[multiple changes]
[gcc.git] / gcc / fibonacci_heap.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 1998-2015 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin (dan@cgsoftware.com).
4 Re-implemented in C++ by Martin Liska <mliska@suse.cz>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Fibonacci heaps are somewhat complex, but, there's an article in
23 DDJ that explains them pretty well:
24
25 http://www.ddj.com/articles/1997/9701/9701o/9701o.htm?topic=algoritms
26
27 Introduction to algorithms by Corman and Rivest also goes over them.
28
29 The original paper that introduced them is "Fibonacci heaps and their
30 uses in improved network optimization algorithms" by Tarjan and
31 Fredman (JACM 34(3), July 1987).
32
33 Amortized and real worst case time for operations:
34
35 ExtractMin: O(lg n) amortized. O(n) worst case.
36 DecreaseKey: O(1) amortized. O(lg n) worst case.
37 Insert: O(1) amortized.
38 Union: O(1) amortized. */
39
40 #ifndef GCC_FIBONACCI_HEAP_H
41 #define GCC_FIBONACCI_HEAP_H
42
43 /* Forward definition. */
44
45 template<class K, class V>
46 class fibonacci_heap;
47
48 /* Fibonacci heap node class. */
49
50 template<class K, class V>
51 class fibonacci_node
52 {
53 typedef fibonacci_node<K,V> fibonacci_node_t;
54 friend class fibonacci_heap<K,V>;
55
56 public:
57 /* Default constructor. */
58 fibonacci_node (): m_parent (NULL), m_child (NULL), m_left (this),
59 m_right (this), m_degree (0), m_mark (0)
60 {
61 }
62
63 /* Constructor for a node with given KEY. */
64 fibonacci_node (K key): m_parent (NULL), m_child (NULL), m_left (this),
65 m_right (this), m_key (key),
66 m_degree (0), m_mark (0)
67 {
68 }
69
70 /* Compare fibonacci node with OTHER node. */
71 int compare (fibonacci_node_t *other)
72 {
73 if (m_key < other->m_key)
74 return -1;
75 if (m_key > other->m_key)
76 return 1;
77 return 0;
78 }
79
80 /* Compare the node with a given KEY. */
81 int compare_data (K key)
82 {
83 return fibonacci_node_t (key).compare (this);
84 }
85
86 /* Remove fibonacci heap node. */
87 fibonacci_node_t *remove ();
88
89 /* Link the node with PARENT. */
90 void link (fibonacci_node_t *parent);
91
92 /* Return key associated with the node. */
93 K get_key ()
94 {
95 return m_key;
96 }
97
98 /* Return data associated with the node. */
99 V *get_data ()
100 {
101 return m_data;
102 }
103
104 private:
105 /* Put node B after this node. */
106 void insert_after (fibonacci_node_t *b);
107
108 /* Insert fibonacci node B after this node. */
109 void insert_before (fibonacci_node_t *b)
110 {
111 m_left->insert_after (b);
112 }
113
114 /* Parent node. */
115 fibonacci_node *m_parent;
116 /* Child node. */
117 fibonacci_node *m_child;
118 /* Left sibling. */
119 fibonacci_node *m_left;
120 /* Right node. */
121 fibonacci_node *m_right;
122 /* Key associated with node. */
123 K m_key;
124 /* Data associated with node. */
125 V *m_data;
126
127 #if defined (__GNUC__) && (!defined (SIZEOF_INT) || SIZEOF_INT < 4)
128 /* Degree of the node. */
129 __extension__ unsigned long int m_degree : 31;
130 /* Mark of the node. */
131 __extension__ unsigned long int m_mark : 1;
132 #else
133 /* Degree of the node. */
134 unsigned int m_degree : 31;
135 /* Mark of the node. */
136 unsigned int m_mark : 1;
137 #endif
138 };
139
140 /* Fibonacci heap class. */
141 template<class K, class V>
142 class fibonacci_heap
143 {
144 typedef fibonacci_node<K,V> fibonacci_node_t;
145 friend class fibonacci_node<K,V>;
146
147 public:
148 /* Default constructor. */
149 fibonacci_heap (K global_min_key): m_nodes (0), m_min (NULL), m_root (NULL),
150 m_global_min_key (global_min_key)
151 {
152 }
153
154 /* Destructor. */
155 ~fibonacci_heap ()
156 {
157 while (m_min != NULL)
158 delete (extract_minimum_node ());
