404fcc3627b29a32e8d3ded01a5f83f852747e3d
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly as assembler code by the macros FUNCTION_PROLOGUE and
45 FUNCTION_EPILOGUE. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-flags.h"
56 #include "insn-attr.h"
57 #include "insn-codes.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "defaults.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71
72 /* Get N_SLINE and N_SOL from stab.h if we can expect the file to exist. */
73 #if defined (DBX_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
74 #include "dbxout.h"
75 #if defined (USG) || !defined (HAVE_STAB_H)
76 #include "gstab.h" /* If doing DBX on sysV, use our own stab.h. */
77 #else
78 #include <stab.h>
79 #endif
80
81 #endif /* DBX_DEBUGGING_INFO || XCOFF_DEBUGGING_INFO */
82
83 #ifndef ACCUMULATE_OUTGOING_ARGS
84 #define ACCUMULATE_OUTGOING_ARGS 0
85 #endif
86
87 #ifdef XCOFF_DEBUGGING_INFO
88 #include "xcoffout.h"
89 #endif
90
91 #ifdef DWARF_DEBUGGING_INFO
92 #include "dwarfout.h"
93 #endif
94
95 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
96 #include "dwarf2out.h"
97 #endif
98
99 #ifdef SDB_DEBUGGING_INFO
100 #include "sdbout.h"
101 #endif
102
103 /* .stabd code for line number. */
104 #ifndef N_SLINE
105 #define N_SLINE 0x44
106 #endif
107
108 /* .stabs code for included file name. */
109 #ifndef N_SOL
110 #define N_SOL 0x84
111 #endif
112
113 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
114 null default for it to save conditionalization later. */
115 #ifndef CC_STATUS_INIT
116 #define CC_STATUS_INIT
117 #endif
118
119 /* How to start an assembler comment. */
120 #ifndef ASM_COMMENT_START
121 #define ASM_COMMENT_START ";#"
122 #endif
123
124 /* Is the given character a logical line separator for the assembler? */
125 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
126 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
127 #endif
128
129 #ifndef JUMP_TABLES_IN_TEXT_SECTION
130 #define JUMP_TABLES_IN_TEXT_SECTION 0
131 #endif
132
133 /* Last insn processed by final_scan_insn. */
134 static rtx debug_insn;
135 rtx current_output_insn;
136
137 /* Line number of last NOTE. */
138 static int last_linenum;
139
140 /* Highest line number in current block. */
141 static int high_block_linenum;
142
143 /* Likewise for function. */
144 static int high_function_linenum;
145
146 /* Filename of last NOTE. */
147 static const char *last_filename;
148
149 /* Number of basic blocks seen so far;
150 used if profile_block_flag is set. */
151 static int count_basic_blocks;
152
153 /* Number of instrumented arcs when profile_arc_flag is set. */
154 extern int count_instrumented_edges;
155
156 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
157
158 /* Nonzero while outputting an `asm' with operands.
159 This means that inconsistencies are the user's fault, so don't abort.
160 The precise value is the insn being output, to pass to error_for_asm. */
161 static rtx this_is_asm_operands;
162
163 /* Number of operands of this insn, for an `asm' with operands. */
164 static unsigned int insn_noperands;
165
166 /* Compare optimization flag. */
167
168 static rtx last_ignored_compare = 0;
169
170 /* Flag indicating this insn is the start of a new basic block. */
171
172 static int new_block = 1;
173
174 /* Assign a unique number to each insn that is output.
175 This can be used to generate unique local labels. */
176
177 static int insn_counter = 0;
178
179 #ifdef HAVE_cc0
180 /* This variable contains machine-dependent flags (defined in tm.h)
181 set and examined by output routines
182 that describe how to interpret the condition codes properly. */
183
184 CC_STATUS cc_status;
185
186 /* During output of an insn, this contains a copy of cc_status
187 from before the insn. */
188
189 CC_STATUS cc_prev_status;
190 #endif
191
192 /* Indexed by hardware reg number, is 1 if that register is ever
193 used in the current function.
194
195 In life_analysis, or in stupid_life_analysis, this is set
196 up to record the hard regs used explicitly. Reload adds
197 in the hard regs used for holding pseudo regs. Final uses
198 it to generate the code in the function prologue and epilogue
199 to save and restore registers as needed. */
200
201 char regs_ever_live[FIRST_PSEUDO_REGISTER];
202
203 /* Nonzero means current function must be given a frame pointer.
204 Set in stmt.c if anything is allocated on the stack there.
205 Set in reload1.c if anything is allocated on the stack there. */
206
207 int frame_pointer_needed;
208
209 /* Assign unique numbers to labels generated for profiling. */
210
211 int profile_label_no;
212
213 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
214
215 static int block_depth;
216
217 /* Nonzero if have enabled APP processing of our assembler output. */
218
219 static int app_on;
220
221 /* If we are outputting an insn sequence, this contains the sequence rtx.
222 Zero otherwise. */
223
224 rtx final_sequence;
225
226 #ifdef ASSEMBLER_DIALECT
227
228 /* Number of the assembler dialect to use, starting at 0. */
229 static int dialect_number;
230 #endif
231
232 /* Indexed by line number, nonzero if there is a note for that line. */
233
234 static char *line_note_exists;
235
236 #ifdef HAVE_conditional_execution
237 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
238 rtx current_insn_predicate;
239 #endif
240
241 /* Linked list to hold line numbers for each basic block. */
242
243 struct bb_list
244 {
245 struct bb_list *next; /* pointer to next basic block */
246 int line_num; /* line number */
247 int file_label_num; /* LPBC<n> label # for stored filename */
248 int func_label_num; /* LPBC<n> label # for stored function name */
249 };
250
251 static struct bb_list *bb_head = 0; /* Head of basic block list */
252 static struct bb_list **bb_tail = &bb_head; /* Ptr to store next bb ptr */
253 static int bb_file_label_num = -1; /* Current label # for file */
254 static int bb_func_label_num = -1; /* Current label # for func */
255
256 /* Linked list to hold the strings for each file and function name output. */
257
258 struct bb_str
259 {
260 struct bb_str *next; /* pointer to next string */
261 const char *string; /* string */
262 int label_num; /* label number */
263 int length; /* string length */
264 };
265
266 static struct bb_str *sbb_head = 0; /* Head of string list. */
267 static struct bb_str **sbb_tail = &sbb_head; /* Ptr to store next bb str */
268 static int sbb_label_num = 0; /* Last label used */
269
270 #ifdef HAVE_ATTR_length
271 static int asm_insn_count PARAMS ((rtx));
272 #endif
273 static void profile_function PARAMS ((FILE *));
274 static void profile_after_prologue PARAMS ((FILE *));
275 static void add_bb PARAMS ((FILE *));
276 static int add_bb_string PARAMS ((const char *, int));
277 static void output_source_line PARAMS ((FILE *, rtx));
278 static rtx walk_alter_subreg PARAMS ((rtx));
279 static void output_asm_name PARAMS ((void));
280 static void output_operand PARAMS ((rtx, int));
281 #ifdef LEAF_REGISTERS
282 static void leaf_renumber_regs PARAMS ((rtx));
283 #endif
284 #ifdef HAVE_cc0
285 static int alter_cond PARAMS ((rtx));
286 #endif
287 #ifndef ADDR_VEC_ALIGN
288 static int final_addr_vec_align PARAMS ((rtx));
289 #endif
290 #ifdef HAVE_ATTR_length
291 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
292 #endif
293 \f
294 /* Initialize data in final at the beginning of a compilation. */
295
296 void
297 init_final (filename)
298 const char *filename ATTRIBUTE_UNUSED;
299 {
300 app_on = 0;
301 final_sequence = 0;
302
303 #ifdef ASSEMBLER_DIALECT
304 dialect_number = ASSEMBLER_DIALECT;
305 #endif
306 }
307
308 /* Called at end of source file,
309 to output the block-profiling table for this entire compilation. */
310
311 void
312 end_final (filename)
313 const char *filename;
314 {
315 int i;
316
317 if (profile_block_flag || profile_arc_flag)
318 {
319 char name[20];
320 int align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
321 int size, rounded;
322 struct bb_list *ptr;
323 struct bb_str *sptr;
324 int long_bytes = LONG_TYPE_SIZE / BITS_PER_UNIT;
325 int pointer_bytes = POINTER_SIZE / BITS_PER_UNIT;
326
327 if (profile_block_flag)
328 size = long_bytes * count_basic_blocks;
329 else
330 size = long_bytes * count_instrumented_edges;
331 rounded = size;
332
333 rounded += (BIGGEST_ALIGNMENT / BITS_PER_UNIT) - 1;
334 rounded = (rounded / (BIGGEST_ALIGNMENT / BITS_PER_UNIT)
335 * (BIGGEST_ALIGNMENT / BITS_PER_UNIT));
336
337 data_section ();
338
339 /* Output the main header, of 11 words:
340 0: 1 if this file is initialized, else 0.
341 1: address of file name (LPBX1).
342 2: address of table of counts (LPBX2).
343 3: number of counts in the table.
344 4: always 0, for compatibility with Sun.
345
346 The following are GNU extensions:
347
348 5: address of table of start addrs of basic blocks (LPBX3).
349 6: Number of bytes in this header.
350 7: address of table of function names (LPBX4).
351 8: address of table of line numbers (LPBX5) or 0.
352 9: address of table of file names (LPBX6) or 0.
353 10: space reserved for basic block profiling. */
354
355 ASM_OUTPUT_ALIGN (asm_out_file, align);
356
357 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 0);
358 /* zero word */
359 assemble_integer (const0_rtx, long_bytes, 1);
360
361 /* address of filename */
362 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 1);
363 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
364
365 /* address of count table */
366 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
367 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes, 1);
368
369 /* count of the # of basic blocks or # of instrumented arcs */
370 if (profile_block_flag)
371 assemble_integer (GEN_INT (count_basic_blocks), long_bytes, 1);
372 else
373 assemble_integer (GEN_INT (count_instrumented_edges), long_bytes, 1);
374
375 /* zero word (link field) */
376 assemble_integer (const0_rtx, pointer_bytes, 1);
377
378 /* address of basic block start address table */
379 if (profile_block_flag)
380 {
381 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
382 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
383 1);
384 }
385 else
386 assemble_integer (const0_rtx, pointer_bytes, 1);
387
388 /* byte count for extended structure. */
389 assemble_integer (GEN_INT (11 * UNITS_PER_WORD), long_bytes, 1);
390
391 /* address of function name table */
392 if (profile_block_flag)
393 {
394 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 4);
395 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
396 1);
397 }
398 else
399 assemble_integer (const0_rtx, pointer_bytes, 1);
400
401 /* address of line number and filename tables if debugging. */
402 if (write_symbols != NO_DEBUG && profile_block_flag)
403 {
404 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 5);
405 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
406 pointer_bytes, 1);
407 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 6);
408 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
409 pointer_bytes, 1);
410 }
411 else
412 {
413 assemble_integer (const0_rtx, pointer_bytes, 1);
414 assemble_integer (const0_rtx, pointer_bytes, 1);
415 }
416
417 /* space for extension ptr (link field) */
418 assemble_integer (const0_rtx, UNITS_PER_WORD, 1);
419
420 /* Output the file name changing the suffix to .d for Sun tcov
421 compatibility. */
422 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 1);
423 {
424 char *cwd = getpwd ();
425 int len = strlen (filename) + strlen (cwd) + 1;
426 char *data_file = (char *) alloca (len + 4);
427
428 strcpy (data_file, cwd);
429 strcat (data_file, "/");
430 strcat (data_file, filename);
431 strip_off_ending (data_file, len);
432 if (profile_block_flag)
433 strcat (data_file, ".d");
434 else
435 strcat (data_file, ".da");
436 assemble_string (data_file, strlen (data_file) + 1);
437 }
438
439 /* Make space for the table of counts. */
440 if (size == 0)
441 {
442 /* Realign data section. */
443 ASM_OUTPUT_ALIGN (asm_out_file, align);
444 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 2);
445 if (size != 0)
446 assemble_zeros (size);
447 }
448 else
449 {
450 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
451 #ifdef ASM_OUTPUT_SHARED_LOCAL
452 if (flag_shared_data)
453 ASM_OUTPUT_SHARED_LOCAL (asm_out_file, name, size, rounded);
454 else
455 #endif
456 #ifdef ASM_OUTPUT_ALIGNED_DECL_LOCAL
457 ASM_OUTPUT_ALIGNED_DECL_LOCAL (asm_out_file, NULL_TREE, name,
458 size, BIGGEST_ALIGNMENT);
459 #else
460 #ifdef ASM_OUTPUT_ALIGNED_LOCAL
461 ASM_OUTPUT_ALIGNED_LOCAL (asm_out_file, name, size,
462 BIGGEST_ALIGNMENT);
463 #else
464 ASM_OUTPUT_LOCAL (asm_out_file, name, size, rounded);
465 #endif
466 #endif
467 }
468
469 /* Output any basic block strings */
470 if (profile_block_flag)
471 {
472 readonly_data_section ();
473 if (sbb_head)
474 {
475 ASM_OUTPUT_ALIGN (asm_out_file, align);
476 for (sptr = sbb_head; sptr != 0; sptr = sptr->next)
477 {
478 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBC",
479 sptr->label_num);
480 assemble_string (sptr->string, sptr->length);
481 }
482 }
483 }
484
485 /* Output the table of addresses. */
486 if (profile_block_flag)
487 {
488 /* Realign in new section */
489 ASM_OUTPUT_ALIGN (asm_out_file, align);
490 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 3);
491 for (i = 0; i < count_basic_blocks; i++)
492 {
493 ASM_GENERATE_INTERNAL_LABEL (name, "LPB", i);
494 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
495 pointer_bytes, 1);
496 }
497 }
498
499 /* Output the table of function names. */
500 if (profile_block_flag)
501 {
502 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 4);
503 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
504 {
505 if (ptr->func_label_num >= 0)
506 {
507 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
508 ptr->func_label_num);
509 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
510 pointer_bytes, 1);
511 }
512 else
513 assemble_integer (const0_rtx, pointer_bytes, 1);
514 }
515
516 for (; i < count_basic_blocks; i++)
517 assemble_integer (const0_rtx, pointer_bytes, 1);
518 }
519
520 if (write_symbols != NO_DEBUG && profile_block_flag)
521 {
522 /* Output the table of line numbers. */
523 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 5);
524 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
525 assemble_integer (GEN_INT (ptr->line_num), long_bytes, 1);
526
527 for (; i < count_basic_blocks; i++)
528 assemble_integer (const0_rtx, long_bytes, 1);
529
530 /* Output the table of file names. */
531 ASM_OUTPUT_INTERNAL_LABEL (asm_out_file, "LPBX", 6);
532 for ((ptr = bb_head), (i = 0); ptr != 0; (ptr = ptr->next), i++)
533 {
534 if (ptr->file_label_num >= 0)
535 {
536 ASM_GENERATE_INTERNAL_LABEL (name, "LPBC",
537 ptr->file_label_num);
538 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name),
539 pointer_bytes, 1);
540 }
541 else
542 assemble_integer (const0_rtx, pointer_bytes, 1);
543 }
544
545 for (; i < count_basic_blocks; i++)
546 assemble_integer (const0_rtx, pointer_bytes, 1);
547 }
548
549 /* End with the address of the table of addresses,
550 so we can find it easily, as the last word in the file's text. */
551 if (profile_block_flag)
552 {
553 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 3);
554 assemble_integer (gen_rtx_SYMBOL_REF (Pmode, name), pointer_bytes,
555 1);
556 }
557 }
558 }
559
560 /* Enable APP processing of subsequent output.
