.reverse) data.offset = len;
924 data.len = len;
925
926 /* If copying requires more than two move insns,
927 copy addresses to registers (to make displacements shorter)
928 and use post-increment if available. */
929 if (!(data.autinc_from && data.autinc_to)
930 && move_by_pieces_ninsns (len, align, max_size) > 2)
931 {
932 /* Find the mode of the largest move...
933 MODE might not be used depending on the definitions of the
934 USE_* macros below. */
935 enum machine_mode mode ATTRIBUTE_UNUSED
936 = widest_int_mode_for_size (max_size);
937
938 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
939 {
940 data.from_addr = copy_to_mode_reg (from_addr_mode,
941 plus_constant (from_addr_mode,
942 from_addr, len));
943 data.autinc_from = 1;
944 data.explicit_inc_from = -1;
945 }
946 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
947 {
948 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
949 data.autinc_from = 1;
950 data.explicit_inc_from = 1;
951 }
952 if (!data.autinc_from && CONSTANT_P (from_addr))
953 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
954 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
955 {
956 data.to_addr = copy_to_mode_reg (to_addr_mode,
957 plus_constant (to_addr_mode,
958 to_addr, len));
959 data.autinc_to = 1;
960 data.explicit_inc_to = -1;
961 }
962 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
963 {
964 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
965 data.autinc_to = 1;
966 data.explicit_inc_to = 1;
967 }
968 if (!data.autinc_to && CONSTANT_P (to_addr))
969 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
970 }
971
972 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
973
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
976
977 while (max_size > 1 && data.len > 0)
978 {
979 enum machine_mode mode = widest_int_mode_for_size (max_size);
980
981 if (mode == VOIDmode)
982 break;
983
984 icode = optab_handler (mov_optab, mode);
985 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
986 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
987
988 max_size = GET_MODE_SIZE (mode);
989 }
990
991 /* The code above should have handled everything. */
992 gcc_assert (!data.len);
993
994 if (endp)
995 {
996 rtx to1;
997
998 gcc_assert (!data.reverse);
999 if (data.autinc_to)
1000 {
1001 if (endp == 2)
1002 {
1003 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1004 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1005 else
1006 data.to_addr = copy_to_mode_reg (to_addr_mode,
1007 plus_constant (to_addr_mode,
1008 data.to_addr,
1009 -1));
1010 }
1011 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1012 data.offset);
1013 }
1014 else
1015 {
1016 if (endp == 2)
1017 --data.offset;
1018 to1 = adjust_address (data.to, QImode, data.offset);
1019 }
1020 return to1;
1021 }
1022 else
1023 return data.to;
1024 }
1025
1026 /* Return number of insns required to move L bytes by pieces.
1027 ALIGN (in bits) is maximum alignment we can assume. */
1028
1029 unsigned HOST_WIDE_INT
1030 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1031 unsigned int max_size)
1032 {
1033 unsigned HOST_WIDE_INT n_insns = 0;
1034
1035 align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
1036
1037 while (max_size > 1 && l > 0)
1038 {
1039 enum machine_mode mode;
1040 enum insn_code icode;
1041
1042 mode = widest_int_mode_for_size (max_size);
1043
1044 if (mode == VOIDmode)
1045 break;
1046
1047 icode = optab_handler (mov_optab, mode);
1048 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1049 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1050
1051 max_size = GET_MODE_SIZE (mode);
1052 }
1053
1054 gcc_assert (!l);
1055 return n_insns;
1056 }
1057
1058 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1059 with move instructions for mode MODE. GENFUN is the gen_... function
1060 to make a move insn for that mode. DATA has all the other info. */
1061
1062 static void
1063 move_by_pieces_1 (insn_gen_fn genfun, machine_mode mode,
1064 struct move_by_pieces_d *data)
1065 {
1066 unsigned int size = GET_MODE_SIZE (mode);
1067 rtx to1 = NULL_RTX, from1;
1068
1069 while (data->len >= size)
1070 {
1071 if (data->reverse)
1072 data->offset -= size;
1073
1074 if (data->to)
1075 {
1076 if (data->autinc_to)
1077 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1078 data->offset);
1079 else
1080 to1 = adjust_address (data->to, mode, data->offset);
1081 }
1082
1083 if (data->autinc_from)
1084 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1085 data->offset);
1086 else
1087 from1 = adjust_address (data->from, mode, data->offset);
1088
1089 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1090 emit_insn (gen_add2_insn (data->to_addr,
1091 gen_int_mode (-(HOST_WIDE_INT) size,
1092 GET_MODE (data->to_addr))));
1093 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1094 emit_insn (gen_add2_insn (data->from_addr,
1095 gen_int_mode (-(HOST_WIDE_INT) size,
1096 GET_MODE (data->from_addr))));
1097
1098 if (data->to)
1099 emit_insn ((*genfun) (to1, from1));
1100 else
1101 {
1102 #ifdef PUSH_ROUNDING
1103 emit_single_push_insn (mode, from1, NULL);
1104 #else
1105 gcc_unreachable ();
1106 #endif
1107 }
1108
1109 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 gen_int_mode (size,
1112 GET_MODE (data->to_addr))));
1113 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1114 emit_insn (gen_add2_insn (data->from_addr,
1115 gen_int_mode (size,
1116 GET_MODE (data->from_addr))));
1117
1118 if (! data->reverse)
1119 data->offset += size;
1120
1121 data->len -= size;
1122 }
1123 }
1124 \f
1125 /* Emit code to move a block Y to a block X. This may be done with
1126 string-move instructions, with multiple scalar move instructions,
1127 or with a library call.
1128
1129 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1130 SIZE is an rtx that says how long they are.
1131 ALIGN is the maximum alignment we can assume they have.
1132 METHOD describes what kind of copy this is, and what mechanisms may be used.
1133 MIN_SIZE is the minimal size of block to move
1134 MAX_SIZE is the maximal size of block to move, if it can not be represented
1135 in unsigned HOST_WIDE_INT, than it is mask of all ones.
1136
1137 Return the address of the new block, if memcpy is called and returns it,
1138 0 otherwise. */
1139
1140 rtx
1141 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1142 unsigned int expected_align, HOST_WIDE_INT expected_size,
1143 unsigned HOST_WIDE_INT min_size,
1144 unsigned HOST_WIDE_INT max_size,
1145 unsigned HOST_WIDE_INT probable_max_size)
1146 {
1147 bool may_use_call;
1148 rtx retval = 0;
1149 unsigned int align;
1150
1151 gcc_assert (size);
1152 if (CONST_INT_P (size)
1153 && INTVAL (size) == 0)
1154 return 0;
1155
1156 switch (method)
1157 {
1158 case BLOCK_OP_NORMAL:
1159 case BLOCK_OP_TAILCALL:
1160 may_use_call = true;
1161 break;
1162
1163 case BLOCK_OP_CALL_PARM:
1164 may_use_call = block_move_libcall_safe_for_call_parm ();
1165
1166 /* Make inhibit_defer_pop nonzero around the library call
1167 to force it to pop the arguments right away. */
1168 NO_DEFER_POP;
1169 break;
1170
1171 case BLOCK_OP_NO_LIBCALL:
1172 may_use_call = false;
1173 break;
1174
1175 default:
1176 gcc_unreachable ();
1177 }
1178
1179 gcc_assert (MEM_P (x) && MEM_P (y));
1180 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1181 gcc_assert (align >= BITS_PER_UNIT);
1182
1183 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1184 block copy is more efficient for other large modes, e.g. DCmode. */
1185 x = adjust_address (x, BLKmode, 0);
1186 y = adjust_address (y, BLKmode, 0);
1187
1188 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1189 can be incorrect is coming from __builtin_memcpy. */
1190 if (CONST_INT_P (size))
1191 {
1192 x = shallow_copy_rtx (x);
1193 y = shallow_copy_rtx (y);
1194 set_mem_size (x, INTVAL (size));
1195 set_mem_size (y, INTVAL (size));
1196 }
1197
1198 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1199 move_by_pieces (x, y, INTVAL (size), align, 0);
1200 else if (emit_block_move_via_movmem (x, y, size, align,
1201 expected_align, expected_size,
1202 min_size, max_size, probable_max_size))
1203 ;
1204 else if (may_use_call
1205 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1206 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1207 {
1208 /* Since x and y are passed to a libcall, mark the corresponding
1209 tree EXPR as addressable. */
1210 tree y_expr = MEM_EXPR (y);
1211 tree x_expr = MEM_EXPR (x);
1212 if (y_expr)
1213 mark_addressable (y_expr);
1214 if (x_expr)
1215 mark_addressable (x_expr);
1216 retval = emit_block_move_via_libcall (x, y, size,
1217 method == BLOCK_OP_TAILCALL);
1218 }
1219
1220 else
1221 emit_block_move_via_loop (x, y, size, align);
1222
1223 if (method == BLOCK_OP_CALL_PARM)
1224 OK_DEFER_POP;
1225
1226 return retval;
1227 }
1228
1229 rtx
1230 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1231 {
1232 unsigned HOST_WIDE_INT max, min = 0;
1233 if (GET_CODE (size) == CONST_INT)
1234 min = max = UINTVAL (size);
1235 else
1236 max = GET_MODE_MASK (GET_MODE (size));
1237 return emit_block_move_hints (x, y, size, method, 0, -1,
1238 min, max, max);
1239 }
1240
1241 /* A subroutine of emit_block_move. Returns true if calling the
1242 block move libcall will not clobber any parameters which may have
1243 already been placed on the stack. */
1244
1245 static bool
1246 block_move_libcall_safe_for_call_parm (void)
1247 {
1248 #if defined (REG_PARM_STACK_SPACE)
1249 tree fn;
1250 #endif
1251
1252 /* If arguments are pushed on the stack, then they're safe. */
1253 if (PUSH_ARGS)
1254 return true;
1255
1256 /* If registers go on the stack anyway, any argument is sure to clobber
1257 an outgoing argument. */
1258 #if defined (REG_PARM_STACK_SPACE)
1259 fn = emit_block_move_libcall_fn (false);
1260 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1261 depend on its argument. */
1262 (void) fn;
1263 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1264 && REG_PARM_STACK_SPACE (fn) != 0)
1265 return false;
1266 #endif
1267
1268 /* If any argument goes in memory, then it might clobber an outgoing
1269 argument. */
1270 {
1271 CUMULATIVE_ARGS args_so_far_v;
1272 cumulative_args_t args_so_far;
1273 tree fn, arg;
1274
1275 fn = emit_block_move_libcall_fn (false);
1276 INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
1277 args_so_far = pack_cumulative_args (&args_so_far_v);
1278
1279 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1280 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1281 {
1282 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1283 rtx tmp = targetm.calls.function_arg (args_so_far, mode,
1284 NULL_TREE, true);
1285 if (!tmp || !REG_P (tmp))
1286 return false;
1287 if (targetm.calls.arg_partial_bytes (args_so_far, mode, NULL, 1))
1288 return false;
1289 targetm.calls.function_arg_advance (args_so_far, mode,
1290 NULL_TREE, true);
1291 }
1292 }
1293 return true;
1294 }
1295
1296 /* A subroutine of emit_block_move. Expand a movmem pattern;
1297 return true if successful. */
1298
1299 static bool
1300 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1301 unsigned int expected_align, HOST_WIDE_INT expected_size,
1302 unsigned HOST_WIDE_INT min_size,
1303 unsigned HOST_WIDE_INT max_size,
1304 unsigned HOST_WIDE_INT probable_max_size)
1305 {
1306 int save_volatile_ok = volatile_ok;
1307 enum machine_mode mode;
1308
1309 if (expected_align < align)
1310 expected_align = align;
1311 if (expected_size != -1)
1312 {
1313 if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
1314 expected_size = probable_max_size;
1315 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
1316 expected_size = min_size;
1317 }
1318
1319 /* Since this is a move insn, we don't care about volatility. */
1320 volatile_ok = 1;
1321
1322 /* Try the most limited insn first, because there's no point
1323 including more than one in the machine description unless
1324 the more limited one has some advantage. */
1325
1326 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1327 mode = GET_MODE_WIDER_MODE (mode))
1328 {
1329 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1330
1331 if (code != CODE_FOR_nothing
1332 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1333 here because if SIZE is less than the mode mask, as it is
1334 returned by the macro, it will definitely be less than the
1335 actual mode mask. Since SIZE is within the Pmode address
1336 space, we limit MODE to Pmode. */
1337 && ((CONST_INT_P (size)
1338 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1339 <= (GET_MODE_MASK (mode) >> 1)))
1340 || max_size <= (GET_MODE_MASK (mode) >> 1)
1341 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
1342 {
1343 struct expand_operand ops[9];
1344 unsigned int nops;
1345
1346 /* ??? When called via emit_block_move_for_call, it'd be
1347 nice if there were some way to inform the backend, so
1348 that it doesn't fail the expansion because it thinks
1349 emitting the libcall would be more efficient. */
1350 nops = insn_data[(int) code].n_generator_args;
1351 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
1352
1353 create_fixed_operand (&ops[0], x);
1354 create_fixed_operand (&ops[1], y);
1355 /* The check above guarantees that this size conversion is valid. */
1356 create_convert_operand_to (&ops[2], size, mode, true);
1357 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
1358 if (nops >= 6)
1359 {
1360 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
1361 create_integer_operand (&ops[5], expected_size);
1362 }
1363 if (nops >= 8)
1364 {
1365 create_integer_operand (&ops[6], min_size);
1366 /* If we can not represent the maximal size,
1367 make parameter NULL. */
1368 if ((HOST_WIDE_INT) max_size != -1)
1369 create_integer_operand (&ops[7], max_size);
1370 else
1371 create_fixed_operand (&ops[7], NULL);
1372 }
1373 if (nops == 9)
1374 {
1375 /* If we can not represent the maximal size,
1376 make parameter NULL. */
1377 if ((HOST_WIDE_INT) probable_max_size != -1)
1378 create_integer_operand (&ops[8], probable_max_size);
1379 else
1380 create_fixed_operand (&ops[8], NULL);
1381 }
1382 if (maybe_expand_insn (code, nops, ops))
1383 {
1384 volatile_ok = save_volatile_ok;
1385 return true;
1386 }
1387 }
1388 }
1389
1390 volatile_ok = save_volatile_ok;
1391 return false;
1392 }
1393
1394 /* A subroutine of emit_block_move. Expand a call to memcpy.
1395 Return the return value from memcpy, 0 otherwise. */
1396
1397 rtx
1398 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1399 {
1400 rtx dst_addr, src_addr;
1401 tree call_expr, fn, src_tree, dst_tree, size_tree;
1402 enum machine_mode size_mode;
1403 rtx retval;
1404
1405 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1406 pseudos. We can then place those new pseudos into a VAR_DECL and
1407 use them later. */
1408
1409 dst_addr = copy_addr_to_reg (XEXP (dst, 0));
1410 src_addr = copy_addr_to_reg (XEXP (src, 0));
1411
1412 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1413 src_addr = convert_memory_address (ptr_mode, src_addr);
1414
1415 dst_tree = make_tree (ptr_type_node, dst_addr);
1416 src_tree = make_tree (ptr_type_node, src_addr);
1417
1418 size_mode = TYPE_MODE (sizetype);
1419
1420 size = convert_to_mode (size_mode, size, 1);
1421 size = copy_to_mode_reg (size_mode, size);
1422
1423 /* It is incorrect to use the libcall calling conventions to call
1424 memcpy in this context. This could be a user call to memcpy and
1425 the user may wish to examine the return value from memcpy. For
1426 targets where libcalls and normal calls have different conventions
1427 for returning pointers, we could end up generating incorrect code. */
1428
1429 size_tree = make_tree (sizetype, size);
1430
1431 fn = emit_block_move_libcall_fn (true);
1432 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1433 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1434
1435 retval = expand_normal (call_expr);
1436
1437 return retval;
1438 }
1439
1440 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1441 for the function we use for block copies. */
1442
1443 static GTY(()) tree block_move_fn;
1444
1445 void
1446 init_block_move_fn (const char *asmspec)
1447 {
1448 if (!block_move_fn)
1449 {
1450 tree args, fn, attrs, attr_args;
1451
1452 fn = get_identifier ("memcpy");
1453 args = build_function_type_list (ptr_type_node, ptr_type_node,
1454 const_ptr_type_node, sizetype,
1455 NULL_TREE);
1456
1457 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1458 DECL_EXTERNAL (fn) = 1;
1459 TREE_PUBLIC (fn) = 1;
1460 DECL_ARTIFICIAL (fn) = 1;
1461 TREE_NOTHROW (fn) = 1;
1462 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1463 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1464
1465 attr_args = build_tree_list (NULL_TREE, build_string (1, "1"));
1466 attrs = tree_cons (get_identifier ("fn spec"), attr_args, NULL);
1467
1468 decl_attributes (&fn, attrs, ATTR_FLAG_BUILT_IN);
1469
1470 block_move_fn = fn;
1471 }
1472
1473 if (asmspec)
1474 set_user_assembler_name (block_move_fn, asmspec);
1475 }
1476
1477 static tree
1478 emit_block_move_libcall_fn (int for_call)
1479 {
1480 static bool emitted_extern;
1481
1482 if (!block_move_fn)
1483 init_block_move_fn (NULL);
1484
1485 if (for_call && !emitted_extern)
1486 {
1487 emitted_extern = true;
1488 make_decl_rtl (block_move_fn);
1489 }
1490
1491 return block_move_fn;
1492 }
1493
1494 /* A subroutine of emit_block_move. Copy the data via an explicit
1495 loop. This is used only when libcalls are forbidden. */
1496 /* ??? It'd be nice to copy in hunks larger than QImode. */
1497
1498 static void
1499 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1500 unsigned int align ATTRIBUTE_UNUSED)
1501 {
1502 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1503 enum machine_mode x_addr_mode = get_address_mode (x);
1504 enum machine_mode y_addr_mode = get_address_mode (y);
1505 enum machine_mode iter_mode;
1506
1507 iter_mode = GET_MODE (size);
1508 if (iter_mode == VOIDmode)
1509 iter_mode = word_mode;
1510
1511 top_label = gen_label_rtx ();
1512 cmp_label = gen_label_rtx ();
1513 iter = gen_reg_rtx (iter_mode);
1514
1515 emit_move_insn (iter, const0_rtx);
1516
1517 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1518 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1519 do_pending_stack_adjust ();
1520
1521 emit_jump (cmp_label);
1522 emit_label (top_label);
1523
1524 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1525 x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
1526
1527 if (x_addr_mode != y_addr_mode)
1528 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1529 y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
1530
1531 x = change_address (x, QImode, x_addr);
1532 y = change_address (y, QImode, y_addr);
1533
1534 emit_move_insn (x, y);
1535
1536 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1537 true, OPTAB_LIB_WIDEN);
1538 if (tmp != iter)
1539 emit_move_insn (iter, tmp);
1540
1541 emit_label (cmp_label);
1542
1543 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1544 true, top_label, REG_BR_PROB_BASE * 90 / 100);
1545 }
1546 \f
1547 /* Copy all or part of a value X into registers starting at REGNO.
1548 The number of registers to be filled is NREGS. */
1549
1550 void
1551 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1552 {
1553 int i;
1554 #ifdef HAVE_load_multiple
1555 rtx pat;
1556 rtx last;
1557 #endif
1558
1559 if (nregs == 0)
1560 return;
1561
1562 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
1563 x = validize_mem (force_const_mem (mode, x));
1564
1565 /* See if the machine can do this with a load multiple insn. */
1566 #ifdef HAVE_load_multiple
1567 if (HAVE_load_multiple)
1568 {
1569 last = get_last_insn ();
1570 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1571 GEN_INT (nregs));
1572 if (pat)
1573 {
1574 emit_insn (pat);
1575 return;
1576 }
1577 else
1578 delete_insns_since (last);
1579 }
1580 #endif
1581
1582 for (i = 0; i < nregs; i++)
1583 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1584 operand_subword_force (x, i, mode));
1585 }
1586
1587 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1588 The number of registers to be filled is NREGS. */
1589
1590 void
1591 move_block_from_reg (int regno, rtx x, int nregs)
1592 {
1593 int i;
1594
1595 if (nregs == 0)
1596 return;
1597
1598 /* See if the machine can do this with a store multiple insn. */
1599 #ifdef HAVE_store_multiple
1600 if (HAVE_store_multiple)
1601 {
1602 rtx last = get_last_insn ();
1603 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1604 GEN_INT (nregs));
1605 if (pat)
1606 {
1607 emit_insn (pat);
1608 return;
1609 }
1610 else
1611 delete_insns_since (last);
1612 }
1613 #endif
1614
1615 for (i = 0; i < nregs; i++)
1616 {
1617 rtx tem = operand_subword (x, i, 1, BLKmode);
1618
1619 gcc_assert (tem);
1620
1621 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1622 }
1623 }
1624
1625 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1626 ORIG, where ORIG is a non-consecutive group of registers represented by
1627 a PARALLEL. The clone is identical to the original except in that the
1628 original set of registers is replaced by a new set of pseudo registers.
1629 The new set has the same modes as the original set. */
1630
1631 rtx
1632 gen_group_rtx (rtx orig)
1633 {
1634 int i, length;
1635 rtx *tmps;
1636
1637 gcc_assert (GET_CODE (orig) == PARALLEL);
1638
1639 length = XVECLEN (orig, 0);
1640 tmps = XALLOCAVEC (rtx, length);
1641
1642 /* Skip a NULL entry in first slot. */
1643 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1644
1645 if (i)
1646 tmps[0] = 0;
1647
1648 for (; i < length; i++)
1649 {
1650 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1651 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1652
1653 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1654 }
1655
1656 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1657 }
1658
1659 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1660 except that values are placed in TMPS[i], and must later be moved
1661 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1662
1663 static void
1664 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1665 {
1666 rtx src;
1667 int start, i;
1668 enum machine_mode m = GET_MODE (orig_src);
1669
1670 gcc_assert (GET_CODE (dst) == PARALLEL);
1671
1672 if (m != VOIDmode
1673 && !SCALAR_INT_MODE_P (m)
1674 && !MEM_P (orig_src)
1675 && GET_CODE (orig_src) != CONCAT)
1676 {
1677 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1678 if (imode == BLKmode)
1679 src = assign_stack_temp (GET_MODE (orig_src), ssize);
1680 else
1681 src = gen_reg_rtx (imode);
1682 if (imode != BLKmode)
1683 src = gen_lowpart (GET_MODE (orig_src), src);
1684 emit_move_insn (src, orig_src);
1685 /* ...and back again. */
1686 if (imode != BLKmode)
1687 src = gen_lowpart (imode, src);
1688 emit_group_load_1 (tmps, dst, src, type, ssize);
1689 return;
1690 }
1691
1692 /* Check for a NULL entry, used to indicate that the parameter goes
1693 both on the stack and in registers. */
1694 if (XEXP (XVECEXP (dst, 0, 0), 0))
1695 start = 0;
1696 else
1697 start = 1;
1698
1699 /* Process the pieces. */
1700 for (i = start; i < XVECLEN (dst, 0); i++)
1701 {
1702 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1703 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1704 unsigned int bytelen = GET_MODE_SIZE (mode);
1705 int shift = 0;
1706
1707 /* Handle trailing fragments that run over the size of the struct. */
1708 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1709 {
1710 /* Arrange to shift the fragment to where it belongs.
1711 extract_bit_field loads to the lsb of the reg. */
1712 if (
1713 #ifdef BLOCK_REG_PADDING
1714 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1715 == (BYTES_BIG_ENDIAN ? upward : downward)
1716 #else
1717 BYTES_BIG_ENDIAN
1718 #endif
1719 )
1720 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1721 bytelen = ssize - bytepos;
1722 gcc_assert (bytelen > 0);
1723 }
1724
1725 /* If we won't be loading directly from memory, protect the real source
1726 from strange tricks we might play; but make sure that the source can
1727 be loaded directly into the destination. */
1728 src = orig_src;
1729 if (!MEM_P (orig_src)
1730 && (!CONSTANT_P (orig_src)
1731 || (GET_MODE (orig_src) != mode
1732 && GET_MODE (orig_src) != VOIDmode)))
1733 {
1734 if (GET_MODE (orig_src) == VOIDmode)
1735 src = gen_reg_rtx (mode);
1736 else
1737 src = gen_reg_rtx (GET_MODE (orig_src));
1738
1739 emit_move_insn (src, orig_src);
1740 }
1741
1742 /* Optimize the access just a bit. */
1743 if (MEM_P (src)
1744 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1745 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1746 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1747 && bytelen == GET_MODE_SIZE (mode))
1748 {
1749 tmps[i] = gen_reg_rtx (mode);
1750 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1751 }
1752 else if (COMPLEX_MODE_P (mode)
1753 && GET_MODE (src) == mode
1754 && bytelen == GET_MODE_SIZE (mode))
1755 /* Let emit_move_complex do the bulk of the work. */
1756 tmps[i] = src;
1757 else if (GET_CODE (src) == CONCAT)
1758 {
1759 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1760 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1761
1762 if ((bytepos == 0 && bytelen == slen0)
1763 || (bytepos != 0 && bytepos + bytelen <= slen))
1764 {
1765 /* The following assumes that the concatenated objects all
1766 have the same size. In this case, a simple calculation
1767 can be used to determine the object and the bit field
1768 to be extracted. */
1769 tmps[i] = XEXP (src, bytepos / slen0);
1770 if (! CONSTANT_P (tmps[i])
1771 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1772 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1773 (bytepos % slen0) * BITS_PER_UNIT,
1774 1, NULL_RTX, mode, mode);
1775 }
1776 else
1777 {
1778 rtx mem;
1779
1780 gcc_assert (!bytepos);
1781 mem = assign_stack_temp (GET_MODE (src), slen);
1782 emit_move_insn (mem, src);
1783 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1784 0, 1, NULL_RTX, mode, mode);
1785 }
1786 }
1787 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1788 SIMD register, which is currently broken. While we get GCC
1789 to emit proper RTL for these cases, let's dump to memory. */
1790 else if (VECTOR_MODE_P (GET_MODE (dst))
1791 && REG_P (src))
1792 {
1793 int slen = GET_MODE_SIZE (GET_MODE (src));
1794 rtx mem;
1795
1796 mem = assign_stack_temp (GET_MODE (src), slen);
1797 emit_move_insn (mem, src);
1798 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1799 }
1800 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1801 && XVECLEN (dst, 0) > 1)
1802 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
1803 else if (CONSTANT_P (src))
1804 {
1805 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1806
1807 if (len == ssize)
1808 tmps[i] = src;
1809 else
1810 {
1811 rtx first, second;
1812
1813 gcc_assert (2 * len == ssize);
1814 split_double (src, &first, &second);
1815 if (i)
1816 tmps[i] = second;
1817 else
1818 tmps[i] = first;
1819 }
1820 }
1821 else if (REG_P (src) && GET_MODE (src) == mode)
1822 tmps[i] = src;
1823 else
1824 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1825 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1826 mode, mode);
1827
1828 if (shift)
1829 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1830 shift, tmps[i], 0);
1831 }
1832 }
1833
1834 /* Emit code to move a block SRC of type TYPE to a block DST,
1835 where DST is non-consecutive registers represented by a PARALLEL.
1836 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1837 if not known. */
1838
1839 void
1840 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1841 {
1842 rtx *tmps;
1843 int i;
1844
1845 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1846 emit_group_load_1 (tmps, dst, src, type, ssize);
1847
1848 /* Copy the extracted pieces into the proper (probable) hard regs. */
1849 for (i = 0; i < XVECLEN (dst, 0); i++)
1850 {
1851 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1852 if (d == NULL)
1853 continue;
1854 emit_move_insn (d, tmps[i]);
1855 }
1856 }
1857
1858 /* Similar, but load SRC into new pseudos in a format that looks like
1859 PARALLEL. This can later be fed to emit_group_move to get things
1860 in the right place. */
1861
1862 rtx
1863 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1864 {
1865 rtvec vec;
1866 int i;
1867
1868 vec = rtvec_alloc (XVECLEN (parallel, 0));
1869 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1870
1871 /* Convert the vector to look just like the original PARALLEL, except
1872 with the computed values. */
1873 for (i = 0; i < XVECLEN (parallel, 0); i++)
1874 {
1875 rtx e = XVECEXP (parallel, 0, i);
1876 rtx d = XEXP (e, 0);
1877
1878 if (d)
1879 {
1880 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1881 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1882 }
1883 RTVEC_ELT (vec, i) = e;
1884 }
1885
1886 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1887 }
1888
1889 /* Emit code to move a block SRC to block DST, where SRC and DST are
1890 non-consecutive groups of registers, each represented by a PARALLEL. */
1891
1892 void
1893 emit_group_move (rtx dst, rtx src)
1894 {
1895 int i;
1896
1897 gcc_assert (GET_CODE (src) == PARALLEL
1898 && GET_CODE (dst) == PARALLEL
1899 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1900
1901 /* Skip first entry if NULL. */
1902 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1903 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1904 XEXP (XVECEXP (src, 0, i), 0));
1905 }
1906
1907 /* Move a group of registers represented by a PARALLEL into pseudos. */
1908
1909 rtx
1910 emit_group_move_into_temps (rtx src)
1911 {
1912 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1913 int i;
1914
1915 for (i = 0; i < XVECLEN (src, 0); i++)
1916 {
1917 rtx e = XVECEXP (src, 0, i);
1918 rtx d = XEXP (e, 0);
1919
1920 if (d)
1921 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1922 RTVEC_ELT (vec, i) = e;
1923 }
1924
1925 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1926 }
1927
1928 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1929 where SRC is non-consecutive registers represented by a PARALLEL.
1930 SSIZE represents the total size of block ORIG_DST, or -1 if not
1931 known. */
1932
1933 void
1934 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1935 {
1936 rtx *tmps, dst;
1937 int start, finish, i;
1938 enum machine_mode m = GET_MODE (orig_dst);
1939
1940 gcc_assert (GET_CODE (src) == PARALLEL);
1941
1942 if (!SCALAR_INT_MODE_P (m)
1943 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1944 {
1945 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1946 if (imode == BLKmode)
1947 dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
1948 else
1949 dst = gen_reg_rtx (imode);
1950 emit_group_store (dst, src, type, ssize);
1951 if (imode != BLKmode)
1952 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1953 emit_move_insn (orig_dst, dst);
1954 return;
1955 }
1956
1957 /* Check for a NULL entry, used to indicate that the parameter goes
1958 both on the stack and in registers. */
1959 if (XEXP (XVECEXP (src, 0, 0), 0))
1960 start = 0;
1961 else
1962 start = 1;
1963 finish = XVECLEN (src, 0);
1964
1965 tmps = XALLOCAVEC (rtx, finish);
1966
1967 /* Copy the (probable) hard regs into pseudos. */
1968 for (i = start; i < finish; i++)
1969 {
1970 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1971 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1972 {
1973 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1974 emit_move_insn (tmps[i], reg);
1975 }
1976 else
1977 tmps[i] = reg;
1978 }
1979
1980 /* If we won't be storing directly into memory, protect the real destination
1981 from strange tricks we might play. */
1982 dst = orig_dst;
1983 if (GET_CODE (dst) == PARALLEL)
1984 {
1985 rtx temp;
1986
1987 /* We can get a PARALLEL dst if there is a conditional expression in
1988 a return statement. In that case, the dst and src are the same,
1989 so no action is necessary. */
1990 if (rtx_equal_p (dst, src))
1991 return;
1992
1993 /* It is unclear if we can ever reach here, but we may as well handle
1994 it. Allocate a temporary, and split this into a store/load to/from
1995 the temporary. */
1996 temp = assign_stack_temp (GET_MODE (dst), ssize);
1997 emit_group_store (temp, src, type, ssize);
1998 emit_group_load (dst, temp, type, ssize);
1999 return;
2000 }
2001 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
2002 {
2003 enum machine_mode outer = GET_MODE (dst);
2004 enum machine_mode inner;
2005 HOST_WIDE_INT bytepos;
2006 bool done = false;
2007 rtx temp;
2008
2009 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
2010 dst = gen_reg_rtx (outer);
2011
2012 /* Make life a bit easier for combine. */
2013 /* If the first element of the vector is the low part
2014 of the destination mode, use a paradoxical subreg to
2015 initialize the destination. */
2016 if (start < finish)
2017 {
2018 inner = GET_MODE (tmps[start]);
2019 bytepos = subreg_lowpart_offset (inner, outer);
2020 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2021 {
2022 temp = simplify_gen_subreg (outer, tmps[start],
2023 inner, 0);
2024 if (temp)
2025 {
2026 emit_move_insn (dst, temp);
2027 done = true;
2028 start++;
2029 }
2030 }
2031 }
2032
2033 /* If the first element wasn't the low part, try the last. */
2034 if (!done
2035 && start < finish - 1)
2036 {
2037 inner = GET_MODE (tmps[finish - 1]);
2038 bytepos = subreg_lowpart_offset (inner, outer);
2039 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2040 {
2041 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2042 inner, 0);
2043 if (temp)
2044 {
2045 emit_move_insn (dst, temp);
2046 done = true;
2047 finish--;
2048 }
2049 }
2050 }
2051
2052 /* Otherwise, simply initialize the result to zero. */
2053 if (!done)
2054 emit_move_insn (dst, CONST0_RTX (outer));
2055 }
2056
2057 /* Process the pieces. */
2058 for (i = start; i < finish; i++)
2059 {
2060 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2061 enum machine_mode mode = GET_MODE (tmps[i]);
2062 unsigned int bytelen = GET_MODE_SIZE (mode);
2063 unsigned int adj_bytelen;
2064 rtx dest = dst;
2065
2066 /* Handle trailing fragments that run over the size of the struct. */
2067 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2068 adj_bytelen = ssize - bytepos;
2069 else
2070 adj_bytelen = bytelen;
2071
2072 if (GET_CODE (dst) == CONCAT)
2073 {
2074 if (bytepos + adj_bytelen
2075 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2076 dest = XEXP (dst, 0);
2077 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2078 {
2079 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2080 dest = XEXP (dst, 1);
2081 }
2082 else
2083 {
2084 enum machine_mode dest_mode = GET_MODE (dest);
2085 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2086
2087 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2088
2089 if (GET_MODE_ALIGNMENT (dest_mode)
2090 >= GET_MODE_ALIGNMENT (tmp_mode))
2091 {
2092 dest = assign_stack_temp (dest_mode,
2093 GET_MODE_SIZE (dest_mode));
2094 emit_move_insn (adjust_address (dest,
2095 tmp_mode,
2096 bytepos),
2097 tmps[i]);
2098 dst = dest;
2099 }
2100 else
2101 {
2102 dest = assign_stack_temp (tmp_mode,
2103 GET_MODE_SIZE (tmp_mode));
2104 emit_move_insn (dest, tmps[i]);
2105 dst = adjust_address (dest, dest_mode, bytepos);
2106 }
2107 break;
2108 }
2109 }
2110
2111 /* Handle trailing fragments that run over the size of the struct. */
2112 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2113 {
2114 /* store_bit_field always takes its value from the lsb.
2115 Move the fragment to the lsb if it's not already there. */
2116 if (
2117 #ifdef BLOCK_REG_PADDING
2118 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2119 == (BYTES_BIG_ENDIAN ? upward : downward)
2120 #else
2121 BYTES_BIG_ENDIAN
2122 #endif
2123 )
2124 {
2125 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2126 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2127 shift, tmps[i], 0);
2128 }
2129
2130 /* Make sure not to write past the end of the struct. */
2131 store_bit_field (dest,
2132 adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2133 bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
2134 VOIDmode, tmps[i]);
2135 }
2136
2137 /* Optimize the access just a bit. */
2138 else if (MEM_P (dest)
2139 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2140 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2141 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2142 && bytelen == GET_MODE_SIZE (mode))
2143 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2144
2145 else
2146 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2147 0, 0, mode, tmps[i]);
2148 }
2149
2150 /* Copy from the pseudo into the (probable) hard reg. */
2151 if (orig_dst != dst)
2152 emit_move_insn (orig_dst, dst);
2153 }
2154
2155 /* Return a form of X that does not use a PARALLEL. TYPE is the type
2156 of the value stored in X. */
2157
2158 rtx
2159 maybe_emit_group_store (rtx x, tree type)
2160 {
2161 enum machine_mode mode = TYPE_MODE (type);
2162 gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
2163 if (GET_CODE (x) == PARALLEL)
2164 {
2165 rtx result = gen_reg_rtx (mode);
2166 emit_group_store (result, x, type, int_size_in_bytes (type));
2167 return result;
2168 }
2169 return x;
2170 }
2171
2172 /* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
2173
2174 This is used on targets that return BLKmode values in registers. */
2175
2176 void
2177 copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
2178 {
2179 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2180 rtx src = NULL, dst = NULL;
2181 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2182 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2183 enum machine_mode mode = GET_MODE (srcreg);
2184 enum machine_mode tmode = GET_MODE (target);
2185 enum machine_mode copy_mode;
2186
2187 /* BLKmode registers created in the back-end shouldn't have survived. */
2188 gcc_assert (mode != BLKmode);
2189
2190 /* If the structure doesn't take up a whole number of words, see whether
2191 SRCREG is padded on the left or on the right. If it's on the left,
2192 set PADDING_CORRECTION to the number of bits to skip.
2193
2194 In most ABIs, the structure will be returned at the least end of
2195 the register, which translates to right padding on little-endian
2196 targets and left padding on big-endian targets. The opposite
2197 holds if the structure is returned at the most significant
2198 end of the register. */
2199 if (bytes % UNITS_PER_WORD != 0
2200 && (targetm.calls.return_in_msb (type)
2201 ? !BYTES_BIG_ENDIAN
2202 : BYTES_BIG_ENDIAN))
2203 padding_correction
2204 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2205
2206 /* We can use a single move if we have an exact mode for the size. */
2207 else if (MEM_P (target)
2208 && (!SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target))
2209 || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
2210 && bytes == GET_MODE_SIZE (mode))
2211 {
2212 emit_move_insn (adjust_address (target, mode, 0), srcreg);
2213 return;
2214 }
2215
2216 /* And if we additionally have the same mode for a register. */
2217 else if (REG_P (target)
2218 && GET_MODE (target) == mode
2219 && bytes == GET_MODE_SIZE (mode))
2220 {
2221 emit_move_insn (target, srcreg);
2222 return;
2223 }
2224
2225 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2226 into a new pseudo which is a full word. */
2227 if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
2228 {
2229 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2230 mode = word_mode;
2231 }
2232
2233 /* Copy the structure BITSIZE bits at a time. If the target lives in
2234 memory, take care of not reading/writing past its end by selecting
2235 a copy mode suited to BITSIZE. This should always be possible given
2236 how it is computed.
2237
2238 If the target lives in register, make sure not to select a copy mode
2239 larger than the mode of the register.
2240
2241 We could probably emit more efficient code for machines which do not use
2242 strict alignment, but it doesn't seem worth the effort at the current
2243 time. */
2244
2245 copy_mode = word_mode;
2246 if (MEM_P (target))
2247 {
2248 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2249 if (mem_mode != BLKmode)
2250 copy_mode = mem_mode;
2251 }
2252 else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2253 copy_mode = tmode;
2254
2255 for (bitpos = 0, xbitpos = padding_correction;
2256 bitpos < bytes * BITS_PER_UNIT;
2257 bitpos += bitsize, xbitpos += bitsize)
2258 {
2259 /* We need a new source operand each time xbitpos is on a
2260 word boundary and when xbitpos == padding_correction
2261 (the first time through). */
2262 if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
2263 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
2264
2265 /* We need a new destination operand each time bitpos is on
2266 a word boundary. */
2267 if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
2268 dst = target;
2269 else if (bitpos % BITS_PER_WORD == 0)
2270 dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
2271
2272 /* Use xbitpos for the source extraction (right justified) and
2273 bitpos for the destination store (left justified). */
2274 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
2275 extract_bit_field (src, bitsize,
2276 xbitpos % BITS_PER_WORD, 1,
2277 NULL_RTX, copy_mode, copy_mode));
2278 }
2279 }
2280
2281 /* Copy BLKmode value SRC into a register of mode MODE. Return the
2282 register if it contains any data, otherwise return null.
2283
2284 This is used on targets that return BLKmode values in registers. */
2285
2286 rtx
2287 copy_blkmode_to_reg (enum machine_mode mode, tree src)
2288 {
2289 int i, n_regs;
2290 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
2291 unsigned int bitsize;
2292 rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
2293 enum machine_mode dst_mode;
2294
2295 gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
2296
2297 x = expand_normal (src);
2298
2299 bytes = int_size_in_bytes (TREE_TYPE (src));
2300 if (bytes == 0)
2301 return NULL_RTX;
2302
2303 /* If the structure doesn't take up a whole number of words, see
2304 whether the register value should be padded on the left or on
2305 the right. Set PADDING_CORRECTION to the number of padding
2306 bits needed on the left side.
