re PR preprocessor/36674 (#include location is offset by one row in errors from prepr...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
81 #include "cfgloop.h"
82 #include "params.h"
83
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
88
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
92
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
96
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
100
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
106
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
110 #endif
111
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
116
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
120
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_BB 1
123 #define SEEN_NOTE 2
124 #define SEEN_EMITTED 4
125
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
129
130 /* Line number of last NOTE. */
131 static int last_linenum;
132
133 /* Highest line number in current block. */
134 static int high_block_linenum;
135
136 /* Likewise for function. */
137 static int high_function_linenum;
138
139 /* Filename of last NOTE. */
140 static const char *last_filename;
141
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
145
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
148
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
155
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
158
159 /* Compare optimization flag. */
160
161 static rtx last_ignored_compare = 0;
162
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
165
166 static int insn_counter = 0;
167
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
172
173 CC_STATUS cc_status;
174
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
177
178 CC_STATUS cc_prev_status;
179 #endif
180
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182
183 static int block_depth;
184
185 /* Nonzero if have enabled APP processing of our assembler output. */
186
187 static int app_on;
188
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
191
192 rtx final_sequence;
193
194 #ifdef ASSEMBLER_DIALECT
195
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
199
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
203 #endif
204
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
207 #endif
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 #endif
229 \f
230 /* Initialize data in final at the beginning of a compilation. */
231
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
234 {
235 app_on = 0;
236 final_sequence = 0;
237
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
241 }
242
243 /* Default target function prologue and epilogue assembler output.
244
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
250 {
251 }
252
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
256 {
257 }
258
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
261
262 void
263 app_enable (void)
264 {
265 if (! app_on)
266 {
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
269 }
270 }
271
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
274
275 void
276 app_disable (void)
277 {
278 if (app_on)
279 {
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
282 }
283 }
284 \f
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
288
289 #ifdef DELAY_SLOTS
290 int
291 dbr_sequence_length (void)
292 {
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
297 }
298 #endif
299 \f
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
302
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
305
306 static int *insn_lengths;
307
308 VEC(int,heap) *insn_addresses_;
309
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
312
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
315
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
318
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
321
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
329 comments. */
330
331 struct label_alignment
332 {
333 short alignment;
334 short max_skip;
335 };
336
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
340
341 /* Indicate that branch shortening hasn't yet been done. */
342
343 void
344 init_insn_lengths (void)
345 {
346 if (uid_shuid)
347 {
348 free (uid_shuid);
349 uid_shuid = 0;
350 }
351 if (insn_lengths)
352 {
353 free (insn_lengths);
354 insn_lengths = 0;
355 insn_lengths_max_uid = 0;
356 }
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
359 #endif
360 if (uid_align)
361 {
362 free (uid_align);
363 uid_align = 0;
364 }
365 }
366
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
369 length. */
370 static inline int
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
373 {
374 #ifdef HAVE_ATTR_length
375 rtx body;
376 int i;
377 int length = 0;
378
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
381 else
382 switch (GET_CODE (insn))
383 {
384 case NOTE:
385 case BARRIER:
386 case CODE_LABEL:
387 return 0;
388
389 case CALL_INSN:
390 length = fallback_fn (insn);
391 break;
392
393 case JUMP_INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
396 {
397 /* Alignment is machine-dependent and should be handled by
398 ADDR_VEC_ALIGN. */
399 }
400 else
401 length = fallback_fn (insn);
402 break;
403
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
408
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
417
418 default:
419 break;
420 }
421
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 #else /* not HAVE_ATTR_length */
427 return 0;
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
431 }
432
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
435 int
436 get_attr_length (rtx insn)
437 {
438 return get_attr_length_1 (insn, insn_default_length);
439 }
440
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
443 int
444 get_attr_min_length (rtx insn)
445 {
446 return get_attr_length_1 (insn, insn_min_length);
447 }
448 \f
449 /* Code to handle alignment inside shorten_branches. */
450
451 /* Here is an explanation how the algorithm in align_fuzz can give
452 proper results:
453
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
457 alignment point.
458
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
462
463 Likewise with the next alignment-delimited block following X, which we
464 shall call block Y.
465
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
468
469 The estimated padding is then OX - IX.
470
471 OX can be safely estimated as
472
473 if (X >= Y)
474 OX = round_up(IX, Y)
475 else
476 OX = round_up(IX, X) + Y - X
477
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
480
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
483
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
489
490 #ifndef LABEL_ALIGN
491 #define LABEL_ALIGN(LABEL) align_labels_log
492 #endif
493
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
496 #endif
497
498 #ifndef LOOP_ALIGN
499 #define LOOP_ALIGN(LABEL) align_loops_log
500 #endif
501
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
504 #endif
505
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
508 #endif
509
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
512 #endif
513
514 #ifndef JUMP_ALIGN
515 #define JUMP_ALIGN(LABEL) align_jumps_log
516 #endif
517
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
520 #endif
521
522 #ifndef ADDR_VEC_ALIGN
523 static int
524 final_addr_vec_align (rtx addr_vec)
525 {
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
527
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
531
532 }
533
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #endif
536
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #endif
540
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
542
543 static int min_labelno, max_labelno;
544
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
547
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
550
551 /* For the benefit of port specific code do this also as a function. */
552
553 int
554 label_to_alignment (rtx label)
555 {
556 return LABEL_TO_ALIGNMENT (label);
557 }
558
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
573
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
579
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
587
588 static int
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
590 {
591 int uid = INSN_UID (start);
592 rtx align_label;
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
595 int fuzz = 0;
596
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
598 {
599 int align_addr, new_align;
600
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
604 break;
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
608 continue;
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
611 }
612 return fuzz;
613 }
614
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
626
627 int
628 insn_current_reference_address (rtx branch)
629 {
630 rtx dest, seq;
631 int seq_uid;
632
633 if (! INSN_ADDRESSES_SET_P ())
634 return 0;
635
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
646
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
650 {
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
654 }
655 else
656 {
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
660 }
661 }
662 #endif /* HAVE_ATTR_length */
663 \f
664 /* Compute branch alignments based on frequency information in the
665 CFG. */
666
667 unsigned int
668 compute_alignments (void)
669 {
670 int log, max_skip, max_log;
671 basic_block bb;
672 int freq_max = 0;
673 int freq_threshold = 0;
674
675 if (label_align)
676 {
677 free (label_align);
678 label_align = 0;
679 }
680
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
684
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_function_for_size_p (cfun))
687 return 0;
688
689 if (dump_file)
690 {
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 }
695 FOR_EACH_BB (bb)
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
699
700 if (dump_file)
701 fprintf(dump_file, "freq_max: %i\n",freq_max);
702 FOR_EACH_BB (bb)
703 {
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
708
709 if (!LABEL_P (label)
710 || optimize_bb_for_size_p (bb))
711 {
712 if (dump_file)
713 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
714 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
715 continue;
716 }
717 max_log = LABEL_ALIGN (label);
718 max_skip = LABEL_ALIGN_MAX_SKIP;
719
720 FOR_EACH_EDGE (e, ei, bb->preds)
721 {
722 if (e->flags & EDGE_FALLTHRU)
723 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
724 else
725 branch_frequency += EDGE_FREQUENCY (e);
726 }
727 if (dump_file)
728 {
729 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
730 bb->index, bb->frequency, bb->loop_father->num,
731 bb->loop_depth,
732 fallthru_frequency, branch_frequency);
733 if (!bb->loop_father->inner && bb->loop_father->num)
734 fprintf (dump_file, " inner_loop");
735 if (bb->loop_father->header == bb)
736 fprintf (dump_file, " loop_header");
737 fprintf (dump_file, "\n");
738 }
739
740 /* There are two purposes to align block with no fallthru incoming edge:
741 1) to avoid fetch stalls when branch destination is near cache boundary
742 2) to improve cache efficiency in case the previous block is not executed
743 (so it does not need to be in the cache).
744
745 We to catch first case, we align frequently executed blocks.
746 To catch the second, we align blocks that are executed more frequently
747 than the predecessor and the predecessor is likely to not be executed
748 when function is called. */
749
750 if (!has_fallthru
751 && (branch_frequency > freq_threshold
752 || (bb->frequency > bb->prev_bb->frequency * 10
753 && (bb->prev_bb->frequency
754 <= ENTRY_BLOCK_PTR->frequency / 2))))
755 {
756 log = JUMP_ALIGN (label);
757 if (dump_file)
758 fprintf(dump_file, " jump alignment added.\n");
759 if (max_log < log)
760 {
761 max_log = log;
762 max_skip = JUMP_ALIGN_MAX_SKIP;
763 }
764 }
765 /* In case block is frequent and reached mostly by non-fallthru edge,
766 align it. It is most likely a first block of loop. */
767 if (has_fallthru
768 && optimize_bb_for_speed_p (bb)
769 && branch_frequency + fallthru_frequency > freq_threshold
770 && (branch_frequency
771 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
772 {
773 log = LOOP_ALIGN (label);
774 if (dump_file)
775 fprintf(dump_file, " internal loop alignment added.\n");
776 if (max_log < log)
777 {
778 max_log = log;
779 max_skip = LOOP_ALIGN_MAX_SKIP;
780 }
781 }
782 LABEL_TO_ALIGNMENT (label) = max_log;
783 LABEL_TO_MAX_SKIP (label) = max_skip;
784 }
785
786 if (dump_file)
787 {
788 loop_optimizer_finalize ();
789 free_dominance_info (CDI_DOMINATORS);
790 }
791 return 0;
792 }
793
794 struct rtl_opt_pass pass_compute_alignments =
795 {
796 {
797 RTL_PASS,
798 "alignments", /* name */
799 NULL, /* gate */
800 compute_alignments, /* execute */
801 NULL, /* sub */
802 NULL, /* next */
803 0, /* static_pass_number */
804 TV_NONE, /* tv_id */
805 0, /* properties_required */
806 0, /* properties_provided */
807 0, /* properties_destroyed */
808 0, /* todo_flags_start */
809 TODO_dump_func | TODO_verify_rtl_sharing
810 | TODO_ggc_collect /* todo_flags_finish */
811 }
812 };
813
814 \f
815 /* Make a pass over all insns and compute their actual lengths by shortening
816 any branches of variable length if possible. */
817
818 /* shorten_branches might be called multiple times: for example, the SH
819 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
820 In order to do this, it needs proper length information, which it obtains
821 by calling shorten_branches. This cannot be collapsed with
822 shorten_branches itself into a single pass unless we also want to integrate
823 reorg.c, since the branch splitting exposes new instructions with delay
824 slots. */
825
826 void
827 shorten_branches (rtx first ATTRIBUTE_UNUSED)
828 {
829 rtx insn;
830 int max_uid;
831 int i;
832 int max_log;
833 int max_skip;
834 #ifdef HAVE_ATTR_length
835 #define MAX_CODE_ALIGN 16
836 rtx seq;
837 int something_changed = 1;
838 char *varying_length;
839 rtx body;
840 int uid;
841 rtx align_tab[MAX_CODE_ALIGN];
842
843 #endif
844
845 /* Compute maximum UID and allocate label_align / uid_shuid. */
846 max_uid = get_max_uid ();
847
848 /* Free uid_shuid before reallocating it. */
849 free (uid_shuid);
850
851 uid_shuid = XNEWVEC (int, max_uid);
852
853 if (max_labelno != max_label_num ())
854 {
855 int old = max_labelno;
856 int n_labels;
857 int n_old_labels;
858
859 max_labelno = max_label_num ();
860
861 n_labels = max_labelno - min_labelno + 1;
862 n_old_labels = old - min_labelno + 1;
863
864 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
865
866 /* Range of labels grows monotonically in the function. Failing here
867 means that the initialization of array got lost. */
868 gcc_assert (n_old_labels <= n_labels);
869
870 memset (label_align + n_old_labels, 0,
871 (n_labels - n_old_labels) * sizeof (struct label_alignment));
872 }
873
874 /* Initialize label_align and set up uid_shuid to be strictly
875 monotonically rising with insn order. */
876 /* We use max_log here to keep track of the maximum alignment we want to
877 impose on the next CODE_LABEL (or the current one if we are processing
878 the CODE_LABEL itself). */
879
880 max_log = 0;
881 max_skip = 0;
882
883 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
884 {
885 int log;
886
887 INSN_SHUID (insn) = i++;
888 if (INSN_P (insn))
889 continue;
890
891 if (LABEL_P (insn))
892 {
893 rtx next;
894
895 /* Merge in alignments computed by compute_alignments. */
896 log = LABEL_TO_ALIGNMENT (insn);
897 if (max_log < log)
898 {
899 max_log = log;
900 max_skip = LABEL_TO_MAX_SKIP (insn);
901 }
902
903 log = LABEL_ALIGN (insn);
904 if (max_log < log)
905 {
906 max_log = log;
907 max_skip = LABEL_ALIGN_MAX_SKIP;
908 }
909 next = next_nonnote_insn (insn);
910 /* ADDR_VECs only take room if read-only data goes into the text
911 section. */
912 if (JUMP_TABLES_IN_TEXT_SECTION
913 || readonly_data_section == text_section)
914 if (next && JUMP_P (next))
915 {
916 rtx nextbody = PATTERN (next);
917 if (GET_CODE (nextbody) == ADDR_VEC
918 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
919 {
920 log = ADDR_VEC_ALIGN (next);
921 if (max_log < log)
922 {
923 max_log = log;
924 max_skip = LABEL_ALIGN_MAX_SKIP;
925 }
926 }
927 }
928 LABEL_TO_ALIGNMENT (insn) = max_log;
929 LABEL_TO_MAX_SKIP (insn) = max_skip;
930 max_log = 0;
931 max_skip = 0;
932 }
933 else if (BARRIER_P (insn))
934 {
935 rtx label;
936
937 for (label = insn; label && ! INSN_P (label);
938 label = NEXT_INSN (label))
939 if (LABEL_P (label))
940 {
941 log = LABEL_ALIGN_AFTER_BARRIER (insn);
942 if (max_log < log)
943 {
944 max_log = log;
945 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
946 }
947 break;
948 }
949 }
950 }
951 #ifdef HAVE_ATTR_length
952
953 /* Allocate the rest of the arrays. */
954 insn_lengths = XNEWVEC (int, max_uid);
955 insn_lengths_max_uid = max_uid;
956 /* Syntax errors can lead to labels being outside of the main insn stream.