159 }
160
161 /* Insert new node given by KEY and DATA associated with the key. */
162 fibonacci_node_t *insert (K key, V *data);
163
164 /* Return true if no entry is present. */
165 bool empty ()
166 {
167 return m_nodes == 0;
168 }
169
170 /* Return the number of nodes. */
171 size_t nodes ()
172 {
173 return m_nodes;
174 }
175
176 /* Return minimal key presented in the heap. */
177 K min_key ()
178 {
179 if (m_min == NULL)
180 gcc_unreachable ();
181
182 return m_min->m_key;
183 }
184
185 /* For given NODE, set new KEY value. */
186 K replace_key (fibonacci_node_t *node, K key)
187 {
188 K okey = node->m_key;
189
190 replace_key_data (node, key, node->m_data);
191 return okey;
192 }
193
194 /* For given NODE, decrease value to new KEY. */
195 K decrease_key (fibonacci_node_t *node, K key)
196 {
197 gcc_assert (key <= node->m_key);
198 return replace_key (node, key);
199 }
200
201 /* For given NODE, set new KEY and DATA value. */
202 V *replace_key_data (fibonacci_node_t *node, K key, V *data);
203
204 /* Extract minimum node in the heap. If RELEASE is specified,
205 memory is released. */
206 V *extract_min (bool release = true);
207
208 /* Return value associated with minimum node in the heap. */
209 V *min ()
210 {
211 if (m_min == NULL)
212 return NULL;
213
214 return m_min->m_data;
215 }
216
217 /* Replace data associated with NODE and replace it with DATA. */
218 V *replace_data (fibonacci_node_t *node, V *data)
219 {
220 return replace_key_data (node, node->m_key, data);
221 }
222
223 /* Delete NODE in the heap. */
224 V *delete_node (fibonacci_node_t *node, bool release = true);
225
226 /* Union the heap with HEAPB. */
227 fibonacci_heap *union_with (fibonacci_heap *heapb);
228
229 private:
230 /* Insert new NODE given by KEY and DATA associated with the key. */
231 fibonacci_node_t *insert (fibonacci_node_t *node, K key, V *data);
232
233 /* Insert it into the root list. */
234 void insert_root (fibonacci_node_t *node);
235
236 /* Remove NODE from PARENT's child list. */
237 void cut (fibonacci_node_t *node, fibonacci_node_t *parent);
238
239 /* Process cut of node Y and do it recursivelly. */
240 void cascading_cut (fibonacci_node_t *y);
241
242 /* Extract minimum node from the heap. */
243 fibonacci_node_t * extract_minimum_node ();
244
245 /* Remove root NODE from the heap. */
246 void remove_root (fibonacci_node_t *node);
247
248 /* Consolidate heap. */
249 void consolidate ();
250
251 /* Number of nodes. */
252 size_t m_nodes;
253 /* Minimum node of the heap. */
254 fibonacci_node_t *m_min;
255 /* Root node of the heap. */
256 fibonacci_node_t *m_root;
257 /* Global minimum given in the heap construction. */
258 K m_global_min_key;
259 };
260
261 /* Remove fibonacci heap node. */
262
263 template<class K, class V>
264 fibonacci_node<K,V> *
265 fibonacci_node<K,V>::remove ()
266 {
267 fibonacci_node<K,V> *ret;
268
269 if (this == m_left)
270 ret = NULL;
271 else
272 ret = m_left;
273
274 if (m_parent != NULL && m_parent->m_child == this)
275 m_parent->m_child = ret;
276
277 m_right->m_left = m_left;
278 m_left->m_right = m_right;
279
280 m_parent = NULL;
281 m_left = this;
282 m_right = this;
283
284 return ret;
285 }
286
287 /* Link the node with PARENT. */
288
289 template<class K, class V>
290 void
291 fibonacci_node<K,V>::link (fibonacci_node<K,V> *parent)
292 {
293 if (parent->m_child == NULL)
294 parent->m_child = this;
295 else
296 parent->m_child->insert_before (this);
297 m_parent = parent;
298 parent->m_degree++;
299 m_mark = 0;
300 }
301
302 /* Put node B after this node. */
303
304 template<class K, class V>
305 void
306 fibonacci_node<K,V>::insert_after (fibonacci_node<K,V> *b)
307 {
308 fibonacci_node<K,V> *a = this;
309
310 if (a == a->m_right)