561 Used before the output from an `asm' statement. */
562
563 void
564 app_enable ()
565 {
566 if (! app_on)
567 {
568 fputs (ASM_APP_ON, asm_out_file);
569 app_on = 1;
570 }
571 }
572
573 /* Disable APP processing of subsequent output.
574 Called from varasm.c before most kinds of output. */
575
576 void
577 app_disable ()
578 {
579 if (app_on)
580 {
581 fputs (ASM_APP_OFF, asm_out_file);
582 app_on = 0;
583 }
584 }
585 \f
586 /* Return the number of slots filled in the current
587 delayed branch sequence (we don't count the insn needing the
588 delay slot). Zero if not in a delayed branch sequence. */
589
590 #ifdef DELAY_SLOTS
591 int
592 dbr_sequence_length ()
593 {
594 if (final_sequence != 0)
595 return XVECLEN (final_sequence, 0) - 1;
596 else
597 return 0;
598 }
599 #endif
600 \f
601 /* The next two pages contain routines used to compute the length of an insn
602 and to shorten branches. */
603
604 /* Arrays for insn lengths, and addresses. The latter is referenced by
605 `insn_current_length'. */
606
607 static short *insn_lengths;
608
609 #ifdef HAVE_ATTR_length
610 varray_type insn_addresses_;
611 #endif
612
613 /* Max uid for which the above arrays are valid. */
614 static int insn_lengths_max_uid;
615
616 /* Address of insn being processed. Used by `insn_current_length'. */
617 int insn_current_address;
618
619 /* Address of insn being processed in previous iteration. */
620 int insn_last_address;
621
622 /* konwn invariant alignment of insn being processed. */
623 int insn_current_align;
624
625 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
626 gives the next following alignment insn that increases the known
627 alignment, or NULL_RTX if there is no such insn.
628 For any alignment obtained this way, we can again index uid_align with
629 its uid to obtain the next following align that in turn increases the
630 alignment, till we reach NULL_RTX; the sequence obtained this way
631 for each insn we'll call the alignment chain of this insn in the following
632 comments. */
633
634 struct label_alignment
635 {
636 short alignment;
637 short max_skip;
638 };
639
640 static rtx *uid_align;
641 static int *uid_shuid;
642 static struct label_alignment *label_align;
643
644 /* Indicate that branch shortening hasn't yet been done. */
645
646 void
647 init_insn_lengths ()
648 {
649 if (label_align)
650 {
651 free (label_align);
652 label_align = 0;
653 }
654 if (uid_shuid)
655 {
656 free (uid_shuid);
657 uid_shuid = 0;
658 }
659 if (insn_lengths)
660 {
661 free (insn_lengths);
662 insn_lengths = 0;
663 insn_lengths_max_uid = 0;
664 }
665 #ifdef HAVE_ATTR_length
666 INSN_ADDRESSES_FREE ();
667 #endif
668 if (uid_align)
669 {
670 free (uid_align);
671 uid_align = 0;
672 }
673 }
674
675 /* Obtain the current length of an insn. If branch shortening has been done,
676 get its actual length. Otherwise, get its maximum length. */
677
678 int
679 get_attr_length (insn)
680 rtx insn ATTRIBUTE_UNUSED;
681 {
682 #ifdef HAVE_ATTR_length
683 rtx body;
684 int i;
685 int length = 0;
686
687 if (insn_lengths_max_uid > INSN_UID (insn))
688 return insn_lengths[INSN_UID (insn)];
689 else
690 switch (GET_CODE (insn))
691 {
692 case NOTE:
693 case BARRIER:
694 case CODE_LABEL:
695 return 0;
696
697 case CALL_INSN:
698 length = insn_default_length (insn);
699 break;
700
701 case JUMP_INSN:
702 body = PATTERN (insn);
703 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
704 {
705 /* Alignment is machine-dependent and should be handled by
706 ADDR_VEC_ALIGN. */
707 }
708 else
709 length = insn_default_length (insn);
710 break;
711
712 case INSN:
713 body = PATTERN (insn);
714 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
715 return 0;
716
717 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
718 length = asm_insn_count (body) * insn_default_length (insn);
719 else if (GET_CODE (body) == SEQUENCE)
720 for (i = 0; i < XVECLEN (body, 0); i++)
721 length += get_attr_length (XVECEXP (body, 0, i));
722 else
723 length = insn_default_length (insn);
724 break;
725
726 default:
727 break;
728 }
729
730 #ifdef ADJUST_INSN_LENGTH
731 ADJUST_INSN_LENGTH (insn, length);
732 #endif
733 return length;
734 #else /* not HAVE_ATTR_length */
735 return 0;
736 #endif /* not HAVE_ATTR_length */
737 }
738 \f
739 /* Code to handle alignment inside shorten_branches. */
740
741 /* Here is an explanation how the algorithm in align_fuzz can give
742 proper results:
743
744 Call a sequence of instructions beginning with alignment point X
745 and continuing until the next alignment point `block X'. When `X'
746 is used in an expression, it means the alignment value of the
747 alignment point.
748
749 Call the distance between the start of the first insn of block X, and
750 the end of the last insn of block X `IX', for the `inner size of X'.
751 This is clearly the sum of the instruction lengths.
752
753 Likewise with the next alignment-delimited block following X, which we
754 shall call block Y.
755
756 Call the distance between the start of the first insn of block X, and
757 the start of the first insn of block Y `OX', for the `outer size of X'.
758
759 The estimated padding is then OX - IX.
760
761 OX can be safely estimated as
762
763 if (X >= Y)
764 OX = round_up(IX, Y)
765 else
766 OX = round_up(IX, X) + Y - X
767
768 Clearly est(IX) >= real(IX), because that only depends on the
769 instruction lengths, and those being overestimated is a given.
770
771 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
772 we needn't worry about that when thinking about OX.
773
774 When X >= Y, the alignment provided by Y adds no uncertainty factor
775 for branch ranges starting before X, so we can just round what we have.
776 But when X < Y, we don't know anything about the, so to speak,
777 `middle bits', so we have to assume the worst when aligning up from an
778 address mod X to one mod Y, which is Y - X. */
779
780 #ifndef LABEL_ALIGN
781 #define LABEL_ALIGN(LABEL) align_labels_log
782 #endif
783
784 #ifndef LABEL_ALIGN_MAX_SKIP
785 #define LABEL_ALIGN_MAX_SKIP (align_labels-1)
786 #endif
787
788 #ifndef LOOP_ALIGN
789 #define LOOP_ALIGN(LABEL) align_loops_log
790 #endif
791
792 #ifndef LOOP_ALIGN_MAX_SKIP
793 #define LOOP_ALIGN_MAX_SKIP (align_loops-1)
794 #endif
795
796 #ifndef LABEL_ALIGN_AFTER_BARRIER
797 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) align_jumps_log
798 #endif
799
800 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
801 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP (align_jumps-1)
802 #endif
803
804 #ifndef ADDR_VEC_ALIGN
805 static int
806 final_addr_vec_align (addr_vec)
807 rtx addr_vec;
808 {
809 int align = exact_log2 (GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec))));
810
811 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
812 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
813 return align;
814
815 }
816
817 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
818 #endif
819
820 #ifndef INSN_LENGTH_ALIGNMENT
821 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
822 #endif
823
824 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
825
826 static int min_labelno, max_labelno;
827
828 #define LABEL_TO_ALIGNMENT(LABEL) \
829 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
830
831 #define LABEL_TO_MAX_SKIP(LABEL) \
832 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
833
834 /* For the benefit of port specific code do this also as a function. */
835
836 int
837 label_to_alignment (label)
838 rtx label;
839 {
840 return LABEL_TO_ALIGNMENT (label);
841 }
842
843 #ifdef HAVE_ATTR_length
844 /* The differences in addresses
845 between a branch and its target might grow or shrink depending on
846 the alignment the start insn of the range (the branch for a forward
847 branch or the label for a backward branch) starts out on; if these
848 differences are used naively, they can even oscillate infinitely.
849 We therefore want to compute a 'worst case' address difference that
850 is independent of the alignment the start insn of the range end
851 up on, and that is at least as large as the actual difference.
852 The function align_fuzz calculates the amount we have to add to the
853 naively computed difference, by traversing the part of the alignment
854 chain of the start insn of the range that is in front of the end insn
855 of the range, and considering for each alignment the maximum amount
856 that it might contribute to a size increase.
857
858 For casesi tables, we also want to know worst case minimum amounts of
859 address difference, in case a machine description wants to introduce
860 some common offset that is added to all offsets in a table.
861 For this purpose, align_fuzz with a growth argument of 0 comuptes the
862 appropriate adjustment. */
863
864 /* Compute the maximum delta by which the difference of the addresses of
865 START and END might grow / shrink due to a different address for start
866 which changes the size of alignment insns between START and END.
867 KNOWN_ALIGN_LOG is the alignment known for START.
868 GROWTH should be ~0 if the objective is to compute potential code size
869 increase, and 0 if the objective is to compute potential shrink.