957 Initialize insn_addresses, so that we get reproducible results. */
958 INSN_ADDRESSES_ALLOC (max_uid);
959
960 varying_length = XCNEWVEC (char, max_uid);
961
962 /* Initialize uid_align. We scan instructions
963 from end to start, and keep in align_tab[n] the last seen insn
964 that does an alignment of at least n+1, i.e. the successor
965 in the alignment chain for an insn that does / has a known
966 alignment of n. */
967 uid_align = XCNEWVEC (rtx, max_uid);
968
969 for (i = MAX_CODE_ALIGN; --i >= 0;)
970 align_tab[i] = NULL_RTX;
971 seq = get_last_insn ();
972 for (; seq; seq = PREV_INSN (seq))
973 {
974 int uid = INSN_UID (seq);
975 int log;
976 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
977 uid_align[uid] = align_tab[0];
978 if (log)
979 {
980 /* Found an alignment label. */
981 uid_align[uid] = align_tab[log];
982 for (i = log - 1; i >= 0; i--)
983 align_tab[i] = seq;
984 }
985 }
986 #ifdef CASE_VECTOR_SHORTEN_MODE
987 if (optimize)
988 {
989 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
990 label fields. */
991
992 int min_shuid = INSN_SHUID (get_insns ()) - 1;
993 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
994 int rel;
995
996 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
997 {
998 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
999 int len, i, min, max, insn_shuid;
1000 int min_align;
1001 addr_diff_vec_flags flags;
1002
1003 if (!JUMP_P (insn)
1004 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1005 continue;
1006 pat = PATTERN (insn);
1007 len = XVECLEN (pat, 1);
1008 gcc_assert (len > 0);
1009 min_align = MAX_CODE_ALIGN;
1010 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1011 {
1012 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1013 int shuid = INSN_SHUID (lab);
1014 if (shuid < min)
1015 {
1016 min = shuid;
1017 min_lab = lab;
1018 }
1019 if (shuid > max)
1020 {
1021 max = shuid;
1022 max_lab = lab;
1023 }
1024 if (min_align > LABEL_TO_ALIGNMENT (lab))
1025 min_align = LABEL_TO_ALIGNMENT (lab);
1026 }
1027 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1028 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1029 insn_shuid = INSN_SHUID (insn);
1030 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1031 memset (&flags, 0, sizeof (flags));
1032 flags.min_align = min_align;
1033 flags.base_after_vec = rel > insn_shuid;
1034 flags.min_after_vec = min > insn_shuid;
1035 flags.max_after_vec = max > insn_shuid;
1036 flags.min_after_base = min > rel;
1037 flags.max_after_base = max > rel;
1038 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1039 }
1040 }
1041 #endif /* CASE_VECTOR_SHORTEN_MODE */
1042
1043 /* Compute initial lengths, addresses, and varying flags for each insn. */
1044 for (insn_current_address = 0, insn = first;
1045 insn != 0;
1046 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1047 {
1048 uid = INSN_UID (insn);
1049
1050 insn_lengths[uid] = 0;
1051
1052 if (LABEL_P (insn))
1053 {
1054 int log = LABEL_TO_ALIGNMENT (insn);
1055 if (log)
1056 {
1057 int align = 1 << log;
1058 int new_address = (insn_current_address + align - 1) & -align;
1059 insn_lengths[uid] = new_address - insn_current_address;
1060 }
1061 }
1062
1063 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1064
1065 if (NOTE_P (insn) || BARRIER_P (insn)
1066 || LABEL_P (insn))
1067 continue;
1068 if (INSN_DELETED_P (insn))
1069 continue;
1070
1071 body = PATTERN (insn);
1072 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1073 {
1074 /* This only takes room if read-only data goes into the text
1075 section. */
1076 if (JUMP_TABLES_IN_TEXT_SECTION
1077 || readonly_data_section == text_section)
1078 insn_lengths[uid] = (XVECLEN (body,
1079 GET_CODE (body) == ADDR_DIFF_VEC)
1080 * GET_MODE_SIZE (GET_MODE (body)));
1081 /* Alignment is handled by ADDR_VEC_ALIGN. */
1082 }
1083 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1084 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1085 else if (GET_CODE (body) == SEQUENCE)
1086 {
1087 int i;
1088 int const_delay_slots;
1089 #ifdef DELAY_SLOTS
1090 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1091 #else
1092 const_delay_slots = 0;
1093 #endif
1094 /* Inside a delay slot sequence, we do not do any branch shortening
1095 if the shortening could change the number of delay slots
1096 of the branch. */
1097 for (i = 0; i < XVECLEN (body, 0); i++)
1098 {
1099 rtx inner_insn = XVECEXP (body, 0, i);
1100 int inner_uid = INSN_UID (inner_insn);
1101 int inner_length;
1102
1103 if (GET_CODE (body) == ASM_INPUT
1104 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1105 inner_length = (asm_insn_count (PATTERN (inner_insn))
1106 * insn_default_length (inner_insn));
1107 else
1108 inner_length = insn_default_length (inner_insn);
1109
1110 insn_lengths[inner_uid] = inner_length;
1111 if (const_delay_slots)
1112 {
1113 if ((varying_length[inner_uid]
1114 = insn_variable_length_p (inner_insn)) != 0)
1115 varying_length[uid] = 1;
1116 INSN_ADDRESSES (inner_uid) = (insn_current_address
1117 + insn_lengths[uid]);
1118 }
1119 else
1120 varying_length[inner_uid] = 0;
1121 insn_lengths[uid] += inner_length;
1122 }
1123 }
1124 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1125 {
1126 insn_lengths[uid] = insn_default_length (insn);
1127 varying_length[uid] = insn_variable_length_p (insn);
1128 }
1129
1130 /* If needed, do any adjustment. */
1131 #ifdef ADJUST_INSN_LENGTH
1132 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1133 if (insn_lengths[uid] < 0)
1134 fatal_insn ("negative insn length", insn);
1135 #endif
1136 }
1137
1138 /* Now loop over all the insns finding varying length insns. For each,
1139 get the current insn length. If it has changed, reflect the change.
1140 When nothing changes for a full pass, we are done. */
1141
1142 while (something_changed)
1143 {
1144 something_changed = 0;
1145 insn_current_align = MAX_CODE_ALIGN - 1;
1146 for (insn_current_address = 0, insn = first;
1147 insn != 0;
1148 insn = NEXT_INSN (insn))
1149 {
1150 int new_length;
1151 #ifdef ADJUST_INSN_LENGTH
1152 int tmp_length;
1153 #endif
1154 int length_align;
1155
1156 uid = INSN_UID (insn);
1157
1158 if (LABEL_P (insn))
1159 {
1160 int log = LABEL_TO_ALIGNMENT (insn);
1161 if (log > insn_current_align)
1162 {
1163 int align = 1 << log;
1164 int new_address= (insn_current_address + align - 1) & -align;
1165 insn_lengths[uid] = new_address - insn_current_address;
1166 insn_current_align = log;
1167 insn_current_address = new_address;
1168 }
1169 else
1170 insn_lengths[uid] = 0;
1171 INSN_ADDRESSES (uid) = insn_current_address;
1172 continue;
1173 }
1174
1175 length_align = INSN_LENGTH_ALIGNMENT (insn);
1176 if (length_align < insn_current_align)
1177 insn_current_align = length_align;
1178
1179 insn_last_address = INSN_ADDRESSES (uid);
1180 INSN_ADDRESSES (uid) = insn_current_address;
1181
1182 #ifdef CASE_VECTOR_SHORTEN_MODE
1183 if (optimize && JUMP_P (insn)
1184 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1185 {
1186 rtx body = PATTERN (insn);
1187 int old_length = insn_lengths[uid];
1188 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1189 rtx min_lab = XEXP (XEXP (body, 2), 0);
1190 rtx max_lab = XEXP (XEXP (body, 3), 0);
1191 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1192 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1193 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1194 rtx prev;
1195 int rel_align = 0;
1196 addr_diff_vec_flags flags;
1197
1198 /* Avoid automatic aggregate initialization. */
1199 flags = ADDR_DIFF_VEC_FLAGS (body);
1200
1201 /* Try to find a known alignment for rel_lab. */
1202 for (prev = rel_lab;
1203 prev
1204 && ! insn_lengths[INSN_UID (prev)]
1205 && ! (varying_length[INSN_UID (prev)] & 1);
1206 prev = PREV_INSN (prev))
1207 if (varying_length[INSN_UID (prev)] & 2)
1208 {
1209 rel_align = LABEL_TO_ALIGNMENT (prev);
1210 break;
1211 }
1212
1213 /* See the comment on addr_diff_vec_flags in rtl.h for the
1214 meaning of the flags values. base: REL_LAB vec: INSN */
1215 /* Anything after INSN has still addresses from the last
1216 pass; adjust these so that they reflect our current
1217 estimate for this pass. */
1218 if (flags.base_after_vec)
1219 rel_addr += insn_current_address - insn_last_address;
1220 if (flags.min_after_vec)
1221 min_addr += insn_current_address - insn_last_address;
1222 if (flags.max_after_vec)
1223 max_addr += insn_current_address - insn_last_address;
1224 /* We want to know the worst case, i.e. lowest possible value
1225 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1226 its offset is positive, and we have to be wary of code shrink;
1227 otherwise, it is negative, and we have to be vary of code
1228 size increase. */
1229 if (flags.min_after_base)
1230 {
1231 /* If INSN is between REL_LAB and MIN_LAB, the size
1232 changes we are about to make can change the alignment
1233 within the observed offset, therefore we have to break
1234 it up into two parts that are independent. */
1235 if (! flags.base_after_vec && flags.min_after_vec)
1236 {
1237 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1238 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1239 }
1240 else
1241 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1242 }
1243 else
1244 {
1245 if (flags.base_after_vec && ! flags.min_after_vec)
1246 {
1247 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1248 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1249 }
1250 else
1251 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1252 }
1253 /* Likewise, determine the highest lowest possible value
1254 for the offset of MAX_LAB. */
1255 if (flags.max_after_base)
1256 {
1257 if (! flags.base_after_vec && flags.max_after_vec)
1258 {
1259 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1260 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1261 }
1262 else
1263 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1264 }
1265 else
1266 {
1267 if (flags.base_after_vec && ! flags.max_after_vec)
1268 {
1269 max_addr += align_fuzz (max_lab, insn, 0, 0);
1270 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1271 }
1272 else
1273 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1274 }
1275 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1276 max_addr - rel_addr,
1277 body));
1278 if (JUMP_TABLES_IN_TEXT_SECTION
1279 || readonly_data_section == text_section)
1280 {
1281 insn_lengths[uid]
1282 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1283 insn_current_address += insn_lengths[uid];
1284 if (insn_lengths[uid] != old_length)
1285 something_changed = 1;
1286 }
1287
1288 continue;
1289 }
1290 #endif /* CASE_VECTOR_SHORTEN_MODE */
1291
1292 if (! (varying_length[uid]))
1293 {
1294 if (NONJUMP_INSN_P (insn)
1295 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1296 {
1297 int i;
1298
1299 body = PATTERN (insn);
1300 for (i = 0; i < XVECLEN (body, 0); i++)
1301 {
1302 rtx inner_insn = XVECEXP (body, 0, i);
1303 int inner_uid = INSN_UID (inner_insn);
1304
1305 INSN_ADDRESSES (inner_uid) = insn_current_address;
1306
1307 insn_current_address += insn_lengths[inner_uid];
1308 }
1309 }
1310 else
1311 insn_current_address += insn_lengths[uid];
1312
1313 continue;
1314 }
1315
1316 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1317 {
1318 int i;
1319
1320 body = PATTERN (insn);
1321 new_length = 0;
1322 for (i = 0; i < XVECLEN (body, 0); i++)
1323 {
1324 rtx inner_insn = XVECEXP (body, 0, i);
1325 int inner_uid = INSN_UID (inner_insn);
1326 int inner_length;
1327
1328 INSN_ADDRESSES (inner_uid) = insn_current_address;
1329
1330 /* insn_current_length returns 0 for insns with a
1331 non-varying length. */
1332 if (! varying_length[inner_uid])
1333 inner_length = insn_lengths[inner_uid];
1334 else
1335 inner_length = insn_current_length (inner_insn);
1336
1337 if (inner_length != insn_lengths[inner_uid])
1338 {
1339 insn_lengths[inner_uid] = inner_length;
1340 something_changed = 1;
1341 }
1342 insn_current_address += insn_lengths[inner_uid];
1343 new_length += inner_length;
1344 }
1345 }
1346 else
1347 {
1348 new_length = insn_current_length (insn);
1349 insn_current_address += new_length;
1350 }
1351
1352 #ifdef ADJUST_INSN_LENGTH
1353 /* If needed, do any adjustment. */
1354 tmp_length = new_length;
1355 ADJUST_INSN_LENGTH (insn, new_length);
1356 insn_current_address += (new_length - tmp_length);
1357 #endif
1358
1359 if (new_length != insn_lengths[uid])
1360 {
1361 insn_lengths[uid] = new_length;
1362 something_changed = 1;
1363 }
1364 }
1365 /* For a non-optimizing compile, do only a single pass. */
1366 if (!optimize)
1367 break;
1368 }
1369
1370 free (varying_length);
1371
1372 #endif /* HAVE_ATTR_length */
1373 }
1374
1375 #ifdef HAVE_ATTR_length
1376 /* Given the body of an INSN known to be generated by an ASM statement, return
1377 the number of machine instructions likely to be generated for this insn.
