re PR target/45670 (Less efficient x86 addressing mode selection on 4.6, causes ...
[gcc.git] / gcc / expr.c
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "flags.h"
30 #include "regs.h"
31 #include "hard-reg-set.h"
32 #include "except.h"
33 #include "function.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
37 #include "expr.h"
38 #include "optabs.h"
39 #include "libfuncs.h"
40 #include "recog.h"
41 #include "reload.h"
42 #include "output.h"
43 #include "typeclass.h"
44 #include "toplev.h"
45 #include "langhooks.h"
46 #include "intl.h"
47 #include "tm_p.h"
48 #include "tree-iterator.h"
49 #include "tree-pass.h"
50 #include "tree-flow.h"
51 #include "target.h"
52 #include "timevar.h"
53 #include "df.h"
54 #include "diagnostic.h"
55 #include "ssaexpand.h"
56 #include "target-globals.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces_d
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces_d
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces_d *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces_d *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces_d *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (sepops, rtx, enum machine_mode);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* This macro is used to determine whether move_by_pieces should be called
163 to perform a structure copy. */
164 #ifndef MOVE_BY_PIECES_P
165 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
166 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
167 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
168 #endif
169
170 /* This macro is used to determine whether clear_by_pieces should be
171 called to clear storage. */
172 #ifndef CLEAR_BY_PIECES_P
173 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
174 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
175 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
176 #endif
177
178 /* This macro is used to determine whether store_by_pieces should be
179 called to "memset" storage with byte values other than zero. */
180 #ifndef SET_BY_PIECES_P
181 #define SET_BY_PIECES_P(SIZE, ALIGN) \
182 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
183 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
184 #endif
185
186 /* This macro is used to determine whether store_by_pieces should be
187 called to "memcpy" storage when the source is a constant string. */
188 #ifndef STORE_BY_PIECES_P
189 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
190 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
191 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
192 #endif
193
194 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
195
196 #ifndef SLOW_UNALIGNED_ACCESS
197 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
198 #endif
199 \f
200 /* This is run to set up which modes can be used
201 directly in memory and to initialize the block move optab. It is run
202 at the beginning of compilation and when the target is reinitialized. */
203
204 void
205 init_expr_target (void)
206 {
207 rtx insn, pat;
208 enum machine_mode mode;
209 int num_clobbers;
210 rtx mem, mem1;
211 rtx reg;
212
213 /* Try indexing by frame ptr and try by stack ptr.
214 It is known that on the Convex the stack ptr isn't a valid index.
215 With luck, one or the other is valid on any machine. */
216 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
217 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
218
219 /* A scratch register we can modify in-place below to avoid
220 useless RTL allocations. */
221 reg = gen_rtx_REG (VOIDmode, -1);
222
223 insn = rtx_alloc (INSN);
224 pat = gen_rtx_SET (VOIDmode, NULL_RTX, NULL_RTX);
225 PATTERN (insn) = pat;
226
227 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
228 mode = (enum machine_mode) ((int) mode + 1))
229 {
230 int regno;
231
232 direct_load[(int) mode] = direct_store[(int) mode] = 0;
233 PUT_MODE (mem, mode);
234 PUT_MODE (mem1, mode);
235 PUT_MODE (reg, mode);
236
237 /* See if there is some register that can be used in this mode and
238 directly loaded or stored from memory. */
239
240 if (mode != VOIDmode && mode != BLKmode)
241 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
242 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
243 regno++)
244 {
245 if (! HARD_REGNO_MODE_OK (regno, mode))
246 continue;
247
248 SET_REGNO (reg, regno);
249
250 SET_SRC (pat) = mem;
251 SET_DEST (pat) = reg;
252 if (recog (pat, insn, &num_clobbers) >= 0)
253 direct_load[(int) mode] = 1;
254
255 SET_SRC (pat) = mem1;
256 SET_DEST (pat) = reg;
257 if (recog (pat, insn, &num_clobbers) >= 0)
258 direct_load[(int) mode] = 1;
259
260 SET_SRC (pat) = reg;
261 SET_DEST (pat) = mem;
262 if (recog (pat, insn, &num_clobbers) >= 0)
263 direct_store[(int) mode] = 1;
264
265 SET_SRC (pat) = reg;
266 SET_DEST (pat) = mem1;
267 if (recog (pat, insn, &num_clobbers) >= 0)
268 direct_store[(int) mode] = 1;
269 }
270 }
271
272 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
273
274 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
275 mode = GET_MODE_WIDER_MODE (mode))
276 {
277 enum machine_mode srcmode;
278 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
279 srcmode = GET_MODE_WIDER_MODE (srcmode))
280 {
281 enum insn_code ic;
282
283 ic = can_extend_p (mode, srcmode, 0);
284 if (ic == CODE_FOR_nothing)
285 continue;
286
287 PUT_MODE (mem, srcmode);
288
289 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
290 float_extend_from_mem[mode][srcmode] = true;
291 }
292 }
293 }
294
295 /* This is run at the start of compiling a function. */
296
297 void
298 init_expr (void)
299 {
300 memset (&crtl->expr, 0, sizeof (crtl->expr));
301 }
302 \f
303 /* Copy data from FROM to TO, where the machine modes are not the same.
304 Both modes may be integer, or both may be floating, or both may be
305 fixed-point.
306 UNSIGNEDP should be nonzero if FROM is an unsigned type.
307 This causes zero-extension instead of sign-extension. */
308
309 void
310 convert_move (rtx to, rtx from, int unsignedp)
311 {
312 enum machine_mode to_mode = GET_MODE (to);
313 enum machine_mode from_mode = GET_MODE (from);
314 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
315 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
316 enum insn_code code;
317 rtx libcall;
318
319 /* rtx code for making an equivalent value. */
320 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
321 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
322
323
324 gcc_assert (to_real == from_real);
325 gcc_assert (to_mode != BLKmode);
326 gcc_assert (from_mode != BLKmode);
327
328 /* If the source and destination are already the same, then there's
329 nothing to do. */
330 if (to == from)
331 return;
332
333 /* If FROM is a SUBREG that indicates that we have already done at least
334 the required extension, strip it. We don't handle such SUBREGs as
335 TO here. */
336
337 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
338 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
339 >= GET_MODE_SIZE (to_mode))
340 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
341 from = gen_lowpart (to_mode, from), from_mode = to_mode;
342
343 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
344
345 if (to_mode == from_mode
346 || (from_mode == VOIDmode && CONSTANT_P (from)))
347 {
348 emit_move_insn (to, from);
349 return;
350 }
351
352 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
353 {
354 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
355
356 if (VECTOR_MODE_P (to_mode))
357 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
358 else
359 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
360
361 emit_move_insn (to, from);
362 return;
363 }
364
365 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
366 {
367 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
368 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
369 return;
370 }
371
372 if (to_real)
373 {
374 rtx value, insns;
375 convert_optab tab;
376
377 gcc_assert ((GET_MODE_PRECISION (from_mode)
378 != GET_MODE_PRECISION (to_mode))
379 || (DECIMAL_FLOAT_MODE_P (from_mode)
380 != DECIMAL_FLOAT_MODE_P (to_mode)));
381
382 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
383 /* Conversion between decimal float and binary float, same size. */
384 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
385 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
386 tab = sext_optab;
387 else
388 tab = trunc_optab;
389
390 /* Try converting directly if the insn is supported. */
391
392 code = convert_optab_handler (tab, to_mode, from_mode);
393 if (code != CODE_FOR_nothing)
394 {
395 emit_unop_insn (code, to, from,
396 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
397 return;
398 }
399
400 /* Otherwise use a libcall. */
401 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
402
403 /* Is this conversion implemented yet? */
404 gcc_assert (libcall);
405
406 start_sequence ();
407 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
408 1, from, from_mode);
409 insns = get_insns ();
410 end_sequence ();
411 emit_libcall_block (insns, to, value,
412 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
413 from)
414 : gen_rtx_FLOAT_EXTEND (to_mode, from));
415 return;
416 }
417
418 /* Handle pointer conversion. */ /* SPEE 900220. */
419 /* Targets are expected to provide conversion insns between PxImode and
420 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
421 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
422 {
423 enum machine_mode full_mode
424 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
425
426 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
427 != CODE_FOR_nothing);
428
429 if (full_mode != from_mode)
430 from = convert_to_mode (full_mode, from, unsignedp);
431 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
432 to, from, UNKNOWN);
433 return;
434 }
435 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
436 {
437 rtx new_from;
438 enum machine_mode full_mode
439 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
440
441 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)
442 != CODE_FOR_nothing);
443
444 if (to_mode == full_mode)
445 {
446 emit_unop_insn (convert_optab_handler (sext_optab, full_mode,
447 from_mode),
448 to, from, UNKNOWN);
449 return;
450 }
451
452 new_from = gen_reg_rtx (full_mode);
453 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode),
454 new_from, from, UNKNOWN);
455
456 /* else proceed to integer conversions below. */
457 from_mode = full_mode;
458 from = new_from;
459 }
460
461 /* Make sure both are fixed-point modes or both are not. */
462 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
463 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
464 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
465 {
466 /* If we widen from_mode to to_mode and they are in the same class,
467 we won't saturate the result.
468 Otherwise, always saturate the result to play safe. */
469 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
470 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
471 expand_fixed_convert (to, from, 0, 0);
472 else
473 expand_fixed_convert (to, from, 0, 1);
474 return;
475 }
476
477 /* Now both modes are integers. */
478
479 /* Handle expanding beyond a word. */
480 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
481 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
482 {
483 rtx insns;
484 rtx lowpart;
485 rtx fill_value;
486 rtx lowfrom;
487 int i;
488 enum machine_mode lowpart_mode;
489 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
490
491 /* Try converting directly if the insn is supported. */
492 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
493 != CODE_FOR_nothing)
494 {
495 /* If FROM is a SUBREG, put it into a register. Do this
496 so that we always generate the same set of insns for
497 better cse'ing; if an intermediate assignment occurred,
498 we won't be doing the operation directly on the SUBREG. */
499 if (optimize > 0 && GET_CODE (from) == SUBREG)
500 from = force_reg (from_mode, from);
501 emit_unop_insn (code, to, from, equiv_code);
502 return;
503 }
504 /* Next, try converting via full word. */
505 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
506 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
507 != CODE_FOR_nothing))
508 {
509 rtx word_to = gen_reg_rtx (word_mode);
510 if (REG_P (to))
511 {
512 if (reg_overlap_mentioned_p (to, from))
513 from = force_reg (from_mode, from);
514 emit_clobber (to);
515 }
516 convert_move (word_to, from, unsignedp);
517 emit_unop_insn (code, to, word_to, equiv_code);
518 return;
519 }
520
521 /* No special multiword conversion insn; do it by hand. */
522 start_sequence ();
523
524 /* Since we will turn this into a no conflict block, we must ensure
525 that the source does not overlap the target. */
526
527 if (reg_overlap_mentioned_p (to, from))
528 from = force_reg (from_mode, from);
529
530 /* Get a copy of FROM widened to a word, if necessary. */
531 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
532 lowpart_mode = word_mode;
533 else
534 lowpart_mode = from_mode;
535
536 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
537
538 lowpart = gen_lowpart (lowpart_mode, to);
539 emit_move_insn (lowpart, lowfrom);
540
541 /* Compute the value to put in each remaining word. */
542 if (unsignedp)
543 fill_value = const0_rtx;
544 else
545 fill_value = emit_store_flag (gen_reg_rtx (word_mode),
546 LT, lowfrom, const0_rtx,
547 VOIDmode, 0, -1);
548
549 /* Fill the remaining words. */
550 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
551 {
552 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
553 rtx subword = operand_subword (to, index, 1, to_mode);
554
555 gcc_assert (subword);
556
557 if (fill_value != subword)
558 emit_move_insn (subword, fill_value);
559 }
560
561 insns = get_insns ();
562 end_sequence ();
563
564 emit_insn (insns);
565 return;
566 }
567
568 /* Truncating multi-word to a word or less. */
569 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
570 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
571 {
572 if (!((MEM_P (from)
573 && ! MEM_VOLATILE_P (from)
574 && direct_load[(int) to_mode]
575 && ! mode_dependent_address_p (XEXP (from, 0)))
576 || REG_P (from)
577 || GET_CODE (from) == SUBREG))
578 from = force_reg (from_mode, from);
579 convert_move (to, gen_lowpart (word_mode, from), 0);
580 return;
581 }
582
583 /* Now follow all the conversions between integers
584 no more than a word long. */
585
586 /* For truncation, usually we can just refer to FROM in a narrower mode. */
587 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
588 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
589 GET_MODE_BITSIZE (from_mode)))
590 {
591 if (!((MEM_P (from)
592 && ! MEM_VOLATILE_P (from)
593 && direct_load[(int) to_mode]
594 && ! mode_dependent_address_p (XEXP (from, 0)))
595 || REG_P (from)
596 || GET_CODE (from) == SUBREG))
597 from = force_reg (from_mode, from);
598 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
599 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
600 from = copy_to_reg (from);
601 emit_move_insn (to, gen_lowpart (to_mode, from));
602 return;
603 }
604
605 /* Handle extension. */
606 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
607 {
608 /* Convert directly if that works. */
609 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
610 != CODE_FOR_nothing)
611 {
612 emit_unop_insn (code, to, from, equiv_code);
613 return;
614 }
615 else
616 {
617 enum machine_mode intermediate;
618 rtx tmp;
619 tree shift_amount;
620
621 /* Search for a mode to convert via. */
622 for (intermediate = from_mode; intermediate != VOIDmode;
623 intermediate = GET_MODE_WIDER_MODE (intermediate))
624 if (((can_extend_p (to_mode, intermediate, unsignedp)
625 != CODE_FOR_nothing)
626 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (intermediate))))
629 && (can_extend_p (intermediate, from_mode, unsignedp)
630 != CODE_FOR_nothing))
631 {
632 convert_move (to, convert_to_mode (intermediate, from,
633 unsignedp), unsignedp);
634 return;
635 }
636
637 /* No suitable intermediate mode.
638 Generate what we need with shifts. */
639 shift_amount = build_int_cst (NULL_TREE,
640 GET_MODE_BITSIZE (to_mode)
641 - GET_MODE_BITSIZE (from_mode));
642 from = gen_lowpart (to_mode, force_reg (from_mode, from));
643 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
644 to, unsignedp);
645 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
646 to, unsignedp);
647 if (tmp != to)
648 emit_move_insn (to, tmp);
649 return;
650 }
651 }
652
653 /* Support special truncate insns for certain modes. */
654 if (convert_optab_handler (trunc_optab, to_mode,
655 from_mode) != CODE_FOR_nothing)
656 {
657 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
658 to, from, UNKNOWN);
659 return;
660 }
661
662 /* Handle truncation of volatile memrefs, and so on;
663 the things that couldn't be truncated directly,
664 and for which there was no special instruction.
665
666 ??? Code above formerly short-circuited this, for most integer
667 mode pairs, with a force_reg in from_mode followed by a recursive
668 call to this routine. Appears always to have been wrong. */
669 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
670 {
671 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
672 emit_move_insn (to, temp);
673 return;
674 }
675
676 /* Mode combination is not recognized. */
677 gcc_unreachable ();
678 }
679
680 /* Return an rtx for a value that would result
681 from converting X to mode MODE.
682 Both X and MODE may be floating, or both integer.
683 UNSIGNEDP is nonzero if X is an unsigned value.
684 This can be done by referring to a part of X in place
685 or by copying to a new temporary with conversion. */
686
687 rtx
688 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
689 {
690 return convert_modes (mode, VOIDmode, x, unsignedp);
691 }
692
693 /* Return an rtx for a value that would result
694 from converting X from mode OLDMODE to mode MODE.
695 Both modes may be floating, or both integer.
696 UNSIGNEDP is nonzero if X is an unsigned value.
697
698 This can be done by referring to a part of X in place
699 or by copying to a new temporary with conversion.
700
701 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
702
703 rtx
704 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
705 {
706 rtx temp;
707
708 /* If FROM is a SUBREG that indicates that we have already done at least
709 the required extension, strip it. */
710
711 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
712 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
713 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
714 x = gen_lowpart (mode, x);
715
716 if (GET_MODE (x) != VOIDmode)
717 oldmode = GET_MODE (x);
718
719 if (mode == oldmode)
720 return x;
721
722 /* There is one case that we must handle specially: If we are converting
723 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
724 we are to interpret the constant as unsigned, gen_lowpart will do
725 the wrong if the constant appears negative. What we want to do is
726 make the high-order word of the constant zero, not all ones. */
727
728 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
729 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
730 && CONST_INT_P (x) && INTVAL (x) < 0)
731 {
732 double_int val = uhwi_to_double_int (INTVAL (x));
733
734 /* We need to zero extend VAL. */
735 if (oldmode != VOIDmode)
736 val = double_int_zext (val, GET_MODE_BITSIZE (oldmode));
737
738 return immed_double_int_const (val, mode);
739 }
740
741 /* We can do this with a gen_lowpart if both desired and current modes
742 are integer, and this is either a constant integer, a register, or a
743 non-volatile MEM. Except for the constant case where MODE is no
744 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
745
746 if ((CONST_INT_P (x)
747 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
748 || (GET_MODE_CLASS (mode) == MODE_INT
749 && GET_MODE_CLASS (oldmode) == MODE_INT
750 && (GET_CODE (x) == CONST_DOUBLE
751 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
752 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
753 && direct_load[(int) mode])
754 || (REG_P (x)
755 && (! HARD_REGISTER_P (x)
756 || HARD_REGNO_MODE_OK (REGNO (x), mode))
757 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
758 GET_MODE_BITSIZE (GET_MODE (x)))))))))
759 {
760 /* ?? If we don't know OLDMODE, we have to assume here that
761 X does not need sign- or zero-extension. This may not be
762 the case, but it's the best we can do. */
763 if (CONST_INT_P (x) && oldmode != VOIDmode
764 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
765 {
766 HOST_WIDE_INT val = INTVAL (x);
767 int width = GET_MODE_BITSIZE (oldmode);
768
769 /* We must sign or zero-extend in this case. Start by
770 zero-extending, then sign extend if we need to. */
771 val &= ((HOST_WIDE_INT) 1 << width) - 1;
772 if (! unsignedp
773 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
774 val |= (HOST_WIDE_INT) (-1) << width;
775
776 return gen_int_mode (val, mode);
777 }
778
779 return gen_lowpart (mode, x);
780 }
781
782 /* Converting from integer constant into mode is always equivalent to an
783 subreg operation. */
784 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
785 {
786 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
787 return simplify_gen_subreg (mode, x, oldmode, 0);
788 }
789
790 temp = gen_reg_rtx (mode);
791 convert_move (temp, x, unsignedp);
792 return temp;
793 }
794 \f
795 /* STORE_MAX_PIECES is the number of bytes at a time that we can
796 store efficiently. Due to internal GCC limitations, this is
797 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
798 for an immediate constant. */
799
800 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
801
802 /* Determine whether the LEN bytes can be moved by using several move
803 instructions. Return nonzero if a call to move_by_pieces should
804 succeed. */
805
806 int
807 can_move_by_pieces (unsigned HOST_WIDE_INT len,
808 unsigned int align ATTRIBUTE_UNUSED)
809 {
810 return MOVE_BY_PIECES_P (len, align);
811 }
812
813 /* Generate several move instructions to copy LEN bytes from block FROM to
814 block TO. (These are MEM rtx's with BLKmode).
815
816 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
817 used to push FROM to the stack.
818
819 ALIGN is maximum stack alignment we can assume.
820
821 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
822 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
823 stpcpy. */
824
825 rtx
826 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
827 unsigned int align, int endp)
828 {
829 struct move_by_pieces_d data;
830 enum machine_mode to_addr_mode, from_addr_mode
831 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (from));
832 rtx to_addr, from_addr = XEXP (from, 0);
833 unsigned int max_size = MOVE_MAX_PIECES + 1;
834 enum machine_mode mode = VOIDmode, tmode;
835 enum insn_code icode;
836
837 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
838
839 data.offset = 0;
840 data.from_addr = from_addr;
841 if (to)
842 {
843 to_addr_mode = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
844 to_addr = XEXP (to, 0);
845 data.to = to;
846 data.autinc_to
847 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
848 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
849 data.reverse
850 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
851 }
852 else
853 {
854 to_addr_mode = VOIDmode;
855 to_addr = NULL_RTX;
856 data.to = NULL_RTX;
857 data.autinc_to = 1;
858 #ifdef STACK_GROWS_DOWNWARD
859 data.reverse = 1;
860 #else
861 data.reverse = 0;
862 #endif
863 }
864 data.to_addr = to_addr;
865 data.from = from;
866 data.autinc_from
867 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
868 || GET_CODE (from_addr) == POST_INC
869 || GET_CODE (from_addr) == POST_DEC);
870
871 data.explicit_inc_from = 0;
872 data.explicit_inc_to = 0;
873 if (data.reverse) data.offset = len;
874 data.len = len;
875
876 /* If copying requires more than two move insns,
877 copy addresses to registers (to make displacements shorter)
878 and use post-increment if available. */
879 if (!(data.autinc_from && data.autinc_to)
880 && move_by_pieces_ninsns (len, align, max_size) > 2)
881 {
882 /* Find the mode of the largest move... */
883 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
884 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
885 if (GET_MODE_SIZE (tmode) < max_size)
886 mode = tmode;
887
888 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
889 {
890 data.from_addr = copy_to_mode_reg (from_addr_mode,
891 plus_constant (from_addr, len));
892 data.autinc_from = 1;
893 data.explicit_inc_from = -1;
894 }
895 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
896 {
897 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
898 data.autinc_from = 1;
899 data.explicit_inc_from = 1;
900 }
901 if (!data.autinc_from && CONSTANT_P (from_addr))
902 data.from_addr = copy_to_mode_reg (from_addr_mode, from_addr);
903 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
904 {
905 data.to_addr = copy_to_mode_reg (to_addr_mode,
906 plus_constant (to_addr, len));
907 data.autinc_to = 1;
908 data.explicit_inc_to = -1;
909 }
910 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
911 {
912 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
913 data.autinc_to = 1;
914 data.explicit_inc_to = 1;
915 }
916 if (!data.autinc_to && CONSTANT_P (to_addr))
917 data.to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
918 }
919
920 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
921 if (align >= GET_MODE_ALIGNMENT (tmode))
922 align = GET_MODE_ALIGNMENT (tmode);
923 else
924 {
925 enum machine_mode xmode;
926
927 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
928 tmode != VOIDmode;
929 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
930 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
931 || SLOW_UNALIGNED_ACCESS (tmode, align))
932 break;
933
934 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
935 }
936
937 /* First move what we can in the largest integer mode, then go to
938 successively smaller modes. */
939
940 while (max_size > 1)
941 {
942 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
943 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
944 if (GET_MODE_SIZE (tmode) < max_size)
945 mode = tmode;
946
947 if (mode == VOIDmode)
948 break;
949
950 icode = optab_handler (mov_optab, mode);
951 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
952 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
953
954 max_size = GET_MODE_SIZE (mode);
955 }
956
957 /* The code above should have handled everything. */
958 gcc_assert (!data.len);
959
960 if (endp)
961 {
962 rtx to1;
963
964 gcc_assert (!data.reverse);
965 if (data.autinc_to)
966 {
967 if (endp == 2)
968 {
969 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
970 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
971 else
972 data.to_addr = copy_to_mode_reg (to_addr_mode,
973 plus_constant (data.to_addr,
974 -1));
975 }
976 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
977 data.offset);
978 }
979 else
980 {
981 if (endp == 2)
982 --data.offset;
983 to1 = adjust_address (data.to, QImode, data.offset);
984 }
985 return to1;
986 }
987 else
988 return data.to;
989 }
990
991 /* Return number of insns required to move L bytes by pieces.
992 ALIGN (in bits) is maximum alignment we can assume. */
993
994 static unsigned HOST_WIDE_INT
995 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
996 unsigned int max_size)
997 {
998 unsigned HOST_WIDE_INT n_insns = 0;
999 enum machine_mode tmode;
1000
1001 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1002 if (align >= GET_MODE_ALIGNMENT (tmode))
1003 align = GET_MODE_ALIGNMENT (tmode);
1004 else
1005 {
1006 enum machine_mode tmode, xmode;
1007
1008 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1009 tmode != VOIDmode;
1010 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1011 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1012 || SLOW_UNALIGNED_ACCESS (tmode, align))
1013 break;
1014
1015 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1016 }
1017
1018 while (max_size > 1)
1019 {
1020 enum machine_mode mode = VOIDmode;
1021 enum insn_code icode;
1022
1023 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1024 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1025 if (GET_MODE_SIZE (tmode) < max_size)
1026 mode = tmode;
1027
1028 if (mode == VOIDmode)
1029 break;
1030
1031 icode = optab_handler (mov_optab, mode);
1032 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1033 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1034
1035 max_size = GET_MODE_SIZE (mode);
1036 }
1037
1038 gcc_assert (!l);
1039 return n_insns;
1040 }
1041
1042 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1043 with move instructions for mode MODE. GENFUN is the gen_... function
1044 to make a move insn for that mode. DATA has all the other info. */
1045
1046 static void
1047 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1048 struct move_by_pieces_d *data)
1049 {
1050 unsigned int size = GET_MODE_SIZE (mode);
1051 rtx to1 = NULL_RTX, from1;
1052
1053 while (data->len >= size)
1054 {
1055 if (data->reverse)
1056 data->offset -= size;
1057
1058 if (data->to)
1059 {
1060 if (data->autinc_to)
1061 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1062 data->offset);
1063 else
1064 to1 = adjust_address (data->to, mode, data->offset);
1065 }
1066
1067 if (data->autinc_from)
1068 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1069 data->offset);
1070 else
1071 from1 = adjust_address (data->from, mode, data->offset);
1072
1073 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1074 emit_insn (gen_add2_insn (data->to_addr,
1075 GEN_INT (-(HOST_WIDE_INT)size)));
1076 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1077 emit_insn (gen_add2_insn (data->from_addr,
1078 GEN_INT (-(HOST_WIDE_INT)size)));
1079
1080 if (data->to)
1081 emit_insn ((*genfun) (to1, from1));
1082 else
1083 {
1084 #ifdef PUSH_ROUNDING
1085 emit_single_push_insn (mode, from1, NULL);
1086 #else
1087 gcc_unreachable ();
1088 #endif
1089 }
1090
1091 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1092 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1093 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1094 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1095
1096 if (! data->reverse)
1097 data->offset += size;
1098
1099 data->len -= size;
1100 }
1101 }
1102 \f
1103 /* Emit code to move a block Y to a block X. This may be done with
1104 string-move instructions, with multiple scalar move instructions,
1105 or with a library call.
1106
1107 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1108 SIZE is an rtx that says how long they are.
1109 ALIGN is the maximum alignment we can assume they have.
1110 METHOD describes what kind of copy this is, and what mechanisms may be used.
1111
1112 Return the address of the new block, if memcpy is called and returns it,
1113 0 otherwise. */
1114
1115 rtx
1116 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1117 unsigned int expected_align, HOST_WIDE_INT expected_size)
1118 {
1119 bool may_use_call;
1120 rtx retval = 0;
1121 unsigned int align;
1122
1123 gcc_assert (size);
1124 if (CONST_INT_P (size)
1125 && INTVAL (size) == 0)
1126 return 0;
1127
1128 switch (method)
1129 {
1130 case BLOCK_OP_NORMAL:
1131 case BLOCK_OP_TAILCALL:
1132 may_use_call = true;
1133 break;
1134
1135 case BLOCK_OP_CALL_PARM:
1136 may_use_call = block_move_libcall_safe_for_call_parm ();
1137
1138 /* Make inhibit_defer_pop nonzero around the library call
1139 to force it to pop the arguments right away. */
1140 NO_DEFER_POP;
1141 break;
1142
1143 case BLOCK_OP_NO_LIBCALL:
1144 may_use_call = false;
1145 break;
1146
1147 default:
1148 gcc_unreachable ();
1149 }
1150
1151 gcc_assert (MEM_P (x) && MEM_P (y));
1152 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1153 gcc_assert (align >= BITS_PER_UNIT);
1154
1155 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1156 block copy is more efficient for other large modes, e.g. DCmode. */
1157 x = adjust_address (x, BLKmode, 0);
1158 y = adjust_address (y, BLKmode, 0);
1159
1160 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1161 can be incorrect is coming from __builtin_memcpy. */
1162 if (CONST_INT_P (size))
1163 {
1164 x = shallow_copy_rtx (x);
1165 y = shallow_copy_rtx (y);
1166 set_mem_size (x, size);
1167 set_mem_size (y, size);
1168 }
1169
1170 if (CONST_INT_P (size) && MOVE_BY_PIECES_P (INTVAL (size), align))
1171 move_by_pieces (x, y, INTVAL (size), align, 0);
1172 else if (emit_block_move_via_movmem (x, y, size, align,
1173 expected_align, expected_size))
1174 ;
1175 else if (may_use_call
1176 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
1177 && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
1178 retval = emit_block_move_via_libcall (x, y, size,
1179 method == BLOCK_OP_TAILCALL);
1180 else
1181 emit_block_move_via_loop (x, y, size, align);
1182
1183 if (method == BLOCK_OP_CALL_PARM)
1184 OK_DEFER_POP;
1185
1186 return retval;
1187 }
1188
1189 rtx
1190 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1191 {
1192 return emit_block_move_hints (x, y, size, method, 0, -1);
1193 }
1194
1195 /* A subroutine of emit_block_move. Returns true if calling the
1196 block move libcall will not clobber any parameters which may have
1197 already been placed on the stack. */
1198
1199 static bool
1200 block_move_libcall_safe_for_call_parm (void)
1201 {
1202 #if defined (REG_PARM_STACK_SPACE)
1203 tree fn;
1204 #endif
1205
1206 /* If arguments are pushed on the stack, then they're safe. */
1207 if (PUSH_ARGS)
1208 return true;
1209
1210 /* If registers go on the stack anyway, any argument is sure to clobber
1211 an outgoing argument. */
1212 #if defined (REG_PARM_STACK_SPACE)
1213 fn = emit_block_move_libcall_fn (false);
1214 /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
1215 depend on its argument. */
1216 (void) fn;
1217 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1218 && REG_PARM_STACK_SPACE (fn) != 0)
1219 return false;
1220 #endif
1221
1222 /* If any argument goes in memory, then it might clobber an outgoing
1223 argument. */
1224 {
1225 CUMULATIVE_ARGS args_so_far;
1226 tree fn, arg;
1227
1228 fn = emit_block_move_libcall_fn (false);
1229 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1230
1231 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1232 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1233 {
1234 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1235 rtx tmp = targetm.calls.function_arg (&args_so_far, mode,
1236 NULL_TREE, true);
1237 if (!tmp || !REG_P (tmp))
1238 return false;
1239 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1240 return false;
1241 targetm.calls.function_arg_advance (&args_so_far, mode,
1242 NULL_TREE, true);
1243 }
1244 }
1245 return true;
1246 }
1247
1248 /* A subroutine of emit_block_move. Expand a movmem pattern;
1249 return true if successful. */
1250
1251 static bool
1252 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1253 unsigned int expected_align, HOST_WIDE_INT expected_size)
1254 {
1255 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1256 int save_volatile_ok = volatile_ok;
1257 enum machine_mode mode;
1258
1259 if (expected_align < align)
1260 expected_align = align;
1261
1262 /* Since this is a move insn, we don't care about volatility. */
1263 volatile_ok = 1;
1264
1265 /* Try the most limited insn first, because there's no point
1266 including more than one in the machine description unless
1267 the more limited one has some advantage. */
1268
1269 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1270 mode = GET_MODE_WIDER_MODE (mode))
1271 {
1272 enum insn_code code = direct_optab_handler (movmem_optab, mode);
1273 insn_operand_predicate_fn pred;
1274
1275 if (code != CODE_FOR_nothing
1276 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1277 here because if SIZE is less than the mode mask, as it is
1278 returned by the macro, it will definitely be less than the
1279 actual mode mask. */
1280 && ((CONST_INT_P (size)
1281 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1282 <= (GET_MODE_MASK (mode) >> 1)))
1283 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1284 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1285 || (*pred) (x, BLKmode))
1286 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1287 || (*pred) (y, BLKmode))
1288 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1289 || (*pred) (opalign, VOIDmode)))
1290 {
1291 rtx op2;
1292 rtx last = get_last_insn ();
1293 rtx pat;
1294
1295 op2 = convert_to_mode (mode, size, 1);
1296 pred = insn_data[(int) code].operand[2].predicate;
1297 if (pred != 0 && ! (*pred) (op2, mode))
1298 op2 = copy_to_mode_reg (mode, op2);
1299
1300 /* ??? When called via emit_block_move_for_call, it'd be
1301 nice if there were some way to inform the backend, so
1302 that it doesn't fail the expansion because it thinks
1303 emitting the libcall would be more efficient. */
1304
1305 if (insn_data[(int) code].n_operands == 4)
1306 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1307 else
1308 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1309 GEN_INT (expected_align
1310 / BITS_PER_UNIT),
1311 GEN_INT (expected_size));
1312 if (pat)
1313 {
1314 emit_insn (pat);
1315 volatile_ok = save_volatile_ok;
1316 return true;
1317 }
1318 else
1319 delete_insns_since (last);
1320 }
1321 }
1322
1323 volatile_ok = save_volatile_ok;
1324 return false;
1325 }
1326
1327 /* A subroutine of emit_block_move. Expand a call to memcpy.
1328 Return the return value from memcpy, 0 otherwise. */
1329
1330 rtx
1331 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1332 {
1333 rtx dst_addr, src_addr;
1334 tree call_expr, fn, src_tree, dst_tree, size_tree;
1335 enum machine_mode size_mode;
1336 rtx retval;
1337
1338 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1339 pseudos. We can then place those new pseudos into a VAR_DECL and
1340 use them later. */
1341
1342 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1343 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1344
1345 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1346 src_addr = convert_memory_address (ptr_mode, src_addr);
1347
1348 dst_tree = make_tree (ptr_type_node, dst_addr);
1349 src_tree = make_tree (ptr_type_node, src_addr);
1350
1351 size_mode = TYPE_MODE (sizetype);
1352
1353 size = convert_to_mode (size_mode, size, 1);
1354 size = copy_to_mode_reg (size_mode, size);
1355
1356 /* It is incorrect to use the libcall calling conventions to call
1357 memcpy in this context. This could be a user call to memcpy and
1358 the user may wish to examine the return value from memcpy. For
1359 targets where libcalls and normal calls have different conventions
1360 for returning pointers, we could end up generating incorrect code. */
1361
1362 size_tree = make_tree (sizetype, size);
1363
1364 fn = emit_block_move_libcall_fn (true);
1365 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1366 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1367
1368 retval = expand_normal (call_expr);
1369
1370 return retval;
1371 }
1372
1373 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1374 for the function we use for block copies. The first time FOR_CALL
1375 is true, we call assemble_external. */
1376
1377 static GTY(()) tree block_move_fn;
1378
1379 void
1380 init_block_move_fn (const char *asmspec)
1381 {
1382 if (!block_move_fn)
1383 {
1384 tree args, fn;
1385
1386 fn = get_identifier ("memcpy");
1387 args = build_function_type_list (ptr_type_node, ptr_type_node,
1388 const_ptr_type_node, sizetype,
1389 NULL_TREE);
1390
1391 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
1392 DECL_EXTERNAL (fn) = 1;
1393 TREE_PUBLIC (fn) = 1;
1394 DECL_ARTIFICIAL (fn) = 1;
1395 TREE_NOTHROW (fn) = 1;
1396 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1397 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1398
1399 block_move_fn = fn;
1400 }
1401
1402 if (asmspec)
1403 set_user_assembler_name (block_move_fn, asmspec);
1404 }
1405
1406 static tree
1407 emit_block_move_libcall_fn (int for_call)
1408 {
1409 static bool emitted_extern;
1410
1411 if (!block_move_fn)
1412 init_block_move_fn (NULL);
1413
1414 if (for_call && !emitted_extern)
1415 {
1416 emitted_extern = true;
1417 make_decl_rtl (block_move_fn);
1418 assemble_external (block_move_fn);
1419 }
1420
1421 return block_move_fn;
1422 }
1423
1424 /* A subroutine of emit_block_move. Copy the data via an explicit
1425 loop. This is used only when libcalls are forbidden. */
1426 /* ??? It'd be nice to copy in hunks larger than QImode. */
1427
1428 static void
1429 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1430 unsigned int align ATTRIBUTE_UNUSED)
1431 {
1432 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1433 enum machine_mode x_addr_mode
1434 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (x));
1435 enum machine_mode y_addr_mode
1436 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (y));
1437 enum machine_mode iter_mode;
1438
1439 iter_mode = GET_MODE (size);
1440 if (iter_mode == VOIDmode)
1441 iter_mode = word_mode;
1442
1443 top_label = gen_label_rtx ();
1444 cmp_label = gen_label_rtx ();
1445 iter = gen_reg_rtx (iter_mode);
1446
1447 emit_move_insn (iter, const0_rtx);
1448
1449 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1450 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1451 do_pending_stack_adjust ();
1452
1453 emit_jump (cmp_label);
1454 emit_label (top_label);
1455
1456 tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
1457 x_addr = gen_rtx_PLUS (x_addr_mode, x_addr, tmp);
1458
1459 if (x_addr_mode != y_addr_mode)
1460 tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
1461 y_addr = gen_rtx_PLUS (y_addr_mode, y_addr, tmp);
1462
1463 x = change_address (x, QImode, x_addr);
1464 y = change_address (y, QImode, y_addr);
1465
1466 emit_move_insn (x, y);
1467
1468 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1469 true, OPTAB_LIB_WIDEN);
1470 if (tmp != iter)
1471 emit_move_insn (iter, tmp);
1472
1473 emit_label (cmp_label);
1474
1475 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1476 true, top_label);
1477 }
1478 \f
1479 /* Copy all or part of a value X into registers starting at REGNO.
1480 The number of registers to be filled is NREGS. */
1481
1482 void
1483 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1484 {
1485 int i;
1486 #ifdef HAVE_load_multiple
1487 rtx pat;
1488 rtx last;
1489 #endif
1490
1491 if (nregs == 0)
1492 return;
1493
1494 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1495 x = validize_mem (force_const_mem (mode, x));
1496
1497 /* See if the machine can do this with a load multiple insn. */
1498 #ifdef HAVE_load_multiple
1499 if (HAVE_load_multiple)
1500 {
1501 last = get_last_insn ();
1502 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1503 GEN_INT (nregs));
1504 if (pat)
1505 {
1506 emit_insn (pat);
1507 return;
1508 }
1509 else
1510 delete_insns_since (last);
1511 }
1512 #endif
1513
1514 for (i = 0; i < nregs; i++)
1515 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1516 operand_subword_force (x, i, mode));
1517 }
1518
1519 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1520 The number of registers to be filled is NREGS. */
1521
1522 void
1523 move_block_from_reg (int regno, rtx x, int nregs)
1524 {
1525 int i;
1526
1527 if (nregs == 0)
1528 return;
1529
1530 /* See if the machine can do this with a store multiple insn. */
1531 #ifdef HAVE_store_multiple
1532 if (HAVE_store_multiple)
1533 {
1534 rtx last = get_last_insn ();
1535 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1536 GEN_INT (nregs));
1537 if (pat)
1538 {
1539 emit_insn (pat);
1540 return;
1541 }
1542 else
1543 delete_insns_since (last);
1544 }
1545 #endif
1546
1547 for (i = 0; i < nregs; i++)
1548 {
1549 rtx tem = operand_subword (x, i, 1, BLKmode);
1550
1551 gcc_assert (tem);
1552
1553 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1554 }
1555 }
1556
1557 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1558 ORIG, where ORIG is a non-consecutive group of registers represented by
1559 a PARALLEL. The clone is identical to the original except in that the
1560 original set of registers is replaced by a new set of pseudo registers.