870 The return value is undefined for any other value of GROWTH. */
871
872 static int
873 align_fuzz (start, end, known_align_log, growth)
874 rtx start, end;
875 int known_align_log;
876 unsigned growth;
877 {
878 int uid = INSN_UID (start);
879 rtx align_label;
880 int known_align = 1 << known_align_log;
881 int end_shuid = INSN_SHUID (end);
882 int fuzz = 0;
883
884 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
885 {
886 int align_addr, new_align;
887
888 uid = INSN_UID (align_label);
889 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
890 if (uid_shuid[uid] > end_shuid)
891 break;
892 known_align_log = LABEL_TO_ALIGNMENT (align_label);
893 new_align = 1 << known_align_log;
894 if (new_align < known_align)
895 continue;
896 fuzz += (-align_addr ^ growth) & (new_align - known_align);
897 known_align = new_align;
898 }
899 return fuzz;
900 }
901
902 /* Compute a worst-case reference address of a branch so that it
903 can be safely used in the presence of aligned labels. Since the
904 size of the branch itself is unknown, the size of the branch is
905 not included in the range. I.e. for a forward branch, the reference
906 address is the end address of the branch as known from the previous
907 branch shortening pass, minus a value to account for possible size
908 increase due to alignment. For a backward branch, it is the start
909 address of the branch as known from the current pass, plus a value
910 to account for possible size increase due to alignment.
911 NB.: Therefore, the maximum offset allowed for backward branches needs
912 to exclude the branch size. */
913
914 int
915 insn_current_reference_address (branch)
916 rtx branch;
917 {
918 rtx dest, seq;
919 int seq_uid;
920
921 if (! INSN_ADDRESSES_SET_P ())
922 return 0;
923
924 seq = NEXT_INSN (PREV_INSN (branch));
925 seq_uid = INSN_UID (seq);
926 if (GET_CODE (branch) != JUMP_INSN)
927 /* This can happen for example on the PA; the objective is to know the
928 offset to address something in front of the start of the function.
929 Thus, we can treat it like a backward branch.
930 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
931 any alignment we'd encounter, so we skip the call to align_fuzz. */
932 return insn_current_address;
933 dest = JUMP_LABEL (branch);
934
935 /* BRANCH has no proper alignment chain set, so use SEQ. */
936 if (INSN_SHUID (branch) < INSN_SHUID (dest))
937 {
938 /* Forward branch. */
939 return (insn_last_address + insn_lengths[seq_uid]
940 - align_fuzz (seq, dest, length_unit_log, ~0));
941 }
942 else
943 {
944 /* Backward branch. */
945 return (insn_current_address
946 + align_fuzz (dest, seq, length_unit_log, ~0));
947 }
948 }
949 #endif /* HAVE_ATTR_length */
950 \f
951 /* Make a pass over all insns and compute their actual lengths by shortening
952 any branches of variable length if possible. */
953
954 /* Give a default value for the lowest address in a function. */
955
956 #ifndef FIRST_INSN_ADDRESS
957 #define FIRST_INSN_ADDRESS 0
958 #endif
959
960 /* shorten_branches might be called multiple times: for example, the SH
961 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
962 In order to do this, it needs proper length information, which it obtains
963 by calling shorten_branches. This cannot be collapsed with
964 shorten_branches itself into a single pass unless we also want to intergate
965 reorg.c, since the branch splitting exposes new instructions with delay
966 slots. */
967
968 void
969 shorten_branches (first)
970 rtx first ATTRIBUTE_UNUSED;
971 {
972 rtx insn;
973 int max_uid;
974 int i;
975 int max_log;
976 int max_skip;
977 #ifdef HAVE_ATTR_length
978 #define MAX_CODE_ALIGN 16
979 rtx seq;
980 int something_changed = 1;
981 char *varying_length;
982 rtx body;
983 int uid;
984 rtx align_tab[MAX_CODE_ALIGN];
985
986 /* In order to make sure that all instructions have valid length info,
987 we must split them before we compute the address/length info. */
988
989 for (insn = NEXT_INSN (first); insn; insn = NEXT_INSN (insn))
990 if (INSN_P (insn))
991 {
992 rtx old = insn;
993 /* Don't split the insn if it has been deleted. */
994 if (! INSN_DELETED_P (old))
995 insn = try_split (PATTERN (old), old, 1);
996 /* When not optimizing, the old insn will be still left around
997 with only the 'deleted' bit set. Transform it into a note
998 to avoid confusion of subsequent processing. */
999 if (INSN_DELETED_P (old))
1000 {
1001 PUT_CODE (old, NOTE);
1002 NOTE_LINE_NUMBER (old) = NOTE_INSN_DELETED;
1003 NOTE_SOURCE_FILE (old) = 0;
1004 }
1005 }
1006 #endif
1007
1008 /* We must do some computations even when not actually shortening, in
1009 order to get the alignment information for the labels. */
1010
1011 init_insn_lengths ();
1012
1013 /* Compute maximum UID and allocate label_align / uid_shuid. */
1014 max_uid = get_max_uid ();
1015
1016 max_labelno = max_label_num ();
1017 min_labelno = get_first_label_num ();
1018 label_align = (struct label_alignment *)
1019 xcalloc ((max_labelno - min_labelno + 1), sizeof (struct label_alignment));
1020
1021 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1022
1023 /* Initialize label_align and set up uid_shuid to be strictly
1024 monotonically rising with insn order. */
1025 /* We use max_log here to keep track of the maximum alignment we want to
1026 impose on the next CODE_LABEL (or the current one if we are processing
1027 the CODE_LABEL itself). */
1028
1029 max_log = 0;
1030 max_skip = 0;
1031
1032 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1033 {
1034 int log;
1035
1036 INSN_SHUID (insn) = i++;
1037 if (INSN_P (insn))
1038 {
1039 /* reorg might make the first insn of a loop being run once only,
1040 and delete the label in front of it. Then we want to apply
1041 the loop alignment to the new label created by reorg, which
1042 is separated by the former loop start insn from the
1043 NOTE_INSN_LOOP_BEG. */
1044 }
1045 else if (GET_CODE (insn) == CODE_LABEL)
1046 {
1047 rtx next;
1048
1049 log = LABEL_ALIGN (insn);
1050 if (max_log < log)
1051 {
1052 max_log = log;
1053 max_skip = LABEL_ALIGN_MAX_SKIP;
1054 }
1055 next = NEXT_INSN (insn);
1056 /* ADDR_VECs only take room if read-only data goes into the text
1057 section. */
1058 if (JUMP_TABLES_IN_TEXT_SECTION
1059 #if !defined(READONLY_DATA_SECTION)
1060 || 1
1061 #endif
1062 )
1063 if (next && GET_CODE (next) == JUMP_INSN)
1064 {
1065 rtx nextbody = PATTERN (next);
1066 if (GET_CODE (nextbody) == ADDR_VEC
1067 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1068 {
1069 log = ADDR_VEC_ALIGN (next);
1070 if (max_log < log)
1071 {
1072 max_log = log;
1073 max_skip = LABEL_ALIGN_MAX_SKIP;
1074 }
1075 }
1076 }
1077 LABEL_TO_ALIGNMENT (insn) = max_log;
1078 LABEL_TO_MAX_SKIP (insn) = max_skip;
1079 max_log = 0;
1080 max_skip = 0;
1081 }
1082 else if (GET_CODE (insn) == BARRIER)
1083 {
1084 rtx label;
1085
1086 for (label = insn; label && ! INSN_P (label);
1087 label = NEXT_INSN (label))
1088 if (GET_CODE (label) == CODE_LABEL)
1089 {
1090 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1091 if (max_log < log)
1092 {
1093 max_log = log;
1094 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1095 }
1096 break;
1097 }
1098 }
1099 /* Again, we allow NOTE_INSN_LOOP_BEG - INSN - CODE_LABEL
1100 sequences in order to handle reorg output efficiently. */
1101 else if (GET_CODE (insn) == NOTE
1102 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1103 {
1104 rtx label;
1105 int nest = 0;
1106
1107 /* Search for the label that starts the loop.
1108 Don't skip past the end of the loop, since that could
1109 lead to putting an alignment where it does not belong.
1110 However, a label after a nested (non-)loop would be OK. */
1111 for (label = insn; label; label = NEXT_INSN (label))
1112 {
1113 if (GET_CODE (label) == NOTE
1114 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_BEG)
1115 nest++;
1116 else if (GET_CODE (label) == NOTE
1117 && NOTE_LINE_NUMBER (label) == NOTE_INSN_LOOP_END
1118 && --nest == 0)
1119 break;
1120 else if (GET_CODE (label) == CODE_LABEL)
1121 {
1122 log = LOOP_ALIGN (label);
1123 if (max_log < log)
1124 {
1125 max_log = log;
1126 max_skip = LOOP_ALIGN_MAX_SKIP;
1127 }
1128 break;
1129 }
1130 }
1131 }
1132 else
1133 continue;
1134 }
1135 #ifdef HAVE_ATTR_length
1136
1137 /* Allocate the rest of the arrays. */
1138 insn_lengths = (short *) xmalloc (max_uid * sizeof (short));
1139 insn_lengths_max_uid = max_uid;
1140 /* Syntax errors can lead to labels being outside of the main insn stream.
1141 Initialize insn_addresses, so that we get reproducible results. */
1142 INSN_ADDRESSES_ALLOC (max_uid);
1143
1144 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1145
1146 /* Initialize uid_align. We scan instructions
1147 from end to start, and keep in align_tab[n] the last seen insn
1148 that does an alignment of at least n+1, i.e. the successor
1149 in the alignment chain for an insn that does / has a known
1150 alignment of n. */
1151 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1152
1153 for (i = MAX_CODE_ALIGN; --i >= 0;)
1154 align_tab[i] = NULL_RTX;
1155 seq = get_last_insn ();
1156 for (; seq; seq = PREV_INSN (seq))
1157 {
1158 int uid = INSN_UID (seq);
1159 int log;
1160 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1161 uid_align[uid] = align_tab[0];
1162 if (log)
1163 {
1164 /* Found an alignment label. */
1165 uid_align[uid] = align_tab[log];
1166 for (i = log - 1; i >= 0; i--)
1167 align_tab[i] = seq;
1168 }
1169 }
1170 #ifdef CASE_VECTOR_SHORTEN_MODE
1171 if (optimize)
1172 {
1173 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1174 label fields. */
1175
1176 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1177 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1178 int rel;
1179
1180 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1181 {
1182 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1183 int len, i, min, max, insn_shuid;
1184 int min_align;
1185 addr_diff_vec_flags flags;
1186
1187 if (GET_CODE (insn) != JUMP_INSN
1188 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1189 continue;
1190 pat = PATTERN (insn);
1191 len = XVECLEN (pat, 1);
1192 if (len <= 0)
1193 abort ();
1194 min_align = MAX_CODE_ALIGN;
1195 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1196 {
1197 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1198 int shuid = INSN_SHUID (lab);
1199 if (shuid < min)
1200 {
1201 min = shuid;
1202 min_lab = lab;
1203 }
1204 if (shuid > max)
1205 {
1206 max = shuid;
1207 max_lab = lab;
1208 }
1209 if (min_align > LABEL_TO_ALIGNMENT (lab))
1210 min_align = LABEL_TO_ALIGNMENT (lab);
1211 }
1212 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1213 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1214 insn_shuid = INSN_SHUID (insn);
1215 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1216 flags.min_align = min_align;
1217 flags.base_after_vec = rel > insn_shuid;
1218 flags.min_after_vec = min > insn_shuid;
1219 flags.max_after_vec = max > insn_shuid;
1220 flags.min_after_base = min > rel;
1221 flags.max_after_base = max > rel;
1222 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1223 }
1224 }
1225 #endif /* CASE_VECTOR_SHORTEN_MODE */
1226
1227 /* Compute initial lengths, addresses, and varying flags for each insn. */
1228 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1229 insn != 0;
1230 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1231 {
1232 uid = INSN_UID (insn);
1233
1234 insn_lengths[uid] = 0;
1235
1236 if (GET_CODE (insn) == CODE_LABEL)
1237 {
1238 int log = LABEL_TO_ALIGNMENT (insn);
1239 if (log)
1240 {
1241 int align = 1 << log;
1242 int new_address = (insn_current_address + align - 1) & -align;
1243 insn_lengths[uid] = new_address - insn_current_address;
1244 insn_current_address = new_address;
1245 }
1246 }
1247
1248 INSN_ADDRESSES (uid) = insn_current_address;
1249
1250 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1251 || GET_CODE (insn) == CODE_LABEL)
1252 continue;
1253 if (INSN_DELETED_P (insn))
1254 continue;
1255
1256 body = PATTERN (insn);
1257 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1258 {
1259 /* This only takes room if read-only data goes into the text
1260 section. */
1261 if (JUMP_TABLES_IN_TEXT_SECTION
1262 #if !defined(READONLY_DATA_SECTION)
1263 || 1
1264 #endif
1265 )
1266 insn_lengths[uid] = (XVECLEN (body,
1267 GET_CODE (body) == ADDR_DIFF_VEC)
1268 * GET_MODE_SIZE (GET_MODE (body)));
1269 /* Alignment is handled by ADDR_VEC_ALIGN. */
1270 }
1271 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1272 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1273 else if (GET_CODE (body) == SEQUENCE)
1274 {
1275 int i;
1276 int const_delay_slots;
1277 #ifdef DELAY_SLOTS
1278 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1279 #else
1280 const_delay_slots = 0;
1281 #endif
1282 /* Inside a delay slot sequence, we do not do any branch shortening
1283 if the shortening could change the number of delay slots
1284 of the branch. */
1285 for (i = 0; i < XVECLEN (body, 0); i++)
1286 {
1287 rtx inner_insn = XVECEXP (body, 0, i);
1288 int inner_uid = INSN_UID (inner_insn);
1289 int inner_length;
1290
1291 if (GET_CODE (body) == ASM_INPUT
1292 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1293 inner_length = (asm_insn_count (PATTERN (inner_insn))
1294 * insn_default_length (inner_insn));
1295 else
1296 inner_length = insn_default_length (inner_insn);
1297
1298 insn_lengths[inner_uid] = inner_length;
1299 if (const_delay_slots)
1300 {
1301 if ((varying_length[inner_uid]
1302 = insn_variable_length_p (inner_insn)) != 0)
1303 varying_length[uid] = 1;
1304 INSN_ADDRESSES (inner_uid) = (insn_current_address
1305 + insn_lengths[uid]);
1306 }
1307 else
1308 varying_length[inner_uid] = 0;
1309 insn_lengths[uid] += inner_length;
1310 }
1311 }
1312 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1313 {
1314 insn_lengths[uid] = insn_default_length (insn);
1315 varying_length[uid] = insn_variable_length_p (insn);
1316 }
1317
1318 /* If needed, do any adjustment. */
1319 #ifdef ADJUST_INSN_LENGTH
1320 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1321 if (insn_lengths[uid] < 0)
1322 fatal_insn ("Negative insn length", insn);
1323 #endif
1324 }
1325
1326 /* Now loop over all the insns finding varying length insns. For each,
1327 get the current insn length. If it has changed, reflect the change.