1378 This is used to compute its length. */
1379
1380 static int
1381 asm_insn_count (rtx body)
1382 {
1383 const char *templ;
1384 int count = 1;
1385
1386 if (GET_CODE (body) == ASM_INPUT)
1387 templ = XSTR (body, 0);
1388 else
1389 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1390
1391 if (!*templ)
1392 return 0;
1393
1394 for (; *templ; templ++)
1395 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1396 || *templ == '\n')
1397 count++;
1398
1399 return count;
1400 }
1401 #endif
1402 \f
1403 /* ??? This is probably the wrong place for these. */
1404 /* Structure recording the mapping from source file and directory
1405 names at compile time to those to be embedded in debug
1406 information. */
1407 typedef struct debug_prefix_map
1408 {
1409 const char *old_prefix;
1410 const char *new_prefix;
1411 size_t old_len;
1412 size_t new_len;
1413 struct debug_prefix_map *next;
1414 } debug_prefix_map;
1415
1416 /* Linked list of such structures. */
1417 debug_prefix_map *debug_prefix_maps;
1418
1419
1420 /* Record a debug file prefix mapping. ARG is the argument to
1421 -fdebug-prefix-map and must be of the form OLD=NEW. */
1422
1423 void
1424 add_debug_prefix_map (const char *arg)
1425 {
1426 debug_prefix_map *map;
1427 const char *p;
1428
1429 p = strchr (arg, '=');
1430 if (!p)
1431 {
1432 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1433 return;
1434 }
1435 map = XNEW (debug_prefix_map);
1436 map->old_prefix = ggc_alloc_string (arg, p - arg);
1437 map->old_len = p - arg;
1438 p++;
1439 map->new_prefix = ggc_strdup (p);
1440 map->new_len = strlen (p);
1441 map->next = debug_prefix_maps;
1442 debug_prefix_maps = map;
1443 }
1444
1445 /* Perform user-specified mapping of debug filename prefixes. Return
1446 the new name corresponding to FILENAME. */
1447
1448 const char *
1449 remap_debug_filename (const char *filename)
1450 {
1451 debug_prefix_map *map;
1452 char *s;
1453 const char *name;
1454 size_t name_len;
1455
1456 for (map = debug_prefix_maps; map; map = map->next)
1457 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1458 break;
1459 if (!map)
1460 return filename;
1461 name = filename + map->old_len;
1462 name_len = strlen (name) + 1;
1463 s = (char *) alloca (name_len + map->new_len);
1464 memcpy (s, map->new_prefix, map->new_len);
1465 memcpy (s + map->new_len, name, name_len);
1466 return ggc_strdup (s);
1467 }
1468 \f
1469 /* Output assembler code for the start of a function,
1470 and initialize some of the variables in this file
1471 for the new function. The label for the function and associated
1472 assembler pseudo-ops have already been output in `assemble_start_function'.
1473
1474 FIRST is the first insn of the rtl for the function being compiled.
1475 FILE is the file to write assembler code to.
1476 OPTIMIZE is nonzero if we should eliminate redundant
1477 test and compare insns. */
1478
1479 void
1480 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1481 int optimize ATTRIBUTE_UNUSED)
1482 {
1483 block_depth = 0;
1484
1485 this_is_asm_operands = 0;
1486
1487 last_filename = locator_file (prologue_locator);
1488 last_linenum = locator_line (prologue_locator);
1489
1490 high_block_linenum = high_function_linenum = last_linenum;
1491
1492 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1493
1494 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1495 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1496 dwarf2out_begin_prologue (0, NULL);
1497 #endif
1498
1499 #ifdef LEAF_REG_REMAP
1500 if (current_function_uses_only_leaf_regs)
1501 leaf_renumber_regs (first);
1502 #endif
1503
1504 /* The Sun386i and perhaps other machines don't work right
1505 if the profiling code comes after the prologue. */
1506 #ifdef PROFILE_BEFORE_PROLOGUE
1507 if (crtl->profile)
1508 profile_function (file);
1509 #endif /* PROFILE_BEFORE_PROLOGUE */
1510
1511 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1512 if (dwarf2out_do_frame ())
1513 dwarf2out_frame_debug (NULL_RTX, false);
1514 #endif
1515
1516 /* If debugging, assign block numbers to all of the blocks in this
1517 function. */
1518 if (write_symbols)
1519 {
1520 reemit_insn_block_notes ();
1521 number_blocks (current_function_decl);
1522 /* We never actually put out begin/end notes for the top-level
1523 block in the function. But, conceptually, that block is
1524 always needed. */
1525 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1526 }
1527
1528 if (warn_frame_larger_than
1529 && get_frame_size () > frame_larger_than_size)
1530 {
1531 /* Issue a warning */
1532 warning (OPT_Wframe_larger_than_,
1533 "the frame size of %wd bytes is larger than %wd bytes",
1534 get_frame_size (), frame_larger_than_size);
1535 }
1536
1537 /* First output the function prologue: code to set up the stack frame. */
1538 targetm.asm_out.function_prologue (file, get_frame_size ());
1539
1540 /* If the machine represents the prologue as RTL, the profiling code must
1541 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1542 #ifdef HAVE_prologue
1543 if (! HAVE_prologue)
1544 #endif
1545 profile_after_prologue (file);
1546 }
1547
1548 static void
1549 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1550 {
1551 #ifndef PROFILE_BEFORE_PROLOGUE
1552 if (crtl->profile)
1553 profile_function (file);
1554 #endif /* not PROFILE_BEFORE_PROLOGUE */
1555 }
1556
1557 static void
1558 profile_function (FILE *file ATTRIBUTE_UNUSED)
1559 {
1560 #ifndef NO_PROFILE_COUNTERS
1561 # define NO_PROFILE_COUNTERS 0
1562 #endif
1563 #if defined(ASM_OUTPUT_REG_PUSH)
1564 int sval = cfun->returns_struct;
1565 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1566 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1567 int cxt = cfun->static_chain_decl != NULL;
1568 #endif
1569 #endif /* ASM_OUTPUT_REG_PUSH */
1570
1571 if (! NO_PROFILE_COUNTERS)
1572 {
1573 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1574 switch_to_section (data_section);
1575 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1576 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1577 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1578 }
1579
1580 switch_to_section (current_function_section ());
1581
1582 #if defined(ASM_OUTPUT_REG_PUSH)
1583 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1584 {
1585 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1586 }
1587 #endif
1588
1589 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1590 if (cxt)
1591 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1592 #else
1593 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1594 if (cxt)
1595 {
1596 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1597 }
1598 #endif
1599 #endif
1600
1601 FUNCTION_PROFILER (file, current_function_funcdef_no);
1602
1603 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1604 if (cxt)
1605 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1606 #else
1607 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1608 if (cxt)
1609 {
1610 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1611 }
1612 #endif
1613 #endif
1614
1615 #if defined(ASM_OUTPUT_REG_PUSH)
1616 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1617 {
1618 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1619 }
1620 #endif
1621 }
1622
1623 /* Output assembler code for the end of a function.
1624 For clarity, args are same as those of `final_start_function'
1625 even though not all of them are needed. */
1626
1627 void
1628 final_end_function (void)
1629 {
1630 app_disable ();
1631
1632 (*debug_hooks->end_function) (high_function_linenum);
1633
1634 /* Finally, output the function epilogue:
1635 code to restore the stack frame and return to the caller. */
1636 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1637
1638 /* And debug output. */
1639 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1640
1641 #if defined (DWARF2_UNWIND_INFO)
1642 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1643 && dwarf2out_do_frame ())
1644 dwarf2out_end_epilogue (last_linenum, last_filename);
1645 #endif
1646 }
1647 \f
1648 /* Output assembler code for some insns: all or part of a function.
1649 For description of args, see `final_start_function', above. */
1650
1651 void
1652 final (rtx first, FILE *file, int optimize)
1653 {
1654 rtx insn;
1655 int max_uid = 0;
1656 int seen = 0;
1657
1658 last_ignored_compare = 0;
1659
1660 for (insn = first; insn; insn = NEXT_INSN (insn))
1661 {
1662 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1663 max_uid = INSN_UID (insn);
1664 #ifdef HAVE_cc0
1665 /* If CC tracking across branches is enabled, record the insn which
1666 jumps to each branch only reached from one place. */
1667 if (optimize && JUMP_P (insn))
1668 {
1669 rtx lab = JUMP_LABEL (insn);
1670 if (lab && LABEL_NUSES (lab) == 1)
1671 {
1672 LABEL_REFS (lab) = insn;
1673 }
1674 }
1675 #endif
1676 }
1677
1678 init_recog ();
1679
1680 CC_STATUS_INIT;
1681
1682 /* Output the insns. */
1683 for (insn = first; insn;)
1684 {
1685 #ifdef HAVE_ATTR_length
1686 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1687 {
1688 /* This can be triggered by bugs elsewhere in the compiler if
1689 new insns are created after init_insn_lengths is called. */
1690 gcc_assert (NOTE_P (insn));
1691 insn_current_address = -1;
1692 }
1693 else
1694 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1695 #endif /* HAVE_ATTR_length */
1696
1697 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1698 }
1699 }
1700 \f
1701 const char *
1702 get_insn_template (int code, rtx insn)
1703 {
1704 switch (insn_data[code].output_format)
1705 {
1706 case INSN_OUTPUT_FORMAT_SINGLE:
1707 return insn_data[code].output.single;
1708 case INSN_OUTPUT_FORMAT_MULTI:
1709 return insn_data[code].output.multi[which_alternative];
1710 case INSN_OUTPUT_FORMAT_FUNCTION:
1711 gcc_assert (insn);
1712 return (*insn_data[code].output.function) (recog_data.operand, insn);
1713
1714 default:
1715 gcc_unreachable ();
1716 }
1717 }
1718
1719 /* Emit the appropriate declaration for an alternate-entry-point
1720 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1721 LABEL_KIND != LABEL_NORMAL.
1722
1723 The case fall-through in this function is intentional. */
1724 static void
1725 output_alternate_entry_point (FILE *file, rtx insn)
1726 {
1727 const char *name = LABEL_NAME (insn);
1728
1729 switch (LABEL_KIND (insn))
1730 {
1731 case LABEL_WEAK_ENTRY:
1732 #ifdef ASM_WEAKEN_LABEL
1733 ASM_WEAKEN_LABEL (file, name);
1734 #endif
1735 case LABEL_GLOBAL_ENTRY:
1736 targetm.asm_out.globalize_label (file, name);
1737 case LABEL_STATIC_ENTRY:
1738 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1739 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1740 #endif
1741 ASM_OUTPUT_LABEL (file, name);
1742 break;
1743
1744 case LABEL_NORMAL:
1745 default:
1746 gcc_unreachable ();
1747 }
1748 }
1749
1750 /* Given a CALL_INSN, find and return the nested CALL. */
1751 static rtx
1752 call_from_call_insn (rtx insn)
1753 {
1754 rtx x;
1755 gcc_assert (CALL_P (insn));
1756 x = PATTERN (insn);
1757
1758 while (GET_CODE (x) != CALL)
1759 {
1760 switch (GET_CODE (x))
1761 {
1762 default:
1763 gcc_unreachable ();
1764 case COND_EXEC:
1765 x = COND_EXEC_CODE (x);
1766 break;
1767 case PARALLEL:
1768 x = XVECEXP (x, 0, 0);
1769 break;
1770 case SET:
1771 x = XEXP (x, 1);
1772 break;
1773 }
1774 }
1775 return x;
1776 }
1777
1778 /* The final scan for one insn, INSN.
1779 Args are same as in `final', except that INSN
1780 is the insn being scanned.
1781 Value returned is the next insn to be scanned.
1782
1783 NOPEEPHOLES is the flag to disallow peephole processing (currently
1784 used for within delayed branch sequence output).