1561 The new set has the same modes as the original set. */
1562
1563 rtx
1564 gen_group_rtx (rtx orig)
1565 {
1566 int i, length;
1567 rtx *tmps;
1568
1569 gcc_assert (GET_CODE (orig) == PARALLEL);
1570
1571 length = XVECLEN (orig, 0);
1572 tmps = XALLOCAVEC (rtx, length);
1573
1574 /* Skip a NULL entry in first slot. */
1575 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1576
1577 if (i)
1578 tmps[0] = 0;
1579
1580 for (; i < length; i++)
1581 {
1582 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1583 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1584
1585 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1586 }
1587
1588 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1589 }
1590
1591 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1592 except that values are placed in TMPS[i], and must later be moved
1593 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1594
1595 static void
1596 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1597 {
1598 rtx src;
1599 int start, i;
1600 enum machine_mode m = GET_MODE (orig_src);
1601
1602 gcc_assert (GET_CODE (dst) == PARALLEL);
1603
1604 if (m != VOIDmode
1605 && !SCALAR_INT_MODE_P (m)
1606 && !MEM_P (orig_src)
1607 && GET_CODE (orig_src) != CONCAT)
1608 {
1609 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1610 if (imode == BLKmode)
1611 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1612 else
1613 src = gen_reg_rtx (imode);
1614 if (imode != BLKmode)
1615 src = gen_lowpart (GET_MODE (orig_src), src);
1616 emit_move_insn (src, orig_src);
1617 /* ...and back again. */
1618 if (imode != BLKmode)
1619 src = gen_lowpart (imode, src);
1620 emit_group_load_1 (tmps, dst, src, type, ssize);
1621 return;
1622 }
1623
1624 /* Check for a NULL entry, used to indicate that the parameter goes
1625 both on the stack and in registers. */
1626 if (XEXP (XVECEXP (dst, 0, 0), 0))
1627 start = 0;
1628 else
1629 start = 1;
1630
1631 /* Process the pieces. */
1632 for (i = start; i < XVECLEN (dst, 0); i++)
1633 {
1634 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1635 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1636 unsigned int bytelen = GET_MODE_SIZE (mode);
1637 int shift = 0;
1638
1639 /* Handle trailing fragments that run over the size of the struct. */
1640 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1641 {
1642 /* Arrange to shift the fragment to where it belongs.
1643 extract_bit_field loads to the lsb of the reg. */
1644 if (
1645 #ifdef BLOCK_REG_PADDING
1646 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1647 == (BYTES_BIG_ENDIAN ? upward : downward)
1648 #else
1649 BYTES_BIG_ENDIAN
1650 #endif
1651 )
1652 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1653 bytelen = ssize - bytepos;
1654 gcc_assert (bytelen > 0);
1655 }
1656
1657 /* If we won't be loading directly from memory, protect the real source
1658 from strange tricks we might play; but make sure that the source can
1659 be loaded directly into the destination. */
1660 src = orig_src;
1661 if (!MEM_P (orig_src)
1662 && (!CONSTANT_P (orig_src)
1663 || (GET_MODE (orig_src) != mode
1664 && GET_MODE (orig_src) != VOIDmode)))
1665 {
1666 if (GET_MODE (orig_src) == VOIDmode)
1667 src = gen_reg_rtx (mode);
1668 else
1669 src = gen_reg_rtx (GET_MODE (orig_src));
1670
1671 emit_move_insn (src, orig_src);
1672 }
1673
1674 /* Optimize the access just a bit. */
1675 if (MEM_P (src)
1676 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1677 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1678 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1679 && bytelen == GET_MODE_SIZE (mode))
1680 {
1681 tmps[i] = gen_reg_rtx (mode);
1682 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1683 }
1684 else if (COMPLEX_MODE_P (mode)
1685 && GET_MODE (src) == mode
1686 && bytelen == GET_MODE_SIZE (mode))
1687 /* Let emit_move_complex do the bulk of the work. */
1688 tmps[i] = src;
1689 else if (GET_CODE (src) == CONCAT)
1690 {
1691 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1692 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1693
1694 if ((bytepos == 0 && bytelen == slen0)
1695 || (bytepos != 0 && bytepos + bytelen <= slen))
1696 {
1697 /* The following assumes that the concatenated objects all
1698 have the same size. In this case, a simple calculation
1699 can be used to determine the object and the bit field
1700 to be extracted. */
1701 tmps[i] = XEXP (src, bytepos / slen0);
1702 if (! CONSTANT_P (tmps[i])
1703 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1704 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1705 (bytepos % slen0) * BITS_PER_UNIT,
1706 1, false, NULL_RTX, mode, mode);
1707 }
1708 else
1709 {
1710 rtx mem;
1711
1712 gcc_assert (!bytepos);
1713 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1714 emit_move_insn (mem, src);
1715 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1716 0, 1, false, NULL_RTX, mode, mode);
1717 }
1718 }
1719 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1720 SIMD register, which is currently broken. While we get GCC
1721 to emit proper RTL for these cases, let's dump to memory. */
1722 else if (VECTOR_MODE_P (GET_MODE (dst))
1723 && REG_P (src))
1724 {
1725 int slen = GET_MODE_SIZE (GET_MODE (src));
1726 rtx mem;
1727
1728 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1729 emit_move_insn (mem, src);
1730 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1731 }
1732 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1733 && XVECLEN (dst, 0) > 1)
1734 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1735 else if (CONSTANT_P (src))
1736 {
1737 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1738
1739 if (len == ssize)
1740 tmps[i] = src;
1741 else
1742 {
1743 rtx first, second;
1744
1745 gcc_assert (2 * len == ssize);
1746 split_double (src, &first, &second);
1747 if (i)
1748 tmps[i] = second;
1749 else
1750 tmps[i] = first;
1751 }
1752 }
1753 else if (REG_P (src) && GET_MODE (src) == mode)
1754 tmps[i] = src;
1755 else
1756 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1757 bytepos * BITS_PER_UNIT, 1, false, NULL_RTX,
1758 mode, mode);
1759
1760 if (shift)
1761 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1762 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1763 }
1764 }
1765
1766 /* Emit code to move a block SRC of type TYPE to a block DST,
1767 where DST is non-consecutive registers represented by a PARALLEL.
1768 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1769 if not known. */
1770
1771 void
1772 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1773 {
1774 rtx *tmps;
1775 int i;
1776
1777 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1778 emit_group_load_1 (tmps, dst, src, type, ssize);
1779
1780 /* Copy the extracted pieces into the proper (probable) hard regs. */
1781 for (i = 0; i < XVECLEN (dst, 0); i++)
1782 {
1783 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1784 if (d == NULL)
1785 continue;
1786 emit_move_insn (d, tmps[i]);
1787 }
1788 }
1789
1790 /* Similar, but load SRC into new pseudos in a format that looks like
1791 PARALLEL. This can later be fed to emit_group_move to get things
1792 in the right place. */
1793
1794 rtx
1795 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1796 {
1797 rtvec vec;
1798 int i;
1799
1800 vec = rtvec_alloc (XVECLEN (parallel, 0));
1801 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1802
1803 /* Convert the vector to look just like the original PARALLEL, except
1804 with the computed values. */
1805 for (i = 0; i < XVECLEN (parallel, 0); i++)
1806 {
1807 rtx e = XVECEXP (parallel, 0, i);
1808 rtx d = XEXP (e, 0);
1809
1810 if (d)
1811 {
1812 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1813 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1814 }
1815 RTVEC_ELT (vec, i) = e;
1816 }
1817
1818 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1819 }
1820
1821 /* Emit code to move a block SRC to block DST, where SRC and DST are
1822 non-consecutive groups of registers, each represented by a PARALLEL. */
1823
1824 void
1825 emit_group_move (rtx dst, rtx src)
1826 {
1827 int i;
1828
1829 gcc_assert (GET_CODE (src) == PARALLEL
1830 && GET_CODE (dst) == PARALLEL
1831 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1832
1833 /* Skip first entry if NULL. */
1834 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1835 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1836 XEXP (XVECEXP (src, 0, i), 0));
1837 }
1838
1839 /* Move a group of registers represented by a PARALLEL into pseudos. */
1840
1841 rtx
1842 emit_group_move_into_temps (rtx src)
1843 {
1844 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1845 int i;
1846
1847 for (i = 0; i < XVECLEN (src, 0); i++)
1848 {
1849 rtx e = XVECEXP (src, 0, i);
1850 rtx d = XEXP (e, 0);
1851
1852 if (d)
1853 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1854 RTVEC_ELT (vec, i) = e;
1855 }
1856
1857 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1858 }
1859
1860 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1861 where SRC is non-consecutive registers represented by a PARALLEL.
1862 SSIZE represents the total size of block ORIG_DST, or -1 if not
1863 known. */
1864
1865 void
1866 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1867 {
1868 rtx *tmps, dst;
1869 int start, finish, i;
1870 enum machine_mode m = GET_MODE (orig_dst);
1871
1872 gcc_assert (GET_CODE (src) == PARALLEL);
1873
1874 if (!SCALAR_INT_MODE_P (m)
1875 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1876 {
1877 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1878 if (imode == BLKmode)
1879 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1880 else
1881 dst = gen_reg_rtx (imode);
1882 emit_group_store (dst, src, type, ssize);
1883 if (imode != BLKmode)
1884 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1885 emit_move_insn (orig_dst, dst);
1886 return;
1887 }
1888
1889 /* Check for a NULL entry, used to indicate that the parameter goes
1890 both on the stack and in registers. */
1891 if (XEXP (XVECEXP (src, 0, 0), 0))
1892 start = 0;
1893 else
1894 start = 1;
1895 finish = XVECLEN (src, 0);
1896
1897 tmps = XALLOCAVEC (rtx, finish);
1898
1899 /* Copy the (probable) hard regs into pseudos. */
1900 for (i = start; i < finish; i++)
1901 {
1902 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1903 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1904 {
1905 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1906 emit_move_insn (tmps[i], reg);
1907 }
1908 else
1909 tmps[i] = reg;
1910 }
1911
1912 /* If we won't be storing directly into memory, protect the real destination
1913 from strange tricks we might play. */
1914 dst = orig_dst;
1915 if (GET_CODE (dst) == PARALLEL)
1916 {
1917 rtx temp;
1918
1919 /* We can get a PARALLEL dst if there is a conditional expression in
1920 a return statement. In that case, the dst and src are the same,
1921 so no action is necessary. */
1922 if (rtx_equal_p (dst, src))
1923 return;
1924
1925 /* It is unclear if we can ever reach here, but we may as well handle
1926 it. Allocate a temporary, and split this into a store/load to/from
1927 the temporary. */
1928
1929 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1930 emit_group_store (temp, src, type, ssize);
1931 emit_group_load (dst, temp, type, ssize);
1932 return;
1933 }
1934 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1935 {
1936 enum machine_mode outer = GET_MODE (dst);
1937 enum machine_mode inner;
1938 HOST_WIDE_INT bytepos;
1939 bool done = false;
1940 rtx temp;
1941
1942 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1943 dst = gen_reg_rtx (outer);
1944
1945 /* Make life a bit easier for combine. */
1946 /* If the first element of the vector is the low part
1947 of the destination mode, use a paradoxical subreg to
1948 initialize the destination. */
1949 if (start < finish)
1950 {
1951 inner = GET_MODE (tmps[start]);
1952 bytepos = subreg_lowpart_offset (inner, outer);
1953 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1954 {
1955 temp = simplify_gen_subreg (outer, tmps[start],
1956 inner, 0);
1957 if (temp)
1958 {
1959 emit_move_insn (dst, temp);
1960 done = true;
1961 start++;
1962 }
1963 }
1964 }
1965
1966 /* If the first element wasn't the low part, try the last. */
1967 if (!done
1968 && start < finish - 1)
1969 {
1970 inner = GET_MODE (tmps[finish - 1]);
1971 bytepos = subreg_lowpart_offset (inner, outer);
1972 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1973 {
1974 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1975 inner, 0);
1976 if (temp)
1977 {
1978 emit_move_insn (dst, temp);
1979 done = true;
1980 finish--;
1981 }
1982 }
1983 }
1984
1985 /* Otherwise, simply initialize the result to zero. */
1986 if (!done)
1987 emit_move_insn (dst, CONST0_RTX (outer));
1988 }
1989
1990 /* Process the pieces. */
1991 for (i = start; i < finish; i++)
1992 {
1993 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1994 enum machine_mode mode = GET_MODE (tmps[i]);
1995 unsigned int bytelen = GET_MODE_SIZE (mode);
1996 unsigned int adj_bytelen = bytelen;
1997 rtx dest = dst;
1998
1999 /* Handle trailing fragments that run over the size of the struct. */
2000 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2001 adj_bytelen = ssize - bytepos;
2002
2003 if (GET_CODE (dst) == CONCAT)
2004 {
2005 if (bytepos + adj_bytelen
2006 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2007 dest = XEXP (dst, 0);
2008 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2009 {
2010 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2011 dest = XEXP (dst, 1);
2012 }
2013 else
2014 {
2015 enum machine_mode dest_mode = GET_MODE (dest);
2016 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2017
2018 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2019
2020 if (GET_MODE_ALIGNMENT (dest_mode)
2021 >= GET_MODE_ALIGNMENT (tmp_mode))
2022 {
2023 dest = assign_stack_temp (dest_mode,
2024 GET_MODE_SIZE (dest_mode),
2025 0);
2026 emit_move_insn (adjust_address (dest,
2027 tmp_mode,
2028 bytepos),
2029 tmps[i]);
2030 dst = dest;
2031 }
2032 else
2033 {
2034 dest = assign_stack_temp (tmp_mode,
2035 GET_MODE_SIZE (tmp_mode),
2036 0);
2037 emit_move_insn (dest, tmps[i]);
2038 dst = adjust_address (dest, dest_mode, bytepos);
2039 }
2040 break;
2041 }
2042 }
2043
2044 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2045 {
2046 /* store_bit_field always takes its value from the lsb.
2047 Move the fragment to the lsb if it's not already there. */
2048 if (
2049 #ifdef BLOCK_REG_PADDING
2050 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2051 == (BYTES_BIG_ENDIAN ? upward : downward)
2052 #else
2053 BYTES_BIG_ENDIAN
2054 #endif
2055 )
2056 {
2057 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2058 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2059 build_int_cst (NULL_TREE, shift),
2060 tmps[i], 0);
2061 }
2062 bytelen = adj_bytelen;
2063 }
2064
2065 /* Optimize the access just a bit. */
2066 if (MEM_P (dest)
2067 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2068 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2069 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2070 && bytelen == GET_MODE_SIZE (mode))
2071 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2072 else
2073 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2074 mode, tmps[i]);
2075 }
2076
2077 /* Copy from the pseudo into the (probable) hard reg. */
2078 if (orig_dst != dst)
2079 emit_move_insn (orig_dst, dst);
2080 }
2081
2082 /* Generate code to copy a BLKmode object of TYPE out of a
2083 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2084 is null, a stack temporary is created. TGTBLK is returned.
2085
2086 The purpose of this routine is to handle functions that return
2087 BLKmode structures in registers. Some machines (the PA for example)
2088 want to return all small structures in registers regardless of the
2089 structure's alignment. */
2090
2091 rtx
2092 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2093 {
2094 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2095 rtx src = NULL, dst = NULL;
2096 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2097 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2098 enum machine_mode copy_mode;
2099
2100 if (tgtblk == 0)
2101 {
2102 tgtblk = assign_temp (build_qualified_type (type,
2103 (TYPE_QUALS (type)
2104 | TYPE_QUAL_CONST)),
2105 0, 1, 1);
2106 preserve_temp_slots (tgtblk);
2107 }
2108
2109 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2110 into a new pseudo which is a full word. */
2111
2112 if (GET_MODE (srcreg) != BLKmode
2113 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2114 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2115
2116 /* If the structure doesn't take up a whole number of words, see whether
2117 SRCREG is padded on the left or on the right. If it's on the left,
2118 set PADDING_CORRECTION to the number of bits to skip.
2119
2120 In most ABIs, the structure will be returned at the least end of
2121 the register, which translates to right padding on little-endian
2122 targets and left padding on big-endian targets. The opposite
2123 holds if the structure is returned at the most significant
2124 end of the register. */
2125 if (bytes % UNITS_PER_WORD != 0
2126 && (targetm.calls.return_in_msb (type)
2127 ? !BYTES_BIG_ENDIAN
2128 : BYTES_BIG_ENDIAN))
2129 padding_correction
2130 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2131
2132 /* Copy the structure BITSIZE bits at a time. If the target lives in
2133 memory, take care of not reading/writing past its end by selecting
2134 a copy mode suited to BITSIZE. This should always be possible given
2135 how it is computed.
2136
2137 We could probably emit more efficient code for machines which do not use
2138 strict alignment, but it doesn't seem worth the effort at the current
2139 time. */
2140
2141 copy_mode = word_mode;
2142 if (MEM_P (tgtblk))
2143 {
2144 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2145 if (mem_mode != BLKmode)
2146 copy_mode = mem_mode;
2147 }
2148
2149 for (bitpos = 0, xbitpos = padding_correction;
2150 bitpos < bytes * BITS_PER_UNIT;
2151 bitpos += bitsize, xbitpos += bitsize)
2152 {
2153 /* We need a new source operand each time xbitpos is on a
2154 word boundary and when xbitpos == padding_correction
2155 (the first time through). */
2156 if (xbitpos % BITS_PER_WORD == 0
2157 || xbitpos == padding_correction)
2158 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2159 GET_MODE (srcreg));
2160
2161 /* We need a new destination operand each time bitpos is on
2162 a word boundary. */
2163 if (bitpos % BITS_PER_WORD == 0)
2164 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2165
2166 /* Use xbitpos for the source extraction (right justified) and
2167 bitpos for the destination store (left justified). */
2168 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2169 extract_bit_field (src, bitsize,
2170 xbitpos % BITS_PER_WORD, 1, false,
2171 NULL_RTX, copy_mode, copy_mode));
2172 }
2173
2174 return tgtblk;
2175 }
2176
2177 /* Add a USE expression for REG to the (possibly empty) list pointed
2178 to by CALL_FUSAGE. REG must denote a hard register. */
2179
2180 void
2181 use_reg (rtx *call_fusage, rtx reg)
2182 {
2183 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2184
2185 *call_fusage
2186 = gen_rtx_EXPR_LIST (VOIDmode,
2187 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2188 }
2189
2190 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2191 starting at REGNO. All of these registers must be hard registers. */
2192
2193 void
2194 use_regs (rtx *call_fusage, int regno, int nregs)
2195 {
2196 int i;
2197
2198 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2199
2200 for (i = 0; i < nregs; i++)
2201 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2202 }
2203
2204 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2205 PARALLEL REGS. This is for calls that pass values in multiple
2206 non-contiguous locations. The Irix 6 ABI has examples of this. */
2207
2208 void
2209 use_group_regs (rtx *call_fusage, rtx regs)
2210 {
2211 int i;
2212
2213 for (i = 0; i < XVECLEN (regs, 0); i++)
2214 {
2215 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2216
2217 /* A NULL entry means the parameter goes both on the stack and in
2218 registers. This can also be a MEM for targets that pass values
2219 partially on the stack and partially in registers. */
2220 if (reg != 0 && REG_P (reg))
2221 use_reg (call_fusage, reg);
2222 }
2223 }
2224
2225 /* Return the defining gimple statement for SSA_NAME NAME if it is an
2226 assigment and the code of the expresion on the RHS is CODE. Return
2227 NULL otherwise. */
2228
2229 static gimple
2230 get_def_for_expr (tree name, enum tree_code code)
2231 {
2232 gimple def_stmt;
2233
2234 if (TREE_CODE (name) != SSA_NAME)
2235 return NULL;
2236
2237 def_stmt = get_gimple_for_ssa_name (name);
2238 if (!def_stmt
2239 || gimple_assign_rhs_code (def_stmt) != code)
2240 return NULL;
2241
2242 return def_stmt;
2243 }
2244 \f
2245
2246 /* Determine whether the LEN bytes generated by CONSTFUN can be
2247 stored to memory using several move instructions. CONSTFUNDATA is
2248 a pointer which will be passed as argument in every CONSTFUN call.
2249 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2250 a memset operation and false if it's a copy of a constant string.
2251 Return nonzero if a call to store_by_pieces should succeed. */
2252
2253 int
2254 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2255 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2256 void *constfundata, unsigned int align, bool memsetp)
2257 {
2258 unsigned HOST_WIDE_INT l;
2259 unsigned int max_size;
2260 HOST_WIDE_INT offset = 0;
2261 enum machine_mode mode, tmode;
2262 enum insn_code icode;
2263 int reverse;
2264 /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
2265 rtx cst ATTRIBUTE_UNUSED;
2266
2267 if (len == 0)
2268 return 1;
2269
2270 if (! (memsetp
2271 ? SET_BY_PIECES_P (len, align)
2272 : STORE_BY_PIECES_P (len, align)))
2273 return 0;
2274
2275 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2276 if (align >= GET_MODE_ALIGNMENT (tmode))
2277 align = GET_MODE_ALIGNMENT (tmode);
2278 else
2279 {
2280 enum machine_mode xmode;
2281
2282 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2283 tmode != VOIDmode;
2284 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2285 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2286 || SLOW_UNALIGNED_ACCESS (tmode, align))
2287 break;
2288
2289 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2290 }
2291
2292 /* We would first store what we can in the largest integer mode, then go to
2293 successively smaller modes. */
2294
2295 for (reverse = 0;
2296 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2297 reverse++)
2298 {
2299 l = len;
2300 mode = VOIDmode;
2301 max_size = STORE_MAX_PIECES + 1;
2302 while (max_size > 1)
2303 {
2304 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2305 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2306 if (GET_MODE_SIZE (tmode) < max_size)
2307 mode = tmode;
2308
2309 if (mode == VOIDmode)
2310 break;
2311
2312 icode = optab_handler (mov_optab, mode);
2313 if (icode != CODE_FOR_nothing
2314 && align >= GET_MODE_ALIGNMENT (mode))
2315 {
2316 unsigned int size = GET_MODE_SIZE (mode);
2317
2318 while (l >= size)
2319 {
2320 if (reverse)
2321 offset -= size;
2322
2323 cst = (*constfun) (constfundata, offset, mode);
2324 if (!LEGITIMATE_CONSTANT_P (cst))
2325 return 0;
2326
2327 if (!reverse)
2328 offset += size;
2329
2330 l -= size;
2331 }
2332 }
2333
2334 max_size = GET_MODE_SIZE (mode);
2335 }
2336
2337 /* The code above should have handled everything. */
2338 gcc_assert (!l);
2339 }
2340
2341 return 1;
2342 }
2343
2344 /* Generate several move instructions to store LEN bytes generated by
2345 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2346 pointer which will be passed as argument in every CONSTFUN call.
2347 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2348 a memset operation and false if it's a copy of a constant string.
2349 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2350 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2351 stpcpy. */
2352
2353 rtx
2354 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2355 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2356 void *constfundata, unsigned int align, bool memsetp, int endp)
2357 {
2358 enum machine_mode to_addr_mode
2359 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to));
2360 struct store_by_pieces_d data;
2361
2362 if (len == 0)
2363 {
2364 gcc_assert (endp != 2);
2365 return to;
2366 }
2367
2368 gcc_assert (memsetp
2369 ? SET_BY_PIECES_P (len, align)
2370 : STORE_BY_PIECES_P (len, align));
2371 data.constfun = constfun;
2372 data.constfundata = constfundata;
2373 data.len = len;
2374 data.to = to;
2375 store_by_pieces_1 (&data, align);
2376 if (endp)
2377 {
2378 rtx to1;
2379
2380 gcc_assert (!data.reverse);
2381 if (data.autinc_to)
2382 {
2383 if (endp == 2)
2384 {
2385 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2386 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2387 else
2388 data.to_addr = copy_to_mode_reg (to_addr_mode,
2389 plus_constant (data.to_addr,
2390 -1));
2391 }
2392 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2393 data.offset);
2394 }
2395 else
2396 {
2397 if (endp == 2)
2398 --data.offset;
2399 to1 = adjust_address (data.to, QImode, data.offset);
2400 }
2401 return to1;
2402 }
2403 else
2404 return data.to;
2405 }
2406
2407 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2408 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2409
2410 static void
2411 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2412 {
2413 struct store_by_pieces_d data;
2414
2415 if (len == 0)
2416 return;
2417
2418 data.constfun = clear_by_pieces_1;
2419 data.constfundata = NULL;
2420 data.len = len;
2421 data.to = to;
2422 store_by_pieces_1 (&data, align);
2423 }
2424
2425 /* Callback routine for clear_by_pieces.
2426 Return const0_rtx unconditionally. */
2427
2428 static rtx
2429 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2430 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2431 enum machine_mode mode ATTRIBUTE_UNUSED)
2432 {
2433 return const0_rtx;
2434 }
2435
2436 /* Subroutine of clear_by_pieces and store_by_pieces.
2437 Generate several move instructions to store LEN bytes of block TO. (A MEM
2438 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2439
2440 static void
2441 store_by_pieces_1 (struct store_by_pieces_d *data ATTRIBUTE_UNUSED,
2442 unsigned int align ATTRIBUTE_UNUSED)
2443 {
2444 enum machine_mode to_addr_mode
2445 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (data->to));
2446 rtx to_addr = XEXP (data->to, 0);
2447 unsigned int max_size = STORE_MAX_PIECES + 1;
2448 enum machine_mode mode = VOIDmode, tmode;
2449 enum insn_code icode;
2450
2451 data->offset = 0;
2452 data->to_addr = to_addr;
2453 data->autinc_to
2454 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2455 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2456
2457 data->explicit_inc_to = 0;
2458 data->reverse
2459 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2460 if (data->reverse)
2461 data->offset = data->len;
2462
2463 /* If storing requires more than two move insns,
2464 copy addresses to registers (to make displacements shorter)
2465 and use post-increment if available. */
2466 if (!data->autinc_to
2467 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2468 {
2469 /* Determine the main mode we'll be using. */
2470 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2471 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2472 if (GET_MODE_SIZE (tmode) < max_size)
2473 mode = tmode;
2474
2475 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2476 {
2477 data->to_addr = copy_to_mode_reg (to_addr_mode,
2478 plus_constant (to_addr, data->len));
2479 data->autinc_to = 1;
2480 data->explicit_inc_to = -1;
2481 }
2482
2483 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2484 && ! data->autinc_to)
2485 {
2486 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2487 data->autinc_to = 1;
2488 data->explicit_inc_to = 1;
2489 }
2490
2491 if ( !data->autinc_to && CONSTANT_P (to_addr))
2492 data->to_addr = copy_to_mode_reg (to_addr_mode, to_addr);
2493 }
2494
2495 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2496 if (align >= GET_MODE_ALIGNMENT (tmode))
2497 align = GET_MODE_ALIGNMENT (tmode);
2498 else
2499 {
2500 enum machine_mode xmode;
2501
2502 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2503 tmode != VOIDmode;
2504 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2505 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2506 || SLOW_UNALIGNED_ACCESS (tmode, align))
2507 break;
2508
2509 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2510 }
2511
2512 /* First store what we can in the largest integer mode, then go to
2513 successively smaller modes. */
2514
2515 while (max_size > 1)
2516 {
2517 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2518 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2519 if (GET_MODE_SIZE (tmode) < max_size)
2520 mode = tmode;
2521
2522 if (mode == VOIDmode)
2523 break;
2524
2525 icode = optab_handler (mov_optab, mode);
2526 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2527 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2528
2529 max_size = GET_MODE_SIZE (mode);
2530 }
2531
2532 /* The code above should have handled everything. */
2533 gcc_assert (!data->len);
2534 }
2535
2536 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2537 with move instructions for mode MODE. GENFUN is the gen_... function
2538 to make a move insn for that mode. DATA has all the other info. */
2539
2540 static void
2541 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2542 struct store_by_pieces_d *data)
2543 {
2544 unsigned int size = GET_MODE_SIZE (mode);
2545 rtx to1, cst;
2546
2547 while (data->len >= size)
2548 {
2549 if (data->reverse)
2550 data->offset -= size;
2551
2552 if (data->autinc_to)
2553 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2554 data->offset);
2555 else
2556 to1 = adjust_address (data->to, mode, data->offset);
2557
2558 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2559 emit_insn (gen_add2_insn (data->to_addr,
2560 GEN_INT (-(HOST_WIDE_INT) size)));
2561
2562 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2563 emit_insn ((*genfun) (to1, cst));
2564
2565 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2566 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2567
2568 if (! data->reverse)
2569 data->offset += size;
2570
2571 data->len -= size;
2572 }
2573 }
2574 \f
2575 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2576 its length in bytes. */
2577
2578 rtx
2579 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2580 unsigned int expected_align, HOST_WIDE_INT expected_size)
2581 {
2582 enum machine_mode mode = GET_MODE (object);
2583 unsigned int align;
2584
2585 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2586
2587 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2588 just move a zero. Otherwise, do this a piece at a time. */
2589 if (mode != BLKmode
2590 && CONST_INT_P (size)
2591 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2592 {
2593 rtx zero = CONST0_RTX (mode);
2594 if (zero != NULL)
2595 {
2596 emit_move_insn (object, zero);
2597 return NULL;
2598 }
2599
2600 if (COMPLEX_MODE_P (mode))
2601 {
2602 zero = CONST0_RTX (GET_MODE_INNER (mode));
2603 if (zero != NULL)
2604 {
2605 write_complex_part (object, zero, 0);
2606 write_complex_part (object, zero, 1);
2607 return NULL;
2608 }
2609 }
2610 }
2611
2612 if (size == const0_rtx)
2613 return NULL;
2614
2615 align = MEM_ALIGN (object);
2616
2617 if (CONST_INT_P (size)
2618 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2619 clear_by_pieces (object, INTVAL (size), align);
2620 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2621 expected_align, expected_size))
2622 ;
2623 else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
2624 return set_storage_via_libcall (object, size, const0_rtx,
2625 method == BLOCK_OP_TAILCALL);
2626 else
2627 gcc_unreachable ();
2628
2629 return NULL;
2630 }
2631
2632 rtx
2633 clear_storage (rtx object, rtx size, enum block_op_methods method)
2634 {
2635 return clear_storage_hints (object, size, method, 0, -1);
2636 }
2637
2638
2639 /* A subroutine of clear_storage. Expand a call to memset.
2640 Return the return value of memset, 0 otherwise. */
2641
2642 rtx
2643 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2644 {
2645 tree call_expr, fn, object_tree, size_tree, val_tree;
2646 enum machine_mode size_mode;
2647 rtx retval;
2648
2649 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2650 place those into new pseudos into a VAR_DECL and use them later. */
2651
2652 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2653
2654 size_mode = TYPE_MODE (sizetype);
2655 size = convert_to_mode (size_mode, size, 1);
2656 size = copy_to_mode_reg (size_mode, size);
2657
2658 /* It is incorrect to use the libcall calling conventions to call
2659 memset in this context. This could be a user call to memset and
2660 the user may wish to examine the return value from memset. For
2661 targets where libcalls and normal calls have different conventions
2662 for returning pointers, we could end up generating incorrect code. */
2663
2664 object_tree = make_tree (ptr_type_node, object);
2665 if (!CONST_INT_P (val))
2666 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2667 size_tree = make_tree (sizetype, size);
2668 val_tree = make_tree (integer_type_node, val);
2669
2670 fn = clear_storage_libcall_fn (true);
2671 call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
2672 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2673
2674 retval = expand_normal (call_expr);
2675
2676 return retval;
2677 }
2678
2679 /* A subroutine of set_storage_via_libcall. Create the tree node
2680 for the function we use for block clears. The first time FOR_CALL
2681 is true, we call assemble_external. */
2682
2683 tree block_clear_fn;
2684
2685 void
2686 init_block_clear_fn (const char *asmspec)
2687 {
2688 if (!block_clear_fn)
2689 {
2690 tree fn, args;
2691
2692 fn = get_identifier ("memset");
2693 args = build_function_type_list (ptr_type_node, ptr_type_node,
2694 integer_type_node, sizetype,
2695 NULL_TREE);
2696
2697 fn = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, fn, args);
2698 DECL_EXTERNAL (fn) = 1;
2699 TREE_PUBLIC (fn) = 1;
2700 DECL_ARTIFICIAL (fn) = 1;
2701 TREE_NOTHROW (fn) = 1;
2702 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2703 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2704
2705 block_clear_fn = fn;
2706 }
2707
2708 if (asmspec)
2709 set_user_assembler_name (block_clear_fn, asmspec);
2710 }
2711
2712 static tree
2713 clear_storage_libcall_fn (int for_call)
2714 {
2715 static bool emitted_extern;
2716
2717 if (!block_clear_fn)
2718 init_block_clear_fn (NULL);
2719
2720 if (for_call && !emitted_extern)
2721 {
2722 emitted_extern = true;
2723 make_decl_rtl (block_clear_fn);
2724 assemble_external (block_clear_fn);
2725 }
2726
2727 return block_clear_fn;
2728 }
2729 \f
2730 /* Expand a setmem pattern; return true if successful. */
2731
2732 bool
2733 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2734 unsigned int expected_align, HOST_WIDE_INT expected_size)
2735 {
2736 /* Try the most limited insn first, because there's no point
2737 including more than one in the machine description unless
2738 the more limited one has some advantage. */
2739
2740 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2741 enum machine_mode mode;
2742
2743 if (expected_align < align)
2744 expected_align = align;
2745
2746 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2747 mode = GET_MODE_WIDER_MODE (mode))
2748 {
2749 enum insn_code code = direct_optab_handler (setmem_optab, mode);
2750 insn_operand_predicate_fn pred;
2751
2752 if (code != CODE_FOR_nothing
2753 /* We don't need MODE to be narrower than
2754 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2755 the mode mask, as it is returned by the macro, it will
2756 definitely be less than the actual mode mask. */
2757 && ((CONST_INT_P (size)
2758 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2759 <= (GET_MODE_MASK (mode) >> 1)))
2760 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2761 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2762 || (*pred) (object, BLKmode))
2763 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2764 || (*pred) (opalign, VOIDmode)))
2765 {
2766 rtx opsize, opchar;
2767 enum machine_mode char_mode;
2768 rtx last = get_last_insn ();
2769 rtx pat;
2770
2771 opsize = convert_to_mode (mode, size, 1);
2772 pred = insn_data[(int) code].operand[1].predicate;
2773 if (pred != 0 && ! (*pred) (opsize, mode))
2774 opsize = copy_to_mode_reg (mode, opsize);
2775
2776 opchar = val;
2777 char_mode = insn_data[(int) code].operand[2].mode;
2778 if (char_mode != VOIDmode)
2779 {
2780 opchar = convert_to_mode (char_mode, opchar, 1);
2781 pred = insn_data[(int) code].operand[2].predicate;
2782 if (pred != 0 && ! (*pred) (opchar, char_mode))
2783 opchar = copy_to_mode_reg (char_mode, opchar);
2784 }
2785
2786 if (insn_data[(int) code].n_operands == 4)
2787 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2788 else
2789 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2790 GEN_INT (expected_align
2791 / BITS_PER_UNIT),
2792 GEN_INT (expected_size));
2793 if (pat)
2794 {
2795 emit_insn (pat);
2796 return true;
2797 }
2798 else
2799 delete_insns_since (last);
2800 }
2801 }
2802
2803 return false;
2804 }
2805
2806 \f
2807 /* Write to one of the components of the complex value CPLX. Write VAL to
2808 the real part if IMAG_P is false, and the imaginary part if its true. */
2809
2810 static void
2811 write_complex_part (rtx cplx, rtx val, bool imag_p)
2812 {
2813 enum machine_mode cmode;
2814 enum machine_mode imode;
2815 unsigned ibitsize;
2816
2817 if (GET_CODE (cplx) == CONCAT)
2818 {
2819 emit_move_insn (XEXP (cplx, imag_p), val);
2820 return;
2821 }
2822
2823 cmode = GET_MODE (cplx);
2824 imode = GET_MODE_INNER (cmode);
2825 ibitsize = GET_MODE_BITSIZE (imode);
2826
2827 /* For MEMs simplify_gen_subreg may generate an invalid new address
2828 because, e.g., the original address is considered mode-dependent
2829 by the target, which restricts simplify_subreg from invoking
2830 adjust_address_nv. Instead of preparing fallback support for an
2831 invalid address, we call adjust_address_nv directly. */
2832 if (MEM_P (cplx))
2833 {
2834 emit_move_insn (adjust_address_nv (cplx, imode,
2835 imag_p ? GET_MODE_SIZE (imode) : 0),
2836 val);
2837 return;
2838 }
2839
2840 /* If the sub-object is at least word sized, then we know that subregging
2841 will work. This special case is important, since store_bit_field
2842 wants to operate on integer modes, and there's rarely an OImode to
2843 correspond to TCmode. */
2844 if (ibitsize >= BITS_PER_WORD
2845 /* For hard regs we have exact predicates. Assume we can split
2846 the original object if it spans an even number of hard regs.
2847 This special case is important for SCmode on 64-bit platforms
2848 where the natural size of floating-point regs is 32-bit. */
2849 || (REG_P (cplx)
2850 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2851 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2852 {
2853 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2854 imag_p ? GET_MODE_SIZE (imode) : 0);
2855 if (part)
2856 {
2857 emit_move_insn (part, val);
2858 return;
2859 }
2860 else
2861 /* simplify_gen_subreg may fail for sub-word MEMs. */
2862 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2863 }
2864
2865 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2866 }
2867
2868 /* Extract one of the components of the complex value CPLX. Extract the
2869 real part if IMAG_P is false, and the imaginary part if it's true. */
2870
2871 static rtx
2872 read_complex_part (rtx cplx, bool imag_p)
2873 {
2874 enum machine_mode cmode, imode;
2875 unsigned ibitsize;
2876
2877 if (GET_CODE (cplx) == CONCAT)
2878 return XEXP (cplx, imag_p);
2879
2880 cmode = GET_MODE (cplx);
2881 imode = GET_MODE_INNER (cmode);
2882 ibitsize = GET_MODE_BITSIZE (imode);
2883
2884 /* Special case reads from complex constants that got spilled to memory. */
2885 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2886 {
2887 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2888 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2889 {
2890 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2891 if (CONSTANT_CLASS_P (part))
2892 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2893 }
2894 }
2895
2896 /* For MEMs simplify_gen_subreg may generate an invalid new address
2897 because, e.g., the original address is considered mode-dependent
2898 by the target, which restricts simplify_subreg from invoking
2899 adjust_address_nv. Instead of preparing fallback support for an
2900 invalid address, we call adjust_address_nv directly. */
2901 if (MEM_P (cplx))
2902 return adjust_address_nv (cplx, imode,
2903 imag_p ? GET_MODE_SIZE (imode) : 0);
2904
2905 /* If the sub-object is at least word sized, then we know that subregging
2906 will work. This special case is important, since extract_bit_field
2907 wants to operate on integer modes, and there's rarely an OImode to
2908 correspond to TCmode. */
2909 if (ibitsize >= BITS_PER_WORD
2910 /* For hard regs we have exact predicates. Assume we can split
2911 the original object if it spans an even number of hard regs.