2307
2308 In most ABIs, the structure will be returned at the least end of
2309 the register, which translates to right padding on little-endian
2310 targets and left padding on big-endian targets. The opposite
2311 holds if the structure is returned at the most significant
2312 end of the register. */
2313 if (bytes % UNITS_PER_WORD != 0
2314 && (targetm.calls.return_in_msb (TREE_TYPE (src))
2315 ? !BYTES_BIG_ENDIAN
2316 : BYTES_BIG_ENDIAN))
2317 padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
2318 * BITS_PER_UNIT));
2319
2320 n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
2321 dst_words = XALLOCAVEC (rtx, n_regs);
2322 bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
2323
2324 /* Copy the structure BITSIZE bits at a time. */
2325 for (bitpos = 0, xbitpos = padding_correction;
2326 bitpos < bytes * BITS_PER_UNIT;
2327 bitpos += bitsize, xbitpos += bitsize)
2328 {
2329 /* We need a new destination pseudo each time xbitpos is
2330 on a word boundary and when xbitpos == padding_correction
2331 (the first time through). */
2332 if (xbitpos % BITS_PER_WORD == 0
2333 || xbitpos == padding_correction)
2334 {
2335 /* Generate an appropriate register. */
2336 dst_word = gen_reg_rtx (word_mode);
2337 dst_words[xbitpos / BITS_PER_WORD] = dst_word;
2338
2339 /* Clear the destination before we move anything into it. */
2340 emit_move_insn (dst_word, CONST0_RTX (word_mode));
2341 }
2342
2343 /* We need a new source operand each time bitpos is on a word
2344 boundary. */
2345 if (bitpos % BITS_PER_WORD == 0)
2346 src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
2347
2348 /* Use bitpos for the source extraction (left justified) and
2349 xbitpos for the destination store (right justified). */
2350 store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
2351 0, 0, word_mode,
2352 extract_bit_field (src_word, bitsize,
2353 bitpos % BITS_PER_WORD, 1,
2354 NULL_RTX, word_mode, word_mode));
2355 }
2356
2357 if (mode == BLKmode)
2358 {
2359 /* Find the smallest integer mode large enough to hold the
2360 entire structure. */
2361 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2362 mode != VOIDmode;
2363 mode = GET_MODE_WIDER_MODE (mode))
2364 /* Have we found a large enough mode? */
2365 if (GET_MODE_SIZE (mode) >= bytes)
2366 break;
2367
2368 /* A suitable mode should have been found. */
2369 gcc_assert (mode != VOIDmode);
2370 }
2371
2372 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
2373 dst_mode = word_mode;
2374 else
2375 dst_mode = mode;
2376 dst = gen_reg_rtx (dst_mode);
2377
2378 for (i = 0; i < n_regs; i++)
2379 emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
2380
2381 if (mode != dst_mode)
2382 dst = gen_lowpart (mode, dst);
2383
2384 return dst;
2385 }
2386
2387 /* Add a USE expression for REG to the (possibly empty) list pointed
2388 to by CALL_FUSAGE. REG must denote a hard register. */
2389
2390 void
2391 use_reg_mode (rtx *call_fusage, rtx reg, enum machine_mode mode)
2392 {
2393 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2394
2395 *call_fusage
2396 = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
2397 }
2398
2399 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2400 starting at REGNO. All of these registers must be hard registers. */
2401
2402 void
2403 use_regs (rtx *call_fusage, int regno, int nregs)
2404 {
2405 int i;
2406
2407 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2408
2409 for (i = 0; i < nregs; i++)
2410 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2411 }
2412
2413 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2414 PARALLEL REGS. This is for calls that pass values in multiple
2415 non-contiguous locations. The Irix 6 ABI has examples of this. */
2416
2417 void
2418 use_group_regs (rtx *call_fusage, rtx regs)
2419 {
2420 int i;
2421
2422 for (i = 0; i < XVECLEN (regs, 0); i++)
2423 {
2424 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2425
2426 /* A NULL entry means the parameter goes both on the stack and in
2427 registers. This can also be a MEM for targets that pass values
2428 partially on the stack and partially in registers. */
2429 if (reg != 0 && REG_P (reg))
2430 use_reg (call_fusage, reg);
2431 }
2432 }
2433
2434 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2435 assigment and the code of the expresion on the RHS is CODE. Return
2436 NULL otherwise. */
2437
2438 static gimple
2439 get_def_for_expr (tree name, enum tree_code code)
2440 {
2441 gimple def_stmt;
2442
2443 if (TREE_CODE (name) != SSA_NAME)
2444 return NULL;
2445
2446 def_stmt = get_gimple_for_ssa_name (name);
2447 if (!def_stmt
2448 || gimple_assign_rhs_code (def_stmt) != code)
2449 return NULL;
2450
2451 return def_stmt;
2452 }
2453
2454 #ifdef HAVE_conditional_move
2455 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2456 assigment and the class of the expresion on the RHS is CLASS. Return
2457 NULL otherwise. */
2458
2459 static gimple
2460 get_def_for_expr_class (tree name, enum tree_code_class tclass)
2461 {
2462 gimple def_stmt;
2463
2464 if (TREE_CODE (name) != SSA_NAME)
2465 return NULL;
2466
2467 def_stmt = get_gimple_for_ssa_name (name);
2468 if (!def_stmt
2469 || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
2470 return NULL;
2471
2472 return def_stmt;
2473 }
2474 #endif
2475 \f
2476
2477 /* Determine whether the LEN bytes generated by CONSTFUN can be
2478 stored to memory using several move instructions. CONSTFUNDATA is
2479 a pointer which will be passed as argument in every CONSTFUN call.
2480 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2481 a memset operation and false if it's a copy of a constant string.
2482 Return nonzero if a call to store_by_pieces should succeed. */
2483
2484 int
2485 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2486 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2487 void *constfundata, unsigned int align, bool memsetp)
2488 {
2489 unsigned HOST_WIDE_INT l;
2490 unsigned int max_size;
2491 HOST_WIDE_INT offset = 0;
2492 enum machine_mode mode;
2493 enum insn_code icode;
2494 int reverse;
2495 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2496 rtx cst ATTRIBUTE_UNUSED;
2497
2498 if (len == 0)
2499 return 1;
2500
2501 if (! (memsetp
2502 ? SET_BY_PIECES_P (len, align)
2503 : STORE_BY_PIECES_P (len, align)))
2504 return 0;
2505
2506 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2507
2508 /* We would first store what we can in the largest integer mode, then go to
2509 successively smaller modes. */
2510
2511 for (reverse = 0;
2512 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2513 reverse++)
2514 {
2515 l = len;
2516 max_size = STORE_MAX_PIECES + 1;
2517 while (max_size > 1 && l > 0)
2518 {
2519 mode = widest_int_mode_for_size (max_size);
2520
2521 if (mode == VOIDmode)
2522 break;
2523
2524 icode = optab_handler (mov_optab, mode);
2525 if (icode != CODE_FOR_nothing
2526 && align >= GET_MODE_ALIGNMENT (mode))
2527 {
2528 unsigned int size = GET_MODE_SIZE (mode);
2529
2530 while (l >= size)
2531 {
2532 if (reverse)
2533 offset -= size;
2534
2535 cst = (*constfun) (constfundata, offset, mode);
2536 if (!targetm.legitimate_constant_p (mode, cst))
2537 return 0;
2538
2539 if (!reverse)
2540 offset += size;
2541
2542 l -= size;
2543 }
2544 }
2545
2546 max_size = GET_MODE_SIZE (mode);
2547 }
2548
2549 /* The code above should have handled everything. */
2550 gcc_assert (!l);
2551 }
2552
2553 return 1;
2554 }
2555
2556 /* Generate several move instructions to store LEN bytes generated by
2557 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2558 pointer which will be passed as argument in every CONSTFUN call.
2559 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2560 a memset operation and false if it's a copy of a constant string.
2561 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2562 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2563 stpcpy. */
2564
2565 rtx
2566 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2567 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2568 void *constfundata, unsigned int align, bool memsetp, int endp)
2569 {
2570 enum machine_mode to_addr_mode = get_address_mode (to);
2571 struct store_by_pieces_d data;
2572
2573 if (len == 0)
2574 {
2575 gcc_assert (endp != 2);
2576 return to;
2577 }
2578
2579 gcc_assert (memsetp
2580 ? SET_BY_PIECES_P (len, align)
2581 : STORE_BY_PIECES_P (len, align));
2582 data.constfun = constfun;
2583 data.constfundata = constfundata;
2584 data.len = len;
2585 data.to = to;
2586 store_by_pieces_1 (&data, align);
2587 if (endp)
2588 {
2589 rtx to1;
2590
2591 gcc_assert (!data.reverse);
2592 if (data.autinc_to)
2593 {
2594 if (endp == 2)
2595 {
2596 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2597 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2598 else
2599 data.to_addr = copy_to_mode_reg (to_addr_mode,
2600 plus_constant (to_addr_mode,
2601 data.to_addr,
2602 -1));
2603 }
2604 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2605 data.offset);
2606 }
2607 else
2608 {
2609 if (endp == 2)
2610 --data.offset;
2611 to1 = adjust_address (data.to, QImode, data.offset);
2612 }
2613 return to1;
2614 }
2615 else
2616 return data.to;
2617 }
2618
2619 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2620 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2621
2622 static void
2623 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2624 {
2625 struct store_by_pieces_d data;
2626
2627 if (len == 0)
2628 return;
2629
2630 data.constfun = clear_by_pieces_1;
2631 data.constfundata = NULL;
2632 data.len = len;
2633 data.to = to;
2634 store_by_pieces_1 (&data, align);
2635 }
2636
2637 /* Callback routine for clear_by_pieces.
2638 Return const0_rtx unconditionally. */
2639
2640 static rtx
2641 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2642 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2643 enum machine_mode mode ATTRIBUTE_UNUSED)
2644 {
2645 return const0_rtx;
2646 }
2647
2648 /* Subroutine of clear_by_pieces and store_by_pieces.
2649 Generate several move instructions to store LEN bytes of block TO. (A MEM
2650 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2651
2652 static void
2653 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2654 unsigned int align ATTRIBUTE_UNUSED)
2655 {
2656 enum machine_mode to_addr_mode = get_address_mode (data->to);
2657 rtx to_addr = XEXP (data->to, 0);
2658 unsigned int max_size = STORE_MAX_PIECES + 1;
2659 enum insn_code icode;
2660
2661 data->offset = 0;
2662 data->to_addr = to_addr;
2663 data->autinc_to
2664 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2665 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2666
2667 data->explicit_inc_to = 0;
2668 data->reverse
2669 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2670 if (data->reverse)
2671 data->offset = data->len;
2672
2673 /* If storing requires more than two move insns,
2674 copy addresses to registers (to make displacements shorter)
2675 and use post-increment if available. */
2676 if (!data->autinc_to
2677 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2678 {
2679 /* Determine the main mode we'll be using.
2680 MODE might not be used depending on the definitions of the
2681 USE_* macros below. */
2682 enum machine_mode mode ATTRIBUTE_UNUSED
2683 = widest_int_mode_for_size (max_size);
2684
2685 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2686 {
2687 data->to_addr = copy_to_mode_reg (to_addr_mode,
2688 plus_constant (to_addr_mode,
2689 to_addr,
2690 data->len));
2691 data->autinc_to = 1;
2692 data->explicit_inc_to = -1;
2693 }
2694
2695 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2696 && ! data->autinc_to)
2697 {
2698 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2699 data->autinc_to = 1;
2700 data->explicit_inc_to = 1;
2701 }
2702
2703 if ( !data->autinc_to && CONSTANT_P (to_addr))
2704 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2705 }
2706
2707 align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
2708
2709 /* First store what we can in the largest integer mode, then go to
2710 successively smaller modes. */
2711
2712 while (max_size > 1 && data->len > 0)
2713 {
2714 enum machine_mode mode = widest_int_mode_for_size (max_size);
2715
2716 if (mode == VOIDmode)
2717 break;
2718
2719 icode = optab_handler (mov_optab, mode);
2720 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2721 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2722
2723 max_size = GET_MODE_SIZE (mode);
2724 }
2725
2726 /* The code above should have handled everything. */
2727 gcc_assert (!data->len);
2728 }
2729
2730 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2731 with move instructions for mode MODE. GENFUN is the gen_... function
2732 to make a move insn for that mode. DATA has all the other info. */
2733
2734 static void
2735 store_by_pieces_2 (insn_gen_fn genfun, machine_mode mode,
2736 struct store_by_pieces_d *data)
2737 {
2738 unsigned int size = GET_MODE_SIZE (mode);
2739 rtx to1, cst;
2740
2741 while (data->len >= size)
2742 {
2743 if (data->reverse)
2744 data->offset -= size;
2745
2746 if (data->autinc_to)
2747 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2748 data->offset);
2749 else
2750 to1 = adjust_address (data->to, mode, data->offset);
2751
2752 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2753 emit_insn (gen_add2_insn (data->to_addr,
2754 gen_int_mode (-(HOST_WIDE_INT) size,
2755 GET_MODE (data->to_addr))));
2756
2757 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2758 emit_insn ((*genfun) (to1, cst));
2759
2760 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2761 emit_insn (gen_add2_insn (data->to_addr,
2762 gen_int_mode (size,
2763 GET_MODE (data->to_addr))));
2764
2765 if (! data->reverse)
2766 data->offset += size;
2767
2768 data->len -= size;
2769 }
2770 }
2771 \f
2772 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2773 its length in bytes. */
2774
2775 rtx
2776 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2777 unsigned int expected_align, HOST_WIDE_INT expected_size,
2778 unsigned HOST_WIDE_INT min_size,
2779 unsigned HOST_WIDE_INT max_size,
2780 unsigned HOST_WIDE_INT probable_max_size)
2781 {
2782 enum machine_mode mode = GET_MODE (object);
2783 unsigned int align;
2784
2785 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2786
2787 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2788 just move a zero. Otherwise, do this a piece at a time. */
2789 if (mode != BLKmode
2790 && CONST_INT_P (size)
2791 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2792 {
2793 rtx zero = CONST0_RTX (mode);
2794 if (zero != NULL)
2795 {
2796 emit_move_insn (object, zero);
2797 return NULL;
2798 }
2799
2800 if (COMPLEX_MODE_P (mode))
2801 {
2802 zero = CONST0_RTX (GET_MODE_INNER (mode));
2803 if (zero != NULL)
2804 {
2805 write_complex_part (object, zero, 0);
2806 write_complex_part (object, zero, 1);
2807 return NULL;
2808 }
2809 }
2810 }
2811
2812 if (size == const0_rtx)
2813 return NULL;
2814
2815 align = MEM_ALIGN (object);
2816
2817 if (CONST_INT_P (size)
2818 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2819 clear_by_pieces (object, INTVAL (size), align);
2820 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2821 expected_align, expected_size,
2822 min_size, max_size, probable_max_size))
2823 ;
2824 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2825 return set_storage_via_libcall (object, size, const0_rtx,
2826 method == BLOCK_OP_TAILCALL);
2827 else
2828 gcc_unreachable ();
2829
2830 return NULL;
2831 }
2832
2833 rtx
2834 clear_storage (rtx object, rtx size, enum block_op_methods method)
2835 {
2836 unsigned HOST_WIDE_INT max, min = 0;
2837 if (GET_CODE (size) == CONST_INT)
2838 min = max = UINTVAL (size);
2839 else
2840 max = GET_MODE_MASK (GET_MODE (size));
2841 return clear_storage_hints (object, size, method, 0, -1, min, max, max);
2842 }
2843
2844
2845 /* A subroutine of clear_storage. Expand a call to memset.
2846 Return the return value of memset, 0 otherwise. */
2847
2848 rtx
2849 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2850 {
2851 tree call_expr, fn, object_tree, size_tree, val_tree;
2852 enum machine_mode size_mode;
2853 rtx retval;
2854
2855 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2856 place those into new pseudos into a VAR_DECL and use them later. */
2857
2858 object = copy_addr_to_reg (XEXP (object, 0));
2859
2860 size_mode = TYPE_MODE (sizetype);
2861 size = convert_to_mode (size_mode, size, 1);
2862 size = copy_to_mode_reg (size_mode, size);
2863
2864 /* It is incorrect to use the libcall calling conventions to call
2865 memset in this context. This could be a user call to memset and
2866 the user may wish to examine the return value from memset. For
2867 targets where libcalls and normal calls have different conventions
2868 for returning pointers, we could end up generating incorrect code. */
2869
2870 object_tree = make_tree (ptr_type_node, object);
2871 if (!CONST_INT_P (val))
2872 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2873 size_tree = make_tree (sizetype, size);
2874 val_tree = make_tree (integer_type_node, val);
2875
2876 fn = clear_storage_libcall_fn (true);
2877 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2878 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2879
2880 retval = expand_normal (call_expr);
2881
2882 return retval;
2883 }
2884
2885 /* A subroutine of set_storage_via_libcall. Create the tree node
2886 for the function we use for block clears. */
2887
2888 tree block_clear_fn;
2889
2890 void
2891 init_block_clear_fn (const char *asmspec)
2892 {
2893 if (!block_clear_fn)
2894 {
2895 tree fn, args;
2896
2897 fn = get_identifier ("memset");
2898 args = build_function_type_list (ptr_type_node, ptr_type_node,
2899 integer_type_node, sizetype,
2900 NULL_TREE);
2901
2902 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2903 DECL_EXTERNAL (fn) = 1;
2904 TREE_PUBLIC (fn) = 1;
2905 DECL_ARTIFICIAL (fn) = 1;
2906 TREE_NOTHROW (fn) = 1;
2907 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2908 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2909
2910 block_clear_fn = fn;
2911 }
2912
2913 if (asmspec)
2914 set_user_assembler_name (block_clear_fn, asmspec);
2915 }
2916
2917 static tree
2918 clear_storage_libcall_fn (int for_call)
2919 {
2920 static bool emitted_extern;
2921
2922 if (!block_clear_fn)
2923 init_block_clear_fn (NULL);
2924
2925 if (for_call && !emitted_extern)
2926 {
2927 emitted_extern = true;
2928 make_decl_rtl (block_clear_fn);
2929 }
2930
2931 return block_clear_fn;
2932 }
2933 \f
2934 /* Expand a setmem pattern; return true if successful. */
2935
2936 bool
2937 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2938 unsigned int expected_align, HOST_WIDE_INT expected_size,
2939 unsigned HOST_WIDE_INT min_size,
2940 unsigned HOST_WIDE_INT max_size,
2941 unsigned HOST_WIDE_INT probable_max_size)
2942 {
2943 /* Try the most limited insn first, because there's no point
2944 including more than one in the machine description unless
2945 the more limited one has some advantage. */
2946
2947 enum machine_mode mode;
2948
2949 if (expected_align < align)
2950 expected_align = align;
2951 if (expected_size != -1)
2952 {
2953 if ((unsigned HOST_WIDE_INT)expected_size > max_size)
2954 expected_size = max_size;
2955 if ((unsigned HOST_WIDE_INT)expected_size < min_size)
2956 expected_size = min_size;
2957 }
2958
2959 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2960 mode = GET_MODE_WIDER_MODE (mode))
2961 {
2962 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2963
2964 if (code != CODE_FOR_nothing
2965 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
2966 here because if SIZE is less than the mode mask, as it is
2967 returned by the macro, it will definitely be less than the
2968 actual mode mask. Since SIZE is within the Pmode address
2969 space, we limit MODE to Pmode. */
2970 && ((CONST_INT_P (size)
2971 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2972 <= (GET_MODE_MASK (mode) >> 1)))
2973 || max_size <= (GET_MODE_MASK (mode) >> 1)
2974 || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
2975 {
2976 struct expand_operand ops[9];
2977 unsigned int nops;
2978
2979 nops = insn_data[(int) code].n_generator_args;
2980 gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
2981
2982 create_fixed_operand (&ops[0], object);
2983 /* The check above guarantees that this size conversion is valid. */
2984 create_convert_operand_to (&ops[1], size, mode, true);
2985 create_convert_operand_from (&ops[2], val, byte_mode, true);
2986 create_integer_operand (&ops[3], align / BITS_PER_UNIT);
2987 if (nops >= 6)
2988 {
2989 create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
2990 create_integer_operand (&ops[5], expected_size);
2991 }
2992 if (nops >= 8)
2993 {
2994 create_integer_operand (&ops[6], min_size);
2995 /* If we can not represent the maximal size,
2996 make parameter NULL. */
2997 if ((HOST_WIDE_INT) max_size != -1)
2998 create_integer_operand (&ops[7], max_size);
2999 else
3000 create_fixed_operand (&ops[7], NULL);
3001 }
3002 if (nops == 9)
3003 {
3004 /* If we can not represent the maximal size,
3005 make parameter NULL. */
3006 if ((HOST_WIDE_INT) probable_max_size != -1)
3007 create_integer_operand (&ops[8], probable_max_size);
3008 else
3009 create_fixed_operand (&ops[8], NULL);
3010 }
3011 if (maybe_expand_insn (code, nops, ops))
3012 return true;
3013 }
3014 }
3015
3016 return false;
3017 }
3018
3019 \f
3020 /* Write to one of the components of the complex value CPLX. Write VAL to
3021 the real part if IMAG_P is false, and the imaginary part if its true. */
3022
3023 static void
3024 write_complex_part (rtx cplx, rtx val, bool imag_p)
3025 {
3026 enum machine_mode cmode;
3027 enum machine_mode imode;
3028 unsigned ibitsize;
3029
3030 if (GET_CODE (cplx) == CONCAT)
3031 {
3032 emit_move_insn (XEXP (cplx, imag_p), val);
3033 return;
3034 }
3035
3036 cmode = GET_MODE (cplx);
3037 imode = GET_MODE_INNER (cmode);
3038 ibitsize = GET_MODE_BITSIZE (imode);
3039
3040 /* For MEMs simplify_gen_subreg may generate an invalid new address
3041 because, e.g., the original address is considered mode-dependent
3042 by the target, which restricts simplify_subreg from invoking
3043 adjust_address_nv. Instead of preparing fallback support for an
3044 invalid address, we call adjust_address_nv directly. */
3045 if (MEM_P (cplx))
3046 {
3047 emit_move_insn (adjust_address_nv (cplx, imode,
3048 imag_p ? GET_MODE_SIZE (imode) : 0),
3049 val);
3050 return;
3051 }
3052
3053 /* If the sub-object is at least word sized, then we know that subregging
3054 will work. This special case is important, since store_bit_field
3055 wants to operate on integer modes, and there's rarely an OImode to
3056 correspond to TCmode. */
3057 if (ibitsize >= BITS_PER_WORD
3058 /* For hard regs we have exact predicates. Assume we can split
3059 the original object if it spans an even number of hard regs.
3060 This special case is important for SCmode on 64-bit platforms
3061 where the natural size of floating-point regs is 32-bit. */
3062 || (REG_P (cplx)
3063 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3064 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3065 {
3066 rtx part = simplify_gen_subreg (imode, cplx, cmode,
3067 imag_p ? GET_MODE_SIZE (imode) : 0);
3068 if (part)
3069 {
3070 emit_move_insn (part, val);
3071 return;
3072 }
3073 else
3074 /* simplify_gen_subreg may fail for sub-word MEMs. */
3075 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3076 }
3077
3078 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val);
3079 }
3080
3081 /* Extract one of the components of the complex value CPLX. Extract the
3082 real part if IMAG_P is false, and the imaginary part if it's true. */
3083
3084 static rtx
3085 read_complex_part (rtx cplx, bool imag_p)
3086 {
3087 enum machine_mode cmode, imode;
3088 unsigned ibitsize;
3089
3090 if (GET_CODE (cplx) == CONCAT)
3091 return XEXP (cplx, imag_p);
3092
3093 cmode = GET_MODE (cplx);
3094 imode = GET_MODE_INNER (cmode);
3095 ibitsize = GET_MODE_BITSIZE (imode);
3096
3097 /* Special case reads from complex constants that got spilled to memory. */
3098 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
3099 {
3100 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
3101 if (decl && TREE_CODE (decl) == COMPLEX_CST)
3102 {
3103 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
3104 if (CONSTANT_CLASS_P (part))
3105 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
3106 }
3107 }
3108
3109 /* For MEMs simplify_gen_subreg may generate an invalid new address
3110 because, e.g., the original address is considered mode-dependent
3111 by the target, which restricts simplify_subreg from invoking
3112 adjust_address_nv. Instead of preparing fallback support for an
3113 invalid address, we call adjust_address_nv directly. */
3114 if (MEM_P (cplx))
3115 return adjust_address_nv (cplx, imode,
3116 imag_p ? GET_MODE_SIZE (imode) : 0);
3117
3118 /* If the sub-object is at least word sized, then we know that subregging
3119 will work. This special case is important, since extract_bit_field
3120 wants to operate on integer modes, and there's rarely an OImode to
3121 correspond to TCmode. */
3122 if (ibitsize >= BITS_PER_WORD
3123 /* For hard regs we have exact predicates. Assume we can split
3124 the original object if it spans an even number of hard regs.
3125 This special case is important for SCmode on 64-bit platforms
3126 where the natural size of floating-point regs is 32-bit. */
3127 || (REG_P (cplx)
3128 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
3129 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
3130 {
3131 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
3132 imag_p ? GET_MODE_SIZE (imode) : 0);
3133 if (ret)
3134 return ret;
3135 else
3136 /* simplify_gen_subreg may fail for sub-word MEMs. */
3137 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
3138 }
3139
3140 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
3141 true, NULL_RTX, imode, imode);
3142 }
3143 \f
3144 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
3145 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
3146 represented in NEW_MODE. If FORCE is true, this will never happen, as
3147 we'll force-create a SUBREG if needed. */
3148
3149 static rtx
3150 emit_move_change_mode (enum machine_mode new_mode,
3151 enum machine_mode old_mode, rtx x, bool force)
3152 {
3153 rtx ret;
3154
3155 if (push_operand (x, GET_MODE (x)))
3156 {
3157 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
3158 MEM_COPY_ATTRIBUTES (ret, x);
3159 }
3160 else if (MEM_P (x))
3161 {
3162 /* We don't have to worry about changing the address since the
3163 size in bytes is supposed to be the same. */
3164 if (reload_in_progress)
3165 {
3166 /* Copy the MEM to change the mode and move any
3167 substitutions from the old MEM to the new one. */
3168 ret = adjust_address_nv (x, new_mode, 0);
3169 copy_replacements (x, ret);
3170 }
3171 else
3172 ret = adjust_address (x, new_mode, 0);
3173 }
3174 else
3175 {
3176 /* Note that we do want simplify_subreg's behavior of validating
3177 that the new mode is ok for a hard register. If we were to use
3178 simplify_gen_subreg, we would create the subreg, but would
3179 probably run into the target not being able to implement it. */
3180 /* Except, of course, when FORCE is true, when this is exactly what
3181 we want. Which is needed for CCmodes on some targets. */
3182 if (force)
3183 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
3184 else
3185 ret = simplify_subreg (new_mode, x, old_mode, 0);
3186 }
3187
3188 return ret;
3189 }
3190
3191 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
3192 an integer mode of the same size as MODE. Returns the instruction
3193 emitted, or NULL if such a move could not be generated. */
3194
3195 static rtx
3196 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3197 {
3198 enum machine_mode imode;
3199 enum insn_code code;
3200
3201 /* There must exist a mode of the exact size we require. */
3202 imode = int_mode_for_mode (mode);
3203 if (imode == BLKmode)
3204 return NULL_RTX;
3205
3206 /* The target must support moves in this mode. */
3207 code = optab_handler (mov_optab, imode);
3208 if (code == CODE_FOR_nothing)
3209 return NULL_RTX;
3210
3211 x = emit_move_change_mode (imode, mode, x, force);
3212 if (x == NULL_RTX)
3213 return NULL_RTX;
3214 y = emit_move_change_mode (imode, mode, y, force);
3215 if (y == NULL_RTX)
3216 return NULL_RTX;
3217 return emit_insn (GEN_FCN (code) (x, y));
3218 }
3219
3220 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3221 Return an equivalent MEM that does not use an auto-increment. */
3222
3223 rtx
3224 emit_move_resolve_push (enum machine_mode mode, rtx x)
3225 {
3226 enum rtx_code code = GET_CODE (XEXP (x, 0));
3227 HOST_WIDE_INT adjust;
3228 rtx temp;
3229
3230 adjust = GET_MODE_SIZE (mode);
3231 #ifdef PUSH_ROUNDING
3232 adjust = PUSH_ROUNDING (adjust);
3233 #endif
3234 if (code == PRE_DEC || code == POST_DEC)
3235 adjust = -adjust;
3236 else if (code == PRE_MODIFY || code == POST_MODIFY)
3237 {
3238 rtx expr = XEXP (XEXP (x, 0), 1);
3239 HOST_WIDE_INT val;
3240
3241 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3242 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3243 val = INTVAL (XEXP (expr, 1));
3244 if (GET_CODE (expr) == MINUS)
3245 val = -val;
3246 gcc_assert (adjust == val || adjust == -val);
3247 adjust = val;
3248 }
3249
3250 /* Do not use anti_adjust_stack, since we don't want to update
3251 stack_pointer_delta. */
3252 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3253 gen_int_mode (adjust, Pmode), stack_pointer_rtx,
3254 0, OPTAB_LIB_WIDEN);
3255 if (temp != stack_pointer_rtx)
3256 emit_move_insn (stack_pointer_rtx, temp);
3257
3258 switch (code)
3259 {
3260 case PRE_INC:
3261 case PRE_DEC:
3262 case PRE_MODIFY:
3263 temp = stack_pointer_rtx;
3264 break;
3265 case POST_INC:
3266 case POST_DEC:
3267 case POST_MODIFY:
3268 temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
3269 break;
3270 default:
3271 gcc_unreachable ();
3272 }
3273
3274 return replace_equiv_address (x, temp);
3275 }
3276
3277 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3278 X is known to satisfy push_operand, and MODE is known to be complex.
3279 Returns the last instruction emitted. */
3280
3281 rtx
3282 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3283 {
3284 enum machine_mode submode = GET_MODE_INNER (mode);
3285 bool imag_first;
3286
3287 #ifdef PUSH_ROUNDING
3288 unsigned int submodesize = GET_MODE_SIZE (submode);
3289
3290 /* In case we output to the stack, but the size is smaller than the
3291 machine can push exactly, we need to use move instructions. */
3292 if (PUSH_ROUNDING (submodesize) != submodesize)
3293 {
3294 x = emit_move_resolve_push (mode, x);
3295 return emit_move_insn (x, y);
3296 }
3297 #endif
3298
3299 /* Note that the real part always precedes the imag part in memory
3300 regardless of machine's endianness. */
3301 switch (GET_CODE (XEXP (x, 0)))
3302 {
3303 case PRE_DEC:
3304 case POST_DEC:
3305 imag_first = true;
3306 break;
3307 case PRE_INC:
3308 case POST_INC:
3309 imag_first = false;
3310 break;
3311 default:
3312 gcc_unreachable ();
3313 }
3314
3315 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3316 read_complex_part (y, imag_first));
3317 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3318 read_complex_part (y, !imag_first));
3319 }
3320
3321 /* A subroutine of emit_move_complex. Perform the move from Y to X
3322 via two moves of the parts. Returns the last instruction emitted. */
3323
3324 rtx
3325 emit_move_complex_parts (rtx x, rtx y)
3326 {
3327 /* Show the output dies here. This is necessary for SUBREGs
3328 of pseudos since we cannot track their lifetimes correctly;
3329 hard regs shouldn't appear here except as return values. */
3330 if (!reload_completed && !reload_in_progress
3331 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3332 emit_clobber (x);
3333
3334 write_complex_part (x, read_complex_part (y, false), false);
3335 write_complex_part (x, read_complex_part (y, true), true);
3336
3337 return get_last_insn ();
3338 }
3339
3340 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3341 MODE is known to be complex. Returns the last instruction emitted. */
3342
3343 static rtx
3344 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3345 {
3346 bool try_int;
3347
3348 /* Need to take special care for pushes, to maintain proper ordering
3349 of the data, and possibly extra padding. */
3350 if (push_operand (x, mode))
3351 return emit_move_complex_push (mode, x, y);
3352
3353 /* See if we can coerce the target into moving both values at once, except
3354 for floating point where we favor moving as parts if this is easy. */
3355 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3356 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
3357 && !(REG_P (x)
3358 && HARD_REGISTER_P (x)
3359 && hard_regno_nregs[REGNO (x)][mode] == 1)
3360 && !(REG_P (y)
3361 && HARD_REGISTER_P (y)
3362 && hard_regno_nregs[REGNO (y)][mode] == 1))
3363 try_int = false;
3364 /* Not possible if the values are inherently not adjacent. */
3365 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3366 try_int = false;
3367 /* Is possible if both are registers (or subregs of registers). */
3368 else if (register_operand (x, mode) && register_operand (y, mode))
3369 try_int = true;
3370 /* If one of the operands is a memory, and alignment constraints
3371 are friendly enough, we may be able to do combined memory operations.
3372 We do not attempt this if Y is a constant because that combination is
3373 usually better with the by-parts thing below. */
3374 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3375 && (!STRICT_ALIGNMENT
3376 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3377 try_int = true;
3378 else
3379 try_int = false;
3380
3381 if (try_int)
3382 {
3383 rtx ret;
3384
3385 /* For memory to memory moves, optimal behavior can be had with the
3386 existing block move logic. */
3387 if (MEM_P (x) && MEM_P (y))
3388 {
3389 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3390 BLOCK_OP_NO_LIBCALL);
3391 return get_last_insn ();
3392 }
3393
3394 ret = emit_move_via_integer (mode, x, y, true);
3395 if (ret)
3396 return ret;
3397 }
3398
3399 return emit_move_complex_parts (x, y);
3400 }
3401
3402 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3403 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3404
3405 static rtx
3406 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3407 {
3408 rtx ret;
3409
3410 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3411 if (mode != CCmode)
3412 {
3413 enum insn_code code = optab_handler (mov_optab, CCmode);
3414 if (code != CODE_FOR_nothing)
3415 {
3416 x = emit_move_change_mode (CCmode, mode, x, true);
3417 y = emit_move_change_mode (CCmode, mode, y, true);
3418 return emit_insn (GEN_FCN (code) (x, y));
3419 }
3420 }
3421
3422 /* Otherwise, find the MODE_INT mode of the same width. */
3423 ret = emit_move_via_integer (mode, x, y, false);
3424 gcc_assert (ret != NULL);
3425 return ret;
3426 }
3427
3428 /* Return true if word I of OP lies entirely in the
3429 undefined bits of a paradoxical subreg. */
3430
3431 static bool
3432 undefined_operand_subword_p (const_rtx op, int i)
3433 {
3434 enum machine_mode innermode, innermostmode;
3435 int offset;
3436 if (GET_CODE (op) != SUBREG)
3437 return false;
3438 innermode = GET_MODE (op);
3439 innermostmode = GET_MODE (SUBREG_REG (op));
3440 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3441 /* The SUBREG_BYTE represents offset, as if the value were stored in
3442 memory, except for a paradoxical subreg where we define
3443 SUBREG_BYTE to be 0; undo this exception as in
3444 simplify_subreg. */
3445 if (SUBREG_BYTE (op) == 0
3446 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3447 {
3448 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3449 if (WORDS_BIG_ENDIAN)
3450 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3451 if (BYTES_BIG_ENDIAN)
3452 offset += difference % UNITS_PER_WORD;
3453 }
3454 if (offset >= GET_MODE_SIZE (innermostmode)
3455 || offset <= -GET_MODE_SIZE (word_mode))
3456 return true;
3457 return false;
3458 }
3459
3460 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3461 MODE is any multi-word or full-word mode that lacks a move_insn
3462 pattern. Note that you will get better code if you define such
3463 patterns, even if they must turn into multiple assembler instructions. */
3464
3465 static rtx
3466 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3467 {
3468 rtx last_insn = 0;
3469 rtx seq, inner;
3470 bool need_clobber;
3471 int i;
3472
3473 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3474
3475 /* If X is a push on the stack, do the push now and replace
3476 X with a reference to the stack pointer. */
3477 if (push_operand (x, mode))
3478 x = emit_move_resolve_push (mode, x);
3479
3480 /* If we are in reload, see if either operand is a MEM whose address
3481 is scheduled for replacement. */
3482 if (reload_in_progress && MEM_P (x)
3483 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3484 x = replace_equiv_address_nv (x, inner);
3485 if (reload_in_progress && MEM_P (y)
3486 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3487 y = replace_equiv_address_nv (y, inner);
3488
3489 start_sequence ();
3490
3491 need_clobber = false;
3492 for (i = 0;
3493 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3494 i++)
3495 {
3496 rtx xpart = operand_subword (x, i, 1, mode);
3497 rtx ypart;
3498
3499 /* Do not generate code for a move if it would come entirely
3500 from the undefined bits of a paradoxical subreg. */
3501 if (undefined_operand_subword_p (y, i))
3502 continue;
3503
3504 ypart = operand_subword (y, i, 1, mode);
3505
3506 /* If we can't get a part of Y, put Y into memory if it is a
3507 constant. Otherwise, force it into a register. Then we must
3508 be able to get a part of Y. */
3509 if (ypart == 0 && CONSTANT_P (y))
3510 {
3511 y = use_anchored_address (force_const_mem (mode, y));
3512 ypart = operand_subword (y, i, 1, mode);
3513 }
3514 else if (ypart == 0)
3515 ypart = operand_subword_force (y, i, mode);
3516
3517 gcc_assert (xpart && ypart);
3518
3519 need_clobber |= (GET_CODE (xpart) == SUBREG);
3520
3521 last_insn = emit_move_insn (xpart, ypart);
3522 }
3523
3524 seq = get_insns ();
3525 end_sequence ();
3526
3527 /* Show the output dies here. This is necessary for SUBREGs
3528 of pseudos since we cannot track their lifetimes correctly;
3529 hard regs shouldn't appear here except as return values.
3530 We never want to emit such a clobber after reload. */
3531 if (x != y
3532 && ! (reload_in_progress || reload_completed)
3533 && need_clobber != 0)
3534 emit_clobber (x);
3535
3536 emit_insn (seq);
3537
3538 return last_insn;
3539 }
3540
3541 /* Low level part of emit_move_insn.
3542 Called just like emit_move_insn, but assumes X and Y
3543 are basically valid. */
3544
3545 rtx
3546 emit_move_insn_1 (rtx x, rtx y)
3547 {
3548 enum machine_mode mode = GET_MODE (x);
3549 enum insn_code code;
3550
3551 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3552
3553 code = optab_handler (mov_optab, mode);
3554 if (code != CODE_FOR_nothing)
3555 return emit_insn (GEN_FCN (code) (x, y));
3556
3557 /* Expand complex moves by moving real part and imag part. */
3558 if (COMPLEX_MODE_P (mode))
3559 return emit_move_complex (mode, x, y);
3560
3561 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3562 || ALL_FIXED_POINT_MODE_P (mode))
3563 {
3564 rtx result = emit_move_via_integer (mode, x, y, true);
3565
3566 /* If we can't find an integer mode, use multi words. */
3567 if (result)
3568 return result;
3569 else
3570 return emit_move_multi_word (mode, x, y);
3571 }
3572
3573 if (GET_MODE_CLASS (mode) == MODE_CC)
3574 return emit_move_ccmode (mode, x, y);
3575
3576 /* Try using a move pattern for the corresponding integer mode. This is
3577 only safe when simplify_subreg can convert MODE constants into integer
3578 constants. At present, it can only do this reliably if the value
3579 fits within a HOST_WIDE_INT. */
3580 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3581 {
3582 rtx ret = emit_move_via_integer (mode, x, y, lra_in_progress);
3583
3584 if (ret)
3585 {
3586 if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
3587 return ret;
3588 }
3589 }
3590
3591 return emit_move_multi_word (mode, x, y);
3592 }
3593
3594 /* Generate code to copy Y into X.
3595 Both Y and X must have the same mode, except that
3596 Y can be a constant with VOIDmode.
3597 This mode cannot be BLKmode; use emit_block_move for that.
3598
3599 Return the last instruction emitted. */
3600
3601 rtx
3602 emit_move_insn (rtx x, rtx y)
3603 {
3604 enum machine_mode mode = GET_MODE (x);
3605 rtx y_cst = NULL_RTX;
3606 rtx last_insn, set;
3607
3608 gcc_assert (mode != BLKmode
3609 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3610
3611 if (CONSTANT_P (y))
3612 {
3613 if (optimize
3614 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3615 && (last_insn = compress_float_constant (x, y)))
3616 return last_insn;
3617
3618 y_cst = y;
3619
3620 if (!targetm.legitimate_constant_p (mode, y))
3621 {
3622 y = force_const_mem (mode, y);
3623
3624 /* If the target's cannot_force_const_mem prevented the spill,
3625 assume that the target's move expanders will also take care
3626 of the non-legitimate constant. */
3627 if (!y)
3628 y = y_cst;
3629 else
3630 y = use_anchored_address (y);
3631 }
3632 }
3633
3634 /* If X or Y are memory references, verify that their addresses are valid
3635 for the machine. */
3636 if (MEM_P (x)
3637 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3638 MEM_ADDR_SPACE (x))
3639 && ! push_operand (x, GET_MODE (x))))
3640 x = validize_mem (x);
3641
3642 if (MEM_P (y)
3643 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3644 MEM_ADDR_SPACE (y)))
3645 y = validize_mem (y);
3646
3647 gcc_assert (mode != BLKmode);
3648
3649 last_insn = emit_move_insn_1 (x, y);
3650
3651 if (y_cst && REG_P (x)
3652 && (set = single_set (last_insn)) != NULL_RTX
3653 && SET_DEST (set) == x
3654 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3655 set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
3656
3657 return last_insn;
3658 }
3659
3660 /* If Y is representable exactly in a narrower mode, and the target can
3661 perform the extension directly from constant or memory, then emit the
3662 move as an extension. */
3663
3664 static rtx
3665 compress_float_constant (rtx x, rtx y)
3666 {
3667 enum machine_mode dstmode = GET_MODE (x);
3668 enum machine_mode orig_srcmode = GET_MODE (y);
3669 enum machine_mode srcmode;
3670 REAL_VALUE_TYPE r;
3671 int oldcost, newcost;
3672 bool speed = optimize_insn_for_speed_p ();
3673
3674 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3675
3676 if (targetm.legitimate_constant_p (dstmode, y))
3677 oldcost = set_src_cost (y, speed);
3678 else
3679 oldcost = set_src_cost (force_const_mem (dstmode, y), speed);
3680
3681 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3682 srcmode != orig_srcmode;
3683 srcmode = GET_MODE_WIDER_MODE (srcmode))
3684 {
3685 enum insn_code ic;
3686 rtx trunc_y, last_insn;
3687
3688 /* Skip if the target can't extend this way. */
3689 ic = can_extend_p (dstmode, srcmode, 0);
3690 if (ic == CODE_FOR_nothing)
3691 continue;
3692
3693 /* Skip if the narrowed value isn't exact. */
3694 if (! exact_real_truncate (srcmode, &r))
3695 continue;
3696
3697 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3698
3699 if (targetm.legitimate_constant_p (srcmode, trunc_y))
3700 {
3701 /* Skip if the target needs extra instructions to perform
3702 the extension. */
3703 if (!insn_operand_matches (ic, 1, trunc_y))
3704 continue;
3705 /* This is valid, but may not be cheaper than the original. */
3706 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3707 speed);
3708 if (oldcost < newcost)
3709 continue;
3710 }
3711 else if (float_extend_from_mem[dstmode][srcmode])
3712 {
3713 trunc_y = force_const_mem (srcmode, trunc_y);
3714 /* This is valid, but may not be cheaper than the original. */
3715 newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
3716 speed);
3717 if (oldcost < newcost)
3718 continue;
3719 trunc_y = validize_mem (trunc_y);
3720 }
3721 else
3722 continue;
3723
3724 /* For CSE's benefit, force the compressed constant pool entry
3725 into a new pseudo. This constant may be used in different modes,
3726 and if not, combine will put things back together for us. */
3727 trunc_y = force_reg (srcmode, trunc_y);
3728
3729 /* If x is a hard register, perform the extension into a pseudo,
3730 so that e.g. stack realignment code is aware of it. */
3731 rtx target = x;
3732 if (REG_P (x) && HARD_REGISTER_P (x))
3733 target = gen_reg_rtx (dstmode);
3734
3735 emit_unop_insn (ic, target, trunc_y, UNKNOWN);
3736 last_insn = get_last_insn ();
3737
3738 if (REG_P (target))
3739 set_unique_reg_note (last_insn, REG_EQUAL, y);
3740
3741 if (target != x)
3742 return emit_move_insn (x, target);
3743 return last_insn;
3744 }
3745
3746 return NULL_RTX;
3747 }
3748 \f
3749 /* Pushing data onto the stack. */
3750
3751 /* Push a block of length SIZE (perhaps variable)
3752 and return an rtx to address the beginning of the block.