1785
1786 SEEN is used to track the end of the prologue, for emitting
1787 debug information. We force the emission of a line note after
1788 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1789 at the beginning of the second basic block, whichever comes
1790 first. */
1791
1792 rtx
1793 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1794 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1795 {
1796 #ifdef HAVE_cc0
1797 rtx set;
1798 #endif
1799 rtx next;
1800
1801 insn_counter++;
1802
1803 /* Ignore deleted insns. These can occur when we split insns (due to a
1804 template of "#") while not optimizing. */
1805 if (INSN_DELETED_P (insn))
1806 return NEXT_INSN (insn);
1807
1808 switch (GET_CODE (insn))
1809 {
1810 case NOTE:
1811 switch (NOTE_KIND (insn))
1812 {
1813 case NOTE_INSN_DELETED:
1814 break;
1815
1816 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1817 in_cold_section_p = !in_cold_section_p;
1818 #ifdef DWARF2_UNWIND_INFO
1819 if (dwarf2out_do_frame ())
1820 dwarf2out_switch_text_section ();
1821 else
1822 #endif
1823 (*debug_hooks->switch_text_section) ();
1824
1825 switch_to_section (current_function_section ());
1826 break;
1827
1828 case NOTE_INSN_BASIC_BLOCK:
1829 #ifdef TARGET_UNWIND_INFO
1830 targetm.asm_out.unwind_emit (asm_out_file, insn);
1831 #endif
1832
1833 if (flag_debug_asm)
1834 fprintf (asm_out_file, "\t%s basic block %d\n",
1835 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1836
1837 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1838 {
1839 *seen |= SEEN_EMITTED;
1840 force_source_line = true;
1841 }
1842 else
1843 *seen |= SEEN_BB;
1844
1845 break;
1846
1847 case NOTE_INSN_EH_REGION_BEG:
1848 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1849 NOTE_EH_HANDLER (insn));
1850 break;
1851
1852 case NOTE_INSN_EH_REGION_END:
1853 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1854 NOTE_EH_HANDLER (insn));
1855 break;
1856
1857 case NOTE_INSN_PROLOGUE_END:
1858 targetm.asm_out.function_end_prologue (file);
1859 profile_after_prologue (file);
1860
1861 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1862 {
1863 *seen |= SEEN_EMITTED;
1864 force_source_line = true;
1865 }
1866 else
1867 *seen |= SEEN_NOTE;
1868
1869 break;
1870
1871 case NOTE_INSN_EPILOGUE_BEG:
1872 targetm.asm_out.function_begin_epilogue (file);
1873 break;
1874
1875 case NOTE_INSN_FUNCTION_BEG:
1876 app_disable ();
1877 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1878
1879 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1880 {
1881 *seen |= SEEN_EMITTED;
1882 force_source_line = true;
1883 }
1884 else
1885 *seen |= SEEN_NOTE;
1886
1887 break;
1888
1889 case NOTE_INSN_BLOCK_BEG:
1890 if (debug_info_level == DINFO_LEVEL_NORMAL
1891 || debug_info_level == DINFO_LEVEL_VERBOSE
1892 || write_symbols == DWARF2_DEBUG
1893 || write_symbols == VMS_AND_DWARF2_DEBUG
1894 || write_symbols == VMS_DEBUG)
1895 {
1896 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1897
1898 app_disable ();
1899 ++block_depth;
1900 high_block_linenum = last_linenum;
1901
1902 /* Output debugging info about the symbol-block beginning. */
1903 (*debug_hooks->begin_block) (last_linenum, n);
1904
1905 /* Mark this block as output. */
1906 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1907 }
1908 if (write_symbols == DBX_DEBUG
1909 || write_symbols == SDB_DEBUG)
1910 {
1911 location_t *locus_ptr
1912 = block_nonartificial_location (NOTE_BLOCK (insn));
1913
1914 if (locus_ptr != NULL)
1915 {
1916 override_filename = LOCATION_FILE (*locus_ptr);
1917 override_linenum = LOCATION_LINE (*locus_ptr);
1918 }
1919 }
1920 break;
1921
1922 case NOTE_INSN_BLOCK_END:
1923 if (debug_info_level == DINFO_LEVEL_NORMAL
1924 || debug_info_level == DINFO_LEVEL_VERBOSE
1925 || write_symbols == DWARF2_DEBUG
1926 || write_symbols == VMS_AND_DWARF2_DEBUG
1927 || write_symbols == VMS_DEBUG)
1928 {
1929 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1930
1931 app_disable ();
1932
1933 /* End of a symbol-block. */
1934 --block_depth;
1935 gcc_assert (block_depth >= 0);
1936
1937 (*debug_hooks->end_block) (high_block_linenum, n);
1938 }
1939 if (write_symbols == DBX_DEBUG
1940 || write_symbols == SDB_DEBUG)
1941 {
1942 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1943 location_t *locus_ptr
1944 = block_nonartificial_location (outer_block);
1945
1946 if (locus_ptr != NULL)
1947 {
1948 override_filename = LOCATION_FILE (*locus_ptr);
1949 override_linenum = LOCATION_LINE (*locus_ptr);
1950 }
1951 else
1952 {
1953 override_filename = NULL;
1954 override_linenum = 0;
1955 }
1956 }
1957 break;
1958
1959 case NOTE_INSN_DELETED_LABEL:
1960 /* Emit the label. We may have deleted the CODE_LABEL because
1961 the label could be proved to be unreachable, though still
1962 referenced (in the form of having its address taken. */
1963 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1964 break;
1965
1966 case NOTE_INSN_VAR_LOCATION:
1967 (*debug_hooks->var_location) (insn);
1968 break;
1969
1970 default:
1971 gcc_unreachable ();
1972 break;
1973 }
1974 break;
1975
1976 case BARRIER:
1977 #if defined (DWARF2_UNWIND_INFO)
1978 if (dwarf2out_do_frame ())
1979 dwarf2out_frame_debug (insn, false);
1980 #endif
1981 break;
1982
1983 case CODE_LABEL:
1984 /* The target port might emit labels in the output function for
1985 some insn, e.g. sh.c output_branchy_insn. */
1986 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1987 {
1988 int align = LABEL_TO_ALIGNMENT (insn);
1989 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1990 int max_skip = LABEL_TO_MAX_SKIP (insn);
1991 #endif
1992
1993 if (align && NEXT_INSN (insn))
1994 {
1995 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1996 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1997 #else
1998 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1999 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2000 #else
2001 ASM_OUTPUT_ALIGN (file, align);
2002 #endif
2003 #endif
2004 }
2005 }
2006 #ifdef HAVE_cc0
2007 CC_STATUS_INIT;
2008 #endif
2009
2010 if (LABEL_NAME (insn))
2011 (*debug_hooks->label) (insn);
2012
2013 app_disable ();
2014
2015 next = next_nonnote_insn (insn);
2016 if (next != 0 && JUMP_P (next))
2017 {
2018 rtx nextbody = PATTERN (next);
2019
2020 /* If this label is followed by a jump-table,
2021 make sure we put the label in the read-only section. Also
2022 possibly write the label and jump table together. */
2023
2024 if (GET_CODE (nextbody) == ADDR_VEC
2025 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2026 {
2027 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2028 /* In this case, the case vector is being moved by the
2029 target, so don't output the label at all. Leave that
2030 to the back end macros. */
2031 #else
2032 if (! JUMP_TABLES_IN_TEXT_SECTION)
2033 {
2034 int log_align;
2035
2036 switch_to_section (targetm.asm_out.function_rodata_section
2037 (current_function_decl));
2038
2039 #ifdef ADDR_VEC_ALIGN
2040 log_align = ADDR_VEC_ALIGN (next);
2041 #else
2042 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2043 #endif
2044 ASM_OUTPUT_ALIGN (file, log_align);
2045 }
2046 else
2047 switch_to_section (current_function_section ());
2048
2049 #ifdef ASM_OUTPUT_CASE_LABEL
2050 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2051 next);
2052 #else
2053 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2054 #endif
2055 #endif
2056 break;
2057 }
2058 }
2059 if (LABEL_ALT_ENTRY_P (insn))
2060 output_alternate_entry_point (file, insn);
2061 else
2062 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2063 break;
2064
2065 default:
2066 {
2067 rtx body = PATTERN (insn);
2068 int insn_code_number;
2069 const char *templ;
2070
2071 #ifdef HAVE_conditional_execution
2072 /* Reset this early so it is correct for ASM statements. */
2073 current_insn_predicate = NULL_RTX;
2074 #endif
2075 /* An INSN, JUMP_INSN or CALL_INSN.
2076 First check for special kinds that recog doesn't recognize. */
2077
2078 if (GET_CODE (body) == USE /* These are just declarations. */
2079 || GET_CODE (body) == CLOBBER)
2080 break;
2081
2082 #ifdef HAVE_cc0
2083 {
2084 /* If there is a REG_CC_SETTER note on this insn, it means that
2085 the setting of the condition code was done in the delay slot
2086 of the insn that branched here. So recover the cc status
2087 from the insn that set it. */
2088
2089 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2090 if (note)
2091 {
2092 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2093 cc_prev_status = cc_status;
2094 }
2095 }
2096 #endif
2097
2098 /* Detect insns that are really jump-tables
2099 and output them as such. */
2100
2101 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2102 {
2103 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2104 int vlen, idx;
2105 #endif
2106
2107 if (! JUMP_TABLES_IN_TEXT_SECTION)
2108 switch_to_section (targetm.asm_out.function_rodata_section
2109 (current_function_decl));
2110 else
2111 switch_to_section (current_function_section ());
2112
2113 app_disable ();
2114
2115 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2116 if (GET_CODE (body) == ADDR_VEC)
2117 {
2118 #ifdef ASM_OUTPUT_ADDR_VEC
2119 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2120 #else
2121 gcc_unreachable ();
2122 #endif
2123 }
2124 else
2125 {
2126 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2127 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2128 #else
2129 gcc_unreachable ();
2130 #endif
2131 }
2132 #else
2133 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2134 for (idx = 0; idx < vlen; idx++)
2135 {
2136 if (GET_CODE (body) == ADDR_VEC)
2137 {
2138 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2139 ASM_OUTPUT_ADDR_VEC_ELT
2140 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2141 #else
2142 gcc_unreachable ();
2143 #endif
2144 }
2145 else
2146 {
2147 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2148 ASM_OUTPUT_ADDR_DIFF_ELT
2149 (file,
2150 body,
2151 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2152 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2153 #else
2154 gcc_unreachable ();
2155 #endif
2156 }
2157 }
2158 #ifdef ASM_OUTPUT_CASE_END
2159 ASM_OUTPUT_CASE_END (file,
2160 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2161 insn);
2162 #endif
2163 #endif
2164
2165 switch_to_section (current_function_section ());
2166
2167 break;
2168 }
2169 /* Output this line note if it is the first or the last line
2170 note in a row. */
2171 if (notice_source_line (insn))
2172 {
2173 (*debug_hooks->source_line) (last_linenum, last_filename);
2174 }
2175
2176 if (GET_CODE (body) == ASM_INPUT)
2177 {
2178 const char *string = XSTR (body, 0);
2179
2180 /* There's no telling what that did to the condition codes. */
2181 CC_STATUS_INIT;
2182
2183 if (string[0])
2184 {
2185 expanded_location loc;
2186
2187 app_enable ();
2188 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2189 if (*loc.file && loc.line)
2190 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2191 ASM_COMMENT_START, loc.line, loc.file);
2192 fprintf (asm_out_file, "\t%s\n", string);
2193 #if HAVE_AS_LINE_ZERO
2194 if (*loc.file && loc.line)
2195 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2196 #endif
2197 }
2198 break;
2199 }
2200
2201 /* Detect `asm' construct with operands. */
2202 if (asm_noperands (body) >= 0)
2203 {
2204 unsigned int noperands = asm_noperands (body);
2205 rtx *ops = XALLOCAVEC (rtx, noperands);
2206 const char *string;
2207 location_t loc;
2208 expanded_location expanded;
2209
2210 /* There's no telling what that did to the condition codes. */
2211 CC_STATUS_INIT;
2212
2213 /* Get out the operand values. */
2214 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2215 /* Inhibit dying on what would otherwise be compiler bugs. */
2216 insn_noperands = noperands;
2217 this_is_asm_operands = insn;
2218 expanded = expand_location (loc);
2219
2220 #ifdef FINAL_PRESCAN_INSN
2221 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2222 #endif
2223
2224 /* Output the insn using them. */
2225 if (string[0])
2226 {
2227 app_enable ();
2228 if (expanded.file && expanded.line)
2229 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2230 ASM_COMMENT_START, expanded.line, expanded.file);
2231 output_asm_insn (string, ops);
2232 #if HAVE_AS_LINE_ZERO
2233 if (expanded.file && expanded.line)
2234 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2235 #endif
2236 }
2237
2238 if (targetm.asm_out.final_postscan_insn)
2239 targetm.asm_out.final_postscan_insn (file, insn, ops,
2240 insn_noperands);
2241
2242 this_is_asm_operands = 0;
2243 break;
2244 }
2245
2246 app_disable ();
2247
2248 if (GET_CODE (body) == SEQUENCE)
2249 {
2250 /* A delayed-branch sequence */
2251 int i;
2252
2253 final_sequence = body;
2254
2255 /* Record the delay slots' frame information before the branch.
2256 This is needed for delayed calls: see execute_cfa_program(). */
2257 #if defined (DWARF2_UNWIND_INFO)
2258 if (dwarf2out_do_frame ())
2259 for (i = 1; i < XVECLEN (body, 0); i++)
2260 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2261 #endif
2262
2263 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2264 force the restoration of a comparison that was previously
2265 thought unnecessary. If that happens, cancel this sequence
2266 and cause that insn to be restored. */
2267
2268 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2269 if (next != XVECEXP (body, 0, 1))
2270 {
2271 final_sequence = 0;
2272 return next;
2273 }
2274
2275 for (i = 1; i < XVECLEN (body, 0); i++)
2276 {
2277 rtx insn = XVECEXP (body, 0, i);
2278 rtx next = NEXT_INSN (insn);
2279 /* We loop in case any instruction in a delay slot gets
2280 split. */
2281 do
2282 insn = final_scan_insn (insn, file, 0, 1, seen);
2283 while (insn != next);
2284 }
2285 #ifdef DBR_OUTPUT_SEQEND
2286 DBR_OUTPUT_SEQEND (file);
2287 #endif
2288 final_sequence = 0;
2289
2290 /* If the insn requiring the delay slot was a CALL_INSN, the
2291 insns in the delay slot are actually executed before the
2292 called function. Hence we don't preserve any CC-setting
2293 actions in these insns and the CC must be marked as being
2294 clobbered by the function. */
2295 if (CALL_P (XVECEXP (body, 0, 0)))
2296 {
2297 CC_STATUS_INIT;
2298 }
2299 break;
2300 }
2301
2302 /* We have a real machine instruction as rtl. */
2303
2304 body = PATTERN (insn);
2305
2306 #ifdef HAVE_cc0
2307 set = single_set (insn);
2308
2309 /* Check for redundant test and compare instructions
2310 (when the condition codes are already set up as desired).
2311 This is done only when optimizing; if not optimizing,
2312 it should be possible for the user to alter a variable
2313 with the debugger in between statements
2314 and the next statement should reexamine the variable
2315 to compute the condition codes. */
2316
2317 if (optimize)
2318 {
2319 if (set
2320 && GET_CODE (SET_DEST (set)) == CC0
2321 && insn != last_ignored_compare)
2322 {
2323 rtx src1, src2;
2324 if (GET_CODE (SET_SRC (set)) == SUBREG)
2325 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2326
2327 src1 = SET_SRC (set);
2328 src2 = NULL_RTX;
2329 if (GET_CODE (SET_SRC (set)) == COMPARE)
2330 {
2331 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2332 XEXP (SET_SRC (set), 0)
2333 = alter_subreg (&XEXP (SET_SRC (set), 0));
2334 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2335 XEXP (SET_SRC (set), 1)
2336 = alter_subreg (&XEXP (SET_SRC (set), 1));
2337 if (XEXP (SET_SRC (set), 1)
2338 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2339 src2 = XEXP (SET_SRC (set), 0);
2340 }
2341 if ((cc_status.value1 != 0
2342 && rtx_equal_p (src1, cc_status.value1))
2343 || (cc_status.value2 != 0
2344 && rtx_equal_p (src1, cc_status.value2))
2345 || (src2 != 0 && cc_status.value1 != 0
2346 && rtx_equal_p (src2, cc_status.value1))
2347 || (src2 != 0 && cc_status.value2 != 0
2348 && rtx_equal_p (src2, cc_status.value2)))
2349 {
2350 /* Don't delete insn if it has an addressing side-effect. */
2351 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2352 /* or if anything in it is volatile. */
2353 && ! volatile_refs_p (PATTERN (insn)))
2354 {
2355 /* We don't really delete the insn; just ignore it. */
2356 last_ignored_compare = insn;
2357 break;
2358 }
2359 }
2360 }
2361 }
2362
2363 /* If this is a conditional branch, maybe modify it
2364 if the cc's are in a nonstandard state
2365 so that it accomplishes the same thing that it would
2366 do straightforwardly if the cc's were set up normally. */
2367
2368 if (cc_status.flags != 0
2369 && JUMP_P (insn)
2370 && GET_CODE (body) == SET
2371 && SET_DEST (body) == pc_rtx
2372 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2373 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2374 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2375 {
2376 /* This function may alter the contents of its argument
2377 and clear some of the cc_status.flags bits.
2378 It may also return 1 meaning condition now always true
2379 or -1 meaning condition now always false
2380 or 2 meaning condition nontrivial but altered. */
2381 int result = alter_cond (XEXP (SET_SRC (body), 0));
2382 /* If condition now has fixed value, replace the IF_THEN_ELSE
2383 with its then-operand or its else-operand. */
2384 if (result == 1)
2385 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2386 if (result == -1)
2387 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2388
2389 /* The jump is now either unconditional or a no-op.