1328 When nothing changes for a full pass, we are done. */
1329
1330 while (something_changed)
1331 {
1332 something_changed = 0;
1333 insn_current_align = MAX_CODE_ALIGN - 1;
1334 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1335 insn != 0;
1336 insn = NEXT_INSN (insn))
1337 {
1338 int new_length;
1339 #ifdef ADJUST_INSN_LENGTH
1340 int tmp_length;
1341 #endif
1342 int length_align;
1343
1344 uid = INSN_UID (insn);
1345
1346 if (GET_CODE (insn) == CODE_LABEL)
1347 {
1348 int log = LABEL_TO_ALIGNMENT (insn);
1349 if (log > insn_current_align)
1350 {
1351 int align = 1 << log;
1352 int new_address= (insn_current_address + align - 1) & -align;
1353 insn_lengths[uid] = new_address - insn_current_address;
1354 insn_current_align = log;
1355 insn_current_address = new_address;
1356 }
1357 else
1358 insn_lengths[uid] = 0;
1359 INSN_ADDRESSES (uid) = insn_current_address;
1360 continue;
1361 }
1362
1363 length_align = INSN_LENGTH_ALIGNMENT (insn);
1364 if (length_align < insn_current_align)
1365 insn_current_align = length_align;
1366
1367 insn_last_address = INSN_ADDRESSES (uid);
1368 INSN_ADDRESSES (uid) = insn_current_address;
1369
1370 #ifdef CASE_VECTOR_SHORTEN_MODE
1371 if (optimize && GET_CODE (insn) == JUMP_INSN
1372 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1373 {
1374 rtx body = PATTERN (insn);
1375 int old_length = insn_lengths[uid];
1376 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1377 rtx min_lab = XEXP (XEXP (body, 2), 0);
1378 rtx max_lab = XEXP (XEXP (body, 3), 0);
1379 addr_diff_vec_flags flags = ADDR_DIFF_VEC_FLAGS (body);
1380 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1381 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1382 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1383 rtx prev;
1384 int rel_align = 0;
1385
1386 /* Try to find a known alignment for rel_lab. */
1387 for (prev = rel_lab;
1388 prev
1389 && ! insn_lengths[INSN_UID (prev)]
1390 && ! (varying_length[INSN_UID (prev)] & 1);
1391 prev = PREV_INSN (prev))
1392 if (varying_length[INSN_UID (prev)] & 2)
1393 {
1394 rel_align = LABEL_TO_ALIGNMENT (prev);
1395 break;
1396 }
1397
1398 /* See the comment on addr_diff_vec_flags in rtl.h for the
1399 meaning of the flags values. base: REL_LAB vec: INSN */
1400 /* Anything after INSN has still addresses from the last
1401 pass; adjust these so that they reflect our current
1402 estimate for this pass. */
1403 if (flags.base_after_vec)
1404 rel_addr += insn_current_address - insn_last_address;
1405 if (flags.min_after_vec)
1406 min_addr += insn_current_address - insn_last_address;
1407 if (flags.max_after_vec)
1408 max_addr += insn_current_address - insn_last_address;
1409 /* We want to know the worst case, i.e. lowest possible value
1410 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1411 its offset is positive, and we have to be wary of code shrink;
1412 otherwise, it is negative, and we have to be vary of code
1413 size increase. */
1414 if (flags.min_after_base)
1415 {
1416 /* If INSN is between REL_LAB and MIN_LAB, the size
1417 changes we are about to make can change the alignment
1418 within the observed offset, therefore we have to break
1419 it up into two parts that are independent. */
1420 if (! flags.base_after_vec && flags.min_after_vec)
1421 {
1422 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1423 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1424 }
1425 else
1426 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1427 }
1428 else
1429 {
1430 if (flags.base_after_vec && ! flags.min_after_vec)
1431 {
1432 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1433 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1434 }
1435 else
1436 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1437 }
1438 /* Likewise, determine the highest lowest possible value
1439 for the offset of MAX_LAB. */
1440 if (flags.max_after_base)
1441 {
1442 if (! flags.base_after_vec && flags.max_after_vec)
1443 {
1444 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1445 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1446 }
1447 else
1448 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1449 }
1450 else
1451 {
1452 if (flags.base_after_vec && ! flags.max_after_vec)
1453 {
1454 max_addr += align_fuzz (max_lab, insn, 0, 0);
1455 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1456 }
1457 else
1458 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1459 }
1460 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1461 max_addr - rel_addr,
1462 body));
1463 if (JUMP_TABLES_IN_TEXT_SECTION
1464 #if !defined(READONLY_DATA_SECTION)
1465 || 1
1466 #endif
1467 )
1468 {
1469 insn_lengths[uid]
1470 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1471 insn_current_address += insn_lengths[uid];
1472 if (insn_lengths[uid] != old_length)
1473 something_changed = 1;
1474 }
1475
1476 continue;
1477 }
1478 #endif /* CASE_VECTOR_SHORTEN_MODE */
1479
1480 if (! (varying_length[uid]))
1481 {
1482 insn_current_address += insn_lengths[uid];
1483 continue;
1484 }
1485 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1486 {
1487 int i;
1488
1489 body = PATTERN (insn);
1490 new_length = 0;
1491 for (i = 0; i < XVECLEN (body, 0); i++)
1492 {
1493 rtx inner_insn = XVECEXP (body, 0, i);
1494 int inner_uid = INSN_UID (inner_insn);
1495 int inner_length;
1496
1497 INSN_ADDRESSES (inner_uid) = insn_current_address;
1498
1499 /* insn_current_length returns 0 for insns with a
1500 non-varying length. */
1501 if (! varying_length[inner_uid])
1502 inner_length = insn_lengths[inner_uid];
1503 else
1504 inner_length = insn_current_length (inner_insn);
1505
1506 if (inner_length != insn_lengths[inner_uid])
1507 {
1508 insn_lengths[inner_uid] = inner_length;
1509 something_changed = 1;
1510 }
1511 insn_current_address += insn_lengths[inner_uid];
1512 new_length += inner_length;
1513 }
1514 }
1515 else
1516 {
1517 new_length = insn_current_length (insn);
1518 insn_current_address += new_length;
1519 }
1520
1521 #ifdef ADJUST_INSN_LENGTH
1522 /* If needed, do any adjustment. */
1523 tmp_length = new_length;
1524 ADJUST_INSN_LENGTH (insn, new_length);
1525 insn_current_address += (new_length - tmp_length);
1526 #endif
1527
1528 if (new_length != insn_lengths[uid])
1529 {
1530 insn_lengths[uid] = new_length;
1531 something_changed = 1;
1532 }
1533 }
1534 /* For a non-optimizing compile, do only a single pass. */
1535 if (!optimize)
1536 break;
1537 }
1538
1539 free (varying_length);
1540
1541 #endif /* HAVE_ATTR_length */
1542 }
1543
1544 #ifdef HAVE_ATTR_length
1545 /* Given the body of an INSN known to be generated by an ASM statement, return
1546 the number of machine instructions likely to be generated for this insn.
1547 This is used to compute its length. */
1548
1549 static int
1550 asm_insn_count (body)
1551 rtx body;
1552 {
1553 const char *template;
1554 int count = 1;
1555
1556 if (GET_CODE (body) == ASM_INPUT)
1557 template = XSTR (body, 0);
1558 else
1559 template = decode_asm_operands (body, NULL_PTR, NULL_PTR,
1560 NULL_PTR, NULL_PTR);
1561
1562 for (; *template; template++)
1563 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1564 count++;
1565
1566 return count;
1567 }
1568 #endif
1569 \f
1570 /* Output assembler code for the start of a function,
1571 and initialize some of the variables in this file
1572 for the new function. The label for the function and associated
1573 assembler pseudo-ops have already been output in `assemble_start_function'.