2912 This special case is important for SCmode on 64-bit platforms
2913 where the natural size of floating-point regs is 32-bit. */
2914 || (REG_P (cplx)
2915 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2916 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2917 {
2918 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2919 imag_p ? GET_MODE_SIZE (imode) : 0);
2920 if (ret)
2921 return ret;
2922 else
2923 /* simplify_gen_subreg may fail for sub-word MEMs. */
2924 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2925 }
2926
2927 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2928 true, false, NULL_RTX, imode, imode);
2929 }
2930 \f
2931 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2932 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2933 represented in NEW_MODE. If FORCE is true, this will never happen, as
2934 we'll force-create a SUBREG if needed. */
2935
2936 static rtx
2937 emit_move_change_mode (enum machine_mode new_mode,
2938 enum machine_mode old_mode, rtx x, bool force)
2939 {
2940 rtx ret;
2941
2942 if (push_operand (x, GET_MODE (x)))
2943 {
2944 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2945 MEM_COPY_ATTRIBUTES (ret, x);
2946 }
2947 else if (MEM_P (x))
2948 {
2949 /* We don't have to worry about changing the address since the
2950 size in bytes is supposed to be the same. */
2951 if (reload_in_progress)
2952 {
2953 /* Copy the MEM to change the mode and move any
2954 substitutions from the old MEM to the new one. */
2955 ret = adjust_address_nv (x, new_mode, 0);
2956 copy_replacements (x, ret);
2957 }
2958 else
2959 ret = adjust_address (x, new_mode, 0);
2960 }
2961 else
2962 {
2963 /* Note that we do want simplify_subreg's behavior of validating
2964 that the new mode is ok for a hard register. If we were to use
2965 simplify_gen_subreg, we would create the subreg, but would
2966 probably run into the target not being able to implement it. */
2967 /* Except, of course, when FORCE is true, when this is exactly what
2968 we want. Which is needed for CCmodes on some targets. */
2969 if (force)
2970 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2971 else
2972 ret = simplify_subreg (new_mode, x, old_mode, 0);
2973 }
2974
2975 return ret;
2976 }
2977
2978 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2979 an integer mode of the same size as MODE. Returns the instruction
2980 emitted, or NULL if such a move could not be generated. */
2981
2982 static rtx
2983 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2984 {
2985 enum machine_mode imode;
2986 enum insn_code code;
2987
2988 /* There must exist a mode of the exact size we require. */
2989 imode = int_mode_for_mode (mode);
2990 if (imode == BLKmode)
2991 return NULL_RTX;
2992
2993 /* The target must support moves in this mode. */
2994 code = optab_handler (mov_optab, imode);
2995 if (code == CODE_FOR_nothing)
2996 return NULL_RTX;
2997
2998 x = emit_move_change_mode (imode, mode, x, force);
2999 if (x == NULL_RTX)
3000 return NULL_RTX;
3001 y = emit_move_change_mode (imode, mode, y, force);
3002 if (y == NULL_RTX)
3003 return NULL_RTX;
3004 return emit_insn (GEN_FCN (code) (x, y));
3005 }
3006
3007 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3008 Return an equivalent MEM that does not use an auto-increment. */
3009
3010 static rtx
3011 emit_move_resolve_push (enum machine_mode mode, rtx x)
3012 {
3013 enum rtx_code code = GET_CODE (XEXP (x, 0));
3014 HOST_WIDE_INT adjust;
3015 rtx temp;
3016
3017 adjust = GET_MODE_SIZE (mode);
3018 #ifdef PUSH_ROUNDING
3019 adjust = PUSH_ROUNDING (adjust);
3020 #endif
3021 if (code == PRE_DEC || code == POST_DEC)
3022 adjust = -adjust;
3023 else if (code == PRE_MODIFY || code == POST_MODIFY)
3024 {
3025 rtx expr = XEXP (XEXP (x, 0), 1);
3026 HOST_WIDE_INT val;
3027
3028 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3029 gcc_assert (CONST_INT_P (XEXP (expr, 1)));
3030 val = INTVAL (XEXP (expr, 1));
3031 if (GET_CODE (expr) == MINUS)
3032 val = -val;
3033 gcc_assert (adjust == val || adjust == -val);
3034 adjust = val;
3035 }
3036
3037 /* Do not use anti_adjust_stack, since we don't want to update
3038 stack_pointer_delta. */
3039 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3040 GEN_INT (adjust), stack_pointer_rtx,
3041 0, OPTAB_LIB_WIDEN);
3042 if (temp != stack_pointer_rtx)
3043 emit_move_insn (stack_pointer_rtx, temp);
3044
3045 switch (code)
3046 {
3047 case PRE_INC:
3048 case PRE_DEC:
3049 case PRE_MODIFY:
3050 temp = stack_pointer_rtx;
3051 break;
3052 case POST_INC:
3053 case POST_DEC:
3054 case POST_MODIFY:
3055 temp = plus_constant (stack_pointer_rtx, -adjust);
3056 break;
3057 default:
3058 gcc_unreachable ();
3059 }
3060
3061 return replace_equiv_address (x, temp);
3062 }
3063
3064 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3065 X is known to satisfy push_operand, and MODE is known to be complex.
3066 Returns the last instruction emitted. */
3067
3068 rtx
3069 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3070 {
3071 enum machine_mode submode = GET_MODE_INNER (mode);
3072 bool imag_first;
3073
3074 #ifdef PUSH_ROUNDING
3075 unsigned int submodesize = GET_MODE_SIZE (submode);
3076
3077 /* In case we output to the stack, but the size is smaller than the
3078 machine can push exactly, we need to use move instructions. */
3079 if (PUSH_ROUNDING (submodesize) != submodesize)
3080 {
3081 x = emit_move_resolve_push (mode, x);
3082 return emit_move_insn (x, y);
3083 }
3084 #endif
3085
3086 /* Note that the real part always precedes the imag part in memory
3087 regardless of machine's endianness. */
3088 switch (GET_CODE (XEXP (x, 0)))
3089 {
3090 case PRE_DEC:
3091 case POST_DEC:
3092 imag_first = true;
3093 break;
3094 case PRE_INC:
3095 case POST_INC:
3096 imag_first = false;
3097 break;
3098 default:
3099 gcc_unreachable ();
3100 }
3101
3102 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3103 read_complex_part (y, imag_first));
3104 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3105 read_complex_part (y, !imag_first));
3106 }
3107
3108 /* A subroutine of emit_move_complex. Perform the move from Y to X
3109 via two moves of the parts. Returns the last instruction emitted. */
3110
3111 rtx
3112 emit_move_complex_parts (rtx x, rtx y)
3113 {
3114 /* Show the output dies here. This is necessary for SUBREGs
3115 of pseudos since we cannot track their lifetimes correctly;
3116 hard regs shouldn't appear here except as return values. */
3117 if (!reload_completed && !reload_in_progress
3118 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3119 emit_clobber (x);
3120
3121 write_complex_part (x, read_complex_part (y, false), false);
3122 write_complex_part (x, read_complex_part (y, true), true);
3123
3124 return get_last_insn ();
3125 }
3126
3127 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3128 MODE is known to be complex. Returns the last instruction emitted. */
3129
3130 static rtx
3131 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3132 {
3133 bool try_int;
3134
3135 /* Need to take special care for pushes, to maintain proper ordering
3136 of the data, and possibly extra padding. */
3137 if (push_operand (x, mode))
3138 return emit_move_complex_push (mode, x, y);
3139
3140 /* See if we can coerce the target into moving both values at once. */
3141
3142 /* Move floating point as parts. */
3143 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3144 && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing)
3145 try_int = false;
3146 /* Not possible if the values are inherently not adjacent. */
3147 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3148 try_int = false;
3149 /* Is possible if both are registers (or subregs of registers). */
3150 else if (register_operand (x, mode) && register_operand (y, mode))
3151 try_int = true;
3152 /* If one of the operands is a memory, and alignment constraints
3153 are friendly enough, we may be able to do combined memory operations.
3154 We do not attempt this if Y is a constant because that combination is
3155 usually better with the by-parts thing below. */
3156 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3157 && (!STRICT_ALIGNMENT
3158 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3159 try_int = true;
3160 else
3161 try_int = false;
3162
3163 if (try_int)
3164 {
3165 rtx ret;
3166
3167 /* For memory to memory moves, optimal behavior can be had with the
3168 existing block move logic. */
3169 if (MEM_P (x) && MEM_P (y))
3170 {
3171 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3172 BLOCK_OP_NO_LIBCALL);
3173 return get_last_insn ();
3174 }
3175
3176 ret = emit_move_via_integer (mode, x, y, true);
3177 if (ret)
3178 return ret;
3179 }
3180
3181 return emit_move_complex_parts (x, y);
3182 }
3183
3184 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3185 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3186
3187 static rtx
3188 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3189 {
3190 rtx ret;
3191
3192 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3193 if (mode != CCmode)
3194 {
3195 enum insn_code code = optab_handler (mov_optab, CCmode);
3196 if (code != CODE_FOR_nothing)
3197 {
3198 x = emit_move_change_mode (CCmode, mode, x, true);
3199 y = emit_move_change_mode (CCmode, mode, y, true);
3200 return emit_insn (GEN_FCN (code) (x, y));
3201 }
3202 }
3203
3204 /* Otherwise, find the MODE_INT mode of the same width. */
3205 ret = emit_move_via_integer (mode, x, y, false);
3206 gcc_assert (ret != NULL);
3207 return ret;
3208 }
3209
3210 /* Return true if word I of OP lies entirely in the
3211 undefined bits of a paradoxical subreg. */
3212
3213 static bool
3214 undefined_operand_subword_p (const_rtx op, int i)
3215 {
3216 enum machine_mode innermode, innermostmode;
3217 int offset;
3218 if (GET_CODE (op) != SUBREG)
3219 return false;
3220 innermode = GET_MODE (op);
3221 innermostmode = GET_MODE (SUBREG_REG (op));
3222 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3223 /* The SUBREG_BYTE represents offset, as if the value were stored in
3224 memory, except for a paradoxical subreg where we define
3225 SUBREG_BYTE to be 0; undo this exception as in
3226 simplify_subreg. */
3227 if (SUBREG_BYTE (op) == 0
3228 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3229 {
3230 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3231 if (WORDS_BIG_ENDIAN)
3232 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3233 if (BYTES_BIG_ENDIAN)
3234 offset += difference % UNITS_PER_WORD;
3235 }
3236 if (offset >= GET_MODE_SIZE (innermostmode)
3237 || offset <= -GET_MODE_SIZE (word_mode))
3238 return true;
3239 return false;
3240 }
3241
3242 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3243 MODE is any multi-word or full-word mode that lacks a move_insn
3244 pattern. Note that you will get better code if you define such
3245 patterns, even if they must turn into multiple assembler instructions. */
3246
3247 static rtx
3248 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3249 {
3250 rtx last_insn = 0;
3251 rtx seq, inner;
3252 bool need_clobber;
3253 int i;
3254
3255 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3256
3257 /* If X is a push on the stack, do the push now and replace
3258 X with a reference to the stack pointer. */
3259 if (push_operand (x, mode))
3260 x = emit_move_resolve_push (mode, x);
3261
3262 /* If we are in reload, see if either operand is a MEM whose address
3263 is scheduled for replacement. */
3264 if (reload_in_progress && MEM_P (x)
3265 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3266 x = replace_equiv_address_nv (x, inner);
3267 if (reload_in_progress && MEM_P (y)
3268 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3269 y = replace_equiv_address_nv (y, inner);
3270
3271 start_sequence ();
3272
3273 need_clobber = false;
3274 for (i = 0;
3275 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3276 i++)
3277 {
3278 rtx xpart = operand_subword (x, i, 1, mode);
3279 rtx ypart;
3280
3281 /* Do not generate code for a move if it would come entirely
3282 from the undefined bits of a paradoxical subreg. */
3283 if (undefined_operand_subword_p (y, i))
3284 continue;
3285
3286 ypart = operand_subword (y, i, 1, mode);
3287
3288 /* If we can't get a part of Y, put Y into memory if it is a
3289 constant. Otherwise, force it into a register. Then we must
3290 be able to get a part of Y. */
3291 if (ypart == 0 && CONSTANT_P (y))
3292 {
3293 y = use_anchored_address (force_const_mem (mode, y));
3294 ypart = operand_subword (y, i, 1, mode);
3295 }
3296 else if (ypart == 0)
3297 ypart = operand_subword_force (y, i, mode);
3298
3299 gcc_assert (xpart && ypart);
3300
3301 need_clobber |= (GET_CODE (xpart) == SUBREG);
3302
3303 last_insn = emit_move_insn (xpart, ypart);
3304 }
3305
3306 seq = get_insns ();
3307 end_sequence ();
3308
3309 /* Show the output dies here. This is necessary for SUBREGs
3310 of pseudos since we cannot track their lifetimes correctly;
3311 hard regs shouldn't appear here except as return values.
3312 We never want to emit such a clobber after reload. */
3313 if (x != y
3314 && ! (reload_in_progress || reload_completed)
3315 && need_clobber != 0)
3316 emit_clobber (x);
3317
3318 emit_insn (seq);
3319
3320 return last_insn;
3321 }
3322
3323 /* Low level part of emit_move_insn.
3324 Called just like emit_move_insn, but assumes X and Y
3325 are basically valid. */
3326
3327 rtx
3328 emit_move_insn_1 (rtx x, rtx y)
3329 {
3330 enum machine_mode mode = GET_MODE (x);
3331 enum insn_code code;
3332
3333 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3334
3335 code = optab_handler (mov_optab, mode);
3336 if (code != CODE_FOR_nothing)
3337 return emit_insn (GEN_FCN (code) (x, y));
3338
3339 /* Expand complex moves by moving real part and imag part. */
3340 if (COMPLEX_MODE_P (mode))
3341 return emit_move_complex (mode, x, y);
3342
3343 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3344 || ALL_FIXED_POINT_MODE_P (mode))
3345 {
3346 rtx result = emit_move_via_integer (mode, x, y, true);
3347
3348 /* If we can't find an integer mode, use multi words. */
3349 if (result)
3350 return result;
3351 else
3352 return emit_move_multi_word (mode, x, y);
3353 }
3354
3355 if (GET_MODE_CLASS (mode) == MODE_CC)
3356 return emit_move_ccmode (mode, x, y);
3357
3358 /* Try using a move pattern for the corresponding integer mode. This is
3359 only safe when simplify_subreg can convert MODE constants into integer
3360 constants. At present, it can only do this reliably if the value
3361 fits within a HOST_WIDE_INT. */
3362 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3363 {
3364 rtx ret = emit_move_via_integer (mode, x, y, false);
3365 if (ret)
3366 return ret;
3367 }
3368
3369 return emit_move_multi_word (mode, x, y);
3370 }
3371
3372 /* Generate code to copy Y into X.
3373 Both Y and X must have the same mode, except that
3374 Y can be a constant with VOIDmode.
3375 This mode cannot be BLKmode; use emit_block_move for that.
3376
3377 Return the last instruction emitted. */
3378
3379 rtx
3380 emit_move_insn (rtx x, rtx y)
3381 {
3382 enum machine_mode mode = GET_MODE (x);
3383 rtx y_cst = NULL_RTX;
3384 rtx last_insn, set;
3385
3386 gcc_assert (mode != BLKmode
3387 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3388
3389 if (CONSTANT_P (y))
3390 {
3391 if (optimize
3392 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3393 && (last_insn = compress_float_constant (x, y)))
3394 return last_insn;
3395
3396 y_cst = y;
3397
3398 if (!LEGITIMATE_CONSTANT_P (y))
3399 {
3400 y = force_const_mem (mode, y);
3401
3402 /* If the target's cannot_force_const_mem prevented the spill,
3403 assume that the target's move expanders will also take care
3404 of the non-legitimate constant. */
3405 if (!y)
3406 y = y_cst;
3407 else
3408 y = use_anchored_address (y);
3409 }
3410 }
3411
3412 /* If X or Y are memory references, verify that their addresses are valid
3413 for the machine. */
3414 if (MEM_P (x)
3415 && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
3416 MEM_ADDR_SPACE (x))
3417 && ! push_operand (x, GET_MODE (x))))
3418 x = validize_mem (x);
3419
3420 if (MEM_P (y)
3421 && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
3422 MEM_ADDR_SPACE (y)))
3423 y = validize_mem (y);
3424
3425 gcc_assert (mode != BLKmode);
3426
3427 last_insn = emit_move_insn_1 (x, y);
3428
3429 if (y_cst && REG_P (x)
3430 && (set = single_set (last_insn)) != NULL_RTX
3431 && SET_DEST (set) == x
3432 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3433 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3434
3435 return last_insn;
3436 }
3437
3438 /* If Y is representable exactly in a narrower mode, and the target can
3439 perform the extension directly from constant or memory, then emit the
3440 move as an extension. */
3441
3442 static rtx
3443 compress_float_constant (rtx x, rtx y)
3444 {
3445 enum machine_mode dstmode = GET_MODE (x);
3446 enum machine_mode orig_srcmode = GET_MODE (y);
3447 enum machine_mode srcmode;
3448 REAL_VALUE_TYPE r;
3449 int oldcost, newcost;
3450 bool speed = optimize_insn_for_speed_p ();
3451
3452 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3453
3454 if (LEGITIMATE_CONSTANT_P (y))
3455 oldcost = rtx_cost (y, SET, speed);
3456 else
3457 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3458
3459 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3460 srcmode != orig_srcmode;
3461 srcmode = GET_MODE_WIDER_MODE (srcmode))
3462 {
3463 enum insn_code ic;
3464 rtx trunc_y, last_insn;
3465
3466 /* Skip if the target can't extend this way. */
3467 ic = can_extend_p (dstmode, srcmode, 0);
3468 if (ic == CODE_FOR_nothing)
3469 continue;
3470
3471 /* Skip if the narrowed value isn't exact. */
3472 if (! exact_real_truncate (srcmode, &r))
3473 continue;
3474
3475 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3476
3477 if (LEGITIMATE_CONSTANT_P (trunc_y))
3478 {
3479 /* Skip if the target needs extra instructions to perform
3480 the extension. */
3481 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3482 continue;
3483 /* This is valid, but may not be cheaper than the original. */
3484 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3485 if (oldcost < newcost)
3486 continue;
3487 }
3488 else if (float_extend_from_mem[dstmode][srcmode])
3489 {
3490 trunc_y = force_const_mem (srcmode, trunc_y);
3491 /* This is valid, but may not be cheaper than the original. */
3492 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3493 if (oldcost < newcost)
3494 continue;
3495 trunc_y = validize_mem (trunc_y);
3496 }
3497 else
3498 continue;
3499
3500 /* For CSE's benefit, force the compressed constant pool entry
3501 into a new pseudo. This constant may be used in different modes,
3502 and if not, combine will put things back together for us. */
3503 trunc_y = force_reg (srcmode, trunc_y);
3504 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3505 last_insn = get_last_insn ();
3506
3507 if (REG_P (x))
3508 set_unique_reg_note (last_insn, REG_EQUAL, y);
3509
3510 return last_insn;
3511 }
3512
3513 return NULL_RTX;
3514 }
3515 \f
3516 /* Pushing data onto the stack. */
3517
3518 /* Push a block of length SIZE (perhaps variable)
3519 and return an rtx to address the beginning of the block.
3520 The value may be virtual_outgoing_args_rtx.
3521
3522 EXTRA is the number of bytes of padding to push in addition to SIZE.
3523 BELOW nonzero means this padding comes at low addresses;
3524 otherwise, the padding comes at high addresses. */
3525
3526 rtx
3527 push_block (rtx size, int extra, int below)
3528 {
3529 rtx temp;
3530
3531 size = convert_modes (Pmode, ptr_mode, size, 1);
3532 if (CONSTANT_P (size))
3533 anti_adjust_stack (plus_constant (size, extra));
3534 else if (REG_P (size) && extra == 0)
3535 anti_adjust_stack (size);
3536 else
3537 {
3538 temp = copy_to_mode_reg (Pmode, size);
3539 if (extra != 0)
3540 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3541 temp, 0, OPTAB_LIB_WIDEN);
3542 anti_adjust_stack (temp);
3543 }
3544
3545 #ifndef STACK_GROWS_DOWNWARD
3546 if (0)
3547 #else
3548 if (1)
3549 #endif
3550 {
3551 temp = virtual_outgoing_args_rtx;
3552 if (extra != 0 && below)
3553 temp = plus_constant (temp, extra);
3554 }
3555 else
3556 {
3557 if (CONST_INT_P (size))
3558 temp = plus_constant (virtual_outgoing_args_rtx,
3559 -INTVAL (size) - (below ? 0 : extra));
3560 else if (extra != 0 && !below)
3561 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3562 negate_rtx (Pmode, plus_constant (size, extra)));
3563 else
3564 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3565 negate_rtx (Pmode, size));
3566 }
3567
3568 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3569 }
3570
3571 #ifdef PUSH_ROUNDING
3572
3573 /* Emit single push insn. */
3574
3575 static void
3576 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3577 {
3578 rtx dest_addr;
3579 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3580 rtx dest;
3581 enum insn_code icode;
3582 insn_operand_predicate_fn pred;
3583
3584 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3585 /* If there is push pattern, use it. Otherwise try old way of throwing
3586 MEM representing push operation to move expander. */
3587 icode = optab_handler (push_optab, mode);
3588 if (icode != CODE_FOR_nothing)
3589 {
3590 if (((pred = insn_data[(int) icode].operand[0].predicate)
3591 && !((*pred) (x, mode))))
3592 x = force_reg (mode, x);
3593 emit_insn (GEN_FCN (icode) (x));
3594 return;
3595 }
3596 if (GET_MODE_SIZE (mode) == rounded_size)
3597 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3598 /* If we are to pad downward, adjust the stack pointer first and
3599 then store X into the stack location using an offset. This is
3600 because emit_move_insn does not know how to pad; it does not have
3601 access to type. */
3602 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3603 {
3604 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3605 HOST_WIDE_INT offset;
3606
3607 emit_move_insn (stack_pointer_rtx,
3608 expand_binop (Pmode,
3609 #ifdef STACK_GROWS_DOWNWARD
3610 sub_optab,
3611 #else
3612 add_optab,
3613 #endif
3614 stack_pointer_rtx,
3615 GEN_INT (rounded_size),
3616 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3617
3618 offset = (HOST_WIDE_INT) padding_size;
3619 #ifdef STACK_GROWS_DOWNWARD
3620 if (STACK_PUSH_CODE == POST_DEC)
3621 /* We have already decremented the stack pointer, so get the
3622 previous value. */
3623 offset += (HOST_WIDE_INT) rounded_size;
3624 #else
3625 if (STACK_PUSH_CODE == POST_INC)
3626 /* We have already incremented the stack pointer, so get the
3627 previous value. */
3628 offset -= (HOST_WIDE_INT) rounded_size;
3629 #endif
3630 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3631 }
3632 else
3633 {
3634 #ifdef STACK_GROWS_DOWNWARD
3635 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3636 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3637 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3638 #else
3639 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3640 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3641 GEN_INT (rounded_size));
3642 #endif
3643 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3644 }
3645
3646 dest = gen_rtx_MEM (mode, dest_addr);
3647
3648 if (type != 0)
3649 {
3650 set_mem_attributes (dest, type, 1);
3651
3652 if (flag_optimize_sibling_calls)
3653 /* Function incoming arguments may overlap with sibling call
3654 outgoing arguments and we cannot allow reordering of reads
3655 from function arguments with stores to outgoing arguments
3656 of sibling calls. */
3657 set_mem_alias_set (dest, 0);
3658 }
3659 emit_move_insn (dest, x);
3660 }
3661 #endif
3662
3663 /* Generate code to push X onto the stack, assuming it has mode MODE and
3664 type TYPE.
3665 MODE is redundant except when X is a CONST_INT (since they don't
3666 carry mode info).
3667 SIZE is an rtx for the size of data to be copied (in bytes),
3668 needed only if X is BLKmode.
3669
3670 ALIGN (in bits) is maximum alignment we can assume.
3671
3672 If PARTIAL and REG are both nonzero, then copy that many of the first
3673 bytes of X into registers starting with REG, and push the rest of X.
3674 The amount of space pushed is decreased by PARTIAL bytes.
3675 REG must be a hard register in this case.
3676 If REG is zero but PARTIAL is not, take any all others actions for an
3677 argument partially in registers, but do not actually load any
3678 registers.
3679
3680 EXTRA is the amount in bytes of extra space to leave next to this arg.
3681 This is ignored if an argument block has already been allocated.
3682
3683 On a machine that lacks real push insns, ARGS_ADDR is the address of
3684 the bottom of the argument block for this call. We use indexing off there
3685 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3686 argument block has not been preallocated.
3687
3688 ARGS_SO_FAR is the size of args previously pushed for this call.
3689
3690 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3691 for arguments passed in registers. If nonzero, it will be the number
3692 of bytes required. */
3693
3694 void
3695 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3696 unsigned int align, int partial, rtx reg, int extra,
3697 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3698 rtx alignment_pad)
3699 {
3700 rtx xinner;
3701 enum direction stack_direction
3702 #ifdef STACK_GROWS_DOWNWARD
3703 = downward;
3704 #else
3705 = upward;
3706 #endif
3707
3708 /* Decide where to pad the argument: `downward' for below,
3709 `upward' for above, or `none' for don't pad it.
3710 Default is below for small data on big-endian machines; else above. */
3711 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3712
3713 /* Invert direction if stack is post-decrement.
3714 FIXME: why? */
3715 if (STACK_PUSH_CODE == POST_DEC)
3716 if (where_pad != none)
3717 where_pad = (where_pad == downward ? upward : downward);
3718
3719 xinner = x;
3720
3721 if (mode == BLKmode
3722 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3723 {
3724 /* Copy a block into the stack, entirely or partially. */
3725
3726 rtx temp;
3727 int used;
3728 int offset;
3729 int skip;
3730
3731 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3732 used = partial - offset;
3733
3734 if (mode != BLKmode)
3735 {
3736 /* A value is to be stored in an insufficiently aligned
3737 stack slot; copy via a suitably aligned slot if
3738 necessary. */
3739 size = GEN_INT (GET_MODE_SIZE (mode));
3740 if (!MEM_P (xinner))
3741 {
3742 temp = assign_temp (type, 0, 1, 1);
3743 emit_move_insn (temp, xinner);
3744 xinner = temp;
3745 }
3746 }
3747
3748 gcc_assert (size);
3749
3750 /* USED is now the # of bytes we need not copy to the stack
3751 because registers will take care of them. */
3752
3753 if (partial != 0)
3754 xinner = adjust_address (xinner, BLKmode, used);
3755
3756 /* If the partial register-part of the arg counts in its stack size,
3757 skip the part of stack space corresponding to the registers.
3758 Otherwise, start copying to the beginning of the stack space,
3759 by setting SKIP to 0. */
3760 skip = (reg_parm_stack_space == 0) ? 0 : used;
3761
3762 #ifdef PUSH_ROUNDING
3763 /* Do it with several push insns if that doesn't take lots of insns
3764 and if there is no difficulty with push insns that skip bytes
3765 on the stack for alignment purposes. */
3766 if (args_addr == 0
3767 && PUSH_ARGS
3768 && CONST_INT_P (size)
3769 && skip == 0
3770 && MEM_ALIGN (xinner) >= align
3771 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3772 /* Here we avoid the case of a structure whose weak alignment
3773 forces many pushes of a small amount of data,
3774 and such small pushes do rounding that causes trouble. */
3775 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3776 || align >= BIGGEST_ALIGNMENT
3777 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3778 == (align / BITS_PER_UNIT)))
3779 && (HOST_WIDE_INT) PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3780 {
3781 /* Push padding now if padding above and stack grows down,
3782 or if padding below and stack grows up.
3783 But if space already allocated, this has already been done. */
3784 if (extra && args_addr == 0
3785 && where_pad != none && where_pad != stack_direction)
3786 anti_adjust_stack (GEN_INT (extra));
3787
3788 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3789 }
3790 else
3791 #endif /* PUSH_ROUNDING */
3792 {
3793 rtx target;
3794
3795 /* Otherwise make space on the stack and copy the data
3796 to the address of that space. */
3797
3798 /* Deduct words put into registers from the size we must copy. */
3799 if (partial != 0)
3800 {
3801 if (CONST_INT_P (size))
3802 size = GEN_INT (INTVAL (size) - used);
3803 else
3804 size = expand_binop (GET_MODE (size), sub_optab, size,
3805 GEN_INT (used), NULL_RTX, 0,
3806 OPTAB_LIB_WIDEN);
3807 }
3808
3809 /* Get the address of the stack space.
3810 In this case, we do not deal with EXTRA separately.
3811 A single stack adjust will do. */
3812 if (! args_addr)
3813 {
3814 temp = push_block (size, extra, where_pad == downward);
3815 extra = 0;
3816 }
3817 else if (CONST_INT_P (args_so_far))
3818 temp = memory_address (BLKmode,
3819 plus_constant (args_addr,
3820 skip + INTVAL (args_so_far)));
3821 else
3822 temp = memory_address (BLKmode,
3823 plus_constant (gen_rtx_PLUS (Pmode,
3824 args_addr,
3825 args_so_far),
3826 skip));
3827
3828 if (!ACCUMULATE_OUTGOING_ARGS)
3829 {
3830 /* If the source is referenced relative to the stack pointer,
3831 copy it to another register to stabilize it. We do not need
3832 to do this if we know that we won't be changing sp. */
3833
3834 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3835 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3836 temp = copy_to_reg (temp);
3837 }
3838
3839 target = gen_rtx_MEM (BLKmode, temp);
3840
3841 /* We do *not* set_mem_attributes here, because incoming arguments
3842 may overlap with sibling call outgoing arguments and we cannot
3843 allow reordering of reads from function arguments with stores
3844 to outgoing arguments of sibling calls. We do, however, want
3845 to record the alignment of the stack slot. */
3846 /* ALIGN may well be better aligned than TYPE, e.g. due to
3847 PARM_BOUNDARY. Assume the caller isn't lying. */
3848 set_mem_align (target, align);
3849
3850 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3851 }
3852 }
3853 else if (partial > 0)
3854 {
3855 /* Scalar partly in registers. */
3856
3857 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3858 int i;
3859 int not_stack;
3860 /* # bytes of start of argument
3861 that we must make space for but need not store. */
3862 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3863 int args_offset = INTVAL (args_so_far);
3864 int skip;
3865
3866 /* Push padding now if padding above and stack grows down,
3867 or if padding below and stack grows up.
3868 But if space already allocated, this has already been done. */
3869 if (extra && args_addr == 0
3870 && where_pad != none && where_pad != stack_direction)
3871 anti_adjust_stack (GEN_INT (extra));
3872
3873 /* If we make space by pushing it, we might as well push
3874 the real data. Otherwise, we can leave OFFSET nonzero
3875 and leave the space uninitialized. */
3876 if (args_addr == 0)
3877 offset = 0;
3878
3879 /* Now NOT_STACK gets the number of words that we don't need to
3880 allocate on the stack. Convert OFFSET to words too. */
3881 not_stack = (partial - offset) / UNITS_PER_WORD;
3882 offset /= UNITS_PER_WORD;
3883
3884 /* If the partial register-part of the arg counts in its stack size,
3885 skip the part of stack space corresponding to the registers.
3886 Otherwise, start copying to the beginning of the stack space,
3887 by setting SKIP to 0. */
3888 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3889
3890 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3891 x = validize_mem (force_const_mem (mode, x));
3892
3893 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3894 SUBREGs of such registers are not allowed. */
3895 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3896 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3897 x = copy_to_reg (x);
3898
3899 /* Loop over all the words allocated on the stack for this arg. */
3900 /* We can do it by words, because any scalar bigger than a word
3901 has a size a multiple of a word. */
3902 #ifndef PUSH_ARGS_REVERSED
3903 for (i = not_stack; i < size; i++)
3904 #else
3905 for (i = size - 1; i >= not_stack; i--)
3906 #endif
3907 if (i >= not_stack + offset)
3908 emit_push_insn (operand_subword_force (x, i, mode),
3909 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3910 0, args_addr,
3911 GEN_INT (args_offset + ((i - not_stack + skip)
3912 * UNITS_PER_WORD)),
3913 reg_parm_stack_space, alignment_pad);
3914 }
3915 else
3916 {
3917 rtx addr;
3918 rtx dest;
3919
3920 /* Push padding now if padding above and stack grows down,
3921 or if padding below and stack grows up.
3922 But if space already allocated, this has already been done. */
3923 if (extra && args_addr == 0
3924 && where_pad != none && where_pad != stack_direction)
3925 anti_adjust_stack (GEN_INT (extra));
3926
3927 #ifdef PUSH_ROUNDING
3928 if (args_addr == 0 && PUSH_ARGS)
3929 emit_single_push_insn (mode, x, type);
3930 else
3931 #endif
3932 {
3933 if (CONST_INT_P (args_so_far))
3934 addr
3935 = memory_address (mode,
3936 plus_constant (args_addr,
3937 INTVAL (args_so_far)));
3938 else
3939 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3940 args_so_far));
3941 dest = gen_rtx_MEM (mode, addr);
3942
3943 /* We do *not* set_mem_attributes here, because incoming arguments
3944 may overlap with sibling call outgoing arguments and we cannot
3945 allow reordering of reads from function arguments with stores
3946 to outgoing arguments of sibling calls. We do, however, want
3947 to record the alignment of the stack slot. */
3948 /* ALIGN may well be better aligned than TYPE, e.g. due to
3949 PARM_BOUNDARY. Assume the caller isn't lying. */
3950 set_mem_align (dest, align);
3951
3952 emit_move_insn (dest, x);
3953 }
3954 }
3955
3956 /* If part should go in registers, copy that part
3957 into the appropriate registers. Do this now, at the end,
3958 since mem-to-mem copies above may do function calls. */
3959 if (partial > 0 && reg != 0)
3960 {
3961 /* Handle calls that pass values in multiple non-contiguous locations.
3962 The Irix 6 ABI has examples of this. */
3963 if (GET_CODE (reg) == PARALLEL)
3964 emit_group_load (reg, x, type, -1);
3965 else
3966 {
3967 gcc_assert (partial % UNITS_PER_WORD == 0);
3968 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3969 }
3970 }
3971
3972 if (extra && args_addr == 0 && where_pad == stack_direction)
3973 anti_adjust_stack (GEN_INT (extra));
3974
3975 if (alignment_pad && args_addr == 0)
3976 anti_adjust_stack (alignment_pad);
3977 }
3978 \f
3979 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3980 operations. */
3981
3982 static rtx
3983 get_subtarget (rtx x)
3984 {
3985 return (optimize
3986 || x == 0
3987 /* Only registers can be subtargets. */
3988 || !REG_P (x)
3989 /* Don't use hard regs to avoid extending their life. */
3990 || REGNO (x) < FIRST_PSEUDO_REGISTER
3991 ? 0 : x);
3992 }
3993
3994 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3995 FIELD is a bitfield. Returns true if the optimization was successful,
3996 and there's nothing else to do. */
3997
3998 static bool
3999 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4000 unsigned HOST_WIDE_INT bitpos,
4001 enum machine_mode mode1, rtx str_rtx,
4002 tree to, tree src)
4003 {
4004 enum machine_mode str_mode = GET_MODE (str_rtx);
4005 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4006 tree op0, op1;
4007 rtx value, result;
4008 optab binop;
4009
4010 if (mode1 != VOIDmode
4011 || bitsize >= BITS_PER_WORD
4012 || str_bitsize > BITS_PER_WORD
4013 || TREE_SIDE_EFFECTS (to)
4014 || TREE_THIS_VOLATILE (to))
4015 return false;
4016
4017 STRIP_NOPS (src);
4018 if (!BINARY_CLASS_P (src)
4019 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4020 return false;
4021
4022 op0 = TREE_OPERAND (src, 0);
4023 op1 = TREE_OPERAND (src, 1);
4024 STRIP_NOPS (op0);
4025
4026 if (!operand_equal_p (to, op0, 0))
4027 return false;
4028
4029 if (MEM_P (str_rtx))
4030 {
4031 unsigned HOST_WIDE_INT offset1;
4032
4033 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4034 str_mode = word_mode;
4035 str_mode = get_best_mode (bitsize, bitpos,
4036 MEM_ALIGN (str_rtx), str_mode, 0);
4037 if (str_mode == VOIDmode)
4038 return false;
4039 str_bitsize = GET_MODE_BITSIZE (str_mode);
4040
4041 offset1 = bitpos;
4042 bitpos %= str_bitsize;
4043 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4044 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4045 }
4046 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4047 return false;
4048
4049 /* If the bit field covers the whole REG/MEM, store_field
4050 will likely generate better code. */
4051 if (bitsize >= str_bitsize)
4052 return false;
4053
4054 /* We can't handle fields split across multiple entities. */
4055 if (bitpos + bitsize > str_bitsize)
4056 return false;
4057
4058 if (BYTES_BIG_ENDIAN)
4059 bitpos = str_bitsize - bitpos - bitsize;
4060
4061 switch (TREE_CODE (src))
4062 {
4063 case PLUS_EXPR:
4064 case MINUS_EXPR:
4065 /* For now, just optimize the case of the topmost bitfield
4066 where we don't need to do any masking and also
4067 1 bit bitfields where xor can be used.
4068 We might win by one instruction for the other bitfields
4069 too if insv/extv instructions aren't used, so that
4070 can be added later. */
4071 if (bitpos + bitsize != str_bitsize
4072 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4073 break;
4074
4075 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4076 value = convert_modes (str_mode,
4077 TYPE_MODE (TREE_TYPE (op1)), value,
4078 TYPE_UNSIGNED (TREE_TYPE (op1)));
4079
4080 /* We may be accessing data outside the field, which means
4081 we can alias adjacent data. */
4082 if (MEM_P (str_rtx))
4083 {
4084 str_rtx = shallow_copy_rtx (str_rtx);
4085 set_mem_alias_set (str_rtx, 0);
4086 set_mem_expr (str_rtx, 0);
4087 }
4088
4089 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4090 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4091 {
4092 value = expand_and (str_mode, value, const1_rtx, NULL);
4093 binop = xor_optab;
4094 }
4095 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4096 build_int_cst (NULL_TREE, bitpos),
4097 NULL_RTX, 1);
4098 result = expand_binop (str_mode, binop, str_rtx,
4099 value, str_rtx, 1, OPTAB_WIDEN);
4100 if (result != str_rtx)
4101 emit_move_insn (str_rtx, result);
4102 return true;
4103
4104 case BIT_IOR_EXPR:
4105 case BIT_XOR_EXPR:
4106 if (TREE_CODE (op1) != INTEGER_CST)
4107 break;
4108 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4109 value = convert_modes (GET_MODE (str_rtx),
4110 TYPE_MODE (TREE_TYPE (op1)), value,
4111 TYPE_UNSIGNED (TREE_TYPE (op1)));
4112
4113 /* We may be accessing data outside the field, which means
4114 we can alias adjacent data. */
4115 if (MEM_P (str_rtx))
4116 {
4117 str_rtx = shallow_copy_rtx (str_rtx);
4118 set_mem_alias_set (str_rtx, 0);
4119 set_mem_expr (str_rtx, 0);
4120 }
4121
4122 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4123 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4124 {
4125 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4126 - 1);
4127 value = expand_and (GET_MODE (str_rtx), value, mask,
4128 NULL_RTX);
4129 }
4130 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4131 build_int_cst (NULL_TREE, bitpos),
4132 NULL_RTX, 1);
4133 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4134 value, str_rtx, 1, OPTAB_WIDEN);
4135 if (result != str_rtx)
4136 emit_move_insn (str_rtx, result);
4137 return true;
4138
4139 default:
4140 break;
4141 }
4142
4143 return false;
4144 }
4145
4146
4147 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4148 is true, try generating a nontemporal store. */
4149
4150 void
4151 expand_assignment (tree to, tree from, bool nontemporal)
4152 {
4153 rtx to_rtx = 0;
4154 rtx result;
4155 enum machine_mode mode;
4156 int align, icode;
4157
4158 /* Don't crash if the lhs of the assignment was erroneous. */
4159 if (TREE_CODE (to) == ERROR_MARK)
4160 {
4161 result = expand_normal (from);
4162 return;
4163 }
4164
4165 /* Optimize away no-op moves without side-effects. */
4166 if (operand_equal_p (to, from, 0))
4167 return;
4168
4169 mode = TYPE_MODE (TREE_TYPE (to));
4170 if ((TREE_CODE (to) == MEM_REF
4171 || TREE_CODE (to) == TARGET_MEM_REF)
4172 && mode != BLKmode
4173 && ((align = MAX (TYPE_ALIGN (TREE_TYPE (to)),
4174 get_object_alignment (to, BIGGEST_ALIGNMENT)))
4175 < (signed) GET_MODE_ALIGNMENT (mode))
4176 && ((icode = optab_handler (movmisalign_optab, mode))
4177 != CODE_FOR_nothing))
4178 {
4179 enum machine_mode address_mode, op_mode1;
4180 rtx insn, reg, op0, mem;
4181
4182 reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4183 reg = force_not_mem (reg);
4184
4185 if (TREE_CODE (to) == MEM_REF)
4186 {
4187 addr_space_t as
4188 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (to, 1))));
4189 tree base = TREE_OPERAND (to, 0);
4190 address_mode = targetm.addr_space.address_mode (as);
4191 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_NORMAL);
4192 op0 = convert_memory_address_addr_space (address_mode, op0, as);
4193 if (!integer_zerop (TREE_OPERAND (to, 1)))
4194 {
4195 rtx off
4196 = immed_double_int_const (mem_ref_offset (to), address_mode);
4197 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
4198 }
4199 op0 = memory_address_addr_space (mode, op0, as);
4200 mem = gen_rtx_MEM (mode, op0);
4201 set_mem_attributes (mem, to, 0);
4202 set_mem_addr_space (mem, as);
4203 }
4204 else if (TREE_CODE (to) == TARGET_MEM_REF)
4205 {
4206 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (to));
4207 struct mem_address addr;
4208
4209 get_address_description (to, &addr);
4210 op0 = addr_for_mem_ref (&addr, as, true);
4211 op0 = memory_address_addr_space (mode, op0, as);
4212 mem = gen_rtx_MEM (mode, op0);
4213 set_mem_attributes (mem, to, 0);
4214 set_mem_addr_space (mem, as);
4215 }
4216 else
4217 gcc_unreachable ();
4218 if (TREE_THIS_VOLATILE (to))
4219 MEM_VOLATILE_P (mem) = 1;
4220
4221 op_mode1 = insn_data[icode].operand[1].mode;
4222 if (! (*insn_data[icode].operand[1].predicate) (reg, op_mode1)
4223 && op_mode1 != VOIDmode)
4224 reg = copy_to_mode_reg (op_mode1, reg);
4225
4226 insn = GEN_FCN (icode) (mem, reg);
4227 /* The movmisalign<mode> pattern cannot fail, else the assignment would
4228 silently be omitted. */
4229 gcc_assert (insn != NULL_RTX);
4230 emit_insn (insn);
4231 return;
4232 }
4233
4234 /* Assignment of a structure component needs special treatment
4235 if the structure component's rtx is not simply a MEM.