2390 If it has become a no-op, don't try to output it.
2391 (It would not be recognized.) */
2392 if (SET_SRC (body) == pc_rtx)
2393 {
2394 delete_insn (insn);
2395 break;
2396 }
2397 else if (GET_CODE (SET_SRC (body)) == RETURN)
2398 /* Replace (set (pc) (return)) with (return). */
2399 PATTERN (insn) = body = SET_SRC (body);
2400
2401 /* Rerecognize the instruction if it has changed. */
2402 if (result != 0)
2403 INSN_CODE (insn) = -1;
2404 }
2405
2406 /* If this is a conditional trap, maybe modify it if the cc's
2407 are in a nonstandard state so that it accomplishes the same
2408 thing that it would do straightforwardly if the cc's were
2409 set up normally. */
2410 if (cc_status.flags != 0
2411 && NONJUMP_INSN_P (insn)
2412 && GET_CODE (body) == TRAP_IF
2413 && COMPARISON_P (TRAP_CONDITION (body))
2414 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2415 {
2416 /* This function may alter the contents of its argument
2417 and clear some of the cc_status.flags bits.
2418 It may also return 1 meaning condition now always true
2419 or -1 meaning condition now always false
2420 or 2 meaning condition nontrivial but altered. */
2421 int result = alter_cond (TRAP_CONDITION (body));
2422
2423 /* If TRAP_CONDITION has become always false, delete the
2424 instruction. */
2425 if (result == -1)
2426 {
2427 delete_insn (insn);
2428 break;
2429 }
2430
2431 /* If TRAP_CONDITION has become always true, replace
2432 TRAP_CONDITION with const_true_rtx. */
2433 if (result == 1)
2434 TRAP_CONDITION (body) = const_true_rtx;
2435
2436 /* Rerecognize the instruction if it has changed. */
2437 if (result != 0)
2438 INSN_CODE (insn) = -1;
2439 }
2440
2441 /* Make same adjustments to instructions that examine the
2442 condition codes without jumping and instructions that
2443 handle conditional moves (if this machine has either one). */
2444
2445 if (cc_status.flags != 0
2446 && set != 0)
2447 {
2448 rtx cond_rtx, then_rtx, else_rtx;
2449
2450 if (!JUMP_P (insn)
2451 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2452 {
2453 cond_rtx = XEXP (SET_SRC (set), 0);
2454 then_rtx = XEXP (SET_SRC (set), 1);
2455 else_rtx = XEXP (SET_SRC (set), 2);
2456 }
2457 else
2458 {
2459 cond_rtx = SET_SRC (set);
2460 then_rtx = const_true_rtx;
2461 else_rtx = const0_rtx;
2462 }
2463
2464 switch (GET_CODE (cond_rtx))
2465 {
2466 case GTU:
2467 case GT:
2468 case LTU:
2469 case LT:
2470 case GEU:
2471 case GE:
2472 case LEU:
2473 case LE:
2474 case EQ:
2475 case NE:
2476 {
2477 int result;
2478 if (XEXP (cond_rtx, 0) != cc0_rtx)
2479 break;
2480 result = alter_cond (cond_rtx);
2481 if (result == 1)
2482 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2483 else if (result == -1)
2484 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2485 else if (result == 2)
2486 INSN_CODE (insn) = -1;
2487 if (SET_DEST (set) == SET_SRC (set))
2488 delete_insn (insn);
2489 }
2490 break;
2491
2492 default:
2493 break;
2494 }
2495 }
2496
2497 #endif
2498
2499 #ifdef HAVE_peephole
2500 /* Do machine-specific peephole optimizations if desired. */
2501
2502 if (optimize && !flag_no_peephole && !nopeepholes)
2503 {
2504 rtx next = peephole (insn);
2505 /* When peepholing, if there were notes within the peephole,
2506 emit them before the peephole. */
2507 if (next != 0 && next != NEXT_INSN (insn))
2508 {
2509 rtx note, prev = PREV_INSN (insn);
2510
2511 for (note = NEXT_INSN (insn); note != next;
2512 note = NEXT_INSN (note))
2513 final_scan_insn (note, file, optimize, nopeepholes, seen);
2514
2515 /* Put the notes in the proper position for a later
2516 rescan. For example, the SH target can do this
2517 when generating a far jump in a delayed branch
2518 sequence. */
2519 note = NEXT_INSN (insn);
2520 PREV_INSN (note) = prev;
2521 NEXT_INSN (prev) = note;
2522 NEXT_INSN (PREV_INSN (next)) = insn;
2523 PREV_INSN (insn) = PREV_INSN (next);
2524 NEXT_INSN (insn) = next;
2525 PREV_INSN (next) = insn;
2526 }
2527
2528 /* PEEPHOLE might have changed this. */
2529 body = PATTERN (insn);
2530 }
2531 #endif
2532
2533 /* Try to recognize the instruction.
2534 If successful, verify that the operands satisfy the
2535 constraints for the instruction. Crash if they don't,
2536 since `reload' should have changed them so that they do. */
2537
2538 insn_code_number = recog_memoized (insn);
2539 cleanup_subreg_operands (insn);
2540
2541 /* Dump the insn in the assembly for debugging. */
2542 if (flag_dump_rtl_in_asm)
2543 {
2544 print_rtx_head = ASM_COMMENT_START;
2545 print_rtl_single (asm_out_file, insn);
2546 print_rtx_head = "";
2547 }
2548
2549 if (! constrain_operands_cached (1))
2550 fatal_insn_not_found (insn);
2551
2552 /* Some target machines need to prescan each insn before
2553 it is output. */
2554
2555 #ifdef FINAL_PRESCAN_INSN
2556 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2557 #endif
2558
2559 #ifdef HAVE_conditional_execution
2560 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2561 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2562 #endif
2563
2564 #ifdef HAVE_cc0
2565 cc_prev_status = cc_status;
2566
2567 /* Update `cc_status' for this instruction.
2568 The instruction's output routine may change it further.
2569 If the output routine for a jump insn needs to depend
2570 on the cc status, it should look at cc_prev_status. */
2571
2572 NOTICE_UPDATE_CC (body, insn);
2573 #endif
2574
2575 current_output_insn = debug_insn = insn;
2576
2577 #if defined (DWARF2_UNWIND_INFO)
2578 if (CALL_P (insn) && dwarf2out_do_frame ())
2579 dwarf2out_frame_debug (insn, false);
2580 #endif
2581
2582 /* Find the proper template for this insn. */
2583 templ = get_insn_template (insn_code_number, insn);
2584
2585 /* If the C code returns 0, it means that it is a jump insn
2586 which follows a deleted test insn, and that test insn
2587 needs to be reinserted. */
2588 if (templ == 0)
2589 {
2590 rtx prev;
2591
2592 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2593
2594 /* We have already processed the notes between the setter and
2595 the user. Make sure we don't process them again, this is
2596 particularly important if one of the notes is a block
2597 scope note or an EH note. */
2598 for (prev = insn;
2599 prev != last_ignored_compare;
2600 prev = PREV_INSN (prev))
2601 {
2602 if (NOTE_P (prev))
2603 delete_insn (prev); /* Use delete_note. */
2604 }
2605
2606 return prev;
2607 }
2608
2609 /* If the template is the string "#", it means that this insn must
2610 be split. */
2611 if (templ[0] == '#' && templ[1] == '\0')
2612 {
2613 rtx new_rtx = try_split (body, insn, 0);
2614
2615 /* If we didn't split the insn, go away. */
2616 if (new_rtx == insn && PATTERN (new_rtx) == body)
2617 fatal_insn ("could not split insn", insn);
2618
2619 #ifdef HAVE_ATTR_length
2620 /* This instruction should have been split in shorten_branches,
2621 to ensure that we would have valid length info for the
2622 splitees. */
2623 gcc_unreachable ();
2624 #endif
2625
2626 return new_rtx;
2627 }
2628
2629 #ifdef TARGET_UNWIND_INFO
2630 /* ??? This will put the directives in the wrong place if
2631 get_insn_template outputs assembly directly. However calling it
2632 before get_insn_template breaks if the insns is split. */
2633 targetm.asm_out.unwind_emit (asm_out_file, insn);
2634 #endif
2635
2636 if (CALL_P (insn))
2637 {
2638 rtx x = call_from_call_insn (insn);
2639 x = XEXP (x, 0);
2640 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2641 {
2642 tree t;
2643 x = XEXP (x, 0);
2644 t = SYMBOL_REF_DECL (x);
2645 if (t)
2646 assemble_external (t);
2647 }
2648 }
2649
2650 /* Output assembler code from the template. */
2651 output_asm_insn (templ, recog_data.operand);
2652
2653 /* Some target machines need to postscan each insn after
2654 it is output. */
2655 if (targetm.asm_out.final_postscan_insn)
2656 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2657 recog_data.n_operands);
2658
2659 /* If necessary, report the effect that the instruction has on
2660 the unwind info. We've already done this for delay slots
2661 and call instructions. */
2662 #if defined (DWARF2_UNWIND_INFO)
2663 if (final_sequence == 0
2664 #if !defined (HAVE_prologue)
2665 && !ACCUMULATE_OUTGOING_ARGS
2666 #endif
2667 && dwarf2out_do_frame ())
2668 dwarf2out_frame_debug (insn, true);
2669 #endif
2670
2671 current_output_insn = debug_insn = 0;
2672 }
2673 }
2674 return NEXT_INSN (insn);
2675 }
2676 \f
2677 /* Return whether a source line note needs to be emitted before INSN. */
2678
2679 static bool
2680 notice_source_line (rtx insn)
2681 {
2682 const char *filename;
2683 int linenum;
2684
2685 if (override_filename)
2686 {
2687 filename = override_filename;
2688 linenum = override_linenum;
2689 }
2690 else
2691 {
2692 filename = insn_file (insn);
2693 linenum = insn_line (insn);
2694 }
2695
2696 if (filename
2697 && (force_source_line
2698 || filename != last_filename
2699 || last_linenum != linenum))
2700 {
2701 force_source_line = false;
2702 last_filename = filename;
2703 last_linenum = linenum;
2704 high_block_linenum = MAX (last_linenum, high_block_linenum);
2705 high_function_linenum = MAX (last_linenum, high_function_linenum);
2706 return true;
2707 }
2708 return false;
2709 }
2710 \f
2711 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2712 directly to the desired hard register. */
2713
2714 void
2715 cleanup_subreg_operands (rtx insn)
2716 {
2717 int i;
2718 bool changed = false;
2719 extract_insn_cached (insn);
2720 for (i = 0; i < recog_data.n_operands; i++)
2721 {
2722 /* The following test cannot use recog_data.operand when testing
2723 for a SUBREG: the underlying object might have been changed
2724 already if we are inside a match_operator expression that
2725 matches the else clause. Instead we test the underlying
2726 expression directly. */
2727 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2728 {
2729 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2730 changed = true;
2731 }
2732 else if (GET_CODE (recog_data.operand[i]) == PLUS
2733 || GET_CODE (recog_data.operand[i]) == MULT
2734 || MEM_P (recog_data.operand[i]))
2735 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2736 }
2737
2738 for (i = 0; i < recog_data.n_dups; i++)
2739 {
2740 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2741 {
2742 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2743 changed = true;
2744 }
2745 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2746 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2747 || MEM_P (*recog_data.dup_loc[i]))
2748 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2749 }
2750 if (changed)
2751 df_insn_rescan (insn);
2752 }
2753
2754 /* If X is a SUBREG, replace it with a REG or a MEM,
2755 based on the thing it is a subreg of. */
2756
2757 rtx
2758 alter_subreg (rtx *xp)
2759 {
2760 rtx x = *xp;
2761 rtx y = SUBREG_REG (x);
2762
2763 /* simplify_subreg does not remove subreg from volatile references.
2764 We are required to. */
2765 if (MEM_P (y))
2766 {
2767 int offset = SUBREG_BYTE (x);
2768
2769 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2770 contains 0 instead of the proper offset. See simplify_subreg. */
2771 if (offset == 0
2772 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2773 {
2774 int difference = GET_MODE_SIZE (GET_MODE (y))
2775 - GET_MODE_SIZE (GET_MODE (x));
2776 if (WORDS_BIG_ENDIAN)
2777 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2778 if (BYTES_BIG_ENDIAN)
2779 offset += difference % UNITS_PER_WORD;
2780 }
2781
2782 *xp = adjust_address (y, GET_MODE (x), offset);
2783 }
2784 else
2785 {
2786 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2787 SUBREG_BYTE (x));
2788
2789 if (new_rtx != 0)
2790 *xp = new_rtx;
2791 else if (REG_P (y))
2792 {
2793 /* Simplify_subreg can't handle some REG cases, but we have to. */
2794 unsigned int regno;
2795 HOST_WIDE_INT offset;
2796
2797 regno = subreg_regno (x);
2798 if (subreg_lowpart_p (x))
2799 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2800 else
2801 offset = SUBREG_BYTE (x);
2802 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2803 }
2804 }
2805
2806 return *xp;
2807 }
2808
2809 /* Do alter_subreg on all the SUBREGs contained in X. */
2810
2811 static rtx
2812 walk_alter_subreg (rtx *xp, bool *changed)
2813 {
2814 rtx x = *xp;
2815 switch (GET_CODE (x))
2816 {
2817 case PLUS:
2818 case MULT:
2819 case AND:
2820 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2821 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2822 break;
2823
2824 case MEM:
2825 case ZERO_EXTEND:
2826 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2827 break;
2828
2829 case SUBREG:
2830 *changed = true;
2831 return alter_subreg (xp);
2832
2833 default:
2834 break;
2835 }
2836
2837 return *xp;
2838 }
2839 \f
2840 #ifdef HAVE_cc0
2841
2842 /* Given BODY, the body of a jump instruction, alter the jump condition
2843 as required by the bits that are set in cc_status.flags.
2844 Not all of the bits there can be handled at this level in all cases.
2845
2846 The value is normally 0.
2847 1 means that the condition has become always true.
2848 -1 means that the condition has become always false.