1574
1575 FIRST is the first insn of the rtl for the function being compiled.
1576 FILE is the file to write assembler code to.
1577 OPTIMIZE is nonzero if we should eliminate redundant
1578 test and compare insns. */
1579
1580 void
1581 final_start_function (first, file, optimize)
1582 rtx first;
1583 FILE *file;
1584 int optimize ATTRIBUTE_UNUSED;
1585 {
1586 block_depth = 0;
1587
1588 this_is_asm_operands = 0;
1589
1590 #ifdef NON_SAVING_SETJMP
1591 /* A function that calls setjmp should save and restore all the
1592 call-saved registers on a system where longjmp clobbers them. */
1593 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1594 {
1595 int i;
1596
1597 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1598 if (!call_used_regs[i])
1599 regs_ever_live[i] = 1;
1600 }
1601 #endif
1602
1603 /* Initial line number is supposed to be output
1604 before the function's prologue and label
1605 so that the function's address will not appear to be
1606 in the last statement of the preceding function. */
1607 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1608 last_linenum = high_block_linenum = high_function_linenum
1609 = NOTE_LINE_NUMBER (first);
1610
1611 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1612 /* Output DWARF definition of the function. */
1613 if (dwarf2out_do_frame ())
1614 dwarf2out_begin_prologue ();
1615 else
1616 current_function_func_begin_label = 0;
1617 #endif
1618
1619 /* For SDB and XCOFF, the function beginning must be marked between
1620 the function label and the prologue. We always need this, even when
1621 -g1 was used. Defer on MIPS systems so that parameter descriptions
1622 follow function entry. */
1623 #if defined(SDB_DEBUGGING_INFO) && !defined(MIPS_DEBUGGING_INFO)
1624 if (write_symbols == SDB_DEBUG)
1625 sdbout_begin_function (last_linenum);
1626 else
1627 #endif
1628 #ifdef XCOFF_DEBUGGING_INFO
1629 if (write_symbols == XCOFF_DEBUG)
1630 xcoffout_begin_function (file, last_linenum);
1631 else
1632 #endif
1633 /* But only output line number for other debug info types if -g2
1634 or better. */
1635 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1636 output_source_line (file, first);
1637
1638 #ifdef LEAF_REG_REMAP
1639 if (current_function_uses_only_leaf_regs)
1640 leaf_renumber_regs (first);
1641 #endif
1642
1643 /* The Sun386i and perhaps other machines don't work right
1644 if the profiling code comes after the prologue. */
1645 #ifdef PROFILE_BEFORE_PROLOGUE
1646 if (profile_flag)
1647 profile_function (file);
1648 #endif /* PROFILE_BEFORE_PROLOGUE */
1649
1650 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1651 if (dwarf2out_do_frame ())
1652 dwarf2out_frame_debug (NULL_RTX);
1653 #endif
1654
1655 /* If debugging, assign block numbers to all of the blocks in this
1656 function. */
1657 if (write_symbols)
1658 {
1659 number_blocks (current_function_decl);
1660 remove_unnecessary_notes ();
1661 /* We never actually put out begin/end notes for the top-level
1662 block in the function. But, conceptually, that block is
1663 always needed. */
1664 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1665 }
1666
1667 #ifdef FUNCTION_PROLOGUE
1668 /* First output the function prologue: code to set up the stack frame. */
1669 FUNCTION_PROLOGUE (file, get_frame_size ());
1670 #endif
1671
1672 /* If the machine represents the prologue as RTL, the profiling code must
1673 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1674 #ifdef HAVE_prologue
1675 if (! HAVE_prologue)
1676 #endif
1677 profile_after_prologue (file);
1678
1679 profile_label_no++;
1680
1681 /* If we are doing basic block profiling, remember a printable version
1682 of the function name. */
1683 if (profile_block_flag)
1684 {
1685 bb_func_label_num =
1686 add_bb_string ((*decl_printable_name) (current_function_decl, 2),
1687 FALSE);
1688 }
1689 }
1690
1691 static void
1692 profile_after_prologue (file)
1693 FILE *file ATTRIBUTE_UNUSED;
1694 {
1695 #ifdef FUNCTION_BLOCK_PROFILER
1696 if (profile_block_flag)
1697 {
1698 FUNCTION_BLOCK_PROFILER (file, count_basic_blocks);
1699 }
1700 #endif /* FUNCTION_BLOCK_PROFILER */
1701
1702 #ifndef PROFILE_BEFORE_PROLOGUE
1703 if (profile_flag)
1704 profile_function (file);
1705 #endif /* not PROFILE_BEFORE_PROLOGUE */
1706 }
1707
1708 static void
1709 profile_function (file)
1710 FILE *file;
1711 {
1712 #ifndef NO_PROFILE_COUNTERS
1713 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1714 #endif
1715 #if defined(ASM_OUTPUT_REG_PUSH)
1716 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1717 int sval = current_function_returns_struct;
1718 #endif
1719 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1720 int cxt = current_function_needs_context;
1721 #endif
1722 #endif /* ASM_OUTPUT_REG_PUSH */
1723
1724 #ifndef NO_PROFILE_COUNTERS
1725 data_section ();
1726 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1727 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", profile_label_no);
1728 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, 1);
1729 #endif
1730
1731 function_section (current_function_decl);
1732
1733 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1734 if (sval)
1735 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1736 #else
1737 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1738 if (sval)
1739 {
1740 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1741 }
1742 #endif
1743 #endif
1744
1745 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1746 if (cxt)
1747 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1748 #else
1749 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1750 if (cxt)
1751 {
1752 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1753 }
1754 #endif
1755 #endif
1756
1757 FUNCTION_PROFILER (file, profile_label_no);
1758
1759 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1760 if (cxt)
1761 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1762 #else
1763 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1764 if (cxt)
1765 {
1766 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1767 }
1768 #endif
1769 #endif
1770
1771 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1772 if (sval)
1773 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1774 #else
1775 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1776 if (sval)
1777 {
1778 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1779 }
1780 #endif
1781 #endif
1782 }
1783
1784 /* Output assembler code for the end of a function.
1785 For clarity, args are same as those of `final_start_function'
1786 even though not all of them are needed. */
1787
1788 void
1789 final_end_function (first, file, optimize)
1790 rtx first ATTRIBUTE_UNUSED;
1791 FILE *file ATTRIBUTE_UNUSED;
1792 int optimize ATTRIBUTE_UNUSED;
1793 {
1794 app_disable ();
1795
1796 #ifdef SDB_DEBUGGING_INFO
1797 if (write_symbols == SDB_DEBUG)
1798 sdbout_end_function (high_function_linenum);
1799 #endif
1800
1801 #ifdef DWARF_DEBUGGING_INFO
1802 if (write_symbols == DWARF_DEBUG)
1803 dwarfout_end_function ();
1804 #endif
1805
1806 #ifdef XCOFF_DEBUGGING_INFO
1807 if (write_symbols == XCOFF_DEBUG)
1808 xcoffout_end_function (file, high_function_linenum);
1809 #endif
1810
1811 #ifdef FUNCTION_EPILOGUE
1812 /* Finally, output the function epilogue:
1813 code to restore the stack frame and return to the caller. */
1814 FUNCTION_EPILOGUE (file, get_frame_size ());
1815 #endif
1816
1817 #ifdef SDB_DEBUGGING_INFO
1818 if (write_symbols == SDB_DEBUG)
1819 sdbout_end_epilogue ();
1820 #endif
1821
1822 #ifdef DWARF_DEBUGGING_INFO
1823 if (write_symbols == DWARF_DEBUG)
1824 dwarfout_end_epilogue ();
1825 #endif
1826
1827 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
1828 if (dwarf2out_do_frame ())
1829 dwarf2out_end_epilogue ();
1830 #endif
1831
1832 #ifdef XCOFF_DEBUGGING_INFO
1833 if (write_symbols == XCOFF_DEBUG)
1834 xcoffout_end_epilogue (file);
1835 #endif
1836
1837 bb_func_label_num = -1; /* not in function, nuke label # */
1838
1839 #ifdef IA64_UNWIND_INFO
1840 output_function_exception_table ();
1841 #endif
1842
1843 /* If FUNCTION_EPILOGUE is not defined, then the function body
1844 itself contains return instructions wherever needed. */
1845 }
1846 \f
1847 /* Add a block to the linked list that remembers the current line/file/function
1848 for basic block profiling. Emit the label in front of the basic block and
1849 the instructions that increment the count field. */
1850
1851 static void
1852 add_bb (file)
1853 FILE *file;
1854 {
1855 struct bb_list *ptr =
1856 (struct bb_list *) permalloc (sizeof (struct bb_list));
1857
1858 /* Add basic block to linked list. */
1859 ptr->next = 0;
1860 ptr->line_num = last_linenum;
1861 ptr->file_label_num = bb_file_label_num;
1862 ptr->func_label_num = bb_func_label_num;
1863 *bb_tail = ptr;
1864 bb_tail = &ptr->next;
1865
1866 /* Enable the table of basic-block use counts
1867 to point at the code it applies to. */
1868 ASM_OUTPUT_INTERNAL_LABEL (file, "LPB", count_basic_blocks);
1869
1870 /* Before first insn of this basic block, increment the
1871 count of times it was entered. */
1872 #ifdef BLOCK_PROFILER
1873 BLOCK_PROFILER (file, count_basic_blocks);
1874 #endif
1875 #ifdef HAVE_cc0
1876 CC_STATUS_INIT;
1877 #endif
1878
1879 new_block = 0;
1880 count_basic_blocks++;
1881 }
1882
1883 /* Add a string to be used for basic block profiling. */
1884
1885 static int
1886 add_bb_string (string, perm_p)
1887 const char *string;
1888 int perm_p;
1889 {
1890 int len;
1891 struct bb_str *ptr = 0;
1892
1893 if (!string)
1894 {
1895 string = "<unknown>";
1896 perm_p = TRUE;
1897 }
1898
1899 /* Allocate a new string if the current string isn't permanent. If
1900 the string is permanent search for the same string in other
1901 allocations. */
1902
1903 len = strlen (string) + 1;
1904 if (!perm_p)
1905 {
1906 char *p = (char *) permalloc (len);
1907 bcopy (string, p, len);
1908 string = p;
1909 }
1910 else
1911 for (ptr = sbb_head; ptr != (struct bb_str *) 0; ptr = ptr->next)
1912 if (ptr->string == string)
1913 break;
1914
1915 /* Allocate a new string block if we need to. */
1916 if (!ptr)
1917 {
1918 ptr = (struct bb_str *) permalloc (sizeof (*ptr));
1919 ptr->next = 0;
1920 ptr->length = len;
1921 ptr->label_num = sbb_label_num++;
1922 ptr->string = string;
1923 *sbb_tail = ptr;
1924 sbb_tail = &ptr->next;
1925 }
1926
1927 return ptr->label_num;
1928 }
1929 \f
1930 /* Output assembler code for some insns: all or part of a function.
1931 For description of args, see `final_start_function', above.
1932
1933 PRESCAN is 1 if we are not really outputting,
1934 just scanning as if we were outputting.
1935 Prescanning deletes and rearranges insns just like ordinary output.
1936 PRESCAN is -2 if we are outputting after having prescanned.
1937 In this case, don't try to delete or rearrange insns
1938 because that has already been done.
1939 Prescanning is done only on certain machines. */
1940
1941 void
1942 final (first, file, optimize, prescan)
1943 rtx first;
1944 FILE *file;
1945 int optimize;
1946 int prescan;
1947 {
1948 register rtx insn;
1949 int max_line = 0;
1950 int max_uid = 0;
1951
1952 last_ignored_compare = 0;
1953 new_block = 1;
1954
1955 check_exception_handler_labels ();
1956
1957 /* Make a map indicating which line numbers appear in this function.
1958 When producing SDB debugging info, delete troublesome line number
1959 notes from inlined functions in other files as well as duplicate
1960 line number notes. */
1961 #ifdef SDB_DEBUGGING_INFO
1962 if (write_symbols == SDB_DEBUG)
1963 {
1964 rtx last = 0;
1965 for (insn = first; insn; insn = NEXT_INSN (insn))
1966 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1967 {
1968 if ((RTX_INTEGRATED_P (insn)
1969 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1970 || (last != 0
1971 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1972 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1973 {
1974 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1975 NOTE_SOURCE_FILE (insn) = 0;
1976 continue;
1977 }
1978 last = insn;
1979 if (NOTE_LINE_NUMBER (insn) > max_line)
1980 max_line = NOTE_LINE_NUMBER (insn);
1981 }
1982 }
1983 else
1984 #endif
1985 {
1986 for (insn = first; insn; insn = NEXT_INSN (insn))
1987 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1988 max_line = NOTE_LINE_NUMBER (insn);
1989 }
1990
1991 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1992
1993 for (insn = first; insn; insn = NEXT_INSN (insn))
1994 {
1995 if (INSN_UID (insn) > max_uid) /* find largest UID */
1996 max_uid = INSN_UID (insn);
1997 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1998 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1999 #ifdef HAVE_cc0
2000 /* If CC tracking across branches is enabled, record the insn which
2001 jumps to each branch only reached from one place. */
2002 if (optimize && GET_CODE (insn) == JUMP_INSN)
2003 {
2004 rtx lab = JUMP_LABEL (insn);
2005 if (lab && LABEL_NUSES (lab) == 1)
2006 {
2007 LABEL_REFS (lab) = insn;
2008 }
2009 }
2010 #endif
2011 }
2012
2013 /* Initialize insn_eh_region table if eh is being used. */
2014
2015 init_insn_eh_region (first, max_uid);
2016
2017 init_recog ();
2018
2019 CC_STATUS_INIT;
2020
2021 /* Output the insns. */
2022 for (insn = NEXT_INSN (first); insn;)
2023 {
2024 #ifdef HAVE_ATTR_length
2025 if (INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2026 {
2027 #ifdef STACK_REGS
2028 /* Irritatingly, the reg-stack pass is creating new instructions
2029 and because of REG_DEAD note abuse it has to run after
2030 shorten_branches. Fake address of -1 then. */
2031 insn_current_address = -1;
2032 #else
2033 /* This can be triggered by bugs elsewhere in the compiler if
2034 new insns are created after init_insn_lengths is called. */
2035 abort ();
2036 #endif
2037 }
2038 else
2039 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2040 #endif /* HAVE_ATTR_length */
2041
2042 insn = final_scan_insn (insn, file, optimize, prescan, 0);
2043 }
2044
2045 /* Do basic-block profiling here
2046 if the last insn was a conditional branch. */
2047 if (profile_block_flag && new_block)
2048 add_bb (file);
2049
2050 free_insn_eh_region ();
2051 free (line_note_exists);
2052 line_note_exists = NULL;
2053 }
2054 \f
2055 const char *
2056 get_insn_template (code, insn)
2057 int code;
2058 rtx insn;
2059 {
2060 const void *output = insn_data[code].output;
2061 switch (insn_data[code].output_format)
2062 {
2063 case INSN_OUTPUT_FORMAT_SINGLE:
2064 return (const char *) output;
2065 case INSN_OUTPUT_FORMAT_MULTI:
2066 return ((const char *const *) output)[which_alternative];
2067 case INSN_OUTPUT_FORMAT_FUNCTION:
2068 if (insn == NULL)
2069 abort ();
2070 return (*(insn_output_fn) output) (recog_data.operand, insn);
2071
2072 default:
2073 abort ();
2074 }
2075 }
2076
2077 /* The final scan for one insn, INSN.