4236 Assignment of an array element at a constant index, and assignment of
4237 an array element in an unaligned packed structure field, has the same
4238 problem. */
4239 if (handled_component_p (to)
4240 /* ??? We only need to handle MEM_REF here if the access is not
4241 a full access of the base object. */
4242 || (TREE_CODE (to) == MEM_REF
4243 && TREE_CODE (TREE_OPERAND (to, 0)) == ADDR_EXPR)
4244 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4245 {
4246 enum machine_mode mode1;
4247 HOST_WIDE_INT bitsize, bitpos;
4248 tree offset;
4249 int unsignedp;
4250 int volatilep = 0;
4251 tree tem;
4252
4253 push_temp_slots ();
4254 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4255 &unsignedp, &volatilep, true);
4256
4257 /* If we are going to use store_bit_field and extract_bit_field,
4258 make sure to_rtx will be safe for multiple use. */
4259
4260 to_rtx = expand_normal (tem);
4261
4262 /* If the bitfield is volatile, we want to access it in the
4263 field's mode, not the computed mode. */
4264 if (volatilep
4265 && GET_CODE (to_rtx) == MEM
4266 && flag_strict_volatile_bitfields > 0)
4267 to_rtx = adjust_address (to_rtx, mode1, 0);
4268
4269 if (offset != 0)
4270 {
4271 enum machine_mode address_mode;
4272 rtx offset_rtx;
4273
4274 if (!MEM_P (to_rtx))
4275 {
4276 /* We can get constant negative offsets into arrays with broken
4277 user code. Translate this to a trap instead of ICEing. */
4278 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4279 expand_builtin_trap ();
4280 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4281 }
4282
4283 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4284 address_mode
4285 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
4286 if (GET_MODE (offset_rtx) != address_mode)
4287 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
4288
4289 /* A constant address in TO_RTX can have VOIDmode, we must not try
4290 to call force_reg for that case. Avoid that case. */
4291 if (MEM_P (to_rtx)
4292 && GET_MODE (to_rtx) == BLKmode
4293 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4294 && bitsize > 0
4295 && (bitpos % bitsize) == 0
4296 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4297 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4298 {
4299 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4300 bitpos = 0;
4301 }
4302
4303 to_rtx = offset_address (to_rtx, offset_rtx,
4304 highest_pow2_factor_for_target (to,
4305 offset));
4306 }
4307
4308 /* No action is needed if the target is not a memory and the field
4309 lies completely outside that target. This can occur if the source
4310 code contains an out-of-bounds access to a small array. */
4311 if (!MEM_P (to_rtx)
4312 && GET_MODE (to_rtx) != BLKmode
4313 && (unsigned HOST_WIDE_INT) bitpos
4314 >= GET_MODE_BITSIZE (GET_MODE (to_rtx)))
4315 {
4316 expand_normal (from);
4317 result = NULL;
4318 }
4319 /* Handle expand_expr of a complex value returning a CONCAT. */
4320 else if (GET_CODE (to_rtx) == CONCAT)
4321 {
4322 if (COMPLEX_MODE_P (TYPE_MODE (TREE_TYPE (from))))
4323 {
4324 gcc_assert (bitpos == 0);
4325 result = store_expr (from, to_rtx, false, nontemporal);
4326 }
4327 else
4328 {
4329 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4330 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4331 nontemporal);
4332 }
4333 }
4334 else
4335 {
4336 if (MEM_P (to_rtx))
4337 {
4338 /* If the field is at offset zero, we could have been given the
4339 DECL_RTX of the parent struct. Don't munge it. */
4340 to_rtx = shallow_copy_rtx (to_rtx);
4341
4342 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4343
4344 /* Deal with volatile and readonly fields. The former is only
4345 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4346 if (volatilep)
4347 MEM_VOLATILE_P (to_rtx) = 1;
4348 if (component_uses_parent_alias_set (to))
4349 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4350 }
4351
4352 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4353 to_rtx, to, from))
4354 result = NULL;
4355 else
4356 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4357 TREE_TYPE (tem), get_alias_set (to),
4358 nontemporal);
4359 }
4360
4361 if (result)
4362 preserve_temp_slots (result);
4363 free_temp_slots ();
4364 pop_temp_slots ();
4365 return;
4366 }
4367
4368 /* If the rhs is a function call and its value is not an aggregate,
4369 call the function before we start to compute the lhs.
4370 This is needed for correct code for cases such as
4371 val = setjmp (buf) on machines where reference to val
4372 requires loading up part of an address in a separate insn.
4373
4374 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4375 since it might be a promoted variable where the zero- or sign- extension
4376 needs to be done. Handling this in the normal way is safe because no
4377 computation is done before the call. The same is true for SSA names. */
4378 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4379 && COMPLETE_TYPE_P (TREE_TYPE (from))
4380 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4381 && ! (((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4382 && REG_P (DECL_RTL (to)))
4383 || TREE_CODE (to) == SSA_NAME))
4384 {
4385 rtx value;
4386
4387 push_temp_slots ();
4388 value = expand_normal (from);
4389 if (to_rtx == 0)
4390 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4391
4392 /* Handle calls that return values in multiple non-contiguous locations.
4393 The Irix 6 ABI has examples of this. */
4394 if (GET_CODE (to_rtx) == PARALLEL)
4395 emit_group_load (to_rtx, value, TREE_TYPE (from),
4396 int_size_in_bytes (TREE_TYPE (from)));
4397 else if (GET_MODE (to_rtx) == BLKmode)
4398 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4399 else
4400 {
4401 if (POINTER_TYPE_P (TREE_TYPE (to)))
4402 value = convert_memory_address_addr_space
4403 (GET_MODE (to_rtx), value,
4404 TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
4405
4406 emit_move_insn (to_rtx, value);
4407 }
4408 preserve_temp_slots (to_rtx);
4409 free_temp_slots ();
4410 pop_temp_slots ();
4411 return;
4412 }
4413
4414 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4415 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4416
4417 if (to_rtx == 0)
4418 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4419
4420 /* Don't move directly into a return register. */
4421 if (TREE_CODE (to) == RESULT_DECL
4422 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4423 {
4424 rtx temp;
4425
4426 push_temp_slots ();
4427 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4428
4429 if (GET_CODE (to_rtx) == PARALLEL)
4430 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4431 int_size_in_bytes (TREE_TYPE (from)));
4432 else
4433 emit_move_insn (to_rtx, temp);
4434
4435 preserve_temp_slots (to_rtx);
4436 free_temp_slots ();
4437 pop_temp_slots ();
4438 return;
4439 }
4440
4441 /* In case we are returning the contents of an object which overlaps
4442 the place the value is being stored, use a safe function when copying
4443 a value through a pointer into a structure value return block. */
4444 if (TREE_CODE (to) == RESULT_DECL
4445 && TREE_CODE (from) == INDIRECT_REF
4446 && ADDR_SPACE_GENERIC_P
4447 (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
4448 && refs_may_alias_p (to, from)
4449 && cfun->returns_struct
4450 && !cfun->returns_pcc_struct)
4451 {
4452 rtx from_rtx, size;
4453
4454 push_temp_slots ();
4455 size = expr_size (from);
4456 from_rtx = expand_normal (from);
4457
4458 emit_library_call (memmove_libfunc, LCT_NORMAL,
4459 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4460 XEXP (from_rtx, 0), Pmode,
4461 convert_to_mode (TYPE_MODE (sizetype),
4462 size, TYPE_UNSIGNED (sizetype)),
4463 TYPE_MODE (sizetype));
4464
4465 preserve_temp_slots (to_rtx);
4466 free_temp_slots ();
4467 pop_temp_slots ();
4468 return;
4469 }
4470
4471 /* Compute FROM and store the value in the rtx we got. */
4472
4473 push_temp_slots ();
4474 result = store_expr (from, to_rtx, 0, nontemporal);
4475 preserve_temp_slots (result);
4476 free_temp_slots ();
4477 pop_temp_slots ();
4478 return;
4479 }
4480
4481 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4482 succeeded, false otherwise. */
4483
4484 bool
4485 emit_storent_insn (rtx to, rtx from)
4486 {
4487 enum machine_mode mode = GET_MODE (to), imode;
4488 enum insn_code code = optab_handler (storent_optab, mode);
4489 rtx pattern;
4490
4491 if (code == CODE_FOR_nothing)
4492 return false;
4493
4494 imode = insn_data[code].operand[0].mode;
4495 if (!insn_data[code].operand[0].predicate (to, imode))
4496 return false;
4497
4498 imode = insn_data[code].operand[1].mode;
4499 if (!insn_data[code].operand[1].predicate (from, imode))
4500 {
4501 from = copy_to_mode_reg (imode, from);
4502 if (!insn_data[code].operand[1].predicate (from, imode))
4503 return false;
4504 }
4505
4506 pattern = GEN_FCN (code) (to, from);
4507 if (pattern == NULL_RTX)
4508 return false;
4509
4510 emit_insn (pattern);
4511 return true;
4512 }
4513
4514 /* Generate code for computing expression EXP,
4515 and storing the value into TARGET.
4516
4517 If the mode is BLKmode then we may return TARGET itself.
4518 It turns out that in BLKmode it doesn't cause a problem.
4519 because C has no operators that could combine two different
4520 assignments into the same BLKmode object with different values
4521 with no sequence point. Will other languages need this to
4522 be more thorough?
4523
4524 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4525 stack, and block moves may need to be treated specially.
4526
4527 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4528
4529 rtx
4530 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4531 {
4532 rtx temp;
4533 rtx alt_rtl = NULL_RTX;
4534 location_t loc = EXPR_LOCATION (exp);
4535
4536 if (VOID_TYPE_P (TREE_TYPE (exp)))
4537 {
4538 /* C++ can generate ?: expressions with a throw expression in one
4539 branch and an rvalue in the other. Here, we resolve attempts to
4540 store the throw expression's nonexistent result. */
4541 gcc_assert (!call_param_p);
4542 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4543 return NULL_RTX;
4544 }
4545 if (TREE_CODE (exp) == COMPOUND_EXPR)
4546 {
4547 /* Perform first part of compound expression, then assign from second
4548 part. */
4549 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4550 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4551 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4552 nontemporal);
4553 }
4554 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4555 {
4556 /* For conditional expression, get safe form of the target. Then
4557 test the condition, doing the appropriate assignment on either
4558 side. This avoids the creation of unnecessary temporaries.
4559 For non-BLKmode, it is more efficient not to do this. */
4560
4561 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4562
4563 do_pending_stack_adjust ();
4564 NO_DEFER_POP;
4565 jumpifnot (TREE_OPERAND (exp, 0), lab1, -1);
4566 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4567 nontemporal);
4568 emit_jump_insn (gen_jump (lab2));
4569 emit_barrier ();
4570 emit_label (lab1);
4571 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4572 nontemporal);
4573 emit_label (lab2);
4574 OK_DEFER_POP;
4575
4576 return NULL_RTX;
4577 }
4578 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4579 /* If this is a scalar in a register that is stored in a wider mode
4580 than the declared mode, compute the result into its declared mode
4581 and then convert to the wider mode. Our value is the computed
4582 expression. */
4583 {
4584 rtx inner_target = 0;
4585
4586 /* We can do the conversion inside EXP, which will often result
4587 in some optimizations. Do the conversion in two steps: first
4588 change the signedness, if needed, then the extend. But don't
4589 do this if the type of EXP is a subtype of something else
4590 since then the conversion might involve more than just
4591 converting modes. */
4592 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4593 && TREE_TYPE (TREE_TYPE (exp)) == 0
4594 && GET_MODE_PRECISION (GET_MODE (target))
4595 == TYPE_PRECISION (TREE_TYPE (exp)))
4596 {
4597 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4598 != SUBREG_PROMOTED_UNSIGNED_P (target))
4599 {
4600 /* Some types, e.g. Fortran's logical*4, won't have a signed
4601 version, so use the mode instead. */
4602 tree ntype
4603 = (signed_or_unsigned_type_for
4604 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4605 if (ntype == NULL)
4606 ntype = lang_hooks.types.type_for_mode
4607 (TYPE_MODE (TREE_TYPE (exp)),
4608 SUBREG_PROMOTED_UNSIGNED_P (target));
4609
4610 exp = fold_convert_loc (loc, ntype, exp);
4611 }
4612
4613 exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
4614 (GET_MODE (SUBREG_REG (target)),
4615 SUBREG_PROMOTED_UNSIGNED_P (target)),
4616 exp);
4617
4618 inner_target = SUBREG_REG (target);
4619 }
4620
4621 temp = expand_expr (exp, inner_target, VOIDmode,
4622 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4623
4624 /* If TEMP is a VOIDmode constant, use convert_modes to make
4625 sure that we properly convert it. */
4626 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4627 {
4628 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4629 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4630 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4631 GET_MODE (target), temp,
4632 SUBREG_PROMOTED_UNSIGNED_P (target));
4633 }
4634
4635 convert_move (SUBREG_REG (target), temp,
4636 SUBREG_PROMOTED_UNSIGNED_P (target));
4637
4638 return NULL_RTX;
4639 }
4640 else if ((TREE_CODE (exp) == STRING_CST
4641 || (TREE_CODE (exp) == MEM_REF
4642 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
4643 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
4644 == STRING_CST
4645 && integer_zerop (TREE_OPERAND (exp, 1))))
4646 && !nontemporal && !call_param_p
4647 && MEM_P (target))
4648 {
4649 /* Optimize initialization of an array with a STRING_CST. */
4650 HOST_WIDE_INT exp_len, str_copy_len;
4651 rtx dest_mem;
4652 tree str = TREE_CODE (exp) == STRING_CST
4653 ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
4654
4655 exp_len = int_expr_size (exp);
4656 if (exp_len <= 0)
4657 goto normal_expr;
4658
4659 if (TREE_STRING_LENGTH (str) <= 0)
4660 goto normal_expr;
4661
4662 str_copy_len = strlen (TREE_STRING_POINTER (str));
4663 if (str_copy_len < TREE_STRING_LENGTH (str) - 1)
4664 goto normal_expr;
4665
4666 str_copy_len = TREE_STRING_LENGTH (str);
4667 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0
4668 && TREE_STRING_POINTER (str)[TREE_STRING_LENGTH (str) - 1] == '\0')
4669 {
4670 str_copy_len += STORE_MAX_PIECES - 1;
4671 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4672 }
4673 str_copy_len = MIN (str_copy_len, exp_len);
4674 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4675 CONST_CAST (char *, TREE_STRING_POINTER (str)),
4676 MEM_ALIGN (target), false))
4677 goto normal_expr;
4678
4679 dest_mem = target;
4680
4681 dest_mem = store_by_pieces (dest_mem,
4682 str_copy_len, builtin_strncpy_read_str,
4683 CONST_CAST (char *,
4684 TREE_STRING_POINTER (str)),
4685 MEM_ALIGN (target), false,
4686 exp_len > str_copy_len ? 1 : 0);
4687 if (exp_len > str_copy_len)
4688 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4689 GEN_INT (exp_len - str_copy_len),
4690 BLOCK_OP_NORMAL);
4691 return NULL_RTX;
4692 }
4693 else
4694 {
4695 rtx tmp_target;
4696
4697 normal_expr:
4698 /* If we want to use a nontemporal store, force the value to
4699 register first. */
4700 tmp_target = nontemporal ? NULL_RTX : target;
4701 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4702 (call_param_p
4703 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4704 &alt_rtl);
4705 }
4706
4707 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4708 the same as that of TARGET, adjust the constant. This is needed, for
4709 example, in case it is a CONST_DOUBLE and we want only a word-sized
4710 value. */
4711 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4712 && TREE_CODE (exp) != ERROR_MARK
4713 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4714 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4715 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4716
4717 /* If value was not generated in the target, store it there.
4718 Convert the value to TARGET's type first if necessary and emit the
4719 pending incrementations that have been queued when expanding EXP.
4720 Note that we cannot emit the whole queue blindly because this will
4721 effectively disable the POST_INC optimization later.
4722
4723 If TEMP and TARGET compare equal according to rtx_equal_p, but
4724 one or both of them are volatile memory refs, we have to distinguish
4725 two cases:
4726 - expand_expr has used TARGET. In this case, we must not generate
4727 another copy. This can be detected by TARGET being equal according
4728 to == .
4729 - expand_expr has not used TARGET - that means that the source just
4730 happens to have the same RTX form. Since temp will have been created
4731 by expand_expr, it will compare unequal according to == .
4732 We must generate a copy in this case, to reach the correct number
4733 of volatile memory references. */
4734
4735 if ((! rtx_equal_p (temp, target)
4736 || (temp != target && (side_effects_p (temp)
4737 || side_effects_p (target))))
4738 && TREE_CODE (exp) != ERROR_MARK
4739 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4740 but TARGET is not valid memory reference, TEMP will differ
4741 from TARGET although it is really the same location. */
4742 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4743 /* If there's nothing to copy, don't bother. Don't call
4744 expr_size unless necessary, because some front-ends (C++)
4745 expr_size-hook must not be given objects that are not
4746 supposed to be bit-copied or bit-initialized. */
4747 && expr_size (exp) != const0_rtx)
4748 {
4749 if (GET_MODE (temp) != GET_MODE (target)
4750 && GET_MODE (temp) != VOIDmode)
4751 {
4752 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4753 if (GET_MODE (target) == BLKmode
4754 && GET_MODE (temp) == BLKmode)
4755 emit_block_move (target, temp, expr_size (exp),
4756 (call_param_p
4757 ? BLOCK_OP_CALL_PARM
4758 : BLOCK_OP_NORMAL));
4759 else if (GET_MODE (target) == BLKmode)
4760 store_bit_field (target, INTVAL (expr_size (exp)) * BITS_PER_UNIT,
4761 0, GET_MODE (temp), temp);
4762 else
4763 convert_move (target, temp, unsignedp);
4764 }
4765
4766 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4767 {
4768 /* Handle copying a string constant into an array. The string
4769 constant may be shorter than the array. So copy just the string's
4770 actual length, and clear the rest. First get the size of the data
4771 type of the string, which is actually the size of the target. */
4772 rtx size = expr_size (exp);
4773
4774 if (CONST_INT_P (size)
4775 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4776 emit_block_move (target, temp, size,
4777 (call_param_p
4778 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4779 else
4780 {
4781 enum machine_mode pointer_mode
4782 = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
4783 enum machine_mode address_mode
4784 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (target));
4785
4786 /* Compute the size of the data to copy from the string. */
4787 tree copy_size
4788 = size_binop_loc (loc, MIN_EXPR,
4789 make_tree (sizetype, size),
4790 size_int (TREE_STRING_LENGTH (exp)));
4791 rtx copy_size_rtx
4792 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4793 (call_param_p
4794 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4795 rtx label = 0;
4796
4797 /* Copy that much. */
4798 copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
4799 TYPE_UNSIGNED (sizetype));
4800 emit_block_move (target, temp, copy_size_rtx,
4801 (call_param_p
4802 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4803
4804 /* Figure out how much is left in TARGET that we have to clear.
4805 Do all calculations in pointer_mode. */
4806 if (CONST_INT_P (copy_size_rtx))
4807 {
4808 size = plus_constant (size, -INTVAL (copy_size_rtx));
4809 target = adjust_address (target, BLKmode,
4810 INTVAL (copy_size_rtx));
4811 }
4812 else
4813 {
4814 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4815 copy_size_rtx, NULL_RTX, 0,
4816 OPTAB_LIB_WIDEN);
4817
4818 if (GET_MODE (copy_size_rtx) != address_mode)
4819 copy_size_rtx = convert_to_mode (address_mode,
4820 copy_size_rtx,
4821 TYPE_UNSIGNED (sizetype));
4822
4823 target = offset_address (target, copy_size_rtx,
4824 highest_pow2_factor (copy_size));
4825 label = gen_label_rtx ();
4826 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4827 GET_MODE (size), 0, label);
4828 }
4829
4830 if (size != const0_rtx)
4831 clear_storage (target, size, BLOCK_OP_NORMAL);
4832
4833 if (label)
4834 emit_label (label);
4835 }
4836 }
4837 /* Handle calls that return values in multiple non-contiguous locations.
4838 The Irix 6 ABI has examples of this. */
4839 else if (GET_CODE (target) == PARALLEL)
4840 emit_group_load (target, temp, TREE_TYPE (exp),
4841 int_size_in_bytes (TREE_TYPE (exp)));
4842 else if (GET_MODE (temp) == BLKmode)
4843 emit_block_move (target, temp, expr_size (exp),
4844 (call_param_p
4845 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4846 else if (nontemporal
4847 && emit_storent_insn (target, temp))
4848 /* If we managed to emit a nontemporal store, there is nothing else to
4849 do. */
4850 ;
4851 else
4852 {
4853 temp = force_operand (temp, target);
4854 if (temp != target)
4855 emit_move_insn (target, temp);
4856 }
4857 }
4858
4859 return NULL_RTX;
4860 }
4861 \f
4862 /* Helper for categorize_ctor_elements. Identical interface. */
4863
4864 static bool
4865 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4866 HOST_WIDE_INT *p_elt_count,
4867 bool *p_must_clear)
4868 {
4869 unsigned HOST_WIDE_INT idx;
4870 HOST_WIDE_INT nz_elts, elt_count;
4871 tree value, purpose;
4872
4873 /* Whether CTOR is a valid constant initializer, in accordance with what
4874 initializer_constant_valid_p does. If inferred from the constructor
4875 elements, true until proven otherwise. */
4876 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4877 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4878
4879 nz_elts = 0;
4880 elt_count = 0;
4881
4882 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4883 {
4884 HOST_WIDE_INT mult = 1;
4885
4886 if (TREE_CODE (purpose) == RANGE_EXPR)
4887 {
4888 tree lo_index = TREE_OPERAND (purpose, 0);
4889 tree hi_index = TREE_OPERAND (purpose, 1);
4890
4891 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4892 mult = (tree_low_cst (hi_index, 1)
4893 - tree_low_cst (lo_index, 1) + 1);
4894 }
4895
4896 switch (TREE_CODE (value))
4897 {
4898 case CONSTRUCTOR:
4899 {
4900 HOST_WIDE_INT nz = 0, ic = 0;
4901
4902 bool const_elt_p
4903 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4904
4905 nz_elts += mult * nz;
4906 elt_count += mult * ic;
4907
4908 if (const_from_elts_p && const_p)
4909 const_p = const_elt_p;
4910 }
4911 break;
4912
4913 case INTEGER_CST:
4914 case REAL_CST:
4915 case FIXED_CST:
4916 if (!initializer_zerop (value))
4917 nz_elts += mult;
4918 elt_count += mult;
4919 break;
4920
4921 case STRING_CST:
4922 nz_elts += mult * TREE_STRING_LENGTH (value);
4923 elt_count += mult * TREE_STRING_LENGTH (value);
4924 break;
4925
4926 case COMPLEX_CST:
4927 if (!initializer_zerop (TREE_REALPART (value)))
4928 nz_elts += mult;
4929 if (!initializer_zerop (TREE_IMAGPART (value)))
4930 nz_elts += mult;
4931 elt_count += mult;
4932 break;
4933
4934 case VECTOR_CST:
4935 {
4936 tree v;
4937 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4938 {
4939 if (!initializer_zerop (TREE_VALUE (v)))
4940 nz_elts += mult;
4941 elt_count += mult;
4942 }
4943 }
4944 break;
4945
4946 default:
4947 {
4948 HOST_WIDE_INT tc = count_type_elements (TREE_TYPE (value), true);
4949 if (tc < 1)
4950 tc = 1;
4951 nz_elts += mult * tc;
4952 elt_count += mult * tc;
4953
4954 if (const_from_elts_p && const_p)
4955 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4956 != NULL_TREE;
4957 }
4958 break;
4959 }
4960 }
4961
4962 if (!*p_must_clear
4963 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4964 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4965 {
4966 tree init_sub_type;
4967 bool clear_this = true;
4968
4969 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4970 {
4971 /* We don't expect more than one element of the union to be
4972 initialized. Not sure what we should do otherwise... */
4973 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4974 == 1);
4975
4976 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4977 CONSTRUCTOR_ELTS (ctor),
4978 0)->value);
4979
4980 /* ??? We could look at each element of the union, and find the
4981 largest element. Which would avoid comparing the size of the
4982 initialized element against any tail padding in the union.
4983 Doesn't seem worth the effort... */
4984 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4985 TYPE_SIZE (init_sub_type)) == 1)
4986 {
4987 /* And now we have to find out if the element itself is fully
4988 constructed. E.g. for union { struct { int a, b; } s; } u
4989 = { .s = { .a = 1 } }. */
4990 if (elt_count == count_type_elements (init_sub_type, false))
4991 clear_this = false;
4992 }
4993 }
4994
4995 *p_must_clear = clear_this;
4996 }
4997
4998 *p_nz_elts += nz_elts;
4999 *p_elt_count += elt_count;
5000
5001 return const_p;
5002 }
5003
5004 /* Examine CTOR to discover:
5005 * how many scalar fields are set to nonzero values,
5006 and place it in *P_NZ_ELTS;
5007 * how many scalar fields in total are in CTOR,
5008 and place it in *P_ELT_COUNT.
5009 * if a type is a union, and the initializer from the constructor
5010 is not the largest element in the union, then set *p_must_clear.
5011
5012 Return whether or not CTOR is a valid static constant initializer, the same
5013 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
5014
5015 bool
5016 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
5017 HOST_WIDE_INT *p_elt_count,
5018 bool *p_must_clear)
5019 {
5020 *p_nz_elts = 0;
5021 *p_elt_count = 0;
5022 *p_must_clear = false;
5023
5024 return
5025 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
5026 }
5027
5028 /* Count the number of scalars in TYPE. Return -1 on overflow or
5029 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
5030 array member at the end of the structure. */
5031
5032 HOST_WIDE_INT
5033 count_type_elements (const_tree type, bool allow_flexarr)
5034 {
5035 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
5036 switch (TREE_CODE (type))
5037 {
5038 case ARRAY_TYPE:
5039 {
5040 tree telts = array_type_nelts (type);
5041 if (telts && host_integerp (telts, 1))
5042 {
5043 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
5044 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
5045 if (n == 0)
5046 return 0;
5047 else if (max / n > m)
5048 return n * m;
5049 }
5050 return -1;
5051 }
5052
5053 case RECORD_TYPE:
5054 {
5055 HOST_WIDE_INT n = 0, t;
5056 tree f;
5057
5058 for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
5059 if (TREE_CODE (f) == FIELD_DECL)
5060 {
5061 t = count_type_elements (TREE_TYPE (f), false);
5062 if (t < 0)
5063 {
5064 /* Check for structures with flexible array member. */
5065 tree tf = TREE_TYPE (f);
5066 if (allow_flexarr
5067 && DECL_CHAIN (f) == NULL
5068 && TREE_CODE (tf) == ARRAY_TYPE
5069 && TYPE_DOMAIN (tf)
5070 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
5071 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
5072 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
5073 && int_size_in_bytes (type) >= 0)
5074 break;
5075
5076 return -1;
5077 }
5078 n += t;
5079 }
5080
5081 return n;
5082 }
5083
5084 case UNION_TYPE:
5085 case QUAL_UNION_TYPE:
5086 return -1;
5087
5088 case COMPLEX_TYPE:
5089 return 2;
5090
5091 case VECTOR_TYPE:
5092 return TYPE_VECTOR_SUBPARTS (type);
5093
5094 case INTEGER_TYPE:
5095 case REAL_TYPE:
5096 case FIXED_POINT_TYPE:
5097 case ENUMERAL_TYPE:
5098 case BOOLEAN_TYPE:
5099 case POINTER_TYPE:
5100 case OFFSET_TYPE:
5101 case REFERENCE_TYPE:
5102 return 1;
5103
5104 case ERROR_MARK:
5105 return 0;
5106
5107 case VOID_TYPE:
5108 case METHOD_TYPE:
5109 case FUNCTION_TYPE:
5110 case LANG_TYPE:
5111 default:
5112 gcc_unreachable ();
5113 }
5114 }
5115
5116 /* Return 1 if EXP contains mostly (3/4) zeros. */
5117
5118 static int
5119 mostly_zeros_p (const_tree exp)
5120 {
5121 if (TREE_CODE (exp) == CONSTRUCTOR)
5122
5123 {
5124 HOST_WIDE_INT nz_elts, count, elts;
5125 bool must_clear;
5126
5127 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5128 if (must_clear)
5129 return 1;
5130
5131 elts = count_type_elements (TREE_TYPE (exp), false);
5132
5133 return nz_elts < elts / 4;
5134 }
5135
5136 return initializer_zerop (exp);
5137 }
5138
5139 /* Return 1 if EXP contains all zeros. */
5140
5141 static int
5142 all_zeros_p (const_tree exp)
5143 {
5144 if (TREE_CODE (exp) == CONSTRUCTOR)
5145
5146 {
5147 HOST_WIDE_INT nz_elts, count;
5148 bool must_clear;
5149
5150 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5151 return nz_elts == 0;
5152 }
5153
5154 return initializer_zerop (exp);
5155 }
5156 \f
5157 /* Helper function for store_constructor.
5158 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5159 TYPE is the type of the CONSTRUCTOR, not the element type.
5160 CLEARED is as for store_constructor.
5161 ALIAS_SET is the alias set to use for any stores.
5162
5163 This provides a recursive shortcut back to store_constructor when it isn't
5164 necessary to go through store_field. This is so that we can pass through
5165 the cleared field to let store_constructor know that we may not have to
5166 clear a substructure if the outer structure has already been cleared. */
5167
5168 static void
5169 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5170 HOST_WIDE_INT bitpos, enum machine_mode mode,
5171 tree exp, tree type, int cleared,
5172 alias_set_type alias_set)
5173 {
5174 if (TREE_CODE (exp) == CONSTRUCTOR
5175 /* We can only call store_constructor recursively if the size and
5176 bit position are on a byte boundary. */
5177 && bitpos % BITS_PER_UNIT == 0
5178 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5179 /* If we have a nonzero bitpos for a register target, then we just
5180 let store_field do the bitfield handling. This is unlikely to
5181 generate unnecessary clear instructions anyways. */
5182 && (bitpos == 0 || MEM_P (target)))
5183 {
5184 if (MEM_P (target))
5185 target
5186 = adjust_address (target,
5187 GET_MODE (target) == BLKmode
5188 || 0 != (bitpos
5189 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5190 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5191
5192
5193 /* Update the alias set, if required. */
5194 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5195 && MEM_ALIAS_SET (target) != 0)
5196 {
5197 target = copy_rtx (target);
5198 set_mem_alias_set (target, alias_set);
5199 }
5200
5201 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5202 }
5203 else
5204 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5205 }
5206
5207 /* Store the value of constructor EXP into the rtx TARGET.
5208 TARGET is either a REG or a MEM; we know it cannot conflict, since
5209 safe_from_p has been called.