2849 2 means that COND has been altered. */
2850
2851 static int
2852 alter_cond (rtx cond)
2853 {
2854 int value = 0;
2855
2856 if (cc_status.flags & CC_REVERSED)
2857 {
2858 value = 2;
2859 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2860 }
2861
2862 if (cc_status.flags & CC_INVERTED)
2863 {
2864 value = 2;
2865 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2866 }
2867
2868 if (cc_status.flags & CC_NOT_POSITIVE)
2869 switch (GET_CODE (cond))
2870 {
2871 case LE:
2872 case LEU:
2873 case GEU:
2874 /* Jump becomes unconditional. */
2875 return 1;
2876
2877 case GT:
2878 case GTU:
2879 case LTU:
2880 /* Jump becomes no-op. */
2881 return -1;
2882
2883 case GE:
2884 PUT_CODE (cond, EQ);
2885 value = 2;
2886 break;
2887
2888 case LT:
2889 PUT_CODE (cond, NE);
2890 value = 2;
2891 break;
2892
2893 default:
2894 break;
2895 }
2896
2897 if (cc_status.flags & CC_NOT_NEGATIVE)
2898 switch (GET_CODE (cond))
2899 {
2900 case GE:
2901 case GEU:
2902 /* Jump becomes unconditional. */
2903 return 1;
2904
2905 case LT:
2906 case LTU:
2907 /* Jump becomes no-op. */
2908 return -1;
2909
2910 case LE:
2911 case LEU:
2912 PUT_CODE (cond, EQ);
2913 value = 2;
2914 break;
2915
2916 case GT:
2917 case GTU:
2918 PUT_CODE (cond, NE);
2919 value = 2;
2920 break;
2921
2922 default:
2923 break;
2924 }
2925
2926 if (cc_status.flags & CC_NO_OVERFLOW)
2927 switch (GET_CODE (cond))
2928 {
2929 case GEU:
2930 /* Jump becomes unconditional. */
2931 return 1;
2932
2933 case LEU:
2934 PUT_CODE (cond, EQ);
2935 value = 2;
2936 break;
2937
2938 case GTU:
2939 PUT_CODE (cond, NE);
2940 value = 2;
2941 break;
2942
2943 case LTU:
2944 /* Jump becomes no-op. */
2945 return -1;
2946
2947 default:
2948 break;
2949 }
2950
2951 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2952 switch (GET_CODE (cond))
2953 {
2954 default:
2955 gcc_unreachable ();
2956
2957 case NE:
2958 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2959 value = 2;
2960 break;
2961
2962 case EQ:
2963 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2964 value = 2;
2965 break;
2966 }
2967
2968 if (cc_status.flags & CC_NOT_SIGNED)
2969 /* The flags are valid if signed condition operators are converted
2970 to unsigned. */
2971 switch (GET_CODE (cond))
2972 {
2973 case LE:
2974 PUT_CODE (cond, LEU);
2975 value = 2;
2976 break;
2977
2978 case LT:
2979 PUT_CODE (cond, LTU);
2980 value = 2;
2981 break;
2982
2983 case GT:
2984 PUT_CODE (cond, GTU);
2985 value = 2;
2986 break;
2987
2988 case GE:
2989 PUT_CODE (cond, GEU);
2990 value = 2;
2991 break;
2992
2993 default:
2994 break;
2995 }
2996
2997 return value;
2998 }
2999 #endif
3000 \f
3001 /* Report inconsistency between the assembler template and the operands.
3002 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3003
3004 void
3005 output_operand_lossage (const char *cmsgid, ...)
3006 {
3007 char *fmt_string;
3008 char *new_message;
3009 const char *pfx_str;
3010 va_list ap;
3011
3012 va_start (ap, cmsgid);
3013
3014 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3015 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3016 vasprintf (&new_message, fmt_string, ap);
3017
3018 if (this_is_asm_operands)
3019 error_for_asm (this_is_asm_operands, "%s", new_message);
3020 else
3021 internal_error ("%s", new_message);
3022
3023 free (fmt_string);
3024 free (new_message);
3025 va_end (ap);
3026 }
3027 \f
3028 /* Output of assembler code from a template, and its subroutines. */
3029
3030 /* Annotate the assembly with a comment describing the pattern and
3031 alternative used. */
3032
3033 static void
3034 output_asm_name (void)
3035 {
3036 if (debug_insn)
3037 {
3038 int num = INSN_CODE (debug_insn);
3039 fprintf (asm_out_file, "\t%s %d\t%s",
3040 ASM_COMMENT_START, INSN_UID (debug_insn),
3041 insn_data[num].name);
3042 if (insn_data[num].n_alternatives > 1)
3043 fprintf (asm_out_file, "/%d", which_alternative + 1);
3044 #ifdef HAVE_ATTR_length
3045 fprintf (asm_out_file, "\t[length = %d]",
3046 get_attr_length (debug_insn));
3047 #endif
3048 /* Clear this so only the first assembler insn
3049 of any rtl insn will get the special comment for -dp. */
3050 debug_insn = 0;
3051 }
3052 }
3053
3054 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3055 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3056 corresponds to the address of the object and 0 if to the object. */
3057
3058 static tree
3059 get_mem_expr_from_op (rtx op, int *paddressp)
3060 {
3061 tree expr;
3062 int inner_addressp;
3063
3064 *paddressp = 0;
3065
3066 if (REG_P (op))
3067 return REG_EXPR (op);
3068 else if (!MEM_P (op))
3069 return 0;
3070
3071 if (MEM_EXPR (op) != 0)
3072 return MEM_EXPR (op);
3073
3074 /* Otherwise we have an address, so indicate it and look at the address. */
3075 *paddressp = 1;
3076 op = XEXP (op, 0);
3077
3078 /* First check if we have a decl for the address, then look at the right side
3079 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3080 But don't allow the address to itself be indirect. */
3081 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3082 return expr;
3083 else if (GET_CODE (op) == PLUS
3084 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3085 return expr;
3086
3087 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3088 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3089 op = XEXP (op, 0);
3090
3091 expr = get_mem_expr_from_op (op, &inner_addressp);
3092 return inner_addressp ? 0 : expr;
3093 }
3094
3095 /* Output operand names for assembler instructions. OPERANDS is the
3096 operand vector, OPORDER is the order to write the operands, and NOPS
3097 is the number of operands to write. */
3098
3099 static void
3100 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3101 {
3102 int wrote = 0;
3103 int i;
3104
3105 for (i = 0; i < nops; i++)
3106 {
3107 int addressp;
3108 rtx op = operands[oporder[i]];
3109 tree expr = get_mem_expr_from_op (op, &addressp);
3110
3111 fprintf (asm_out_file, "%c%s",
3112 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3113 wrote = 1;
3114 if (expr)
3115 {
3116 fprintf (asm_out_file, "%s",
3117 addressp ? "*" : "");
3118 print_mem_expr (asm_out_file, expr);
3119 wrote = 1;
3120 }
3121 else if (REG_P (op) && ORIGINAL_REGNO (op)
3122 && ORIGINAL_REGNO (op) != REGNO (op))
3123 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3124 }
3125 }
3126
3127 /* Output text from TEMPLATE to the assembler output file,
3128 obeying %-directions to substitute operands taken from
3129 the vector OPERANDS.
3130
3131 %N (for N a digit) means print operand N in usual manner.
3132 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3133 and print the label name with no punctuation.
3134 %cN means require operand N to be a constant
3135 and print the constant expression with no punctuation.
3136 %aN means expect operand N to be a memory address
3137 (not a memory reference!) and print a reference
3138 to that address.
3139 %nN means expect operand N to be a constant
3140 and print a constant expression for minus the value
3141 of the operand, with no other punctuation. */
3142
3143 void
3144 output_asm_insn (const char *templ, rtx *operands)
3145 {
3146 const char *p;
3147 int c;
3148 #ifdef ASSEMBLER_DIALECT
3149 int dialect = 0;
3150 #endif
3151 int oporder[MAX_RECOG_OPERANDS];
3152 char opoutput[MAX_RECOG_OPERANDS];
3153 int ops = 0;
3154
3155 /* An insn may return a null string template
3156 in a case where no assembler code is needed. */
3157 if (*templ == 0)
3158 return;
3159
3160 memset (opoutput, 0, sizeof opoutput);
3161 p = templ;
3162 putc ('\t', asm_out_file);
3163
3164 #ifdef ASM_OUTPUT_OPCODE
3165 ASM_OUTPUT_OPCODE (asm_out_file, p);
3166 #endif
3167
3168 while ((c = *p++))
3169 switch (c)
3170 {
3171 case '\n':
3172 if (flag_verbose_asm)
3173 output_asm_operand_names (operands, oporder, ops);
3174 if (flag_print_asm_name)
3175 output_asm_name ();
3176
3177 ops = 0;
3178 memset (opoutput, 0, sizeof opoutput);
3179
3180 putc (c, asm_out_file);
3181 #ifdef ASM_OUTPUT_OPCODE
3182 while ((c = *p) == '\t')
3183 {
3184 putc (c, asm_out_file);
3185 p++;
3186 }
3187 ASM_OUTPUT_OPCODE (asm_out_file, p);
3188 #endif
3189 break;
3190
3191 #ifdef ASSEMBLER_DIALECT
3192 case '{':
3193 {
3194 int i;
3195
3196 if (dialect)
3197 output_operand_lossage ("nested assembly dialect alternatives");
3198 else
3199 dialect = 1;
3200
3201 /* If we want the first dialect, do nothing. Otherwise, skip
3202 DIALECT_NUMBER of strings ending with '|'. */
3203 for (i = 0; i < dialect_number; i++)
3204 {
3205 while (*p && *p != '}' && *p++ != '|')
3206 ;
3207 if (*p == '}')
3208 break;
3209 if (*p == '|')
3210 p++;
3211 }
3212
3213 if (*p == '\0')
3214 output_operand_lossage ("unterminated assembly dialect alternative");
3215 }
3216 break;
3217
3218 case '|':
3219 if (dialect)
3220 {
3221 /* Skip to close brace. */
3222 do
3223 {
3224 if (*p == '\0')
3225 {
3226 output_operand_lossage ("unterminated assembly dialect alternative");
3227 break;
3228 }
3229 }
3230 while (*p++ != '}');
3231 dialect = 0;
3232 }
3233 else
3234 putc (c, asm_out_file);
3235 break;
3236
3237 case '}':
3238 if (! dialect)
3239 putc (c, asm_out_file);
3240 dialect = 0;
3241 break;
3242 #endif
3243
3244 case '%':
3245 /* %% outputs a single %. */
3246 if (*p == '%')
3247 {
3248 p++;
3249 putc (c, asm_out_file);
3250 }
3251 /* %= outputs a number which is unique to each insn in the entire
3252 compilation. This is useful for making local labels that are
3253 referred to more than once in a given insn. */
3254 else if (*p == '=')
3255 {
3256 p++;
3257 fprintf (asm_out_file, "%d", insn_counter);
3258 }
3259 /* % followed by a letter and some digits
3260 outputs an operand in a special way depending on the letter.
3261 Letters `acln' are implemented directly.
3262 Other letters are passed to `output_operand' so that
3263 the PRINT_OPERAND macro can define them. */
3264 else if (ISALPHA (*p))
3265 {
3266 int letter = *p++;
3267 unsigned long opnum;
3268 char *endptr;
3269
3270 opnum = strtoul (p, &endptr, 10);
3271
3272 if (endptr == p)
3273 output_operand_lossage ("operand number missing "
3274 "after %%-letter");
3275 else if (this_is_asm_operands && opnum >= insn_noperands)
3276 output_operand_lossage ("operand number out of range");
3277 else if (letter == 'l')
3278 output_asm_label (operands[opnum]);
3279 else if (letter == 'a')
3280 output_address (operands[opnum]);
3281 else if (letter == 'c')
3282 {
3283 if (CONSTANT_ADDRESS_P (operands[opnum]))
3284 output_addr_const (asm_out_file, operands[opnum]);
3285 else
3286 output_operand (operands[opnum], 'c');
3287 }
3288 else if (letter == 'n')
3289 {
3290 if (GET_CODE (operands[opnum]) == CONST_INT)
3291 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3292 - INTVAL (operands[opnum]));
3293 else
3294 {
3295 putc ('-', asm_out_file);
3296 output_addr_const (asm_out_file, operands[opnum]);
3297 }
3298 }
3299 else
3300 output_operand (operands[opnum], letter);
3301
3302 if (!opoutput[opnum])
3303 oporder[ops++] = opnum;
3304 opoutput[opnum] = 1;
3305
3306 p = endptr;
3307 c = *p;
3308 }
3309 /* % followed by a digit outputs an operand the default way. */
3310 else if (ISDIGIT (*p))
3311 {
3312 unsigned long opnum;
3313 char *endptr;
3314
3315 opnum = strtoul (p, &endptr, 10);
3316 if (this_is_asm_operands && opnum >= insn_noperands)
3317 output_operand_lossage ("operand number out of range");
3318 else
3319 output_operand (operands[opnum], 0);
3320
3321 if (!opoutput[opnum])
3322 oporder[ops++] = opnum;
3323 opoutput[opnum] = 1;
3324
3325 p = endptr;
3326 c = *p;
3327 }
3328 /* % followed by punctuation: output something for that
3329 punctuation character alone, with no operand.
3330 The PRINT_OPERAND macro decides what is actually done. */
3331 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3332 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3333 output_operand (NULL_RTX, *p++);
3334 #endif
3335 else
3336 output_operand_lossage ("invalid %%-code");
3337 break;
3338
3339 default:
3340 putc (c, asm_out_file);
3341 }
3342
3343 /* Write out the variable names for operands, if we know them. */
3344 if (flag_verbose_asm)
3345 output_asm_operand_names (operands, oporder, ops);
3346 if (flag_print_asm_name)
3347 output_asm_name ();
3348
3349 putc ('\n', asm_out_file);
3350 }
3351 \f
3352 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3353
3354 void
3355 output_asm_label (rtx x)
3356 {
3357 char buf[256];
3358
3359 if (GET_CODE (x) == LABEL_REF)
3360 x = XEXP (x, 0);
3361 if (LABEL_P (x)
3362 || (NOTE_P (x)
3363 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3364 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3365 else
3366 output_operand_lossage ("'%%l' operand isn't a label");
3367
3368 assemble_name (asm_out_file, buf);
3369 }
3370
3371 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3372 output_operand. Marks SYMBOL_REFs as referenced through use of
3373 assemble_external. */
3374
3375 static int
3376 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3377 {
3378 rtx x = *xp;
3379
3380 /* If we have a used symbol, we may have to emit assembly
3381 annotations corresponding to whether the symbol is external, weak
3382 or has non-default visibility. */
3383 if (GET_CODE (x) == SYMBOL_REF)
3384 {
3385 tree t;
3386
3387 t = SYMBOL_REF_DECL (x);
3388 if (t)
3389 assemble_external (t);
3390
3391 return -1;
3392 }
3393
3394 return 0;
3395 }
3396
3397 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3398
3399 void
3400 mark_symbol_refs_as_used (rtx x)
3401 {
3402 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3403 }
3404
3405 /* Print operand X using machine-dependent assembler syntax.