3753 The value may be virtual_outgoing_args_rtx.
3754
3755 EXTRA is the number of bytes of padding to push in addition to SIZE.
3756 BELOW nonzero means this padding comes at low addresses;
3757 otherwise, the padding comes at high addresses. */
3758
3759 rtx
3760 push_block (rtx size, int extra, int below)
3761 {
3762 rtx temp;
3763
3764 size = convert_modes (Pmode, ptr_mode, size, 1);
3765 if (CONSTANT_P (size))
3766 anti_adjust_stack (plus_constant (Pmode, size, extra));
3767 else if (REG_P (size) && extra == 0)
3768 anti_adjust_stack (size);
3769 else
3770 {
3771 temp = copy_to_mode_reg (Pmode, size);
3772 if (extra != 0)
3773 temp = expand_binop (Pmode, add_optab, temp,
3774 gen_int_mode (extra, Pmode),
3775 temp, 0, OPTAB_LIB_WIDEN);
3776 anti_adjust_stack (temp);
3777 }
3778
3779 #ifndef STACK_GROWS_DOWNWARD
3780 if (0)
3781 #else
3782 if (1)
3783 #endif
3784 {
3785 temp = virtual_outgoing_args_rtx;
3786 if (extra != 0 && below)
3787 temp = plus_constant (Pmode, temp, extra);
3788 }
3789 else
3790 {
3791 if (CONST_INT_P (size))
3792 temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
3793 -INTVAL (size) - (below ? 0 : extra));
3794 else if (extra != 0 && !below)
3795 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3796 negate_rtx (Pmode, plus_constant (Pmode, size,
3797 extra)));
3798 else
3799 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3800 negate_rtx (Pmode, size));
3801 }
3802
3803 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3804 }
3805
3806 /* A utility routine that returns the base of an auto-inc memory, or NULL. */
3807
3808 static rtx
3809 mem_autoinc_base (rtx mem)
3810 {
3811 if (MEM_P (mem))
3812 {
3813 rtx addr = XEXP (mem, 0);
3814 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
3815 return XEXP (addr, 0);
3816 }
3817 return NULL;
3818 }
3819
3820 /* A utility routine used here, in reload, and in try_split. The insns
3821 after PREV up to and including LAST are known to adjust the stack,
3822 with a final value of END_ARGS_SIZE. Iterate backward from LAST
3823 placing notes as appropriate. PREV may be NULL, indicating the
3824 entire insn sequence prior to LAST should be scanned.
3825
3826 The set of allowed stack pointer modifications is small:
3827 (1) One or more auto-inc style memory references (aka pushes),
3828 (2) One or more addition/subtraction with the SP as destination,
3829 (3) A single move insn with the SP as destination,
3830 (4) A call_pop insn,
3831 (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
3832
3833 Insns in the sequence that do not modify the SP are ignored,
3834 except for noreturn calls.
3835
3836 The return value is the amount of adjustment that can be trivially
3837 verified, via immediate operand or auto-inc. If the adjustment
3838 cannot be trivially extracted, the return value is INT_MIN. */
3839
3840 HOST_WIDE_INT
3841 find_args_size_adjust (rtx insn)
3842 {
3843 rtx dest, set, pat;
3844 int i;
3845
3846 pat = PATTERN (insn);
3847 set = NULL;
3848
3849 /* Look for a call_pop pattern. */
3850 if (CALL_P (insn))
3851 {
3852 /* We have to allow non-call_pop patterns for the case
3853 of emit_single_push_insn of a TLS address. */
3854 if (GET_CODE (pat) != PARALLEL)
3855 return 0;
3856
3857 /* All call_pop have a stack pointer adjust in the parallel.
3858 The call itself is always first, and the stack adjust is
3859 usually last, so search from the end. */
3860 for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
3861 {
3862 set = XVECEXP (pat, 0, i);
3863 if (GET_CODE (set) != SET)
3864 continue;
3865 dest = SET_DEST (set);
3866 if (dest == stack_pointer_rtx)
3867 break;
3868 }
3869 /* We'd better have found the stack pointer adjust. */
3870 if (i == 0)
3871 return 0;
3872 /* Fall through to process the extracted SET and DEST
3873 as if it was a standalone insn. */
3874 }
3875 else if (GET_CODE (pat) == SET)
3876 set = pat;
3877 else if ((set = single_set (insn)) != NULL)
3878 ;
3879 else if (GET_CODE (pat) == PARALLEL)
3880 {
3881 /* ??? Some older ports use a parallel with a stack adjust
3882 and a store for a PUSH_ROUNDING pattern, rather than a
3883 PRE/POST_MODIFY rtx. Don't force them to update yet... */
3884 /* ??? See h8300 and m68k, pushqi1. */
3885 for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
3886 {
3887 set = XVECEXP (pat, 0, i);
3888 if (GET_CODE (set) != SET)
3889 continue;
3890 dest = SET_DEST (set);
3891 if (dest == stack_pointer_rtx)
3892 break;
3893
3894 /* We do not expect an auto-inc of the sp in the parallel. */
3895 gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
3896 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3897 != stack_pointer_rtx);
3898 }
3899 if (i < 0)
3900 return 0;
3901 }
3902 else
3903 return 0;
3904
3905 dest = SET_DEST (set);
3906
3907 /* Look for direct modifications of the stack pointer. */
3908 if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
3909 {
3910 /* Look for a trivial adjustment, otherwise assume nothing. */
3911 /* Note that the SPU restore_stack_block pattern refers to
3912 the stack pointer in V4SImode. Consider that non-trivial. */
3913 if (SCALAR_INT_MODE_P (GET_MODE (dest))
3914 && GET_CODE (SET_SRC (set)) == PLUS
3915 && XEXP (SET_SRC (set), 0) == stack_pointer_rtx
3916 && CONST_INT_P (XEXP (SET_SRC (set), 1)))
3917 return INTVAL (XEXP (SET_SRC (set), 1));
3918 /* ??? Reload can generate no-op moves, which will be cleaned
3919 up later. Recognize it and continue searching. */
3920 else if (rtx_equal_p (dest, SET_SRC (set)))
3921 return 0;
3922 else
3923 return HOST_WIDE_INT_MIN;
3924 }
3925 else
3926 {
3927 rtx mem, addr;
3928
3929 /* Otherwise only think about autoinc patterns. */
3930 if (mem_autoinc_base (dest) == stack_pointer_rtx)
3931 {
3932 mem = dest;
3933 gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
3934 != stack_pointer_rtx);
3935 }
3936 else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
3937 mem = SET_SRC (set);
3938 else
3939 return 0;
3940
3941 addr = XEXP (mem, 0);
3942 switch (GET_CODE (addr))
3943 {
3944 case PRE_INC:
3945 case POST_INC:
3946 return GET_MODE_SIZE (GET_MODE (mem));
3947 case PRE_DEC:
3948 case POST_DEC:
3949 return -GET_MODE_SIZE (GET_MODE (mem));
3950 case PRE_MODIFY:
3951 case POST_MODIFY:
3952 addr = XEXP (addr, 1);
3953 gcc_assert (GET_CODE (addr) == PLUS);
3954 gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
3955 gcc_assert (CONST_INT_P (XEXP (addr, 1)));
3956 return INTVAL (XEXP (addr, 1));
3957 default:
3958 gcc_unreachable ();
3959 }
3960 }
3961 }
3962
3963 int
3964 fixup_args_size_notes (rtx prev, rtx last, int end_args_size)
3965 {
3966 int args_size = end_args_size;
3967 bool saw_unknown = false;
3968 rtx insn;
3969
3970 for (insn = last; insn != prev; insn = PREV_INSN (insn))
3971 {
3972 HOST_WIDE_INT this_delta;
3973
3974 if (!NONDEBUG_INSN_P (insn))
3975 continue;
3976
3977 this_delta = find_args_size_adjust (insn);
3978 if (this_delta == 0)
3979 {
3980 if (!CALL_P (insn)
3981 || ACCUMULATE_OUTGOING_ARGS
3982 || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
3983 continue;
3984 }
3985
3986 gcc_assert (!saw_unknown);
3987 if (this_delta == HOST_WIDE_INT_MIN)
3988 saw_unknown = true;
3989
3990 add_reg_note (insn, REG_ARGS_SIZE, GEN_INT (args_size));
3991 #ifdef STACK_GROWS_DOWNWARD
3992 this_delta = -(unsigned HOST_WIDE_INT) this_delta;
3993 #endif
3994 args_size -= this_delta;
3995 }
3996
3997 return saw_unknown ? INT_MIN : args_size;
3998 }
3999
4000 #ifdef PUSH_ROUNDING
4001 /* Emit single push insn. */
4002
4003 static void
4004 emit_single_push_insn_1 (enum machine_mode mode, rtx x, tree type)
4005 {
4006 rtx dest_addr;
4007 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
4008 rtx dest;
4009 enum insn_code icode;
4010
4011 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
4012 /* If there is push pattern, use it. Otherwise try old way of throwing
4013 MEM representing push operation to move expander. */
4014 icode = optab_handler (push_optab, mode);
4015 if (icode != CODE_FOR_nothing)
4016 {
4017 struct expand_operand ops[1];
4018
4019 create_input_operand (&ops[0], x, mode);
4020 if (maybe_expand_insn (icode, 1, ops))
4021 return;
4022 }
4023 if (GET_MODE_SIZE (mode) == rounded_size)
4024 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
4025 /* If we are to pad downward, adjust the stack pointer first and
4026 then store X into the stack location using an offset. This is
4027 because emit_move_insn does not know how to pad; it does not have
4028 access to type. */
4029 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
4030 {
4031 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
4032 HOST_WIDE_INT offset;
4033
4034 emit_move_insn (stack_pointer_rtx,
4035 expand_binop (Pmode,
4036 #ifdef STACK_GROWS_DOWNWARD
4037 sub_optab,
4038 #else
4039 add_optab,
4040 #endif
4041 stack_pointer_rtx,
4042 gen_int_mode (rounded_size, Pmode),
4043 NULL_RTX, 0, OPTAB_LIB_WIDEN));
4044
4045 offset = (HOST_WIDE_INT) padding_size;
4046 #ifdef STACK_GROWS_DOWNWARD
4047 if (STACK_PUSH_CODE == POST_DEC)
4048 /* We have already decremented the stack pointer, so get the
4049 previous value. */
4050 offset += (HOST_WIDE_INT) rounded_size;
4051 #else
4052 if (STACK_PUSH_CODE == POST_INC)
4053 /* We have already incremented the stack pointer, so get the
4054 previous value. */
4055 offset -= (HOST_WIDE_INT) rounded_size;
4056 #endif
4057 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4058 gen_int_mode (offset, Pmode));
4059 }
4060 else
4061 {
4062 #ifdef STACK_GROWS_DOWNWARD
4063 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
4064 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4065 gen_int_mode (-(HOST_WIDE_INT) rounded_size,
4066 Pmode));
4067 #else
4068 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
4069 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
4070 gen_int_mode (rounded_size, Pmode));
4071 #endif
4072 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
4073 }
4074
4075 dest = gen_rtx_MEM (mode, dest_addr);
4076
4077 if (type != 0)
4078 {
4079 set_mem_attributes (dest, type, 1);
4080
4081 if (cfun->tail_call_marked)
4082 /* Function incoming arguments may overlap with sibling call
4083 outgoing arguments and we cannot allow reordering of reads
4084 from function arguments with stores to outgoing arguments
4085 of sibling calls. */
4086 set_mem_alias_set (dest, 0);
4087 }
4088 emit_move_insn (dest, x);
4089 }
4090
4091 /* Emit and annotate a single push insn. */
4092
4093 static void
4094 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
4095 {
4096 int delta, old_delta = stack_pointer_delta;
4097 rtx prev = get_last_insn ();
4098 rtx last;
4099
4100 emit_single_push_insn_1 (mode, x, type);
4101
4102 last = get_last_insn ();
4103
4104 /* Notice the common case where we emitted exactly one insn. */
4105 if (PREV_INSN (last) == prev)
4106 {
4107 add_reg_note (last, REG_ARGS_SIZE, GEN_INT (stack_pointer_delta));
4108 return;
4109 }
4110
4111 delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
4112 gcc_assert (delta == INT_MIN || delta == old_delta);
4113 }
4114 #endif
4115
4116 /* Generate code to push X onto the stack, assuming it has mode MODE and
4117 type TYPE.
4118 MODE is redundant except when X is a CONST_INT (since they don't
4119 carry mode info).
4120 SIZE is an rtx for the size of data to be copied (in bytes),
4121 needed only if X is BLKmode.
4122
4123 ALIGN (in bits) is maximum alignment we can assume.
4124
4125 If PARTIAL and REG are both nonzero, then copy that many of the first
4126 bytes of X into registers starting with REG, and push the rest of X.
4127 The amount of space pushed is decreased by PARTIAL bytes.
4128 REG must be a hard register in this case.
4129 If REG is zero but PARTIAL is not, take any all others actions for an
4130 argument partially in registers, but do not actually load any
4131 registers.
4132
4133 EXTRA is the amount in bytes of extra space to leave next to this arg.
4134 This is ignored if an argument block has already been allocated.
4135
4136 On a machine that lacks real push insns, ARGS_ADDR is the address of
4137 the bottom of the argument block for this call. We use indexing off there
4138 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
4139 argument block has not been preallocated.
4140
4141 ARGS_SO_FAR is the size of args previously pushed for this call.
4142
4143 REG_PARM_STACK_SPACE is nonzero if functions require stack space
4144 for arguments passed in registers. If nonzero, it will be the number
4145 of bytes required. */
4146
4147 void
4148 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
4149 unsigned int align, int partial, rtx reg, int extra,
4150 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
4151 rtx alignment_pad)
4152 {
4153 rtx xinner;
4154 enum direction stack_direction
4155 #ifdef STACK_GROWS_DOWNWARD
4156 = downward;
4157 #else
4158 = upward;
4159 #endif
4160
4161 /* Decide where to pad the argument: `downward' for below,
4162 `upward' for above, or `none' for don't pad it.
4163 Default is below for small data on big-endian machines; else above. */
4164 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
4165
4166 /* Invert direction if stack is post-decrement.
4167 FIXME: why? */
4168 if (STACK_PUSH_CODE == POST_DEC)
4169 if (where_pad != none)
4170 where_pad = (where_pad == downward ? upward : downward);
4171
4172 xinner = x;
4173
4174 if (mode == BLKmode
4175 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
4176 {
4177 /* Copy a block into the stack, entirely or partially. */
4178
4179 rtx temp;
4180 int used;
4181 int offset;
4182 int skip;
4183
4184 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4185 used = partial - offset;
4186
4187 if (mode != BLKmode)
4188 {
4189 /* A value is to be stored in an insufficiently aligned
4190 stack slot; copy via a suitably aligned slot if
4191 necessary. */
4192 size = GEN_INT (GET_MODE_SIZE (mode));
4193 if (!MEM_P (xinner))
4194 {
4195 temp = assign_temp (type, 1, 1);
4196 emit_move_insn (temp, xinner);
4197 xinner = temp;
4198 }
4199 }
4200
4201 gcc_assert (size);
4202
4203 /* USED is now the # of bytes we need not copy to the stack
4204 because registers will take care of them. */
4205
4206 if (partial != 0)
4207 xinner = adjust_address (xinner, BLKmode, used);
4208
4209 /* If the partial register-part of the arg counts in its stack size,
4210 skip the part of stack space corresponding to the registers.
4211 Otherwise, start copying to the beginning of the stack space,
4212 by setting SKIP to 0. */
4213 skip = (reg_parm_stack_space == 0) ? 0 : used;
4214
4215 #ifdef PUSH_ROUNDING
4216 /* Do it with several push insns if that doesn't take lots of insns
4217 and if there is no difficulty with push insns that skip bytes
4218 on the stack for alignment purposes. */
4219 if (args_addr == 0
4220 && PUSH_ARGS
4221 && CONST_INT_P (size)
4222 && skip == 0
4223 && MEM_ALIGN (xinner) >= align
4224 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
4225 /* Here we avoid the case of a structure whose weak alignment
4226 forces many pushes of a small amount of data,
4227 and such small pushes do rounding that causes trouble. */
4228 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
4229 || align >= BIGGEST_ALIGNMENT
4230 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
4231 == (align / BITS_PER_UNIT)))
4232 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
4233 {
4234 /* Push padding now if padding above and stack grows down,
4235 or if padding below and stack grows up.
4236 But if space already allocated, this has already been done. */
4237 if (extra && args_addr == 0
4238 && where_pad != none && where_pad != stack_direction)
4239 anti_adjust_stack (GEN_INT (extra));
4240
4241 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
4242 }
4243 else
4244 #endif /* PUSH_ROUNDING */
4245 {
4246 rtx target;
4247
4248 /* Otherwise make space on the stack and copy the data
4249 to the address of that space. */
4250
4251 /* Deduct words put into registers from the size we must copy. */
4252 if (partial != 0)
4253 {
4254 if (CONST_INT_P (size))
4255 size = GEN_INT (INTVAL (size) - used);
4256 else
4257 size = expand_binop (GET_MODE (size), sub_optab, size,
4258 gen_int_mode (used, GET_MODE (size)),
4259 NULL_RTX, 0, OPTAB_LIB_WIDEN);
4260 }
4261
4262 /* Get the address of the stack space.
4263 In this case, we do not deal with EXTRA separately.
4264 A single stack adjust will do. */
4265 if (! args_addr)
4266 {
4267 temp = push_block (size, extra, where_pad == downward);
4268 extra = 0;
4269 }
4270 else if (CONST_INT_P (args_so_far))
4271 temp = memory_address (BLKmode,
4272 plus_constant (Pmode, args_addr,
4273 skip + INTVAL (args_so_far)));
4274 else
4275 temp = memory_address (BLKmode,
4276 plus_constant (Pmode,
4277 gen_rtx_PLUS (Pmode,
4278 args_addr,
4279 args_so_far),
4280 skip));
4281
4282 if (!ACCUMULATE_OUTGOING_ARGS)
4283 {
4284 /* If the source is referenced relative to the stack pointer,
4285 copy it to another register to stabilize it. We do not need
4286 to do this if we know that we won't be changing sp. */
4287
4288 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
4289 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
4290 temp = copy_to_reg (temp);
4291 }
4292
4293 target = gen_rtx_MEM (BLKmode, temp);
4294
4295 /* We do *not* set_mem_attributes here, because incoming arguments
4296 may overlap with sibling call outgoing arguments and we cannot
4297 allow reordering of reads from function arguments with stores
4298 to outgoing arguments of sibling calls. We do, however, want
4299 to record the alignment of the stack slot. */
4300 /* ALIGN may well be better aligned than TYPE, e.g. due to
4301 PARM_BOUNDARY. Assume the caller isn't lying. */
4302 set_mem_align (target, align);
4303
4304 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
4305 }
4306 }
4307 else if (partial > 0)
4308 {
4309 /* Scalar partly in registers. */
4310
4311 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4312 int i;
4313 int not_stack;
4314 /* # bytes of start of argument
4315 that we must make space for but need not store. */
4316 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
4317 int args_offset = INTVAL (args_so_far);
4318 int skip;
4319
4320 /* Push padding now if padding above and stack grows down,
4321 or if padding below and stack grows up.
4322 But if space already allocated, this has already been done. */
4323 if (extra && args_addr == 0
4324 && where_pad != none && where_pad != stack_direction)
4325 anti_adjust_stack (GEN_INT (extra));
4326
4327 /* If we make space by pushing it, we might as well push
4328 the real data. Otherwise, we can leave OFFSET nonzero
4329 and leave the space uninitialized. */
4330 if (args_addr == 0)
4331 offset = 0;
4332
4333 /* Now NOT_STACK gets the number of words that we don't need to
4334 allocate on the stack. Convert OFFSET to words too. */
4335 not_stack = (partial - offset) / UNITS_PER_WORD;
4336 offset /= UNITS_PER_WORD;
4337
4338 /* If the partial register-part of the arg counts in its stack size,
4339 skip the part of stack space corresponding to the registers.
4340 Otherwise, start copying to the beginning of the stack space,
4341 by setting SKIP to 0. */
4342 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
4343
4344 if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
4345 x = validize_mem (force_const_mem (mode, x));
4346
4347 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
4348 SUBREGs of such registers are not allowed. */
4349 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4350 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
4351 x = copy_to_reg (x);
4352
4353 /* Loop over all the words allocated on the stack for this arg. */
4354 /* We can do it by words, because any scalar bigger than a word
4355 has a size a multiple of a word. */
4356 #ifndef PUSH_ARGS_REVERSED
4357 for (i = not_stack; i < size; i++)
4358 #else
4359 for (i = size - 1; i >= not_stack; i--)
4360 #endif
4361 if (i >= not_stack + offset)
4362 emit_push_insn (operand_subword_force (x, i, mode),
4363 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
4364 0, args_addr,
4365 GEN_INT (args_offset + ((i - not_stack + skip)
4366 * UNITS_PER_WORD)),
4367 reg_parm_stack_space, alignment_pad);
4368 }
4369 else
4370 {
4371 rtx addr;
4372 rtx dest;
4373
4374 /* Push padding now if padding above and stack grows down,
4375 or if padding below and stack grows up.
4376 But if space already allocated, this has already been done. */
4377 if (extra && args_addr == 0
4378 && where_pad != none && where_pad != stack_direction)
4379 anti_adjust_stack (GEN_INT (extra));
4380
4381 #ifdef PUSH_ROUNDING
4382 if (args_addr == 0 && PUSH_ARGS)
4383 emit_single_push_insn (mode, x, type);
4384 else
4385 #endif
4386 {
4387 if (CONST_INT_P (args_so_far))
4388 addr
4389 = memory_address (mode,
4390 plus_constant (Pmode, args_addr,
4391 INTVAL (args_so_far)));
4392 else
4393 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
4394 args_so_far));
4395 dest = gen_rtx_MEM (mode, addr);
4396
4397 /* We do *not* set_mem_attributes here, because incoming arguments
4398 may overlap with sibling call outgoing arguments and we cannot
4399 allow reordering of reads from function arguments with stores
4400 to outgoing arguments of sibling calls. We do, however, want
4401 to record the alignment of the stack slot. */
4402 /* ALIGN may well be better aligned than TYPE, e.g. due to
4403 PARM_BOUNDARY. Assume the caller isn't lying. */
4404 set_mem_align (dest, align);
4405
4406 emit_move_insn (dest, x);
4407 }
4408 }
4409
4410 /* If part should go in registers, copy that part
4411 into the appropriate registers. Do this now, at the end,
4412 since mem-to-mem copies above may do function calls. */
4413 if (partial > 0 && reg != 0)
4414 {
4415 /* Handle calls that pass values in multiple non-contiguous locations.
4416 The Irix 6 ABI has examples of this. */
4417 if (GET_CODE (reg) == PARALLEL)
4418 emit_group_load (reg, x, type, -1);
4419 else
4420 {
4421 gcc_assert (partial % UNITS_PER_WORD == 0);
4422 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
4423 }
4424 }
4425
4426 if (extra && args_addr == 0 && where_pad == stack_direction)
4427 anti_adjust_stack (GEN_INT (extra));
4428
4429 if (alignment_pad && args_addr == 0)
4430 anti_adjust_stack (alignment_pad);
4431 }
4432 \f
4433 /* Return X if X can be used as a subtarget in a sequence of arithmetic
4434 operations. */
4435
4436 static rtx
4437 get_subtarget (rtx x)
4438 {
4439 return (optimize
4440 || x == 0
4441 /* Only registers can be subtargets. */
4442 || !REG_P (x)
4443 /* Don't use hard regs to avoid extending their life. */
4444 || REGNO (x) < FIRST_PSEUDO_REGISTER
4445 ? 0 : x);
4446 }
4447
4448 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4449 FIELD is a bitfield. Returns true if the optimization was successful,
4450 and there's nothing else to do. */
4451
4452 static bool
4453 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4454 unsigned HOST_WIDE_INT bitpos,
4455 unsigned HOST_WIDE_INT bitregion_start,
4456 unsigned HOST_WIDE_INT bitregion_end,
4457 enum machine_mode mode1, rtx str_rtx,
4458 tree to, tree src)
4459 {
4460 enum machine_mode str_mode = GET_MODE (str_rtx);
4461 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4462 tree op0, op1;
4463 rtx value, result;
4464 optab binop;
4465 gimple srcstmt;
4466 enum tree_code code;
4467
4468 if (mode1 != VOIDmode
4469 || bitsize >= BITS_PER_WORD
4470 || str_bitsize > BITS_PER_WORD
4471 || TREE_SIDE_EFFECTS (to)
4472 || TREE_THIS_VOLATILE (to))
4473 return false;
4474
4475 STRIP_NOPS (src);
4476 if (TREE_CODE (src) != SSA_NAME)
4477 return false;
4478 if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4479 return false;
4480
4481 srcstmt = get_gimple_for_ssa_name (src);
4482 if (!srcstmt
4483 || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
4484 return false;
4485
4486 code = gimple_assign_rhs_code (srcstmt);
4487
4488 op0 = gimple_assign_rhs1 (srcstmt);
4489
4490 /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
4491 to find its initialization. Hopefully the initialization will
4492 be from a bitfield load. */
4493 if (TREE_CODE (op0) == SSA_NAME)
4494 {
4495 gimple op0stmt = get_gimple_for_ssa_name (op0);
4496
4497 /* We want to eventually have OP0 be the same as TO, which
4498 should be a bitfield. */
4499 if (!op0stmt
4500 || !is_gimple_assign (op0stmt)
4501 || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
4502 return false;
4503 op0 = gimple_assign_rhs1 (op0stmt);
4504 }
4505
4506 op1 = gimple_assign_rhs2 (srcstmt);
4507
4508 if (!operand_equal_p (to, op0, 0))
4509 return false;
4510
4511 if (MEM_P (str_rtx))
4512 {
4513 unsigned HOST_WIDE_INT offset1;
4514
4515 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4516 str_mode = word_mode;
4517 str_mode = get_best_mode (bitsize, bitpos,
4518 bitregion_start, bitregion_end,
4519 MEM_ALIGN (str_rtx), str_mode, 0);
4520 if (str_mode == VOIDmode)
4521 return false;
4522 str_bitsize = GET_MODE_BITSIZE (str_mode);
4523
4524 offset1 = bitpos;
4525 bitpos %= str_bitsize;
4526 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4527 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4528 }
4529 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4530 return false;
4531
4532 /* If the bit field covers the whole REG/MEM, store_field
4533 will likely generate better code. */
4534 if (bitsize >= str_bitsize)
4535 return false;
4536
4537 /* We can't handle fields split across multiple entities. */
4538 if (bitpos + bitsize > str_bitsize)
4539 return false;
4540
4541 if (BYTES_BIG_ENDIAN)
4542 bitpos = str_bitsize - bitpos - bitsize;
4543
4544 switch (code)
4545 {
4546 case PLUS_EXPR:
4547 case MINUS_EXPR:
4548 /* For now, just optimize the case of the topmost bitfield
4549 where we don't need to do any masking and also
4550 1 bit bitfields where xor can be used.
4551 We might win by one instruction for the other bitfields
4552 too if insv/extv instructions aren't used, so that
4553 can be added later. */
4554 if (bitpos + bitsize != str_bitsize
4555 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4556 break;
4557
4558 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4559 value = convert_modes (str_mode,
4560 TYPE_MODE (TREE_TYPE (op1)), value,
4561 TYPE_UNSIGNED (TREE_TYPE (op1)));
4562
4563 /* We may be accessing data outside the field, which means
4564 we can alias adjacent data. */
4565 if (MEM_P (str_rtx))
4566 {
4567 str_rtx = shallow_copy_rtx (str_rtx);
4568 set_mem_alias_set (str_rtx, 0);
4569 set_mem_expr (str_rtx, 0);
4570 }
4571
4572 binop = code == PLUS_EXPR ? add_optab : sub_optab;
4573 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4574 {
4575 value = expand_and (str_mode, value, const1_rtx, NULL);
4576 binop = xor_optab;
4577 }
4578 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4579 result = expand_binop (str_mode, binop, str_rtx,
4580 value, str_rtx, 1, OPTAB_WIDEN);
4581 if (result != str_rtx)
4582 emit_move_insn (str_rtx, result);
4583 return true;
4584
4585 case BIT_IOR_EXPR:
4586 case BIT_XOR_EXPR:
4587 if (TREE_CODE (op1) != INTEGER_CST)
4588 break;
4589 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4590 value = convert_modes (str_mode,
4591 TYPE_MODE (TREE_TYPE (op1)), value,
4592 TYPE_UNSIGNED (TREE_TYPE (op1)));
4593
4594 /* We may be accessing data outside the field, which means
4595 we can alias adjacent data. */
4596 if (MEM_P (str_rtx))
4597 {
4598 str_rtx = shallow_copy_rtx (str_rtx);
4599 set_mem_alias_set (str_rtx, 0);
4600 set_mem_expr (str_rtx, 0);
4601 }
4602
4603 binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
4604 if (bitpos + bitsize != str_bitsize)
4605 {
4606 rtx mask = gen_int_mode (((unsigned HOST_WIDE_INT) 1 << bitsize) - 1,
4607 str_mode);
4608 value = expand_and (str_mode, value, mask, NULL_RTX);
4609 }
4610 value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
4611 result = expand_binop (str_mode, binop, str_rtx,
4612 value, str_rtx, 1, OPTAB_WIDEN);
4613 if (result != str_rtx)
4614 emit_move_insn (str_rtx, result);
4615 return true;
4616
4617 default:
4618 break;
4619 }
4620
4621 return false;
4622 }
4623
4624 /* In the C++ memory model, consecutive bit fields in a structure are
4625 considered one memory location.
4626
4627 Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
4628 returns the bit range of consecutive bits in which this COMPONENT_REF
4629 belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
4630 and *OFFSET may be adjusted in the process.
4631
4632 If the access does not need to be restricted, 0 is returned in both
4633 *BITSTART and *BITEND. */
4634
4635 static void
4636 get_bit_range (unsigned HOST_WIDE_INT *bitstart,
4637 unsigned HOST_WIDE_INT *bitend,
4638 tree exp,
4639 HOST_WIDE_INT *bitpos,
4640 tree *offset)
4641 {
4642 HOST_WIDE_INT bitoffset;
4643 tree field, repr;
4644
4645 gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
4646
4647 field = TREE_OPERAND (exp, 1);
4648 repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
4649 /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
4650 need to limit the range we can access. */
4651 if (!repr)
4652 {
4653 *bitstart = *bitend = 0;
4654 return;
4655 }
4656
4657 /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
4658 part of a larger bit field, then the representative does not serve any
4659 useful purpose. This can occur in Ada. */
4660 if (handled_component_p (TREE_OPERAND (exp, 0)))
4661 {
4662 enum machine_mode rmode;
4663 HOST_WIDE_INT rbitsize, rbitpos;
4664 tree roffset;
4665 int unsignedp;
4666 int volatilep = 0;
4667 get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
4668 &roffset, &rmode, &unsignedp, &volatilep, false);
4669 if ((rbitpos % BITS_PER_UNIT) != 0)
4670 {
4671 *bitstart = *bitend = 0;
4672 return;
4673 }
4674 }
4675
4676 /* Compute the adjustment to bitpos from the offset of the field
4677 relative to the representative. DECL_FIELD_OFFSET of field and
4678 repr are the same by construction if they are not constants,
4679 see finish_bitfield_layout. */
4680 if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field))
4681 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr)))
4682 bitoffset = (tree_to_uhwi (DECL_FIELD_OFFSET (field))
4683 - tree_to_uhwi (DECL_FIELD_OFFSET (repr))) * BITS_PER_UNIT;
4684 else
4685 bitoffset = 0;
4686 bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
4687 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
4688
4689 /* If the adjustment is larger than bitpos, we would have a negative bit
4690 position for the lower bound and this may wreak havoc later. Adjust
4691 offset and bitpos to make the lower bound non-negative in that case. */
4692 if (bitoffset > *bitpos)
4693 {
4694 HOST_WIDE_INT adjust = bitoffset - *bitpos;
4695 gcc_assert ((adjust % BITS_PER_UNIT) == 0);
4696
4697 *bitpos += adjust;
4698 if (*offset == NULL_TREE)
4699 *offset = size_int (-adjust / BITS_PER_UNIT);
4700 else
4701 *offset
4702 = size_binop (MINUS_EXPR, *offset, size_int (adjust / BITS_PER_UNIT));
4703 *bitstart = 0;
4704 }
4705 else
4706 *bitstart = *bitpos - bitoffset;
4707
4708 *bitend = *bitstart + tree_to_uhwi (DECL_SIZE (repr)) - 1;
4709 }
4710
4711 /* Returns true if ADDR is an ADDR_EXPR of a DECL that does not reside
4712 in memory and has non-BLKmode. DECL_RTL must not be a MEM; if
4713 DECL_RTL was not set yet, return NORTL. */
4714
4715 static inline bool
4716 addr_expr_of_non_mem_decl_p_1 (tree addr, bool nortl)
4717 {
4718 if (TREE_CODE (addr) != ADDR_EXPR)
4719 return false;
4720
4721 tree base = TREE_OPERAND (addr, 0);
4722
4723 if (!DECL_P (base)
4724 || TREE_ADDRESSABLE (base)
4725 || DECL_MODE (base) == BLKmode)
4726 return false;
4727
4728 if (!DECL_RTL_SET_P (base))
4729 return nortl;
4730
4731 return (!MEM_P (DECL_RTL (base)));
4732 }
4733
4734 /* Returns true if the MEM_REF REF refers to an object that does not
4735 reside in memory and has non-BLKmode. */
4736
4737 static inline bool
4738 mem_ref_refers_to_non_mem_p (tree ref)
4739 {
4740 tree base = TREE_OPERAND (ref, 0);
4741 return addr_expr_of_non_mem_decl_p_1 (base, false);
4742 }
4743
4744 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4745 is true, try generating a nontemporal store. */
4746
4747 void
4748 expand_assignment (tree to, tree from, bool nontemporal)
4749 {
4750 rtx to_rtx = 0;
4751 rtx result;
4752 enum machine_mode mode;
4753 unsigned int align;
4754 enum insn_code icode;
4755
4756 /* Don't crash if the lhs of the assignment was erroneous. */
4757 if (TREE_CODE (to) == ERROR_MARK)
4758 {
4759 expand_normal (from);
4760 return;
4761 }
4762
4763 /* Optimize away no-op moves without side-effects. */
4764 if (operand_equal_p (to, from, 0))
4765 return;
4766
4767 /* Handle misaligned stores. */
4768 mode = TYPE_MODE (TREE_TYPE (to));
4769 if ((TREE_CODE (to) == MEM_REF
4770 || TREE_CODE (to) == TARGET_MEM_REF)
4771 && mode != BLKmode
4772 && !mem_ref_refers_to_non_mem_p (to)
4773 && ((align = get_object_alignment (to))
4774 < GET_MODE_ALIGNMENT (mode))
4775 && (((icode = optab_handler (movmisalign_optab, mode))
4776 != CODE_FOR_nothing)
4777 || SLOW_UNALIGNED_ACCESS (mode, align)))
4778 {
4779 rtx reg, mem;
4780
4781 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4782 reg = force_not_mem (reg);
4783 mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4784
4785 if (icode != CODE_FOR_nothing)
4786 {
4787 struct expand_operand ops[2];
4788
4789 create_fixed_operand (&ops[0], mem);
4790 create_input_operand (&ops[1], reg, mode);
4791 /* The movmisalign<mode> pattern cannot fail, else the assignment
4792 would silently be omitted. */
4793 expand_insn (icode, 2, ops);
4794 }
4795 else
4796 store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg);
4797 return;
4798 }
4799
4800 /* Assignment of a structure component needs special treatment
4801 if the structure component's rtx is not simply a MEM.
4802 Assignment of an array element at a constant index, and assignment of
4803 an array element in an unaligned packed structure field, has the same
4804 problem. Same for (partially) storing into a non-memory object. */
4805 if (handled_component_p (to)
4806 || (TREE_CODE (to) == MEM_REF
4807 && mem_ref_refers_to_non_mem_p (to))
4808 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4809 {
4810 enum machine_mode mode1;
4811 HOST_WIDE_INT bitsize, bitpos;
4812 unsigned HOST_WIDE_INT bitregion_start = 0;
4813 unsigned HOST_WIDE_INT bitregion_end = 0;
4814 tree offset;
4815 int unsignedp;
4816 int volatilep = 0;
4817 tree tem;
4818
4819 push_temp_slots ();
4820 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4821 &unsignedp, &volatilep, true);
4822
4823 /* Make sure bitpos is not negative, it can wreak havoc later. */
4824 if (bitpos < 0)
4825 {
4826 gcc_assert (offset == NULL_TREE);
4827 offset = size_int (bitpos >> (BITS_PER_UNIT == 8
4828 ? 3 : exact_log2 (BITS_PER_UNIT)));
4829 bitpos &= BITS_PER_UNIT - 1;
4830 }
4831
4832 if (TREE_CODE (to) == COMPONENT_REF
4833 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
4834 get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
4835 /* The C++ memory model naturally applies to byte-aligned fields.
4836 However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
4837 BITSIZE are not byte-aligned, there is no need to limit the range
4838 we can access. This can occur with packed structures in Ada. */
4839 else if (bitsize > 0
4840 && bitsize % BITS_PER_UNIT == 0
4841 && bitpos % BITS_PER_UNIT == 0)
4842 {
4843 bitregion_start = bitpos;
4844 bitregion_end = bitpos + bitsize - 1;
4845 }
4846
4847 to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
4848
4849 /* If the field has a mode, we want to access it in the
4850 field's mode, not the computed mode.
4851 If a MEM has VOIDmode (external with incomplete type),
4852 use BLKmode for it instead. */
4853 if (MEM_P (to_rtx))
4854 {
4855 if (mode1 != VOIDmode)
4856 to_rtx = adjust_address (to_rtx, mode1, 0);
4857 else if (GET_MODE (to_rtx) == VOIDmode)
4858 to_rtx = adjust_address (to_rtx, BLKmode, 0);
4859 }
4860
4861 if (offset != 0)
4862 {
4863 enum machine_mode address_mode;
4864 rtx offset_rtx;
4865
4866 if (!MEM_P (to_rtx))
4867 {
4868 /* We can get constant negative offsets into arrays with broken
4869 user code. Translate this to a trap instead of ICEing. */
4870 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4871 expand_builtin_trap ();
4872 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4873 }
4874
4875 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4876 address_mode = get_address_mode (to_rtx);
4877 if (GET_MODE (offset_rtx) != address_mode)
4878 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4879
4880 /* The check for a constant address in TO_RTX not having VOIDmode
4881 is probably no longer necessary. */
4882 if (MEM_P (to_rtx)
4883 && GET_MODE (to_rtx) == BLKmode
4884 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4885 && bitsize > 0
4886 && (bitpos % bitsize) == 0
4887 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4888 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4889 {
4890 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4891 bitregion_start = 0;
4892 if (bitregion_end >= (unsigned HOST_WIDE_INT) bitpos)
4893 bitregion_end -= bitpos;
4894 bitpos = 0;
4895 }
4896
4897 to_rtx = offset_address (to_rtx, offset_rtx,
4898 highest_pow2_factor_for_target (to,
4899 offset));
4900 }
4901
4902 /* No action is needed if the target is not a memory and the field
4903 lies completely outside that target. This can occur if the source
4904 code contains an out-of-bounds access to a small array. */
4905 if (!MEM_P (to_rtx)
4906 && GET_MODE (to_rtx) != BLKmode
4907 && (unsigned HOST_WIDE_INT) bitpos
4908 >= GET_MODE_PRECISION (GET_MODE (to_rtx)))
4909 {
4910 expand_normal (from);
4911 result = NULL;
4912 }
4913 /* Handle expand_expr of a complex value returning a CONCAT. */
4914 else if (GET_CODE (to_rtx) == CONCAT)
4915 {
4916 unsigned short mode_bitsize = GET_MODE_BITSIZE (GET_MODE (to_rtx));
4917 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from)))
4918 && bitpos == 0
4919 && bitsize == mode_bitsize)
4920 result = store_expr (from, to_rtx, false, nontemporal);
4921 else if (bitsize == mode_bitsize / 2
4922 && (bitpos == 0 || bitpos == mode_bitsize / 2))
4923 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4924 nontemporal);
4925 else if (bitpos + bitsize <= mode_bitsize / 2)
4926 result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
4927 bitregion_start, bitregion_end,
4928 mode1, from,
4929 get_alias_set (to), nontemporal);
4930 else if (bitpos >= mode_bitsize / 2)
4931 result = store_field (XEXP (to_rtx, 1), bitsize,
4932 bitpos - mode_bitsize / 2,
4933 bitregion_start, bitregion_end,
4934 mode1, from,
4935 get_alias_set (to), nontemporal);
4936 else if (bitpos == 0 && bitsize == mode_bitsize)
4937 {
4938 rtx from_rtx;
4939 result = expand_normal (from);
4940 from_rtx = simplify_gen_subreg (GET_MODE (to_rtx), result,
4941 TYPE_MODE (TREE_TYPE (from)), 0);
4942 emit_move_insn (XEXP (to_rtx, 0),
4943 read_complex_part (from_rtx, false));
4944 emit_move_insn (XEXP (to_rtx, 1),
4945 read_complex_part (from_rtx, true));
4946 }
4947 else
4948 {
4949 rtx temp = assign_stack_temp (GET_MODE (to_rtx),
4950 GET_MODE_SIZE (GET_MODE (to_rtx)));
4951 write_complex_part (temp, XEXP (to_rtx, 0), false);
4952 write_complex_part (temp, XEXP (to_rtx, 1), true);
4953 result = store_field (temp, bitsize, bitpos,
4954 bitregion_start, bitregion_end,
4955 mode1, from,
4956 get_alias_set (to), nontemporal);
4957 emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
4958 emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
4959 }
4960 }
4961 else
4962 {
4963 if (MEM_P (to_rtx))
4964 {
4965 /* If the field is at offset zero, we could have been given the
4966 DECL_RTX of the parent struct. Don't munge it. */
4967 to_rtx = shallow_copy_rtx (to_rtx);
4968 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4969 if (volatilep)
4970 MEM_VOLATILE_P (to_rtx) = 1;
4971 }
4972
4973 if (optimize_bitfield_assignment_op (bitsize, bitpos,
4974 bitregion_start, bitregion_end,
4975 mode1,
4976 to_rtx, to, from))
4977 result = NULL;
4978 else
4979 result = store_field (to_rtx, bitsize, bitpos,
4980 bitregion_start, bitregion_end,
4981 mode1, from,
4982 get_alias_set (to), nontemporal);
4983 }
4984
4985 if (result)
4986 preserve_temp_slots (result);
4987 pop_temp_slots ();
4988 return;
4989 }
4990
4991 /* If the rhs is a function call and its value is not an aggregate,
4992 call the function before we start to compute the lhs.