2078 Args are same as in `final', except that INSN
2079 is the insn being scanned.
2080 Value returned is the next insn to be scanned.
2081
2082 NOPEEPHOLES is the flag to disallow peephole processing (currently
2083 used for within delayed branch sequence output). */
2084
2085 rtx
2086 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
2087 rtx insn;
2088 FILE *file;
2089 int optimize ATTRIBUTE_UNUSED;
2090 int prescan;
2091 int nopeepholes ATTRIBUTE_UNUSED;
2092 {
2093 #ifdef HAVE_cc0
2094 rtx set;
2095 #endif
2096
2097 insn_counter++;
2098
2099 /* Ignore deleted insns. These can occur when we split insns (due to a
2100 template of "#") while not optimizing. */
2101 if (INSN_DELETED_P (insn))
2102 return NEXT_INSN (insn);
2103
2104 switch (GET_CODE (insn))
2105 {
2106 case NOTE:
2107 if (prescan > 0)
2108 break;
2109
2110 switch (NOTE_LINE_NUMBER (insn))
2111 {
2112 case NOTE_INSN_DELETED:
2113 case NOTE_INSN_LOOP_BEG:
2114 case NOTE_INSN_LOOP_END:
2115 case NOTE_INSN_LOOP_CONT:
2116 case NOTE_INSN_LOOP_VTOP:
2117 case NOTE_INSN_FUNCTION_END:
2118 case NOTE_INSN_SETJMP:
2119 case NOTE_INSN_REPEATED_LINE_NUMBER:
2120 case NOTE_INSN_RANGE_BEG:
2121 case NOTE_INSN_RANGE_END:
2122 case NOTE_INSN_LIVE:
2123 case NOTE_INSN_EXPECTED_VALUE:
2124 break;
2125
2126 case NOTE_INSN_BASIC_BLOCK:
2127 if (flag_debug_asm)
2128 fprintf (asm_out_file, "\t%s basic block %d\n",
2129 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2130 break;
2131
2132 case NOTE_INSN_EH_REGION_BEG:
2133 if (! exceptions_via_longjmp)
2134 {
2135 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHB", NOTE_EH_HANDLER (insn));
2136 if (! flag_new_exceptions)
2137 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2138 #ifdef ASM_OUTPUT_EH_REGION_BEG
2139 ASM_OUTPUT_EH_REGION_BEG (file, NOTE_EH_HANDLER (insn));
2140 #endif
2141 }
2142 break;
2143
2144 case NOTE_INSN_EH_REGION_END:
2145 if (! exceptions_via_longjmp)
2146 {
2147 ASM_OUTPUT_INTERNAL_LABEL (file, "LEHE", NOTE_EH_HANDLER (insn));
2148 if (flag_new_exceptions)
2149 add_eh_table_entry (NOTE_EH_HANDLER (insn));
2150 #ifdef ASM_OUTPUT_EH_REGION_END
2151 ASM_OUTPUT_EH_REGION_END (file, NOTE_EH_HANDLER (insn));
2152 #endif
2153 }
2154 break;
2155
2156 case NOTE_INSN_PROLOGUE_END:
2157 #ifdef FUNCTION_END_PROLOGUE
2158 FUNCTION_END_PROLOGUE (file);
2159 #endif
2160 profile_after_prologue (file);
2161 break;
2162
2163 case NOTE_INSN_EPILOGUE_BEG:
2164 #ifdef FUNCTION_BEGIN_EPILOGUE
2165 FUNCTION_BEGIN_EPILOGUE (file);
2166 #endif
2167 break;
2168
2169 case NOTE_INSN_FUNCTION_BEG:
2170 #if defined(SDB_DEBUGGING_INFO) && defined(MIPS_DEBUGGING_INFO)
2171 /* MIPS stabs require the parameter descriptions to be after the
2172 function entry point rather than before. */
2173 if (write_symbols == SDB_DEBUG)
2174 {
2175 app_disable ();
2176 sdbout_begin_function (last_linenum);
2177 }
2178 #endif
2179 #ifdef DWARF_DEBUGGING_INFO
2180 /* This outputs a marker where the function body starts, so it
2181 must be after the prologue. */
2182 if (write_symbols == DWARF_DEBUG)
2183 {
2184 app_disable ();
2185 dwarfout_begin_function ();
2186 }
2187 #endif
2188 break;
2189
2190 case NOTE_INSN_BLOCK_BEG:
2191 if (debug_info_level == DINFO_LEVEL_NORMAL
2192 || debug_info_level == DINFO_LEVEL_VERBOSE
2193 || write_symbols == DWARF_DEBUG
2194 || write_symbols == DWARF2_DEBUG)
2195 {
2196 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2197
2198 app_disable ();
2199 ++block_depth;
2200 high_block_linenum = last_linenum;
2201
2202 /* Output debugging info about the symbol-block beginning. */
2203 #ifdef SDB_DEBUGGING_INFO
2204 if (write_symbols == SDB_DEBUG)
2205 sdbout_begin_block (file, last_linenum, n);
2206 #endif
2207 #ifdef XCOFF_DEBUGGING_INFO
2208 if (write_symbols == XCOFF_DEBUG)
2209 xcoffout_begin_block (file, last_linenum, n);
2210 #endif
2211 #ifdef DBX_DEBUGGING_INFO
2212 if (write_symbols == DBX_DEBUG)
2213 ASM_OUTPUT_INTERNAL_LABEL (file, "LBB", n);
2214 #endif
2215 #ifdef DWARF_DEBUGGING_INFO
2216 if (write_symbols == DWARF_DEBUG)
2217 dwarfout_begin_block (n);
2218 #endif
2219 #ifdef DWARF2_DEBUGGING_INFO
2220 if (write_symbols == DWARF2_DEBUG)
2221 dwarf2out_begin_block (n);
2222 #endif
2223
2224 /* Mark this block as output. */
2225 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2226 }
2227 break;
2228
2229 case NOTE_INSN_BLOCK_END:
2230 if (debug_info_level == DINFO_LEVEL_NORMAL
2231 || debug_info_level == DINFO_LEVEL_VERBOSE
2232 || write_symbols == DWARF_DEBUG
2233 || write_symbols == DWARF2_DEBUG)
2234 {
2235 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2236
2237 app_disable ();
2238
2239 /* End of a symbol-block. */
2240 --block_depth;
2241 if (block_depth < 0)
2242 abort ();
2243
2244 #ifdef XCOFF_DEBUGGING_INFO
2245 if (write_symbols == XCOFF_DEBUG)
2246 xcoffout_end_block (file, high_block_linenum, n);
2247 #endif
2248 #ifdef DBX_DEBUGGING_INFO
2249 if (write_symbols == DBX_DEBUG)
2250 ASM_OUTPUT_INTERNAL_LABEL (file, "LBE", n);
2251 #endif
2252 #ifdef SDB_DEBUGGING_INFO
2253 if (write_symbols == SDB_DEBUG)
2254 sdbout_end_block (file, high_block_linenum, n);
2255 #endif
2256 #ifdef DWARF_DEBUGGING_INFO
2257 if (write_symbols == DWARF_DEBUG)
2258 dwarfout_end_block (n);
2259 #endif
2260 #ifdef DWARF2_DEBUGGING_INFO
2261 if (write_symbols == DWARF2_DEBUG)
2262 dwarf2out_end_block (n);
2263 #endif
2264 }
2265 break;
2266
2267 case NOTE_INSN_DELETED_LABEL:
2268 /* Emit the label. We may have deleted the CODE_LABEL because
2269 the label could be proved to be unreachable, though still
2270 referenced (in the form of having its address taken. */
2271 /* ??? Figure out how not to do this unconditionally. This
2272 interferes with bundling on LIW targets. */
2273 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2274
2275 if (debug_info_level == DINFO_LEVEL_NORMAL
2276 || debug_info_level == DINFO_LEVEL_VERBOSE)
2277 {
2278 #ifdef DWARF_DEBUGGING_INFO
2279 if (write_symbols == DWARF_DEBUG)
2280 dwarfout_label (insn);
2281 #endif
2282 #ifdef DWARF2_DEBUGGING_INFO
2283 if (write_symbols == DWARF2_DEBUG)
2284 dwarf2out_label (insn);
2285 #endif
2286 }
2287 break;
2288
2289 case 0:
2290 break;
2291
2292 default:
2293 if (NOTE_LINE_NUMBER (insn) <= 0)
2294 abort ();
2295
2296 /* This note is a line-number. */
2297 {
2298 register rtx note;
2299 int note_after = 0;
2300
2301 /* If there is anything real after this note, output it.
2302 If another line note follows, omit this one. */
2303 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2304 {
2305 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2306 break;
2307
2308 /* These types of notes can be significant
2309 so make sure the preceding line number stays. */
2310 else if (GET_CODE (note) == NOTE
2311 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2312 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2313 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2314 break;
2315 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2316 {
2317 /* Another line note follows; we can delete this note
2318 if no intervening line numbers have notes elsewhere. */
2319 int num;
2320 for (num = NOTE_LINE_NUMBER (insn) + 1;
2321 num < NOTE_LINE_NUMBER (note);
2322 num++)
2323 if (line_note_exists[num])
2324 break;
2325
2326 if (num >= NOTE_LINE_NUMBER (note))
2327 note_after = 1;
2328 break;
2329 }
2330 }
2331
2332 /* Output this line note if it is the first or the last line
2333 note in a row. */
2334 if (!note_after)
2335 output_source_line (file, insn);
2336 }
2337 break;
2338 }
2339 break;
2340
2341 case BARRIER:
2342 #if defined (DWARF2_UNWIND_INFO)
2343 /* If we push arguments, we need to check all insns for stack
2344 adjustments. */
2345 if (!ACCUMULATE_OUTGOING_ARGS && dwarf2out_do_frame ())
2346 dwarf2out_frame_debug (insn);
2347 #endif
2348 break;
2349
2350 case CODE_LABEL:
2351 /* The target port might emit labels in the output function for
2352 some insn, e.g. sh.c output_branchy_insn. */
2353 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2354 {
2355 int align = LABEL_TO_ALIGNMENT (insn);
2356 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2357 int max_skip = LABEL_TO_MAX_SKIP (insn);
2358 #endif
2359
2360 if (align && NEXT_INSN (insn))
2361 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2362 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2363 #else
2364 ASM_OUTPUT_ALIGN (file, align);
2365 #endif
2366 }
2367 #ifdef HAVE_cc0
2368 CC_STATUS_INIT;
2369 /* If this label is reached from only one place, set the condition
2370 codes from the instruction just before the branch. */
2371
2372 /* Disabled because some insns set cc_status in the C output code
2373 and NOTICE_UPDATE_CC alone can set incorrect status. */
2374 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2375 {
2376 rtx jump = LABEL_REFS (insn);
2377 rtx barrier = prev_nonnote_insn (insn);
2378 rtx prev;
2379 /* If the LABEL_REFS field of this label has been set to point
2380 at a branch, the predecessor of the branch is a regular
2381 insn, and that branch is the only way to reach this label,
2382 set the condition codes based on the branch and its
2383 predecessor. */
2384 if (barrier && GET_CODE (barrier) == BARRIER
2385 && jump && GET_CODE (jump) == JUMP_INSN
2386 && (prev = prev_nonnote_insn (jump))
2387 && GET_CODE (prev) == INSN)
2388 {
2389 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2390 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2391 }
2392 }
2393 #endif
2394 if (prescan > 0)
2395 break;
2396 new_block = 1;
2397
2398 #ifdef FINAL_PRESCAN_LABEL
2399 FINAL_PRESCAN_INSN (insn, NULL_PTR, 0);
2400 #endif
2401
2402 #ifdef SDB_DEBUGGING_INFO
2403 if (write_symbols == SDB_DEBUG && LABEL_NAME (insn))
2404 sdbout_label (insn);
2405 #endif
2406 #ifdef DWARF_DEBUGGING_INFO
2407 if (write_symbols == DWARF_DEBUG && LABEL_NAME (insn))
2408 dwarfout_label (insn);
2409 #endif
2410 #ifdef DWARF2_DEBUGGING_INFO
2411 if (write_symbols == DWARF2_DEBUG && LABEL_NAME (insn))
2412 dwarf2out_label (insn);
2413 #endif
2414 if (app_on)
2415 {
2416 fputs (ASM_APP_OFF, file);
2417 app_on = 0;
2418 }
2419 if (NEXT_INSN (insn) != 0
2420 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2421 {
2422 rtx nextbody = PATTERN (NEXT_INSN (insn));
2423
2424 /* If this label is followed by a jump-table,
2425 make sure we put the label in the read-only section. Also
2426 possibly write the label and jump table together. */
2427
2428 if (GET_CODE (nextbody) == ADDR_VEC
2429 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2430 {
2431 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2432 /* In this case, the case vector is being moved by the
2433 target, so don't output the label at all. Leave that
2434 to the back end macros. */
2435 #else
2436 if (! JUMP_TABLES_IN_TEXT_SECTION)
2437 {
2438 readonly_data_section ();
2439 #ifdef READONLY_DATA_SECTION
2440 ASM_OUTPUT_ALIGN (file,
2441 exact_log2 (BIGGEST_ALIGNMENT
2442 / BITS_PER_UNIT));
2443 #endif /* READONLY_DATA_SECTION */
2444 }
2445 else
2446 function_section (current_function_decl);
2447
2448 #ifdef ASM_OUTPUT_CASE_LABEL
2449 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2450 NEXT_INSN (insn));
2451 #else
2452 if (LABEL_ALTERNATE_NAME (insn))
2453 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2454 else
2455 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2456 #endif
2457 #endif
2458 break;
2459 }
2460 }
2461 if (LABEL_ALTERNATE_NAME (insn))
2462 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2463 else
2464 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2465 break;
2466
2467 default:
2468 {
2469 register rtx body = PATTERN (insn);
2470 int insn_code_number;
2471 const char *template;
2472 #ifdef HAVE_cc0
2473 rtx note;
2474 #endif
2475
2476 /* An INSN, JUMP_INSN or CALL_INSN.