3406 The macro PRINT_OPERAND is defined just to control this function.
3407 CODE is a non-digit that preceded the operand-number in the % spec,
3408 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3409 between the % and the digits.
3410 When CODE is a non-letter, X is 0.
3411
3412 The meanings of the letters are machine-dependent and controlled
3413 by PRINT_OPERAND. */
3414
3415 static void
3416 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3417 {
3418 if (x && GET_CODE (x) == SUBREG)
3419 x = alter_subreg (&x);
3420
3421 /* X must not be a pseudo reg. */
3422 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3423
3424 PRINT_OPERAND (asm_out_file, x, code);
3425
3426 if (x == NULL_RTX)
3427 return;
3428
3429 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3430 }
3431
3432 /* Print a memory reference operand for address X
3433 using machine-dependent assembler syntax.
3434 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3435
3436 void
3437 output_address (rtx x)
3438 {
3439 bool changed = false;
3440 walk_alter_subreg (&x, &changed);
3441 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3442 }
3443 \f
3444 /* Print an integer constant expression in assembler syntax.
3445 Addition and subtraction are the only arithmetic
3446 that may appear in these expressions. */
3447
3448 void
3449 output_addr_const (FILE *file, rtx x)
3450 {
3451 char buf[256];
3452
3453 restart:
3454 switch (GET_CODE (x))
3455 {
3456 case PC:
3457 putc ('.', file);
3458 break;
3459
3460 case SYMBOL_REF:
3461 if (SYMBOL_REF_DECL (x))
3462 {
3463 mark_decl_referenced (SYMBOL_REF_DECL (x));
3464 assemble_external (SYMBOL_REF_DECL (x));
3465 }
3466 #ifdef ASM_OUTPUT_SYMBOL_REF
3467 ASM_OUTPUT_SYMBOL_REF (file, x);
3468 #else
3469 assemble_name (file, XSTR (x, 0));
3470 #endif
3471 break;
3472
3473 case LABEL_REF:
3474 x = XEXP (x, 0);
3475 /* Fall through. */
3476 case CODE_LABEL:
3477 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3478 #ifdef ASM_OUTPUT_LABEL_REF
3479 ASM_OUTPUT_LABEL_REF (file, buf);
3480 #else
3481 assemble_name (file, buf);
3482 #endif
3483 break;
3484
3485 case CONST_INT:
3486 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3487 break;
3488
3489 case CONST:
3490 /* This used to output parentheses around the expression,
3491 but that does not work on the 386 (either ATT or BSD assembler). */
3492 output_addr_const (file, XEXP (x, 0));
3493 break;
3494
3495 case CONST_DOUBLE:
3496 if (GET_MODE (x) == VOIDmode)
3497 {
3498 /* We can use %d if the number is one word and positive. */
3499 if (CONST_DOUBLE_HIGH (x))
3500 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3501 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3502 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3503 else if (CONST_DOUBLE_LOW (x) < 0)
3504 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3505 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3506 else
3507 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3508 }
3509 else
3510 /* We can't handle floating point constants;
3511 PRINT_OPERAND must handle them. */
3512 output_operand_lossage ("floating constant misused");
3513 break;
3514
3515 case CONST_FIXED:
3516 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3517 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3518 break;
3519
3520 case PLUS:
3521 /* Some assemblers need integer constants to appear last (eg masm). */
3522 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3523 {
3524 output_addr_const (file, XEXP (x, 1));
3525 if (INTVAL (XEXP (x, 0)) >= 0)
3526 fprintf (file, "+");
3527 output_addr_const (file, XEXP (x, 0));
3528 }
3529 else
3530 {
3531 output_addr_const (file, XEXP (x, 0));
3532 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3533 || INTVAL (XEXP (x, 1)) >= 0)
3534 fprintf (file, "+");
3535 output_addr_const (file, XEXP (x, 1));
3536 }
3537 break;
3538
3539 case MINUS:
3540 /* Avoid outputting things like x-x or x+5-x,
3541 since some assemblers can't handle that. */
3542 x = simplify_subtraction (x);
3543 if (GET_CODE (x) != MINUS)
3544 goto restart;
3545
3546 output_addr_const (file, XEXP (x, 0));
3547 fprintf (file, "-");
3548 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3549 || GET_CODE (XEXP (x, 1)) == PC
3550 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3551 output_addr_const (file, XEXP (x, 1));
3552 else
3553 {
3554 fputs (targetm.asm_out.open_paren, file);
3555 output_addr_const (file, XEXP (x, 1));
3556 fputs (targetm.asm_out.close_paren, file);
3557 }
3558 break;
3559
3560 case ZERO_EXTEND:
3561 case SIGN_EXTEND:
3562 case SUBREG:
3563 case TRUNCATE:
3564 output_addr_const (file, XEXP (x, 0));
3565 break;
3566
3567 default:
3568 #ifdef OUTPUT_ADDR_CONST_EXTRA
3569 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3570 break;
3571
3572 fail:
3573 #endif
3574 output_operand_lossage ("invalid expression as operand");
3575 }
3576 }
3577 \f
3578 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3579 %R prints the value of REGISTER_PREFIX.
3580 %L prints the value of LOCAL_LABEL_PREFIX.
3581 %U prints the value of USER_LABEL_PREFIX.
3582 %I prints the value of IMMEDIATE_PREFIX.
3583 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3584 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3585
3586 We handle alternate assembler dialects here, just like output_asm_insn. */
3587
3588 void
3589 asm_fprintf (FILE *file, const char *p, ...)
3590 {
3591 char buf[10];
3592 char *q, c;
3593 va_list argptr;
3594
3595 va_start (argptr, p);
3596
3597 buf[0] = '%';
3598
3599 while ((c = *p++))
3600 switch (c)
3601 {
3602 #ifdef ASSEMBLER_DIALECT
3603 case '{':
3604 {
3605 int i;
3606
3607 /* If we want the first dialect, do nothing. Otherwise, skip
3608 DIALECT_NUMBER of strings ending with '|'. */
3609 for (i = 0; i < dialect_number; i++)
3610 {
3611 while (*p && *p++ != '|')
3612 ;
3613
3614 if (*p == '|')
3615 p++;
3616 }
3617 }
3618 break;
3619
3620 case '|':
3621 /* Skip to close brace. */
3622 while (*p && *p++ != '}')
3623 ;
3624 break;
3625
3626 case '}':
3627 break;
3628 #endif
3629
3630 case '%':
3631 c = *p++;
3632 q = &buf[1];
3633 while (strchr ("-+ #0", c))
3634 {
3635 *q++ = c;
3636 c = *p++;
3637 }
3638 while (ISDIGIT (c) || c == '.')
3639 {
3640 *q++ = c;
3641 c = *p++;
3642 }
3643 switch (c)
3644 {
3645 case '%':
3646 putc ('%', file);
3647 break;
3648
3649 case 'd': case 'i': case 'u':
3650 case 'x': case 'X': case 'o':
3651 case 'c':
3652 *q++ = c;
3653 *q = 0;
3654 fprintf (file, buf, va_arg (argptr, int));
3655 break;
3656
3657 case 'w':
3658 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3659 'o' cases, but we do not check for those cases. It
3660 means that the value is a HOST_WIDE_INT, which may be
3661 either `long' or `long long'. */
3662 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3663 q += strlen (HOST_WIDE_INT_PRINT);
3664 *q++ = *p++;
3665 *q = 0;
3666 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3667 break;
3668
3669 case 'l':
3670 *q++ = c;
3671 #ifdef HAVE_LONG_LONG
3672 if (*p == 'l')
3673 {
3674 *q++ = *p++;
3675 *q++ = *p++;
3676 *q = 0;
3677 fprintf (file, buf, va_arg (argptr, long long));
3678 }
3679 else
3680 #endif
3681 {
3682 *q++ = *p++;
3683 *q = 0;
3684 fprintf (file, buf, va_arg (argptr, long));
3685 }
3686
3687 break;
3688
3689 case 's':
3690 *q++ = c;
3691 *q = 0;
3692 fprintf (file, buf, va_arg (argptr, char *));
3693 break;
3694
3695 case 'O':
3696 #ifdef ASM_OUTPUT_OPCODE
3697 ASM_OUTPUT_OPCODE (asm_out_file, p);
3698 #endif
3699 break;
3700
3701 case 'R':
3702 #ifdef REGISTER_PREFIX
3703 fprintf (file, "%s", REGISTER_PREFIX);
3704 #endif
3705 break;
3706
3707 case 'I':
3708 #ifdef IMMEDIATE_PREFIX
3709 fprintf (file, "%s", IMMEDIATE_PREFIX);
3710 #endif
3711 break;
3712
3713 case 'L':
3714 #ifdef LOCAL_LABEL_PREFIX
3715 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3716 #endif
3717 break;
3718
3719 case 'U':
3720 fputs (user_label_prefix, file);
3721 break;
3722
3723 #ifdef ASM_FPRINTF_EXTENSIONS
3724 /* Uppercase letters are reserved for general use by asm_fprintf
3725 and so are not available to target specific code. In order to
3726 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3727 they are defined here. As they get turned into real extensions
3728 to asm_fprintf they should be removed from this list. */
3729 case 'A': case 'B': case 'C': case 'D': case 'E':
3730 case 'F': case 'G': case 'H': case 'J': case 'K':
3731 case 'M': case 'N': case 'P': case 'Q': case 'S':
3732 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3733 break;
3734
3735 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3736 #endif
3737 default:
3738 gcc_unreachable ();
3739 }
3740 break;
3741
3742 default:
3743 putc (c, file);
3744 }
3745 va_end (argptr);
3746 }
3747 \f
3748 /* Split up a CONST_DOUBLE or integer constant rtx
3749 into two rtx's for single words,
3750 storing in *FIRST the word that comes first in memory in the target
3751 and in *SECOND the other. */
3752
3753 void
3754 split_double (rtx value, rtx *first, rtx *second)
3755 {
3756 if (GET_CODE (value) == CONST_INT)
3757 {
3758 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3759 {
3760 /* In this case the CONST_INT holds both target words.
3761 Extract the bits from it into two word-sized pieces.
3762 Sign extend each half to HOST_WIDE_INT. */
3763 unsigned HOST_WIDE_INT low, high;
3764 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3765
3766 /* Set sign_bit to the most significant bit of a word. */
3767 sign_bit = 1;
3768 sign_bit <<= BITS_PER_WORD - 1;
3769
3770 /* Set mask so that all bits of the word are set. We could
3771 have used 1 << BITS_PER_WORD instead of basing the
3772 calculation on sign_bit. However, on machines where
3773 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3774 compiler warning, even though the code would never be
3775 executed. */
3776 mask = sign_bit << 1;
3777 mask--;
3778
3779 /* Set sign_extend as any remaining bits. */
3780 sign_extend = ~mask;
3781
3782 /* Pick the lower word and sign-extend it. */
3783 low = INTVAL (value);
3784 low &= mask;
3785 if (low & sign_bit)
3786 low |= sign_extend;
3787
3788 /* Pick the higher word, shifted to the least significant
3789 bits, and sign-extend it. */
3790 high = INTVAL (value);
3791 high >>= BITS_PER_WORD - 1;
3792 high >>= 1;
3793 high &= mask;
3794 if (high & sign_bit)
3795 high |= sign_extend;
3796
3797 /* Store the words in the target machine order. */
3798 if (WORDS_BIG_ENDIAN)
3799 {
3800 *first = GEN_INT (high);
3801 *second = GEN_INT (low);
3802 }
3803 else
3804 {
3805 *first = GEN_INT (low);
3806 *second = GEN_INT (high);
3807 }
3808 }
3809 else
3810 {
3811 /* The rule for using CONST_INT for a wider mode
3812 is that we regard the value as signed.
3813 So sign-extend it. */
3814 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3815 if (WORDS_BIG_ENDIAN)
3816 {
3817 *first = high;
3818 *second = value;
3819 }
3820 else
3821 {
3822 *first = value;
3823 *second = high;
3824 }
3825 }
3826 }
3827 else if (GET_CODE (value) != CONST_DOUBLE)
3828 {
3829 if (WORDS_BIG_ENDIAN)
3830 {
3831 *first = const0_rtx;
3832 *second = value;
3833 }
3834 else
3835 {
3836 *first = value;
3837 *second = const0_rtx;
3838 }
3839 }
3840 else if (GET_MODE (value) == VOIDmode
3841 /* This is the old way we did CONST_DOUBLE integers. */
3842 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3843 {
3844 /* In an integer, the words are defined as most and least significant.
3845 So order them by the target's convention. */
3846 if (WORDS_BIG_ENDIAN)
3847 {
3848 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3849 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3850 }
3851 else
3852 {
3853 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3854 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3855 }
3856 }
3857 else
3858 {
3859 REAL_VALUE_TYPE r;
3860 long l[2];
3861 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3862
3863 /* Note, this converts the REAL_VALUE_TYPE to the target's
3864 format, splits up the floating point double and outputs
3865 exactly 32 bits of it into each of l[0] and l[1] --
3866 not necessarily BITS_PER_WORD bits. */
3867 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3868
3869 /* If 32 bits is an entire word for the target, but not for the host,
3870 then sign-extend on the host so that the number will look the same
3871 way on the host that it would on the target. See for instance
3872 simplify_unary_operation. The #if is needed to avoid compiler
3873 warnings. */
3874
3875 #if HOST_BITS_PER_LONG > 32
3876 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3877 {
3878 if (l[0] & ((long) 1 << 31))
3879 l[0] |= ((long) (-1) << 32);
3880 if (l[1] & ((long) 1 << 31))
3881 l[1] |= ((long) (-1) << 32);
3882 }
3883 #endif
3884
3885 *first = GEN_INT (l[0]);
3886 *second = GEN_INT (l[1]);
3887 }
3888 }
3889 \f
3890 /* Return nonzero if this function has no function calls. */
3891
3892 int
3893 leaf_function_p (void)
3894 {
3895 rtx insn;
3896 rtx link;
3897
3898 if (crtl->profile || profile_arc_flag)
3899 return 0;
3900
3901 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3902 {
3903 if (CALL_P (insn)
3904 && ! SIBLING_CALL_P (insn))
3905 return 0;
3906 if (NONJUMP_INSN_P (insn)
3907 && GET_CODE (PATTERN (insn)) == SEQUENCE
3908 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3909 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3910 return 0;
3911 }
3912 for (link = crtl->epilogue_delay_list;
3913 link;
3914 link = XEXP (link, 1))
3915 {
3916 insn = XEXP (link, 0);
3917
3918 if (CALL_P (insn)
3919 && ! SIBLING_CALL_P (insn))
3920 return 0;
3921 if (NONJUMP_INSN_P (insn)
3922 && GET_CODE (PATTERN (insn)) == SEQUENCE
3923 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3924 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3925 return 0;
3926 }
3927
3928 return 1;
3929 }
3930
3931 /* Return 1 if branch is a forward branch.