4993 This is needed for correct code for cases such as
4994 val = setjmp (buf) on machines where reference to val
4995 requires loading up part of an address in a separate insn.
4996
4997 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4998 since it might be a promoted variable where the zero- or sign- extension
4999 needs to be done. Handling this in the normal way is safe because no
5000 computation is done before the call. The same is true for SSA names. */
5001 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
5002 && COMPLETE_TYPE_P (TREE_TYPE (from))
5003 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
5004 && ! (((TREE_CODE (to) == VAR_DECL
5005 || TREE_CODE (to) == PARM_DECL
5006 || TREE_CODE (to) == RESULT_DECL)
5007 && REG_P (DECL_RTL (to)))
5008 || TREE_CODE (to) == SSA_NAME))
5009 {
5010 rtx value;
5011
5012 push_temp_slots ();
5013 value = expand_normal (from);
5014 if (to_rtx == 0)
5015 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5016
5017 /* Handle calls that return values in multiple non-contiguous locations.
5018 The Irix 6 ABI has examples of this. */
5019 if (GET_CODE (to_rtx) == PARALLEL)
5020 {
5021 if (GET_CODE (value) == PARALLEL)
5022 emit_group_move (to_rtx, value);
5023 else
5024 emit_group_load (to_rtx, value, TREE_TYPE (from),
5025 int_size_in_bytes (TREE_TYPE (from)));
5026 }
5027 else if (GET_CODE (value) == PARALLEL)
5028 emit_group_store (to_rtx, value, TREE_TYPE (from),
5029 int_size_in_bytes (TREE_TYPE (from)));
5030 else if (GET_MODE (to_rtx) == BLKmode)
5031 {
5032 /* Handle calls that return BLKmode values in registers. */
5033 if (REG_P (value))
5034 copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
5035 else
5036 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
5037 }
5038 else
5039 {
5040 if (POINTER_TYPE_P (TREE_TYPE (to)))
5041 value = convert_memory_address_addr_space
5042 (GET_MODE (to_rtx), value,
5043 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
5044
5045 emit_move_insn (to_rtx, value);
5046 }
5047 preserve_temp_slots (to_rtx);
5048 pop_temp_slots ();
5049 return;
5050 }
5051
5052 /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
5053 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
5054
5055 /* Don't move directly into a return register. */
5056 if (TREE_CODE (to) == RESULT_DECL
5057 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
5058 {
5059 rtx temp;
5060
5061 push_temp_slots ();
5062
5063 /* If the source is itself a return value, it still is in a pseudo at
5064 this point so we can move it back to the return register directly. */
5065 if (REG_P (to_rtx)
5066 && TYPE_MODE (TREE_TYPE (from)) == BLKmode
5067 && TREE_CODE (from) != CALL_EXPR)
5068 temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
5069 else
5070 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
5071
5072 /* Handle calls that return values in multiple non-contiguous locations.
5073 The Irix 6 ABI has examples of this. */
5074 if (GET_CODE (to_rtx) == PARALLEL)
5075 {
5076 if (GET_CODE (temp) == PARALLEL)
5077 emit_group_move (to_rtx, temp);
5078 else
5079 emit_group_load (to_rtx, temp, TREE_TYPE (from),
5080 int_size_in_bytes (TREE_TYPE (from)));
5081 }
5082 else if (temp)
5083 emit_move_insn (to_rtx, temp);
5084
5085 preserve_temp_slots (to_rtx);
5086 pop_temp_slots ();
5087 return;
5088 }
5089
5090 /* In case we are returning the contents of an object which overlaps
5091 the place the value is being stored, use a safe function when copying
5092 a value through a pointer into a structure value return block. */
5093 if (TREE_CODE (to) == RESULT_DECL
5094 && TREE_CODE (from) == INDIRECT_REF
5095 && ADDR_SPACE_GENERIC_P
5096 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
5097 && refs_may_alias_p (to, from)
5098 && cfun->returns_struct
5099 && !cfun->returns_pcc_struct)
5100 {
5101 rtx from_rtx, size;
5102
5103 push_temp_slots ();
5104 size = expr_size (from);
5105 from_rtx = expand_normal (from);
5106
5107 emit_library_call (memmove_libfunc, LCT_NORMAL,
5108 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
5109 XEXP (from_rtx, 0), Pmode,
5110 convert_to_mode (TYPE_MODE (sizetype),
5111 size, TYPE_UNSIGNED (sizetype)),
5112 TYPE_MODE (sizetype));
5113
5114 preserve_temp_slots (to_rtx);
5115 pop_temp_slots ();
5116 return;
5117 }
5118
5119 /* Compute FROM and store the value in the rtx we got. */
5120
5121 push_temp_slots ();
5122 result = store_expr (from, to_rtx, 0, nontemporal);
5123 preserve_temp_slots (result);
5124 pop_temp_slots ();
5125 return;
5126 }
5127
5128 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
5129 succeeded, false otherwise. */
5130
5131 bool
5132 emit_storent_insn (rtx to, rtx from)
5133 {
5134 struct expand_operand ops[2];
5135 enum machine_mode mode = GET_MODE (to);
5136 enum insn_code code = optab_handler (storent_optab, mode);
5137
5138 if (code == CODE_FOR_nothing)
5139 return false;
5140
5141 create_fixed_operand (&ops[0], to);
5142 create_input_operand (&ops[1], from, mode);
5143 return maybe_expand_insn (code, 2, ops);
5144 }
5145
5146 /* Generate code for computing expression EXP,
5147 and storing the value into TARGET.
5148
5149 If the mode is BLKmode then we may return TARGET itself.
5150 It turns out that in BLKmode it doesn't cause a problem.
5151 because C has no operators that could combine two different
5152 assignments into the same BLKmode object with different values
5153 with no sequence point. Will other languages need this to
5154 be more thorough?
5155
5156 If CALL_PARAM_P is nonzero, this is a store into a call param on the
5157 stack, and block moves may need to be treated specially.
5158
5159 If NONTEMPORAL is true, try using a nontemporal store instruction. */
5160
5161 rtx
5162 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
5163 {
5164 rtx temp;
5165 rtx alt_rtl = NULL_RTX;
5166 location_t loc = curr_insn_location ();
5167
5168 if (VOID_TYPE_P (TREE_TYPE (exp)))
5169 {
5170 /* C++ can generate ?: expressions with a throw expression in one
5171 branch and an rvalue in the other. Here, we resolve attempts to
5172 store the throw expression's nonexistent result. */
5173 gcc_assert (!call_param_p);
5174 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5175 return NULL_RTX;
5176 }
5177 if (TREE_CODE (exp) == COMPOUND_EXPR)
5178 {
5179 /* Perform first part of compound expression, then assign from second
5180 part. */
5181 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
5182 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5183 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5184 nontemporal);
5185 }
5186 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
5187 {
5188 /* For conditional expression, get safe form of the target. Then
5189 test the condition, doing the appropriate assignment on either
5190 side. This avoids the creation of unnecessary temporaries.
5191 For non-BLKmode, it is more efficient not to do this. */
5192
5193 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
5194
5195 do_pending_stack_adjust ();
5196 NO_DEFER_POP;
5197 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
5198 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
5199 nontemporal);
5200 emit_jump_insn (gen_jump (lab2));
5201 emit_barrier ();
5202 emit_label (lab1);
5203 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
5204 nontemporal);
5205 emit_label (lab2);
5206 OK_DEFER_POP;
5207
5208 return NULL_RTX;
5209 }
5210 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
5211 /* If this is a scalar in a register that is stored in a wider mode
5212 than the declared mode, compute the result into its declared mode
5213 and then convert to the wider mode. Our value is the computed
5214 expression. */
5215 {
5216 rtx inner_target = 0;
5217
5218 /* We can do the conversion inside EXP, which will often result
5219 in some optimizations. Do the conversion in two steps: first
5220 change the signedness, if needed, then the extend. But don't
5221 do this if the type of EXP is a subtype of something else
5222 since then the conversion might involve more than just
5223 converting modes. */
5224 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
5225 && TREE_TYPE (TREE_TYPE (exp)) == 0
5226 && GET_MODE_PRECISION (GET_MODE (target))
5227 == TYPE_PRECISION (TREE_TYPE (exp)))
5228 {
5229 if (TYPE_UNSIGNED (TREE_TYPE (exp))
5230 != SUBREG_PROMOTED_UNSIGNED_P (target))
5231 {
5232 /* Some types, e.g. Fortran's logical*4, won't have a signed
5233 version, so use the mode instead. */
5234 tree ntype
5235 = (signed_or_unsigned_type_for
5236 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
5237 if (ntype == NULL)
5238 ntype = lang_hooks.types.type_for_mode
5239 (TYPE_MODE (TREE_TYPE (exp)),
5240 SUBREG_PROMOTED_UNSIGNED_P (target));
5241
5242 exp = fold_convert_loc (loc, ntype, exp);
5243 }
5244
5245 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
5246 (GET_MODE (SUBREG_REG (target)),
5247 SUBREG_PROMOTED_UNSIGNED_P (target)),
5248 exp);
5249
5250 inner_target = SUBREG_REG (target);
5251 }
5252
5253 temp = expand_expr (exp, inner_target, VOIDmode,
5254 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
5255
5256 /* If TEMP is a VOIDmode constant, use convert_modes to make
5257 sure that we properly convert it. */
5258 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
5259 {
5260 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5261 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
5262 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
5263 GET_MODE (target), temp,
5264 SUBREG_PROMOTED_UNSIGNED_P (target));
5265 }
5266
5267 convert_move (SUBREG_REG (target), temp,
5268 SUBREG_PROMOTED_UNSIGNED_P (target));
5269
5270 return NULL_RTX;
5271 }
5272 else if ((TREE_CODE (exp) == STRING_CST
5273 || (TREE_CODE (exp) == MEM_REF
5274 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5275 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5276 == STRING_CST
5277 && integer_zerop (TREE_OPERAND (exp, 1))))
5278 && !nontemporal && !call_param_p
5279 && MEM_P (target))
5280 {
5281 /* Optimize initialization of an array with a STRING_CST. */
5282 HOST_WIDE_INT exp_len, str_copy_len;
5283 rtx dest_mem;
5284 tree str = TREE_CODE (exp) == STRING_CST
5285 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
5286
5287 exp_len = int_expr_size (exp);
5288 if (exp_len <= 0)
5289 goto normal_expr;
5290
5291 if (TREE_STRING_LENGTH (str) <= 0)
5292 goto normal_expr;
5293
5294 str_copy_len = strlen (TREE_STRING_POINTER (str));
5295 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
5296 goto normal_expr;
5297
5298 str_copy_len = TREE_STRING_LENGTH (str);
5299 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
5300 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
5301 {
5302 str_copy_len += STORE_MAX_PIECES - 1;
5303 str_copy_len &= ~(STORE_MAX_PIECES - 1);
5304 }
5305 str_copy_len = MIN (str_copy_len, exp_len);
5306 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
5307 CONST_CAST (char *, TREE_STRING_POINTER (str)),
5308 MEM_ALIGN (target), false))
5309 goto normal_expr;
5310
5311 dest_mem = target;
5312
5313 dest_mem = store_by_pieces (dest_mem,
5314 str_copy_len, builtin_strncpy_read_str,
5315 CONST_CAST (char *,
5316 TREE_STRING_POINTER (str)),
5317 MEM_ALIGN (target), false,
5318 exp_len > str_copy_len ? 1 : 0);
5319 if (exp_len > str_copy_len)
5320 clear_storage (adjust_address (dest_mem, BLKmode, 0),
5321 GEN_INT (exp_len - str_copy_len),
5322 BLOCK_OP_NORMAL);
5323 return NULL_RTX;
5324 }
5325 else
5326 {
5327 rtx tmp_target;
5328
5329 normal_expr:
5330 /* If we want to use a nontemporal store, force the value to
5331 register first. */
5332 tmp_target = nontemporal ? NULL_RTX : target;
5333 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
5334 (call_param_p
5335 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
5336 &alt_rtl, false);
5337 }
5338
5339 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
5340 the same as that of TARGET, adjust the constant. This is needed, for
5341 example, in case it is a CONST_DOUBLE and we want only a word-sized
5342 value. */
5343 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
5344 && TREE_CODE (exp) != ERROR_MARK
5345 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
5346 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
5347 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5348
5349 /* If value was not generated in the target, store it there.
5350 Convert the value to TARGET's type first if necessary and emit the
5351 pending incrementations that have been queued when expanding EXP.
5352 Note that we cannot emit the whole queue blindly because this will
5353 effectively disable the POST_INC optimization later.
5354
5355 If TEMP and TARGET compare equal according to rtx_equal_p, but
5356 one or both of them are volatile memory refs, we have to distinguish
5357 two cases:
5358 - expand_expr has used TARGET. In this case, we must not generate
5359 another copy. This can be detected by TARGET being equal according
5360 to == .
5361 - expand_expr has not used TARGET - that means that the source just
5362 happens to have the same RTX form. Since temp will have been created
5363 by expand_expr, it will compare unequal according to == .
5364 We must generate a copy in this case, to reach the correct number
5365 of volatile memory references. */
5366
5367 if ((! rtx_equal_p (temp, target)
5368 || (temp != target && (side_effects_p (temp)
5369 || side_effects_p (target))))
5370 && TREE_CODE (exp) != ERROR_MARK
5371 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
5372 but TARGET is not valid memory reference, TEMP will differ
5373 from TARGET although it is really the same location. */
5374 && !(alt_rtl
5375 && rtx_equal_p (alt_rtl, target)
5376 && !side_effects_p (alt_rtl)
5377 && !side_effects_p (target))
5378 /* If there's nothing to copy, don't bother. Don't call
5379 expr_size unless necessary, because some front-ends (C++)
5380 expr_size-hook must not be given objects that are not
5381 supposed to be bit-copied or bit-initialized. */
5382 && expr_size (exp) != const0_rtx)
5383 {
5384 if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
5385 {
5386 if (GET_MODE (target) == BLKmode)
5387 {
5388 /* Handle calls that return BLKmode values in registers. */
5389 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
5390 copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
5391 else
5392 store_bit_field (target,
5393 INTVAL (expr_size (exp)) * BITS_PER_UNIT,
5394 0, 0, 0, GET_MODE (temp), temp);
5395 }
5396 else
5397 convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
5398 }
5399
5400 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
5401 {
5402 /* Handle copying a string constant into an array. The string
5403 constant may be shorter than the array. So copy just the string's
5404 actual length, and clear the rest. First get the size of the data
5405 type of the string, which is actually the size of the target. */
5406 rtx size = expr_size (exp);
5407
5408 if (CONST_INT_P (size)
5409 && INTVAL (size) < TREE_STRING_LENGTH (exp))
5410 emit_block_move (target, temp, size,
5411 (call_param_p
5412 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5413 else
5414 {
5415 enum machine_mode pointer_mode
5416 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
5417 enum machine_mode address_mode = get_address_mode (target);
5418
5419 /* Compute the size of the data to copy from the string. */
5420 tree copy_size
5421 = size_binop_loc (loc, MIN_EXPR,
5422 make_tree (sizetype, size),
5423 size_int (TREE_STRING_LENGTH (exp)));
5424 rtx copy_size_rtx
5425 = expand_expr (copy_size, NULL_RTX, VOIDmode,
5426 (call_param_p
5427 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
5428 rtx label = 0;
5429
5430 /* Copy that much. */
5431 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
5432 TYPE_UNSIGNED (sizetype));
5433 emit_block_move (target, temp, copy_size_rtx,
5434 (call_param_p
5435 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5436
5437 /* Figure out how much is left in TARGET that we have to clear.
5438 Do all calculations in pointer_mode. */
5439 if (CONST_INT_P (copy_size_rtx))
5440 {
5441 size = plus_constant (address_mode, size,
5442 -INTVAL (copy_size_rtx));
5443 target = adjust_address (target, BLKmode,
5444 INTVAL (copy_size_rtx));
5445 }
5446 else
5447 {
5448 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
5449 copy_size_rtx, NULL_RTX, 0,
5450 OPTAB_LIB_WIDEN);
5451
5452 if (GET_MODE (copy_size_rtx) != address_mode)
5453 copy_size_rtx = convert_to_mode (address_mode,
5454 copy_size_rtx,
5455 TYPE_UNSIGNED (sizetype));
5456
5457 target = offset_address (target, copy_size_rtx,
5458 highest_pow2_factor (copy_size));
5459 label = gen_label_rtx ();
5460 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
5461 GET_MODE (size), 0, label);
5462 }
5463
5464 if (size != const0_rtx)
5465 clear_storage (target, size, BLOCK_OP_NORMAL);
5466
5467 if (label)
5468 emit_label (label);
5469 }
5470 }
5471 /* Handle calls that return values in multiple non-contiguous locations.
5472 The Irix 6 ABI has examples of this. */
5473 else if (GET_CODE (target) == PARALLEL)
5474 {
5475 if (GET_CODE (temp) == PARALLEL)
5476 emit_group_move (target, temp);
5477 else
5478 emit_group_load (target, temp, TREE_TYPE (exp),
5479 int_size_in_bytes (TREE_TYPE (exp)));
5480 }
5481 else if (GET_CODE (temp) == PARALLEL)
5482 emit_group_store (target, temp, TREE_TYPE (exp),
5483 int_size_in_bytes (TREE_TYPE (exp)));
5484 else if (GET_MODE (temp) == BLKmode)
5485 emit_block_move (target, temp, expr_size (exp),
5486 (call_param_p
5487 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
5488 /* If we emit a nontemporal store, there is nothing else to do. */
5489 else if (nontemporal && emit_storent_insn (target, temp))
5490 ;
5491 else
5492 {
5493 temp = force_operand (temp, target);
5494 if (temp != target)
5495 emit_move_insn (target, temp);
5496 }
5497 }
5498
5499 return NULL_RTX;
5500 }
5501 \f
5502 /* Return true if field F of structure TYPE is a flexible array. */
5503
5504 static bool
5505 flexible_array_member_p (const_tree f, const_tree type)
5506 {
5507 const_tree tf;
5508
5509 tf = TREE_TYPE (f);
5510 return (DECL_CHAIN (f) == NULL
5511 && TREE_CODE (tf) == ARRAY_TYPE
5512 && TYPE_DOMAIN (tf)
5513 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5514 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5515 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5516 && int_size_in_bytes (type) >= 0);
5517 }
5518
5519 /* If FOR_CTOR_P, return the number of top-level elements that a constructor
5520 must have in order for it to completely initialize a value of type TYPE.
5521 Return -1 if the number isn't known.
5522
5523 If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
5524
5525 static HOST_WIDE_INT
5526 count_type_elements (const_tree type, bool for_ctor_p)
5527 {
5528 switch (TREE_CODE (type))
5529 {
5530 case ARRAY_TYPE:
5531 {
5532 tree nelts;
5533
5534 nelts = array_type_nelts (type);
5535 if (nelts && tree_fits_uhwi_p (nelts))
5536 {
5537 unsigned HOST_WIDE_INT n;
5538
5539 n = tree_to_uhwi (nelts) + 1;
5540 if (n == 0 || for_ctor_p)
5541 return n;
5542 else
5543 return n * count_type_elements (TREE_TYPE (type), false);
5544 }
5545 return for_ctor_p ? -1 : 1;
5546 }
5547
5548 case RECORD_TYPE:
5549 {
5550 unsigned HOST_WIDE_INT n;
5551 tree f;
5552
5553 n = 0;
5554 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5555 if (TREE_CODE (f) == FIELD_DECL)
5556 {
5557 if (!for_ctor_p)
5558 n += count_type_elements (TREE_TYPE (f), false);
5559 else if (!flexible_array_member_p (f, type))
5560 /* Don't count flexible arrays, which are not supposed
5561 to be initialized. */
5562 n += 1;
5563 }
5564
5565 return n;
5566 }
5567
5568 case UNION_TYPE:
5569 case QUAL_UNION_TYPE:
5570 {
5571 tree f;
5572 HOST_WIDE_INT n, m;
5573
5574 gcc_assert (!for_ctor_p);
5575 /* Estimate the number of scalars in each field and pick the
5576 maximum. Other estimates would do instead; the idea is simply
5577 to make sure that the estimate is not sensitive to the ordering
5578 of the fields. */
5579 n = 1;
5580 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5581 if (TREE_CODE (f) == FIELD_DECL)
5582 {
5583 m = count_type_elements (TREE_TYPE (f), false);
5584 /* If the field doesn't span the whole union, add an extra
5585 scalar for the rest. */
5586 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
5587 TYPE_SIZE (type)) != 1)
5588 m++;
5589 if (n < m)
5590 n = m;
5591 }
5592 return n;
5593 }
5594
5595 case COMPLEX_TYPE:
5596 return 2;
5597
5598 case VECTOR_TYPE:
5599 return TYPE_VECTOR_SUBPARTS (type);
5600
5601 case INTEGER_TYPE:
5602 case REAL_TYPE:
5603 case FIXED_POINT_TYPE:
5604 case ENUMERAL_TYPE:
5605 case BOOLEAN_TYPE:
5606 case POINTER_TYPE:
5607 case OFFSET_TYPE:
5608 case REFERENCE_TYPE:
5609 case NULLPTR_TYPE:
5610 return 1;
5611
5612 case ERROR_MARK:
5613 return 0;
5614
5615 case VOID_TYPE:
5616 case METHOD_TYPE:
5617 case FUNCTION_TYPE:
5618 case LANG_TYPE:
5619 default:
5620 gcc_unreachable ();
5621 }
5622 }
5623
5624 /* Helper for categorize_ctor_elements. Identical interface. */
5625
5626 static bool
5627 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5628 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5629 {
5630 unsigned HOST_WIDE_INT idx;
5631 HOST_WIDE_INT nz_elts, init_elts, num_fields;
5632 tree value, purpose, elt_type;
5633
5634 /* Whether CTOR is a valid constant initializer, in accordance with what
5635 initializer_constant_valid_p does. If inferred from the constructor
5636 elements, true until proven otherwise. */
5637 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
5638 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
5639
5640 nz_elts = 0;
5641 init_elts = 0;
5642 num_fields = 0;
5643 elt_type = NULL_TREE;
5644
5645 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
5646 {
5647 HOST_WIDE_INT mult = 1;
5648
5649 if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
5650 {
5651 tree lo_index = TREE_OPERAND (purpose, 0);
5652 tree hi_index = TREE_OPERAND (purpose, 1);
5653
5654 if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
5655 mult = (tree_to_uhwi (hi_index)
5656 - tree_to_uhwi (lo_index) + 1);
5657 }
5658 num_fields += mult;
5659 elt_type = TREE_TYPE (value);
5660
5661 switch (TREE_CODE (value))
5662 {
5663 case CONSTRUCTOR:
5664 {
5665 HOST_WIDE_INT nz = 0, ic = 0;
5666
5667 bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &ic,
5668 p_complete);
5669
5670 nz_elts += mult * nz;
5671 init_elts += mult * ic;
5672
5673 if (const_from_elts_p && const_p)
5674 const_p = const_elt_p;
5675 }
5676 break;
5677
5678 case INTEGER_CST:
5679 case REAL_CST:
5680 case FIXED_CST:
5681 if (!initializer_zerop (value))
5682 nz_elts += mult;
5683 init_elts += mult;
5684 break;
5685
5686 case STRING_CST:
5687 nz_elts += mult * TREE_STRING_LENGTH (value);
5688 init_elts += mult * TREE_STRING_LENGTH (value);
5689 break;
5690
5691 case COMPLEX_CST:
5692 if (!initializer_zerop (TREE_REALPART (value)))
5693 nz_elts += mult;
5694 if (!initializer_zerop (TREE_IMAGPART (value)))
5695 nz_elts += mult;
5696 init_elts += mult;
5697 break;
5698
5699 case VECTOR_CST:
5700 {
5701 unsigned i;
5702 for (i = 0; i < VECTOR_CST_NELTS (value); ++i)
5703 {
5704 tree v = VECTOR_CST_ELT (value, i);
5705 if (!initializer_zerop (v))
5706 nz_elts += mult;
5707 init_elts += mult;
5708 }
5709 }
5710 break;
5711
5712 default:
5713 {
5714 HOST_WIDE_INT tc = count_type_elements (elt_type, false);
5715 nz_elts += mult * tc;
5716 init_elts += mult * tc;
5717
5718 if (const_from_elts_p && const_p)
5719 const_p = initializer_constant_valid_p (value, elt_type)
5720 != NULL_TREE;
5721 }
5722 break;
5723 }
5724 }
5725
5726 if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
5727 num_fields, elt_type))
5728 *p_complete = false;
5729
5730 *p_nz_elts += nz_elts;
5731 *p_init_elts += init_elts;
5732
5733 return const_p;
5734 }
5735
5736 /* Examine CTOR to discover:
5737 * how many scalar fields are set to nonzero values,
5738 and place it in *P_NZ_ELTS;
5739 * how many scalar fields in total are in CTOR,
5740 and place it in *P_ELT_COUNT.
5741 * whether the constructor is complete -- in the sense that every
5742 meaningful byte is explicitly given a value --
5743 and place it in *P_COMPLETE.
5744
5745 Return whether or not CTOR is a valid static constant initializer, the same
5746 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5747
5748 bool
5749 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5750 HOST_WIDE_INT *p_init_elts, bool *p_complete)
5751 {
5752 *p_nz_elts = 0;
5753 *p_init_elts = 0;
5754 *p_complete = true;
5755
5756 return categorize_ctor_elements_1 (ctor, p_nz_elts, p_init_elts, p_complete);
5757 }
5758
5759 /* TYPE is initialized by a constructor with NUM_ELTS elements, the last
5760 of which had type LAST_TYPE. Each element was itself a complete
5761 initializer, in the sense that every meaningful byte was explicitly
5762 given a value. Return true if the same is true for the constructor
5763 as a whole. */
5764
5765 bool
5766 complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
5767 const_tree last_type)
5768 {
5769 if (TREE_CODE (type) == UNION_TYPE
5770 || TREE_CODE (type) == QUAL_UNION_TYPE)
5771 {
5772 if (num_elts == 0)
5773 return false;
5774
5775 gcc_assert (num_elts == 1 && last_type);
5776
5777 /* ??? We could look at each element of the union, and find the
5778 largest element. Which would avoid comparing the size of the
5779 initialized element against any tail padding in the union.
5780 Doesn't seem worth the effort... */
5781 return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
5782 }
5783
5784 return count_type_elements (type, true) == num_elts;
5785 }
5786
5787 /* Return 1 if EXP contains mostly (3/4) zeros. */
5788
5789 static int
5790 mostly_zeros_p (const_tree exp)
5791 {
5792 if (TREE_CODE (exp) == CONSTRUCTOR)
5793 {
5794 HOST_WIDE_INT nz_elts, init_elts;
5795 bool complete_p;
5796
5797 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5798 return !complete_p || nz_elts < init_elts / 4;
5799 }
5800
5801 return initializer_zerop (exp);
5802 }
5803
5804 /* Return 1 if EXP contains all zeros. */
5805
5806 static int
5807 all_zeros_p (const_tree exp)
5808 {
5809 if (TREE_CODE (exp) == CONSTRUCTOR)
5810 {
5811 HOST_WIDE_INT nz_elts, init_elts;
5812 bool complete_p;
5813
5814 categorize_ctor_elements (exp, &nz_elts, &init_elts, &complete_p);
5815 return nz_elts == 0;
5816 }
5817
5818 return initializer_zerop (exp);
5819 }
5820 \f
5821 /* Helper function for store_constructor.
5822 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5823 CLEARED is as for store_constructor.
5824 ALIAS_SET is the alias set to use for any stores.
5825
5826 This provides a recursive shortcut back to store_constructor when it isn't
5827 necessary to go through store_field. This is so that we can pass through
5828 the cleared field to let store_constructor know that we may not have to
5829 clear a substructure if the outer structure has already been cleared. */
5830
5831 static void
5832 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5833 HOST_WIDE_INT bitpos, enum machine_mode mode,
5834 tree exp, int cleared, alias_set_type alias_set)
5835 {
5836 if (TREE_CODE (exp) == CONSTRUCTOR
5837 /* We can only call store_constructor recursively if the size and
5838 bit position are on a byte boundary. */
5839 && bitpos % BITS_PER_UNIT == 0
5840 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5841 /* If we have a nonzero bitpos for a register target, then we just
5842 let store_field do the bitfield handling. This is unlikely to
5843 generate unnecessary clear instructions anyways. */
5844 && (bitpos == 0 || MEM_P (target)))
5845 {
5846 if (MEM_P (target))
5847 target
5848 = adjust_address (target,
5849 GET_MODE (target) == BLKmode
5850 || 0 != (bitpos
5851 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5852 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5853
5854
5855 /* Update the alias set, if required. */
5856 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5857 && MEM_ALIAS_SET (target) != 0)
5858 {
5859 target = copy_rtx (target);
5860 set_mem_alias_set (target, alias_set);
5861 }
5862
5863 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5864 }
5865 else
5866 store_field (target, bitsize, bitpos, 0, 0, mode, exp, alias_set, false);
5867 }
5868
5869
5870 /* Returns the number of FIELD_DECLs in TYPE. */
5871
5872 static int
5873 fields_length (const_tree type)
5874 {
5875 tree t = TYPE_FIELDS (type);
5876 int count = 0;
5877
5878 for (; t; t = DECL_CHAIN (t))
5879 if (TREE_CODE (t) == FIELD_DECL)
5880 ++count;
5881
5882 return count;
5883 }
5884
5885
5886 /* Store the value of constructor EXP into the rtx TARGET.
5887 TARGET is either a REG or a MEM; we know it cannot conflict, since
5888 safe_from_p has been called.
5889 CLEARED is true if TARGET is known to have been zero'd.
5890 SIZE is the number of bytes of TARGET we are allowed to modify: this
5891 may not be the same as the size of EXP if we are assigning to a field
5892 which has been packed to exclude padding bits. */
5893
5894 static void
5895 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5896 {
5897 tree type = TREE_TYPE (exp);
5898 #ifdef WORD_REGISTER_OPERATIONS
5899 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5900 #endif
5901
5902 switch (TREE_CODE (type))
5903 {
5904 case RECORD_TYPE:
5905 case UNION_TYPE:
5906 case QUAL_UNION_TYPE:
5907 {
5908 unsigned HOST_WIDE_INT idx;
5909 tree field, value;
5910
5911 /* If size is zero or the target is already cleared, do nothing. */
5912 if (size == 0 || cleared)
5913 cleared = 1;
5914 /* We either clear the aggregate or indicate the value is dead. */
5915 else if ((TREE_CODE (type) == UNION_TYPE
5916 || TREE_CODE (type) == QUAL_UNION_TYPE)
5917 && ! CONSTRUCTOR_ELTS (exp))
5918 /* If the constructor is empty, clear the union. */
5919 {
5920 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5921 cleared = 1;
5922 }
5923
5924 /* If we are building a static constructor into a register,
5925 set the initial value as zero so we can fold the value into
5926 a constant. But if more than one register is involved,
5927 this probably loses. */
5928 else if (REG_P (target) && TREE_STATIC (exp)
5929 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5930 {
5931 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5932 cleared = 1;
5933 }
5934
5935 /* If the constructor has fewer fields than the structure or
5936 if we are initializing the structure to mostly zeros, clear
5937 the whole structure first. Don't do this if TARGET is a
5938 register whose mode size isn't equal to SIZE since
5939 clear_storage can't handle this case. */
5940 else if (size > 0
5941 && (((int)vec_safe_length (CONSTRUCTOR_ELTS (exp))
5942 != fields_length (type))
5943 || mostly_zeros_p (exp))
5944 && (!REG_P (target)
5945 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5946 == size)))
5947 {
5948 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5949 cleared = 1;
5950 }
5951
5952 if (REG_P (target) && !cleared)
5953 emit_clobber (target);
5954
5955 /* Store each element of the constructor into the
5956 corresponding field of TARGET. */
5957 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5958 {
5959 enum machine_mode mode;
5960 HOST_WIDE_INT bitsize;
5961 HOST_WIDE_INT bitpos = 0;
5962 tree offset;
5963 rtx to_rtx = target;
5964
5965 /* Just ignore missing fields. We cleared the whole
5966 structure, above, if any fields are missing. */
5967 if (field == 0)
5968 continue;
5969
5970 if (cleared && initializer_zerop (value))
5971 continue;
5972
5973 if (tree_fits_uhwi_p (DECL_SIZE (field)))
5974 bitsize = tree_to_uhwi (DECL_SIZE (field));
5975 else
5976 bitsize = -1;
5977
5978 mode = DECL_MODE (field);
5979 if (DECL_BIT_FIELD (field))
5980 mode = VOIDmode;
5981
5982 offset = DECL_FIELD_OFFSET (field);
5983 if (tree_fits_shwi_p (offset)
5984 && tree_fits_shwi_p (bit_position (field)))
5985 {
5986 bitpos = int_bit_position (field);
5987 offset = 0;
5988 }
5989 else
5990 bitpos = tree_to_shwi (DECL_FIELD_BIT_OFFSET (field));
5991
5992 if (offset)
5993 {
5994 enum machine_mode address_mode;
5995 rtx offset_rtx;
5996
5997 offset
5998 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5999 make_tree (TREE_TYPE (exp),
6000 target));
6001
6002 offset_rtx = expand_normal (offset);
6003 gcc_assert (MEM_P (to_rtx));
6004
6005 address_mode = get_address_mode (to_rtx);
6006 if (GET_MODE (offset_rtx) != address_mode)
6007 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
6008
6009 to_rtx = offset_address (to_rtx, offset_rtx,
6010 highest_pow2_factor (offset));
6011 }
6012
6013 #ifdef WORD_REGISTER_OPERATIONS
6014 /* If this initializes a field that is smaller than a
6015 word, at the start of a word, try to widen it to a full
6016 word. This special case allows us to output C++ member
6017 function initializations in a form that the optimizers
6018 can understand. */
6019 if (REG_P (target)
6020 && bitsize < BITS_PER_WORD
6021 && bitpos % BITS_PER_WORD == 0
6022 && GET_MODE_CLASS (mode) == MODE_INT
6023 && TREE_CODE (value) == INTEGER_CST
6024 && exp_size >= 0
6025 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
6026 {
6027 tree type = TREE_TYPE (value);
6028
6029 if (TYPE_PRECISION (type) < BITS_PER_WORD)
6030 {
6031 type = lang_hooks.types.type_for_mode
6032 (word_mode, TYPE_UNSIGNED (type));
6033 value = fold_convert (type, value);
6034 }
6035
6036 if (BYTES_BIG_ENDIAN)
6037 value
6038 = fold_build2 (LSHIFT_EXPR, type, value,
6039 build_int_cst (type,
6040 BITS_PER_WORD - bitsize));
6041 bitsize = BITS_PER_WORD;
6042 mode = word_mode;
6043 }
6044 #endif
6045
6046 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
6047 && DECL_NONADDRESSABLE_P (field))
6048 {
6049 to_rtx = copy_rtx (to_rtx);
6050 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
6051 }
6052
6053 store_constructor_field (to_rtx, bitsize, bitpos, mode,
6054 value, cleared,
6055 get_alias_set (TREE_TYPE (field)));
6056 }
6057 break;
6058 }
6059 case ARRAY_TYPE:
6060 {
6061 tree value, index;
6062 unsigned HOST_WIDE_INT i;
6063 int need_to_clear;
6064 tree domain;
6065 tree elttype = TREE_TYPE (type);
6066 int const_bounds_p;
6067 HOST_WIDE_INT minelt = 0;
6068 HOST_WIDE_INT maxelt = 0;
6069
6070 domain = TYPE_DOMAIN (type);
6071 const_bounds_p = (TYPE_MIN_VALUE (domain)
6072 && TYPE_MAX_VALUE (domain)
6073 && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
6074 && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
6075
6076 /* If we have constant bounds for the range of the type, get them. */
6077 if (const_bounds_p)
6078 {
6079 minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
6080 maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
6081 }
6082
6083 /* If the constructor has fewer elements than the array, clear
6084 the whole array first. Similarly if this is static
6085 constructor of a non-BLKmode object. */
6086 if (cleared)
6087 need_to_clear = 0;
6088 else if (REG_P (target) && TREE_STATIC (exp))
6089 need_to_clear = 1;
6090 else
6091 {
6092 unsigned HOST_WIDE_INT idx;
6093 tree index, value;
6094 HOST_WIDE_INT count = 0, zero_count = 0;
6095 need_to_clear = ! const_bounds_p;
6096
6097 /* This loop is a more accurate version of the loop in
6098 mostly_zeros_p (it handles RANGE_EXPR in an index). It
6099 is also needed to check for missing elements. */
6100 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
6101 {
6102 HOST_WIDE_INT this_node_count;
6103
6104 if (need_to_clear)
6105 break;
6106
6107 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6108 {
6109 tree lo_index = TREE_OPERAND (index, 0);
6110 tree hi_index = TREE_OPERAND (index, 1);
6111
6112 if (! tree_fits_uhwi_p (lo_index)
6113 || ! tree_fits_uhwi_p (hi_index))
6114 {
6115 need_to_clear = 1;
6116 break;
6117 }
6118
6119 this_node_count = (tree_to_uhwi (hi_index)
6120 - tree_to_uhwi (lo_index) + 1);
6121 }
6122 else
6123 this_node_count = 1;
6124
6125 count += this_node_count;
6126 if (mostly_zeros_p (value))
6127 zero_count += this_node_count;
6128 }
6129
6130 /* Clear the entire array first if there are any missing
6131 elements, or if the incidence of zero elements is >=
6132 75%. */
6133 if (! need_to_clear
6134 && (count < maxelt - minelt + 1
6135 || 4 * zero_count >= 3 * count))
6136 need_to_clear = 1;
6137 }
6138
6139 if (need_to_clear && size > 0)
6140 {
6141 if (REG_P (target))
6142 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6143 else
6144 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6145 cleared = 1;
6146 }
6147
6148 if (!cleared && REG_P (target))
6149 /* Inform later passes that the old value is dead. */
6150 emit_clobber (target);
6151
6152 /* Store each element of the constructor into the
6153 corresponding element of TARGET, determined by counting the
6154 elements. */
6155 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
6156 {
6157 enum machine_mode mode;
6158 HOST_WIDE_INT bitsize;
6159 HOST_WIDE_INT bitpos;
6160 rtx xtarget = target;
6161
6162 if (cleared && initializer_zerop (value))
6163 continue;
6164
6165 mode = TYPE_MODE (elttype);
6166 if (mode == BLKmode)
6167 bitsize = (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6168 ? tree_to_uhwi (TYPE_SIZE (elttype))
6169 : -1);
6170 else
6171 bitsize = GET_MODE_BITSIZE (mode);
6172
6173 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
6174 {
6175 tree lo_index = TREE_OPERAND (index, 0);
6176 tree hi_index = TREE_OPERAND (index, 1);
6177 rtx index_r, pos_rtx;
6178 HOST_WIDE_INT lo, hi, count;
6179 tree position;
6180
6181 /* If the range is constant and "small", unroll the loop. */
6182 if (const_bounds_p
6183 && tree_fits_shwi_p (lo_index)
6184 && tree_fits_shwi_p (hi_index)
6185 && (lo = tree_to_shwi (lo_index),
6186 hi = tree_to_shwi (hi_index),
6187 count = hi - lo + 1,
6188 (!MEM_P (target)
6189 || count <= 2
6190 || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
6191 && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
6192 <= 40 * 8)))))
6193 {
6194 lo -= minelt; hi -= minelt;
6195 for (; lo <= hi; lo++)
6196 {
6197 bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
6198
6199 if (MEM_P (target)
6200 && !MEM_KEEP_ALIAS_SET_P (target)
6201 && TREE_CODE (type) == ARRAY_TYPE
6202 && TYPE_NONALIASED_COMPONENT (type))
6203 {
6204 target = copy_rtx (target);
6205 MEM_KEEP_ALIAS_SET_P (target) = 1;
6206 }
6207
6208 store_constructor_field
6209 (target, bitsize, bitpos, mode, value, cleared,
6210 get_alias_set (elttype));
6211 }
6212 }
6213 else
6214 {
6215 rtx loop_start = gen_label_rtx ();
6216 rtx loop_end = gen_label_rtx ();
6217 tree exit_cond;
6218
6219 expand_normal (hi_index);
6220
6221 index = build_decl (EXPR_LOCATION (exp),
6222 VAR_DECL, NULL_TREE, domain);
6223 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
6224 SET_DECL_RTL (index, index_r);
6225 store_expr (lo_index, index_r, 0, false);
6226
6227 /* Build the head of the loop. */
6228 do_pending_stack_adjust ();
6229 emit_label (loop_start);
6230
6231 /* Assign value to element index. */
6232 position =
6233 fold_convert (ssizetype,
6234 fold_build2 (MINUS_EXPR,
6235 TREE_TYPE (index),
6236 index,
6237 TYPE_MIN_VALUE (domain)));
6238
6239 position =
6240 size_binop (MULT_EXPR, position,
6241 fold_convert (ssizetype,
6242 TYPE_SIZE_UNIT (elttype)));
6243
6244 pos_rtx = expand_normal (position);
6245 xtarget = offset_address (target, pos_rtx,
6246 highest_pow2_factor (position));
6247 xtarget = adjust_address (xtarget, mode, 0);
6248 if (TREE_CODE (value) == CONSTRUCTOR)
6249 store_constructor (value, xtarget, cleared,
6250 bitsize / BITS_PER_UNIT);
6251 else
6252 store_expr (value, xtarget, 0, false);
6253
6254 /* Generate a conditional jump to exit the loop. */
6255 exit_cond = build2 (LT_EXPR, integer_type_node,
6256 index, hi_index);
6257 jumpif (exit_cond, loop_end, -1);
6258
6259 /* Update the loop counter, and jump to the head of
6260 the loop. */
6261 expand_assignment (index,
6262 build2 (PLUS_EXPR, TREE_TYPE (index),
6263 index, integer_one_node),
6264 false);
6265
6266 emit_jump (loop_start);
6267
6268 /* Build the end of the loop. */
6269 emit_label (loop_end);
6270 }
6271 }
6272 else if ((index != 0 && ! tree_fits_shwi_p (index))
6273 || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
6274 {
6275 tree position;
6276
6277 if (index == 0)
6278 index = ssize_int (1);
6279
6280 if (minelt)
6281 index = fold_convert (ssizetype,
6282 fold_build2 (MINUS_EXPR,
6283 TREE_TYPE (index),
6284 index,
6285 TYPE_MIN_VALUE (domain)));
6286
6287 position =
6288 size_binop (MULT_EXPR, index,
6289 fold_convert (ssizetype,
6290 TYPE_SIZE_UNIT (elttype)));
6291 xtarget = offset_address (target,
6292 expand_normal (position),
6293 highest_pow2_factor (position));
6294 xtarget = adjust_address (xtarget, mode, 0);
6295 store_expr (value, xtarget, 0, false);
6296 }
6297 else
6298 {
6299 if (index != 0)
6300 bitpos = ((tree_to_shwi (index) - minelt)
6301 * tree_to_uhwi (TYPE_SIZE (elttype)));
6302 else
6303 bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
6304
6305 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
6306 && TREE_CODE (type) == ARRAY_TYPE
6307 && TYPE_NONALIASED_COMPONENT (type))
6308 {
6309 target = copy_rtx (target);
6310 MEM_KEEP_ALIAS_SET_P (target) = 1;
6311 }
6312 store_constructor_field (target, bitsize, bitpos, mode, value,
6313 cleared, get_alias_set (elttype));
6314 }
6315 }
6316 break;
6317 }
6318
6319 case VECTOR_TYPE:
6320 {
6321 unsigned HOST_WIDE_INT idx;
6322 constructor_elt *ce;
6323 int i;
6324 int need_to_clear;
6325 int icode = CODE_FOR_nothing;
6326 tree elttype = TREE_TYPE (type);
6327 int elt_size = tree_to_uhwi (TYPE_SIZE (elttype));
6328 enum machine_mode eltmode = TYPE_MODE (elttype);
6329 HOST_WIDE_INT bitsize;
6330 HOST_WIDE_INT bitpos;
6331 rtvec vector = NULL;
6332 unsigned n_elts;
6333 alias_set_type alias;
6334
6335 gcc_assert (eltmode != BLKmode);
6336
6337 n_elts = TYPE_VECTOR_SUBPARTS (type);
6338 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
6339 {
6340 enum machine_mode mode = GET_MODE (target);
6341
6342 icode = (int) optab_handler (vec_init_optab, mode);
6343 /* Don't use vec_init<mode> if some elements have VECTOR_TYPE. */
6344 if (icode != CODE_FOR_nothing)
6345 {
6346 tree value;
6347
6348 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6349 if (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE)
6350 {
6351 icode = CODE_FOR_nothing;
6352 break;
6353 }
6354 }
6355 if (icode != CODE_FOR_nothing)
6356 {
6357 unsigned int i;
6358
6359 vector = rtvec_alloc (n_elts);
6360 for (i = 0; i < n_elts; i++)
6361 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
6362 }
6363 }
6364
6365 /* If the constructor has fewer elements than the vector,
6366 clear the whole array first. Similarly if this is static
6367 constructor of a non-BLKmode object. */
6368 if (cleared)
6369 need_to_clear = 0;
6370 else if (REG_P (target) && TREE_STATIC (exp))
6371 need_to_clear = 1;
6372 else
6373 {
6374 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
6375 tree value;
6376
6377 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
6378 {
6379 int n_elts_here = tree_to_uhwi
6380 (int_const_binop (TRUNC_DIV_EXPR,
6381 TYPE_SIZE (TREE_TYPE (value)),
6382 TYPE_SIZE (elttype)));
6383
6384 count += n_elts_here;
6385 if (mostly_zeros_p (value))
6386 zero_count += n_elts_here;
6387 }
6388
6389 /* Clear the entire vector first if there are any missing elements,
6390 or if the incidence of zero elements is >= 75%. */
6391 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
6392 }
6393
6394 if (need_to_clear && size > 0 && !vector)
6395 {
6396 if (REG_P (target))
6397 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6398 else
6399 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
6400 cleared = 1;
6401 }
6402
6403 /* Inform later passes that the old value is dead. */
6404 if (!cleared && !vector && REG_P (target))
6405 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
6406
6407 if (MEM_P (target))
6408 alias = MEM_ALIAS_SET (target);
6409 else
6410 alias = get_alias_set (elttype);
6411
6412 /* Store each element of the constructor into the corresponding
6413 element of TARGET, determined by counting the elements. */
6414 for (idx = 0, i = 0;
6415 vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
6416 idx++, i += bitsize / elt_size)
6417 {
6418 HOST_WIDE_INT eltpos;
6419 tree value = ce->value;
6420
6421 bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (value)));
6422 if (cleared && initializer_zerop (value))
6423 continue;
6424
6425 if (ce->index)
6426 eltpos = tree_to_uhwi (ce->index);
6427 else
6428 eltpos = i;
6429
6430 if (vector)
6431 {
6432 /* vec_init<mode> should not be used if there are VECTOR_TYPE
6433 elements. */
6434 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
6435 RTVEC_ELT (vector, eltpos)
6436 = expand_normal (value);
6437 }
6438 else
6439 {
6440 enum machine_mode value_mode =
6441 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
6442 ? TYPE_MODE (TREE_TYPE (value))
6443 : eltmode;
6444 bitpos = eltpos * elt_size;
6445 store_constructor_field (target, bitsize, bitpos, value_mode,
6446 value, cleared, alias);
6447 }
6448 }
6449
6450 if (vector)
6451 emit_insn (GEN_FCN (icode)
6452 (target,
6453 gen_rtx_PARALLEL (GET_MODE (target), vector)));
6454 break;
6455 }
6456
6457 default:
6458 gcc_unreachable ();
6459 }
6460 }
6461
6462 /* Store the value of EXP (an expression tree)