5210 CLEARED is true if TARGET is known to have been zero'd.
5211 SIZE is the number of bytes of TARGET we are allowed to modify: this
5212 may not be the same as the size of EXP if we are assigning to a field
5213 which has been packed to exclude padding bits. */
5214
5215 static void
5216 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5217 {
5218 tree type = TREE_TYPE (exp);
5219 #ifdef WORD_REGISTER_OPERATIONS
5220 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5221 #endif
5222
5223 switch (TREE_CODE (type))
5224 {
5225 case RECORD_TYPE:
5226 case UNION_TYPE:
5227 case QUAL_UNION_TYPE:
5228 {
5229 unsigned HOST_WIDE_INT idx;
5230 tree field, value;
5231
5232 /* If size is zero or the target is already cleared, do nothing. */
5233 if (size == 0 || cleared)
5234 cleared = 1;
5235 /* We either clear the aggregate or indicate the value is dead. */
5236 else if ((TREE_CODE (type) == UNION_TYPE
5237 || TREE_CODE (type) == QUAL_UNION_TYPE)
5238 && ! CONSTRUCTOR_ELTS (exp))
5239 /* If the constructor is empty, clear the union. */
5240 {
5241 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5242 cleared = 1;
5243 }
5244
5245 /* If we are building a static constructor into a register,
5246 set the initial value as zero so we can fold the value into
5247 a constant. But if more than one register is involved,
5248 this probably loses. */
5249 else if (REG_P (target) && TREE_STATIC (exp)
5250 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5251 {
5252 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5253 cleared = 1;
5254 }
5255
5256 /* If the constructor has fewer fields than the structure or
5257 if we are initializing the structure to mostly zeros, clear
5258 the whole structure first. Don't do this if TARGET is a
5259 register whose mode size isn't equal to SIZE since
5260 clear_storage can't handle this case. */
5261 else if (size > 0
5262 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5263 != fields_length (type))
5264 || mostly_zeros_p (exp))
5265 && (!REG_P (target)
5266 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5267 == size)))
5268 {
5269 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5270 cleared = 1;
5271 }
5272
5273 if (REG_P (target) && !cleared)
5274 emit_clobber (target);
5275
5276 /* Store each element of the constructor into the
5277 corresponding field of TARGET. */
5278 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5279 {
5280 enum machine_mode mode;
5281 HOST_WIDE_INT bitsize;
5282 HOST_WIDE_INT bitpos = 0;
5283 tree offset;
5284 rtx to_rtx = target;
5285
5286 /* Just ignore missing fields. We cleared the whole
5287 structure, above, if any fields are missing. */
5288 if (field == 0)
5289 continue;
5290
5291 if (cleared && initializer_zerop (value))
5292 continue;
5293
5294 if (host_integerp (DECL_SIZE (field), 1))
5295 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5296 else
5297 bitsize = -1;
5298
5299 mode = DECL_MODE (field);
5300 if (DECL_BIT_FIELD (field))
5301 mode = VOIDmode;
5302
5303 offset = DECL_FIELD_OFFSET (field);
5304 if (host_integerp (offset, 0)
5305 && host_integerp (bit_position (field), 0))
5306 {
5307 bitpos = int_bit_position (field);
5308 offset = 0;
5309 }
5310 else
5311 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5312
5313 if (offset)
5314 {
5315 enum machine_mode address_mode;
5316 rtx offset_rtx;
5317
5318 offset
5319 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5320 make_tree (TREE_TYPE (exp),
5321 target));
5322
5323 offset_rtx = expand_normal (offset);
5324 gcc_assert (MEM_P (to_rtx));
5325
5326 address_mode
5327 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (to_rtx));
5328 if (GET_MODE (offset_rtx) != address_mode)
5329 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
5330
5331 to_rtx = offset_address (to_rtx, offset_rtx,
5332 highest_pow2_factor (offset));
5333 }
5334
5335 #ifdef WORD_REGISTER_OPERATIONS
5336 /* If this initializes a field that is smaller than a
5337 word, at the start of a word, try to widen it to a full
5338 word. This special case allows us to output C++ member
5339 function initializations in a form that the optimizers
5340 can understand. */
5341 if (REG_P (target)
5342 && bitsize < BITS_PER_WORD
5343 && bitpos % BITS_PER_WORD == 0
5344 && GET_MODE_CLASS (mode) == MODE_INT
5345 && TREE_CODE (value) == INTEGER_CST
5346 && exp_size >= 0
5347 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5348 {
5349 tree type = TREE_TYPE (value);
5350
5351 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5352 {
5353 type = lang_hooks.types.type_for_size
5354 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5355 value = fold_convert (type, value);
5356 }
5357
5358 if (BYTES_BIG_ENDIAN)
5359 value
5360 = fold_build2 (LSHIFT_EXPR, type, value,
5361 build_int_cst (type,
5362 BITS_PER_WORD - bitsize));
5363 bitsize = BITS_PER_WORD;
5364 mode = word_mode;
5365 }
5366 #endif
5367
5368 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5369 && DECL_NONADDRESSABLE_P (field))
5370 {
5371 to_rtx = copy_rtx (to_rtx);
5372 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5373 }
5374
5375 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5376 value, type, cleared,
5377 get_alias_set (TREE_TYPE (field)));
5378 }
5379 break;
5380 }
5381 case ARRAY_TYPE:
5382 {
5383 tree value, index;
5384 unsigned HOST_WIDE_INT i;
5385 int need_to_clear;
5386 tree domain;
5387 tree elttype = TREE_TYPE (type);
5388 int const_bounds_p;
5389 HOST_WIDE_INT minelt = 0;
5390 HOST_WIDE_INT maxelt = 0;
5391
5392 domain = TYPE_DOMAIN (type);
5393 const_bounds_p = (TYPE_MIN_VALUE (domain)
5394 && TYPE_MAX_VALUE (domain)
5395 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5396 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5397
5398 /* If we have constant bounds for the range of the type, get them. */
5399 if (const_bounds_p)
5400 {
5401 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5402 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5403 }
5404
5405 /* If the constructor has fewer elements than the array, clear
5406 the whole array first. Similarly if this is static
5407 constructor of a non-BLKmode object. */
5408 if (cleared)
5409 need_to_clear = 0;
5410 else if (REG_P (target) && TREE_STATIC (exp))
5411 need_to_clear = 1;
5412 else
5413 {
5414 unsigned HOST_WIDE_INT idx;
5415 tree index, value;
5416 HOST_WIDE_INT count = 0, zero_count = 0;
5417 need_to_clear = ! const_bounds_p;
5418
5419 /* This loop is a more accurate version of the loop in
5420 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5421 is also needed to check for missing elements. */
5422 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5423 {
5424 HOST_WIDE_INT this_node_count;
5425
5426 if (need_to_clear)
5427 break;
5428
5429 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5430 {
5431 tree lo_index = TREE_OPERAND (index, 0);
5432 tree hi_index = TREE_OPERAND (index, 1);
5433
5434 if (! host_integerp (lo_index, 1)
5435 || ! host_integerp (hi_index, 1))
5436 {
5437 need_to_clear = 1;
5438 break;
5439 }
5440
5441 this_node_count = (tree_low_cst (hi_index, 1)
5442 - tree_low_cst (lo_index, 1) + 1);
5443 }
5444 else
5445 this_node_count = 1;
5446
5447 count += this_node_count;
5448 if (mostly_zeros_p (value))
5449 zero_count += this_node_count;
5450 }
5451
5452 /* Clear the entire array first if there are any missing
5453 elements, or if the incidence of zero elements is >=
5454 75%. */
5455 if (! need_to_clear
5456 && (count < maxelt - minelt + 1
5457 || 4 * zero_count >= 3 * count))
5458 need_to_clear = 1;
5459 }
5460
5461 if (need_to_clear && size > 0)
5462 {
5463 if (REG_P (target))
5464 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5465 else
5466 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5467 cleared = 1;
5468 }
5469
5470 if (!cleared && REG_P (target))
5471 /* Inform later passes that the old value is dead. */
5472 emit_clobber (target);
5473
5474 /* Store each element of the constructor into the
5475 corresponding element of TARGET, determined by counting the
5476 elements. */
5477 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5478 {
5479 enum machine_mode mode;
5480 HOST_WIDE_INT bitsize;
5481 HOST_WIDE_INT bitpos;
5482 rtx xtarget = target;
5483
5484 if (cleared && initializer_zerop (value))
5485 continue;
5486
5487 mode = TYPE_MODE (elttype);
5488 if (mode == BLKmode)
5489 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5490 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5491 : -1);
5492 else
5493 bitsize = GET_MODE_BITSIZE (mode);
5494
5495 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5496 {
5497 tree lo_index = TREE_OPERAND (index, 0);
5498 tree hi_index = TREE_OPERAND (index, 1);
5499 rtx index_r, pos_rtx;
5500 HOST_WIDE_INT lo, hi, count;
5501 tree position;
5502
5503 /* If the range is constant and "small", unroll the loop. */
5504 if (const_bounds_p
5505 && host_integerp (lo_index, 0)
5506 && host_integerp (hi_index, 0)
5507 && (lo = tree_low_cst (lo_index, 0),
5508 hi = tree_low_cst (hi_index, 0),
5509 count = hi - lo + 1,
5510 (!MEM_P (target)
5511 || count <= 2
5512 || (host_integerp (TYPE_SIZE (elttype), 1)
5513 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5514 <= 40 * 8)))))
5515 {
5516 lo -= minelt; hi -= minelt;
5517 for (; lo <= hi; lo++)
5518 {
5519 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5520
5521 if (MEM_P (target)
5522 && !MEM_KEEP_ALIAS_SET_P (target)
5523 && TREE_CODE (type) == ARRAY_TYPE
5524 && TYPE_NONALIASED_COMPONENT (type))
5525 {
5526 target = copy_rtx (target);
5527 MEM_KEEP_ALIAS_SET_P (target) = 1;
5528 }
5529
5530 store_constructor_field
5531 (target, bitsize, bitpos, mode, value, type, cleared,
5532 get_alias_set (elttype));
5533 }
5534 }
5535 else
5536 {
5537 rtx loop_start = gen_label_rtx ();
5538 rtx loop_end = gen_label_rtx ();
5539 tree exit_cond;
5540
5541 expand_normal (hi_index);
5542
5543 index = build_decl (EXPR_LOCATION (exp),
5544 VAR_DECL, NULL_TREE, domain);
5545 index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
5546 SET_DECL_RTL (index, index_r);
5547 store_expr (lo_index, index_r, 0, false);
5548
5549 /* Build the head of the loop. */
5550 do_pending_stack_adjust ();
5551 emit_label (loop_start);
5552
5553 /* Assign value to element index. */
5554 position =
5555 fold_convert (ssizetype,
5556 fold_build2 (MINUS_EXPR,
5557 TREE_TYPE (index),
5558 index,
5559 TYPE_MIN_VALUE (domain)));
5560
5561 position =
5562 size_binop (MULT_EXPR, position,
5563 fold_convert (ssizetype,
5564 TYPE_SIZE_UNIT (elttype)));
5565
5566 pos_rtx = expand_normal (position);
5567 xtarget = offset_address (target, pos_rtx,
5568 highest_pow2_factor (position));
5569 xtarget = adjust_address (xtarget, mode, 0);
5570 if (TREE_CODE (value) == CONSTRUCTOR)
5571 store_constructor (value, xtarget, cleared,
5572 bitsize / BITS_PER_UNIT);
5573 else
5574 store_expr (value, xtarget, 0, false);
5575
5576 /* Generate a conditional jump to exit the loop. */
5577 exit_cond = build2 (LT_EXPR, integer_type_node,
5578 index, hi_index);
5579 jumpif (exit_cond, loop_end, -1);
5580
5581 /* Update the loop counter, and jump to the head of
5582 the loop. */
5583 expand_assignment (index,
5584 build2 (PLUS_EXPR, TREE_TYPE (index),
5585 index, integer_one_node),
5586 false);
5587
5588 emit_jump (loop_start);
5589
5590 /* Build the end of the loop. */
5591 emit_label (loop_end);
5592 }
5593 }
5594 else if ((index != 0 && ! host_integerp (index, 0))
5595 || ! host_integerp (TYPE_SIZE (elttype), 1))
5596 {
5597 tree position;
5598
5599 if (index == 0)
5600 index = ssize_int (1);
5601
5602 if (minelt)
5603 index = fold_convert (ssizetype,
5604 fold_build2 (MINUS_EXPR,
5605 TREE_TYPE (index),
5606 index,
5607 TYPE_MIN_VALUE (domain)));
5608
5609 position =
5610 size_binop (MULT_EXPR, index,
5611 fold_convert (ssizetype,
5612 TYPE_SIZE_UNIT (elttype)));
5613 xtarget = offset_address (target,
5614 expand_normal (position),
5615 highest_pow2_factor (position));
5616 xtarget = adjust_address (xtarget, mode, 0);
5617 store_expr (value, xtarget, 0, false);
5618 }
5619 else
5620 {
5621 if (index != 0)
5622 bitpos = ((tree_low_cst (index, 0) - minelt)
5623 * tree_low_cst (TYPE_SIZE (elttype), 1));
5624 else
5625 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5626
5627 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5628 && TREE_CODE (type) == ARRAY_TYPE
5629 && TYPE_NONALIASED_COMPONENT (type))
5630 {
5631 target = copy_rtx (target);
5632 MEM_KEEP_ALIAS_SET_P (target) = 1;
5633 }
5634 store_constructor_field (target, bitsize, bitpos, mode, value,
5635 type, cleared, get_alias_set (elttype));
5636 }
5637 }
5638 break;
5639 }
5640
5641 case VECTOR_TYPE:
5642 {
5643 unsigned HOST_WIDE_INT idx;
5644 constructor_elt *ce;
5645 int i;
5646 int need_to_clear;
5647 int icode = 0;
5648 tree elttype = TREE_TYPE (type);
5649 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5650 enum machine_mode eltmode = TYPE_MODE (elttype);
5651 HOST_WIDE_INT bitsize;
5652 HOST_WIDE_INT bitpos;
5653 rtvec vector = NULL;
5654 unsigned n_elts;
5655 alias_set_type alias;
5656
5657 gcc_assert (eltmode != BLKmode);
5658
5659 n_elts = TYPE_VECTOR_SUBPARTS (type);
5660 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5661 {
5662 enum machine_mode mode = GET_MODE (target);
5663
5664 icode = (int) optab_handler (vec_init_optab, mode);
5665 if (icode != CODE_FOR_nothing)
5666 {
5667 unsigned int i;
5668
5669 vector = rtvec_alloc (n_elts);
5670 for (i = 0; i < n_elts; i++)
5671 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5672 }
5673 }
5674
5675 /* If the constructor has fewer elements than the vector,
5676 clear the whole array first. Similarly if this is static
5677 constructor of a non-BLKmode object. */
5678 if (cleared)
5679 need_to_clear = 0;
5680 else if (REG_P (target) && TREE_STATIC (exp))
5681 need_to_clear = 1;
5682 else
5683 {
5684 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5685 tree value;
5686
5687 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5688 {
5689 int n_elts_here = tree_low_cst
5690 (int_const_binop (TRUNC_DIV_EXPR,
5691 TYPE_SIZE (TREE_TYPE (value)),
5692 TYPE_SIZE (elttype), 0), 1);
5693
5694 count += n_elts_here;
5695 if (mostly_zeros_p (value))
5696 zero_count += n_elts_here;
5697 }
5698
5699 /* Clear the entire vector first if there are any missing elements,
5700 or if the incidence of zero elements is >= 75%. */
5701 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5702 }
5703
5704 if (need_to_clear && size > 0 && !vector)
5705 {
5706 if (REG_P (target))
5707 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5708 else
5709 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5710 cleared = 1;
5711 }
5712
5713 /* Inform later passes that the old value is dead. */
5714 if (!cleared && !vector && REG_P (target))
5715 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5716
5717 if (MEM_P (target))
5718 alias = MEM_ALIAS_SET (target);
5719 else
5720 alias = get_alias_set (elttype);
5721
5722 /* Store each element of the constructor into the corresponding
5723 element of TARGET, determined by counting the elements. */
5724 for (idx = 0, i = 0;
5725 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5726 idx++, i += bitsize / elt_size)
5727 {
5728 HOST_WIDE_INT eltpos;
5729 tree value = ce->value;
5730
5731 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5732 if (cleared && initializer_zerop (value))
5733 continue;
5734
5735 if (ce->index)
5736 eltpos = tree_low_cst (ce->index, 1);
5737 else
5738 eltpos = i;
5739
5740 if (vector)
5741 {
5742 /* Vector CONSTRUCTORs should only be built from smaller
5743 vectors in the case of BLKmode vectors. */
5744 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5745 RTVEC_ELT (vector, eltpos)
5746 = expand_normal (value);
5747 }
5748 else
5749 {
5750 enum machine_mode value_mode =
5751 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5752 ? TYPE_MODE (TREE_TYPE (value))
5753 : eltmode;
5754 bitpos = eltpos * elt_size;
5755 store_constructor_field (target, bitsize, bitpos,
5756 value_mode, value, type,
5757 cleared, alias);
5758 }
5759 }
5760
5761 if (vector)
5762 emit_insn (GEN_FCN (icode)
5763 (target,
5764 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5765 break;
5766 }
5767
5768 default:
5769 gcc_unreachable ();
5770 }
5771 }
5772
5773 /* Store the value of EXP (an expression tree)
5774 into a subfield of TARGET which has mode MODE and occupies
5775 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5776 If MODE is VOIDmode, it means that we are storing into a bit-field.
5777
5778 Always return const0_rtx unless we have something particular to
5779 return.
5780
5781 TYPE is the type of the underlying object,
5782
5783 ALIAS_SET is the alias set for the destination. This value will
5784 (in general) be different from that for TARGET, since TARGET is a
5785 reference to the containing structure.
5786
5787 If NONTEMPORAL is true, try generating a nontemporal store. */
5788
5789 static rtx
5790 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5791 enum machine_mode mode, tree exp, tree type,
5792 alias_set_type alias_set, bool nontemporal)
5793 {
5794 if (TREE_CODE (exp) == ERROR_MARK)
5795 return const0_rtx;
5796
5797 /* If we have nothing to store, do nothing unless the expression has
5798 side-effects. */
5799 if (bitsize == 0)
5800 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5801
5802 /* If we are storing into an unaligned field of an aligned union that is
5803 in a register, we may have the mode of TARGET being an integer mode but
5804 MODE == BLKmode. In that case, get an aligned object whose size and
5805 alignment are the same as TARGET and store TARGET into it (we can avoid
5806 the store if the field being stored is the entire width of TARGET). Then
5807 call ourselves recursively to store the field into a BLKmode version of
5808 that object. Finally, load from the object into TARGET. This is not
5809 very efficient in general, but should only be slightly more expensive
5810 than the otherwise-required unaligned accesses. Perhaps this can be
5811 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5812 twice, once with emit_move_insn and once via store_field. */
5813
5814 if (mode == BLKmode
5815 && (REG_P (target) || GET_CODE (target) == SUBREG))
5816 {
5817 rtx object = assign_temp (type, 0, 1, 1);
5818 rtx blk_object = adjust_address (object, BLKmode, 0);
5819
5820 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5821 emit_move_insn (object, target);
5822
5823 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5824 nontemporal);
5825
5826 emit_move_insn (target, object);
5827
5828 /* We want to return the BLKmode version of the data. */
5829 return blk_object;
5830 }
5831
5832 if (GET_CODE (target) == CONCAT)
5833 {
5834 /* We're storing into a struct containing a single __complex. */
5835
5836 gcc_assert (!bitpos);
5837 return store_expr (exp, target, 0, nontemporal);
5838 }
5839
5840 /* If the structure is in a register or if the component
5841 is a bit field, we cannot use addressing to access it.
5842 Use bit-field techniques or SUBREG to store in it. */
5843
5844 if (mode == VOIDmode
5845 || (mode != BLKmode && ! direct_store[(int) mode]
5846 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5847 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5848 || REG_P (target)
5849 || GET_CODE (target) == SUBREG
5850 /* If the field isn't aligned enough to store as an ordinary memref,
5851 store it as a bit field. */
5852 || (mode != BLKmode
5853 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5854 || bitpos % GET_MODE_ALIGNMENT (mode))
5855 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5856 || (bitpos % BITS_PER_UNIT != 0)))
5857 /* If the RHS and field are a constant size and the size of the
5858 RHS isn't the same size as the bitfield, we must use bitfield
5859 operations. */
5860 || (bitsize >= 0
5861 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5862 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0)
5863 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
5864 decl we must use bitfield operations. */
5865 || (bitsize >= 0
5866 && TREE_CODE (exp) == MEM_REF
5867 && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
5868 && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
5869 && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0),0 ))
5870 && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
5871 {
5872 rtx temp;
5873 gimple nop_def;
5874
5875 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5876 implies a mask operation. If the precision is the same size as
5877 the field we're storing into, that mask is redundant. This is
5878 particularly common with bit field assignments generated by the
5879 C front end. */
5880 nop_def = get_def_for_expr (exp, NOP_EXPR);
5881 if (nop_def)
5882 {
5883 tree type = TREE_TYPE (exp);
5884 if (INTEGRAL_TYPE_P (type)
5885 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5886 && bitsize == TYPE_PRECISION (type))
5887 {
5888 tree op = gimple_assign_rhs1 (nop_def);
5889 type = TREE_TYPE (op);
5890 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5891 exp = op;
5892 }
5893 }
5894
5895 temp = expand_normal (exp);
5896
5897 /* If BITSIZE is narrower than the size of the type of EXP
5898 we will be narrowing TEMP. Normally, what's wanted are the
5899 low-order bits. However, if EXP's type is a record and this is
5900 big-endian machine, we want the upper BITSIZE bits. */
5901 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5902 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5903 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5904 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5905 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5906 - bitsize),
5907 NULL_RTX, 1);
5908
5909 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5910 MODE. */
5911 if (mode != VOIDmode && mode != BLKmode
5912 && mode != TYPE_MODE (TREE_TYPE (exp)))
5913 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5914
5915 /* If the modes of TEMP and TARGET are both BLKmode, both
5916 must be in memory and BITPOS must be aligned on a byte
5917 boundary. If so, we simply do a block copy. Likewise
5918 for a BLKmode-like TARGET. */
5919 if (GET_MODE (temp) == BLKmode
5920 && (GET_MODE (target) == BLKmode
5921 || (MEM_P (target)
5922 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5923 && (bitpos % BITS_PER_UNIT) == 0
5924 && (bitsize % BITS_PER_UNIT) == 0)))
5925 {
5926 gcc_assert (MEM_P (target) && MEM_P (temp)
5927 && (bitpos % BITS_PER_UNIT) == 0);
5928
5929 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5930 emit_block_move (target, temp,
5931 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5932 / BITS_PER_UNIT),
5933 BLOCK_OP_NORMAL);
5934
5935 return const0_rtx;
5936 }
5937
5938 /* Store the value in the bitfield. */
5939 store_bit_field (target, bitsize, bitpos, mode, temp);
5940
5941 return const0_rtx;
5942 }
5943 else
5944 {
5945 /* Now build a reference to just the desired component. */
5946 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5947
5948 if (to_rtx == target)
5949 to_rtx = copy_rtx (to_rtx);
5950
5951 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5952 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5953 set_mem_alias_set (to_rtx, alias_set);
5954
5955 return store_expr (exp, to_rtx, 0, nontemporal);
5956 }
5957 }
5958 \f
5959 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5960 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5961 codes and find the ultimate containing object, which we return.
5962
5963 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5964 bit position, and *PUNSIGNEDP to the signedness of the field.
5965 If the position of the field is variable, we store a tree
5966 giving the variable offset (in units) in *POFFSET.
5967 This offset is in addition to the bit position.
5968 If the position is not variable, we store 0 in *POFFSET.
5969
5970 If any of the extraction expressions is volatile,
5971 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5972
5973 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5974 Otherwise, it is a mode that can be used to access the field.
5975
5976 If the field describes a variable-sized object, *PMODE is set to
5977 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5978 this case, but the address of the object can be found.
5979
5980 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5981 look through nodes that serve as markers of a greater alignment than
5982 the one that can be deduced from the expression. These nodes make it
5983 possible for front-ends to prevent temporaries from being created by
5984 the middle-end on alignment considerations. For that purpose, the
5985 normal operating mode at high-level is to always pass FALSE so that
5986 the ultimate containing object is really returned; moreover, the
5987 associated predicate handled_component_p will always return TRUE
5988 on these nodes, thus indicating that they are essentially handled
5989 by get_inner_reference. TRUE should only be passed when the caller
5990 is scanning the expression in order to build another representation
5991 and specifically knows how to handle these nodes; as such, this is
5992 the normal operating mode in the RTL expanders. */
5993
5994 tree
5995 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5996 HOST_WIDE_INT *pbitpos, tree *poffset,
5997 enum machine_mode *pmode, int *punsignedp,
5998 int *pvolatilep, bool keep_aligning)
5999 {
6000 tree size_tree = 0;
6001 enum machine_mode mode = VOIDmode;
6002 bool blkmode_bitfield = false;
6003 tree offset = size_zero_node;
6004 double_int bit_offset = double_int_zero;
6005
6006 /* First get the mode, signedness, and size. We do this from just the
6007 outermost expression. */
6008 *pbitsize = -1;
6009 if (TREE_CODE (exp) == COMPONENT_REF)
6010 {
6011 tree field = TREE_OPERAND (exp, 1);
6012 size_tree = DECL_SIZE (field);
6013 if (!DECL_BIT_FIELD (field))
6014 mode = DECL_MODE (field);
6015 else if (DECL_MODE (field) == BLKmode)
6016 blkmode_bitfield = true;
6017 else if (TREE_THIS_VOLATILE (exp)
6018 && flag_strict_volatile_bitfields > 0)
6019 /* Volatile bitfields should be accessed in the mode of the
6020 field's type, not the mode computed based on the bit
6021 size. */
6022 mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
6023
6024 *punsignedp = DECL_UNSIGNED (field);
6025 }
6026 else if (TREE_CODE (exp) == BIT_FIELD_REF)
6027 {
6028 size_tree = TREE_OPERAND (exp, 1);
6029 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
6030 || TYPE_UNSIGNED (TREE_TYPE (exp)));
6031
6032 /* For vector types, with the correct size of access, use the mode of
6033 inner type. */
6034 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
6035 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
6036 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
6037 mode = TYPE_MODE (TREE_TYPE (exp));
6038 }
6039 else
6040 {
6041 mode = TYPE_MODE (TREE_TYPE (exp));
6042 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
6043
6044 if (mode == BLKmode)
6045 size_tree = TYPE_SIZE (TREE_TYPE (exp));
6046 else
6047 *pbitsize = GET_MODE_BITSIZE (mode);
6048 }
6049
6050 if (size_tree != 0)
6051 {
6052 if (! host_integerp (size_tree, 1))
6053 mode = BLKmode, *pbitsize = -1;
6054 else
6055 *pbitsize = tree_low_cst (size_tree, 1);
6056 }
6057
6058 /* Compute cumulative bit-offset for nested component-refs and array-refs,
6059 and find the ultimate containing object. */
6060 while (1)
6061 {
6062 switch (TREE_CODE (exp))
6063 {
6064 case BIT_FIELD_REF:
6065 bit_offset
6066 = double_int_add (bit_offset,
6067 tree_to_double_int (TREE_OPERAND (exp, 2)));
6068 break;
6069
6070 case COMPONENT_REF:
6071 {
6072 tree field = TREE_OPERAND (exp, 1);
6073 tree this_offset = component_ref_field_offset (exp);
6074
6075 /* If this field hasn't been filled in yet, don't go past it.
6076 This should only happen when folding expressions made during
6077 type construction. */
6078 if (this_offset == 0)
6079 break;
6080
6081 offset = size_binop (PLUS_EXPR, offset, this_offset);
6082 bit_offset = double_int_add (bit_offset,
6083 tree_to_double_int
6084 (DECL_FIELD_BIT_OFFSET (field)));
6085
6086 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
6087 }
6088 break;
6089
6090 case ARRAY_REF:
6091 case ARRAY_RANGE_REF:
6092 {
6093 tree index = TREE_OPERAND (exp, 1);
6094 tree low_bound = array_ref_low_bound (exp);
6095 tree unit_size = array_ref_element_size (exp);
6096
6097 /* We assume all arrays have sizes that are a multiple of a byte.
6098 First subtract the lower bound, if any, in the type of the
6099 index, then convert to sizetype and multiply by the size of
6100 the array element. */
6101 if (! integer_zerop (low_bound))
6102 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6103 index, low_bound);
6104
6105 offset = size_binop (PLUS_EXPR, offset,
6106 size_binop (MULT_EXPR,
6107 fold_convert (sizetype, index),
6108 unit_size));
6109 }
6110 break;
6111
6112 case REALPART_EXPR:
6113 break;
6114
6115 case IMAGPART_EXPR:
6116 bit_offset = double_int_add (bit_offset,
6117 uhwi_to_double_int (*pbitsize));
6118 break;
6119
6120 case VIEW_CONVERT_EXPR:
6121 if (keep_aligning && STRICT_ALIGNMENT
6122 && (TYPE_ALIGN (TREE_TYPE (exp))
6123 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6124 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6125 < BIGGEST_ALIGNMENT)
6126 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6127 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6128 goto done;
6129 break;
6130
6131 case MEM_REF:
6132 /* Hand back the decl for MEM[&decl, off]. */
6133 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
6134 {
6135 tree off = TREE_OPERAND (exp, 1);
6136 if (!integer_zerop (off))
6137 {
6138 double_int boff, coff = mem_ref_offset (exp);
6139 boff = double_int_lshift (coff,
6140 BITS_PER_UNIT == 8
6141 ? 3 : exact_log2 (BITS_PER_UNIT),
6142 HOST_BITS_PER_DOUBLE_INT, true);
6143 bit_offset = double_int_add (bit_offset, boff);
6144 }
6145 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
6146 }
6147 goto done;
6148
6149 default:
6150 goto done;
6151 }
6152
6153 /* If any reference in the chain is volatile, the effect is volatile. */
6154 if (TREE_THIS_VOLATILE (exp))
6155 *pvolatilep = 1;
6156
6157 exp = TREE_OPERAND (exp, 0);
6158 }
6159 done:
6160
6161 /* If OFFSET is constant, see if we can return the whole thing as a
6162 constant bit position. Make sure to handle overflow during
6163 this conversion. */
6164 if (host_integerp (offset, 0))
6165 {
6166 double_int tem = double_int_lshift (tree_to_double_int (offset),
6167 BITS_PER_UNIT == 8
6168 ? 3 : exact_log2 (BITS_PER_UNIT),
6169 HOST_BITS_PER_DOUBLE_INT, true);
6170 tem = double_int_add (tem, bit_offset);
6171 if (double_int_fits_in_shwi_p (tem))
6172 {
6173 *pbitpos = double_int_to_shwi (tem);
6174 *poffset = offset = NULL_TREE;
6175 }
6176 }
6177
6178 /* Otherwise, split it up. */
6179 if (offset)
6180 {
6181 *pbitpos = double_int_to_shwi (bit_offset);
6182 *poffset = offset;
6183 }
6184
6185 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6186 if (mode == VOIDmode
6187 && blkmode_bitfield
6188 && (*pbitpos % BITS_PER_UNIT) == 0
6189 && (*pbitsize % BITS_PER_UNIT) == 0)
6190 *pmode = BLKmode;
6191 else
6192 *pmode = mode;
6193
6194 return exp;
6195 }
6196
6197 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6198 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6199 EXP is marked as PACKED. */
6200
6201 bool
6202 contains_packed_reference (const_tree exp)
6203 {
6204 bool packed_p = false;
6205
6206 while (1)
6207 {
6208 switch (TREE_CODE (exp))
6209 {
6210 case COMPONENT_REF:
6211 {
6212 tree field = TREE_OPERAND (exp, 1);
6213 packed_p = DECL_PACKED (field)
6214 || TYPE_PACKED (TREE_TYPE (field))
6215 || TYPE_PACKED (TREE_TYPE (exp));
6216 if (packed_p)
6217 goto done;
6218 }
6219 break;
6220
6221 case BIT_FIELD_REF:
6222 case ARRAY_REF:
6223 case ARRAY_RANGE_REF:
6224 case REALPART_EXPR:
6225 case IMAGPART_EXPR:
6226 case VIEW_CONVERT_EXPR:
6227 break;
6228
6229 default:
6230 goto done;
6231 }
6232 exp = TREE_OPERAND (exp, 0);
6233 }
6234 done:
6235 return packed_p;
6236 }
6237
6238 /* Return a tree of sizetype representing the size, in bytes, of the element
6239 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6240
6241 tree
6242 array_ref_element_size (tree exp)
6243 {
6244 tree aligned_size = TREE_OPERAND (exp, 3);
6245 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6246 location_t loc = EXPR_LOCATION (exp);
6247
6248 /* If a size was specified in the ARRAY_REF, it's the size measured
6249 in alignment units of the element type. So multiply by that value. */
6250 if (aligned_size)
6251 {
6252 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6253 sizetype from another type of the same width and signedness. */
6254 if (TREE_TYPE (aligned_size) != sizetype)
6255 aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
6256 return size_binop_loc (loc, MULT_EXPR, aligned_size,
6257 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6258 }
6259
6260 /* Otherwise, take the size from that of the element type. Substitute
6261 any PLACEHOLDER_EXPR that we have. */
6262 else
6263 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6264 }
6265
6266 /* Return a tree representing the lower bound of the array mentioned in
6267 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6268
6269 tree
6270 array_ref_low_bound (tree exp)
6271 {
6272 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6273
6274 /* If a lower bound is specified in EXP, use it. */
6275 if (TREE_OPERAND (exp, 2))
6276 return TREE_OPERAND (exp, 2);
6277
6278 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6279 substituting for a PLACEHOLDER_EXPR as needed. */
6280 if (domain_type && TYPE_MIN_VALUE (domain_type))
6281 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6282
6283 /* Otherwise, return a zero of the appropriate type. */
6284 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6285 }
6286
6287 /* Return a tree representing the upper bound of the array mentioned in
6288 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6289
6290 tree
6291 array_ref_up_bound (tree exp)
6292 {
6293 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6294
6295 /* If there is a domain type and it has an upper bound, use it, substituting
6296 for a PLACEHOLDER_EXPR as needed. */
6297 if (domain_type && TYPE_MAX_VALUE (domain_type))
6298 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6299
6300 /* Otherwise fail. */
6301 return NULL_TREE;
6302 }
6303
6304 /* Return a tree representing the offset, in bytes, of the field referenced
6305 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6306
6307 tree
6308 component_ref_field_offset (tree exp)
6309 {
6310 tree aligned_offset = TREE_OPERAND (exp, 2);
6311 tree field = TREE_OPERAND (exp, 1);
6312 location_t loc = EXPR_LOCATION (exp);
6313
6314 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6315 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6316 value. */
6317 if (aligned_offset)
6318 {
6319 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6320 sizetype from another type of the same width and signedness. */
6321 if (TREE_TYPE (aligned_offset) != sizetype)
6322 aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
6323 return size_binop_loc (loc, MULT_EXPR, aligned_offset,
6324 size_int (DECL_OFFSET_ALIGN (field)
6325 / BITS_PER_UNIT));
6326 }
6327
6328 /* Otherwise, take the offset from that of the field. Substitute
6329 any PLACEHOLDER_EXPR that we have. */
6330 else
6331 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6332 }
6333
6334 /* Alignment in bits the TARGET of an assignment may be assumed to have. */
6335
6336 static unsigned HOST_WIDE_INT
6337 target_align (const_tree target)
6338 {
6339 /* We might have a chain of nested references with intermediate misaligning
6340 bitfields components, so need to recurse to find out. */
6341
6342 unsigned HOST_WIDE_INT this_align, outer_align;
6343
6344 switch (TREE_CODE (target))
6345 {
6346 case BIT_FIELD_REF:
6347 return 1;
6348
6349 case COMPONENT_REF:
6350 this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
6351 outer_align = target_align (TREE_OPERAND (target, 0));
6352 return MIN (this_align, outer_align);
6353
6354 case ARRAY_REF:
6355 case ARRAY_RANGE_REF:
6356 this_align = TYPE_ALIGN (TREE_TYPE (target));
6357 outer_align = target_align (TREE_OPERAND (target, 0));
6358 return MIN (this_align, outer_align);
6359
6360 CASE_CONVERT:
6361 case NON_LVALUE_EXPR:
6362 case VIEW_CONVERT_EXPR:
6363 this_align = TYPE_ALIGN (TREE_TYPE (target));
6364 outer_align = target_align (TREE_OPERAND (target, 0));
6365 return MAX (this_align, outer_align);
6366
6367 default:
6368 return TYPE_ALIGN (TREE_TYPE (target));
6369 }
6370 }
6371
6372 \f
6373 /* Given an rtx VALUE that may contain additions and multiplications, return
6374 an equivalent value that just refers to a register, memory, or constant.
6375 This is done by generating instructions to perform the arithmetic and
6376 returning a pseudo-register containing the value.
6377
6378 The returned value may be a REG, SUBREG, MEM or constant. */
6379
6380 rtx
6381 force_operand (rtx value, rtx target)
6382 {
6383 rtx op1, op2;
6384 /* Use subtarget as the target for operand 0 of a binary operation. */
6385 rtx subtarget = get_subtarget (target);
6386 enum rtx_code code = GET_CODE (value);
6387
6388 /* Check for subreg applied to an expression produced by loop optimizer. */
6389 if (code == SUBREG
6390 && !REG_P (SUBREG_REG (value))
6391 && !MEM_P (SUBREG_REG (value)))
6392 {
6393 value
6394 = simplify_gen_subreg (GET_MODE (value),
6395 force_reg (GET_MODE (SUBREG_REG (value)),
6396 force_operand (SUBREG_REG (value),
6397 NULL_RTX)),
6398 GET_MODE (SUBREG_REG (value)),
6399 SUBREG_BYTE (value));
6400 code = GET_CODE (value);
6401 }
6402
6403 /* Check for a PIC address load. */
6404 if ((code == PLUS || code == MINUS)
6405 && XEXP (value, 0) == pic_offset_table_rtx
6406 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6407 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6408 || GET_CODE (XEXP (value, 1)) == CONST))
6409 {
6410 if (!subtarget)
6411 subtarget = gen_reg_rtx (GET_MODE (value));
6412 emit_move_insn (subtarget, value);
6413 return subtarget;
6414 }
6415
6416 if (ARITHMETIC_P (value))
6417 {
6418 op2 = XEXP (value, 1);
6419 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6420 subtarget = 0;
6421 if (code == MINUS && CONST_INT_P (op2))
6422 {
6423 code = PLUS;
6424 op2 = negate_rtx (GET_MODE (value), op2);
6425 }
6426
6427 /* Check for an addition with OP2 a constant integer and our first
6428 operand a PLUS of a virtual register and something else. In that
6429 case, we want to emit the sum of the virtual register and the
6430 constant first and then add the other value. This allows virtual
6431 register instantiation to simply modify the constant rather than
6432 creating another one around this addition. */
6433 if (code == PLUS && CONST_INT_P (op2)
6434 && GET_CODE (XEXP (value, 0)) == PLUS
6435 && REG_P (XEXP (XEXP (value, 0), 0))
6436 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6437 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6438 {
6439 rtx temp = expand_simple_binop (GET_MODE (value), code,
6440 XEXP (XEXP (value, 0), 0), op2,
6441 subtarget, 0, OPTAB_LIB_WIDEN);
6442 return expand_simple_binop (GET_MODE (value), code, temp,
6443 force_operand (XEXP (XEXP (value,
6444 0), 1), 0),
6445 target, 0, OPTAB_LIB_WIDEN);
6446 }
6447
6448 op1 = force_operand (XEXP (value, 0), subtarget);
6449 op2 = force_operand (op2, NULL_RTX);
6450 switch (code)
6451 {
6452 case MULT:
6453 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6454 case DIV:
6455 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6456 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6457 target, 1, OPTAB_LIB_WIDEN);
6458 else
6459 return expand_divmod (0,
6460 FLOAT_MODE_P (GET_MODE (value))
6461 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6462 GET_MODE (value), op1, op2, target, 0);
6463 case MOD:
6464 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6465 target, 0);
6466 case UDIV:
6467 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6468 target, 1);
6469 case UMOD:
6470 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6471 target, 1);
6472 case ASHIFTRT:
6473 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6474 target, 0, OPTAB_LIB_WIDEN);
6475 default:
6476 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6477 target, 1, OPTAB_LIB_WIDEN);
6478 }
6479 }
6480 if (UNARY_P (value))
6481 {
6482 if (!target)
6483 target = gen_reg_rtx (GET_MODE (value));
6484 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6485 switch (code)
6486 {
6487 case ZERO_EXTEND:
6488 case SIGN_EXTEND:
6489 case TRUNCATE:
6490 case FLOAT_EXTEND:
6491 case FLOAT_TRUNCATE:
6492 convert_move (target, op1, code == ZERO_EXTEND);
6493 return target;
6494
6495 case FIX:
6496 case UNSIGNED_FIX:
6497 expand_fix (target, op1, code == UNSIGNED_FIX);
6498 return target;
6499
6500 case FLOAT:
6501 case UNSIGNED_FLOAT:
6502 expand_float (target, op1, code == UNSIGNED_FLOAT);
6503 return target;
6504
6505 default:
6506 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6507 }
6508 }
6509
6510 #ifdef INSN_SCHEDULING
6511 /* On machines that have insn scheduling, we want all memory reference to be
6512 explicit, so we need to deal with such paradoxical SUBREGs. */
6513 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6514 && (GET_MODE_SIZE (GET_MODE (value))
6515 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6516 value
6517 = simplify_gen_subreg (GET_MODE (value),
6518 force_reg (GET_MODE (SUBREG_REG (value)),
6519 force_operand (SUBREG_REG (value),
6520 NULL_RTX)),
6521 GET_MODE (SUBREG_REG (value)),
6522 SUBREG_BYTE (value));
6523 #endif
6524
6525 return value;
6526 }
6527 \f
6528 /* Subroutine of expand_expr: return nonzero iff there is no way that
6529 EXP can reference X, which is being modified. TOP_P is nonzero if this
6530 call is going to be used to determine whether we need a temporary
6531 for EXP, as opposed to a recursive call to this function.
6532
6533 It is always safe for this routine to return zero since it merely
6534 searches for optimization opportunities. */
6535
6536 int
6537 safe_from_p (const_rtx x, tree exp, int top_p)
6538 {
6539 rtx exp_rtl = 0;
6540 int i, nops;
6541
6542 if (x == 0
6543 /* If EXP has varying size, we MUST use a target since we currently
6544 have no way of allocating temporaries of variable size
6545 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6546 So we assume here that something at a higher level has prevented a
6547 clash. This is somewhat bogus, but the best we can do. Only
6548 do this when X is BLKmode and when we are at the top level. */
6549 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6550 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6551 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6552 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6553 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6554 != INTEGER_CST)
6555 && GET_MODE (x) == BLKmode)
6556 /* If X is in the outgoing argument area, it is always safe. */
6557 || (MEM_P (x)
6558 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6559 || (GET_CODE (XEXP (x, 0)) == PLUS
6560 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6561 return 1;
6562
6563 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6564 find the underlying pseudo. */
6565 if (GET_CODE (x) == SUBREG)
6566 {
6567 x = SUBREG_REG (x);
6568 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6569 return 0;
6570 }
6571
6572 /* Now look at our tree code and possibly recurse. */
6573 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6574 {
6575 case tcc_declaration:
6576 exp_rtl = DECL_RTL_IF_SET (exp);
6577 break;
6578
6579 case tcc_constant:
6580 return 1;
6581
6582 case tcc_exceptional:
6583 if (TREE_CODE (exp) == TREE_LIST)
6584 {
6585 while (1)
6586 {
6587 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6588 return 0;
6589 exp = TREE_CHAIN (exp);
6590 if (!exp)
6591 return 1;
6592 if (TREE_CODE (exp) != TREE_LIST)
6593 return safe_from_p (x, exp, 0);
6594 }
6595 }
6596 else if (TREE_CODE (exp) == CONSTRUCTOR)
6597 {
6598 constructor_elt *ce;
6599 unsigned HOST_WIDE_INT idx;
6600
6601 FOR_EACH_VEC_ELT (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce)
6602 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6603 || !safe_from_p (x, ce->value, 0))
6604 return 0;
6605 return 1;
6606 }
6607 else if (TREE_CODE (exp) == ERROR_MARK)
6608 return 1; /* An already-visited SAVE_EXPR? */
6609 else
6610 return 0;
6611
6612 case tcc_statement:
6613 /* The only case we look at here is the DECL_INITIAL inside a
6614 DECL_EXPR. */
6615 return (TREE_CODE (exp) != DECL_EXPR
6616 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6617 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6618 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6619
6620 case tcc_binary:
6621 case tcc_comparison:
6622 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6623 return 0;
6624 /* Fall through. */
6625
6626 case tcc_unary:
6627 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6628
6629 case tcc_expression:
6630 case tcc_reference:
6631 case tcc_vl_exp:
6632 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6633 the expression. If it is set, we conflict iff we are that rtx or
6634 both are in memory. Otherwise, we check all operands of the
6635 expression recursively. */
6636
6637 switch (TREE_CODE (exp))
6638 {
6639 case ADDR_EXPR:
6640 /* If the operand is static or we are static, we can't conflict.
6641 Likewise if we don't conflict with the operand at all. */
6642 if (staticp (TREE_OPERAND (exp, 0))
6643 || TREE_STATIC (exp)
6644 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6645 return 1;
6646
6647 /* Otherwise, the only way this can conflict is if we are taking
6648 the address of a DECL a that address if part of X, which is
6649 very rare. */
6650 exp = TREE_OPERAND (exp, 0);
6651 if (DECL_P (exp))
6652 {
6653 if (!DECL_RTL_SET_P (exp)
6654 || !MEM_P (DECL_RTL (exp)))
6655 return 0;
6656 else
6657 exp_rtl = XEXP (DECL_RTL (exp), 0);
6658 }
6659 break;
6660
6661 case MEM_REF:
6662 if (MEM_P (x)
6663 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6664 get_alias_set (exp)))
6665 return 0;
6666 break;
6667
6668 case CALL_EXPR:
6669 /* Assume that the call will clobber all hard registers and
6670 all of memory. */
6671 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6672 || MEM_P (x))
6673 return 0;
6674 break;
6675
6676 case WITH_CLEANUP_EXPR:
6677 case CLEANUP_POINT_EXPR:
6678 /* Lowered by gimplify.c. */
6679 gcc_unreachable ();
6680
6681 case SAVE_EXPR:
6682 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6683
6684 default:
6685 break;
6686 }
6687
6688 /* If we have an rtx, we do not need to scan our operands. */
6689 if (exp_rtl)
6690 break;
6691
6692 nops = TREE_OPERAND_LENGTH (exp);
6693 for (i = 0; i < nops; i++)
6694 if (TREE_OPERAND (exp, i) != 0
6695 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6696 return 0;
6697
6698 break;
6699
6700 case tcc_type:
6701 /* Should never get a type here. */
6702 gcc_unreachable ();
6703 }
6704
6705 /* If we have an rtl, find any enclosed object. Then see if we conflict
6706 with it. */
6707 if (exp_rtl)
6708 {
6709 if (GET_CODE (exp_rtl) == SUBREG)
6710 {
6711 exp_rtl = SUBREG_REG (exp_rtl);
6712 if (REG_P (exp_rtl)
6713 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6714 return 0;
6715 }
6716
6717 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6718 are memory and they conflict. */
6719 return ! (rtx_equal_p (x, exp_rtl)
6720 || (MEM_P (x) && MEM_P (exp_rtl)
6721 && true_dependence (exp_rtl, VOIDmode, x,
6722 rtx_addr_varies_p)));
6723 }
6724
6725 /* If we reach here, it is safe. */
6726 return 1;
6727 }
6728
6729 \f
6730 /* Return the highest power of two that EXP is known to be a multiple of.