3932 Uses insn_shuid array, so it works only in the final pass. May be used by
3933 output templates to customary add branch prediction hints.
3934 */
3935 int
3936 final_forward_branch_p (rtx insn)
3937 {
3938 int insn_id, label_id;
3939
3940 gcc_assert (uid_shuid);
3941 insn_id = INSN_SHUID (insn);
3942 label_id = INSN_SHUID (JUMP_LABEL (insn));
3943 /* We've hit some insns that does not have id information available. */
3944 gcc_assert (insn_id && label_id);
3945 return insn_id < label_id;
3946 }
3947
3948 /* On some machines, a function with no call insns
3949 can run faster if it doesn't create its own register window.
3950 When output, the leaf function should use only the "output"
3951 registers. Ordinarily, the function would be compiled to use
3952 the "input" registers to find its arguments; it is a candidate
3953 for leaf treatment if it uses only the "input" registers.
3954 Leaf function treatment means renumbering so the function
3955 uses the "output" registers instead. */
3956
3957 #ifdef LEAF_REGISTERS
3958
3959 /* Return 1 if this function uses only the registers that can be
3960 safely renumbered. */
3961
3962 int
3963 only_leaf_regs_used (void)
3964 {
3965 int i;
3966 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3967
3968 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3969 if ((df_regs_ever_live_p (i) || global_regs[i])
3970 && ! permitted_reg_in_leaf_functions[i])
3971 return 0;
3972
3973 if (crtl->uses_pic_offset_table
3974 && pic_offset_table_rtx != 0
3975 && REG_P (pic_offset_table_rtx)
3976 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3977 return 0;
3978
3979 return 1;
3980 }
3981
3982 /* Scan all instructions and renumber all registers into those
3983 available in leaf functions. */
3984
3985 static void
3986 leaf_renumber_regs (rtx first)
3987 {
3988 rtx insn;
3989
3990 /* Renumber only the actual patterns.
3991 The reg-notes can contain frame pointer refs,
3992 and renumbering them could crash, and should not be needed. */
3993 for (insn = first; insn; insn = NEXT_INSN (insn))
3994 if (INSN_P (insn))
3995 leaf_renumber_regs_insn (PATTERN (insn));
3996 for (insn = crtl->epilogue_delay_list;
3997 insn;
3998 insn = XEXP (insn, 1))
3999 if (INSN_P (XEXP (insn, 0)))
4000 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4001 }
4002
4003 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4004 available in leaf functions. */
4005
4006 void
4007 leaf_renumber_regs_insn (rtx in_rtx)
4008 {
4009 int i, j;
4010 const char *format_ptr;
4011
4012 if (in_rtx == 0)
4013 return;
4014
4015 /* Renumber all input-registers into output-registers.
4016 renumbered_regs would be 1 for an output-register;
4017 they */
4018
4019 if (REG_P (in_rtx))
4020 {
4021 int newreg;
4022
4023 /* Don't renumber the same reg twice. */
4024 if (in_rtx->used)
4025 return;
4026
4027 newreg = REGNO (in_rtx);
4028 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4029 to reach here as part of a REG_NOTE. */
4030 if (newreg >= FIRST_PSEUDO_REGISTER)
4031 {
4032 in_rtx->used = 1;
4033 return;
4034 }
4035 newreg = LEAF_REG_REMAP (newreg);
4036 gcc_assert (newreg >= 0);
4037 df_set_regs_ever_live (REGNO (in_rtx), false);
4038 df_set_regs_ever_live (newreg, true);
4039 SET_REGNO (in_rtx, newreg);
4040 in_rtx->used = 1;
4041 }
4042
4043 if (INSN_P (in_rtx))
4044 {
4045 /* Inside a SEQUENCE, we find insns.
4046 Renumber just the patterns of these insns,
4047 just as we do for the top-level insns. */
4048 leaf_renumber_regs_insn (PATTERN (in_rtx));
4049 return;
4050 }
4051
4052 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4053
4054 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4055 switch (*format_ptr++)
4056 {
4057 case 'e':
4058 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4059 break;
4060
4061 case 'E':
4062 if (NULL != XVEC (in_rtx, i))
4063 {
4064 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4065 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4066 }
4067 break;
4068
4069 case 'S':
4070 case 's':
4071 case '0':
4072 case 'i':
4073 case 'w':
4074 case 'n':
4075 case 'u':
4076 break;
4077
4078 default:
4079 gcc_unreachable ();
4080 }
4081 }
4082 #endif
4083
4084
4085 /* When -gused is used, emit debug info for only used symbols. But in
4086 addition to the standard intercepted debug_hooks there are some direct
4087 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4088 Those routines may also be called from a higher level intercepted routine. So
4089 to prevent recording data for an inner call to one of these for an intercept,
4090 we maintain an intercept nesting counter (debug_nesting). We only save the
4091 intercepted arguments if the nesting is 1. */
4092 int debug_nesting = 0;
4093
4094 static tree *symbol_queue;
4095 int symbol_queue_index = 0;
4096 static int symbol_queue_size = 0;
4097
4098 /* Generate the symbols for any queued up type symbols we encountered
4099 while generating the type info for some originally used symbol.
4100 This might generate additional entries in the queue. Only when
4101 the nesting depth goes to 0 is this routine called. */
4102
4103 void
4104 debug_flush_symbol_queue (void)
4105 {
4106 int i;
4107
4108 /* Make sure that additionally queued items are not flushed
4109 prematurely. */
4110
4111 ++debug_nesting;
4112
4113 for (i = 0; i < symbol_queue_index; ++i)
4114 {
4115 /* If we pushed queued symbols then such symbols must be
4116 output no matter what anyone else says. Specifically,
4117 we need to make sure dbxout_symbol() thinks the symbol was
4118 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4119 which may be set for outside reasons. */
4120 int saved_tree_used = TREE_USED (symbol_queue[i]);
4121 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4122 TREE_USED (symbol_queue[i]) = 1;
4123 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4124
4125 #ifdef DBX_DEBUGGING_INFO
4126 dbxout_symbol (symbol_queue[i], 0);
4127 #endif
4128
4129 TREE_USED (symbol_queue[i]) = saved_tree_used;
4130 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4131 }
4132
4133 symbol_queue_index = 0;
4134 --debug_nesting;
4135 }
4136
4137 /* Queue a type symbol needed as part of the definition of a decl
4138 symbol. These symbols are generated when debug_flush_symbol_queue()
4139 is called. */
4140
4141 void
4142 debug_queue_symbol (tree decl)
4143 {
4144 if (symbol_queue_index >= symbol_queue_size)
4145 {
4146 symbol_queue_size += 10;
4147 symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4148 }
4149
4150 symbol_queue[symbol_queue_index++] = decl;
4151 }
4152
4153 /* Free symbol queue. */
4154 void
4155 debug_free_queue (void)
4156 {
4157 if (symbol_queue)
4158 {
4159 free (symbol_queue);
4160 symbol_queue = NULL;
4161 symbol_queue_size = 0;
4162 }
4163 }
4164 \f
4165 /* Turn the RTL into assembly. */
4166 static unsigned int
4167 rest_of_handle_final (void)
4168 {
4169 rtx x;
4170 const char *fnname;
4171
4172 /* Get the function's name, as described by its RTL. This may be
4173 different from the DECL_NAME name used in the source file. */
4174
4175 x = DECL_RTL (current_function_decl);
4176 gcc_assert (MEM_P (x));
4177 x = XEXP (x, 0);
4178 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4179 fnname = XSTR (x, 0);
4180
4181 assemble_start_function (current_function_decl, fnname);
4182 final_start_function (get_insns (), asm_out_file, optimize);
4183 final (get_insns (), asm_out_file, optimize);
4184 final_end_function ();
4185
4186 #ifdef TARGET_UNWIND_INFO
4187 /* ??? The IA-64 ".handlerdata" directive must be issued before
4188 the ".endp" directive that closes the procedure descriptor. */
4189 output_function_exception_table (fnname);
4190 #endif
4191
4192 assemble_end_function (current_function_decl, fnname);
4193
4194 #ifndef TARGET_UNWIND_INFO
4195 /* Otherwise, it feels unclean to switch sections in the middle. */
4196 output_function_exception_table (fnname);
4197 #endif
4198
4199 user_defined_section_attribute = false;
4200
4201 /* Free up reg info memory. */
4202 free_reg_info ();
4203
4204 if (! quiet_flag)
4205 fflush (asm_out_file);
4206
4207 /* Write DBX symbols if requested. */
4208
4209 /* Note that for those inline functions where we don't initially
4210 know for certain that we will be generating an out-of-line copy,
4211 the first invocation of this routine (rest_of_compilation) will
4212 skip over this code by doing a `goto exit_rest_of_compilation;'.
4213 Later on, wrapup_global_declarations will (indirectly) call
4214 rest_of_compilation again for those inline functions that need
4215 to have out-of-line copies generated. During that call, we
4216 *will* be routed past here. */
4217
4218 timevar_push (TV_SYMOUT);
4219 (*debug_hooks->function_decl) (current_function_decl);
4220 timevar_pop (TV_SYMOUT);
4221
4222 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4223 DECL_INITIAL (current_function_decl) = error_mark_node;
4224
4225 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4226 && targetm.have_ctors_dtors)
4227 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4228 decl_init_priority_lookup
4229 (current_function_decl));
4230 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4231 && targetm.have_ctors_dtors)
4232 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4233 decl_fini_priority_lookup
4234 (current_function_decl));
4235 return 0;
4236 }
4237
4238 struct rtl_opt_pass pass_final =
4239 {
4240 {
4241 RTL_PASS,
4242 NULL, /* name */
4243 NULL, /* gate */
4244 rest_of_handle_final, /* execute */
4245 NULL, /* sub */
4246 NULL, /* next */
4247 0, /* static_pass_number */
4248 TV_FINAL, /* tv_id */
4249 0, /* properties_required */
4250 0, /* properties_provided */
4251 0, /* properties_destroyed */
4252 0, /* todo_flags_start */
4253 TODO_ggc_collect /* todo_flags_finish */
4254 }
4255 };
4256
4257
4258 static unsigned int
4259 rest_of_handle_shorten_branches (void)
4260 {
4261 /* Shorten branches. */
4262 shorten_branches (get_insns ());
4263 return 0;
4264 }
4265
4266 struct rtl_opt_pass pass_shorten_branches =
4267 {
4268 {
4269 RTL_PASS,
4270 "shorten", /* name */
4271 NULL, /* gate */
4272 rest_of_handle_shorten_branches, /* execute */
4273 NULL, /* sub */
4274 NULL, /* next */
4275 0, /* static_pass_number */
4276 TV_FINAL, /* tv_id */
4277 0, /* properties_required */
4278 0, /* properties_provided */
4279 0, /* properties_destroyed */
4280 0, /* todo_flags_start */
4281 TODO_dump_func /* todo_flags_finish */
4282 }
4283 };
4284
4285
4286 static unsigned int
4287 rest_of_clean_state (void)
4288 {
4289 rtx insn, next;
4290
4291 /* It is very important to decompose the RTL instruction chain here:
4292 debug information keeps pointing into CODE_LABEL insns inside the function
4293 body. If these remain pointing to the other insns, we end up preserving
4294 whole RTL chain and attached detailed debug info in memory. */
4295 for (insn = get_insns (); insn; insn = next)
4296 {
4297 next = NEXT_INSN (insn);
4298 NEXT_INSN (insn) = NULL;
4299 PREV_INSN (insn) = NULL;
4300 }
4301
4302 /* In case the function was not output,
4303 don't leave any temporary anonymous types
4304 queued up for sdb output. */
4305 #ifdef SDB_DEBUGGING_INFO
4306 if (write_symbols == SDB_DEBUG)
4307 sdbout_types (NULL_TREE);
4308 #endif
4309
4310 flag_rerun_cse_after_global_opts = 0;
4311 reload_completed = 0;
4312 epilogue_completed = 0;
4313 #ifdef STACK_REGS
4314 regstack_completed = 0;
4315 #endif
4316
4317 /* Clear out the insn_length contents now that they are no
4318 longer valid. */
4319 init_insn_lengths ();
4320
4321 /* Show no temporary slots allocated. */
4322 init_temp_slots ();
4323
4324 free_bb_for_insn ();
4325
4326 if (targetm.binds_local_p (current_function_decl))
4327 {
4328 unsigned int pref = crtl->preferred_stack_boundary;
4329 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4330 pref = crtl->stack_alignment_needed;
4331 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4332 = pref;
4333 }
4334
4335 /* Make sure volatile mem refs aren't considered valid operands for
4336 arithmetic insns. We must call this here if this is a nested inline
4337 function, since the above code leaves us in the init_recog state,
4338 and the function context push/pop code does not save/restore volatile_ok.
4339
4340 ??? Maybe it isn't necessary for expand_start_function to call this
4341 anymore if we do it here? */
4342
4343 init_recog_no_volatile ();
4344
4345 /* We're done with this function. Free up memory if we can. */
4346 free_after_parsing (cfun);
4347 free_after_compilation (cfun);
4348 return 0;
4349 }
4350
4351 struct rtl_opt_pass pass_clean_state =
4352 {
4353 {
4354 RTL_PASS,
4355 NULL, /* name */
4356 NULL, /* gate */
4357 rest_of_clean_state, /* execute */
4358 NULL, /* sub */
4359 NULL, /* next */
4360 0, /* static_pass_number */
4361 TV_FINAL, /* tv_id */
4362 0, /* properties_required */
4363 0, /* properties_provided */
4364 PROP_rtl, /* properties_destroyed */
4365 0, /* todo_flags_start */
4366 0 /* todo_flags_finish */
4367 }
4368 };