6463 into a subfield of TARGET which has mode MODE and occupies
6464 BITSIZE bits, starting BITPOS bits from the start of TARGET.
6465 If MODE is VOIDmode, it means that we are storing into a bit-field.
6466
6467 BITREGION_START is bitpos of the first bitfield in this region.
6468 BITREGION_END is the bitpos of the ending bitfield in this region.
6469 These two fields are 0, if the C++ memory model does not apply,
6470 or we are not interested in keeping track of bitfield regions.
6471
6472 Always return const0_rtx unless we have something particular to
6473 return.
6474
6475 ALIAS_SET is the alias set for the destination. This value will
6476 (in general) be different from that for TARGET, since TARGET is a
6477 reference to the containing structure.
6478
6479 If NONTEMPORAL is true, try generating a nontemporal store. */
6480
6481 static rtx
6482 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
6483 unsigned HOST_WIDE_INT bitregion_start,
6484 unsigned HOST_WIDE_INT bitregion_end,
6485 enum machine_mode mode, tree exp,
6486 alias_set_type alias_set, bool nontemporal)
6487 {
6488 if (TREE_CODE (exp) == ERROR_MARK)
6489 return const0_rtx;
6490
6491 /* If we have nothing to store, do nothing unless the expression has
6492 side-effects. */
6493 if (bitsize == 0)
6494 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
6495
6496 if (GET_CODE (target) == CONCAT)
6497 {
6498 /* We're storing into a struct containing a single __complex. */
6499
6500 gcc_assert (!bitpos);
6501 return store_expr (exp, target, 0, nontemporal);
6502 }
6503
6504 /* If the structure is in a register or if the component
6505 is a bit field, we cannot use addressing to access it.
6506 Use bit-field techniques or SUBREG to store in it. */
6507
6508 if (mode == VOIDmode
6509 || (mode != BLKmode && ! direct_store[(int) mode]
6510 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
6511 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
6512 || REG_P (target)
6513 || GET_CODE (target) == SUBREG
6514 /* If the field isn't aligned enough to store as an ordinary memref,
6515 store it as a bit field. */
6516 || (mode != BLKmode
6517 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
6518 || bitpos % GET_MODE_ALIGNMENT (mode))
6519 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
6520 || (bitpos % BITS_PER_UNIT != 0)))
6521 || (bitsize >= 0 && mode != BLKmode
6522 && GET_MODE_BITSIZE (mode) > bitsize)
6523 /* If the RHS and field are a constant size and the size of the
6524 RHS isn't the same size as the bitfield, we must use bitfield
6525 operations. */
6526 || (bitsize >= 0
6527 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
6528 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
6529 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
6530 decl we must use bitfield operations. */
6531 || (bitsize >= 0
6532 && TREE_CODE (exp) == MEM_REF
6533 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
6534 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
6535 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
6536 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
6537 {
6538 rtx temp;
6539 gimple nop_def;
6540
6541 /* If EXP is a NOP_EXPR of precision less than its mode, then that
6542 implies a mask operation. If the precision is the same size as
6543 the field we're storing into, that mask is redundant. This is
6544 particularly common with bit field assignments generated by the
6545 C front end. */
6546 nop_def = get_def_for_expr (exp, NOP_EXPR);
6547 if (nop_def)
6548 {
6549 tree type = TREE_TYPE (exp);
6550 if (INTEGRAL_TYPE_P (type)
6551 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
6552 && bitsize == TYPE_PRECISION (type))
6553 {
6554 tree op = gimple_assign_rhs1 (nop_def);
6555 type = TREE_TYPE (op);
6556 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
6557 exp = op;
6558 }
6559 }
6560
6561 temp = expand_normal (exp);
6562
6563 /* If BITSIZE is narrower than the size of the type of EXP
6564 we will be narrowing TEMP. Normally, what's wanted are the
6565 low-order bits. However, if EXP's type is a record and this is
6566 big-endian machine, we want the upper BITSIZE bits. */
6567 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
6568 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
6569 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
6570 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
6571 GET_MODE_BITSIZE (GET_MODE (temp)) - bitsize,
6572 NULL_RTX, 1);
6573
6574 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
6575 if (mode != VOIDmode && mode != BLKmode
6576 && mode != TYPE_MODE (TREE_TYPE (exp)))
6577 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
6578
6579 /* If the modes of TEMP and TARGET are both BLKmode, both
6580 must be in memory and BITPOS must be aligned on a byte
6581 boundary. If so, we simply do a block copy. Likewise
6582 for a BLKmode-like TARGET. */
6583 if (GET_MODE (temp) == BLKmode
6584 && (GET_MODE (target) == BLKmode
6585 || (MEM_P (target)
6586 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
6587 && (bitpos % BITS_PER_UNIT) == 0
6588 && (bitsize % BITS_PER_UNIT) == 0)))
6589 {
6590 gcc_assert (MEM_P (target) && MEM_P (temp)
6591 && (bitpos % BITS_PER_UNIT) == 0);
6592
6593 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
6594 emit_block_move (target, temp,
6595 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
6596 / BITS_PER_UNIT),
6597 BLOCK_OP_NORMAL);
6598
6599 return const0_rtx;
6600 }
6601
6602 /* Handle calls that return values in multiple non-contiguous locations.
6603 The Irix 6 ABI has examples of this. */
6604 if (GET_CODE (temp) == PARALLEL)
6605 {
6606 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6607 rtx temp_target;
6608 if (mode == BLKmode)
6609 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6610 temp_target = gen_reg_rtx (mode);
6611 emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
6612 temp = temp_target;
6613 }
6614 else if (mode == BLKmode)
6615 {
6616 /* Handle calls that return BLKmode values in registers. */
6617 if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
6618 {
6619 rtx temp_target = gen_reg_rtx (GET_MODE (temp));
6620 copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
6621 temp = temp_target;
6622 }
6623 else
6624 {
6625 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
6626 rtx temp_target;
6627 mode = smallest_mode_for_size (size * BITS_PER_UNIT, MODE_INT);
6628 temp_target = gen_reg_rtx (mode);
6629 temp_target
6630 = extract_bit_field (temp, size * BITS_PER_UNIT, 0, 1,
6631 temp_target, mode, mode);
6632 temp = temp_target;
6633 }
6634 }
6635
6636 /* Store the value in the bitfield. */
6637 store_bit_field (target, bitsize, bitpos,
6638 bitregion_start, bitregion_end,
6639 mode, temp);
6640
6641 return const0_rtx;
6642 }
6643 else
6644 {
6645 /* Now build a reference to just the desired component. */
6646 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
6647
6648 if (to_rtx == target)
6649 to_rtx = copy_rtx (to_rtx);
6650
6651 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
6652 set_mem_alias_set (to_rtx, alias_set);
6653
6654 return store_expr (exp, to_rtx, 0, nontemporal);
6655 }
6656 }
6657 \f
6658 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
6659 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
6660 codes and find the ultimate containing object, which we return.
6661
6662 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
6663 bit position, and *PUNSIGNEDP to the signedness of the field.
6664 If the position of the field is variable, we store a tree
6665 giving the variable offset (in units) in *POFFSET.
6666 This offset is in addition to the bit position.
6667 If the position is not variable, we store 0 in *POFFSET.
6668
6669 If any of the extraction expressions is volatile,
6670 we store 1 in *PVOLATILEP. Otherwise we don't change that.
6671
6672 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
6673 Otherwise, it is a mode that can be used to access the field.
6674
6675 If the field describes a variable-sized object, *PMODE is set to
6676 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
6677 this case, but the address of the object can be found.
6678
6679 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
6680 look through nodes that serve as markers of a greater alignment than
6681 the one that can be deduced from the expression. These nodes make it
6682 possible for front-ends to prevent temporaries from being created by
6683 the middle-end on alignment considerations. For that purpose, the
6684 normal operating mode at high-level is to always pass FALSE so that
6685 the ultimate containing object is really returned; moreover, the
6686 associated predicate handled_component_p will always return TRUE
6687 on these nodes, thus indicating that they are essentially handled
6688 by get_inner_reference. TRUE should only be passed when the caller
6689 is scanning the expression in order to build another representation
6690 and specifically knows how to handle these nodes; as such, this is
6691 the normal operating mode in the RTL expanders. */
6692
6693 tree
6694 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
6695 HOST_WIDE_INT *pbitpos, tree *poffset,
6696 enum machine_mode *pmode, int *punsignedp,
6697 int *pvolatilep, bool keep_aligning)
6698 {
6699 tree size_tree = 0;
6700 enum machine_mode mode = VOIDmode;
6701 bool blkmode_bitfield = false;
6702 tree offset = size_zero_node;
6703 double_int bit_offset = double_int_zero;
6704
6705 /* First get the mode, signedness, and size. We do this from just the
6706 outermost expression. */
6707 *pbitsize = -1;
6708 if (TREE_CODE (exp) == COMPONENT_REF)
6709 {
6710 tree field = TREE_OPERAND (exp, 1);
6711 size_tree = DECL_SIZE (field);
6712 if (flag_strict_volatile_bitfields > 0
6713 && TREE_THIS_VOLATILE (exp)
6714 && DECL_BIT_FIELD_TYPE (field)
6715 && DECL_MODE (field) != BLKmode)
6716 /* Volatile bitfields should be accessed in the mode of the
6717 field's type, not the mode computed based on the bit
6718 size. */
6719 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6720 else if (!DECL_BIT_FIELD (field))
6721 mode = DECL_MODE (field);
6722 else if (DECL_MODE (field) == BLKmode)
6723 blkmode_bitfield = true;
6724
6725 *punsignedp = DECL_UNSIGNED (field);
6726 }
6727 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6728 {
6729 size_tree = TREE_OPERAND (exp, 1);
6730 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6731 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6732
6733 /* For vector types, with the correct size of access, use the mode of
6734 inner type. */
6735 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6736 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6737 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6738 mode = TYPE_MODE (TREE_TYPE (exp));
6739 }
6740 else
6741 {
6742 mode = TYPE_MODE (TREE_TYPE (exp));
6743 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6744
6745 if (mode == BLKmode)
6746 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6747 else
6748 *pbitsize = GET_MODE_BITSIZE (mode);
6749 }
6750
6751 if (size_tree != 0)
6752 {
6753 if (! tree_fits_uhwi_p (size_tree))
6754 mode = BLKmode, *pbitsize = -1;
6755 else
6756 *pbitsize = tree_to_uhwi (size_tree);
6757 }
6758
6759 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6760 and find the ultimate containing object. */
6761 while (1)
6762 {
6763 switch (TREE_CODE (exp))
6764 {
6765 case BIT_FIELD_REF:
6766 bit_offset += tree_to_double_int (TREE_OPERAND (exp, 2));
6767 break;
6768
6769 case COMPONENT_REF:
6770 {
6771 tree field = TREE_OPERAND (exp, 1);
6772 tree this_offset = component_ref_field_offset (exp);
6773
6774 /* If this field hasn't been filled in yet, don't go past it.
6775 This should only happen when folding expressions made during
6776 type construction. */
6777 if (this_offset == 0)
6778 break;
6779
6780 offset = size_binop (PLUS_EXPR, offset, this_offset);
6781 bit_offset += tree_to_double_int (DECL_FIELD_BIT_OFFSET (field));
6782
6783 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6784 }
6785 break;
6786
6787 case ARRAY_REF:
6788 case ARRAY_RANGE_REF:
6789 {
6790 tree index = TREE_OPERAND (exp, 1);
6791 tree low_bound = array_ref_low_bound (exp);
6792 tree unit_size = array_ref_element_size (exp);
6793
6794 /* We assume all arrays have sizes that are a multiple of a byte.
6795 First subtract the lower bound, if any, in the type of the
6796 index, then convert to sizetype and multiply by the size of
6797 the array element. */
6798 if (! integer_zerop (low_bound))
6799 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6800 index, low_bound);
6801
6802 offset = size_binop (PLUS_EXPR, offset,
6803 size_binop (MULT_EXPR,
6804 fold_convert (sizetype, index),
6805 unit_size));
6806 }
6807 break;
6808
6809 case REALPART_EXPR:
6810 break;
6811
6812 case IMAGPART_EXPR:
6813 bit_offset += double_int::from_uhwi (*pbitsize);
6814 break;
6815
6816 case VIEW_CONVERT_EXPR:
6817 if (keep_aligning && STRICT_ALIGNMENT
6818 && (TYPE_ALIGN (TREE_TYPE (exp))
6819 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6820 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6821 < BIGGEST_ALIGNMENT)
6822 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6823 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6824 goto done;
6825 break;
6826
6827 case MEM_REF:
6828 /* Hand back the decl for MEM[&decl, off]. */
6829 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6830 {
6831 tree off = TREE_OPERAND (exp, 1);
6832 if (!integer_zerop (off))
6833 {
6834 double_int boff, coff = mem_ref_offset (exp);
6835 boff = coff.lshift (BITS_PER_UNIT == 8
6836 ? 3 : exact_log2 (BITS_PER_UNIT));
6837 bit_offset += boff;
6838 }
6839 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6840 }
6841 goto done;
6842
6843 default:
6844 goto done;
6845 }
6846
6847 /* If any reference in the chain is volatile, the effect is volatile. */
6848 if (TREE_THIS_VOLATILE (exp))
6849 *pvolatilep = 1;
6850
6851 exp = TREE_OPERAND (exp, 0);
6852 }
6853 done:
6854
6855 /* If OFFSET is constant, see if we can return the whole thing as a
6856 constant bit position. Make sure to handle overflow during
6857 this conversion. */
6858 if (TREE_CODE (offset) == INTEGER_CST)
6859 {
6860 double_int tem = tree_to_double_int (offset);
6861 tem = tem.sext (TYPE_PRECISION (sizetype));
6862 tem = tem.lshift (BITS_PER_UNIT == 8 ? 3 : exact_log2 (BITS_PER_UNIT));
6863 tem += bit_offset;
6864 if (tem.fits_shwi ())
6865 {
6866 *pbitpos = tem.to_shwi ();
6867 *poffset = offset = NULL_TREE;
6868 }
6869 }
6870
6871 /* Otherwise, split it up. */
6872 if (offset)
6873 {
6874 /* Avoid returning a negative bitpos as this may wreak havoc later. */
6875 if (bit_offset.is_negative ())
6876 {
6877 double_int mask
6878 = double_int::mask (BITS_PER_UNIT == 8
6879 ? 3 : exact_log2 (BITS_PER_UNIT));
6880 double_int tem = bit_offset.and_not (mask);
6881 /* TEM is the bitpos rounded to BITS_PER_UNIT towards -Inf.
6882 Subtract it to BIT_OFFSET and add it (scaled) to OFFSET. */
6883 bit_offset -= tem;
6884 tem = tem.arshift (BITS_PER_UNIT == 8
6885 ? 3 : exact_log2 (BITS_PER_UNIT),
6886 HOST_BITS_PER_DOUBLE_INT);
6887 offset = size_binop (PLUS_EXPR, offset,
6888 double_int_to_tree (sizetype, tem));
6889 }
6890
6891 *pbitpos = bit_offset.to_shwi ();
6892 *poffset = offset;
6893 }
6894
6895 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6896 if (mode == VOIDmode
6897 && blkmode_bitfield
6898 && (*pbitpos % BITS_PER_UNIT) == 0
6899 && (*pbitsize % BITS_PER_UNIT) == 0)
6900 *pmode = BLKmode;
6901 else
6902 *pmode = mode;
6903
6904 return exp;
6905 }
6906
6907 /* Return a tree of sizetype representing the size, in bytes, of the element
6908 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6909
6910 tree
6911 array_ref_element_size (tree exp)
6912 {
6913 tree aligned_size = TREE_OPERAND (exp, 3);
6914 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6915 location_t loc = EXPR_LOCATION (exp);
6916
6917 /* If a size was specified in the ARRAY_REF, it's the size measured
6918 in alignment units of the element type. So multiply by that value. */
6919 if (aligned_size)
6920 {
6921 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6922 sizetype from another type of the same width and signedness. */
6923 if (TREE_TYPE (aligned_size) != sizetype)
6924 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6925 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6926 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6927 }
6928
6929 /* Otherwise, take the size from that of the element type. Substitute
6930 any PLACEHOLDER_EXPR that we have. */
6931 else
6932 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6933 }
6934
6935 /* Return a tree representing the lower bound of the array mentioned in
6936 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6937
6938 tree
6939 array_ref_low_bound (tree exp)
6940 {
6941 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6942
6943 /* If a lower bound is specified in EXP, use it. */
6944 if (TREE_OPERAND (exp, 2))
6945 return TREE_OPERAND (exp, 2);
6946
6947 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6948 substituting for a PLACEHOLDER_EXPR as needed. */
6949 if (domain_type && TYPE_MIN_VALUE (domain_type))
6950 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6951
6952 /* Otherwise, return a zero of the appropriate type. */
6953 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6954 }
6955
6956 /* Returns true if REF is an array reference to an array at the end of
6957 a structure. If this is the case, the array may be allocated larger
6958 than its upper bound implies. */
6959
6960 bool
6961 array_at_struct_end_p (tree ref)
6962 {
6963 if (TREE_CODE (ref) != ARRAY_REF
6964 && TREE_CODE (ref) != ARRAY_RANGE_REF)
6965 return false;
6966
6967 while (handled_component_p (ref))
6968 {
6969 /* If the reference chain contains a component reference to a
6970 non-union type and there follows another field the reference
6971 is not at the end of a structure. */
6972 if (TREE_CODE (ref) == COMPONENT_REF
6973 && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
6974 {
6975 tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
6976 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
6977 nextf = DECL_CHAIN (nextf);
6978 if (nextf)
6979 return false;
6980 }
6981
6982 ref = TREE_OPERAND (ref, 0);
6983 }
6984
6985 /* If the reference is based on a declared entity, the size of the array
6986 is constrained by its given domain. */
6987 if (DECL_P (ref))
6988 return false;
6989
6990 return true;
6991 }
6992
6993 /* Return a tree representing the upper bound of the array mentioned in
6994 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6995
6996 tree
6997 array_ref_up_bound (tree exp)
6998 {
6999 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
7000
7001 /* If there is a domain type and it has an upper bound, use it, substituting
7002 for a PLACEHOLDER_EXPR as needed. */
7003 if (domain_type && TYPE_MAX_VALUE (domain_type))
7004 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
7005
7006 /* Otherwise fail. */
7007 return NULL_TREE;
7008 }
7009
7010 /* Return a tree representing the offset, in bytes, of the field referenced
7011 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
7012
7013 tree
7014 component_ref_field_offset (tree exp)
7015 {
7016 tree aligned_offset = TREE_OPERAND (exp, 2);
7017 tree field = TREE_OPERAND (exp, 1);
7018 location_t loc = EXPR_LOCATION (exp);
7019
7020 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
7021 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
7022 value. */
7023 if (aligned_offset)
7024 {
7025 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
7026 sizetype from another type of the same width and signedness. */
7027 if (TREE_TYPE (aligned_offset) != sizetype)
7028 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
7029 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
7030 size_int (DECL_OFFSET_ALIGN (field)
7031 / BITS_PER_UNIT));
7032 }
7033
7034 /* Otherwise, take the offset from that of the field. Substitute
7035 any PLACEHOLDER_EXPR that we have. */
7036 else
7037 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
7038 }
7039
7040 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
7041
7042 static unsigned HOST_WIDE_INT
7043 target_align (const_tree target)
7044 {
7045 /* We might have a chain of nested references with intermediate misaligning
7046 bitfields components, so need to recurse to find out. */
7047
7048 unsigned HOST_WIDE_INT this_align, outer_align;
7049
7050 switch (TREE_CODE (target))
7051 {
7052 case BIT_FIELD_REF:
7053 return 1;
7054
7055 case COMPONENT_REF:
7056 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
7057 outer_align = target_align (TREE_OPERAND (target, 0));
7058 return MIN (this_align, outer_align);
7059
7060 case ARRAY_REF:
7061 case ARRAY_RANGE_REF:
7062 this_align = TYPE_ALIGN (TREE_TYPE (target));
7063 outer_align = target_align (TREE_OPERAND (target, 0));
7064 return MIN (this_align, outer_align);
7065
7066 CASE_CONVERT:
7067 case NON_LVALUE_EXPR:
7068 case VIEW_CONVERT_EXPR:
7069 this_align = TYPE_ALIGN (TREE_TYPE (target));
7070 outer_align = target_align (TREE_OPERAND (target, 0));
7071 return MAX (this_align, outer_align);
7072
7073 default:
7074 return TYPE_ALIGN (TREE_TYPE (target));
7075 }
7076 }
7077
7078 \f
7079 /* Given an rtx VALUE that may contain additions and multiplications, return
7080 an equivalent value that just refers to a register, memory, or constant.
7081 This is done by generating instructions to perform the arithmetic and
7082 returning a pseudo-register containing the value.
7083
7084 The returned value may be a REG, SUBREG, MEM or constant. */
7085
7086 rtx
7087 force_operand (rtx value, rtx target)
7088 {
7089 rtx op1, op2;
7090 /* Use subtarget as the target for operand 0 of a binary operation. */
7091 rtx subtarget = get_subtarget (target);
7092 enum rtx_code code = GET_CODE (value);
7093
7094 /* Check for subreg applied to an expression produced by loop optimizer. */
7095 if (code == SUBREG
7096 && !REG_P (SUBREG_REG (value))
7097 && !MEM_P (SUBREG_REG (value)))
7098 {
7099 value
7100 = simplify_gen_subreg (GET_MODE (value),
7101 force_reg (GET_MODE (SUBREG_REG (value)),
7102 force_operand (SUBREG_REG (value),
7103 NULL_RTX)),
7104 GET_MODE (SUBREG_REG (value)),
7105 SUBREG_BYTE (value));
7106 code = GET_CODE (value);
7107 }
7108
7109 /* Check for a PIC address load. */
7110 if ((code == PLUS || code == MINUS)
7111 && XEXP (value, 0) == pic_offset_table_rtx
7112 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
7113 || GET_CODE (XEXP (value, 1)) == LABEL_REF
7114 || GET_CODE (XEXP (value, 1)) == CONST))
7115 {
7116 if (!subtarget)
7117 subtarget = gen_reg_rtx (GET_MODE (value));
7118 emit_move_insn (subtarget, value);
7119 return subtarget;
7120 }
7121
7122 if (ARITHMETIC_P (value))
7123 {
7124 op2 = XEXP (value, 1);
7125 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
7126 subtarget = 0;
7127 if (code == MINUS && CONST_INT_P (op2))
7128 {
7129 code = PLUS;
7130 op2 = negate_rtx (GET_MODE (value), op2);
7131 }
7132
7133 /* Check for an addition with OP2 a constant integer and our first
7134 operand a PLUS of a virtual register and something else. In that
7135 case, we want to emit the sum of the virtual register and the
7136 constant first and then add the other value. This allows virtual
7137 register instantiation to simply modify the constant rather than
7138 creating another one around this addition. */
7139 if (code == PLUS && CONST_INT_P (op2)
7140 && GET_CODE (XEXP (value, 0)) == PLUS
7141 && REG_P (XEXP (XEXP (value, 0), 0))
7142 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
7143 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
7144 {
7145 rtx temp = expand_simple_binop (GET_MODE (value), code,
7146 XEXP (XEXP (value, 0), 0), op2,
7147 subtarget, 0, OPTAB_LIB_WIDEN);
7148 return expand_simple_binop (GET_MODE (value), code, temp,
7149 force_operand (XEXP (XEXP (value,
7150 0), 1), 0),
7151 target, 0, OPTAB_LIB_WIDEN);
7152 }
7153
7154 op1 = force_operand (XEXP (value, 0), subtarget);
7155 op2 = force_operand (op2, NULL_RTX);
7156 switch (code)
7157 {
7158 case MULT:
7159 return expand_mult (GET_MODE (value), op1, op2, target, 1);
7160 case DIV:
7161 if (!INTEGRAL_MODE_P (GET_MODE (value)))
7162 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7163 target, 1, OPTAB_LIB_WIDEN);
7164 else
7165 return expand_divmod (0,
7166 FLOAT_MODE_P (GET_MODE (value))
7167 ? RDIV_EXPR : TRUNC_DIV_EXPR,
7168 GET_MODE (value), op1, op2, target, 0);
7169 case MOD:
7170 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7171 target, 0);
7172 case UDIV:
7173 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
7174 target, 1);
7175 case UMOD:
7176 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
7177 target, 1);
7178 case ASHIFTRT:
7179 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7180 target, 0, OPTAB_LIB_WIDEN);
7181 default:
7182 return expand_simple_binop (GET_MODE (value), code, op1, op2,
7183 target, 1, OPTAB_LIB_WIDEN);
7184 }
7185 }
7186 if (UNARY_P (value))
7187 {
7188 if (!target)
7189 target = gen_reg_rtx (GET_MODE (value));
7190 op1 = force_operand (XEXP (value, 0), NULL_RTX);
7191 switch (code)
7192 {
7193 case ZERO_EXTEND:
7194 case SIGN_EXTEND:
7195 case TRUNCATE:
7196 case FLOAT_EXTEND:
7197 case FLOAT_TRUNCATE:
7198 convert_move (target, op1, code == ZERO_EXTEND);
7199 return target;
7200
7201 case FIX:
7202 case UNSIGNED_FIX:
7203 expand_fix (target, op1, code == UNSIGNED_FIX);
7204 return target;
7205
7206 case FLOAT:
7207 case UNSIGNED_FLOAT:
7208 expand_float (target, op1, code == UNSIGNED_FLOAT);
7209 return target;
7210
7211 default:
7212 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
7213 }
7214 }
7215
7216 #ifdef INSN_SCHEDULING
7217 /* On machines that have insn scheduling, we want all memory reference to be
7218 explicit, so we need to deal with such paradoxical SUBREGs. */
7219 if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
7220 value
7221 = simplify_gen_subreg (GET_MODE (value),
7222 force_reg (GET_MODE (SUBREG_REG (value)),
7223 force_operand (SUBREG_REG (value),
7224 NULL_RTX)),
7225 GET_MODE (SUBREG_REG (value)),
7226 SUBREG_BYTE (value));
7227 #endif
7228
7229 return value;
7230 }
7231 \f
7232 /* Subroutine of expand_expr: return nonzero iff there is no way that
7233 EXP can reference X, which is being modified. TOP_P is nonzero if this
7234 call is going to be used to determine whether we need a temporary
7235 for EXP, as opposed to a recursive call to this function.
7236
7237 It is always safe for this routine to return zero since it merely
7238 searches for optimization opportunities. */
7239
7240 int
7241 safe_from_p (const_rtx x, tree exp, int top_p)
7242 {
7243 rtx exp_rtl = 0;
7244 int i, nops;
7245
7246 if (x == 0
7247 /* If EXP has varying size, we MUST use a target since we currently
7248 have no way of allocating temporaries of variable size
7249 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
7250 So we assume here that something at a higher level has prevented a
7251 clash. This is somewhat bogus, but the best we can do. Only
7252 do this when X is BLKmode and when we are at the top level. */
7253 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
7254 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
7255 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
7256 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
7257 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
7258 != INTEGER_CST)
7259 && GET_MODE (x) == BLKmode)
7260 /* If X is in the outgoing argument area, it is always safe. */
7261 || (MEM_P (x)
7262 && (XEXP (x, 0) == virtual_outgoing_args_rtx
7263 || (GET_CODE (XEXP (x, 0)) == PLUS
7264 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
7265 return 1;
7266
7267 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
7268 find the underlying pseudo. */
7269 if (GET_CODE (x) == SUBREG)
7270 {
7271 x = SUBREG_REG (x);
7272 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7273 return 0;
7274 }
7275
7276 /* Now look at our tree code and possibly recurse. */
7277 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
7278 {
7279 case tcc_declaration:
7280 exp_rtl = DECL_RTL_IF_SET (exp);
7281 break;
7282
7283 case tcc_constant:
7284 return 1;
7285
7286 case tcc_exceptional:
7287 if (TREE_CODE (exp) == TREE_LIST)
7288 {
7289 while (1)
7290 {
7291 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
7292 return 0;
7293 exp = TREE_CHAIN (exp);
7294 if (!exp)
7295 return 1;
7296 if (TREE_CODE (exp) != TREE_LIST)
7297 return safe_from_p (x, exp, 0);
7298 }
7299 }
7300 else if (TREE_CODE (exp) == CONSTRUCTOR)
7301 {
7302 constructor_elt *ce;
7303 unsigned HOST_WIDE_INT idx;
7304
7305 FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
7306 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
7307 || !safe_from_p (x, ce->value, 0))
7308 return 0;
7309 return 1;
7310 }
7311 else if (TREE_CODE (exp) == ERROR_MARK)
7312 return 1; /* An already-visited SAVE_EXPR? */
7313 else
7314 return 0;
7315
7316 case tcc_statement:
7317 /* The only case we look at here is the DECL_INITIAL inside a
7318 DECL_EXPR. */
7319 return (TREE_CODE (exp) != DECL_EXPR
7320 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
7321 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
7322 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
7323
7324 case tcc_binary:
7325 case tcc_comparison:
7326 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
7327 return 0;
7328 /* Fall through. */
7329
7330 case tcc_unary:
7331 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7332
7333 case tcc_expression:
7334 case tcc_reference:
7335 case tcc_vl_exp:
7336 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
7337 the expression. If it is set, we conflict iff we are that rtx or
7338 both are in memory. Otherwise, we check all operands of the
7339 expression recursively. */
7340
7341 switch (TREE_CODE (exp))
7342 {
7343 case ADDR_EXPR:
7344 /* If the operand is static or we are static, we can't conflict.
7345 Likewise if we don't conflict with the operand at all. */
7346 if (staticp (TREE_OPERAND (exp, 0))
7347 || TREE_STATIC (exp)
7348 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
7349 return 1;
7350
7351 /* Otherwise, the only way this can conflict is if we are taking
7352 the address of a DECL a that address if part of X, which is
7353 very rare. */
7354 exp = TREE_OPERAND (exp, 0);
7355 if (DECL_P (exp))
7356 {
7357 if (!DECL_RTL_SET_P (exp)
7358 || !MEM_P (DECL_RTL (exp)))
7359 return 0;
7360 else
7361 exp_rtl = XEXP (DECL_RTL (exp), 0);
7362 }
7363 break;
7364
7365 case MEM_REF:
7366 if (MEM_P (x)
7367 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
7368 get_alias_set (exp)))
7369 return 0;
7370 break;
7371
7372 case CALL_EXPR:
7373 /* Assume that the call will clobber all hard registers and
7374 all of memory. */
7375 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
7376 || MEM_P (x))
7377 return 0;
7378 break;
7379
7380 case WITH_CLEANUP_EXPR:
7381 case CLEANUP_POINT_EXPR:
7382 /* Lowered by gimplify.c. */
7383 gcc_unreachable ();
7384
7385 case SAVE_EXPR:
7386 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
7387
7388 default:
7389 break;
7390 }
7391
7392 /* If we have an rtx, we do not need to scan our operands. */
7393 if (exp_rtl)
7394 break;
7395
7396 nops = TREE_OPERAND_LENGTH (exp);
7397 for (i = 0; i < nops; i++)
7398 if (TREE_OPERAND (exp, i) != 0
7399 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
7400 return 0;
7401
7402 break;
7403
7404 case tcc_type:
7405 /* Should never get a type here. */
7406 gcc_unreachable ();
7407 }
7408
7409 /* If we have an rtl, find any enclosed object. Then see if we conflict
7410 with it. */
7411 if (exp_rtl)
7412 {
7413 if (GET_CODE (exp_rtl) == SUBREG)
7414 {
7415 exp_rtl = SUBREG_REG (exp_rtl);
7416 if (REG_P (exp_rtl)
7417 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
7418 return 0;
7419 }
7420
7421 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
7422 are memory and they conflict. */
7423 return ! (rtx_equal_p (x, exp_rtl)
7424 || (MEM_P (x) && MEM_P (exp_rtl)
7425 && true_dependence (exp_rtl, VOIDmode, x)));
7426 }
7427
7428 /* If we reach here, it is safe. */
7429 return 1;
7430 }
7431
7432 \f
7433 /* Return the highest power of two that EXP is known to be a multiple of.
7434 This is used in updating alignment of MEMs in array references. */
7435
7436 unsigned HOST_WIDE_INT
7437 highest_pow2_factor (const_tree exp)
7438 {
7439 unsigned HOST_WIDE_INT ret;
7440 int trailing_zeros = tree_ctz (exp);
7441 if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
7442 return BIGGEST_ALIGNMENT;
7443 ret = (unsigned HOST_WIDE_INT) 1 << trailing_zeros;
7444 if (ret > BIGGEST_ALIGNMENT)
7445 return BIGGEST_ALIGNMENT;
7446 return ret;
7447 }
7448
7449 /* Similar, except that the alignment requirements of TARGET are
7450 taken into account. Assume it is at least as aligned as its
7451 type, unless it is a COMPONENT_REF in which case the layout of
7452 the structure gives the alignment. */
7453
7454 static unsigned HOST_WIDE_INT
7455 highest_pow2_factor_for_target (const_tree target, const_tree exp)
7456 {
7457 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
7458 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
7459
7460 return MAX (factor, talign);
7461 }
7462 \f
7463 #ifdef HAVE_conditional_move
7464 /* Convert the tree comparison code TCODE to the rtl one where the
7465 signedness is UNSIGNEDP. */
7466
7467 static enum rtx_code
7468 convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
7469 {
7470 enum rtx_code code;
7471 switch (tcode)
7472 {
7473 case EQ_EXPR:
7474 code = EQ;
7475 break;
7476 case NE_EXPR:
7477 code = NE;
7478 break;
7479 case LT_EXPR:
7480 code = unsignedp ? LTU : LT;
7481 break;
7482 case LE_EXPR:
7483 code = unsignedp ? LEU : LE;
7484 break;
7485 case GT_EXPR:
7486 code = unsignedp ? GTU : GT;
7487 break;
7488 case GE_EXPR:
7489 code = unsignedp ? GEU : GE;
7490 break;
7491 case UNORDERED_EXPR:
7492 code = UNORDERED;
7493 break;
7494 case ORDERED_EXPR:
7495 code = ORDERED;
7496 break;
7497 case UNLT_EXPR:
7498 code = UNLT;
7499 break;
7500 case UNLE_EXPR:
7501 code = UNLE;
7502 break;
7503 case UNGT_EXPR:
7504 code = UNGT;
7505 break;
7506 case UNGE_EXPR:
7507 code = UNGE;
7508 break;
7509 case UNEQ_EXPR:
7510 code = UNEQ;
7511 break;
7512 case LTGT_EXPR:
7513 code = LTGT;
7514 break;
7515
7516 default:
7517 gcc_unreachable ();
7518 }
7519 return code;
7520 }
7521 #endif
7522
7523 /* Subroutine of expand_expr. Expand the two operands of a binary
7524 expression EXP0 and EXP1 placing the results in OP0 and OP1.