2477 First check for special kinds that recog doesn't recognize. */
2478
2479 if (GET_CODE (body) == USE /* These are just declarations */
2480 || GET_CODE (body) == CLOBBER)
2481 break;
2482
2483 #ifdef HAVE_cc0
2484 /* If there is a REG_CC_SETTER note on this insn, it means that
2485 the setting of the condition code was done in the delay slot
2486 of the insn that branched here. So recover the cc status
2487 from the insn that set it. */
2488
2489 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2490 if (note)
2491 {
2492 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2493 cc_prev_status = cc_status;
2494 }
2495 #endif
2496
2497 /* Detect insns that are really jump-tables
2498 and output them as such. */
2499
2500 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2501 {
2502 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2503 register int vlen, idx;
2504 #endif
2505
2506 if (prescan > 0)
2507 break;
2508
2509 if (app_on)
2510 {
2511 fputs (ASM_APP_OFF, file);
2512 app_on = 0;
2513 }
2514
2515 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2516 if (GET_CODE (body) == ADDR_VEC)
2517 {
2518 #ifdef ASM_OUTPUT_ADDR_VEC
2519 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2520 #else
2521 abort ();
2522 #endif
2523 }
2524 else
2525 {
2526 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2527 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2528 #else
2529 abort ();
2530 #endif
2531 }
2532 #else
2533 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2534 for (idx = 0; idx < vlen; idx++)
2535 {
2536 if (GET_CODE (body) == ADDR_VEC)
2537 {
2538 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2539 ASM_OUTPUT_ADDR_VEC_ELT
2540 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2541 #else
2542 abort ();
2543 #endif
2544 }
2545 else
2546 {
2547 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2548 ASM_OUTPUT_ADDR_DIFF_ELT
2549 (file,
2550 body,
2551 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2552 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2553 #else
2554 abort ();
2555 #endif
2556 }
2557 }
2558 #ifdef ASM_OUTPUT_CASE_END
2559 ASM_OUTPUT_CASE_END (file,
2560 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2561 insn);
2562 #endif
2563 #endif
2564
2565 function_section (current_function_decl);
2566
2567 break;
2568 }
2569
2570 /* Do basic-block profiling when we reach a new block.
2571 Done here to avoid jump tables. */
2572 if (profile_block_flag && new_block)
2573 add_bb (file);
2574
2575 if (GET_CODE (body) == ASM_INPUT)
2576 {
2577 /* There's no telling what that did to the condition codes. */
2578 CC_STATUS_INIT;
2579 if (prescan > 0)
2580 break;
2581 if (! app_on)
2582 {
2583 fputs (ASM_APP_ON, file);
2584 app_on = 1;
2585 }
2586 fprintf (asm_out_file, "\t%s\n", XSTR (body, 0));
2587 break;
2588 }
2589
2590 /* Detect `asm' construct with operands. */
2591 if (asm_noperands (body) >= 0)
2592 {
2593 unsigned int noperands = asm_noperands (body);
2594 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2595 const char *string;
2596
2597 /* There's no telling what that did to the condition codes. */
2598 CC_STATUS_INIT;
2599 if (prescan > 0)
2600 break;
2601
2602 if (! app_on)
2603 {
2604 fputs (ASM_APP_ON, file);
2605 app_on = 1;
2606 }
2607
2608 /* Get out the operand values. */
2609 string = decode_asm_operands (body, ops, NULL_PTR,
2610 NULL_PTR, NULL_PTR);
2611 /* Inhibit aborts on what would otherwise be compiler bugs. */
2612 insn_noperands = noperands;
2613 this_is_asm_operands = insn;
2614
2615 /* Output the insn using them. */
2616 output_asm_insn (string, ops);
2617 this_is_asm_operands = 0;
2618 break;
2619 }
2620
2621 if (prescan <= 0 && app_on)
2622 {
2623 fputs (ASM_APP_OFF, file);
2624 app_on = 0;
2625 }
2626
2627 if (GET_CODE (body) == SEQUENCE)
2628 {
2629 /* A delayed-branch sequence */
2630 register int i;
2631 rtx next;
2632
2633 if (prescan > 0)
2634 break;
2635 final_sequence = body;
2636
2637 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2638 force the restoration of a comparison that was previously
2639 thought unnecessary. If that happens, cancel this sequence
2640 and cause that insn to be restored. */
2641
2642 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2643 if (next != XVECEXP (body, 0, 1))
2644 {
2645 final_sequence = 0;
2646 return next;
2647 }
2648
2649 for (i = 1; i < XVECLEN (body, 0); i++)
2650 {
2651 rtx insn = XVECEXP (body, 0, i);
2652 rtx next = NEXT_INSN (insn);
2653 /* We loop in case any instruction in a delay slot gets
2654 split. */
2655 do
2656 insn = final_scan_insn (insn, file, 0, prescan, 1);
2657 while (insn != next);
2658 }
2659 #ifdef DBR_OUTPUT_SEQEND
2660 DBR_OUTPUT_SEQEND (file);
2661 #endif
2662 final_sequence = 0;
2663
2664 /* If the insn requiring the delay slot was a CALL_INSN, the
2665 insns in the delay slot are actually executed before the
2666 called function. Hence we don't preserve any CC-setting
2667 actions in these insns and the CC must be marked as being
2668 clobbered by the function. */
2669 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2670 {
2671 CC_STATUS_INIT;
2672 }
2673
2674 /* Following a conditional branch sequence, we have a new basic
2675 block. */
2676 if (profile_block_flag)
2677 {
2678 rtx insn = XVECEXP (body, 0, 0);
2679 rtx body = PATTERN (insn);
2680
2681 if ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2682 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2683 || (GET_CODE (insn) == JUMP_INSN
2684 && GET_CODE (body) == PARALLEL
2685 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2686 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF))
2687 new_block = 1;
2688 }
2689 break;
2690 }
2691
2692 /* We have a real machine instruction as rtl. */
2693
2694 body = PATTERN (insn);
2695
2696 #ifdef HAVE_cc0
2697 set = single_set (insn);
2698
2699 /* Check for redundant test and compare instructions
2700 (when the condition codes are already set up as desired).
2701 This is done only when optimizing; if not optimizing,
2702 it should be possible for the user to alter a variable
2703 with the debugger in between statements
2704 and the next statement should reexamine the variable
2705 to compute the condition codes. */
2706
2707 if (optimize)
2708 {
2709 #if 0
2710 rtx set = single_set (insn);
2711 #endif
2712
2713 if (set
2714 && GET_CODE (SET_DEST (set)) == CC0
2715 && insn != last_ignored_compare)
2716 {
2717 if (GET_CODE (SET_SRC (set)) == SUBREG)
2718 SET_SRC (set) = alter_subreg (SET_SRC (set));
2719 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2720 {
2721 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2722 XEXP (SET_SRC (set), 0)
2723 = alter_subreg (XEXP (SET_SRC (set), 0));
2724 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2725 XEXP (SET_SRC (set), 1)
2726 = alter_subreg (XEXP (SET_SRC (set), 1));
2727 }
2728 if ((cc_status.value1 != 0
2729 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2730 || (cc_status.value2 != 0
2731 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2732 {
2733 /* Don't delete insn if it has an addressing side-effect. */
2734 if (! FIND_REG_INC_NOTE (insn, 0)
2735 /* or if anything in it is volatile. */
2736 && ! volatile_refs_p (PATTERN (insn)))
2737 {
2738 /* We don't really delete the insn; just ignore it. */
2739 last_ignored_compare = insn;
2740 break;
2741 }
2742 }
2743 }
2744 }
2745 #endif
2746
2747 /* Following a conditional branch, we have a new basic block.
2748 But if we are inside a sequence, the new block starts after the
2749 last insn of the sequence. */
2750 if (profile_block_flag && final_sequence == 0
2751 && ((GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == SET
2752 && GET_CODE (SET_SRC (body)) != LABEL_REF)
2753 || (GET_CODE (insn) == JUMP_INSN && GET_CODE (body) == PARALLEL
2754 && GET_CODE (XVECEXP (body, 0, 0)) == SET
2755 && GET_CODE (SET_SRC (XVECEXP (body, 0, 0))) != LABEL_REF)))
2756 new_block = 1;
2757
2758 #ifndef STACK_REGS
2759 /* Don't bother outputting obvious no-ops, even without -O.
2760 This optimization is fast and doesn't interfere with debugging.
2761 Don't do this if the insn is in a delay slot, since this
2762 will cause an improper number of delay insns to be written. */
2763 if (final_sequence == 0
2764 && prescan >= 0
2765 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2766 && GET_CODE (SET_SRC (body)) == REG
2767 && GET_CODE (SET_DEST (body)) == REG
2768 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2769 break;
2770 #endif
2771
2772 #ifdef HAVE_cc0
2773 /* If this is a conditional branch, maybe modify it
2774 if the cc's are in a nonstandard state
2775 so that it accomplishes the same thing that it would
2776 do straightforwardly if the cc's were set up normally. */
2777
2778 if (cc_status.flags != 0
2779 && GET_CODE (insn) == JUMP_INSN
2780 && GET_CODE (body) == SET
2781 && SET_DEST (body) == pc_rtx
2782 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2783 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2784 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2785 /* This is done during prescan; it is not done again
2786 in final scan when prescan has been done. */
2787 && prescan >= 0)
2788 {
2789 /* This function may alter the contents of its argument
2790 and clear some of the cc_status.flags bits.
2791 It may also return 1 meaning condition now always true
2792 or -1 meaning condition now always false
2793 or 2 meaning condition nontrivial but altered. */
2794 register int result = alter_cond (XEXP (SET_SRC (body), 0));
2795 /* If condition now has fixed value, replace the IF_THEN_ELSE
2796 with its then-operand or its else-operand. */
2797 if (result == 1)
2798 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2799 if (result == -1)
2800 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2801
2802 /* The jump is now either unconditional or a no-op.