6731 This is used in updating alignment of MEMs in array references. */
6732
6733 unsigned HOST_WIDE_INT
6734 highest_pow2_factor (const_tree exp)
6735 {
6736 unsigned HOST_WIDE_INT c0, c1;
6737
6738 switch (TREE_CODE (exp))
6739 {
6740 case INTEGER_CST:
6741 /* We can find the lowest bit that's a one. If the low
6742 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6743 We need to handle this case since we can find it in a COND_EXPR,
6744 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6745 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6746 later ICE. */
6747 if (TREE_OVERFLOW (exp))
6748 return BIGGEST_ALIGNMENT;
6749 else
6750 {
6751 /* Note: tree_low_cst is intentionally not used here,
6752 we don't care about the upper bits. */
6753 c0 = TREE_INT_CST_LOW (exp);
6754 c0 &= -c0;
6755 return c0 ? c0 : BIGGEST_ALIGNMENT;
6756 }
6757 break;
6758
6759 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6760 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6761 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6762 return MIN (c0, c1);
6763
6764 case MULT_EXPR:
6765 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6766 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6767 return c0 * c1;
6768
6769 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6770 case CEIL_DIV_EXPR:
6771 if (integer_pow2p (TREE_OPERAND (exp, 1))
6772 && host_integerp (TREE_OPERAND (exp, 1), 1))
6773 {
6774 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6775 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6776 return MAX (1, c0 / c1);
6777 }
6778 break;
6779
6780 case BIT_AND_EXPR:
6781 /* The highest power of two of a bit-and expression is the maximum of
6782 that of its operands. We typically get here for a complex LHS and
6783 a constant negative power of two on the RHS to force an explicit
6784 alignment, so don't bother looking at the LHS. */
6785 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6786
6787 CASE_CONVERT:
6788 case SAVE_EXPR:
6789 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6790
6791 case COMPOUND_EXPR:
6792 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6793
6794 case COND_EXPR:
6795 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6796 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6797 return MIN (c0, c1);
6798
6799 default:
6800 break;
6801 }
6802
6803 return 1;
6804 }
6805
6806 /* Similar, except that the alignment requirements of TARGET are
6807 taken into account. Assume it is at least as aligned as its
6808 type, unless it is a COMPONENT_REF in which case the layout of
6809 the structure gives the alignment. */
6810
6811 static unsigned HOST_WIDE_INT
6812 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6813 {
6814 unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
6815 unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
6816
6817 return MAX (factor, talign);
6818 }
6819 \f
6820 /* Subroutine of expand_expr. Expand the two operands of a binary
6821 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6822 The value may be stored in TARGET if TARGET is nonzero. The
6823 MODIFIER argument is as documented by expand_expr. */
6824
6825 static void
6826 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6827 enum expand_modifier modifier)
6828 {
6829 if (! safe_from_p (target, exp1, 1))
6830 target = 0;
6831 if (operand_equal_p (exp0, exp1, 0))
6832 {
6833 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6834 *op1 = copy_rtx (*op0);
6835 }
6836 else
6837 {
6838 /* If we need to preserve evaluation order, copy exp0 into its own
6839 temporary variable so that it can't be clobbered by exp1. */
6840 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6841 exp0 = save_expr (exp0);
6842 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6843 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6844 }
6845 }
6846
6847 \f
6848 /* Return a MEM that contains constant EXP. DEFER is as for
6849 output_constant_def and MODIFIER is as for expand_expr. */
6850
6851 static rtx
6852 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6853 {
6854 rtx mem;
6855
6856 mem = output_constant_def (exp, defer);
6857 if (modifier != EXPAND_INITIALIZER)
6858 mem = use_anchored_address (mem);
6859 return mem;
6860 }
6861
6862 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6863 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6864
6865 static rtx
6866 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6867 enum expand_modifier modifier, addr_space_t as)
6868 {
6869 rtx result, subtarget;
6870 tree inner, offset;
6871 HOST_WIDE_INT bitsize, bitpos;
6872 int volatilep, unsignedp;
6873 enum machine_mode mode1;
6874
6875 /* If we are taking the address of a constant and are at the top level,
6876 we have to use output_constant_def since we can't call force_const_mem
6877 at top level. */
6878 /* ??? This should be considered a front-end bug. We should not be
6879 generating ADDR_EXPR of something that isn't an LVALUE. The only
6880 exception here is STRING_CST. */
6881 if (CONSTANT_CLASS_P (exp))
6882 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6883
6884 /* Everything must be something allowed by is_gimple_addressable. */
6885 switch (TREE_CODE (exp))
6886 {
6887 case INDIRECT_REF:
6888 /* This case will happen via recursion for &a->b. */
6889 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6890
6891 case MEM_REF:
6892 {
6893 tree tem = TREE_OPERAND (exp, 0);
6894 if (!integer_zerop (TREE_OPERAND (exp, 1)))
6895 tem = build2 (POINTER_PLUS_EXPR, TREE_TYPE (TREE_OPERAND (exp, 1)),
6896 tem,
6897 double_int_to_tree (sizetype, mem_ref_offset (exp)));
6898 return expand_expr (tem, target, tmode, modifier);
6899 }
6900
6901 case CONST_DECL:
6902 /* Expand the initializer like constants above. */
6903 return XEXP (expand_expr_constant (DECL_INITIAL (exp), 0, modifier), 0);
6904
6905 case REALPART_EXPR:
6906 /* The real part of the complex number is always first, therefore
6907 the address is the same as the address of the parent object. */
6908 offset = 0;
6909 bitpos = 0;
6910 inner = TREE_OPERAND (exp, 0);
6911 break;
6912
6913 case IMAGPART_EXPR:
6914 /* The imaginary part of the complex number is always second.
6915 The expression is therefore always offset by the size of the
6916 scalar type. */
6917 offset = 0;
6918 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6919 inner = TREE_OPERAND (exp, 0);
6920 break;
6921
6922 default:
6923 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6924 expand_expr, as that can have various side effects; LABEL_DECLs for
6925 example, may not have their DECL_RTL set yet. Expand the rtl of
6926 CONSTRUCTORs too, which should yield a memory reference for the
6927 constructor's contents. Assume language specific tree nodes can
6928 be expanded in some interesting way. */
6929 gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
6930 if (DECL_P (exp)
6931 || TREE_CODE (exp) == CONSTRUCTOR
6932 || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
6933 {
6934 result = expand_expr (exp, target, tmode,
6935 modifier == EXPAND_INITIALIZER
6936 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6937
6938 /* If the DECL isn't in memory, then the DECL wasn't properly
6939 marked TREE_ADDRESSABLE, which will be either a front-end
6940 or a tree optimizer bug. */
6941 gcc_assert (MEM_P (result));
6942 result = XEXP (result, 0);
6943
6944 /* ??? Is this needed anymore? */
6945 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6946 {
6947 assemble_external (exp);
6948 TREE_USED (exp) = 1;
6949 }
6950
6951 if (modifier != EXPAND_INITIALIZER
6952 && modifier != EXPAND_CONST_ADDRESS)
6953 result = force_operand (result, target);
6954 return result;
6955 }
6956
6957 /* Pass FALSE as the last argument to get_inner_reference although
6958 we are expanding to RTL. The rationale is that we know how to
6959 handle "aligning nodes" here: we can just bypass them because
6960 they won't change the final object whose address will be returned
6961 (they actually exist only for that purpose). */
6962 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6963 &mode1, &unsignedp, &volatilep, false);
6964 break;
6965 }
6966
6967 /* We must have made progress. */
6968 gcc_assert (inner != exp);
6969
6970 subtarget = offset || bitpos ? NULL_RTX : target;
6971 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6972 inner alignment, force the inner to be sufficiently aligned. */
6973 if (CONSTANT_CLASS_P (inner)
6974 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6975 {
6976 inner = copy_node (inner);
6977 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6978 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6979 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6980 }
6981 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
6982
6983 if (offset)
6984 {
6985 rtx tmp;
6986
6987 if (modifier != EXPAND_NORMAL)
6988 result = force_operand (result, NULL);
6989 tmp = expand_expr (offset, NULL_RTX, tmode,
6990 modifier == EXPAND_INITIALIZER
6991 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6992
6993 result = convert_memory_address_addr_space (tmode, result, as);
6994 tmp = convert_memory_address_addr_space (tmode, tmp, as);
6995
6996 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6997 result = gen_rtx_PLUS (tmode, result, tmp);
6998 else
6999 {
7000 subtarget = bitpos ? NULL_RTX : target;
7001 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
7002 1, OPTAB_LIB_WIDEN);
7003 }
7004 }
7005
7006 if (bitpos)
7007 {
7008 /* Someone beforehand should have rejected taking the address
7009 of such an object. */
7010 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
7011
7012 result = plus_constant (result, bitpos / BITS_PER_UNIT);
7013 if (modifier < EXPAND_SUM)
7014 result = force_operand (result, target);
7015 }
7016
7017 return result;
7018 }
7019
7020 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
7021 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
7022
7023 static rtx
7024 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
7025 enum expand_modifier modifier)
7026 {
7027 addr_space_t as = ADDR_SPACE_GENERIC;
7028 enum machine_mode address_mode = Pmode;
7029 enum machine_mode pointer_mode = ptr_mode;
7030 enum machine_mode rmode;
7031 rtx result;
7032
7033 /* Target mode of VOIDmode says "whatever's natural". */
7034 if (tmode == VOIDmode)
7035 tmode = TYPE_MODE (TREE_TYPE (exp));
7036
7037 if (POINTER_TYPE_P (TREE_TYPE (exp)))
7038 {
7039 as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
7040 address_mode = targetm.addr_space.address_mode (as);
7041 pointer_mode = targetm.addr_space.pointer_mode (as);
7042 }
7043
7044 /* We can get called with some Weird Things if the user does silliness
7045 like "(short) &a". In that case, convert_memory_address won't do
7046 the right thing, so ignore the given target mode. */
7047 if (tmode != address_mode && tmode != pointer_mode)
7048 tmode = address_mode;
7049
7050 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
7051 tmode, modifier, as);
7052
7053 /* Despite expand_expr claims concerning ignoring TMODE when not
7054 strictly convenient, stuff breaks if we don't honor it. Note
7055 that combined with the above, we only do this for pointer modes. */
7056 rmode = GET_MODE (result);
7057 if (rmode == VOIDmode)
7058 rmode = tmode;
7059 if (rmode != tmode)
7060 result = convert_memory_address_addr_space (tmode, result, as);
7061
7062 return result;
7063 }
7064
7065 /* Generate code for computing CONSTRUCTOR EXP.
7066 An rtx for the computed value is returned. If AVOID_TEMP_MEM
7067 is TRUE, instead of creating a temporary variable in memory
7068 NULL is returned and the caller needs to handle it differently. */
7069
7070 static rtx
7071 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
7072 bool avoid_temp_mem)
7073 {
7074 tree type = TREE_TYPE (exp);
7075 enum machine_mode mode = TYPE_MODE (type);
7076
7077 /* Try to avoid creating a temporary at all. This is possible
7078 if all of the initializer is zero.
7079 FIXME: try to handle all [0..255] initializers we can handle
7080 with memset. */
7081 if (TREE_STATIC (exp)
7082 && !TREE_ADDRESSABLE (exp)
7083 && target != 0 && mode == BLKmode
7084 && all_zeros_p (exp))
7085 {
7086 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7087 return target;
7088 }
7089
7090 /* All elts simple constants => refer to a constant in memory. But
7091 if this is a non-BLKmode mode, let it store a field at a time
7092 since that should make a CONST_INT or CONST_DOUBLE when we
7093 fold. Likewise, if we have a target we can use, it is best to
7094 store directly into the target unless the type is large enough
7095 that memcpy will be used. If we are making an initializer and
7096 all operands are constant, put it in memory as well.
7097
7098 FIXME: Avoid trying to fill vector constructors piece-meal.
7099 Output them with output_constant_def below unless we're sure
7100 they're zeros. This should go away when vector initializers
7101 are treated like VECTOR_CST instead of arrays. */
7102 if ((TREE_STATIC (exp)
7103 && ((mode == BLKmode
7104 && ! (target != 0 && safe_from_p (target, exp, 1)))
7105 || TREE_ADDRESSABLE (exp)
7106 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7107 && (! MOVE_BY_PIECES_P
7108 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7109 TYPE_ALIGN (type)))
7110 && ! mostly_zeros_p (exp))))
7111 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
7112 && TREE_CONSTANT (exp)))
7113 {
7114 rtx constructor;
7115
7116 if (avoid_temp_mem)
7117 return NULL_RTX;
7118
7119 constructor = expand_expr_constant (exp, 1, modifier);
7120
7121 if (modifier != EXPAND_CONST_ADDRESS
7122 && modifier != EXPAND_INITIALIZER
7123 && modifier != EXPAND_SUM)
7124 constructor = validize_mem (constructor);
7125
7126 return constructor;
7127 }
7128
7129 /* Handle calls that pass values in multiple non-contiguous
7130 locations. The Irix 6 ABI has examples of this. */
7131 if (target == 0 || ! safe_from_p (target, exp, 1)
7132 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7133 {
7134 if (avoid_temp_mem)
7135 return NULL_RTX;
7136
7137 target
7138 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7139 | (TREE_READONLY (exp)
7140 * TYPE_QUAL_CONST))),
7141 0, TREE_ADDRESSABLE (exp), 1);
7142 }
7143
7144 store_constructor (exp, target, 0, int_expr_size (exp));
7145 return target;
7146 }
7147
7148
7149 /* expand_expr: generate code for computing expression EXP.
7150 An rtx for the computed value is returned. The value is never null.
7151 In the case of a void EXP, const0_rtx is returned.
7152
7153 The value may be stored in TARGET if TARGET is nonzero.
7154 TARGET is just a suggestion; callers must assume that
7155 the rtx returned may not be the same as TARGET.
7156
7157 If TARGET is CONST0_RTX, it means that the value will be ignored.
7158
7159 If TMODE is not VOIDmode, it suggests generating the
7160 result in mode TMODE. But this is done only when convenient.
7161 Otherwise, TMODE is ignored and the value generated in its natural mode.
7162 TMODE is just a suggestion; callers must assume that
7163 the rtx returned may not have mode TMODE.
7164
7165 Note that TARGET may have neither TMODE nor MODE. In that case, it
7166 probably will not be used.
7167
7168 If MODIFIER is EXPAND_SUM then when EXP is an addition
7169 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7170 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7171 products as above, or REG or MEM, or constant.
7172 Ordinarily in such cases we would output mul or add instructions
7173 and then return a pseudo reg containing the sum.
7174
7175 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7176 it also marks a label as absolutely required (it can't be dead).
7177 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7178 This is used for outputting expressions used in initializers.
7179
7180 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7181 with a constant address even if that address is not normally legitimate.
7182 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7183
7184 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7185 a call parameter. Such targets require special care as we haven't yet
7186 marked TARGET so that it's safe from being trashed by libcalls. We
7187 don't want to use TARGET for anything but the final result;
7188 Intermediate values must go elsewhere. Additionally, calls to
7189 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7190
7191 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7192 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7193 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7194 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7195 recursively. */
7196
7197 rtx
7198 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7199 enum expand_modifier modifier, rtx *alt_rtl)
7200 {
7201 rtx ret;
7202
7203 /* Handle ERROR_MARK before anybody tries to access its type. */
7204 if (TREE_CODE (exp) == ERROR_MARK
7205 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7206 {
7207 ret = CONST0_RTX (tmode);
7208 return ret ? ret : const0_rtx;
7209 }
7210
7211 /* If this is an expression of some kind and it has an associated line
7212 number, then emit the line number before expanding the expression.
7213
7214 We need to save and restore the file and line information so that
7215 errors discovered during expansion are emitted with the right
7216 information. It would be better of the diagnostic routines
7217 used the file/line information embedded in the tree nodes rather
7218 than globals. */
7219 if (cfun && EXPR_HAS_LOCATION (exp))
7220 {
7221 location_t saved_location = input_location;
7222 location_t saved_curr_loc = get_curr_insn_source_location ();
7223 tree saved_block = get_curr_insn_block ();
7224 input_location = EXPR_LOCATION (exp);
7225 set_curr_insn_source_location (input_location);
7226
7227 /* Record where the insns produced belong. */
7228 set_curr_insn_block (TREE_BLOCK (exp));
7229
7230 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7231
7232 input_location = saved_location;
7233 set_curr_insn_block (saved_block);
7234 set_curr_insn_source_location (saved_curr_loc);
7235 }
7236 else
7237 {
7238 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7239 }
7240
7241 return ret;
7242 }
7243
7244 rtx
7245 expand_expr_real_2 (sepops ops, rtx target, enum machine_mode tmode,
7246 enum expand_modifier modifier)
7247 {
7248 rtx op0, op1, op2, temp;
7249 tree type;
7250 int unsignedp;
7251 enum machine_mode mode;
7252 enum tree_code code = ops->code;
7253 optab this_optab;
7254 rtx subtarget, original_target;
7255 int ignore;
7256 bool reduce_bit_field;
7257 location_t loc = ops->location;
7258 tree treeop0, treeop1, treeop2;
7259 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7260 ? reduce_to_bit_field_precision ((expr), \
7261 target, \
7262 type) \
7263 : (expr))
7264
7265 type = ops->type;
7266 mode = TYPE_MODE (type);
7267 unsignedp = TYPE_UNSIGNED (type);
7268
7269 treeop0 = ops->op0;
7270 treeop1 = ops->op1;
7271 treeop2 = ops->op2;
7272
7273 /* We should be called only on simple (binary or unary) expressions,
7274 exactly those that are valid in gimple expressions that aren't
7275 GIMPLE_SINGLE_RHS (or invalid). */
7276 gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
7277 || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
7278 || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
7279
7280 ignore = (target == const0_rtx
7281 || ((CONVERT_EXPR_CODE_P (code)
7282 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7283 && TREE_CODE (type) == VOID_TYPE));
7284
7285 /* We should be called only if we need the result. */
7286 gcc_assert (!ignore);
7287
7288 /* An operation in what may be a bit-field type needs the
7289 result to be reduced to the precision of the bit-field type,
7290 which is narrower than that of the type's mode. */
7291 reduce_bit_field = (TREE_CODE (type) == INTEGER_TYPE
7292 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7293
7294 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7295 target = 0;
7296
7297 /* Use subtarget as the target for operand 0 of a binary operation. */
7298 subtarget = get_subtarget (target);
7299 original_target = target;
7300
7301 switch (code)
7302 {
7303 case NON_LVALUE_EXPR:
7304 case PAREN_EXPR:
7305 CASE_CONVERT:
7306 if (treeop0 == error_mark_node)
7307 return const0_rtx;
7308
7309 if (TREE_CODE (type) == UNION_TYPE)
7310 {
7311 tree valtype = TREE_TYPE (treeop0);
7312
7313 /* If both input and output are BLKmode, this conversion isn't doing
7314 anything except possibly changing memory attribute. */
7315 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7316 {
7317 rtx result = expand_expr (treeop0, target, tmode,
7318 modifier);
7319
7320 result = copy_rtx (result);
7321 set_mem_attributes (result, type, 0);
7322 return result;
7323 }
7324
7325 if (target == 0)
7326 {
7327 if (TYPE_MODE (type) != BLKmode)
7328 target = gen_reg_rtx (TYPE_MODE (type));
7329 else
7330 target = assign_temp (type, 0, 1, 1);
7331 }
7332
7333 if (MEM_P (target))
7334 /* Store data into beginning of memory target. */
7335 store_expr (treeop0,
7336 adjust_address (target, TYPE_MODE (valtype), 0),
7337 modifier == EXPAND_STACK_PARM,
7338 false);
7339
7340 else
7341 {
7342 gcc_assert (REG_P (target));
7343
7344 /* Store this field into a union of the proper type. */
7345 store_field (target,
7346 MIN ((int_size_in_bytes (TREE_TYPE
7347 (treeop0))
7348 * BITS_PER_UNIT),
7349 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7350 0, TYPE_MODE (valtype), treeop0,
7351 type, 0, false);
7352 }
7353
7354 /* Return the entire union. */
7355 return target;
7356 }
7357
7358 if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
7359 {
7360 op0 = expand_expr (treeop0, target, VOIDmode,
7361 modifier);
7362
7363 /* If the signedness of the conversion differs and OP0 is
7364 a promoted SUBREG, clear that indication since we now
7365 have to do the proper extension. */
7366 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
7367 && GET_CODE (op0) == SUBREG)
7368 SUBREG_PROMOTED_VAR_P (op0) = 0;
7369
7370 return REDUCE_BIT_FIELD (op0);
7371 }
7372
7373 op0 = expand_expr (treeop0, NULL_RTX, mode,
7374 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
7375 if (GET_MODE (op0) == mode)
7376 ;
7377
7378 /* If OP0 is a constant, just convert it into the proper mode. */
7379 else if (CONSTANT_P (op0))
7380 {
7381 tree inner_type = TREE_TYPE (treeop0);
7382 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7383
7384 if (modifier == EXPAND_INITIALIZER)
7385 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7386 subreg_lowpart_offset (mode,
7387 inner_mode));
7388 else
7389 op0= convert_modes (mode, inner_mode, op0,
7390 TYPE_UNSIGNED (inner_type));
7391 }
7392
7393 else if (modifier == EXPAND_INITIALIZER)
7394 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7395
7396 else if (target == 0)
7397 op0 = convert_to_mode (mode, op0,
7398 TYPE_UNSIGNED (TREE_TYPE
7399 (treeop0)));
7400 else
7401 {
7402 convert_move (target, op0,
7403 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7404 op0 = target;
7405 }
7406
7407 return REDUCE_BIT_FIELD (op0);
7408
7409 case ADDR_SPACE_CONVERT_EXPR:
7410 {
7411 tree treeop0_type = TREE_TYPE (treeop0);
7412 addr_space_t as_to;
7413 addr_space_t as_from;
7414
7415 gcc_assert (POINTER_TYPE_P (type));
7416 gcc_assert (POINTER_TYPE_P (treeop0_type));
7417
7418 as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
7419 as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
7420
7421 /* Conversions between pointers to the same address space should
7422 have been implemented via CONVERT_EXPR / NOP_EXPR. */
7423 gcc_assert (as_to != as_from);
7424
7425 /* Ask target code to handle conversion between pointers
7426 to overlapping address spaces. */
7427 if (targetm.addr_space.subset_p (as_to, as_from)
7428 || targetm.addr_space.subset_p (as_from, as_to))
7429 {
7430 op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
7431 op0 = targetm.addr_space.convert (op0, treeop0_type, type);
7432 gcc_assert (op0);
7433 return op0;
7434 }
7435
7436 /* For disjoint address spaces, converting anything but
7437 a null pointer invokes undefined behaviour. We simply
7438 always return a null pointer here. */
7439 return CONST0_RTX (mode);
7440 }
7441
7442 case POINTER_PLUS_EXPR:
7443 /* Even though the sizetype mode and the pointer's mode can be different
7444 expand is able to handle this correctly and get the correct result out
7445 of the PLUS_EXPR code. */
7446 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
7447 if sizetype precision is smaller than pointer precision. */
7448 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
7449 treeop1 = fold_convert_loc (loc, type,
7450 fold_convert_loc (loc, ssizetype,
7451 treeop1));
7452 case PLUS_EXPR:
7453 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7454 something else, make sure we add the register to the constant and
7455 then to the other thing. This case can occur during strength
7456 reduction and doing it this way will produce better code if the
7457 frame pointer or argument pointer is eliminated.
7458
7459 fold-const.c will ensure that the constant is always in the inner
7460 PLUS_EXPR, so the only case we need to do anything about is if
7461 sp, ap, or fp is our second argument, in which case we must swap
7462 the innermost first argument and our second argument. */
7463
7464 if (TREE_CODE (treeop0) == PLUS_EXPR
7465 && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
7466 && TREE_CODE (treeop1) == VAR_DECL
7467 && (DECL_RTL (treeop1) == frame_pointer_rtx
7468 || DECL_RTL (treeop1) == stack_pointer_rtx
7469 || DECL_RTL (treeop1) == arg_pointer_rtx))
7470 {
7471 tree t = treeop1;
7472
7473 treeop1 = TREE_OPERAND (treeop0, 0);
7474 TREE_OPERAND (treeop0, 0) = t;
7475 }
7476
7477 /* If the result is to be ptr_mode and we are adding an integer to
7478 something, we might be forming a constant. So try to use
7479 plus_constant. If it produces a sum and we can't accept it,
7480 use force_operand. This allows P = &ARR[const] to generate
7481 efficient code on machines where a SYMBOL_REF is not a valid
7482 address.
7483
7484 If this is an EXPAND_SUM call, always return the sum. */
7485 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7486 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7487 {
7488 if (modifier == EXPAND_STACK_PARM)
7489 target = 0;
7490 if (TREE_CODE (treeop0) == INTEGER_CST
7491 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7492 && TREE_CONSTANT (treeop1))
7493 {
7494 rtx constant_part;
7495
7496 op1 = expand_expr (treeop1, subtarget, VOIDmode,
7497 EXPAND_SUM);
7498 /* Use immed_double_const to ensure that the constant is
7499 truncated according to the mode of OP1, then sign extended
7500 to a HOST_WIDE_INT. Using the constant directly can result
7501 in non-canonical RTL in a 64x32 cross compile. */
7502 constant_part
7503 = immed_double_const (TREE_INT_CST_LOW (treeop0),
7504 (HOST_WIDE_INT) 0,
7505 TYPE_MODE (TREE_TYPE (treeop1)));
7506 op1 = plus_constant (op1, INTVAL (constant_part));
7507 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7508 op1 = force_operand (op1, target);
7509 return REDUCE_BIT_FIELD (op1);
7510 }
7511
7512 else if (TREE_CODE (treeop1) == INTEGER_CST
7513 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7514 && TREE_CONSTANT (treeop0))
7515 {
7516 rtx constant_part;
7517
7518 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7519 (modifier == EXPAND_INITIALIZER
7520 ? EXPAND_INITIALIZER : EXPAND_SUM));
7521 if (! CONSTANT_P (op0))
7522 {
7523 op1 = expand_expr (treeop1, NULL_RTX,
7524 VOIDmode, modifier);
7525 /* Return a PLUS if modifier says it's OK. */
7526 if (modifier == EXPAND_SUM
7527 || modifier == EXPAND_INITIALIZER)
7528 return simplify_gen_binary (PLUS, mode, op0, op1);
7529 goto binop2;
7530 }
7531 /* Use immed_double_const to ensure that the constant is
7532 truncated according to the mode of OP1, then sign extended
7533 to a HOST_WIDE_INT. Using the constant directly can result
7534 in non-canonical RTL in a 64x32 cross compile. */
7535 constant_part
7536 = immed_double_const (TREE_INT_CST_LOW (treeop1),
7537 (HOST_WIDE_INT) 0,
7538 TYPE_MODE (TREE_TYPE (treeop0)));
7539 op0 = plus_constant (op0, INTVAL (constant_part));
7540 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7541 op0 = force_operand (op0, target);
7542 return REDUCE_BIT_FIELD (op0);
7543 }
7544 }
7545
7546 /* Use TER to expand pointer addition of a negated value
7547 as pointer subtraction. */
7548 if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
7549 || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
7550 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
7551 && TREE_CODE (treeop1) == SSA_NAME
7552 && TYPE_MODE (TREE_TYPE (treeop0))
7553 == TYPE_MODE (TREE_TYPE (treeop1)))
7554 {
7555 gimple def = get_def_for_expr (treeop1, NEGATE_EXPR);
7556 if (def)
7557 {
7558 treeop1 = gimple_assign_rhs1 (def);
7559 code = MINUS_EXPR;
7560 goto do_minus;
7561 }
7562 }
7563
7564 /* No sense saving up arithmetic to be done
7565 if it's all in the wrong mode to form part of an address.
7566 And force_operand won't know whether to sign-extend or
7567 zero-extend. */
7568 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7569 || mode != ptr_mode)
7570 {
7571 expand_operands (treeop0, treeop1,
7572 subtarget, &op0, &op1, EXPAND_NORMAL);
7573 if (op0 == const0_rtx)
7574 return op1;
7575 if (op1 == const0_rtx)
7576 return op0;
7577 goto binop2;
7578 }
7579
7580 expand_operands (treeop0, treeop1,
7581 subtarget, &op0, &op1, modifier);
7582 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7583
7584 case MINUS_EXPR:
7585 do_minus:
7586 /* For initializers, we are allowed to return a MINUS of two
7587 symbolic constants. Here we handle all cases when both operands
7588 are constant. */
7589 /* Handle difference of two symbolic constants,
7590 for the sake of an initializer. */
7591 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7592 && really_constant_p (treeop0)
7593 && really_constant_p (treeop1))
7594 {
7595 expand_operands (treeop0, treeop1,
7596 NULL_RTX, &op0, &op1, modifier);
7597
7598 /* If the last operand is a CONST_INT, use plus_constant of
7599 the negated constant. Else make the MINUS. */
7600 if (CONST_INT_P (op1))
7601 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7602 else
7603 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7604 }
7605
7606 /* No sense saving up arithmetic to be done
7607 if it's all in the wrong mode to form part of an address.
7608 And force_operand won't know whether to sign-extend or
7609 zero-extend. */
7610 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7611 || mode != ptr_mode)
7612 goto binop;
7613
7614 expand_operands (treeop0, treeop1,
7615 subtarget, &op0, &op1, modifier);
7616
7617 /* Convert A - const to A + (-const). */
7618 if (CONST_INT_P (op1))
7619 {
7620 op1 = negate_rtx (mode, op1);
7621 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7622 }
7623
7624 goto binop2;
7625
7626 case WIDEN_MULT_PLUS_EXPR:
7627 case WIDEN_MULT_MINUS_EXPR:
7628 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
7629 op2 = expand_normal (treeop2);
7630 target = expand_widen_pattern_expr (ops, op0, op1, op2,
7631 target, unsignedp);
7632 return target;
7633
7634 case WIDEN_MULT_EXPR:
7635 /* If first operand is constant, swap them.
7636 Thus the following special case checks need only
7637 check the second operand. */
7638 if (TREE_CODE (treeop0) == INTEGER_CST)
7639 {
7640 tree t1 = treeop0;
7641 treeop0 = treeop1;
7642 treeop1 = t1;
7643 }
7644
7645 /* First, check if we have a multiplication of one signed and one
7646 unsigned operand. */
7647 if (TREE_CODE (treeop1) != INTEGER_CST
7648 && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
7649 != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
7650 {
7651 enum machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
7652 this_optab = usmul_widen_optab;
7653 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7654 {
7655 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7656 {
7657 if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7658 expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
7659 EXPAND_NORMAL);
7660 else
7661 expand_operands (treeop0, treeop1, subtarget, &op1, &op0,
7662 EXPAND_NORMAL);
7663 goto binop3;
7664 }
7665 }
7666 }
7667 /* Check for a multiplication with matching signedness. */
7668 else if ((TREE_CODE (treeop1) == INTEGER_CST
7669 && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
7670 || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
7671 == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
7672 {
7673 tree op0type = TREE_TYPE (treeop0);
7674 enum machine_mode innermode = TYPE_MODE (op0type);
7675 bool zextend_p = TYPE_UNSIGNED (op0type);
7676 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
7677 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
7678
7679 if (mode == GET_MODE_2XWIDER_MODE (innermode))
7680 {
7681 if (optab_handler (this_optab, mode) != CODE_FOR_nothing)
7682 {
7683 expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
7684 EXPAND_NORMAL);
7685 temp = expand_widening_mult (mode, op0, op1, target,
7686 unsignedp, this_optab);
7687 return REDUCE_BIT_FIELD (temp);
7688 }
7689 if (optab_handler (other_optab, mode) != CODE_FOR_nothing
7690 && innermode == word_mode)
7691 {
7692 rtx htem, hipart;
7693 op0 = expand_normal (treeop0);
7694 if (TREE_CODE (treeop1) == INTEGER_CST)
7695 op1 = convert_modes (innermode, mode,
7696 expand_normal (treeop1), unsignedp);
7697 else
7698 op1 = expand_normal (treeop1);
7699 temp = expand_binop (mode, other_optab, op0, op1, target,
7700 unsignedp, OPTAB_LIB_WIDEN);
7701 hipart = gen_highpart (innermode, temp);
7702 htem = expand_mult_highpart_adjust (innermode, hipart,
7703 op0, op1, hipart,
7704 zextend_p);
7705 if (htem != hipart)
7706 emit_move_insn (hipart, htem);
7707 return REDUCE_BIT_FIELD (temp);
7708 }
7709 }
7710 }
7711 treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
7712 treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
7713 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7714 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7715
7716 case FMA_EXPR:
7717 {
7718 optab opt = fma_optab;
7719 gimple def0, def2;
7720
7721 def0 = get_def_for_expr (treeop0, NEGATE_EXPR);
7722 def2 = get_def_for_expr (treeop2, NEGATE_EXPR);
7723
7724 op0 = op2 = NULL;
7725
7726 if (def0 && def2
7727 && optab_handler (fnms_optab, mode) != CODE_FOR_nothing)
7728 {
7729 opt = fnms_optab;
7730 op0 = expand_normal (gimple_assign_rhs1 (def0));
7731 op2 = expand_normal (gimple_assign_rhs1 (def2));
7732 }
7733 else if (def0
7734 && optab_handler (fnma_optab, mode) != CODE_FOR_nothing)
7735 {
7736 opt = fnma_optab;
7737 op0 = expand_normal (gimple_assign_rhs1 (def0));
7738 }
7739 else if (def2
7740 && optab_handler (fms_optab, mode) != CODE_FOR_nothing)
7741 {
7742 opt = fms_optab;
7743 op2 = expand_normal (gimple_assign_rhs1 (def2));
7744 }
7745
7746 if (op0 == NULL)
7747 op0 = expand_expr (treeop0, subtarget, VOIDmode, EXPAND_NORMAL);
7748 if (op2 == NULL)
7749 op2 = expand_normal (treeop2);
7750 op1 = expand_normal (treeop1);
7751
7752 return expand_ternary_op (TYPE_MODE (type), opt,
7753 op0, op1, op2, target, 0);
7754 }
7755
7756 case MULT_EXPR:
7757 /* If this is a fixed-point operation, then we cannot use the code
7758 below because "expand_mult" doesn't support sat/no-sat fixed-point
7759 multiplications. */
7760 if (ALL_FIXED_POINT_MODE_P (mode))
7761 goto binop;
7762
7763 /* If first operand is constant, swap them.
7764 Thus the following special case checks need only
7765 check the second operand. */
7766 if (TREE_CODE (treeop0) == INTEGER_CST)
7767 {
7768 tree t1 = treeop0;
7769 treeop0 = treeop1;
7770 treeop1 = t1;
7771 }
7772
7773 /* Attempt to return something suitable for generating an
7774 indexed address, for machines that support that. */
7775
7776 if (modifier == EXPAND_SUM && mode == ptr_mode
7777 && host_integerp (treeop1, 0))
7778 {
7779 tree exp1 = treeop1;
7780
7781 op0 = expand_expr (treeop0, subtarget, VOIDmode,
7782 EXPAND_SUM);
7783
7784 if (!REG_P (op0))
7785 op0 = force_operand (op0, NULL_RTX);
7786 if (!REG_P (op0))
7787 op0 = copy_to_mode_reg (mode, op0);
7788
7789 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
7790 gen_int_mode (tree_low_cst (exp1, 0),
7791 TYPE_MODE (TREE_TYPE (exp1)))));
7792 }
7793
7794 if (modifier == EXPAND_STACK_PARM)
7795 target = 0;
7796
7797 expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
7798 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
7799
7800 case TRUNC_DIV_EXPR:
7801 case FLOOR_DIV_EXPR:
7802 case CEIL_DIV_EXPR:
7803 case ROUND_DIV_EXPR:
7804 case EXACT_DIV_EXPR:
7805 /* If this is a fixed-point operation, then we cannot use the code
7806 below because "expand_divmod" doesn't support sat/no-sat fixed-point
7807 divisions. */
7808 if (ALL_FIXED_POINT_MODE_P (mode))
7809 goto binop;
7810
7811 if (modifier == EXPAND_STACK_PARM)
7812 target = 0;
7813 /* Possible optimization: compute the dividend with EXPAND_SUM
7814 then if the divisor is constant can optimize the case
7815 where some terms of the dividend have coeffs divisible by it. */
7816 expand_operands (treeop0, treeop1,
7817 subtarget, &op0, &op1, EXPAND_NORMAL);
7818 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
7819
7820 case RDIV_EXPR:
7821 goto binop;
7822
7823 case TRUNC_MOD_EXPR:
7824 case FLOOR_MOD_EXPR:
7825 case CEIL_MOD_EXPR:
7826 case ROUND_MOD_EXPR:
7827 if (modifier == EXPAND_STACK_PARM)
7828 target = 0;
7829 expand_operands (treeop0, treeop1,
7830 subtarget, &op0, &op1, EXPAND_NORMAL);
7831 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
7832
7833 case FIXED_CONVERT_EXPR:
7834 op0 = expand_normal (treeop0);
7835 if (target == 0 || modifier == EXPAND_STACK_PARM)
7836 target = gen_reg_rtx (mode);
7837
7838 if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
7839 && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
7840 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
7841 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
7842 else
7843 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
7844 return target;
7845
7846 case FIX_TRUNC_EXPR:
7847 op0 = expand_normal (treeop0);
7848 if (target == 0 || modifier == EXPAND_STACK_PARM)
7849 target = gen_reg_rtx (mode);
7850 expand_fix (target, op0, unsignedp);
7851 return target;
7852
7853 case FLOAT_EXPR:
7854 op0 = expand_normal (treeop0);
7855 if (target == 0 || modifier == EXPAND_STACK_PARM)
7856 target = gen_reg_rtx (mode);
7857 /* expand_float can't figure out what to do if FROM has VOIDmode.
7858 So give it the correct mode. With -O, cse will optimize this. */
7859 if (GET_MODE (op0) == VOIDmode)
7860 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
7861 op0);
7862 expand_float (target, op0,
7863 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
7864 return target;
7865
7866 case NEGATE_EXPR:
7867 op0 = expand_expr (treeop0, subtarget,
7868 VOIDmode, EXPAND_NORMAL);
7869 if (modifier == EXPAND_STACK_PARM)
7870 target = 0;
7871 temp = expand_unop (mode,
7872 optab_for_tree_code (NEGATE_EXPR, type,
7873 optab_default),
7874 op0, target, 0);
7875 gcc_assert (temp);
7876 return REDUCE_BIT_FIELD (temp);
7877
7878 case ABS_EXPR:
7879 op0 = expand_expr (treeop0, subtarget,
7880 VOIDmode, EXPAND_NORMAL);
7881 if (modifier == EXPAND_STACK_PARM)
7882 target = 0;
7883
7884 /* ABS_EXPR is not valid for complex arguments. */
7885 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7886 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
7887
7888 /* Unsigned abs is simply the operand. Testing here means we don't
7889 risk generating incorrect code below. */
7890 if (TYPE_UNSIGNED (type))
7891 return op0;
7892
7893 return expand_abs (mode, op0, target, unsignedp,
7894 safe_from_p (target, treeop0, 1));
7895
7896 case MAX_EXPR:
7897 case MIN_EXPR:
7898 target = original_target;
7899 if (target == 0
7900 || modifier == EXPAND_STACK_PARM
7901 || (MEM_P (target) && MEM_VOLATILE_P (target))
7902 || GET_MODE (target) != mode
7903 || (REG_P (target)
7904 && REGNO (target) < FIRST_PSEUDO_REGISTER))
7905 target = gen_reg_rtx (mode);
7906 expand_operands (treeop0, treeop1,
7907 target, &op0, &op1, EXPAND_NORMAL);
7908
7909 /* First try to do it with a special MIN or MAX instruction.
7910 If that does not win, use a conditional jump to select the proper
7911 value. */
7912 this_optab = optab_for_tree_code (code, type, optab_default);
7913 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
7914 OPTAB_WIDEN);
7915 if (temp != 0)
7916 return temp;
7917
7918 /* At this point, a MEM target is no longer useful; we will get better
7919 code without it. */
7920
7921 if (! REG_P (target))
7922 target = gen_reg_rtx (mode);
7923
7924 /* If op1 was placed in target, swap op0 and op1. */
7925 if (target != op0 && target == op1)
7926 {
7927 temp = op0;
7928 op0 = op1;
7929 op1 = temp;
7930 }
7931
7932 /* We generate better code and avoid problems with op1 mentioning
7933 target by forcing op1 into a pseudo if it isn't a constant. */
7934 if (! CONSTANT_P (op1))
7935 op1 = force_reg (mode, op1);
7936
7937 {
7938 enum rtx_code comparison_code;
7939 rtx cmpop1 = op1;
7940
7941 if (code == MAX_EXPR)
7942 comparison_code = unsignedp ? GEU : GE;
7943 else
7944 comparison_code = unsignedp ? LEU : LE;
7945
7946 /* Canonicalize to comparisons against 0. */
7947 if (op1 == const1_rtx)
7948 {
7949 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
7950 or (a != 0 ? a : 1) for unsigned.