7525 The value may be stored in TARGET if TARGET is nonzero. The
7526 MODIFIER argument is as documented by expand_expr. */
7527
7528 static void
7529 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
7530 enum expand_modifier modifier)
7531 {
7532 if (! safe_from_p (target, exp1, 1))
7533 target = 0;
7534 if (operand_equal_p (exp0, exp1, 0))
7535 {
7536 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7537 *op1 = copy_rtx (*op0);
7538 }
7539 else
7540 {
7541 /* If we need to preserve evaluation order, copy exp0 into its own
7542 temporary variable so that it can't be clobbered by exp1. */
7543 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
7544 exp0 = save_expr (exp0);
7545 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
7546 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
7547 }
7548 }
7549
7550 \f
7551 /* Return a MEM that contains constant EXP. DEFER is as for
7552 output_constant_def and MODIFIER is as for expand_expr. */
7553
7554 static rtx
7555 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
7556 {
7557 rtx mem;
7558
7559 mem = output_constant_def (exp, defer);
7560 if (modifier != EXPAND_INITIALIZER)
7561 mem = use_anchored_address (mem);
7562 return mem;
7563 }
7564
7565 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
7566 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7567
7568 static rtx
7569 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
7570 enum expand_modifier modifier, addr_space_t as)
7571 {
7572 rtx result, subtarget;
7573 tree inner, offset;
7574 HOST_WIDE_INT bitsize, bitpos;
7575 int volatilep, unsignedp;
7576 enum machine_mode mode1;
7577
7578 /* If we are taking the address of a constant and are at the top level,
7579 we have to use output_constant_def since we can't call force_const_mem
7580 at top level. */
7581 /* ??? This should be considered a front-end bug. We should not be
7582 generating ADDR_EXPR of something that isn't an LVALUE. The only
7583 exception here is STRING_CST. */
7584 if (CONSTANT_CLASS_P (exp))
7585 {
7586 result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
7587 if (modifier < EXPAND_SUM)
7588 result = force_operand (result, target);
7589 return result;
7590 }
7591
7592 /* Everything must be something allowed by is_gimple_addressable. */
7593 switch (TREE_CODE (exp))
7594 {
7595 case INDIRECT_REF:
7596 /* This case will happen via recursion for &a->b. */
7597 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
7598
7599 case MEM_REF:
7600 {
7601 tree tem = TREE_OPERAND (exp, 0);
7602 if (!integer_zerop (TREE_OPERAND (exp, 1)))
7603 tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
7604 return expand_expr (tem, target, tmode, modifier);
7605 }
7606
7607 case CONST_DECL:
7608 /* Expand the initializer like constants above. */
7609 result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
7610 0, modifier), 0);
7611 if (modifier < EXPAND_SUM)
7612 result = force_operand (result, target);
7613 return result;
7614
7615 case REALPART_EXPR:
7616 /* The real part of the complex number is always first, therefore
7617 the address is the same as the address of the parent object. */
7618 offset = 0;
7619 bitpos = 0;
7620 inner = TREE_OPERAND (exp, 0);
7621 break;
7622
7623 case IMAGPART_EXPR:
7624 /* The imaginary part of the complex number is always second.
7625 The expression is therefore always offset by the size of the
7626 scalar type. */
7627 offset = 0;
7628 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
7629 inner = TREE_OPERAND (exp, 0);
7630 break;
7631
7632 case COMPOUND_LITERAL_EXPR:
7633 /* Allow COMPOUND_LITERAL_EXPR in initializers, if e.g.
7634 rtl_for_decl_init is called on DECL_INITIAL with
7635 COMPOUNT_LITERAL_EXPRs in it, they aren't gimplified. */
7636 if (modifier == EXPAND_INITIALIZER
7637 && COMPOUND_LITERAL_EXPR_DECL (exp))
7638 return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
7639 target, tmode, modifier, as);
7640 /* FALLTHRU */
7641 default:
7642 /* If the object is a DECL, then expand it for its rtl. Don't bypass
7643 expand_expr, as that can have various side effects; LABEL_DECLs for
7644 example, may not have their DECL_RTL set yet. Expand the rtl of
7645 CONSTRUCTORs too, which should yield a memory reference for the
7646 constructor's contents. Assume language specific tree nodes can
7647 be expanded in some interesting way. */
7648 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
7649 if (DECL_P (exp)
7650 || TREE_CODE (exp) == CONSTRUCTOR
7651 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
7652 {
7653 result = expand_expr (exp, target, tmode,
7654 modifier == EXPAND_INITIALIZER
7655 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
7656
7657 /* If the DECL isn't in memory, then the DECL wasn't properly
7658 marked TREE_ADDRESSABLE, which will be either a front-end
7659 or a tree optimizer bug. */
7660
7661 if (TREE_ADDRESSABLE (exp)
7662 && ! MEM_P (result)
7663 && ! targetm.calls.allocate_stack_slots_for_args ())
7664 {
7665 error ("local frame unavailable (naked function?)");
7666 return result;
7667 }
7668 else
7669 gcc_assert (MEM_P (result));
7670 result = XEXP (result, 0);
7671
7672 /* ??? Is this needed anymore? */
7673 if (DECL_P (exp))
7674 TREE_USED (exp) = 1;
7675
7676 if (modifier != EXPAND_INITIALIZER
7677 && modifier != EXPAND_CONST_ADDRESS
7678 && modifier != EXPAND_SUM)
7679 result = force_operand (result, target);
7680 return result;
7681 }
7682
7683 /* Pass FALSE as the last argument to get_inner_reference although
7684 we are expanding to RTL. The rationale is that we know how to
7685 handle "aligning nodes" here: we can just bypass them because
7686 they won't change the final object whose address will be returned
7687 (they actually exist only for that purpose). */
7688 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7689 &mode1, &unsignedp, &volatilep, false);
7690 break;
7691 }
7692
7693 /* We must have made progress. */
7694 gcc_assert (inner != exp);
7695
7696 subtarget = offset || bitpos ? NULL_RTX : target;
7697 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
7698 inner alignment, force the inner to be sufficiently aligned. */
7699 if (CONSTANT_CLASS_P (inner)
7700 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
7701 {
7702 inner = copy_node (inner);
7703 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
7704 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
7705 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
7706 }
7707 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
7708
7709 if (offset)
7710 {
7711 rtx tmp;
7712
7713 if (modifier != EXPAND_NORMAL)
7714 result = force_operand (result, NULL);
7715 tmp = expand_expr (offset, NULL_RTX, tmode,
7716 modifier == EXPAND_INITIALIZER
7717 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
7718
7719 /* expand_expr is allowed to return an object in a mode other
7720 than TMODE. If it did, we need to convert. */
7721 if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
7722 tmp = convert_modes (tmode, GET_MODE (tmp),
7723 tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
7724 result = convert_memory_address_addr_space (tmode, result, as);
7725 tmp = convert_memory_address_addr_space (tmode, tmp, as);
7726
7727 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7728 result = simplify_gen_binary (PLUS, tmode, result, tmp);
7729 else
7730 {
7731 subtarget = bitpos ? NULL_RTX : target;
7732 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7733 1, OPTAB_LIB_WIDEN);
7734 }
7735 }
7736
7737 if (bitpos)
7738 {
7739 /* Someone beforehand should have rejected taking the address
7740 of such an object. */
7741 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7742
7743 result = convert_memory_address_addr_space (tmode, result, as);
7744 result = plus_constant (tmode, result, bitpos / BITS_PER_UNIT);
7745 if (modifier < EXPAND_SUM)
7746 result = force_operand (result, target);
7747 }
7748
7749 return result;
7750 }
7751
7752 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7753 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7754
7755 static rtx
7756 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7757 enum expand_modifier modifier)
7758 {
7759 addr_space_t as = ADDR_SPACE_GENERIC;
7760 enum machine_mode address_mode = Pmode;
7761 enum machine_mode pointer_mode = ptr_mode;
7762 enum machine_mode rmode;
7763 rtx result;
7764
7765 /* Target mode of VOIDmode says "whatever's natural". */
7766 if (tmode == VOIDmode)
7767 tmode = TYPE_MODE (TREE_TYPE (exp));
7768
7769 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7770 {
7771 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7772 address_mode = targetm.addr_space.address_mode (as);
7773 pointer_mode = targetm.addr_space.pointer_mode (as);
7774 }
7775
7776 /* We can get called with some Weird Things if the user does silliness
7777 like "(short) &a". In that case, convert_memory_address won't do
7778 the right thing, so ignore the given target mode. */
7779 if (tmode != address_mode && tmode != pointer_mode)
7780 tmode = address_mode;
7781
7782 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7783 tmode, modifier, as);
7784
7785 /* Despite expand_expr claims concerning ignoring TMODE when not
7786 strictly convenient, stuff breaks if we don't honor it. Note
7787 that combined with the above, we only do this for pointer modes. */
7788 rmode = GET_MODE (result);
7789 if (rmode == VOIDmode)
7790 rmode = tmode;
7791 if (rmode != tmode)
7792 result = convert_memory_address_addr_space (tmode, result, as);
7793
7794 return result;
7795 }
7796
7797 /* Generate code for computing CONSTRUCTOR EXP.
7798 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7799 is TRUE, instead of creating a temporary variable in memory
7800 NULL is returned and the caller needs to handle it differently. */
7801
7802 static rtx
7803 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7804 bool avoid_temp_mem)
7805 {
7806 tree type = TREE_TYPE (exp);
7807 enum machine_mode mode = TYPE_MODE (type);
7808
7809 /* Try to avoid creating a temporary at all. This is possible
7810 if all of the initializer is zero.
7811 FIXME: try to handle all [0..255] initializers we can handle
7812 with memset. */
7813 if (TREE_STATIC (exp)
7814 && !TREE_ADDRESSABLE (exp)
7815 && target != 0 && mode == BLKmode
7816 && all_zeros_p (exp))
7817 {
7818 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7819 return target;
7820 }
7821
7822 /* All elts simple constants => refer to a constant in memory. But
7823 if this is a non-BLKmode mode, let it store a field at a time
7824 since that should make a CONST_INT or CONST_DOUBLE when we
7825 fold. Likewise, if we have a target we can use, it is best to
7826 store directly into the target unless the type is large enough
7827 that memcpy will be used. If we are making an initializer and
7828 all operands are constant, put it in memory as well.
7829
7830 FIXME: Avoid trying to fill vector constructors piece-meal.
7831 Output them with output_constant_def below unless we're sure
7832 they're zeros. This should go away when vector initializers
7833 are treated like VECTOR_CST instead of arrays. */
7834 if ((TREE_STATIC (exp)
7835 && ((mode == BLKmode
7836 && ! (target != 0 && safe_from_p (target, exp, 1)))
7837 || TREE_ADDRESSABLE (exp)
7838 || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
7839 && (! MOVE_BY_PIECES_P
7840 (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
7841 TYPE_ALIGN (type)))
7842 && ! mostly_zeros_p (exp))))
7843 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7844 && TREE_CONSTANT (exp)))
7845 {
7846 rtx constructor;
7847
7848 if (avoid_temp_mem)
7849 return NULL_RTX;
7850
7851 constructor = expand_expr_constant (exp, 1, modifier);
7852
7853 if (modifier != EXPAND_CONST_ADDRESS
7854 && modifier != EXPAND_INITIALIZER
7855 && modifier != EXPAND_SUM)
7856 constructor = validize_mem (constructor);
7857
7858 return constructor;
7859 }
7860
7861 /* Handle calls that pass values in multiple non-contiguous
7862 locations. The Irix 6 ABI has examples of this. */
7863 if (target == 0 || ! safe_from_p (target, exp, 1)
7864 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7865 {
7866 if (avoid_temp_mem)
7867 return NULL_RTX;
7868
7869 target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
7870 }
7871
7872 store_constructor (exp, target, 0, int_expr_size (exp));
7873 return target;
7874 }
7875
7876
7877 /* expand_expr: generate code for computing expression EXP.
7878 An rtx for the computed value is returned. The value is never null.
7879 In the case of a void EXP, const0_rtx is returned.
7880
7881 The value may be stored in TARGET if TARGET is nonzero.
7882 TARGET is just a suggestion; callers must assume that
7883 the rtx returned may not be the same as TARGET.
7884
7885 If TARGET is CONST0_RTX, it means that the value will be ignored.
7886
7887 If TMODE is not VOIDmode, it suggests generating the
7888 result in mode TMODE. But this is done only when convenient.
7889 Otherwise, TMODE is ignored and the value generated in its natural mode.
7890 TMODE is just a suggestion; callers must assume that
7891 the rtx returned may not have mode TMODE.
7892
7893 Note that TARGET may have neither TMODE nor MODE. In that case, it
7894 probably will not be used.
7895
7896 If MODIFIER is EXPAND_SUM then when EXP is an addition
7897 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7898 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7899 products as above, or REG or MEM, or constant.
7900 Ordinarily in such cases we would output mul or add instructions
7901 and then return a pseudo reg containing the sum.
7902
7903 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7904 it also marks a label as absolutely required (it can't be dead).
7905 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7906 This is used for outputting expressions used in initializers.
7907
7908 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7909 with a constant address even if that address is not normally legitimate.
7910 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7911
7912 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7913 a call parameter. Such targets require special care as we haven't yet
7914 marked TARGET so that it's safe from being trashed by libcalls. We
7915 don't want to use TARGET for anything but the final result;
7916 Intermediate values must go elsewhere. Additionally, calls to
7917 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7918
7919 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7920 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7921 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7922 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7923 recursively.
7924
7925 If INNER_REFERENCE_P is true, we are expanding an inner reference.
7926 In this case, we don't adjust a returned MEM rtx that wouldn't be
7927 sufficiently aligned for its mode; instead, it's up to the caller
7928 to deal with it afterwards. This is used to make sure that unaligned
7929 base objects for which out-of-bounds accesses are supported, for
7930 example record types with trailing arrays, aren't realigned behind
7931 the back of the caller.
7932 The normal operating mode is to pass FALSE for this parameter. */
7933
7934 rtx
7935 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7936 enum expand_modifier modifier, rtx *alt_rtl,
7937 bool inner_reference_p)
7938 {
7939 rtx ret;
7940
7941 /* Handle ERROR_MARK before anybody tries to access its type. */
7942 if (TREE_CODE (exp) == ERROR_MARK
7943 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7944 {
7945 ret = CONST0_RTX (tmode);
7946 return ret ? ret : const0_rtx;
7947 }
7948
7949 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
7950 inner_reference_p);
7951 return ret;
7952 }
7953
7954 /* Try to expand the conditional expression which is represented by
7955 TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If succeseds
7956 return the rtl reg which repsents the result. Otherwise return
7957 NULL_RTL. */
7958
7959 static rtx
7960 expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
7961 tree treeop1 ATTRIBUTE_UNUSED,
7962 tree treeop2 ATTRIBUTE_UNUSED)
7963 {
7964 #ifdef HAVE_conditional_move
7965 rtx insn;
7966 rtx op00, op01, op1, op2;
7967 enum rtx_code comparison_code;
7968 enum machine_mode comparison_mode;
7969 gimple srcstmt;
7970 rtx temp;
7971 tree type = TREE_TYPE (treeop1);
7972 int unsignedp = TYPE_UNSIGNED (type);
7973 enum machine_mode mode = TYPE_MODE (type);
7974 enum machine_mode orig_mode = mode;
7975
7976 /* If we cannot do a conditional move on the mode, try doing it
7977 with the promoted mode. */
7978 if (!can_conditionally_move_p (mode))
7979 {
7980 mode = promote_mode (type, mode, &unsignedp);
7981 if (!can_conditionally_move_p (mode))
7982 return NULL_RTX;
7983 temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
7984 }
7985 else
7986 temp = assign_temp (type, 0, 1);
7987
7988 start_sequence ();
7989 expand_operands (treeop1, treeop2,
7990 temp, &op1, &op2, EXPAND_NORMAL);
7991
7992 if (TREE_CODE (treeop0) == SSA_NAME
7993 && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
7994 {
7995 tree type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
7996 enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
7997 op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
7998 op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
7999 comparison_mode = TYPE_MODE (type);
8000 unsignedp = TYPE_UNSIGNED (type);
8001 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8002 }
8003 else if (TREE_CODE_CLASS (TREE_CODE (treeop0)) == tcc_comparison)
8004 {
8005 tree type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
8006 enum tree_code cmpcode = TREE_CODE (treeop0);
8007 op00 = expand_normal (TREE_OPERAND (treeop0, 0));
8008 op01 = expand_normal (TREE_OPERAND (treeop0, 1));
8009 unsignedp = TYPE_UNSIGNED (type);
8010 comparison_mode = TYPE_MODE (type);
8011 comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
8012 }
8013 else
8014 {
8015 op00 = expand_normal (treeop0);
8016 op01 = const0_rtx;
8017 comparison_code = NE;
8018 comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
8019 }
8020
8021 if (GET_MODE (op1) != mode)
8022 op1 = gen_lowpart (mode, op1);
8023
8024 if (GET_MODE (op2) != mode)
8025 op2 = gen_lowpart (mode, op2);
8026
8027 /* Try to emit the conditional move. */
8028 insn = emit_conditional_move (temp, comparison_code,
8029 op00, op01, comparison_mode,
8030 op1, op2, mode,
8031 unsignedp);
8032
8033 /* If we could do the conditional move, emit the sequence,
8034 and return. */
8035 if (insn)
8036 {
8037 rtx seq = get_insns ();
8038 end_sequence ();
8039 emit_insn (seq);
8040 return convert_modes (orig_mode, mode, temp, 0);
8041 }
8042
8043 /* Otherwise discard the sequence and fall back to code with
8044 branches. */
8045 end_sequence ();
8046 #endif
8047 return NULL_RTX;
8048 }
8049
8050 rtx
8051 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
8052 enum expand_modifier modifier)
8053 {
8054 rtx op0, op1, op2, temp;
8055 tree type;
8056 int unsignedp;
8057 enum machine_mode mode;
8058 enum tree_code code = ops->code;
8059 optab this_optab;
8060 rtx subtarget, original_target;
8061 int ignore;
8062 bool reduce_bit_field;
8063 location_t loc = ops->location;
8064 tree treeop0, treeop1, treeop2;
8065 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
8066 ? reduce_to_bit_field_precision ((expr), \
8067 target, \
8068 type) \
8069 : (expr))
8070
8071 type = ops->type;
8072 mode = TYPE_MODE (type);
8073 unsignedp = TYPE_UNSIGNED (type);
8074
8075 treeop0 = ops->op0;
8076 treeop1 = ops->op1;
8077 treeop2 = ops->op2;
8078
8079 /* We should be called only on simple (binary or unary) expressions,
8080 exactly those that are valid in gimple expressions that aren't
8081 GIMPLE_SINGLE_RHS (or invalid). */
8082 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
8083 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
8084 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
8085
8086 ignore = (target == const0_rtx
8087 || ((CONVERT_EXPR_CODE_P (code)
8088 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8089 && TREE_CODE (type) == VOID_TYPE));
8090
8091 /* We should be called only if we need the result. */
8092 gcc_assert (!ignore);
8093
8094 /* An operation in what may be a bit-field type needs the
8095 result to be reduced to the precision of the bit-field type,
8096 which is narrower than that of the type's mode. */
8097 reduce_bit_field = (INTEGRAL_TYPE_P (type)
8098 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8099
8100 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8101 target = 0;
8102
8103 /* Use subtarget as the target for operand 0 of a binary operation. */
8104 subtarget = get_subtarget (target);
8105 original_target = target;
8106
8107 switch (code)
8108 {
8109 case NON_LVALUE_EXPR:
8110 case PAREN_EXPR:
8111 CASE_CONVERT:
8112 if (treeop0 == error_mark_node)
8113 return const0_rtx;
8114
8115 if (TREE_CODE (type) == UNION_TYPE)
8116 {
8117 tree valtype = TREE_TYPE (treeop0);
8118
8119 /* If both input and output are BLKmode, this conversion isn't doing
8120 anything except possibly changing memory attribute. */
8121 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8122 {
8123 rtx result = expand_expr (treeop0, target, tmode,
8124 modifier);
8125
8126 result = copy_rtx (result);
8127 set_mem_attributes (result, type, 0);
8128 return result;
8129 }
8130
8131 if (target == 0)
8132 {
8133 if (TYPE_MODE (type) != BLKmode)
8134 target = gen_reg_rtx (TYPE_MODE (type));
8135 else
8136 target = assign_temp (type, 1, 1);
8137 }
8138
8139 if (MEM_P (target))
8140 /* Store data into beginning of memory target. */
8141 store_expr (treeop0,
8142 adjust_address (target, TYPE_MODE (valtype), 0),
8143 modifier == EXPAND_STACK_PARM,
8144 false);
8145
8146 else
8147 {
8148 gcc_assert (REG_P (target));
8149
8150 /* Store this field into a union of the proper type. */
8151 store_field (target,
8152 MIN ((int_size_in_bytes (TREE_TYPE
8153 (treeop0))
8154 * BITS_PER_UNIT),
8155 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8156 0, 0, 0, TYPE_MODE (valtype), treeop0, 0, false);
8157 }
8158
8159 /* Return the entire union. */
8160 return target;
8161 }
8162
8163 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
8164 {
8165 op0 = expand_expr (treeop0, target, VOIDmode,
8166 modifier);
8167
8168 /* If the signedness of the conversion differs and OP0 is
8169 a promoted SUBREG, clear that indication since we now
8170 have to do the proper extension. */
8171 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
8172 && GET_CODE (op0) == SUBREG)
8173 SUBREG_PROMOTED_VAR_P (op0) = 0;
8174
8175 return REDUCE_BIT_FIELD (op0);
8176 }
8177
8178 op0 = expand_expr (treeop0, NULL_RTX, mode,
8179 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8180 if (GET_MODE (op0) == mode)
8181 ;
8182
8183 /* If OP0 is a constant, just convert it into the proper mode. */
8184 else if (CONSTANT_P (op0))
8185 {
8186 tree inner_type = TREE_TYPE (treeop0);
8187 enum machine_mode inner_mode = GET_MODE (op0);
8188
8189 if (inner_mode == VOIDmode)
8190 inner_mode = TYPE_MODE (inner_type);
8191
8192 if (modifier == EXPAND_INITIALIZER)
8193 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8194 subreg_lowpart_offset (mode,
8195 inner_mode));
8196 else
8197 op0= convert_modes (mode, inner_mode, op0,
8198 TYPE_UNSIGNED (inner_type));
8199 }
8200
8201 else if (modifier == EXPAND_INITIALIZER)
8202 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8203
8204 else if (target == 0)
8205 op0 = convert_to_mode (mode, op0,
8206 TYPE_UNSIGNED (TREE_TYPE
8207 (treeop0)));
8208 else
8209 {
8210 convert_move (target, op0,
8211 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8212 op0 = target;
8213 }
8214
8215 return REDUCE_BIT_FIELD (op0);
8216
8217 case ADDR_SPACE_CONVERT_EXPR:
8218 {
8219 tree treeop0_type = TREE_TYPE (treeop0);
8220 addr_space_t as_to;
8221 addr_space_t as_from;
8222
8223 gcc_assert (POINTER_TYPE_P (type));
8224 gcc_assert (POINTER_TYPE_P (treeop0_type));
8225
8226 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
8227 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
8228
8229 /* Conversions between pointers to the same address space should
8230 have been implemented via CONVERT_EXPR / NOP_EXPR. */
8231 gcc_assert (as_to != as_from);
8232
8233 /* Ask target code to handle conversion between pointers
8234 to overlapping address spaces. */
8235 if (targetm.addr_space.subset_p (as_to, as_from)
8236 || targetm.addr_space.subset_p (as_from, as_to))
8237 {
8238 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
8239 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
8240 gcc_assert (op0);
8241 return op0;
8242 }
8243
8244 /* For disjoint address spaces, converting anything but
8245 a null pointer invokes undefined behaviour. We simply
8246 always return a null pointer here. */
8247 return CONST0_RTX (mode);
8248 }
8249
8250 case POINTER_PLUS_EXPR:
8251 /* Even though the sizetype mode and the pointer's mode can be different
8252 expand is able to handle this correctly and get the correct result out
8253 of the PLUS_EXPR code. */
8254 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8255 if sizetype precision is smaller than pointer precision. */
8256 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8257 treeop1 = fold_convert_loc (loc, type,
8258 fold_convert_loc (loc, ssizetype,
8259 treeop1));
8260 /* If sizetype precision is larger than pointer precision, truncate the
8261 offset to have matching modes. */
8262 else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
8263 treeop1 = fold_convert_loc (loc, type, treeop1);
8264
8265 case PLUS_EXPR:
8266 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8267 something else, make sure we add the register to the constant and
8268 then to the other thing. This case can occur during strength
8269 reduction and doing it this way will produce better code if the
8270 frame pointer or argument pointer is eliminated.
8271
8272 fold-const.c will ensure that the constant is always in the inner
8273 PLUS_EXPR, so the only case we need to do anything about is if
8274 sp, ap, or fp is our second argument, in which case we must swap
8275 the innermost first argument and our second argument. */
8276
8277 if (TREE_CODE (treeop0) == PLUS_EXPR
8278 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
8279 && TREE_CODE (treeop1) == VAR_DECL
8280 && (DECL_RTL (treeop1) == frame_pointer_rtx
8281 || DECL_RTL (treeop1) == stack_pointer_rtx
8282 || DECL_RTL (treeop1) == arg_pointer_rtx))
8283 {
8284 gcc_unreachable ();
8285 }
8286
8287 /* If the result is to be ptr_mode and we are adding an integer to
8288 something, we might be forming a constant. So try to use
8289 plus_constant. If it produces a sum and we can't accept it,
8290 use force_operand. This allows P = &ARR[const] to generate
8291 efficient code on machines where a SYMBOL_REF is not a valid
8292 address.
8293
8294 If this is an EXPAND_SUM call, always return the sum. */
8295 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8296 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8297 {
8298 if (modifier == EXPAND_STACK_PARM)
8299 target = 0;
8300 if (TREE_CODE (treeop0) == INTEGER_CST
8301 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8302 && TREE_CONSTANT (treeop1))
8303 {
8304 rtx constant_part;
8305
8306 op1 = expand_expr (treeop1, subtarget, VOIDmode,
8307 EXPAND_SUM);
8308 /* Use immed_double_const to ensure that the constant is
8309 truncated according to the mode of OP1, then sign extended
8310 to a HOST_WIDE_INT. Using the constant directly can result
8311 in non-canonical RTL in a 64x32 cross compile. */
8312 constant_part
8313 = immed_double_const (TREE_INT_CST_LOW (treeop0),
8314 (HOST_WIDE_INT) 0,
8315 TYPE_MODE (TREE_TYPE (treeop1)));
8316 op1 = plus_constant (mode, op1, INTVAL (constant_part));
8317 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8318 op1 = force_operand (op1, target);
8319 return REDUCE_BIT_FIELD (op1);
8320 }
8321
8322 else if (TREE_CODE (treeop1) == INTEGER_CST
8323 && GET_MODE_PRECISION (mode) <= HOST_BITS_PER_WIDE_INT
8324 && TREE_CONSTANT (treeop0))
8325 {
8326 rtx constant_part;
8327
8328 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8329 (modifier == EXPAND_INITIALIZER
8330 ? EXPAND_INITIALIZER : EXPAND_SUM));
8331 if (! CONSTANT_P (op0))
8332 {
8333 op1 = expand_expr (treeop1, NULL_RTX,
8334 VOIDmode, modifier);
8335 /* Return a PLUS if modifier says it's OK. */
8336 if (modifier == EXPAND_SUM
8337 || modifier == EXPAND_INITIALIZER)
8338 return simplify_gen_binary (PLUS, mode, op0, op1);
8339 goto binop2;
8340 }
8341 /* Use immed_double_const to ensure that the constant is
8342 truncated according to the mode of OP1, then sign extended
8343 to a HOST_WIDE_INT. Using the constant directly can result
8344 in non-canonical RTL in a 64x32 cross compile. */
8345 constant_part
8346 = immed_double_const (TREE_INT_CST_LOW (treeop1),
8347 (HOST_WIDE_INT) 0,
8348 TYPE_MODE (TREE_TYPE (treeop0)));
8349 op0 = plus_constant (mode, op0, INTVAL (constant_part));
8350 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8351 op0 = force_operand (op0, target);
8352 return REDUCE_BIT_FIELD (op0);
8353 }
8354 }
8355
8356 /* Use TER to expand pointer addition of a negated value
8357 as pointer subtraction. */
8358 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
8359 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
8360 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
8361 && TREE_CODE (treeop1) == SSA_NAME
8362 && TYPE_MODE (TREE_TYPE (treeop0))
8363 == TYPE_MODE (TREE_TYPE (treeop1)))
8364 {
8365 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
8366 if (def)
8367 {
8368 treeop1 = gimple_assign_rhs1 (def);
8369 code = MINUS_EXPR;
8370 goto do_minus;
8371 }
8372 }
8373
8374 /* No sense saving up arithmetic to be done
8375 if it's all in the wrong mode to form part of an address.
8376 And force_operand won't know whether to sign-extend or
8377 zero-extend. */
8378 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8379 || mode != ptr_mode)
8380 {
8381 expand_operands (treeop0, treeop1,
8382 subtarget, &op0, &op1, EXPAND_NORMAL);
8383 if (op0 == const0_rtx)
8384 return op1;
8385 if (op1 == const0_rtx)
8386 return op0;
8387 goto binop2;
8388 }
8389
8390 expand_operands (treeop0, treeop1,
8391 subtarget, &op0, &op1, modifier);
8392 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8393
8394 case MINUS_EXPR:
8395 do_minus:
8396 /* For initializers, we are allowed to return a MINUS of two
8397 symbolic constants. Here we handle all cases when both operands
8398 are constant. */
8399 /* Handle difference of two symbolic constants,
8400 for the sake of an initializer. */
8401 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8402 && really_constant_p (treeop0)
8403 && really_constant_p (treeop1))
8404 {
8405 expand_operands (treeop0, treeop1,
8406 NULL_RTX, &op0, &op1, modifier);
8407
8408 /* If the last operand is a CONST_INT, use plus_constant of
8409 the negated constant. Else make the MINUS. */
8410 if (CONST_INT_P (op1))
8411 return REDUCE_BIT_FIELD (plus_constant (mode, op0,
8412 -INTVAL (op1)));
8413 else
8414 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8415 }
8416
8417 /* No sense saving up arithmetic to be done
8418 if it's all in the wrong mode to form part of an address.
8419 And force_operand won't know whether to sign-extend or
8420 zero-extend. */
8421 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8422 || mode != ptr_mode)
8423 goto binop;
8424
8425 expand_operands (treeop0, treeop1,
8426 subtarget, &op0, &op1, modifier);
8427
8428 /* Convert A - const to A + (-const). */
8429 if (CONST_INT_P (op1))
8430 {
8431 op1 = negate_rtx (mode, op1);
8432 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8433 }
8434
8435 goto binop2;
8436
8437 case WIDEN_MULT_PLUS_EXPR:
8438 case WIDEN_MULT_MINUS_EXPR:
8439 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8440 op2 = expand_normal (treeop2);
8441 target = expand_widen_pattern_expr (ops, op0, op1, op2,
8442 target, unsignedp);
8443 return target;
8444
8445 case WIDEN_MULT_EXPR:
8446 /* If first operand is constant, swap them.
8447 Thus the following special case checks need only
8448 check the second operand. */
8449 if (TREE_CODE (treeop0) == INTEGER_CST)
8450 {
8451 tree t1 = treeop0;
8452 treeop0 = treeop1;
8453 treeop1 = t1;
8454 }
8455
8456 /* First, check if we have a multiplication of one signed and one
8457 unsigned operand. */
8458 if (TREE_CODE (treeop1) != INTEGER_CST
8459 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
8460 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
8461 {
8462 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
8463 this_optab = usmul_widen_optab;
8464 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8465 != CODE_FOR_nothing)
8466 {
8467 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8468 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8469 EXPAND_NORMAL);
8470 else
8471 expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
8472 EXPAND_NORMAL);
8473 /* op0 and op1 might still be constant, despite the above
8474 != INTEGER_CST check. Handle it. */
8475 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8476 {
8477 op0 = convert_modes (innermode, mode, op0, true);
8478 op1 = convert_modes (innermode, mode, op1, false);
8479 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8480 target, unsignedp));
8481 }
8482 goto binop3;
8483 }
8484 }
8485 /* Check for a multiplication with matching signedness. */
8486 else if ((TREE_CODE (treeop1) == INTEGER_CST
8487 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
8488 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
8489 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
8490 {
8491 tree op0type = TREE_TYPE (treeop0);
8492 enum machine_mode innermode = TYPE_MODE (op0type);
8493 bool zextend_p = TYPE_UNSIGNED (op0type);
8494 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8495 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8496
8497 if (TREE_CODE (treeop0) != INTEGER_CST)
8498 {
8499 if (find_widening_optab_handler (this_optab, mode, innermode, 0)
8500 != CODE_FOR_nothing)
8501 {
8502 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
8503 EXPAND_NORMAL);
8504 /* op0 and op1 might still be constant, despite the above
8505 != INTEGER_CST check. Handle it. */
8506 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8507 {
8508 widen_mult_const:
8509 op0 = convert_modes (innermode, mode, op0, zextend_p);
8510 op1
8511 = convert_modes (innermode, mode, op1,
8512 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8513 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
8514 target,
8515 unsignedp));
8516 }
8517 temp = expand_widening_mult (mode, op0, op1, target,
8518 unsignedp, this_optab);
8519 return REDUCE_BIT_FIELD (temp);
8520 }
8521 if (find_widening_optab_handler (other_optab, mode, innermode, 0)
8522 != CODE_FOR_nothing
8523 && innermode == word_mode)
8524 {
8525 rtx htem, hipart;
8526 op0 = expand_normal (treeop0);
8527 if (TREE_CODE (treeop1) == INTEGER_CST)
8528 op1 = convert_modes (innermode, mode,
8529 expand_normal (treeop1),
8530 TYPE_UNSIGNED (TREE_TYPE (treeop1)));
8531 else
8532 op1 = expand_normal (treeop1);
8533 /* op0 and op1 might still be constant, despite the above
8534 != INTEGER_CST check. Handle it. */
8535 if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
8536 goto widen_mult_const;
8537 temp = expand_binop (mode, other_optab, op0, op1, target,
8538 unsignedp, OPTAB_LIB_WIDEN);
8539 hipart = gen_highpart (innermode, temp);
8540 htem = expand_mult_highpart_adjust (innermode, hipart,
8541 op0, op1, hipart,
8542 zextend_p);
8543 if (htem != hipart)
8544 emit_move_insn (hipart, htem);
8545 return REDUCE_BIT_FIELD (temp);
8546 }
8547 }
8548 }
8549 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
8550 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
8551 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8552 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8553
8554 case FMA_EXPR:
8555 {
8556 optab opt = fma_optab;
8557 gimple def0, def2;
8558
8559 /* If there is no insn for FMA, emit it as __builtin_fma{,f,l}
8560 call. */
8561 if (optab_handler (fma_optab, mode) == CODE_FOR_nothing)
8562 {
8563 tree fn = mathfn_built_in (TREE_TYPE (treeop0), BUILT_IN_FMA);
8564 tree call_expr;
8565
8566 gcc_assert (fn != NULL_TREE);
8567 call_expr = build_call_expr (fn, 3, treeop0, treeop1, treeop2);
8568 return expand_builtin (call_expr, target, subtarget, mode, false);
8569 }
8570
8571 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
8572 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
8573
8574 op0 = op2 = NULL;
8575
8576 if (def0 && def2
8577 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
8578 {
8579 opt = fnms_optab;
8580 op0 = expand_normal (gimple_assign_rhs1 (def0));
8581 op2 = expand_normal (gimple_assign_rhs1 (def2));
8582 }
8583 else if (def0
8584 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
8585 {
8586 opt = fnma_optab;
8587 op0 = expand_normal (gimple_assign_rhs1 (def0));
8588 }
8589 else if (def2
8590 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
8591 {
8592 opt = fms_optab;
8593 op2 = expand_normal (gimple_assign_rhs1 (def2));
8594 }
8595
8596 if (op0 == NULL)
8597 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
8598 if (op2 == NULL)
8599 op2 = expand_normal (treeop2);
8600 op1 = expand_normal (treeop1);
8601
8602 return expand_ternary_op (TYPE_MODE (type), opt,
8603 op0, op1, op2, target, 0);
8604 }
8605
8606 case MULT_EXPR:
8607 /* If this is a fixed-point operation, then we cannot use the code
8608 below because "expand_mult" doesn't support sat/no-sat fixed-point
8609 multiplications. */
8610 if (ALL_FIXED_POINT_MODE_P (mode))
8611 goto binop;
8612
8613 /* If first operand is constant, swap them.
8614 Thus the following special case checks need only
8615 check the second operand. */
8616 if (TREE_CODE (treeop0) == INTEGER_CST)
8617 {
8618 tree t1 = treeop0;
8619 treeop0 = treeop1;
8620 treeop1 = t1;
8621 }
8622
8623 /* Attempt to return something suitable for generating an
8624 indexed address, for machines that support that. */
8625
8626 if (modifier == EXPAND_SUM && mode == ptr_mode
8627 && tree_fits_shwi_p (treeop1))
8628 {
8629 tree exp1 = treeop1;
8630
8631 op0 = expand_expr (treeop0, subtarget, VOIDmode,
8632 EXPAND_SUM);
8633
8634 if (!REG_P (op0))
8635 op0 = force_operand (op0, NULL_RTX);
8636 if (!REG_P (op0))
8637 op0 = copy_to_mode_reg (mode, op0);
8638
8639 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8640 gen_int_mode (tree_to_shwi (exp1),
8641 TYPE_MODE (TREE_TYPE (exp1)))));
8642 }
8643
8644 if (modifier == EXPAND_STACK_PARM)
8645 target = 0;
8646
8647 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8648 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8649
8650 case TRUNC_DIV_EXPR:
8651 case FLOOR_DIV_EXPR:
8652 case CEIL_DIV_EXPR:
8653 case ROUND_DIV_EXPR:
8654 case EXACT_DIV_EXPR:
8655 /* If this is a fixed-point operation, then we cannot use the code
8656 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8657 divisions. */
8658 if (ALL_FIXED_POINT_MODE_P (mode))
8659 goto binop;
8660
8661 if (modifier == EXPAND_STACK_PARM)
8662 target = 0;
8663 /* Possible optimization: compute the dividend with EXPAND_SUM
8664 then if the divisor is constant can optimize the case
8665 where some terms of the dividend have coeffs divisible by it. */
8666 expand_operands (treeop0, treeop1,
8667 subtarget, &op0, &op1, EXPAND_NORMAL);
8668 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8669
8670 case RDIV_EXPR:
8671 goto binop;
8672
8673 case MULT_HIGHPART_EXPR:
8674 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
8675 temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
8676 gcc_assert (temp);
8677 return temp;
8678
8679 case TRUNC_MOD_EXPR:
8680 case FLOOR_MOD_EXPR:
8681 case CEIL_MOD_EXPR:
8682 case ROUND_MOD_EXPR:
8683 if (modifier == EXPAND_STACK_PARM)
8684 target = 0;
8685 expand_operands (treeop0, treeop1,
8686 subtarget, &op0, &op1, EXPAND_NORMAL);
8687 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8688
8689 case FIXED_CONVERT_EXPR:
8690 op0 = expand_normal (treeop0);
8691 if (target == 0 || modifier == EXPAND_STACK_PARM)
8692 target = gen_reg_rtx (mode);
8693
8694 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
8695 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
8696 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8697 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8698 else
8699 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8700 return target;
8701
8702 case FIX_TRUNC_EXPR:
8703 op0 = expand_normal (treeop0);
8704 if (target == 0 || modifier == EXPAND_STACK_PARM)
8705 target = gen_reg_rtx (mode);
8706 expand_fix (target, op0, unsignedp);
8707 return target;
8708
8709 case FLOAT_EXPR:
8710 op0 = expand_normal (treeop0);
8711 if (target == 0 || modifier == EXPAND_STACK_PARM)
8712 target = gen_reg_rtx (mode);
8713 /* expand_float can't figure out what to do if FROM has VOIDmode.
8714 So give it the correct mode. With -O, cse will optimize this. */
8715 if (GET_MODE (op0) == VOIDmode)
8716 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
8717 op0);
8718 expand_float (target, op0,
8719 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8720 return target;
8721
8722 case NEGATE_EXPR:
8723 op0 = expand_expr (treeop0, subtarget,
8724 VOIDmode, EXPAND_NORMAL);
8725 if (modifier == EXPAND_STACK_PARM)
8726 target = 0;
8727 temp = expand_unop (mode,
8728 optab_for_tree_code (NEGATE_EXPR, type,
8729 optab_default),
8730 op0, target, 0);
8731 gcc_assert (temp);
8732 return REDUCE_BIT_FIELD (temp);
8733
8734 case ABS_EXPR:
8735 op0 = expand_expr (treeop0, subtarget,
8736 VOIDmode, EXPAND_NORMAL);
8737 if (modifier == EXPAND_STACK_PARM)
8738 target = 0;
8739
8740 /* ABS_EXPR is not valid for complex arguments. */
8741 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8742 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8743
8744 /* Unsigned abs is simply the operand. Testing here means we don't
8745 risk generating incorrect code below. */
8746 if (TYPE_UNSIGNED (type))
8747 return op0;
8748
8749 return expand_abs (mode, op0, target, unsignedp,
8750 safe_from_p (target, treeop0, 1));
8751
8752 case MAX_EXPR:
8753 case MIN_EXPR:
8754 target = original_target;
8755 if (target == 0
8756 || modifier == EXPAND_STACK_PARM
8757 || (MEM_P (target) && MEM_VOLATILE_P (target))
8758 || GET_MODE (target) != mode
8759 || (REG_P (target)
8760 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8761 target = gen_reg_rtx (mode);
8762 expand_operands (treeop0, treeop1,
8763 target, &op0, &op1, EXPAND_NORMAL);
8764
8765 /* First try to do it with a special MIN or MAX instruction.
8766 If that does not win, use a conditional jump to select the proper
8767 value. */
8768 this_optab = optab_for_tree_code (code, type, optab_default);
8769 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8770 OPTAB_WIDEN);
8771 if (temp != 0)
8772 return temp;
8773
8774 /* At this point, a MEM target is no longer useful; we will get better
8775 code without it. */
8776
8777 if (! REG_P (target))
8778 target = gen_reg_rtx (mode);
8779
8780 /* If op1 was placed in target, swap op0 and op1. */
8781 if (target != op0 && target == op1)
8782 {
8783 temp = op0;
8784 op0 = op1;
8785 op1 = temp;
8786 }
8787
8788 /* We generate better code and avoid problems with op1 mentioning
8789 target by forcing op1 into a pseudo if it isn't a constant. */
8790 if (! CONSTANT_P (op1))
8791 op1 = force_reg (mode, op1);
8792
8793 {
8794 enum rtx_code comparison_code;
8795 rtx cmpop1 = op1;
8796
8797 if (code == MAX_EXPR)
8798 comparison_code = unsignedp ? GEU : GE;
8799 else
8800 comparison_code = unsignedp ? LEU : LE;
8801
8802 /* Canonicalize to comparisons against 0. */
8803 if (op1 == const1_rtx)
8804 {
8805 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8806 or (a != 0 ? a : 1) for unsigned.