311 {
312 a->m_right = b;
313 a->m_left = b;
314 b->m_right = a;
315 b->m_left = a;
316 }
317 else
318 {
319 b->m_right = a->m_right;
320 a->m_right->m_left = b;
321 a->m_right = b;
322 b->m_left = a;
323 }
324 }
325
326 /* Insert new node given by KEY and DATA associated with the key. */
327
328 template<class K, class V>
329 fibonacci_node<K,V>*
330 fibonacci_heap<K,V>::insert (K key, V *data)
331 {
332 /* Create the new node. */
333 fibonacci_node<K,V> *node = new fibonacci_node_t ();
334
335 return insert (node, key, data);
336 }
337
338 /* Insert new NODE given by KEY and DATA associated with the key. */
339
340 template<class K, class V>
341 fibonacci_node<K,V>*
342 fibonacci_heap<K,V>::insert (fibonacci_node_t *node, K key, V *data)
343 {
344 /* Set the node's data. */
345 node->m_data = data;
346 node->m_key = key;
347
348 /* Insert it into the root list. */
349 insert_root (node);
350
351 /* If their was no minimum, or this key is less than the min,
352 it's the new min. */
353 if (m_min == NULL || node->m_key < m_min->m_key)
354 m_min = node;
355
356 m_nodes++;
357
358 return node;
359 }
360
361 /* For given NODE, set new KEY and DATA value. */
362 template<class K, class V>
363 V*
364 fibonacci_heap<K,V>::replace_key_data (fibonacci_node<K,V> *node, K key,
365 V *data)
366 {
367 K okey;
368 fibonacci_node<K,V> *y;
369 V *odata = node->m_data;
370
371 /* If we wanted to, we do a real increase by redeleting and
372 inserting. */
373 if (node->compare_data (key) > 0)
374 {
375 delete_node (node, false);
376
377 node = new (node) fibonacci_node_t ();
378 insert (node, key, data);
379
380 return odata;
381 }
382
383 okey = node->m_key;
384 node->m_data = data;
385 node->m_key = key;
386 y = node->m_parent;
387
388 /* Short-circuit if the key is the same, as we then don't have to
389 do anything. Except if we're trying to force the new node to
390 be the new minimum for delete. */
391 if (okey == key && okey != m_global_min_key)
392 return odata;
393
394 /* These two compares are specifically <= 0 to make sure that in the case
395 of equality, a node we replaced the data on, becomes the new min. This
396 is needed so that delete's call to extractmin gets the right node. */
397 if (y != NULL && node->compare (y) <= 0)
398 {
399 cut (node, y);
400 cascading_cut (y);
401 }
402
403 if (node->compare (m_min) <= 0)
404 m_min = node;
405
406 return odata;
407 }
408
409 /* Extract minimum node in the heap. */
410 template<class K, class V>
411 V*
412 fibonacci_heap<K,V>::extract_min (bool release)
413 {
414 fibonacci_node<K,V> *z;
415 V *ret = NULL;
416
417 /* If we don't have a min set, it means we have no nodes. */
418 if (m_min != NULL)
419 {
420 /* Otherwise, extract the min node, free the node, and return the
421 node's data. */
422 z = extract_minimum_node ();
423 ret = z->m_data;
424
425 if (release)
426 delete (z);
427 }
428
429 return ret;
430 }
431
432 /* Delete NODE in the heap, if RELEASE is specified memory is released. */
433
434 template<class K, class V>
435 V*
436 fibonacci_heap<K,V>::delete_node (fibonacci_node<K,V> *node, bool release)
437 {
438 V *ret = node->m_data;
439
440 /* To perform delete, we just make it the min key, and extract. */
441 replace_key (node, m_global_min_key);
442 if (node != m_min)
443 {
444 fprintf (stderr, "Can't force minimum on fibheap.\n");
445 abort ();
446 }
447 extract_min (release);
448
449 return ret;
450 }
451
452 /* Union the heap with HEAPB. */
453
454 template<class K, class V>
455 fibonacci_heap<K,V>*
456 fibonacci_heap<K,V>::union_with (fibonacci_heap<K,V> *heapb)
457 {
458 fibonacci_heap<K,V> *heapa = this;
459
460 fibonacci_node<K,V> *a_root, *b_root;
461
462 /* If one of the heaps is empty, the union is just the other heap. */