7951 For MIN we are safe converting (a <= 1 ? a : 1)
7952 into (a <= 0 ? a : 1) */
7953 cmpop1 = const0_rtx;
7954 if (code == MAX_EXPR)
7955 comparison_code = unsignedp ? NE : GT;
7956 }
7957 if (op1 == constm1_rtx && !unsignedp)
7958 {
7959 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
7960 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
7961 cmpop1 = const0_rtx;
7962 if (code == MIN_EXPR)
7963 comparison_code = LT;
7964 }
7965 #ifdef HAVE_conditional_move
7966 /* Use a conditional move if possible. */
7967 if (can_conditionally_move_p (mode))
7968 {
7969 rtx insn;
7970
7971 /* ??? Same problem as in expmed.c: emit_conditional_move
7972 forces a stack adjustment via compare_from_rtx, and we
7973 lose the stack adjustment if the sequence we are about
7974 to create is discarded. */
7975 do_pending_stack_adjust ();
7976
7977 start_sequence ();
7978
7979 /* Try to emit the conditional move. */
7980 insn = emit_conditional_move (target, comparison_code,
7981 op0, cmpop1, mode,
7982 op0, op1, mode,
7983 unsignedp);
7984
7985 /* If we could do the conditional move, emit the sequence,
7986 and return. */
7987 if (insn)
7988 {
7989 rtx seq = get_insns ();
7990 end_sequence ();
7991 emit_insn (seq);
7992 return target;
7993 }
7994
7995 /* Otherwise discard the sequence and fall back to code with
7996 branches. */
7997 end_sequence ();
7998 }
7999 #endif
8000 if (target != op0)
8001 emit_move_insn (target, op0);
8002
8003 temp = gen_label_rtx ();
8004 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8005 unsignedp, mode, NULL_RTX, NULL_RTX, temp,
8006 -1);
8007 }
8008 emit_move_insn (target, op1);
8009 emit_label (temp);
8010 return target;
8011
8012 case BIT_NOT_EXPR:
8013 op0 = expand_expr (treeop0, subtarget,
8014 VOIDmode, EXPAND_NORMAL);
8015 if (modifier == EXPAND_STACK_PARM)
8016 target = 0;
8017 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8018 gcc_assert (temp);
8019 return temp;
8020
8021 /* ??? Can optimize bitwise operations with one arg constant.
8022 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8023 and (a bitwise1 b) bitwise2 b (etc)
8024 but that is probably not worth while. */
8025
8026 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8027 boolean values when we want in all cases to compute both of them. In
8028 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8029 as actual zero-or-1 values and then bitwise anding. In cases where
8030 there cannot be any side effects, better code would be made by
8031 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8032 how to recognize those cases. */
8033
8034 case TRUTH_AND_EXPR:
8035 code = BIT_AND_EXPR;
8036 case BIT_AND_EXPR:
8037 goto binop;
8038
8039 case TRUTH_OR_EXPR:
8040 code = BIT_IOR_EXPR;
8041 case BIT_IOR_EXPR:
8042 goto binop;
8043
8044 case TRUTH_XOR_EXPR:
8045 code = BIT_XOR_EXPR;
8046 case BIT_XOR_EXPR:
8047 goto binop;
8048
8049 case LROTATE_EXPR:
8050 case RROTATE_EXPR:
8051 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
8052 || (GET_MODE_PRECISION (TYPE_MODE (type))
8053 == TYPE_PRECISION (type)));
8054 /* fall through */
8055
8056 case LSHIFT_EXPR:
8057 case RSHIFT_EXPR:
8058 /* If this is a fixed-point operation, then we cannot use the code
8059 below because "expand_shift" doesn't support sat/no-sat fixed-point
8060 shifts. */
8061 if (ALL_FIXED_POINT_MODE_P (mode))
8062 goto binop;
8063
8064 if (! safe_from_p (subtarget, treeop1, 1))
8065 subtarget = 0;
8066 if (modifier == EXPAND_STACK_PARM)
8067 target = 0;
8068 op0 = expand_expr (treeop0, subtarget,
8069 VOIDmode, EXPAND_NORMAL);
8070 temp = expand_shift (code, mode, op0, treeop1, target,
8071 unsignedp);
8072 if (code == LSHIFT_EXPR)
8073 temp = REDUCE_BIT_FIELD (temp);
8074 return temp;
8075
8076 /* Could determine the answer when only additive constants differ. Also,
8077 the addition of one can be handled by changing the condition. */
8078 case LT_EXPR:
8079 case LE_EXPR:
8080 case GT_EXPR:
8081 case GE_EXPR:
8082 case EQ_EXPR:
8083 case NE_EXPR:
8084 case UNORDERED_EXPR:
8085 case ORDERED_EXPR:
8086 case UNLT_EXPR:
8087 case UNLE_EXPR:
8088 case UNGT_EXPR:
8089 case UNGE_EXPR:
8090 case UNEQ_EXPR:
8091 case LTGT_EXPR:
8092 temp = do_store_flag (ops,
8093 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8094 tmode != VOIDmode ? tmode : mode);
8095 if (temp)
8096 return temp;
8097
8098 /* Use a compare and a jump for BLKmode comparisons, or for function
8099 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
8100
8101 if ((target == 0
8102 || modifier == EXPAND_STACK_PARM
8103 || ! safe_from_p (target, treeop0, 1)
8104 || ! safe_from_p (target, treeop1, 1)
8105 /* Make sure we don't have a hard reg (such as function's return
8106 value) live across basic blocks, if not optimizing. */
8107 || (!optimize && REG_P (target)
8108 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8109 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8110
8111 emit_move_insn (target, const0_rtx);
8112
8113 op1 = gen_label_rtx ();
8114 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
8115
8116 emit_move_insn (target, const1_rtx);
8117
8118 emit_label (op1);
8119 return target;
8120
8121 case TRUTH_NOT_EXPR:
8122 if (modifier == EXPAND_STACK_PARM)
8123 target = 0;
8124 op0 = expand_expr (treeop0, target,
8125 VOIDmode, EXPAND_NORMAL);
8126 /* The parser is careful to generate TRUTH_NOT_EXPR
8127 only with operands that are always zero or one. */
8128 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8129 target, 1, OPTAB_LIB_WIDEN);
8130 gcc_assert (temp);
8131 return temp;
8132
8133 case COMPLEX_EXPR:
8134 /* Get the rtx code of the operands. */
8135 op0 = expand_normal (treeop0);
8136 op1 = expand_normal (treeop1);
8137
8138 if (!target)
8139 target = gen_reg_rtx (TYPE_MODE (type));
8140
8141 /* Move the real (op0) and imaginary (op1) parts to their location. */
8142 write_complex_part (target, op0, false);
8143 write_complex_part (target, op1, true);
8144
8145 return target;
8146
8147 case WIDEN_SUM_EXPR:
8148 {
8149 tree oprnd0 = treeop0;
8150 tree oprnd1 = treeop1;
8151
8152 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8153 target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
8154 target, unsignedp);
8155 return target;
8156 }
8157
8158 case REDUC_MAX_EXPR:
8159 case REDUC_MIN_EXPR:
8160 case REDUC_PLUS_EXPR:
8161 {
8162 op0 = expand_normal (treeop0);
8163 this_optab = optab_for_tree_code (code, type, optab_default);
8164 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8165 gcc_assert (temp);
8166 return temp;
8167 }
8168
8169 case VEC_EXTRACT_EVEN_EXPR:
8170 case VEC_EXTRACT_ODD_EXPR:
8171 {
8172 expand_operands (treeop0, treeop1,
8173 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8174 this_optab = optab_for_tree_code (code, type, optab_default);
8175 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8176 OPTAB_WIDEN);
8177 gcc_assert (temp);
8178 return temp;
8179 }
8180
8181 case VEC_INTERLEAVE_HIGH_EXPR:
8182 case VEC_INTERLEAVE_LOW_EXPR:
8183 {
8184 expand_operands (treeop0, treeop1,
8185 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8186 this_optab = optab_for_tree_code (code, type, optab_default);
8187 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8188 OPTAB_WIDEN);
8189 gcc_assert (temp);
8190 return temp;
8191 }
8192
8193 case VEC_LSHIFT_EXPR:
8194 case VEC_RSHIFT_EXPR:
8195 {
8196 target = expand_vec_shift_expr (ops, target);
8197 return target;
8198 }
8199
8200 case VEC_UNPACK_HI_EXPR:
8201 case VEC_UNPACK_LO_EXPR:
8202 {
8203 op0 = expand_normal (treeop0);
8204 this_optab = optab_for_tree_code (code, type, optab_default);
8205 temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
8206 target, unsignedp);
8207 gcc_assert (temp);
8208 return temp;
8209 }
8210
8211 case VEC_UNPACK_FLOAT_HI_EXPR:
8212 case VEC_UNPACK_FLOAT_LO_EXPR:
8213 {
8214 op0 = expand_normal (treeop0);
8215 /* The signedness is determined from input operand. */
8216 this_optab = optab_for_tree_code (code,
8217 TREE_TYPE (treeop0),
8218 optab_default);
8219 temp = expand_widen_pattern_expr
8220 (ops, op0, NULL_RTX, NULL_RTX,
8221 target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
8222
8223 gcc_assert (temp);
8224 return temp;
8225 }
8226
8227 case VEC_WIDEN_MULT_HI_EXPR:
8228 case VEC_WIDEN_MULT_LO_EXPR:
8229 {
8230 tree oprnd0 = treeop0;
8231 tree oprnd1 = treeop1;
8232
8233 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8234 target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
8235 target, unsignedp);
8236 gcc_assert (target);
8237 return target;
8238 }
8239
8240 case VEC_PACK_TRUNC_EXPR:
8241 case VEC_PACK_SAT_EXPR:
8242 case VEC_PACK_FIX_TRUNC_EXPR:
8243 mode = TYPE_MODE (TREE_TYPE (treeop0));
8244 goto binop;
8245
8246 default:
8247 gcc_unreachable ();
8248 }
8249
8250 /* Here to do an ordinary binary operator. */
8251 binop:
8252 expand_operands (treeop0, treeop1,
8253 subtarget, &op0, &op1, EXPAND_NORMAL);
8254 binop2:
8255 this_optab = optab_for_tree_code (code, type, optab_default);
8256 binop3:
8257 if (modifier == EXPAND_STACK_PARM)
8258 target = 0;
8259 temp = expand_binop (mode, this_optab, op0, op1, target,
8260 unsignedp, OPTAB_LIB_WIDEN);
8261 gcc_assert (temp);
8262 return REDUCE_BIT_FIELD (temp);
8263 }
8264 #undef REDUCE_BIT_FIELD
8265
8266 rtx
8267 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
8268 enum expand_modifier modifier, rtx *alt_rtl)
8269 {
8270 rtx op0, op1, temp, decl_rtl;
8271 tree type;
8272 int unsignedp;
8273 enum machine_mode mode;
8274 enum tree_code code = TREE_CODE (exp);
8275 optab this_optab;
8276 rtx subtarget, original_target;
8277 int ignore;
8278 tree context;
8279 bool reduce_bit_field;
8280 location_t loc = EXPR_LOCATION (exp);
8281 struct separate_ops ops;
8282 tree treeop0, treeop1, treeop2;
8283 tree ssa_name = NULL_TREE;
8284 gimple g;
8285
8286 type = TREE_TYPE (exp);
8287 mode = TYPE_MODE (type);
8288 unsignedp = TYPE_UNSIGNED (type);
8289
8290 treeop0 = treeop1 = treeop2 = NULL_TREE;
8291 if (!VL_EXP_CLASS_P (exp))
8292 switch (TREE_CODE_LENGTH (code))
8293 {
8294 default:
8295 case 3: treeop2 = TREE_OPERAND (exp, 2);
8296 case 2: treeop1 = TREE_OPERAND (exp, 1);
8297 case 1: treeop0 = TREE_OPERAND (exp, 0);
8298 case 0: break;
8299 }
8300 ops.code = code;
8301 ops.type = type;
8302 ops.op0 = treeop0;
8303 ops.op1 = treeop1;
8304 ops.op2 = treeop2;
8305 ops.location = loc;
8306
8307 ignore = (target == const0_rtx
8308 || ((CONVERT_EXPR_CODE_P (code)
8309 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
8310 && TREE_CODE (type) == VOID_TYPE));
8311
8312 /* An operation in what may be a bit-field type needs the
8313 result to be reduced to the precision of the bit-field type,
8314 which is narrower than that of the type's mode. */
8315 reduce_bit_field = (!ignore
8316 && TREE_CODE (type) == INTEGER_TYPE
8317 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
8318
8319 /* If we are going to ignore this result, we need only do something
8320 if there is a side-effect somewhere in the expression. If there
8321 is, short-circuit the most common cases here. Note that we must
8322 not call expand_expr with anything but const0_rtx in case this
8323 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
8324
8325 if (ignore)
8326 {
8327 if (! TREE_SIDE_EFFECTS (exp))
8328 return const0_rtx;
8329
8330 /* Ensure we reference a volatile object even if value is ignored, but
8331 don't do this if all we are doing is taking its address. */
8332 if (TREE_THIS_VOLATILE (exp)
8333 && TREE_CODE (exp) != FUNCTION_DECL
8334 && mode != VOIDmode && mode != BLKmode
8335 && modifier != EXPAND_CONST_ADDRESS)
8336 {
8337 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
8338 if (MEM_P (temp))
8339 temp = copy_to_reg (temp);
8340 return const0_rtx;
8341 }
8342
8343 if (TREE_CODE_CLASS (code) == tcc_unary
8344 || code == COMPONENT_REF || code == INDIRECT_REF)
8345 return expand_expr (treeop0, const0_rtx, VOIDmode,
8346 modifier);
8347
8348 else if (TREE_CODE_CLASS (code) == tcc_binary
8349 || TREE_CODE_CLASS (code) == tcc_comparison
8350 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
8351 {
8352 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8353 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8354 return const0_rtx;
8355 }
8356 else if (code == BIT_FIELD_REF)
8357 {
8358 expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
8359 expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
8360 expand_expr (treeop2, const0_rtx, VOIDmode, modifier);
8361 return const0_rtx;
8362 }
8363
8364 target = 0;
8365 }
8366
8367 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
8368 target = 0;
8369
8370 /* Use subtarget as the target for operand 0 of a binary operation. */
8371 subtarget = get_subtarget (target);
8372 original_target = target;
8373
8374 switch (code)
8375 {
8376 case LABEL_DECL:
8377 {
8378 tree function = decl_function_context (exp);
8379
8380 temp = label_rtx (exp);
8381 temp = gen_rtx_LABEL_REF (Pmode, temp);
8382
8383 if (function != current_function_decl
8384 && function != 0)
8385 LABEL_REF_NONLOCAL_P (temp) = 1;
8386
8387 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
8388 return temp;
8389 }
8390
8391 case SSA_NAME:
8392 /* ??? ivopts calls expander, without any preparation from
8393 out-of-ssa. So fake instructions as if this was an access to the
8394 base variable. This unnecessarily allocates a pseudo, see how we can
8395 reuse it, if partition base vars have it set already. */
8396 if (!currently_expanding_to_rtl)
8397 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
8398 NULL);
8399
8400 g = get_gimple_for_ssa_name (exp);
8401 if (g)
8402 return expand_expr_real (gimple_assign_rhs_to_tree (g), target, tmode,
8403 modifier, NULL);
8404
8405 ssa_name = exp;
8406 decl_rtl = get_rtx_for_ssa_name (ssa_name);
8407 exp = SSA_NAME_VAR (ssa_name);
8408 goto expand_decl_rtl;
8409
8410 case PARM_DECL:
8411 case VAR_DECL:
8412 /* If a static var's type was incomplete when the decl was written,
8413 but the type is complete now, lay out the decl now. */
8414 if (DECL_SIZE (exp) == 0
8415 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
8416 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
8417 layout_decl (exp, 0);
8418
8419 /* ... fall through ... */
8420
8421 case FUNCTION_DECL:
8422 case RESULT_DECL:
8423 decl_rtl = DECL_RTL (exp);
8424 expand_decl_rtl:
8425 gcc_assert (decl_rtl);
8426 decl_rtl = copy_rtx (decl_rtl);
8427 /* Record writes to register variables. */
8428 if (modifier == EXPAND_WRITE && REG_P (decl_rtl)
8429 && REGNO (decl_rtl) < FIRST_PSEUDO_REGISTER)
8430 {
8431 int i = REGNO (decl_rtl);
8432 int nregs = hard_regno_nregs[i][GET_MODE (decl_rtl)];
8433 while (nregs)
8434 {
8435 SET_HARD_REG_BIT (crtl->asm_clobbers, i);
8436 i++;
8437 nregs--;
8438 }
8439 }
8440
8441 /* Ensure variable marked as used even if it doesn't go through
8442 a parser. If it hasn't be used yet, write out an external
8443 definition. */
8444 if (! TREE_USED (exp))
8445 {
8446 assemble_external (exp);
8447 TREE_USED (exp) = 1;
8448 }
8449
8450 /* Show we haven't gotten RTL for this yet. */
8451 temp = 0;
8452
8453 /* Variables inherited from containing functions should have
8454 been lowered by this point. */
8455 context = decl_function_context (exp);
8456 gcc_assert (!context
8457 || context == current_function_decl
8458 || TREE_STATIC (exp)
8459 || DECL_EXTERNAL (exp)
8460 /* ??? C++ creates functions that are not TREE_STATIC. */
8461 || TREE_CODE (exp) == FUNCTION_DECL);
8462
8463 /* This is the case of an array whose size is to be determined
8464 from its initializer, while the initializer is still being parsed.
8465 See expand_decl. */
8466
8467 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
8468 temp = validize_mem (decl_rtl);
8469
8470 /* If DECL_RTL is memory, we are in the normal case and the
8471 address is not valid, get the address into a register. */
8472
8473 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
8474 {
8475 if (alt_rtl)
8476 *alt_rtl = decl_rtl;
8477 decl_rtl = use_anchored_address (decl_rtl);
8478 if (modifier != EXPAND_CONST_ADDRESS
8479 && modifier != EXPAND_SUM
8480 && !memory_address_addr_space_p (DECL_MODE (exp),
8481 XEXP (decl_rtl, 0),
8482 MEM_ADDR_SPACE (decl_rtl)))
8483 temp = replace_equiv_address (decl_rtl,
8484 copy_rtx (XEXP (decl_rtl, 0)));
8485 }
8486
8487 /* If we got something, return it. But first, set the alignment
8488 if the address is a register. */
8489 if (temp != 0)
8490 {
8491 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
8492 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
8493
8494 return temp;
8495 }
8496
8497 /* If the mode of DECL_RTL does not match that of the decl, it
8498 must be a promoted value. We return a SUBREG of the wanted mode,
8499 but mark it so that we know that it was already extended. */
8500 if (REG_P (decl_rtl) && GET_MODE (decl_rtl) != DECL_MODE (exp))
8501 {
8502 enum machine_mode pmode;
8503
8504 /* Get the signedness to be used for this variable. Ensure we get
8505 the same mode we got when the variable was declared. */
8506 if (code == SSA_NAME
8507 && (g = SSA_NAME_DEF_STMT (ssa_name))
8508 && gimple_code (g) == GIMPLE_CALL)
8509 pmode = promote_function_mode (type, mode, &unsignedp,
8510 TREE_TYPE
8511 (TREE_TYPE (gimple_call_fn (g))),
8512 2);
8513 else
8514 pmode = promote_decl_mode (exp, &unsignedp);
8515 gcc_assert (GET_MODE (decl_rtl) == pmode);
8516
8517 temp = gen_lowpart_SUBREG (mode, decl_rtl);
8518 SUBREG_PROMOTED_VAR_P (temp) = 1;
8519 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
8520 return temp;
8521 }
8522
8523 return decl_rtl;
8524
8525 case INTEGER_CST:
8526 temp = immed_double_const (TREE_INT_CST_LOW (exp),
8527 TREE_INT_CST_HIGH (exp), mode);
8528
8529 return temp;
8530
8531 case VECTOR_CST:
8532 {
8533 tree tmp = NULL_TREE;
8534 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
8535 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
8536 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
8537 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
8538 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
8539 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
8540 return const_vector_from_tree (exp);
8541 if (GET_MODE_CLASS (mode) == MODE_INT)
8542 {
8543 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
8544 if (type_for_mode)
8545 tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR, type_for_mode, exp);
8546 }
8547 if (!tmp)
8548 tmp = build_constructor_from_list (type,
8549 TREE_VECTOR_CST_ELTS (exp));
8550 return expand_expr (tmp, ignore ? const0_rtx : target,
8551 tmode, modifier);
8552 }
8553
8554 case CONST_DECL:
8555 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
8556
8557 case REAL_CST:
8558 /* If optimized, generate immediate CONST_DOUBLE
8559 which will be turned into memory by reload if necessary.
8560
8561 We used to force a register so that loop.c could see it. But
8562 this does not allow gen_* patterns to perform optimizations with
8563 the constants. It also produces two insns in cases like "x = 1.0;".
8564 On most machines, floating-point constants are not permitted in
8565 many insns, so we'd end up copying it to a register in any case.
8566
8567 Now, we do the copying in expand_binop, if appropriate. */
8568 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
8569 TYPE_MODE (TREE_TYPE (exp)));
8570
8571 case FIXED_CST:
8572 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
8573 TYPE_MODE (TREE_TYPE (exp)));
8574
8575 case COMPLEX_CST:
8576 /* Handle evaluating a complex constant in a CONCAT target. */
8577 if (original_target && GET_CODE (original_target) == CONCAT)
8578 {
8579 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
8580 rtx rtarg, itarg;
8581
8582 rtarg = XEXP (original_target, 0);
8583 itarg = XEXP (original_target, 1);
8584
8585 /* Move the real and imaginary parts separately. */
8586 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
8587 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
8588
8589 if (op0 != rtarg)
8590 emit_move_insn (rtarg, op0);
8591 if (op1 != itarg)
8592 emit_move_insn (itarg, op1);
8593
8594 return original_target;
8595 }
8596
8597 /* ... fall through ... */
8598
8599 case STRING_CST:
8600 temp = expand_expr_constant (exp, 1, modifier);
8601
8602 /* temp contains a constant address.
8603 On RISC machines where a constant address isn't valid,
8604 make some insns to get that address into a register. */
8605 if (modifier != EXPAND_CONST_ADDRESS
8606 && modifier != EXPAND_INITIALIZER
8607 && modifier != EXPAND_SUM
8608 && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
8609 MEM_ADDR_SPACE (temp)))
8610 return replace_equiv_address (temp,
8611 copy_rtx (XEXP (temp, 0)));
8612 return temp;
8613
8614 case SAVE_EXPR:
8615 {
8616 tree val = treeop0;
8617 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
8618
8619 if (!SAVE_EXPR_RESOLVED_P (exp))
8620 {
8621 /* We can indeed still hit this case, typically via builtin
8622 expanders calling save_expr immediately before expanding
8623 something. Assume this means that we only have to deal
8624 with non-BLKmode values. */
8625 gcc_assert (GET_MODE (ret) != BLKmode);
8626
8627 val = build_decl (EXPR_LOCATION (exp),
8628 VAR_DECL, NULL, TREE_TYPE (exp));
8629 DECL_ARTIFICIAL (val) = 1;
8630 DECL_IGNORED_P (val) = 1;
8631 treeop0 = val;
8632 TREE_OPERAND (exp, 0) = treeop0;
8633 SAVE_EXPR_RESOLVED_P (exp) = 1;
8634
8635 if (!CONSTANT_P (ret))
8636 ret = copy_to_reg (ret);
8637 SET_DECL_RTL (val, ret);
8638 }
8639
8640 return ret;
8641 }
8642
8643
8644 case CONSTRUCTOR:
8645 /* If we don't need the result, just ensure we evaluate any
8646 subexpressions. */
8647 if (ignore)
8648 {
8649 unsigned HOST_WIDE_INT idx;
8650 tree value;
8651
8652 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
8653 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
8654
8655 return const0_rtx;
8656 }
8657
8658 return expand_constructor (exp, target, modifier, false);
8659
8660 case TARGET_MEM_REF:
8661 {
8662 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
8663 struct mem_address addr;
8664 int icode, align;
8665
8666 get_address_description (exp, &addr);
8667 op0 = addr_for_mem_ref (&addr, as, true);
8668 op0 = memory_address_addr_space (mode, op0, as);
8669 temp = gen_rtx_MEM (mode, op0);
8670 set_mem_attributes (temp, exp, 0);
8671 set_mem_addr_space (temp, as);
8672 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8673 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8674 if (mode != BLKmode
8675 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8676 /* If the target does not have special handling for unaligned
8677 loads of mode then it can use regular moves for them. */
8678 && ((icode = optab_handler (movmisalign_optab, mode))
8679 != CODE_FOR_nothing))
8680 {
8681 rtx reg, insn;
8682
8683 /* We've already validated the memory, and we're creating a
8684 new pseudo destination. The predicates really can't fail. */
8685 reg = gen_reg_rtx (mode);
8686
8687 /* Nor can the insn generator. */
8688 insn = GEN_FCN (icode) (reg, temp);
8689 gcc_assert (insn != NULL_RTX);
8690 emit_insn (insn);
8691
8692 return reg;
8693 }
8694 return temp;
8695 }
8696
8697 case MEM_REF:
8698 {
8699 addr_space_t as
8700 = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8701 enum machine_mode address_mode;
8702 tree base = TREE_OPERAND (exp, 0);
8703 gimple def_stmt;
8704 int icode, align;
8705 /* Handle expansion of non-aliased memory with non-BLKmode. That
8706 might end up in a register. */
8707 if (TREE_CODE (base) == ADDR_EXPR)
8708 {
8709 HOST_WIDE_INT offset = mem_ref_offset (exp).low;
8710 tree bit_offset;
8711 base = TREE_OPERAND (base, 0);
8712 if (!DECL_P (base))
8713 {
8714 HOST_WIDE_INT off;
8715 base = get_addr_base_and_unit_offset (base, &off);
8716 gcc_assert (base);
8717 offset += off;
8718 }
8719 /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
8720 decl we must use bitfield operations. */
8721 if (DECL_P (base)
8722 && !TREE_ADDRESSABLE (base)
8723 && DECL_MODE (base) != BLKmode
8724 && DECL_RTL_SET_P (base)
8725 && !MEM_P (DECL_RTL (base)))
8726 {
8727 tree bftype;
8728 if (offset == 0
8729 && host_integerp (TYPE_SIZE (TREE_TYPE (exp)), 1)
8730 && (GET_MODE_BITSIZE (DECL_MODE (base))
8731 == TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (exp)))))
8732 return expand_expr (build1 (VIEW_CONVERT_EXPR,
8733 TREE_TYPE (exp), base),
8734 target, tmode, modifier);
8735 bit_offset = bitsize_int (offset * BITS_PER_UNIT);
8736 bftype = TREE_TYPE (base);
8737 if (TYPE_MODE (TREE_TYPE (exp)) != BLKmode)
8738 bftype = TREE_TYPE (exp);
8739 return expand_expr (build3 (BIT_FIELD_REF, bftype,
8740 base,
8741 TYPE_SIZE (TREE_TYPE (exp)),
8742 bit_offset),
8743 target, tmode, modifier);
8744 }
8745 }
8746 address_mode = targetm.addr_space.address_mode (as);
8747 base = TREE_OPERAND (exp, 0);
8748 if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
8749 {
8750 tree mask = gimple_assign_rhs2 (def_stmt);
8751 base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
8752 gimple_assign_rhs1 (def_stmt), mask);
8753 TREE_OPERAND (exp, 0) = base;
8754 }
8755 align = MAX (TYPE_ALIGN (TREE_TYPE (exp)),
8756 get_object_alignment (exp, BIGGEST_ALIGNMENT));
8757 op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
8758 op0 = convert_memory_address_addr_space (address_mode, op0, as);
8759 if (!integer_zerop (TREE_OPERAND (exp, 1)))
8760 {
8761 rtx off
8762 = immed_double_int_const (mem_ref_offset (exp), address_mode);
8763 op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
8764 }
8765 op0 = memory_address_addr_space (mode, op0, as);
8766 temp = gen_rtx_MEM (mode, op0);
8767 set_mem_attributes (temp, exp, 0);
8768 set_mem_addr_space (temp, as);
8769 if (TREE_THIS_VOLATILE (exp))
8770 MEM_VOLATILE_P (temp) = 1;
8771 if (mode != BLKmode
8772 && (unsigned) align < GET_MODE_ALIGNMENT (mode)
8773 /* If the target does not have special handling for unaligned
8774 loads of mode then it can use regular moves for them. */
8775 && ((icode = optab_handler (movmisalign_optab, mode))
8776 != CODE_FOR_nothing))
8777 {
8778 rtx reg, insn;
8779
8780 /* We've already validated the memory, and we're creating a
8781 new pseudo destination. The predicates really can't fail. */
8782 reg = gen_reg_rtx (mode);
8783
8784 /* Nor can the insn generator. */
8785 insn = GEN_FCN (icode) (reg, temp);
8786 emit_insn (insn);
8787
8788 return reg;
8789 }
8790 return temp;
8791 }
8792
8793 case ARRAY_REF:
8794
8795 {
8796 tree array = treeop0;
8797 tree index = treeop1;
8798
8799 /* Fold an expression like: "foo"[2].
8800 This is not done in fold so it won't happen inside &.
8801 Don't fold if this is for wide characters since it's too
8802 difficult to do correctly and this is a very rare case. */
8803
8804 if (modifier != EXPAND_CONST_ADDRESS
8805 && modifier != EXPAND_INITIALIZER
8806 && modifier != EXPAND_MEMORY)
8807 {
8808 tree t = fold_read_from_constant_string (exp);
8809
8810 if (t)
8811 return expand_expr (t, target, tmode, modifier);
8812 }
8813
8814 /* If this is a constant index into a constant array,
8815 just get the value from the array. Handle both the cases when
8816 we have an explicit constructor and when our operand is a variable
8817 that was declared const. */
8818
8819 if (modifier != EXPAND_CONST_ADDRESS
8820 && modifier != EXPAND_INITIALIZER
8821 && modifier != EXPAND_MEMORY
8822 && TREE_CODE (array) == CONSTRUCTOR
8823 && ! TREE_SIDE_EFFECTS (array)
8824 && TREE_CODE (index) == INTEGER_CST)
8825 {
8826 unsigned HOST_WIDE_INT ix;
8827 tree field, value;
8828
8829 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
8830 field, value)
8831 if (tree_int_cst_equal (field, index))
8832 {
8833 if (!TREE_SIDE_EFFECTS (value))
8834 return expand_expr (fold (value), target, tmode, modifier);
8835 break;
8836 }
8837 }
8838
8839 else if (optimize >= 1
8840 && modifier != EXPAND_CONST_ADDRESS
8841 && modifier != EXPAND_INITIALIZER
8842 && modifier != EXPAND_MEMORY
8843 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
8844 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
8845 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
8846 && const_value_known_p (array))
8847 {
8848 if (TREE_CODE (index) == INTEGER_CST)
8849 {
8850 tree init = DECL_INITIAL (array);
8851
8852 if (TREE_CODE (init) == CONSTRUCTOR)
8853 {
8854 unsigned HOST_WIDE_INT ix;
8855 tree field, value;
8856
8857 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
8858 field, value)
8859 if (tree_int_cst_equal (field, index))
8860 {
8861 if (TREE_SIDE_EFFECTS (value))
8862 break;
8863
8864 if (TREE_CODE (value) == CONSTRUCTOR)
8865 {
8866 /* If VALUE is a CONSTRUCTOR, this
8867 optimization is only useful if
8868 this doesn't store the CONSTRUCTOR
8869 into memory. If it does, it is more
8870 efficient to just load the data from
8871 the array directly. */
8872 rtx ret = expand_constructor (value, target,
8873 modifier, true);
8874 if (ret == NULL_RTX)
8875 break;
8876 }
8877
8878 return expand_expr (fold (value), target, tmode,
8879 modifier);
8880 }
8881 }
8882 else if(TREE_CODE (init) == STRING_CST)
8883 {
8884 tree index1 = index;
8885 tree low_bound = array_ref_low_bound (exp);
8886 index1 = fold_convert_loc (loc, sizetype,
8887 treeop1);
8888
8889 /* Optimize the special-case of a zero lower bound.
8890
8891 We convert the low_bound to sizetype to avoid some problems
8892 with constant folding. (E.g. suppose the lower bound is 1,
8893 and its mode is QI. Without the conversion,l (ARRAY
8894 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
8895 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
8896
8897 if (! integer_zerop (low_bound))
8898 index1 = size_diffop_loc (loc, index1,
8899 fold_convert_loc (loc, sizetype,
8900 low_bound));
8901
8902 if (0 > compare_tree_int (index1,
8903 TREE_STRING_LENGTH (init)))
8904 {
8905 tree type = TREE_TYPE (TREE_TYPE (init));
8906 enum machine_mode mode = TYPE_MODE (type);
8907
8908 if (GET_MODE_CLASS (mode) == MODE_INT
8909 && GET_MODE_SIZE (mode) == 1)
8910 return gen_int_mode (TREE_STRING_POINTER (init)
8911 [TREE_INT_CST_LOW (index1)],
8912 mode);
8913 }
8914 }
8915 }
8916 }
8917 }
8918 goto normal_inner_ref;
8919
8920 case COMPONENT_REF:
8921 /* If the operand is a CONSTRUCTOR, we can just extract the
8922 appropriate field if it is present. */
8923 if (TREE_CODE (treeop0) == CONSTRUCTOR)
8924 {
8925 unsigned HOST_WIDE_INT idx;
8926 tree field, value;
8927
8928 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (treeop0),
8929 idx, field, value)
8930 if (field == treeop1
8931 /* We can normally use the value of the field in the
8932 CONSTRUCTOR. However, if this is a bitfield in
8933 an integral mode that we can fit in a HOST_WIDE_INT,
8934 we must mask only the number of bits in the bitfield,
8935 since this is done implicitly by the constructor. If
8936 the bitfield does not meet either of those conditions,
8937 we can't do this optimization. */
8938 && (! DECL_BIT_FIELD (field)
8939 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
8940 && (GET_MODE_BITSIZE (DECL_MODE (field))
8941 <= HOST_BITS_PER_WIDE_INT))))
8942 {
8943 if (DECL_BIT_FIELD (field)
8944 && modifier == EXPAND_STACK_PARM)
8945 target = 0;
8946 op0 = expand_expr (value, target, tmode, modifier);
8947 if (DECL_BIT_FIELD (field))
8948 {
8949 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
8950 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
8951
8952 if (TYPE_UNSIGNED (TREE_TYPE (field)))
8953 {
8954 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
8955 op0 = expand_and (imode, op0, op1, target);
8956 }
8957 else
8958 {
8959 tree count
8960 = build_int_cst (NULL_TREE,
8961 GET_MODE_BITSIZE (imode) - bitsize);
8962
8963 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
8964 target, 0);
8965 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
8966 target, 0);
8967 }
8968 }
8969
8970 return op0;
8971 }
8972 }
8973 goto normal_inner_ref;
8974
8975 case BIT_FIELD_REF:
8976 case ARRAY_RANGE_REF:
8977 normal_inner_ref:
8978 {
8979 enum machine_mode mode1, mode2;
8980 HOST_WIDE_INT bitsize, bitpos;
8981 tree offset;
8982 int volatilep = 0, must_force_mem;
8983 bool packedp = false;
8984 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
8985 &mode1, &unsignedp, &volatilep, true);
8986 rtx orig_op0, memloc;
8987
8988 /* If we got back the original object, something is wrong. Perhaps
8989 we are evaluating an expression too early. In any event, don't
8990 infinitely recurse. */
8991 gcc_assert (tem != exp);
8992
8993 if (TYPE_PACKED (TREE_TYPE (TREE_OPERAND (exp, 0)))
8994 || (TREE_CODE (TREE_OPERAND (exp, 1)) == FIELD_DECL
8995 && DECL_PACKED (TREE_OPERAND (exp, 1))))
8996 packedp = true;
8997
8998 /* If TEM's type is a union of variable size, pass TARGET to the inner
8999 computation, since it will need a temporary and TARGET is known
9000 to have to do. This occurs in unchecked conversion in Ada. */
9001 orig_op0 = op0
9002 = expand_expr (tem,
9003 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9004 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9005 != INTEGER_CST)
9006 && modifier != EXPAND_STACK_PARM
9007 ? target : NULL_RTX),
9008 VOIDmode,
9009 (modifier == EXPAND_INITIALIZER
9010 || modifier == EXPAND_CONST_ADDRESS
9011 || modifier == EXPAND_STACK_PARM)
9012 ? modifier : EXPAND_NORMAL);
9013
9014
9015 /* If the bitfield is volatile, we want to access it in the
9016 field's mode, not the computed mode. */
9017 if (volatilep
9018 && GET_CODE (op0) == MEM
9019 && flag_strict_volatile_bitfields > 0)
9020 op0 = adjust_address (op0, mode1, 0);
9021
9022 mode2
9023 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
9024
9025 /* If we have either an offset, a BLKmode result, or a reference
9026 outside the underlying object, we must force it to memory.