8807 For MIN we are safe converting (a <= 1 ? a : 1)
8808 into (a <= 0 ? a : 1) */
8809 cmpop1 = const0_rtx;
8810 if (code == MAX_EXPR)
8811 comparison_code = unsignedp ? NE : GT;
8812 }
8813 if (op1 == constm1_rtx && !unsignedp)
8814 {
8815 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8816 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8817 cmpop1 = const0_rtx;
8818 if (code == MIN_EXPR)
8819 comparison_code = LT;
8820 }
8821 #ifdef HAVE_conditional_move
8822 /* Use a conditional move if possible. */
8823 if (can_conditionally_move_p (mode))
8824 {
8825 rtx insn;
8826
8827 start_sequence ();
8828
8829 /* Try to emit the conditional move. */
8830 insn = emit_conditional_move (target, comparison_code,
8831 op0, cmpop1, mode,
8832 op0, op1, mode,
8833 unsignedp);
8834
8835 /* If we could do the conditional move, emit the sequence,
8836 and return. */
8837 if (insn)
8838 {
8839 rtx seq = get_insns ();
8840 end_sequence ();
8841 emit_insn (seq);
8842 return target;
8843 }
8844
8845 /* Otherwise discard the sequence and fall back to code with
8846 branches. */
8847 end_sequence ();
8848 }
8849 #endif
8850 if (target != op0)
8851 emit_move_insn (target, op0);
8852
8853 temp = gen_label_rtx ();
8854 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8855 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8856 -1);
8857 }
8858 emit_move_insn (target, op1);
8859 emit_label (temp);
8860 return target;
8861
8862 case BIT_NOT_EXPR:
8863 op0 = expand_expr (treeop0, subtarget,
8864 VOIDmode, EXPAND_NORMAL);
8865 if (modifier == EXPAND_STACK_PARM)
8866 target = 0;
8867 /* In case we have to reduce the result to bitfield precision
8868 for unsigned bitfield expand this as XOR with a proper constant
8869 instead. */
8870 if (reduce_bit_field && TYPE_UNSIGNED (type))
8871 temp = expand_binop (mode, xor_optab, op0,
8872 immed_double_int_const
8873 (double_int::mask (TYPE_PRECISION (type)), mode),
8874 target, 1, OPTAB_LIB_WIDEN);
8875 else
8876 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8877 gcc_assert (temp);
8878 return temp;
8879
8880 /* ??? Can optimize bitwise operations with one arg constant.
8881 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8882 and (a bitwise1 b) bitwise2 b (etc)
8883 but that is probably not worth while. */
8884
8885 case BIT_AND_EXPR:
8886 case BIT_IOR_EXPR:
8887 case BIT_XOR_EXPR:
8888 goto binop;
8889
8890 case LROTATE_EXPR:
8891 case RROTATE_EXPR:
8892 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8893 || (GET_MODE_PRECISION (TYPE_MODE (type))
8894 == TYPE_PRECISION (type)));
8895 /* fall through */
8896
8897 case LSHIFT_EXPR:
8898 case RSHIFT_EXPR:
8899 /* If this is a fixed-point operation, then we cannot use the code
8900 below because "expand_shift" doesn't support sat/no-sat fixed-point
8901 shifts. */
8902 if (ALL_FIXED_POINT_MODE_P (mode))
8903 goto binop;
8904
8905 if (! safe_from_p (subtarget, treeop1, 1))
8906 subtarget = 0;
8907 if (modifier == EXPAND_STACK_PARM)
8908 target = 0;
8909 op0 = expand_expr (treeop0, subtarget,
8910 VOIDmode, EXPAND_NORMAL);
8911 temp = expand_variable_shift (code, mode, op0, treeop1, target,
8912 unsignedp);
8913 if (code == LSHIFT_EXPR)
8914 temp = REDUCE_BIT_FIELD (temp);
8915 return temp;
8916
8917 /* Could determine the answer when only additive constants differ. Also,
8918 the addition of one can be handled by changing the condition. */
8919 case LT_EXPR:
8920 case LE_EXPR:
8921 case GT_EXPR:
8922 case GE_EXPR:
8923 case EQ_EXPR:
8924 case NE_EXPR:
8925 case UNORDERED_EXPR:
8926 case ORDERED_EXPR:
8927 case UNLT_EXPR:
8928 case UNLE_EXPR:
8929 case UNGT_EXPR:
8930 case UNGE_EXPR:
8931 case UNEQ_EXPR:
8932 case LTGT_EXPR:
8933 temp = do_store_flag (ops,
8934 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8935 tmode != VOIDmode ? tmode : mode);
8936 if (temp)
8937 return temp;
8938
8939 /* Use a compare and a jump for BLKmode comparisons, or for function
8940 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8941
8942 if ((target == 0
8943 || modifier == EXPAND_STACK_PARM
8944 || ! safe_from_p (target, treeop0, 1)
8945 || ! safe_from_p (target, treeop1, 1)
8946 /* Make sure we don't have a hard reg (such as function's return
8947 value) live across basic blocks, if not optimizing. */
8948 || (!optimize && REG_P (target)
8949 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8950 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8951
8952 emit_move_insn (target, const0_rtx);
8953
8954 op1 = gen_label_rtx ();
8955 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8956
8957 if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
8958 emit_move_insn (target, constm1_rtx);
8959 else
8960 emit_move_insn (target, const1_rtx);
8961
8962 emit_label (op1);
8963 return target;
8964
8965 case COMPLEX_EXPR:
8966 /* Get the rtx code of the operands. */
8967 op0 = expand_normal (treeop0);
8968 op1 = expand_normal (treeop1);
8969
8970 if (!target)
8971 target = gen_reg_rtx (TYPE_MODE (type));
8972 else
8973 /* If target overlaps with op1, then either we need to force
8974 op1 into a pseudo (if target also overlaps with op0),
8975 or write the complex parts in reverse order. */
8976 switch (GET_CODE (target))
8977 {
8978 case CONCAT:
8979 if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
8980 {
8981 if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
8982 {
8983 complex_expr_force_op1:
8984 temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
8985 emit_move_insn (temp, op1);
8986 op1 = temp;
8987 break;
8988 }
8989 complex_expr_swap_order:
8990 /* Move the imaginary (op1) and real (op0) parts to their
8991 location. */
8992 write_complex_part (target, op1, true);
8993 write_complex_part (target, op0, false);
8994
8995 return target;
8996 }
8997 break;
8998 case MEM:
8999 temp = adjust_address_nv (target,
9000 GET_MODE_INNER (GET_MODE (target)), 0);
9001 if (reg_overlap_mentioned_p (temp, op1))
9002 {
9003 enum machine_mode imode = GET_MODE_INNER (GET_MODE (target));
9004 temp = adjust_address_nv (target, imode,
9005 GET_MODE_SIZE (imode));
9006 if (reg_overlap_mentioned_p (temp, op0))
9007 goto complex_expr_force_op1;
9008 goto complex_expr_swap_order;
9009 }
9010 break;
9011 default:
9012 if (reg_overlap_mentioned_p (target, op1))
9013 {
9014 if (reg_overlap_mentioned_p (target, op0))
9015 goto complex_expr_force_op1;
9016 goto complex_expr_swap_order;
9017 }
9018 break;
9019 }
9020
9021 /* Move the real (op0) and imaginary (op1) parts to their location. */
9022 write_complex_part (target, op0, false);
9023 write_complex_part (target, op1, true);
9024
9025 return target;
9026
9027 case WIDEN_SUM_EXPR:
9028 {
9029 tree oprnd0 = treeop0;
9030 tree oprnd1 = treeop1;
9031
9032 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9033 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
9034 target, unsignedp);
9035 return target;
9036 }
9037
9038 case REDUC_MAX_EXPR:
9039 case REDUC_MIN_EXPR:
9040 case REDUC_PLUS_EXPR:
9041 {
9042 op0 = expand_normal (treeop0);
9043 this_optab = optab_for_tree_code (code, type, optab_default);
9044 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9045 gcc_assert (temp);
9046 return temp;
9047 }
9048
9049 case VEC_LSHIFT_EXPR:
9050 case VEC_RSHIFT_EXPR:
9051 {
9052 target = expand_vec_shift_expr (ops, target);
9053 return target;
9054 }
9055
9056 case VEC_UNPACK_HI_EXPR:
9057 case VEC_UNPACK_LO_EXPR:
9058 {
9059 op0 = expand_normal (treeop0);
9060 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
9061 target, unsignedp);
9062 gcc_assert (temp);
9063 return temp;
9064 }
9065
9066 case VEC_UNPACK_FLOAT_HI_EXPR:
9067 case VEC_UNPACK_FLOAT_LO_EXPR:
9068 {
9069 op0 = expand_normal (treeop0);
9070 /* The signedness is determined from input operand. */
9071 temp = expand_widen_pattern_expr
9072 (ops, op0, NULL_RTX, NULL_RTX,
9073 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9074
9075 gcc_assert (temp);
9076 return temp;
9077 }
9078
9079 case VEC_WIDEN_MULT_HI_EXPR:
9080 case VEC_WIDEN_MULT_LO_EXPR:
9081 case VEC_WIDEN_MULT_EVEN_EXPR:
9082 case VEC_WIDEN_MULT_ODD_EXPR:
9083 case VEC_WIDEN_LSHIFT_HI_EXPR:
9084 case VEC_WIDEN_LSHIFT_LO_EXPR:
9085 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9086 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
9087 target, unsignedp);
9088 gcc_assert (target);
9089 return target;
9090
9091 case VEC_PACK_TRUNC_EXPR:
9092 case VEC_PACK_SAT_EXPR:
9093 case VEC_PACK_FIX_TRUNC_EXPR:
9094 mode = TYPE_MODE (TREE_TYPE (treeop0));
9095 goto binop;
9096
9097 case VEC_PERM_EXPR:
9098 expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
9099 op2 = expand_normal (treeop2);
9100
9101 /* Careful here: if the target doesn't support integral vector modes,
9102 a constant selection vector could wind up smooshed into a normal
9103 integral constant. */
9104 if (CONSTANT_P (op2) && GET_CODE (op2) != CONST_VECTOR)
9105 {
9106 tree sel_type = TREE_TYPE (treeop2);
9107 enum machine_mode vmode
9108 = mode_for_vector (TYPE_MODE (TREE_TYPE (sel_type)),
9109 TYPE_VECTOR_SUBPARTS (sel_type));
9110 gcc_assert (GET_MODE_CLASS (vmode) == MODE_VECTOR_INT);
9111 op2 = simplify_subreg (vmode, op2, TYPE_MODE (sel_type), 0);
9112 gcc_assert (op2 && GET_CODE (op2) == CONST_VECTOR);
9113 }
9114 else
9115 gcc_assert (GET_MODE_CLASS (GET_MODE (op2)) == MODE_VECTOR_INT);
9116
9117 temp = expand_vec_perm (mode, op0, op1, op2, target);
9118 gcc_assert (temp);
9119 return temp;
9120
9121 case DOT_PROD_EXPR:
9122 {
9123 tree oprnd0 = treeop0;
9124 tree oprnd1 = treeop1;
9125 tree oprnd2 = treeop2;
9126 rtx op2;
9127
9128 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9129 op2 = expand_normal (oprnd2);
9130 target = expand_widen_pattern_expr (ops, op0, op1, op2,
9131 target, unsignedp);
9132 return target;
9133 }
9134
9135 case REALIGN_LOAD_EXPR:
9136 {
9137 tree oprnd0 = treeop0;
9138 tree oprnd1 = treeop1;
9139 tree oprnd2 = treeop2;
9140 rtx op2;
9141
9142 this_optab = optab_for_tree_code (code, type, optab_default);
9143 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9144 op2 = expand_normal (oprnd2);
9145 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9146 target, unsignedp);
9147 gcc_assert (temp);
9148 return temp;
9149 }
9150
9151 case COND_EXPR:
9152 /* A COND_EXPR with its type being VOID_TYPE represents a
9153 conditional jump and is handled in
9154 expand_gimple_cond_expr. */
9155 gcc_assert (!VOID_TYPE_P (type));
9156
9157 /* Note that COND_EXPRs whose type is a structure or union
9158 are required to be constructed to contain assignments of
9159 a temporary variable, so that we can evaluate them here
9160 for side effect only. If type is void, we must do likewise. */
9161
9162 gcc_assert (!TREE_ADDRESSABLE (type)
9163 && !ignore
9164 && TREE_TYPE (treeop1) != void_type_node
9165 && TREE_TYPE (treeop2) != void_type_node);
9166
9167 temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
9168 if (temp)
9169 return temp;
9170
9171 /* If we are not to produce a result, we have no target. Otherwise,
9172 if a target was specified use it; it will not be used as an
9173 intermediate target unless it is safe. If no target, use a
9174 temporary. */
9175
9176 if (modifier != EXPAND_STACK_PARM
9177 && original_target
9178 && safe_from_p (original_target, treeop0, 1)
9179 && GET_MODE (original_target) == mode
9180 && !MEM_P (original_target))
9181 temp = original_target;
9182 else
9183 temp = assign_temp (type, 0, 1);
9184
9185 do_pending_stack_adjust ();
9186 NO_DEFER_POP;
9187 op0 = gen_label_rtx ();
9188 op1 = gen_label_rtx ();
9189 jumpifnot (treeop0, op0, -1);
9190 store_expr (treeop1, temp,
9191 modifier == EXPAND_STACK_PARM,
9192 false);
9193
9194 emit_jump_insn (gen_jump (op1));
9195 emit_barrier ();
9196 emit_label (op0);
9197 store_expr (treeop2, temp,
9198 modifier == EXPAND_STACK_PARM,
9199 false);
9200
9201 emit_label (op1);
9202 OK_DEFER_POP;
9203 return temp;
9204
9205 case VEC_COND_EXPR:
9206 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9207 return target;
9208
9209 default:
9210 gcc_unreachable ();
9211 }
9212
9213 /* Here to do an ordinary binary operator. */
9214 binop:
9215 expand_operands (treeop0, treeop1,
9216 subtarget, &op0, &op1, EXPAND_NORMAL);
9217 binop2:
9218 this_optab = optab_for_tree_code (code, type, optab_default);
9219 binop3:
9220 if (modifier == EXPAND_STACK_PARM)
9221 target = 0;
9222 temp = expand_binop (mode, this_optab, op0, op1, target,
9223 unsignedp, OPTAB_LIB_WIDEN);
9224 gcc_assert (temp);
9225 /* Bitwise operations do not need bitfield reduction as we expect their
9226 operands being properly truncated. */
9227 if (code == BIT_XOR_EXPR
9228 || code == BIT_AND_EXPR
9229 || code == BIT_IOR_EXPR)
9230 return temp;
9231 return REDUCE_BIT_FIELD (temp);
9232 }
9233 #undef REDUCE_BIT_FIELD
9234
9235
9236 /* Return TRUE if expression STMT is suitable for replacement.
9237 Never consider memory loads as replaceable, because those don't ever lead
9238 into constant expressions. */
9239
9240 static bool
9241 stmt_is_replaceable_p (gimple stmt)
9242 {
9243 if (ssa_is_replaceable_p (stmt))
9244 {
9245 /* Don't move around loads. */
9246 if (!gimple_assign_single_p (stmt)
9247 || is_gimple_val (gimple_assign_rhs1 (stmt)))
9248 return true;
9249 }
9250 return false;
9251 }
9252
9253 rtx
9254 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
9255 enum expand_modifier modifier, rtx *alt_rtl,
9256 bool inner_reference_p)
9257 {
9258 rtx op0, op1, temp, decl_rtl;
9259 tree type;
9260 int unsignedp;
9261 enum machine_mode mode;
9262 enum tree_code code = TREE_CODE (exp);
9263 rtx subtarget, original_target;
9264 int ignore;
9265 tree context;
9266 bool reduce_bit_field;
9267 location_t loc = EXPR_LOCATION (exp);
9268 struct separate_ops ops;
9269 tree treeop0, treeop1, treeop2;
9270 tree ssa_name = NULL_TREE;
9271 gimple g;
9272
9273 type = TREE_TYPE (exp);
9274 mode = TYPE_MODE (type);
9275 unsignedp = TYPE_UNSIGNED (type);
9276
9277 treeop0 = treeop1 = treeop2 = NULL_TREE;
9278 if (!VL_EXP_CLASS_P (exp))
9279 switch (TREE_CODE_LENGTH (code))
9280 {
9281 default:
9282 case 3: treeop2 = TREE_OPERAND (exp, 2);
9283 case 2: treeop1 = TREE_OPERAND (exp, 1);
9284 case 1: treeop0 = TREE_OPERAND (exp, 0);
9285 case 0: break;
9286 }
9287 ops.code = code;
9288 ops.type = type;
9289 ops.op0 = treeop0;
9290 ops.op1 = treeop1;
9291 ops.op2 = treeop2;
9292 ops.location = loc;
9293
9294 ignore = (target == const0_rtx
9295 || ((CONVERT_EXPR_CODE_P (code)
9296 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
9297 && TREE_CODE (type) == VOID_TYPE));
9298
9299 /* An operation in what may be a bit-field type needs the
9300 result to be reduced to the precision of the bit-field type,
9301 which is narrower than that of the type's mode. */
9302 reduce_bit_field = (!ignore
9303 && INTEGRAL_TYPE_P (type)
9304 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
9305
9306 /* If we are going to ignore this result, we need only do something
9307 if there is a side-effect somewhere in the expression. If there
9308 is, short-circuit the most common cases here. Note that we must
9309 not call expand_expr with anything but const0_rtx in case this
9310 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
9311
9312 if (ignore)
9313 {
9314 if (! TREE_SIDE_EFFECTS (exp))
9315 return const0_rtx;
9316
9317 /* Ensure we reference a volatile object even if value is ignored, but
9318 don't do this if all we are doing is taking its address. */
9319 if (TREE_THIS_VOLATILE (exp)
9320 && TREE_CODE (exp) != FUNCTION_DECL
9321 && mode != VOIDmode && mode != BLKmode
9322 && modifier != EXPAND_CONST_ADDRESS)
9323 {
9324 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
9325 if (MEM_P (temp))
9326 copy_to_reg (temp);
9327 return const0_rtx;
9328 }
9329
9330 if (TREE_CODE_CLASS (code) == tcc_unary
9331 || code == BIT_FIELD_REF
9332 || code == COMPONENT_REF
9333 || code == INDIRECT_REF)
9334 return expand_expr (treeop0, const0_rtx, VOIDmode,
9335 modifier);
9336
9337 else if (TREE_CODE_CLASS (code) == tcc_binary
9338 || TREE_CODE_CLASS (code) == tcc_comparison
9339 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
9340 {
9341 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
9342 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
9343 return const0_rtx;
9344 }
9345
9346 target = 0;
9347 }
9348
9349 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
9350 target = 0;
9351
9352 /* Use subtarget as the target for operand 0 of a binary operation. */
9353 subtarget = get_subtarget (target);
9354 original_target = target;
9355
9356 switch (code)
9357 {
9358 case LABEL_DECL:
9359 {
9360 tree function = decl_function_context (exp);
9361
9362 temp = label_rtx (exp);
9363 temp = gen_rtx_LABEL_REF (Pmode, temp);
9364
9365 if (function != current_function_decl
9366 && function != 0)
9367 LABEL_REF_NONLOCAL_P (temp) = 1;
9368
9369 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
9370 return temp;
9371 }
9372
9373 case SSA_NAME:
9374 /* ??? ivopts calls expander, without any preparation from
9375 out-of-ssa. So fake instructions as if this was an access to the
9376 base variable. This unnecessarily allocates a pseudo, see how we can
9377 reuse it, if partition base vars have it set already. */
9378 if (!currently_expanding_to_rtl)
9379 {
9380 tree var = SSA_NAME_VAR (exp);
9381 if (var && DECL_RTL_SET_P (var))
9382 return DECL_RTL (var);
9383 return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
9384 LAST_VIRTUAL_REGISTER + 1);
9385 }
9386
9387 g = get_gimple_for_ssa_name (exp);
9388 /* For EXPAND_INITIALIZER try harder to get something simpler. */
9389 if (g == NULL
9390 && modifier == EXPAND_INITIALIZER
9391 && !SSA_NAME_IS_DEFAULT_DEF (exp)
9392 && (optimize || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
9393 && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
9394 g = SSA_NAME_DEF_STMT (exp);
9395 if (g)
9396 {
9397 rtx r;
9398 ops.code = gimple_assign_rhs_code (g);
9399 switch (get_gimple_rhs_class (ops.code))
9400 {
9401 case GIMPLE_TERNARY_RHS:
9402 ops.op2 = gimple_assign_rhs3 (g);
9403 /* Fallthru */
9404 case GIMPLE_BINARY_RHS:
9405 ops.op1 = gimple_assign_rhs2 (g);
9406 /* Fallthru */
9407 case GIMPLE_UNARY_RHS:
9408 ops.op0 = gimple_assign_rhs1 (g);
9409 ops.type = TREE_TYPE (gimple_assign_lhs (g));
9410 ops.location = gimple_location (g);
9411 r = expand_expr_real_2 (&ops, target, tmode, modifier);
9412 break;
9413 case GIMPLE_SINGLE_RHS:
9414 {
9415 location_t saved_loc = curr_insn_location ();
9416 set_curr_insn_location (gimple_location (g));
9417 r = expand_expr_real (gimple_assign_rhs1 (g), target,
9418 tmode, modifier, NULL, inner_reference_p);
9419 set_curr_insn_location (saved_loc);
9420 break;
9421 }
9422 default:
9423 gcc_unreachable ();
9424 }
9425 if (REG_P (r) && !REG_EXPR (r))
9426 set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
9427 return r;
9428 }
9429
9430 ssa_name = exp;
9431 decl_rtl = get_rtx_for_ssa_name (ssa_name);
9432 exp = SSA_NAME_VAR (ssa_name);
9433 goto expand_decl_rtl;
9434
9435 case PARM_DECL:
9436 case VAR_DECL:
9437 /* If a static var's type was incomplete when the decl was written,
9438 but the type is complete now, lay out the decl now. */
9439 if (DECL_SIZE (exp) == 0
9440 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
9441 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
9442 layout_decl (exp, 0);
9443
9444 /* ... fall through ... */
9445
9446 case FUNCTION_DECL:
9447 case RESULT_DECL:
9448 decl_rtl = DECL_RTL (exp);
9449 expand_decl_rtl:
9450 gcc_assert (decl_rtl);
9451 decl_rtl = copy_rtx (decl_rtl);
9452 /* Record writes to register variables. */
9453 if (modifier == EXPAND_WRITE
9454 && REG_P (decl_rtl)
9455 && HARD_REGISTER_P (decl_rtl))
9456 add_to_hard_reg_set (&crtl->asm_clobbers,
9457 GET_MODE (decl_rtl), REGNO (decl_rtl));
9458
9459 /* Ensure variable marked as used even if it doesn't go through
9460 a parser. If it hasn't be used yet, write out an external
9461 definition. */
9462 TREE_USED (exp) = 1;
9463
9464 /* Show we haven't gotten RTL for this yet. */
9465 temp = 0;
9466
9467 /* Variables inherited from containing functions should have
9468 been lowered by this point. */
9469 context = decl_function_context (exp);
9470 gcc_assert (SCOPE_FILE_SCOPE_P (context)
9471 || context == current_function_decl
9472 || TREE_STATIC (exp)
9473 || DECL_EXTERNAL (exp)
9474 /* ??? C++ creates functions that are not TREE_STATIC. */
9475 || TREE_CODE (exp) == FUNCTION_DECL);
9476
9477 /* This is the case of an array whose size is to be determined
9478 from its initializer, while the initializer is still being parsed.
9479 ??? We aren't parsing while expanding anymore. */
9480
9481 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
9482 temp = validize_mem (decl_rtl);
9483
9484 /* If DECL_RTL is memory, we are in the normal case and the
9485 address is not valid, get the address into a register. */
9486
9487 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
9488 {
9489 if (alt_rtl)
9490 *alt_rtl = decl_rtl;
9491 decl_rtl = use_anchored_address (decl_rtl);
9492 if (modifier != EXPAND_CONST_ADDRESS
9493 && modifier != EXPAND_SUM
9494 && !memory_address_addr_space_p (DECL_MODE (exp),
9495 XEXP (decl_rtl, 0),
9496 MEM_ADDR_SPACE (decl_rtl)))
9497 temp = replace_equiv_address (decl_rtl,
9498 copy_rtx (XEXP (decl_rtl, 0)));
9499 }
9500
9501 /* If we got something, return it. But first, set the alignment
9502 if the address is a register. */
9503 if (temp != 0)
9504 {
9505 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
9506 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
9507
9508 return temp;
9509 }
9510
9511 /* If the mode of DECL_RTL does not match that of the decl,
9512 there are two cases: we are dealing with a BLKmode value
9513 that is returned in a register, or we are dealing with
9514 a promoted value. In the latter case, return a SUBREG
9515 of the wanted mode, but mark it so that we know that it
9516 was already extended. */
9517 if (REG_P (decl_rtl)
9518 && DECL_MODE (exp) != BLKmode
9519 && GET_MODE (decl_rtl) != DECL_MODE (exp))
9520 {
9521 enum machine_mode pmode;
9522
9523 /* Get the signedness to be used for this variable. Ensure we get
9524 the same mode we got when the variable was declared. */
9525 if (code == SSA_NAME
9526 && (g = SSA_NAME_DEF_STMT (ssa_name))
9527 && gimple_code (g) == GIMPLE_CALL
9528 && !gimple_call_internal_p (g))
9529 pmode = promote_function_mode (type, mode, &unsignedp,
9530 gimple_call_fntype (g),
9531 2);
9532 else
9533 pmode = promote_decl_mode (exp, &unsignedp);
9534 gcc_assert (GET_MODE (decl_rtl) == pmode);
9535
9536 temp = gen_lowpart_SUBREG (mode, decl_rtl);
9537 SUBREG_PROMOTED_VAR_P (temp) = 1;
9538 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
9539 return temp;
9540 }
9541
9542 return decl_rtl;
9543
9544 case INTEGER_CST:
9545 temp = immed_double_const (TREE_INT_CST_LOW (exp),
9546 TREE_INT_CST_HIGH (exp), mode);
9547
9548 return temp;
9549
9550 case VECTOR_CST:
9551 {
9552 tree tmp = NULL_TREE;
9553 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
9554 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
9555 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
9556 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
9557 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
9558 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
9559 return const_vector_from_tree (exp);
9560 if (GET_MODE_CLASS (mode) == MODE_INT)
9561 {
9562 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
9563 if (type_for_mode)
9564 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
9565 }
9566 if (!tmp)
9567 {
9568 vec<constructor_elt, va_gc> *v;
9569 unsigned i;
9570 vec_alloc (v, VECTOR_CST_NELTS (exp));
9571 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
9572 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
9573 tmp = build_constructor (type, v);
9574 }
9575 return expand_expr (tmp, ignore ? const0_rtx : target,
9576 tmode, modifier);
9577 }
9578
9579 case CONST_DECL:
9580 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
9581
9582 case REAL_CST:
9583 /* If optimized, generate immediate CONST_DOUBLE
9584 which will be turned into memory by reload if necessary.
9585
9586 We used to force a register so that loop.c could see it. But
9587 this does not allow gen_* patterns to perform optimizations with
9588 the constants. It also produces two insns in cases like "x = 1.0;".
9589 On most machines, floating-point constants are not permitted in
9590 many insns, so we'd end up copying it to a register in any case.
9591
9592 Now, we do the copying in expand_binop, if appropriate. */
9593 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
9594 TYPE_MODE (TREE_TYPE (exp)));
9595
9596 case FIXED_CST:
9597 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
9598 TYPE_MODE (TREE_TYPE (exp)));
9599
9600 case COMPLEX_CST:
9601 /* Handle evaluating a complex constant in a CONCAT target. */
9602 if (original_target && GET_CODE (original_target) == CONCAT)
9603 {
9604 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
9605 rtx rtarg, itarg;
9606
9607 rtarg = XEXP (original_target, 0);
9608 itarg = XEXP (original_target, 1);
9609
9610 /* Move the real and imaginary parts separately. */
9611 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
9612 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
9613
9614 if (op0 != rtarg)
9615 emit_move_insn (rtarg, op0);
9616 if (op1 != itarg)
9617 emit_move_insn (itarg, op1);
9618
9619 return original_target;
9620 }
9621
9622 /* ... fall through ... */
9623
9624 case STRING_CST:
9625 temp = expand_expr_constant (exp, 1, modifier);
9626
9627 /* temp contains a constant address.
9628 On RISC machines where a constant address isn't valid,
9629 make some insns to get that address into a register. */
9630 if (modifier != EXPAND_CONST_ADDRESS
9631 && modifier != EXPAND_INITIALIZER
9632 && modifier != EXPAND_SUM
9633 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
9634 MEM_ADDR_SPACE (temp)))
9635 return replace_equiv_address (temp,
9636 copy_rtx (XEXP (temp, 0)));
9637 return temp;
9638
9639 case SAVE_EXPR:
9640 {
9641 tree val = treeop0;
9642 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
9643 inner_reference_p);
9644
9645 if (!SAVE_EXPR_RESOLVED_P (exp))
9646 {
9647 /* We can indeed still hit this case, typically via builtin
9648 expanders calling save_expr immediately before expanding
9649 something. Assume this means that we only have to deal
9650 with non-BLKmode values. */
9651 gcc_assert (GET_MODE (ret) != BLKmode);
9652
9653 val = build_decl (curr_insn_location (),
9654 VAR_DECL, NULL, TREE_TYPE (exp));
9655 DECL_ARTIFICIAL (val) = 1;
9656 DECL_IGNORED_P (val) = 1;
9657 treeop0 = val;
9658 TREE_OPERAND (exp, 0) = treeop0;
9659 SAVE_EXPR_RESOLVED_P (exp) = 1;
9660
9661 if (!CONSTANT_P (ret))
9662 ret = copy_to_reg (ret);
9663 SET_DECL_RTL (val, ret);
9664 }
9665
9666 return ret;
9667 }
9668
9669
9670 case CONSTRUCTOR:
9671 /* If we don't need the result, just ensure we evaluate any
9672 subexpressions. */
9673 if (ignore)
9674 {
9675 unsigned HOST_WIDE_INT idx;
9676 tree value;
9677
9678 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
9679 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
9680
9681 return const0_rtx;
9682 }
9683
9684 return expand_constructor (exp, target, modifier, false);
9685
9686 case TARGET_MEM_REF:
9687 {
9688 addr_space_t as
9689 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9690 enum insn_code icode;
9691 unsigned int align;
9692
9693 op0 = addr_for_mem_ref (exp, as, true);
9694 op0 = memory_address_addr_space (mode, op0, as);
9695 temp = gen_rtx_MEM (mode, op0);
9696 set_mem_attributes (temp, exp, 0);
9697 set_mem_addr_space (temp, as);
9698 align = get_object_alignment (exp);
9699 if (modifier != EXPAND_WRITE
9700 && modifier != EXPAND_MEMORY
9701 && mode != BLKmode
9702 && align < GET_MODE_ALIGNMENT (mode)
9703 /* If the target does not have special handling for unaligned
9704 loads of mode then it can use regular moves for them. */
9705 && ((icode = optab_handler (movmisalign_optab, mode))
9706 != CODE_FOR_nothing))
9707 {
9708 struct expand_operand ops[2];
9709
9710 /* We've already validated the memory, and we're creating a
9711 new pseudo destination. The predicates really can't fail,
9712 nor can the generator. */
9713 create_output_operand (&ops[0], NULL_RTX, mode);
9714 create_fixed_operand (&ops[1], temp);
9715 expand_insn (icode, 2, ops);
9716 temp = ops[0].value;
9717 }
9718 return temp;
9719 }
9720
9721 case MEM_REF:
9722 {
9723 addr_space_t as
9724 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
9725 enum machine_mode address_mode;
9726 tree base = TREE_OPERAND (exp, 0);
9727 gimple def_stmt;
9728 enum insn_code icode;
9729 unsigned align;
9730 /* Handle expansion of non-aliased memory with non-BLKmode. That
9731 might end up in a register. */
9732 if (mem_ref_refers_to_non_mem_p (exp))
9733 {
9734 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
9735 base = TREE_OPERAND (base, 0);
9736 if (offset == 0
9737 && tree_fits_uhwi_p (TYPE_SIZE (type))
9738 && (GET_MODE_BITSIZE (DECL_MODE (base))
9739 == tree_to_uhwi (TYPE_SIZE (type))))
9740 return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
9741 target, tmode, modifier);
9742 if (TYPE_MODE (type) == BLKmode)
9743 {
9744 temp = assign_stack_temp (DECL_MODE (base),
9745 GET_MODE_SIZE (DECL_MODE (base)));
9746 store_expr (base, temp, 0, false);
9747 temp = adjust_address (temp, BLKmode, offset);
9748 set_mem_size (temp, int_size_in_bytes (type));
9749 return temp;
9750 }
9751 exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
9752 bitsize_int (offset * BITS_PER_UNIT));
9753 return expand_expr (exp, target, tmode, modifier);
9754 }
9755 address_mode = targetm.addr_space.address_mode (as);
9756 base = TREE_OPERAND (exp, 0);
9757 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
9758 {
9759 tree mask = gimple_assign_rhs2 (def_stmt);
9760 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
9761 gimple_assign_rhs1 (def_stmt), mask);
9762 TREE_OPERAND (exp, 0) = base;
9763 }
9764 align = get_object_alignment (exp);
9765 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
9766 op0 = memory_address_addr_space (mode, op0, as);
9767 if (!integer_zerop (TREE_OPERAND (exp, 1)))
9768 {
9769 rtx off
9770 = immed_double_int_const (mem_ref_offset (exp), address_mode);
9771 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
9772 op0 = memory_address_addr_space (mode, op0, as);
9773 }
9774 temp = gen_rtx_MEM (mode, op0);
9775 set_mem_attributes (temp, exp, 0);
9776 set_mem_addr_space (temp, as);
9777 if (TREE_THIS_VOLATILE (exp))
9778 MEM_VOLATILE_P (temp) = 1;
9779 if (modifier != EXPAND_WRITE
9780 && modifier != EXPAND_MEMORY
9781 && !inner_reference_p
9782 && mode != BLKmode
9783 && align < GET_MODE_ALIGNMENT (mode))
9784 {
9785 if ((icode = optab_handler (movmisalign_optab, mode))
9786 != CODE_FOR_nothing)
9787 {
9788 struct expand_operand ops[2];
9789
9790 /* We've already validated the memory, and we're creating a
9791 new pseudo destination. The predicates really can't fail,
9792 nor can the generator. */
9793 create_output_operand (&ops[0], NULL_RTX, mode);
9794 create_fixed_operand (&ops[1], temp);
9795 expand_insn (icode, 2, ops);
9796 temp = ops[0].value;
9797 }
9798 else if (SLOW_UNALIGNED_ACCESS (mode, align))
9799 temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
9800 0, TYPE_UNSIGNED (TREE_TYPE (exp)),
9801 (modifier == EXPAND_STACK_PARM
9802 ? NULL_RTX : target),
9803 mode, mode);
9804 }
9805 return temp;
9806 }
9807
9808 case ARRAY_REF:
9809
9810 {
9811 tree array = treeop0;
9812 tree index = treeop1;
9813 tree init;
9814
9815 /* Fold an expression like: "foo"[2].
9816 This is not done in fold so it won't happen inside &.
9817 Don't fold if this is for wide characters since it's too
9818 difficult to do correctly and this is a very rare case. */
9819
9820 if (modifier != EXPAND_CONST_ADDRESS
9821 && modifier != EXPAND_INITIALIZER
9822 && modifier != EXPAND_MEMORY)
9823 {
9824 tree t = fold_read_from_constant_string (exp);
9825
9826 if (t)
9827 return expand_expr (t, target, tmode, modifier);
9828 }
9829
9830 /* If this is a constant index into a constant array,
9831 just get the value from the array. Handle both the cases when
9832 we have an explicit constructor and when our operand is a variable
9833 that was declared const. */
9834
9835 if (modifier != EXPAND_CONST_ADDRESS
9836 && modifier != EXPAND_INITIALIZER
9837 && modifier != EXPAND_MEMORY
9838 && TREE_CODE (array) == CONSTRUCTOR
9839 && ! TREE_SIDE_EFFECTS (array)
9840 && TREE_CODE (index) == INTEGER_CST)
9841 {
9842 unsigned HOST_WIDE_INT ix;
9843 tree field, value;
9844
9845 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
9846 field, value)
9847 if (tree_int_cst_equal (field, index))
9848 {
9849 if (!TREE_SIDE_EFFECTS (value))
9850 return expand_expr (fold (value), target, tmode, modifier);
9851 break;
9852 }
9853 }
9854
9855 else if (optimize >= 1
9856 && modifier != EXPAND_CONST_ADDRESS
9857 && modifier != EXPAND_INITIALIZER
9858 && modifier != EXPAND_MEMORY
9859 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
9860 && TREE_CODE (index) == INTEGER_CST
9861 && (TREE_CODE (array) == VAR_DECL
9862 || TREE_CODE (array) == CONST_DECL)
9863 && (init = ctor_for_folding (array)) != error_mark_node)
9864 {
9865 if (init == NULL_TREE)
9866 {
9867 tree value = build_zero_cst (type);
9868 if (TREE_CODE (value) == CONSTRUCTOR)
9869 {
9870 /* If VALUE is a CONSTRUCTOR, this optimization is only
9871 useful if this doesn't store the CONSTRUCTOR into
9872 memory. If it does, it is more efficient to just
9873 load the data from the array directly. */
9874 rtx ret = expand_constructor (value, target,
9875 modifier, true);
9876 if (ret == NULL_RTX)
9877 value = NULL_TREE;
9878 }
9879
9880 if (value)
9881 return expand_expr (value, target, tmode, modifier);
9882 }
9883 else if (TREE_CODE (init) == CONSTRUCTOR)
9884 {
9885 unsigned HOST_WIDE_INT ix;
9886 tree field, value;
9887
9888 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
9889 field, value)
9890 if (tree_int_cst_equal (field, index))
9891 {
9892 if (TREE_SIDE_EFFECTS (value))
9893 break;
9894
9895 if (TREE_CODE (value) == CONSTRUCTOR)
9896 {
9897 /* If VALUE is a CONSTRUCTOR, this
9898 optimization is only useful if
9899 this doesn't store the CONSTRUCTOR
9900 into memory. If it does, it is more
9901 efficient to just load the data from
9902 the array directly. */
9903 rtx ret = expand_constructor (value, target,
9904 modifier, true);
9905 if (ret == NULL_RTX)
9906 break;
9907 }
9908
9909 return
9910 expand_expr (fold (value), target, tmode, modifier);
9911 }
9912 }
9913 else if (TREE_CODE (init) == STRING_CST)
9914 {
9915 tree low_bound = array_ref_low_bound (exp);
9916 tree index1 = fold_convert_loc (loc, sizetype, treeop1);
9917
9918 /* Optimize the special case of a zero lower bound.
9919
9920 We convert the lower bound to sizetype to avoid problems
9921 with constant folding. E.g. suppose the lower bound is
9922 1 and its mode is QI. Without the conversion
9923 (ARRAY + (INDEX - (unsigned char)1))
9924 becomes
9925 (ARRAY + (-(unsigned char)1) + INDEX)
9926 which becomes
9927 (ARRAY + 255 + INDEX). Oops! */
9928 if (!integer_zerop (low_bound))
9929 index1 = size_diffop_loc (loc, index1,
9930 fold_convert_loc (loc, sizetype,
9931 low_bound));
9932
9933 if (compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
9934 {
9935 tree type = TREE_TYPE (TREE_TYPE (init));
9936 enum machine_mode mode = TYPE_MODE (type);
9937
9938 if (GET_MODE_CLASS (mode) == MODE_INT
9939 && GET_MODE_SIZE (mode) == 1)
9940 return gen_int_mode (TREE_STRING_POINTER (init)
9941 [TREE_INT_CST_LOW (index1)],
9942 mode);
9943 }
9944 }
9945 }
9946 }
9947 goto normal_inner_ref;
9948
9949 case COMPONENT_REF:
9950 /* If the operand is a CONSTRUCTOR, we can just extract the
9951 appropriate field if it is present. */
9952 if (TREE_CODE (treeop0) == CONSTRUCTOR)
9953 {
9954 unsigned HOST_WIDE_INT idx;
9955 tree field, value;
9956
9957 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
9958 idx, field, value)
9959 if (field == treeop1
9960 /* We can normally use the value of the field in the
9961 CONSTRUCTOR. However, if this is a bitfield in
9962 an integral mode that we can fit in a HOST_WIDE_INT,
9963 we must mask only the number of bits in the bitfield,
9964 since this is done implicitly by the constructor. If
9965 the bitfield does not meet either of those conditions,
9966 we can't do this optimization. */
9967 && (! DECL_BIT_FIELD (field)
9968 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
9969 && (GET_MODE_PRECISION (DECL_MODE (field))
9970 <= HOST_BITS_PER_WIDE_INT))))
9971 {
9972 if (DECL_BIT_FIELD (field)
9973 && modifier == EXPAND_STACK_PARM)
9974 target = 0;
9975 op0 = expand_expr (value, target, tmode, modifier);
9976 if (DECL_BIT_FIELD (field))
9977 {
9978 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
9979 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
9980
9981 if (TYPE_UNSIGNED (TREE_TYPE (field)))
9982 {
9983 op1 = gen_int_mode (((HOST_WIDE_INT) 1 << bitsize) - 1,
9984 imode);
9985 op0 = expand_and (imode, op0, op1, target);
9986 }
9987 else
9988 {
9989 int count = GET_MODE_PRECISION (imode) - bitsize;
9990
9991 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
9992 target, 0);
9993 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
9994 target, 0);
9995 }
9996 }
9997
9998 return op0;
9999 }
10000 }
10001 goto normal_inner_ref;
10002
10003 case BIT_FIELD_REF:
10004 case ARRAY_RANGE_REF:
10005 normal_inner_ref:
10006 {
10007 enum machine_mode mode1, mode2;
10008 HOST_WIDE_INT bitsize, bitpos;
10009 tree offset;
10010 int volatilep = 0, must_force_mem;
10011 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
10012 &mode1, &unsignedp, &volatilep, true);
10013 rtx orig_op0, memloc;
10014 bool mem_attrs_from_type = false;
10015
10016 /* If we got back the original object, something is wrong. Perhaps
10017 we are evaluating an expression too early. In any event, don't
10018 infinitely recurse. */
10019 gcc_assert (tem != exp);
10020
10021 /* If TEM's type is a union of variable size, pass TARGET to the inner
10022 computation, since it will need a temporary and TARGET is known
10023 to have to do. This occurs in unchecked conversion in Ada. */
10024 orig_op0 = op0
10025 = expand_expr_real (tem,
10026 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10027 && COMPLETE_TYPE_P (TREE_TYPE (tem))
10028 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10029 != INTEGER_CST)
10030 && modifier != EXPAND_STACK_PARM
10031 ? target : NULL_RTX),
10032 VOIDmode,
10033 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10034 NULL, true);
10035
10036 /* If the field has a mode, we want to access it in the
10037 field's mode, not the computed mode.