463 if ((a_root = heapa->m_root) == NULL)
464 {
465 delete (heapa);
466 return heapb;
467 }
468 if ((b_root = heapb->m_root) == NULL)
469 {
470 delete (heapb);
471 return heapa;
472 }
473
474 /* Merge them to the next nodes on the opposite chain. */
475 a_root->m_left->m_right = b_root;
476 b_root->m_left->m_right = a_root;
477 std::swap (a_root->m_left, b_root->m_left);
478 heapa->m_nodes += heapb->m_nodes;
479
480 /* And set the new minimum, if it's changed. */
481 if (heapb->min->compare (heapa->min) < 0)
482 heapa->m_min = heapb->m_min;
483
484 delete (heapb);
485 return heapa;
486 }
487
488 /* Insert it into the root list. */
489
490 template<class K, class V>
491 void
492 fibonacci_heap<K,V>::insert_root (fibonacci_node_t *node)
493 {
494 /* If the heap is currently empty, the new node becomes the singleton
495 circular root list. */
496 if (m_root == NULL)
497 {
498 m_root = node;
499 node->m_left = node;
500 node->m_right = node;
501 return;
502 }
503
504 /* Otherwise, insert it in the circular root list between the root
505 and it's right node. */
506 m_root->insert_after (node);
507 }
508
509 /* Remove NODE from PARENT's child list. */
510
511 template<class K, class V>
512 void
513 fibonacci_heap<K,V>::cut (fibonacci_node<K,V> *node,
514 fibonacci_node<K,V> *parent)
515 {
516 node->remove ();
517 parent->m_degree--;
518 insert_root (node);
519 node->m_parent = NULL;
520 node->m_mark = 0;
521 }
522
523 /* Process cut of node Y and do it recursivelly. */
524
525 template<class K, class V>
526 void
527 fibonacci_heap<K,V>::cascading_cut (fibonacci_node<K,V> *y)
528 {
529 fibonacci_node<K,V> *z;
530
531 while ((z = y->m_parent) != NULL)
532 {
533 if (y->m_mark == 0)
534 {
535 y->m_mark = 1;
536 return;
537 }
538 else
539 {
540 cut (y, z);
541 y = z;
542 }
543 }
544 }
545
546 /* Extract minimum node from the heap. */
547 template<class K, class V>
548 fibonacci_node<K,V>*
549 fibonacci_heap<K,V>::extract_minimum_node ()
550 {
551 fibonacci_node<K,V> *ret = m_min;
552 fibonacci_node<K,V> *x, *y, *orig;
553
554 /* Attach the child list of the minimum node to the root list of the heap.
555 If there is no child list, we don't do squat. */
556 for (x = ret->m_child, orig = NULL; x != orig && x != NULL; x = y)
557 {
558 if (orig == NULL)
559 orig = x;
560 y = x->m_right;
561 x->m_parent = NULL;
562 insert_root (x);
563 }
564
565 /* Remove the old root. */
566 remove_root (ret);
567 m_nodes--;
568
569 /* If we are left with no nodes, then the min is NULL. */
570 if (m_nodes == 0)
571 m_min = NULL;
572 else
573 {
574 /* Otherwise, consolidate to find new minimum, as well as do the reorg
575 work that needs to be done. */
576 m_min = ret->m_right;
577 consolidate ();
578 }
579
580 return ret;
581 }
582
583 /* Remove root NODE from the heap. */
584
585 template<class K, class V>
586 void
587 fibonacci_heap<K,V>::remove_root (fibonacci_node<K,V> *node)
588 {
589 if (node->m_left == node)
590 m_root = NULL;
591 else
592 m_root = node->remove ();
593 }
594
595 /* Consolidate heap. */
596
597 template<class K, class V>
598 void fibonacci_heap<K,V>::consolidate ()
599 {
600 int D = 1 + 8 * sizeof (long);
601 auto_vec<fibonacci_node<K,V> *> a (D);
602 a.safe_grow_cleared (D);
603 fibonacci_node<K,V> *w, *x, *y;
604 int i, d;
605
606 while ((w = m_root) != NULL)
607 {
608 x = w;
609 remove_root (w);
610 d = x->m_degree;
611 while (a[d] != NULL)
612 {
613 y = a[d];
614 if (x->compare (y) > 0)
615 std::swap (x, y);
616 y->link (x);
617 a[d] = NULL;
618 d++;
619 }
620 a[d] = x;
621 }
622 m_min = NULL;
623 for (i = 0; i < D; i++)
624 if (a[i] != NULL)
625 {
626 insert_root (a[i]);
627 if (m_min == NULL || a[i]->compare (m_min) < 0)
628 m_min = a[i];
629 }
630 }
631
632 #endif // GCC_FIBONACCI_HEAP_H