9027 Such a case can occur in Ada if we have unchecked conversion
9028 of an expression from a scalar type to an aggregate type or
9029 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
9030 passed a partially uninitialized object or a view-conversion
9031 to a larger size. */
9032 must_force_mem = (offset
9033 || mode1 == BLKmode
9034 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
9035
9036 /* Handle CONCAT first. */
9037 if (GET_CODE (op0) == CONCAT && !must_force_mem)
9038 {
9039 if (bitpos == 0
9040 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)))
9041 return op0;
9042 if (bitpos == 0
9043 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9044 && bitsize)
9045 {
9046 op0 = XEXP (op0, 0);
9047 mode2 = GET_MODE (op0);
9048 }
9049 else if (bitpos == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0)))
9050 && bitsize == GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1)))
9051 && bitpos
9052 && bitsize)
9053 {
9054 op0 = XEXP (op0, 1);
9055 bitpos = 0;
9056 mode2 = GET_MODE (op0);
9057 }
9058 else
9059 /* Otherwise force into memory. */
9060 must_force_mem = 1;
9061 }
9062
9063 /* If this is a constant, put it in a register if it is a legitimate
9064 constant and we don't need a memory reference. */
9065 if (CONSTANT_P (op0)
9066 && mode2 != BLKmode
9067 && LEGITIMATE_CONSTANT_P (op0)
9068 && !must_force_mem)
9069 op0 = force_reg (mode2, op0);
9070
9071 /* Otherwise, if this is a constant, try to force it to the constant
9072 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
9073 is a legitimate constant. */
9074 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
9075 op0 = validize_mem (memloc);
9076
9077 /* Otherwise, if this is a constant or the object is not in memory
9078 and need be, put it there. */
9079 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
9080 {
9081 tree nt = build_qualified_type (TREE_TYPE (tem),
9082 (TYPE_QUALS (TREE_TYPE (tem))
9083 | TYPE_QUAL_CONST));
9084 memloc = assign_temp (nt, 1, 1, 1);
9085 emit_move_insn (memloc, op0);
9086 op0 = memloc;
9087 }
9088
9089 if (offset)
9090 {
9091 enum machine_mode address_mode;
9092 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
9093 EXPAND_SUM);
9094
9095 gcc_assert (MEM_P (op0));
9096
9097 address_mode
9098 = targetm.addr_space.address_mode (MEM_ADDR_SPACE (op0));
9099 if (GET_MODE (offset_rtx) != address_mode)
9100 offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
9101
9102 if (GET_MODE (op0) == BLKmode
9103 /* A constant address in OP0 can have VOIDmode, we must
9104 not try to call force_reg in that case. */
9105 && GET_MODE (XEXP (op0, 0)) != VOIDmode
9106 && bitsize != 0
9107 && (bitpos % bitsize) == 0
9108 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
9109 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
9110 {
9111 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9112 bitpos = 0;
9113 }
9114
9115 op0 = offset_address (op0, offset_rtx,
9116 highest_pow2_factor (offset));
9117 }
9118
9119 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
9120 record its alignment as BIGGEST_ALIGNMENT. */
9121 if (MEM_P (op0) && bitpos == 0 && offset != 0
9122 && is_aligning_offset (offset, tem))
9123 set_mem_align (op0, BIGGEST_ALIGNMENT);
9124
9125 /* Don't forget about volatility even if this is a bitfield. */
9126 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
9127 {
9128 if (op0 == orig_op0)
9129 op0 = copy_rtx (op0);
9130
9131 MEM_VOLATILE_P (op0) = 1;
9132 }
9133
9134 /* In cases where an aligned union has an unaligned object
9135 as a field, we might be extracting a BLKmode value from
9136 an integer-mode (e.g., SImode) object. Handle this case
9137 by doing the extract into an object as wide as the field
9138 (which we know to be the width of a basic mode), then
9139 storing into memory, and changing the mode to BLKmode. */
9140 if (mode1 == VOIDmode
9141 || REG_P (op0) || GET_CODE (op0) == SUBREG
9142 || (mode1 != BLKmode && ! direct_load[(int) mode1]
9143 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
9144 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
9145 && modifier != EXPAND_CONST_ADDRESS
9146 && modifier != EXPAND_INITIALIZER)
9147 /* If the field is volatile, we always want an aligned
9148 access. */
9149 || (volatilep && flag_strict_volatile_bitfields > 0)
9150 /* If the field isn't aligned enough to fetch as a memref,
9151 fetch it as a bit field. */
9152 || (mode1 != BLKmode
9153 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
9154 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
9155 || (MEM_P (op0)
9156 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
9157 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
9158 && ((modifier == EXPAND_CONST_ADDRESS
9159 || modifier == EXPAND_INITIALIZER)
9160 ? STRICT_ALIGNMENT
9161 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
9162 || (bitpos % BITS_PER_UNIT != 0)))
9163 /* If the type and the field are a constant size and the
9164 size of the type isn't the same size as the bitfield,
9165 we must use bitfield operations. */
9166 || (bitsize >= 0
9167 && TYPE_SIZE (TREE_TYPE (exp))
9168 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9169 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
9170 bitsize)))
9171 {
9172 enum machine_mode ext_mode = mode;
9173
9174 if (ext_mode == BLKmode
9175 && ! (target != 0 && MEM_P (op0)
9176 && MEM_P (target)
9177 && bitpos % BITS_PER_UNIT == 0))
9178 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
9179
9180 if (ext_mode == BLKmode)
9181 {
9182 if (target == 0)
9183 target = assign_temp (type, 0, 1, 1);
9184
9185 if (bitsize == 0)
9186 return target;
9187
9188 /* In this case, BITPOS must start at a byte boundary and
9189 TARGET, if specified, must be a MEM. */
9190 gcc_assert (MEM_P (op0)
9191 && (!target || MEM_P (target))
9192 && !(bitpos % BITS_PER_UNIT));
9193
9194 emit_block_move (target,
9195 adjust_address (op0, VOIDmode,
9196 bitpos / BITS_PER_UNIT),
9197 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
9198 / BITS_PER_UNIT),
9199 (modifier == EXPAND_STACK_PARM
9200 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9201
9202 return target;
9203 }
9204
9205 op0 = validize_mem (op0);
9206
9207 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
9208 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9209
9210 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp, packedp,
9211 (modifier == EXPAND_STACK_PARM
9212 ? NULL_RTX : target),
9213 ext_mode, ext_mode);
9214
9215 /* If the result is a record type and BITSIZE is narrower than
9216 the mode of OP0, an integral mode, and this is a big endian
9217 machine, we must put the field into the high-order bits. */
9218 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
9219 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
9220 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
9221 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
9222 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
9223 - bitsize),
9224 op0, 1);
9225
9226 /* If the result type is BLKmode, store the data into a temporary
9227 of the appropriate type, but with the mode corresponding to the
9228 mode for the data we have (op0's mode). It's tempting to make
9229 this a constant type, since we know it's only being stored once,
9230 but that can cause problems if we are taking the address of this
9231 COMPONENT_REF because the MEM of any reference via that address
9232 will have flags corresponding to the type, which will not
9233 necessarily be constant. */
9234 if (mode == BLKmode)
9235 {
9236 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
9237 rtx new_rtx;
9238
9239 /* If the reference doesn't use the alias set of its type,
9240 we cannot create the temporary using that type. */
9241 if (component_uses_parent_alias_set (exp))
9242 {
9243 new_rtx = assign_stack_local (ext_mode, size, 0);
9244 set_mem_alias_set (new_rtx, get_alias_set (exp));
9245 }
9246 else
9247 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
9248
9249 emit_move_insn (new_rtx, op0);
9250 op0 = copy_rtx (new_rtx);
9251 PUT_MODE (op0, BLKmode);
9252 set_mem_attributes (op0, exp, 1);
9253 }
9254
9255 return op0;
9256 }
9257
9258 /* If the result is BLKmode, use that to access the object
9259 now as well. */
9260 if (mode == BLKmode)
9261 mode1 = BLKmode;
9262
9263 /* Get a reference to just this component. */
9264 if (modifier == EXPAND_CONST_ADDRESS
9265 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
9266 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
9267 else
9268 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
9269
9270 if (op0 == orig_op0)
9271 op0 = copy_rtx (op0);
9272
9273 set_mem_attributes (op0, exp, 0);
9274 if (REG_P (XEXP (op0, 0)))
9275 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9276
9277 MEM_VOLATILE_P (op0) |= volatilep;
9278 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
9279 || modifier == EXPAND_CONST_ADDRESS
9280 || modifier == EXPAND_INITIALIZER)
9281 return op0;
9282 else if (target == 0)
9283 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9284
9285 convert_move (target, op0, unsignedp);
9286 return target;
9287 }
9288
9289 case OBJ_TYPE_REF:
9290 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
9291
9292 case CALL_EXPR:
9293 /* All valid uses of __builtin_va_arg_pack () are removed during
9294 inlining. */
9295 if (CALL_EXPR_VA_ARG_PACK (exp))
9296 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
9297 {
9298 tree fndecl = get_callee_fndecl (exp), attr;
9299
9300 if (fndecl
9301 && (attr = lookup_attribute ("error",
9302 DECL_ATTRIBUTES (fndecl))) != NULL)
9303 error ("%Kcall to %qs declared with attribute error: %s",
9304 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9305 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9306 if (fndecl
9307 && (attr = lookup_attribute ("warning",
9308 DECL_ATTRIBUTES (fndecl))) != NULL)
9309 warning_at (tree_nonartificial_location (exp),
9310 0, "%Kcall to %qs declared with attribute warning: %s",
9311 exp, identifier_to_locale (lang_hooks.decl_printable_name (fndecl, 1)),
9312 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
9313
9314 /* Check for a built-in function. */
9315 if (fndecl && DECL_BUILT_IN (fndecl))
9316 {
9317 gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
9318 return expand_builtin (exp, target, subtarget, tmode, ignore);
9319 }
9320 }
9321 return expand_call (exp, target, ignore);
9322
9323 case VIEW_CONVERT_EXPR:
9324 op0 = NULL_RTX;
9325
9326 /* If we are converting to BLKmode, try to avoid an intermediate
9327 temporary by fetching an inner memory reference. */
9328 if (mode == BLKmode
9329 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
9330 && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
9331 && handled_component_p (treeop0))
9332 {
9333 enum machine_mode mode1;
9334 HOST_WIDE_INT bitsize, bitpos;
9335 tree offset;
9336 int unsignedp;
9337 int volatilep = 0;
9338 tree tem
9339 = get_inner_reference (treeop0, &bitsize, &bitpos,
9340 &offset, &mode1, &unsignedp, &volatilep,
9341 true);
9342 rtx orig_op0;
9343
9344 /* ??? We should work harder and deal with non-zero offsets. */
9345 if (!offset
9346 && (bitpos % BITS_PER_UNIT) == 0
9347 && bitsize >= 0
9348 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
9349 {
9350 /* See the normal_inner_ref case for the rationale. */
9351 orig_op0
9352 = expand_expr (tem,
9353 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
9354 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
9355 != INTEGER_CST)
9356 && modifier != EXPAND_STACK_PARM
9357 ? target : NULL_RTX),
9358 VOIDmode,
9359 (modifier == EXPAND_INITIALIZER
9360 || modifier == EXPAND_CONST_ADDRESS
9361 || modifier == EXPAND_STACK_PARM)
9362 ? modifier : EXPAND_NORMAL);
9363
9364 if (MEM_P (orig_op0))
9365 {
9366 op0 = orig_op0;
9367
9368 /* Get a reference to just this component. */
9369 if (modifier == EXPAND_CONST_ADDRESS
9370 || modifier == EXPAND_SUM
9371 || modifier == EXPAND_INITIALIZER)
9372 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
9373 else
9374 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
9375
9376 if (op0 == orig_op0)
9377 op0 = copy_rtx (op0);
9378
9379 set_mem_attributes (op0, treeop0, 0);
9380 if (REG_P (XEXP (op0, 0)))
9381 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
9382
9383 MEM_VOLATILE_P (op0) |= volatilep;
9384 }
9385 }
9386 }
9387
9388 if (!op0)
9389 op0 = expand_expr (treeop0,
9390 NULL_RTX, VOIDmode, modifier);
9391
9392 /* If the input and output modes are both the same, we are done. */
9393 if (mode == GET_MODE (op0))
9394 ;
9395 /* If neither mode is BLKmode, and both modes are the same size
9396 then we can use gen_lowpart. */
9397 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
9398 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0))
9399 && !COMPLEX_MODE_P (GET_MODE (op0)))
9400 {
9401 if (GET_CODE (op0) == SUBREG)
9402 op0 = force_reg (GET_MODE (op0), op0);
9403 temp = gen_lowpart_common (mode, op0);
9404 if (temp)
9405 op0 = temp;
9406 else
9407 {
9408 if (!REG_P (op0) && !MEM_P (op0))
9409 op0 = force_reg (GET_MODE (op0), op0);
9410 op0 = gen_lowpart (mode, op0);
9411 }
9412 }
9413 /* If both types are integral, convert from one mode to the other. */
9414 else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
9415 op0 = convert_modes (mode, GET_MODE (op0), op0,
9416 TYPE_UNSIGNED (TREE_TYPE (treeop0)));
9417 /* As a last resort, spill op0 to memory, and reload it in a
9418 different mode. */
9419 else if (!MEM_P (op0))
9420 {
9421 /* If the operand is not a MEM, force it into memory. Since we
9422 are going to be changing the mode of the MEM, don't call
9423 force_const_mem for constants because we don't allow pool
9424 constants to change mode. */
9425 tree inner_type = TREE_TYPE (treeop0);
9426
9427 gcc_assert (!TREE_ADDRESSABLE (exp));
9428
9429 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
9430 target
9431 = assign_stack_temp_for_type
9432 (TYPE_MODE (inner_type),
9433 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
9434
9435 emit_move_insn (target, op0);
9436 op0 = target;
9437 }
9438
9439 /* At this point, OP0 is in the correct mode. If the output type is
9440 such that the operand is known to be aligned, indicate that it is.
9441 Otherwise, we need only be concerned about alignment for non-BLKmode
9442 results. */
9443 if (MEM_P (op0))
9444 {
9445 op0 = copy_rtx (op0);
9446
9447 if (TYPE_ALIGN_OK (type))
9448 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
9449 else if (STRICT_ALIGNMENT
9450 && mode != BLKmode
9451 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
9452 {
9453 tree inner_type = TREE_TYPE (treeop0);
9454 HOST_WIDE_INT temp_size
9455 = MAX (int_size_in_bytes (inner_type),
9456 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
9457 rtx new_rtx
9458 = assign_stack_temp_for_type (mode, temp_size, 0, type);
9459 rtx new_with_op0_mode
9460 = adjust_address (new_rtx, GET_MODE (op0), 0);
9461
9462 gcc_assert (!TREE_ADDRESSABLE (exp));
9463
9464 if (GET_MODE (op0) == BLKmode)
9465 emit_block_move (new_with_op0_mode, op0,
9466 GEN_INT (GET_MODE_SIZE (mode)),
9467 (modifier == EXPAND_STACK_PARM
9468 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
9469 else
9470 emit_move_insn (new_with_op0_mode, op0);
9471
9472 op0 = new_rtx;
9473 }
9474
9475 op0 = adjust_address (op0, mode, 0);
9476 }
9477
9478 return op0;
9479
9480 /* Use a compare and a jump for BLKmode comparisons, or for function
9481 type comparisons is HAVE_canonicalize_funcptr_for_compare. */
9482
9483 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9484 are occassionally created by folding during expansion. */
9485 case TRUTH_ANDIF_EXPR:
9486 case TRUTH_ORIF_EXPR:
9487 if (! ignore
9488 && (target == 0
9489 || modifier == EXPAND_STACK_PARM
9490 || ! safe_from_p (target, treeop0, 1)
9491 || ! safe_from_p (target, treeop1, 1)
9492 /* Make sure we don't have a hard reg (such as function's return
9493 value) live across basic blocks, if not optimizing. */
9494 || (!optimize && REG_P (target)
9495 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9496 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9497
9498 if (target)
9499 emit_move_insn (target, const0_rtx);
9500
9501 op1 = gen_label_rtx ();
9502 jumpifnot_1 (code, treeop0, treeop1, op1, -1);
9503
9504 if (target)
9505 emit_move_insn (target, const1_rtx);
9506
9507 emit_label (op1);
9508 return ignore ? const0_rtx : target;
9509
9510 case STATEMENT_LIST:
9511 {
9512 tree_stmt_iterator iter;
9513
9514 gcc_assert (ignore);
9515
9516 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9517 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9518 }
9519 return const0_rtx;
9520
9521 case COND_EXPR:
9522 /* A COND_EXPR with its type being VOID_TYPE represents a
9523 conditional jump and is handled in
9524 expand_gimple_cond_expr. */
9525 gcc_assert (!VOID_TYPE_P (type));
9526
9527 /* Note that COND_EXPRs whose type is a structure or union
9528 are required to be constructed to contain assignments of
9529 a temporary variable, so that we can evaluate them here
9530 for side effect only. If type is void, we must do likewise. */
9531
9532 gcc_assert (!TREE_ADDRESSABLE (type)
9533 && !ignore
9534 && TREE_TYPE (treeop1) != void_type_node
9535 && TREE_TYPE (treeop2) != void_type_node);
9536
9537 /* If we are not to produce a result, we have no target. Otherwise,
9538 if a target was specified use it; it will not be used as an
9539 intermediate target unless it is safe. If no target, use a
9540 temporary. */
9541
9542 if (modifier != EXPAND_STACK_PARM
9543 && original_target
9544 && safe_from_p (original_target, treeop0, 1)
9545 && GET_MODE (original_target) == mode
9546 #ifdef HAVE_conditional_move
9547 && (! can_conditionally_move_p (mode)
9548 || REG_P (original_target))
9549 #endif
9550 && !MEM_P (original_target))
9551 temp = original_target;
9552 else
9553 temp = assign_temp (type, 0, 0, 1);
9554
9555 do_pending_stack_adjust ();
9556 NO_DEFER_POP;
9557 op0 = gen_label_rtx ();
9558 op1 = gen_label_rtx ();
9559 jumpifnot (treeop0, op0, -1);
9560 store_expr (treeop1, temp,
9561 modifier == EXPAND_STACK_PARM,
9562 false);
9563
9564 emit_jump_insn (gen_jump (op1));
9565 emit_barrier ();
9566 emit_label (op0);
9567 store_expr (treeop2, temp,
9568 modifier == EXPAND_STACK_PARM,
9569 false);
9570
9571 emit_label (op1);
9572 OK_DEFER_POP;
9573 return temp;
9574
9575 case VEC_COND_EXPR:
9576 target = expand_vec_cond_expr (type, treeop0, treeop1, treeop2, target);
9577 return target;
9578
9579 case MODIFY_EXPR:
9580 {
9581 tree lhs = treeop0;
9582 tree rhs = treeop1;
9583 gcc_assert (ignore);
9584
9585 /* Check for |= or &= of a bitfield of size one into another bitfield
9586 of size 1. In this case, (unless we need the result of the
9587 assignment) we can do this more efficiently with a
9588 test followed by an assignment, if necessary.
9589
9590 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9591 things change so we do, this code should be enhanced to
9592 support it. */
9593 if (TREE_CODE (lhs) == COMPONENT_REF
9594 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9595 || TREE_CODE (rhs) == BIT_AND_EXPR)
9596 && TREE_OPERAND (rhs, 0) == lhs
9597 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9598 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9599 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9600 {
9601 rtx label = gen_label_rtx ();
9602 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9603 do_jump (TREE_OPERAND (rhs, 1),
9604 value ? label : 0,
9605 value ? 0 : label, -1);
9606 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9607 MOVE_NONTEMPORAL (exp));
9608 do_pending_stack_adjust ();
9609 emit_label (label);
9610 return const0_rtx;
9611 }
9612
9613 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9614 return const0_rtx;
9615 }
9616
9617 case ADDR_EXPR:
9618 return expand_expr_addr_expr (exp, target, tmode, modifier);
9619
9620 case REALPART_EXPR:
9621 op0 = expand_normal (treeop0);
9622 return read_complex_part (op0, false);
9623
9624 case IMAGPART_EXPR:
9625 op0 = expand_normal (treeop0);
9626 return read_complex_part (op0, true);
9627
9628 case RETURN_EXPR:
9629 case LABEL_EXPR:
9630 case GOTO_EXPR:
9631 case SWITCH_EXPR:
9632 case ASM_EXPR:
9633 /* Expanded in cfgexpand.c. */
9634 gcc_unreachable ();
9635
9636 case TRY_CATCH_EXPR:
9637 case CATCH_EXPR:
9638 case EH_FILTER_EXPR:
9639 case TRY_FINALLY_EXPR:
9640 /* Lowered by tree-eh.c. */
9641 gcc_unreachable ();
9642
9643 case WITH_CLEANUP_EXPR:
9644 case CLEANUP_POINT_EXPR:
9645 case TARGET_EXPR:
9646 case CASE_LABEL_EXPR:
9647 case VA_ARG_EXPR:
9648 case BIND_EXPR:
9649 case INIT_EXPR:
9650 case CONJ_EXPR:
9651 case COMPOUND_EXPR:
9652 case PREINCREMENT_EXPR:
9653 case PREDECREMENT_EXPR:
9654 case POSTINCREMENT_EXPR:
9655 case POSTDECREMENT_EXPR:
9656 case LOOP_EXPR:
9657 case EXIT_EXPR:
9658 /* Lowered by gimplify.c. */
9659 gcc_unreachable ();
9660
9661 case FDESC_EXPR:
9662 /* Function descriptors are not valid except for as
9663 initialization constants, and should not be expanded. */
9664 gcc_unreachable ();
9665
9666 case WITH_SIZE_EXPR:
9667 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9668 have pulled out the size to use in whatever context it needed. */
9669 return expand_expr_real (treeop0, original_target, tmode,
9670 modifier, alt_rtl);
9671
9672 case REALIGN_LOAD_EXPR:
9673 {
9674 tree oprnd0 = treeop0;
9675 tree oprnd1 = treeop1;
9676 tree oprnd2 = treeop2;
9677 rtx op2;
9678
9679 this_optab = optab_for_tree_code (code, type, optab_default);
9680 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9681 op2 = expand_normal (oprnd2);
9682 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9683 target, unsignedp);
9684 gcc_assert (temp);
9685 return temp;
9686 }
9687
9688 case DOT_PROD_EXPR:
9689 {
9690 tree oprnd0 = treeop0;
9691 tree oprnd1 = treeop1;
9692 tree oprnd2 = treeop2;
9693 rtx op2;
9694
9695 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9696 op2 = expand_normal (oprnd2);
9697 target = expand_widen_pattern_expr (&ops, op0, op1, op2,
9698 target, unsignedp);
9699 return target;
9700 }
9701
9702 case COMPOUND_LITERAL_EXPR:
9703 {
9704 /* Initialize the anonymous variable declared in the compound
9705 literal, then return the variable. */
9706 tree decl = COMPOUND_LITERAL_EXPR_DECL (exp);
9707
9708 /* Create RTL for this variable. */
9709 if (!DECL_RTL_SET_P (decl))
9710 {
9711 if (DECL_HARD_REGISTER (decl))
9712 /* The user specified an assembler name for this variable.
9713 Set that up now. */
9714 rest_of_decl_compilation (decl, 0, 0);
9715 else
9716 expand_decl (decl);
9717 }
9718
9719 return expand_expr_real (decl, original_target, tmode,
9720 modifier, alt_rtl);
9721 }
9722
9723 default:
9724 return expand_expr_real_2 (&ops, target, tmode, modifier);
9725 }
9726 }
9727 \f
9728 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9729 signedness of TYPE), possibly returning the result in TARGET. */
9730 static rtx
9731 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9732 {
9733 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9734 if (target && GET_MODE (target) != GET_MODE (exp))
9735 target = 0;
9736 /* For constant values, reduce using build_int_cst_type. */
9737 if (CONST_INT_P (exp))
9738 {
9739 HOST_WIDE_INT value = INTVAL (exp);
9740 tree t = build_int_cst_type (type, value);
9741 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9742 }
9743 else if (TYPE_UNSIGNED (type))
9744 {
9745 rtx mask = immed_double_int_const (double_int_mask (prec),
9746 GET_MODE (exp));
9747 return expand_and (GET_MODE (exp), exp, mask, target);
9748 }
9749 else
9750 {
9751 tree count = build_int_cst (NULL_TREE,
9752 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9753 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9754 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9755 }
9756 }
9757 \f
9758 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9759 when applied to the address of EXP produces an address known to be
9760 aligned more than BIGGEST_ALIGNMENT. */
9761
9762 static int
9763 is_aligning_offset (const_tree offset, const_tree exp)
9764 {
9765 /* Strip off any conversions. */
9766 while (CONVERT_EXPR_P (offset))
9767 offset = TREE_OPERAND (offset, 0);
9768
9769 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9770 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9771 if (TREE_CODE (offset) != BIT_AND_EXPR
9772 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9773 || compare_tree_int (TREE_OPERAND (offset, 1),
9774 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9775 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9776 return 0;
9777
9778 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9779 It must be NEGATE_EXPR. Then strip any more conversions. */
9780 offset = TREE_OPERAND (offset, 0);
9781 while (CONVERT_EXPR_P (offset))
9782 offset = TREE_OPERAND (offset, 0);
9783
9784 if (TREE_CODE (offset) != NEGATE_EXPR)
9785 return 0;
9786
9787 offset = TREE_OPERAND (offset, 0);
9788 while (CONVERT_EXPR_P (offset))
9789 offset = TREE_OPERAND (offset, 0);
9790
9791 /* This must now be the address of EXP. */
9792 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9793 }
9794 \f
9795 /* Return the tree node if an ARG corresponds to a string constant or zero
9796 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9797 in bytes within the string that ARG is accessing. The type of the
9798 offset will be `sizetype'. */
9799
9800 tree
9801 string_constant (tree arg, tree *ptr_offset)
9802 {
9803 tree array, offset, lower_bound;
9804 STRIP_NOPS (arg);
9805
9806 if (TREE_CODE (arg) == ADDR_EXPR)
9807 {
9808 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9809 {
9810 *ptr_offset = size_zero_node;
9811 return TREE_OPERAND (arg, 0);
9812 }
9813 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9814 {
9815 array = TREE_OPERAND (arg, 0);
9816 offset = size_zero_node;
9817 }
9818 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9819 {
9820 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9821 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9822 if (TREE_CODE (array) != STRING_CST
9823 && TREE_CODE (array) != VAR_DECL)
9824 return 0;
9825
9826 /* Check if the array has a nonzero lower bound. */
9827 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9828 if (!integer_zerop (lower_bound))
9829 {
9830 /* If the offset and base aren't both constants, return 0. */
9831 if (TREE_CODE (lower_bound) != INTEGER_CST)
9832 return 0;
9833 if (TREE_CODE (offset) != INTEGER_CST)
9834 return 0;
9835 /* Adjust offset by the lower bound. */
9836 offset = size_diffop (fold_convert (sizetype, offset),
9837 fold_convert (sizetype, lower_bound));
9838 }
9839 }
9840 else
9841 return 0;
9842 }
9843 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9844 {
9845 tree arg0 = TREE_OPERAND (arg, 0);
9846 tree arg1 = TREE_OPERAND (arg, 1);
9847
9848 STRIP_NOPS (arg0);
9849 STRIP_NOPS (arg1);
9850
9851 if (TREE_CODE (arg0) == ADDR_EXPR
9852 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9853 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9854 {
9855 array = TREE_OPERAND (arg0, 0);
9856 offset = arg1;
9857 }
9858 else if (TREE_CODE (arg1) == ADDR_EXPR
9859 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9860 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9861 {
9862 array = TREE_OPERAND (arg1, 0);
9863 offset = arg0;
9864 }
9865 else
9866 return 0;
9867 }
9868 else
9869 return 0;
9870
9871 if (TREE_CODE (array) == STRING_CST)
9872 {
9873 *ptr_offset = fold_convert (sizetype, offset);
9874 return array;
9875 }
9876 else if (TREE_CODE (array) == VAR_DECL
9877 || TREE_CODE (array) == CONST_DECL)
9878 {
9879 int length;
9880
9881 /* Variables initialized to string literals can be handled too. */
9882 if (!const_value_known_p (array)
9883 || !DECL_INITIAL (array)
9884 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9885 return 0;
9886
9887 /* Avoid const char foo[4] = "abcde"; */
9888 if (DECL_SIZE_UNIT (array) == NULL_TREE
9889 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9890 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9891 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9892 return 0;
9893
9894 /* If variable is bigger than the string literal, OFFSET must be constant
9895 and inside of the bounds of the string literal. */
9896 offset = fold_convert (sizetype, offset);
9897 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9898 && (! host_integerp (offset, 1)
9899 || compare_tree_int (offset, length) >= 0))
9900 return 0;
9901
9902 *ptr_offset = offset;
9903 return DECL_INITIAL (array);
9904 }
9905
9906 return 0;
9907 }
9908 \f
9909 /* Generate code to calculate OPS, and exploded expression
9910 using a store-flag instruction and return an rtx for the result.
9911 OPS reflects a comparison.
9912
9913 If TARGET is nonzero, store the result there if convenient.
9914
9915 Return zero if there is no suitable set-flag instruction
9916 available on this machine.
9917
9918 Once expand_expr has been called on the arguments of the comparison,
9919 we are committed to doing the store flag, since it is not safe to
9920 re-evaluate the expression. We emit the store-flag insn by calling
9921 emit_store_flag, but only expand the arguments if we have a reason
9922 to believe that emit_store_flag will be successful. If we think that
9923 it will, but it isn't, we have to simulate the store-flag with a
9924 set/jump/set sequence. */
9925
9926 static rtx
9927 do_store_flag (sepops ops, rtx target, enum machine_mode mode)
9928 {
9929 enum rtx_code code;
9930 tree arg0, arg1, type;
9931 tree tem;
9932 enum machine_mode operand_mode;
9933 int unsignedp;
9934 rtx op0, op1;
9935 rtx subtarget = target;
9936 location_t loc = ops->location;
9937
9938 arg0 = ops->op0;
9939 arg1 = ops->op1;
9940
9941 /* Don't crash if the comparison was erroneous. */
9942 if (arg0 == error_mark_node || arg1 == error_mark_node)
9943 return const0_rtx;
9944
9945 type = TREE_TYPE (arg0);
9946 operand_mode = TYPE_MODE (type);
9947 unsignedp = TYPE_UNSIGNED (type);
9948
9949 /* We won't bother with BLKmode store-flag operations because it would mean
9950 passing a lot of information to emit_store_flag. */
9951 if (operand_mode == BLKmode)
9952 return 0;
9953
9954 /* We won't bother with store-flag operations involving function pointers
9955 when function pointers must be canonicalized before comparisons. */
9956 #ifdef HAVE_canonicalize_funcptr_for_compare
9957 if (HAVE_canonicalize_funcptr_for_compare
9958 && ((TREE_CODE (TREE_TYPE (arg0)) == POINTER_TYPE
9959 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg0)))
9960 == FUNCTION_TYPE))
9961 || (TREE_CODE (TREE_TYPE (arg1)) == POINTER_TYPE
9962 && (TREE_CODE (TREE_TYPE (TREE_TYPE (arg1)))
9963 == FUNCTION_TYPE))))
9964 return 0;
9965 #endif
9966
9967 STRIP_NOPS (arg0);
9968 STRIP_NOPS (arg1);
9969
9970 /* Get the rtx comparison code to use. We know that EXP is a comparison
9971 operation of some type. Some comparisons against 1 and -1 can be
9972 converted to comparisons with zero. Do so here so that the tests
9973 below will be aware that we have a comparison with zero. These
9974 tests will not catch constants in the first operand, but constants
9975 are rarely passed as the first operand. */
9976
9977 switch (ops->code)
9978 {
9979 case EQ_EXPR:
9980 code = EQ;
9981 break;
9982 case NE_EXPR:
9983 code = NE;
9984 break;
9985 case LT_EXPR:
9986 if (integer_onep (arg1))
9987 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9988 else
9989 code = unsignedp ? LTU : LT;
9990 break;
9991 case LE_EXPR:
9992 if (! unsignedp && integer_all_onesp (arg1))
9993 arg1 = integer_zero_node, code = LT;
9994 else
9995 code = unsignedp ? LEU : LE;
9996 break;
9997 case GT_EXPR:
9998 if (! unsignedp && integer_all_onesp (arg1))
9999 arg1 = integer_zero_node, code = GE;
10000 else
10001 code = unsignedp ? GTU : GT;
10002 break;
10003 case GE_EXPR:
10004 if (integer_onep (arg1))
10005 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
10006 else
10007 code = unsignedp ? GEU : GE;
10008 break;
10009
10010 case UNORDERED_EXPR:
10011 code = UNORDERED;
10012 break;
10013 case ORDERED_EXPR:
10014 code = ORDERED;
10015 break;
10016 case UNLT_EXPR:
10017 code = UNLT;
10018 break;
10019 case UNLE_EXPR:
10020 code = UNLE;
10021 break;
10022 case UNGT_EXPR:
10023 code = UNGT;
10024 break;
10025 case UNGE_EXPR:
10026 code = UNGE;
10027 break;
10028 case UNEQ_EXPR:
10029 code = UNEQ;
10030 break;
10031 case LTGT_EXPR:
10032 code = LTGT;
10033 break;
10034
10035 default:
10036 gcc_unreachable ();
10037 }
10038
10039 /* Put a constant second. */
10040 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
10041 || TREE_CODE (arg0) == FIXED_CST)
10042 {
10043 tem = arg0; arg0 = arg1; arg1 = tem;
10044 code = swap_condition (code);
10045 }
10046
10047 /* If this is an equality or inequality test of a single bit, we can
10048 do this by shifting the bit being tested to the low-order bit and
10049 masking the result with the constant 1. If the condition was EQ,
10050 we xor it with 1. This does not require an scc insn and is faster
10051 than an scc insn even if we have it.
10052
10053 The code to make this transformation was moved into fold_single_bit_test,
10054 so we just call into the folder and expand its result. */
10055
10056 if ((code == NE || code == EQ)
10057 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
10058 && integer_pow2p (TREE_OPERAND (arg0, 1)))
10059 {
10060 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
10061 return expand_expr (fold_single_bit_test (loc,
10062 code == NE ? NE_EXPR : EQ_EXPR,
10063 arg0, arg1, type),
10064 target, VOIDmode, EXPAND_NORMAL);
10065 }
10066
10067 if (! get_subtarget (target)
10068 || GET_MODE (subtarget) != operand_mode)
10069 subtarget = 0;
10070
10071 expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
10072
10073 if (target == 0)
10074 target = gen_reg_rtx (mode);
10075
10076 /* Try a cstore if possible. */
10077 return emit_store_flag_force (target, code, op0, op1,
10078 operand_mode, unsignedp, 1);
10079 }
10080 \f
10081
10082 /* Stubs in case we haven't got a casesi insn. */
10083 #ifndef HAVE_casesi
10084 # define HAVE_casesi 0
10085 # define gen_casesi(a, b, c, d, e) (0)
10086 # define CODE_FOR_casesi CODE_FOR_nothing
10087 #endif
10088
10089 /* Attempt to generate a casesi instruction. Returns 1 if successful,
10090 0 otherwise (i.e. if there is no casesi instruction). */
10091 int
10092 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
10093 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
10094 rtx fallback_label ATTRIBUTE_UNUSED)
10095 {
10096 enum machine_mode index_mode = SImode;
10097 int index_bits = GET_MODE_BITSIZE (index_mode);
10098 rtx op1, op2, index;
10099 enum machine_mode op_mode;
10100
10101 if (! HAVE_casesi)
10102 return 0;
10103
10104 /* Convert the index to SImode. */
10105 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
10106 {
10107 enum machine_mode omode = TYPE_MODE (index_type);
10108 rtx rangertx = expand_normal (range);
10109
10110 /* We must handle the endpoints in the original mode. */
10111 index_expr = build2 (MINUS_EXPR, index_type,
10112 index_expr, minval);
10113 minval = integer_zero_node;
10114 index = expand_normal (index_expr);
10115 if (default_label)
10116 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
10117 omode, 1, default_label);
10118 /* Now we can safely truncate. */
10119 index = convert_to_mode (index_mode, index, 0);
10120 }
10121 else
10122 {
10123 if (TYPE_MODE (index_type) != index_mode)
10124 {
10125 index_type = lang_hooks.types.type_for_size (index_bits, 0);
10126 index_expr = fold_convert (index_type, index_expr);
10127 }
10128
10129 index = expand_normal (index_expr);
10130 }
10131
10132 do_pending_stack_adjust ();
10133
10134 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
10135 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
10136 (index, op_mode))
10137 index = copy_to_mode_reg (op_mode, index);
10138
10139 op1 = expand_normal (minval);
10140
10141 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
10142 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
10143 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
10144 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
10145 (op1, op_mode))
10146 op1 = copy_to_mode_reg (op_mode, op1);
10147
10148 op2 = expand_normal (range);
10149
10150 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10151 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10152 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10153 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10154 (op2, op_mode))
10155 op2 = copy_to_mode_reg (op_mode, op2);
10156
10157 emit_jump_insn (gen_casesi (index, op1, op2,
10158 table_label, !default_label
10159 ? fallback_label : default_label));
10160 return 1;
10161 }
10162
10163 /* Attempt to generate a tablejump instruction; same concept. */
10164 #ifndef HAVE_tablejump
10165 #define HAVE_tablejump 0
10166 #define gen_tablejump(x, y) (0)
10167 #endif
10168
10169 /* Subroutine of the next function.
10170
10171 INDEX is the value being switched on, with the lowest value
10172 in the table already subtracted.
10173 MODE is its expected mode (needed if INDEX is constant).
10174 RANGE is the length of the jump table.
10175 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10176
10177 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10178 index value is out of range. */
10179
10180 static void
10181 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10182 rtx default_label)
10183 {
10184 rtx temp, vector;
10185
10186 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10187 cfun->cfg->max_jumptable_ents = INTVAL (range);
10188
10189 /* Do an unsigned comparison (in the proper mode) between the index
10190 expression and the value which represents the length of the range.
10191 Since we just finished subtracting the lower bound of the range
10192 from the index expression, this comparison allows us to simultaneously
10193 check that the original index expression value is both greater than
10194 or equal to the minimum value of the range and less than or equal to
10195 the maximum value of the range. */
10196
10197 if (default_label)
10198 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10199 default_label);
10200
10201 /* If index is in range, it must fit in Pmode.
10202 Convert to Pmode so we can index with it. */
10203 if (mode != Pmode)
10204 index = convert_to_mode (Pmode, index, 1);
10205
10206 /* Don't let a MEM slip through, because then INDEX that comes
10207 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10208 and break_out_memory_refs will go to work on it and mess it up. */
10209 #ifdef PIC_CASE_VECTOR_ADDRESS
10210 if (flag_pic && !REG_P (index))
10211 index = copy_to_mode_reg (Pmode, index);
10212 #endif
10213
10214 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10215 GET_MODE_SIZE, because this indicates how large insns are. The other
10216 uses should all be Pmode, because they are addresses. This code
10217 could fail if addresses and insns are not the same size. */
10218 index = gen_rtx_PLUS (Pmode,
10219 gen_rtx_MULT (Pmode, index,
10220 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10221 gen_rtx_LABEL_REF (Pmode, table_label));
10222 #ifdef PIC_CASE_VECTOR_ADDRESS
10223 if (flag_pic)
10224 index = PIC_CASE_VECTOR_ADDRESS (index);
10225 else
10226 #endif
10227 index = memory_address (CASE_VECTOR_MODE, index);
10228 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10229 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10230 convert_move (temp, vector, 0);
10231
10232 emit_jump_insn (gen_tablejump (temp, table_label));
10233
10234 /* If we are generating PIC code or if the table is PC-relative, the
10235 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10236 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10237 emit_barrier ();
10238 }
10239
10240 int
10241 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10242 rtx table_label, rtx default_label)
10243 {
10244 rtx index;
10245
10246 if (! HAVE_tablejump)
10247 return 0;
10248
10249 index_expr = fold_build2 (MINUS_EXPR, index_type,
10250 fold_convert (index_type, index_expr),
10251 fold_convert (index_type, minval));
10252 index = expand_normal (index_expr);
10253 do_pending_stack_adjust ();
10254
10255 do_tablejump (index, TYPE_MODE (index_type),
10256 convert_modes (TYPE_MODE (index_type),
10257 TYPE_MODE (TREE_TYPE (range)),
10258 expand_normal (range),
10259 TYPE_UNSIGNED (TREE_TYPE (range))),
10260 table_label, default_label);
10261 return 1;
10262 }
10263
10264 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10265 static rtx
10266 const_vector_from_tree (tree exp)
10267 {
10268 rtvec v;
10269 int units, i;
10270 tree link, elt;
10271 enum machine_mode inner, mode;
10272
10273 mode = TYPE_MODE (TREE_TYPE (exp));
10274
10275 if (initializer_zerop (exp))
10276 return CONST0_RTX (mode);
10277
10278 units = GET_MODE_NUNITS (mode);
10279 inner = GET_MODE_INNER (mode);
10280
10281 v = rtvec_alloc (units);
10282
10283 link = TREE_VECTOR_CST_ELTS (exp);
10284 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10285 {
10286 elt = TREE_VALUE (link);
10287
10288 if (TREE_CODE (elt) == REAL_CST)
10289 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10290 inner);
10291 else if (TREE_CODE (elt) == FIXED_CST)
10292 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10293 inner);
10294 else
10295 RTVEC_ELT (v, i) = immed_double_int_const (tree_to_double_int (elt),
10296 inner);
10297 }
10298
10299 /* Initialize remaining elements to 0. */
10300 for (; i < units; ++i)
10301 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10302
10303 return gen_rtx_CONST_VECTOR (mode, v);
10304 }
10305
10306 /* Build a decl for a personality function given a language prefix. */
10307
10308 tree
10309 build_personality_function (const char *lang)
10310 {
10311 const char *unwind_and_version;
10312 tree decl, type;
10313 char *name;
10314
10315 switch (targetm.except_unwind_info ())
10316 {
10317 case UI_NONE:
10318 return NULL;
10319 case UI_SJLJ:
10320 unwind_and_version = "_sj0";
10321 break;
10322 case UI_DWARF2:
10323 case UI_TARGET:
10324 unwind_and_version = "_v0";
10325 break;
10326 default:
10327 gcc_unreachable ();
10328 }
10329
10330 name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
10331
10332 type = build_function_type_list (integer_type_node, integer_type_node,
10333 long_long_unsigned_type_node,
10334 ptr_type_node, ptr_type_node, NULL_TREE);
10335 decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
10336 get_identifier (name), type);
10337 DECL_ARTIFICIAL (decl) = 1;
10338 DECL_EXTERNAL (decl) = 1;
10339 TREE_PUBLIC (decl) = 1;
10340
10341 /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
10342 are the flags assigned by targetm.encode_section_info. */
10343 SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
10344
10345 return decl;
10346 }
10347
10348 /* Extracts the personality function of DECL and returns the corresponding
10349 libfunc. */
10350
10351 rtx
10352 get_personality_function (tree decl)
10353 {
10354 tree personality = DECL_FUNCTION_PERSONALITY (decl);
10355 enum eh_personality_kind pk;
10356
10357 pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
10358 if (pk == eh_personality_none)
10359 return NULL;
10360
10361 if (!personality
10362 && pk == eh_personality_any)
10363 personality = lang_hooks.eh_personality ();
10364
10365 if (pk == eh_personality_lang)
10366 gcc_assert (personality != NULL_TREE);
10367
10368 return XEXP (DECL_RTL (personality), 0);
10369 }
10370
10371 #include "gt-expr.h"