10038 If a MEM has VOIDmode (external with incomplete type),
10039 use BLKmode for it instead. */
10040 if (MEM_P (op0))
10041 {
10042 if (mode1 != VOIDmode)
10043 op0 = adjust_address (op0, mode1, 0);
10044 else if (GET_MODE (op0) == VOIDmode)
10045 op0 = adjust_address (op0, BLKmode, 0);
10046 }
10047
10048 mode2
10049 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
10050
10051 /* If we have either an offset, a BLKmode result, or a reference
10052 outside the underlying object, we must force it to memory.
10053 Such a case can occur in Ada if we have unchecked conversion
10054 of an expression from a scalar type to an aggregate type or
10055 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
10056 passed a partially uninitialized object or a view-conversion
10057 to a larger size. */
10058 must_force_mem = (offset
10059 || mode1 == BLKmode
10060 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
10061
10062 /* Handle CONCAT first. */
10063 if (GET_CODE (op0) == CONCAT && !must_force_mem)
10064 {
10065 if (bitpos == 0
10066 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
10067 return op0;
10068 if (bitpos == 0
10069 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10070 && bitsize)
10071 {
10072 op0 = XEXP (op0, 0);
10073 mode2 = GET_MODE (op0);
10074 }
10075 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
10076 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
10077 && bitpos
10078 && bitsize)
10079 {
10080 op0 = XEXP (op0, 1);
10081 bitpos = 0;
10082 mode2 = GET_MODE (op0);
10083 }
10084 else
10085 /* Otherwise force into memory. */
10086 must_force_mem = 1;
10087 }
10088
10089 /* If this is a constant, put it in a register if it is a legitimate
10090 constant and we don't need a memory reference. */
10091 if (CONSTANT_P (op0)
10092 && mode2 != BLKmode
10093 && targetm.legitimate_constant_p (mode2, op0)
10094 && !must_force_mem)
10095 op0 = force_reg (mode2, op0);
10096
10097 /* Otherwise, if this is a constant, try to force it to the constant
10098 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
10099 is a legitimate constant. */
10100 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
10101 op0 = validize_mem (memloc);
10102
10103 /* Otherwise, if this is a constant or the object is not in memory
10104 and need be, put it there. */
10105 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
10106 {
10107 memloc = assign_temp (TREE_TYPE (tem), 1, 1);
10108 emit_move_insn (memloc, op0);
10109 op0 = memloc;
10110 mem_attrs_from_type = true;
10111 }
10112
10113 if (offset)
10114 {
10115 enum machine_mode address_mode;
10116 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
10117 EXPAND_SUM);
10118
10119 gcc_assert (MEM_P (op0));
10120
10121 address_mode = get_address_mode (op0);
10122 if (GET_MODE (offset_rtx) != address_mode)
10123 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
10124
10125 if (GET_MODE (op0) == BLKmode
10126 /* The check for a constant address in OP0 not having VOIDmode
10127 is probably no longer necessary. */
10128 && GET_MODE (XEXP (op0, 0)) != VOIDmode
10129 && bitsize != 0
10130 && (bitpos % bitsize) == 0
10131 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
10132 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
10133 {
10134 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10135 bitpos = 0;
10136 }
10137
10138 op0 = offset_address (op0, offset_rtx,
10139 highest_pow2_factor (offset));
10140 }
10141
10142 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
10143 record its alignment as BIGGEST_ALIGNMENT. */
10144 if (MEM_P (op0) && bitpos == 0 && offset != 0
10145 && is_aligning_offset (offset, tem))
10146 set_mem_align (op0, BIGGEST_ALIGNMENT);
10147
10148 /* Don't forget about volatility even if this is a bitfield. */
10149 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
10150 {
10151 if (op0 == orig_op0)
10152 op0 = copy_rtx (op0);
10153
10154 MEM_VOLATILE_P (op0) = 1;
10155 }
10156
10157 /* In cases where an aligned union has an unaligned object
10158 as a field, we might be extracting a BLKmode value from
10159 an integer-mode (e.g., SImode) object. Handle this case
10160 by doing the extract into an object as wide as the field
10161 (which we know to be the width of a basic mode), then
10162 storing into memory, and changing the mode to BLKmode. */
10163 if (mode1 == VOIDmode
10164 || REG_P (op0) || GET_CODE (op0) == SUBREG
10165 || (mode1 != BLKmode && ! direct_load[(int) mode1]
10166 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
10167 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
10168 && modifier != EXPAND_CONST_ADDRESS
10169 && modifier != EXPAND_INITIALIZER
10170 && modifier != EXPAND_MEMORY)
10171 /* If the bitfield is volatile and the bitsize
10172 is narrower than the access size of the bitfield,
10173 we need to extract bitfields from the access. */
10174 || (volatilep && TREE_CODE (exp) == COMPONENT_REF
10175 && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
10176 && mode1 != BLKmode
10177 && bitsize < GET_MODE_SIZE (mode1) * BITS_PER_UNIT)
10178 /* If the field isn't aligned enough to fetch as a memref,
10179 fetch it as a bit field. */
10180 || (mode1 != BLKmode
10181 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
10182 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
10183 || (MEM_P (op0)
10184 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
10185 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
10186 && modifier != EXPAND_MEMORY
10187 && ((modifier == EXPAND_CONST_ADDRESS
10188 || modifier == EXPAND_INITIALIZER)
10189 ? STRICT_ALIGNMENT
10190 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
10191 || (bitpos % BITS_PER_UNIT != 0)))
10192 /* If the type and the field are a constant size and the
10193 size of the type isn't the same size as the bitfield,
10194 we must use bitfield operations. */
10195 || (bitsize >= 0
10196 && TYPE_SIZE (TREE_TYPE (exp))
10197 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
10198 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
10199 bitsize)))
10200 {
10201 enum machine_mode ext_mode = mode;
10202
10203 if (ext_mode == BLKmode
10204 && ! (target != 0 && MEM_P (op0)
10205 && MEM_P (target)
10206 && bitpos % BITS_PER_UNIT == 0))
10207 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
10208
10209 if (ext_mode == BLKmode)
10210 {
10211 if (target == 0)
10212 target = assign_temp (type, 1, 1);
10213
10214 /* ??? Unlike the similar test a few lines below, this one is
10215 very likely obsolete. */
10216 if (bitsize == 0)
10217 return target;
10218
10219 /* In this case, BITPOS must start at a byte boundary and
10220 TARGET, if specified, must be a MEM. */
10221 gcc_assert (MEM_P (op0)
10222 && (!target || MEM_P (target))
10223 && !(bitpos % BITS_PER_UNIT));
10224
10225 emit_block_move (target,
10226 adjust_address (op0, VOIDmode,
10227 bitpos / BITS_PER_UNIT),
10228 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
10229 / BITS_PER_UNIT),
10230 (modifier == EXPAND_STACK_PARM
10231 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10232
10233 return target;
10234 }
10235
10236 /* If we have nothing to extract, the result will be 0 for targets
10237 with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
10238 return 0 for the sake of consistency, as reading a zero-sized
10239 bitfield is valid in Ada and the value is fully specified. */
10240 if (bitsize == 0)
10241 return const0_rtx;
10242
10243 op0 = validize_mem (op0);
10244
10245 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
10246 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10247
10248 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
10249 (modifier == EXPAND_STACK_PARM
10250 ? NULL_RTX : target),
10251 ext_mode, ext_mode);
10252
10253 /* If the result is a record type and BITSIZE is narrower than
10254 the mode of OP0, an integral mode, and this is a big endian
10255 machine, we must put the field into the high-order bits. */
10256 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
10257 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10258 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
10259 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
10260 GET_MODE_BITSIZE (GET_MODE (op0))
10261 - bitsize, op0, 1);
10262
10263 /* If the result type is BLKmode, store the data into a temporary
10264 of the appropriate type, but with the mode corresponding to the
10265 mode for the data we have (op0's mode). */
10266 if (mode == BLKmode)
10267 {
10268 rtx new_rtx
10269 = assign_stack_temp_for_type (ext_mode,
10270 GET_MODE_BITSIZE (ext_mode),
10271 type);
10272 emit_move_insn (new_rtx, op0);
10273 op0 = copy_rtx (new_rtx);
10274 PUT_MODE (op0, BLKmode);
10275 }
10276
10277 return op0;
10278 }
10279
10280 /* If the result is BLKmode, use that to access the object
10281 now as well. */
10282 if (mode == BLKmode)
10283 mode1 = BLKmode;
10284
10285 /* Get a reference to just this component. */
10286 if (modifier == EXPAND_CONST_ADDRESS
10287 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
10288 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
10289 else
10290 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
10291
10292 if (op0 == orig_op0)
10293 op0 = copy_rtx (op0);
10294
10295 /* If op0 is a temporary because of forcing to memory, pass only the
10296 type to set_mem_attributes so that the original expression is never
10297 marked as ADDRESSABLE through MEM_EXPR of the temporary. */
10298 if (mem_attrs_from_type)
10299 set_mem_attributes (op0, type, 0);
10300 else
10301 set_mem_attributes (op0, exp, 0);
10302
10303 if (REG_P (XEXP (op0, 0)))
10304 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10305
10306 MEM_VOLATILE_P (op0) |= volatilep;
10307 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
10308 || modifier == EXPAND_CONST_ADDRESS
10309 || modifier == EXPAND_INITIALIZER)
10310 return op0;
10311
10312 if (target == 0)
10313 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
10314
10315 convert_move (target, op0, unsignedp);
10316 return target;
10317 }
10318
10319 case OBJ_TYPE_REF:
10320 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
10321
10322 case CALL_EXPR:
10323 /* All valid uses of __builtin_va_arg_pack () are removed during
10324 inlining. */
10325 if (CALL_EXPR_VA_ARG_PACK (exp))
10326 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
10327 {
10328 tree fndecl = get_callee_fndecl (exp), attr;
10329
10330 if (fndecl
10331 && (attr = lookup_attribute ("error",
10332 DECL_ATTRIBUTES (fndecl))) != NULL)
10333 error ("%Kcall to %qs declared with attribute error: %s",
10334 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10335 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10336 if (fndecl
10337 && (attr = lookup_attribute ("warning",
10338 DECL_ATTRIBUTES (fndecl))) != NULL)
10339 warning_at (tree_nonartificial_location (exp),
10340 0, "%Kcall to %qs declared with attribute warning: %s",
10341 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
10342 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
10343
10344 /* Check for a built-in function. */
10345 if (fndecl && DECL_BUILT_IN (fndecl))
10346 {
10347 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
10348 return expand_builtin (exp, target, subtarget, tmode, ignore);
10349 }
10350 }
10351 return expand_call (exp, target, ignore);
10352
10353 case VIEW_CONVERT_EXPR:
10354 op0 = NULL_RTX;
10355
10356 /* If we are converting to BLKmode, try to avoid an intermediate
10357 temporary by fetching an inner memory reference. */
10358 if (mode == BLKmode
10359 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
10360 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
10361 && handled_component_p (treeop0))
10362 {
10363 enum machine_mode mode1;
10364 HOST_WIDE_INT bitsize, bitpos;
10365 tree offset;
10366 int unsignedp;
10367 int volatilep = 0;
10368 tree tem
10369 = get_inner_reference (treeop0, &bitsize, &bitpos,
10370 &offset, &mode1, &unsignedp, &volatilep,
10371 true);
10372 rtx orig_op0;
10373
10374 /* ??? We should work harder and deal with non-zero offsets. */
10375 if (!offset
10376 && (bitpos % BITS_PER_UNIT) == 0
10377 && bitsize >= 0
10378 && compare_tree_int (TYPE_SIZE (type), bitsize) == 0)
10379 {
10380 /* See the normal_inner_ref case for the rationale. */
10381 orig_op0
10382 = expand_expr_real (tem,
10383 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
10384 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
10385 != INTEGER_CST)
10386 && modifier != EXPAND_STACK_PARM
10387 ? target : NULL_RTX),
10388 VOIDmode,
10389 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
10390 NULL, true);
10391
10392 if (MEM_P (orig_op0))
10393 {
10394 op0 = orig_op0;
10395
10396 /* Get a reference to just this component. */
10397 if (modifier == EXPAND_CONST_ADDRESS
10398 || modifier == EXPAND_SUM
10399 || modifier == EXPAND_INITIALIZER)
10400 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
10401 else
10402 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
10403
10404 if (op0 == orig_op0)
10405 op0 = copy_rtx (op0);
10406
10407 set_mem_attributes (op0, treeop0, 0);
10408 if (REG_P (XEXP (op0, 0)))
10409 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
10410
10411 MEM_VOLATILE_P (op0) |= volatilep;
10412 }
10413 }
10414 }
10415
10416 if (!op0)
10417 op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
10418 NULL, inner_reference_p);
10419
10420 /* If the input and output modes are both the same, we are done. */
10421 if (mode == GET_MODE (op0))
10422 ;
10423 /* If neither mode is BLKmode, and both modes are the same size
10424 then we can use gen_lowpart. */
10425 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
10426 && (GET_MODE_PRECISION (mode)
10427 == GET_MODE_PRECISION (GET_MODE (op0)))
10428 && !COMPLEX_MODE_P (GET_MODE (op0)))
10429 {
10430 if (GET_CODE (op0) == SUBREG)
10431 op0 = force_reg (GET_MODE (op0), op0);
10432 temp = gen_lowpart_common (mode, op0);
10433 if (temp)
10434 op0 = temp;
10435 else
10436 {
10437 if (!REG_P (op0) && !MEM_P (op0))
10438 op0 = force_reg (GET_MODE (op0), op0);
10439 op0 = gen_lowpart (mode, op0);
10440 }
10441 }
10442 /* If both types are integral, convert from one mode to the other. */
10443 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
10444 op0 = convert_modes (mode, GET_MODE (op0), op0,
10445 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
10446 /* If the output type is a bit-field type, do an extraction. */
10447 else if (reduce_bit_field)
10448 return extract_bit_field (op0, TYPE_PRECISION (type), 0,
10449 TYPE_UNSIGNED (type), NULL_RTX,
10450 mode, mode);
10451 /* As a last resort, spill op0 to memory, and reload it in a
10452 different mode. */
10453 else if (!MEM_P (op0))
10454 {
10455 /* If the operand is not a MEM, force it into memory. Since we
10456 are going to be changing the mode of the MEM, don't call
10457 force_const_mem for constants because we don't allow pool
10458 constants to change mode. */
10459 tree inner_type = TREE_TYPE (treeop0);
10460
10461 gcc_assert (!TREE_ADDRESSABLE (exp));
10462
10463 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
10464 target
10465 = assign_stack_temp_for_type
10466 (TYPE_MODE (inner_type),
10467 GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
10468
10469 emit_move_insn (target, op0);
10470 op0 = target;
10471 }
10472
10473 /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
10474 output type is such that the operand is known to be aligned, indicate
10475 that it is. Otherwise, we need only be concerned about alignment for
10476 non-BLKmode results. */
10477 if (MEM_P (op0))
10478 {
10479 enum insn_code icode;
10480
10481 if (TYPE_ALIGN_OK (type))
10482 {
10483 /* ??? Copying the MEM without substantially changing it might
10484 run afoul of the code handling volatile memory references in
10485 store_expr, which assumes that TARGET is returned unmodified
10486 if it has been used. */
10487 op0 = copy_rtx (op0);
10488 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
10489 }
10490 else if (modifier != EXPAND_WRITE
10491 && modifier != EXPAND_MEMORY
10492 && !inner_reference_p
10493 && mode != BLKmode
10494 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
10495 {
10496 /* If the target does have special handling for unaligned
10497 loads of mode then use them. */
10498 if ((icode = optab_handler (movmisalign_optab, mode))
10499 != CODE_FOR_nothing)
10500 {
10501 rtx reg, insn;
10502
10503 op0 = adjust_address (op0, mode, 0);
10504 /* We've already validated the memory, and we're creating a
10505 new pseudo destination. The predicates really can't
10506 fail. */
10507 reg = gen_reg_rtx (mode);
10508
10509 /* Nor can the insn generator. */
10510 insn = GEN_FCN (icode) (reg, op0);
10511 emit_insn (insn);
10512 return reg;
10513 }
10514 else if (STRICT_ALIGNMENT)
10515 {
10516 tree inner_type = TREE_TYPE (treeop0);
10517 HOST_WIDE_INT temp_size
10518 = MAX (int_size_in_bytes (inner_type),
10519 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
10520 rtx new_rtx
10521 = assign_stack_temp_for_type (mode, temp_size, type);
10522 rtx new_with_op0_mode
10523 = adjust_address (new_rtx, GET_MODE (op0), 0);
10524
10525 gcc_assert (!TREE_ADDRESSABLE (exp));
10526
10527 if (GET_MODE (op0) == BLKmode)
10528 emit_block_move (new_with_op0_mode, op0,
10529 GEN_INT (GET_MODE_SIZE (mode)),
10530 (modifier == EXPAND_STACK_PARM
10531 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
10532 else
10533 emit_move_insn (new_with_op0_mode, op0);
10534
10535 op0 = new_rtx;
10536 }
10537 }
10538
10539 op0 = adjust_address (op0, mode, 0);
10540 }
10541
10542 return op0;
10543
10544 case MODIFY_EXPR:
10545 {
10546 tree lhs = treeop0;
10547 tree rhs = treeop1;
10548 gcc_assert (ignore);
10549
10550 /* Check for |= or &= of a bitfield of size one into another bitfield
10551 of size 1. In this case, (unless we need the result of the
10552 assignment) we can do this more efficiently with a
10553 test followed by an assignment, if necessary.
10554
10555 ??? At this point, we can't get a BIT_FIELD_REF here. But if
10556 things change so we do, this code should be enhanced to
10557 support it. */
10558 if (TREE_CODE (lhs) == COMPONENT_REF
10559 && (TREE_CODE (rhs) == BIT_IOR_EXPR
10560 || TREE_CODE (rhs) == BIT_AND_EXPR)
10561 && TREE_OPERAND (rhs, 0) == lhs
10562 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
10563 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
10564 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
10565 {
10566 rtx label = gen_label_rtx ();
10567 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
10568 do_jump (TREE_OPERAND (rhs, 1),
10569 value ? label : 0,
10570 value ? 0 : label, -1);
10571 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
10572 false);
10573 do_pending_stack_adjust ();
10574 emit_label (label);
10575 return const0_rtx;
10576 }
10577
10578 expand_assignment (lhs, rhs, false);
10579 return const0_rtx;
10580 }
10581
10582 case ADDR_EXPR:
10583 return expand_expr_addr_expr (exp, target, tmode, modifier);
10584
10585 case REALPART_EXPR:
10586 op0 = expand_normal (treeop0);
10587 return read_complex_part (op0, false);
10588
10589 case IMAGPART_EXPR:
10590 op0 = expand_normal (treeop0);
10591 return read_complex_part (op0, true);
10592
10593 case RETURN_EXPR:
10594 case LABEL_EXPR:
10595 case GOTO_EXPR:
10596 case SWITCH_EXPR:
10597 case ASM_EXPR:
10598 /* Expanded in cfgexpand.c. */
10599 gcc_unreachable ();
10600
10601 case TRY_CATCH_EXPR:
10602 case CATCH_EXPR:
10603 case EH_FILTER_EXPR:
10604 case TRY_FINALLY_EXPR:
10605 /* Lowered by tree-eh.c. */
10606 gcc_unreachable ();
10607
10608 case WITH_CLEANUP_EXPR:
10609 case CLEANUP_POINT_EXPR:
10610 case TARGET_EXPR:
10611 case CASE_LABEL_EXPR:
10612 case VA_ARG_EXPR:
10613 case BIND_EXPR:
10614 case INIT_EXPR:
10615 case CONJ_EXPR:
10616 case COMPOUND_EXPR:
10617 case PREINCREMENT_EXPR:
10618 case PREDECREMENT_EXPR:
10619 case POSTINCREMENT_EXPR:
10620 case POSTDECREMENT_EXPR:
10621 case LOOP_EXPR:
10622 case EXIT_EXPR:
10623 case COMPOUND_LITERAL_EXPR:
10624 /* Lowered by gimplify.c. */
10625 gcc_unreachable ();
10626
10627 case FDESC_EXPR:
10628 /* Function descriptors are not valid except for as
10629 initialization constants, and should not be expanded. */
10630 gcc_unreachable ();
10631
10632 case WITH_SIZE_EXPR:
10633 /* WITH_SIZE_EXPR expands to its first argument. The caller should
10634 have pulled out the size to use in whatever context it needed. */
10635 return expand_expr_real (treeop0, original_target, tmode,
10636 modifier, alt_rtl, inner_reference_p);
10637
10638 default:
10639 return expand_expr_real_2 (&ops, target, tmode, modifier);
10640 }
10641 }
10642 \f
10643 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
10644 signedness of TYPE), possibly returning the result in TARGET. */
10645 static rtx
10646 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
10647 {
10648 HOST_WIDE_INT prec = TYPE_PRECISION (type);
10649 if (target && GET_MODE (target) != GET_MODE (exp))
10650 target = 0;
10651 /* For constant values, reduce using build_int_cst_type. */
10652 if (CONST_INT_P (exp))
10653 {
10654 HOST_WIDE_INT value = INTVAL (exp);
10655 tree t = build_int_cst_type (type, value);
10656 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
10657 }
10658 else if (TYPE_UNSIGNED (type))
10659 {
10660 rtx mask = immed_double_int_const (double_int::mask (prec),
10661 GET_MODE (exp));
10662 return expand_and (GET_MODE (exp), exp, mask, target);
10663 }
10664 else
10665 {
10666 int count = GET_MODE_PRECISION (GET_MODE (exp)) - prec;
10667 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp),
10668 exp, count, target, 0);
10669 return expand_shift (RSHIFT_EXPR, GET_MODE (exp),
10670 exp, count, target, 0);
10671 }
10672 }
10673 \f
10674 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
10675 when applied to the address of EXP produces an address known to be
10676 aligned more than BIGGEST_ALIGNMENT. */
10677
10678 static int
10679 is_aligning_offset (const_tree offset, const_tree exp)
10680 {
10681 /* Strip off any conversions. */
10682 while (CONVERT_EXPR_P (offset))
10683 offset = TREE_OPERAND (offset, 0);
10684
10685 /* We must now have a BIT_AND_EXPR with a constant that is one less than
10686 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
10687 if (TREE_CODE (offset) != BIT_AND_EXPR
10688 || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
10689 || compare_tree_int (TREE_OPERAND (offset, 1),
10690 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
10691 || !exact_log2 (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1) < 0)
10692 return 0;
10693
10694 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
10695 It must be NEGATE_EXPR. Then strip any more conversions. */
10696 offset = TREE_OPERAND (offset, 0);
10697 while (CONVERT_EXPR_P (offset))
10698 offset = TREE_OPERAND (offset, 0);
10699
10700 if (TREE_CODE (offset) != NEGATE_EXPR)
10701 return 0;
10702
10703 offset = TREE_OPERAND (offset, 0);
10704 while (CONVERT_EXPR_P (offset))
10705 offset = TREE_OPERAND (offset, 0);
10706
10707 /* This must now be the address of EXP. */
10708 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
10709 }
10710 \f
10711 /* Return the tree node if an ARG corresponds to a string constant or zero
10712 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
10713 in bytes within the string that ARG is accessing. The type of the
10714 offset will be `sizetype'. */
10715
10716 tree
10717 string_constant (tree arg, tree *ptr_offset)
10718 {
10719 tree array, offset, lower_bound;
10720 STRIP_NOPS (arg);
10721
10722 if (TREE_CODE (arg) == ADDR_EXPR)
10723 {
10724 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
10725 {
10726 *ptr_offset = size_zero_node;
10727 return TREE_OPERAND (arg, 0);
10728 }
10729 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
10730 {
10731 array = TREE_OPERAND (arg, 0);
10732 offset = size_zero_node;
10733 }
10734 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
10735 {
10736 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10737 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10738 if (TREE_CODE (array) != STRING_CST
10739 && TREE_CODE (array) != VAR_DECL)
10740 return 0;
10741
10742 /* Check if the array has a nonzero lower bound. */
10743 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
10744 if (!integer_zerop (lower_bound))
10745 {
10746 /* If the offset and base aren't both constants, return 0. */
10747 if (TREE_CODE (lower_bound) != INTEGER_CST)
10748 return 0;
10749 if (TREE_CODE (offset) != INTEGER_CST)
10750 return 0;
10751 /* Adjust offset by the lower bound. */
10752 offset = size_diffop (fold_convert (sizetype, offset),
10753 fold_convert (sizetype, lower_bound));
10754 }
10755 }
10756 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == MEM_REF)
10757 {
10758 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
10759 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
10760 if (TREE_CODE (array) != ADDR_EXPR)
10761 return 0;
10762 array = TREE_OPERAND (array, 0);
10763 if (TREE_CODE (array) != STRING_CST
10764 && TREE_CODE (array) != VAR_DECL)
10765 return 0;
10766 }
10767 else
10768 return 0;
10769 }
10770 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
10771 {
10772 tree arg0 = TREE_OPERAND (arg, 0);
10773 tree arg1 = TREE_OPERAND (arg, 1);
10774
10775 STRIP_NOPS (arg0);
10776 STRIP_NOPS (arg1);
10777
10778 if (TREE_CODE (arg0) == ADDR_EXPR
10779 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
10780 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
10781 {
10782 array = TREE_OPERAND (arg0, 0);
10783 offset = arg1;
10784 }
10785 else if (TREE_CODE (arg1) == ADDR_EXPR
10786 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
10787 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
10788 {
10789 array = TREE_OPERAND (arg1, 0);
10790 offset = arg0;
10791 }
10792 else
10793 return 0;
10794 }
10795 else
10796 return 0;
10797
10798 if (TREE_CODE (array) == STRING_CST)
10799 {
10800 *ptr_offset = fold_convert (sizetype, offset);
10801 return array;
10802 }
10803 else if (TREE_CODE (array) == VAR_DECL
10804 || TREE_CODE (array) == CONST_DECL)
10805 {
10806 int length;
10807 tree init = ctor_for_folding (array);
10808
10809 /* Variables initialized to string literals can be handled too. */
10810 if (init == error_mark_node
10811 || !init
10812 || TREE_CODE (init) != STRING_CST)
10813 return 0;
10814
10815 /* Avoid const char foo[4] = "abcde"; */
10816 if (DECL_SIZE_UNIT (array) == NULL_TREE
10817 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
10818 || (length = TREE_STRING_LENGTH (init)) <= 0
10819 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
10820 return 0;
10821
10822 /* If variable is bigger than the string literal, OFFSET must be constant
10823 and inside of the bounds of the string literal. */
10824 offset = fold_convert (sizetype, offset);
10825 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
10826 && (! tree_fits_uhwi_p (offset)
10827 || compare_tree_int (offset, length) >= 0))
10828 return 0;
10829
10830 *ptr_offset = offset;
10831 return init;
10832 }
10833
10834 return 0;
10835 }
10836 \f
10837 /* Generate code to calculate OPS, and exploded expression
10838 using a store-flag instruction and return an rtx for the result.
10839 OPS reflects a comparison.
10840
10841 If TARGET is nonzero, store the result there if convenient.
10842
10843 Return zero if there is no suitable set-flag instruction
10844 available on this machine.
10845
10846 Once expand_expr has been called on the arguments of the comparison,
10847 we are committed to doing the store flag, since it is not safe to
10848 re-evaluate the expression. We emit the store-flag insn by calling
10849 emit_store_flag, but only expand the arguments if we have a reason
10850 to believe that emit_store_flag will be successful. If we think that
10851 it will, but it isn't, we have to simulate the store-flag with a
10852 set/jump/set sequence. */
10853
10854 static rtx
10855 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
10856 {
10857 enum rtx_code code;
10858 tree arg0, arg1, type;
10859 tree tem;
10860 enum machine_mode operand_mode;
10861 int unsignedp;
10862 rtx op0, op1;
10863 rtx subtarget = target;
10864 location_t loc = ops->location;
10865
10866 arg0 = ops->op0;
10867 arg1 = ops->op1;
10868
10869 /* Don't crash if the comparison was erroneous. */
10870 if (arg0 == error_mark_node || arg1 == error_mark_node)
10871 return const0_rtx;
10872
10873 type = TREE_TYPE (arg0);
10874 operand_mode = TYPE_MODE (type);
10875 unsignedp = TYPE_UNSIGNED (type);
10876
10877 /* We won't bother with BLKmode store-flag operations because it would mean
10878 passing a lot of information to emit_store_flag. */
10879 if (operand_mode == BLKmode)
10880 return 0;
10881
10882 /* We won't bother with store-flag operations involving function pointers
10883 when function pointers must be canonicalized before comparisons. */
10884 #ifdef HAVE_canonicalize_funcptr_for_compare
10885 if (HAVE_canonicalize_funcptr_for_compare
10886 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
10887 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
10888 == FUNCTION_TYPE))
10889 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
10890 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
10891 == FUNCTION_TYPE))))
10892 return 0;
10893 #endif
10894
10895 STRIP_NOPS (arg0);
10896 STRIP_NOPS (arg1);
10897
10898 /* For vector typed comparisons emit code to generate the desired
10899 all-ones or all-zeros mask. Conveniently use the VEC_COND_EXPR
10900 expander for this. */
10901 if (TREE_CODE (ops->type) == VECTOR_TYPE)
10902 {
10903 tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
10904 tree if_true = constant_boolean_node (true, ops->type);
10905 tree if_false = constant_boolean_node (false, ops->type);
10906 return expand_vec_cond_expr (ops->type, ifexp, if_true, if_false, target);
10907 }
10908
10909 /* Get the rtx comparison code to use. We know that EXP is a comparison
10910 operation of some type. Some comparisons against 1 and -1 can be
10911 converted to comparisons with zero. Do so here so that the tests
10912 below will be aware that we have a comparison with zero. These
10913 tests will not catch constants in the first operand, but constants
10914 are rarely passed as the first operand. */
10915
10916 switch (ops->code)
10917 {
10918 case EQ_EXPR:
10919 code = EQ;
10920 break;
10921 case NE_EXPR:
10922 code = NE;
10923 break;
10924 case LT_EXPR:
10925 if (integer_onep (arg1))
10926 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
10927 else
10928 code = unsignedp ? LTU : LT;
10929 break;
10930 case LE_EXPR:
10931 if (! unsignedp && integer_all_onesp (arg1))
10932 arg1 = integer_zero_node, code = LT;
10933 else
10934 code = unsignedp ? LEU : LE;
10935 break;
10936 case GT_EXPR:
10937 if (! unsignedp && integer_all_onesp (arg1))
10938 arg1 = integer_zero_node, code = GE;
10939 else
10940 code = unsignedp ? GTU : GT;
10941 break;
10942 case GE_EXPR:
10943 if (integer_onep (arg1))
10944 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10945 else
10946 code = unsignedp ? GEU : GE;
10947 break;
10948
10949 case UNORDERED_EXPR:
10950 code = UNORDERED;
10951 break;
10952 case ORDERED_EXPR:
10953 code = ORDERED;
10954 break;
10955 case UNLT_EXPR:
10956 code = UNLT;
10957 break;
10958 case UNLE_EXPR:
10959 code = UNLE;
10960 break;
10961 case UNGT_EXPR:
10962 code = UNGT;
10963 break;
10964 case UNGE_EXPR:
10965 code = UNGE;
10966 break;
10967 case UNEQ_EXPR:
10968 code = UNEQ;
10969 break;
10970 case LTGT_EXPR:
10971 code = LTGT;
10972 break;
10973
10974 default:
10975 gcc_unreachable ();
10976 }
10977
10978 /* Put a constant second. */
10979 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10980 || TREE_CODE (arg0) == FIXED_CST)
10981 {
10982 tem = arg0; arg0 = arg1; arg1 = tem;
10983 code = swap_condition (code);
10984 }
10985
10986 /* If this is an equality or inequality test of a single bit, we can
10987 do this by shifting the bit being tested to the low-order bit and
10988 masking the result with the constant 1. If the condition was EQ,
10989 we xor it with 1. This does not require an scc insn and is faster
10990 than an scc insn even if we have it.
10991
10992 The code to make this transformation was moved into fold_single_bit_test,
10993 so we just call into the folder and expand its result. */
10994
10995 if ((code == NE || code == EQ)
10996 && integer_zerop (arg1)
10997 && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
10998 {
10999 gimple srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
11000 if (srcstmt
11001 && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
11002 {
11003 enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
11004 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
11005 tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
11006 gimple_assign_rhs1 (srcstmt),
11007 gimple_assign_rhs2 (srcstmt));
11008 temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
11009 if (temp)
11010 return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
11011 }
11012 }
11013
11014 if (! get_subtarget (target)
11015 || GET_MODE (subtarget) != operand_mode)
11016 subtarget = 0;
11017
11018 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
11019
11020 if (target == 0)
11021 target = gen_reg_rtx (mode);
11022
11023 /* Try a cstore if possible. */
11024 return emit_store_flag_force (target, code, op0, op1,
11025 operand_mode, unsignedp,
11026 (TYPE_PRECISION (ops->type) == 1
11027 && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
11028 }
11029 \f
11030
11031 /* Stubs in case we haven't got a casesi insn. */
11032 #ifndef HAVE_casesi
11033 # define HAVE_casesi 0
11034 # define gen_casesi(a, b, c, d, e) (0)
11035 # define CODE_FOR_casesi CODE_FOR_nothing
11036 #endif
11037
11038 /* Attempt to generate a casesi instruction. Returns 1 if successful,
11039 0 otherwise (i.e. if there is no casesi instruction).
11040
11041 DEFAULT_PROBABILITY is the probability of jumping to the default
11042 label. */
11043 int
11044 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
11045 rtx table_label, rtx default_label, rtx fallback_label,
11046 int default_probability)
11047 {
11048 struct expand_operand ops[5];
11049 enum machine_mode index_mode = SImode;
11050 rtx op1, op2, index;
11051
11052 if (! HAVE_casesi)
11053 return 0;
11054
11055 /* Convert the index to SImode. */
11056 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
11057 {
11058 enum machine_mode omode = TYPE_MODE (index_type);
11059 rtx rangertx = expand_normal (range);
11060
11061 /* We must handle the endpoints in the original mode. */
11062 index_expr = build2 (MINUS_EXPR, index_type,
11063 index_expr, minval);
11064 minval = integer_zero_node;
11065 index = expand_normal (index_expr);
11066 if (default_label)
11067 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
11068 omode, 1, default_label,
11069 default_probability);
11070 /* Now we can safely truncate. */
11071 index = convert_to_mode (index_mode, index, 0);
11072 }
11073 else
11074 {
11075 if (TYPE_MODE (index_type) != index_mode)
11076 {
11077 index_type = lang_hooks.types.type_for_mode (index_mode, 0);
11078 index_expr = fold_convert (index_type, index_expr);
11079 }
11080
11081 index = expand_normal (index_expr);
11082 }
11083
11084 do_pending_stack_adjust ();
11085
11086 op1 = expand_normal (minval);
11087 op2 = expand_normal (range);
11088
11089 create_input_operand (&ops[0], index, index_mode);
11090 create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
11091 create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
11092 create_fixed_operand (&ops[3], table_label);
11093 create_fixed_operand (&ops[4], (default_label
11094 ? default_label
11095 : fallback_label));
11096 expand_jump_insn (CODE_FOR_casesi, 5, ops);
11097 return 1;
11098 }
11099
11100 /* Attempt to generate a tablejump instruction; same concept. */
11101 #ifndef HAVE_tablejump
11102 #define HAVE_tablejump 0
11103 #define gen_tablejump(x, y) (0)
11104 #endif
11105
11106 /* Subroutine of the next function.
11107
11108 INDEX is the value being switched on, with the lowest value
11109 in the table already subtracted.
11110 MODE is its expected mode (needed if INDEX is constant).
11111 RANGE is the length of the jump table.
11112 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
11113
11114 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
11115 index value is out of range.
11116 DEFAULT_PROBABILITY is the probability of jumping to
11117 the default label. */
11118
11119 static void
11120 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
11121 rtx default_label, int default_probability)
11122 {
11123 rtx temp, vector;
11124
11125 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
11126 cfun->cfg->max_jumptable_ents = INTVAL (range);
11127
11128 /* Do an unsigned comparison (in the proper mode) between the index
11129 expression and the value which represents the length of the range.
11130 Since we just finished subtracting the lower bound of the range
11131 from the index expression, this comparison allows us to simultaneously
11132 check that the original index expression value is both greater than
11133 or equal to the minimum value of the range and less than or equal to
11134 the maximum value of the range. */
11135
11136 if (default_label)
11137 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
11138 default_label, default_probability);
11139
11140
11141 /* If index is in range, it must fit in Pmode.
11142 Convert to Pmode so we can index with it. */
11143 if (mode != Pmode)
11144 index = convert_to_mode (Pmode, index, 1);
11145
11146 /* Don't let a MEM slip through, because then INDEX that comes
11147 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
11148 and break_out_memory_refs will go to work on it and mess it up. */
11149 #ifdef PIC_CASE_VECTOR_ADDRESS
11150 if (flag_pic && !REG_P (index))
11151 index = copy_to_mode_reg (Pmode, index);
11152 #endif
11153
11154 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
11155 GET_MODE_SIZE, because this indicates how large insns are. The other
11156 uses should all be Pmode, because they are addresses. This code
11157 could fail if addresses and insns are not the same size. */
11158 index = simplify_gen_binary (MULT, Pmode, index,
11159 gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
11160 Pmode));
11161 index = simplify_gen_binary (PLUS, Pmode, index,
11162 gen_rtx_LABEL_REF (Pmode, table_label));
11163
11164 #ifdef PIC_CASE_VECTOR_ADDRESS
11165 if (flag_pic)
11166 index = PIC_CASE_VECTOR_ADDRESS (index);
11167 else
11168 #endif
11169 index = memory_address (CASE_VECTOR_MODE, index);
11170 temp = gen_reg_rtx (CASE_VECTOR_MODE);
11171 vector = gen_const_mem (CASE_VECTOR_MODE, index);
11172 convert_move (temp, vector, 0);
11173
11174 emit_jump_insn (gen_tablejump (temp, table_label));
11175
11176 /* If we are generating PIC code or if the table is PC-relative, the
11177 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
11178 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
11179 emit_barrier ();
11180 }
11181
11182 int
11183 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
11184 rtx table_label, rtx default_label, int default_probability)
11185 {
11186 rtx index;
11187
11188 if (! HAVE_tablejump)
11189 return 0;
11190
11191 index_expr = fold_build2 (MINUS_EXPR, index_type,
11192 fold_convert (index_type, index_expr),
11193 fold_convert (index_type, minval));
11194 index = expand_normal (index_expr);
11195 do_pending_stack_adjust ();
11196
11197 do_tablejump (index, TYPE_MODE (index_type),
11198 convert_modes (TYPE_MODE (index_type),
11199 TYPE_MODE (TREE_TYPE (range)),
11200 expand_normal (range),
11201 TYPE_UNSIGNED (TREE_TYPE (range))),
11202 table_label, default_label, default_probability);
11203 return 1;
11204 }
11205
11206 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
11207 static rtx
11208 const_vector_from_tree (tree exp)
11209 {
11210 rtvec v;
11211 unsigned i;
11212 int units;
11213 tree elt;
11214 enum machine_mode inner, mode;
11215
11216 mode = TYPE_MODE (TREE_TYPE (exp));
11217
11218 if (initializer_zerop (exp))
11219 return CONST0_RTX (mode);
11220
11221 units = GET_MODE_NUNITS (mode);
11222 inner = GET_MODE_INNER (mode);
11223
11224 v = rtvec_alloc (units);
11225
11226 for (i = 0; i < VECTOR_CST_NELTS (exp); ++i)
11227 {
11228 elt = VECTOR_CST_ELT (exp, i);
11229
11230 if (TREE_CODE (elt) == REAL_CST)
11231 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
11232 inner);
11233 else if (TREE_CODE (elt) == FIXED_CST)
11234 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
11235 inner);
11236 else
11237 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
11238 inner);
11239 }
11240
11241 return gen_rtx_CONST_VECTOR (mode, v);
11242 }
11243
11244 /* Build a decl for a personality function given a language prefix. */
11245
11246 tree
11247 build_personality_function (const char *lang)
11248 {
11249 const char *unwind_and_version;
11250 tree decl, type;
11251 char *name;
11252
11253 switch (targetm_common.except_unwind_info (&global_options))
11254 {
11255 case UI_NONE:
11256 return NULL;
11257 case UI_SJLJ:
11258 unwind_and_version = "_sj0";
11259 break;
11260 case UI_DWARF2:
11261 case UI_TARGET:
11262 unwind_and_version = "_v0";
11263 break;
11264 case UI_SEH:
11265 unwind_and_version = "_seh0";
11266 break;
11267 default:
11268 gcc_unreachable ();
11269 }
11270
11271 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
11272
11273 type = build_function_type_list (integer_type_node, integer_type_node,
11274 long_long_unsigned_type_node,
11275 ptr_type_node, ptr_type_node, NULL_TREE);
11276 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
11277 get_identifier (name), type);
11278 DECL_ARTIFICIAL (decl) = 1;
11279 DECL_EXTERNAL (decl) = 1;
11280 TREE_PUBLIC (decl) = 1;
11281
11282 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
11283 are the flags assigned by targetm.encode_section_info. */
11284 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
11285
11286 return decl;
11287 }
11288
11289 /* Extracts the personality function of DECL and returns the corresponding
11290 libfunc. */
11291
11292 rtx
11293 get_personality_function (tree decl)
11294 {
11295 tree personality = DECL_FUNCTION_PERSONALITY (decl);
11296 enum eh_personality_kind pk;
11297
11298 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
11299 if (pk == eh_personality_none)
11300 return NULL;
11301
11302 if (!personality
11303 && pk == eh_personality_any)
11304 personality = lang_hooks.eh_personality ();
11305
11306 if (pk == eh_personality_lang)
11307 gcc_assert (personality != NULL_TREE);
11308
11309 return XEXP (DECL_RTL (personality), 0);
11310 }
11311
11312 #include "gt-expr.h"