2803 If it has become a no-op, don't try to output it.
2804 (It would not be recognized.) */
2805 if (SET_SRC (body) == pc_rtx)
2806 {
2807 PUT_CODE (insn, NOTE);
2808 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2809 NOTE_SOURCE_FILE (insn) = 0;
2810 break;
2811 }
2812 else if (GET_CODE (SET_SRC (body)) == RETURN)
2813 /* Replace (set (pc) (return)) with (return). */
2814 PATTERN (insn) = body = SET_SRC (body);
2815
2816 /* Rerecognize the instruction if it has changed. */
2817 if (result != 0)
2818 INSN_CODE (insn) = -1;
2819 }
2820
2821 /* Make same adjustments to instructions that examine the
2822 condition codes without jumping and instructions that
2823 handle conditional moves (if this machine has either one). */
2824
2825 if (cc_status.flags != 0
2826 && set != 0)
2827 {
2828 rtx cond_rtx, then_rtx, else_rtx;
2829
2830 if (GET_CODE (insn) != JUMP_INSN
2831 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2832 {
2833 cond_rtx = XEXP (SET_SRC (set), 0);
2834 then_rtx = XEXP (SET_SRC (set), 1);
2835 else_rtx = XEXP (SET_SRC (set), 2);
2836 }
2837 else
2838 {
2839 cond_rtx = SET_SRC (set);
2840 then_rtx = const_true_rtx;
2841 else_rtx = const0_rtx;
2842 }
2843
2844 switch (GET_CODE (cond_rtx))
2845 {
2846 case GTU:
2847 case GT:
2848 case LTU:
2849 case LT:
2850 case GEU:
2851 case GE:
2852 case LEU:
2853 case LE:
2854 case EQ:
2855 case NE:
2856 {
2857 register int result;
2858 if (XEXP (cond_rtx, 0) != cc0_rtx)
2859 break;
2860 result = alter_cond (cond_rtx);
2861 if (result == 1)
2862 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2863 else if (result == -1)
2864 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2865 else if (result == 2)
2866 INSN_CODE (insn) = -1;
2867 if (SET_DEST (set) == SET_SRC (set))
2868 {
2869 PUT_CODE (insn, NOTE);
2870 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2871 NOTE_SOURCE_FILE (insn) = 0;
2872 }
2873 }
2874 break;
2875
2876 default:
2877 break;
2878 }
2879 }
2880
2881 #endif
2882
2883 #ifdef HAVE_peephole
2884 /* Do machine-specific peephole optimizations if desired. */
2885
2886 if (optimize && !flag_no_peephole && !nopeepholes)
2887 {
2888 rtx next = peephole (insn);
2889 /* When peepholing, if there were notes within the peephole,
2890 emit them before the peephole. */
2891 if (next != 0 && next != NEXT_INSN (insn))
2892 {
2893 rtx prev = PREV_INSN (insn);
2894 rtx note;
2895
2896 for (note = NEXT_INSN (insn); note != next;
2897 note = NEXT_INSN (note))
2898 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2899
2900 /* In case this is prescan, put the notes
2901 in proper position for later rescan. */
2902 note = NEXT_INSN (insn);
2903 PREV_INSN (note) = prev;
2904 NEXT_INSN (prev) = note;
2905 NEXT_INSN (PREV_INSN (next)) = insn;
2906 PREV_INSN (insn) = PREV_INSN (next);
2907 NEXT_INSN (insn) = next;
2908 PREV_INSN (next) = insn;
2909 }
2910
2911 /* PEEPHOLE might have changed this. */
2912 body = PATTERN (insn);
2913 }
2914 #endif
2915
2916 /* Try to recognize the instruction.
2917 If successful, verify that the operands satisfy the
2918 constraints for the instruction. Crash if they don't,
2919 since `reload' should have changed them so that they do. */
2920
2921 insn_code_number = recog_memoized (insn);
2922 extract_insn (insn);
2923 cleanup_subreg_operands (insn);
2924
2925 if (! constrain_operands (1))
2926 fatal_insn_not_found (insn);
2927
2928 /* Some target machines need to prescan each insn before
2929 it is output. */
2930
2931 #ifdef FINAL_PRESCAN_INSN
2932 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2933 #endif
2934
2935 #ifdef HAVE_conditional_execution
2936 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2937 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2938 else
2939 current_insn_predicate = NULL_RTX;
2940 #endif
2941
2942 #ifdef HAVE_cc0
2943 cc_prev_status = cc_status;
2944
2945 /* Update `cc_status' for this instruction.
2946 The instruction's output routine may change it further.
2947 If the output routine for a jump insn needs to depend
2948 on the cc status, it should look at cc_prev_status. */
2949
2950 NOTICE_UPDATE_CC (body, insn);
2951 #endif
2952
2953 current_output_insn = debug_insn = insn;
2954
2955 #if defined (DWARF2_UNWIND_INFO)
2956 /* If we push arguments, we want to know where the calls are. */
2957 if (!ACCUMULATE_OUTGOING_ARGS && GET_CODE (insn) == CALL_INSN
2958 && dwarf2out_do_frame ())
2959 dwarf2out_frame_debug (insn);
2960 #endif
2961
2962 /* Find the proper template for this insn. */
2963 template = get_insn_template (insn_code_number, insn);
2964
2965 /* If the C code returns 0, it means that it is a jump insn
2966 which follows a deleted test insn, and that test insn
2967 needs to be reinserted. */
2968 if (template == 0)
2969 {
2970 rtx prev;
2971
2972 if (prev_nonnote_insn (insn) != last_ignored_compare)
2973 abort ();
2974 new_block = 0;
2975
2976 /* We have already processed the notes between the setter and
2977 the user. Make sure we don't process them again, this is
2978 particularly important if one of the notes is a block
2979 scope note or an EH note. */
2980 for (prev = insn;
2981 prev != last_ignored_compare;
2982 prev = PREV_INSN (prev))
2983 {
2984 if (GET_CODE (prev) == NOTE)
2985 {
2986 NOTE_LINE_NUMBER (prev) = NOTE_INSN_DELETED;
2987 NOTE_SOURCE_FILE (prev) = 0;
2988 }
2989 }
2990
2991 return prev;
2992 }
2993
2994 /* If the template is the string "#", it means that this insn must
2995 be split. */
2996 if (template[0] == '#' && template[1] == '\0')
2997 {
2998 rtx new = try_split (body, insn, 0);
2999
3000 /* If we didn't split the insn, go away. */
3001 if (new == insn && PATTERN (new) == body)
3002 fatal_insn ("Could not split insn", insn);
3003
3004 #ifdef HAVE_ATTR_length
3005 /* This instruction should have been split in shorten_branches,
3006 to ensure that we would have valid length info for the
3007 splitees. */
3008 abort ();
3009 #endif
3010
3011 new_block = 0;
3012 return new;
3013 }
3014
3015 if (prescan > 0)
3016 break;
3017
3018 #ifdef IA64_UNWIND_INFO
3019 IA64_UNWIND_EMIT (asm_out_file, insn);
3020 #endif
3021 /* Output assembler code from the template. */
3022
3023 output_asm_insn (template, recog_data.operand);
3024
3025 #if defined (DWARF2_UNWIND_INFO)
3026 /* If we push arguments, we need to check all insns for stack
3027 adjustments. */
3028 if (!ACCUMULATE_OUTGOING_ARGS)
3029 {
3030 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
3031 dwarf2out_frame_debug (insn);
3032 }
3033 else
3034 {
3035 #if defined (HAVE_prologue)
3036 /* If this insn is part of the prologue, emit DWARF v2
3037 call frame info. */
3038 if (RTX_FRAME_RELATED_P (insn) && dwarf2out_do_frame ())
3039 dwarf2out_frame_debug (insn);
3040 #endif
3041 }
3042 #endif
3043
3044 #if 0
3045 /* It's not at all clear why we did this and doing so interferes
3046 with tests we'd like to do to use REG_WAS_0 notes, so let's try
3047 with this out. */
3048
3049 /* Mark this insn as having been output. */
3050 INSN_DELETED_P (insn) = 1;
3051 #endif
3052
3053 current_output_insn = debug_insn = 0;
3054 }
3055 }
3056 return NEXT_INSN (insn);
3057 }
3058 \f
3059 /* Output debugging info to the assembler file FILE
3060 based on the NOTE-insn INSN, assumed to be a line number. */
3061
3062 static void
3063 output_source_line (file, insn)
3064 FILE *file ATTRIBUTE_UNUSED;
3065 rtx insn;
3066 {
3067 register const char *filename = NOTE_SOURCE_FILE (insn);
3068
3069 /* Remember filename for basic block profiling.
3070 Filenames are allocated on the permanent obstack
3071 or are passed in ARGV, so we don't have to save
3072 the string. */
3073
3074 if (profile_block_flag && last_filename != filename)
3075 bb_file_label_num = add_bb_string (filename, TRUE);
3076
3077 last_filename = filename;
3078 last_linenum = NOTE_LINE_NUMBER (insn);
3079 high_block_linenum = MAX (last_linenum, high_block_linenum);
3080 high_function_linenum = MAX (last_linenum, high_function_linenum);
3081
3082 if (write_symbols != NO_DEBUG)
3083 {
3084 #ifdef SDB_DEBUGGING_INFO
3085 if (write_symbols == SDB_DEBUG
3086 #if 0 /* People like having line numbers even in wrong file! */
3087 /* COFF can't handle multiple source files--lose, lose. */
3088 && !strcmp (filename, main_input_filename)
3089 #endif
3090 /* COFF relative line numbers must be positive. */
3091 && last_linenum > sdb_begin_function_line)
3092 {
3093 #ifdef ASM_OUTPUT_SOURCE_LINE
3094 ASM_OUTPUT_SOURCE_LINE (file, last_linenum);
3095 #else
3096 fprintf (file, "\t.ln\t%d\n",
3097 ((sdb_begin_function_line > -1)
3098 ? last_linenum - sdb_begin_function_line : 1));
3099 #endif
3100 }
3101 #endif
3102
3103 #if defined (DBX_DEBUGGING_INFO)
3104 if (write_symbols == DBX_DEBUG)
3105 dbxout_source_line (file, filename, NOTE_LINE_NUMBER (insn));
3106 #endif
3107
3108 #if defined (XCOFF_DEBUGGING_INFO)
3109 if (write_symbols == XCOFF_DEBUG)
3110 xcoffout_source_line (file, filename, insn);
3111 #endif
3112
3113 #ifdef DWARF_DEBUGGING_INFO
3114 if (write_symbols == DWARF_DEBUG)
3115 dwarfout_line (filename, NOTE_LINE_NUMBER (insn));
3116 #endif
3117
3118 #ifdef DWARF2_DEBUGGING_INFO
3119 if (write_symbols == DWARF2_DEBUG)
3120 dwarf2out_line (filename, NOTE_LINE_NUMBER (insn));
3121 #endif
3122 }
3123 }
3124 \f
3125 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3126 directly to the desired hard register. */
3127
3128 void
3129 cleanup_subreg_operands (insn)
3130 rtx insn;
3131 {
3132 int i;
3133
3134 extract_insn (insn);
3135 for (i = 0; i < recog_data.n_operands; i++)
3136 {
3137 if (GET_CODE (recog_data.operand[i]) == SUBREG)
3138 recog_data.operand[i] = alter_subreg (recog_data.operand[i]);
3139 else if (GET_CODE (recog_data.operand[i]) == PLUS
3140 || GET_CODE (recog_data.operand[i]) == MULT)
3141 recog_data.operand[i] = walk_alter_subreg (recog_data.operand[i]);
3142 }
3143
3144 for (i = 0; i < recog_data.n_dups; i++)
3145 {
3146 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3147 *recog_data.dup_loc[i] = alter_subreg (*recog_data.dup_loc[i]);
3148 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3149 || GET_CODE (*recog_data.dup_loc[i]) == MULT)
3150 *recog_data.dup_loc[i] = walk_alter_subreg (*recog_data.dup_loc[i]);
3151 }
3152 }
3153
3154 /* If X is a SUBREG, replace it with a REG or a MEM,
3155 based on the thing it is a subreg of. */
3156
3157 rtx
3158 alter_subreg (x)
3159 register rtx x;
3160 {
3161 register rtx y = SUBREG_REG (x);
3162
3163 if (GET_CODE (y) == SUBREG)
3164 y = alter_subreg (y);
3165
3166 /* If reload is operating, we may be replacing inside this SUBREG.
3167 Check for that and make a new one if so. */
3168 if (reload_in_progress && find_replacement (&SUBREG_REG (x)) != 0)
3169 x = copy_rtx (x);
3170
3171 if (GET_CODE (y) == REG)
3172 {
3173 int regno;
3174 /* If the word size is larger than the size of this register,
3175 adjust the register number to compensate. */
3176 /* ??? Note that this just catches stragglers created by/for
3177 integrate. It would be better if we either caught these
3178 earlier, or kept _all_ subregs until now and eliminate
3179 gen_lowpart and friends. */
3180
3181 #ifdef ALTER_HARD_SUBREG
3182 regno = ALTER_HARD_SUBREG (GET_MODE (x), SUBREG_WORD (x),
3183 GET_MODE (y), REGNO (y));
3184 #else
3185 regno = REGNO (y) + SUBREG_WORD (x);
3186 #endif
3187 PUT_CODE (x, REG);
3188 REGNO (x) = regno;
3189 /* This field has a different meaning for REGs and SUBREGs. Make sure
3190 to clear it! */
3191 x->used = 0;
3192 }
3193 else if (GET_CODE (y) == MEM)
3194 {
3195 register int offset = SUBREG_WORD (x) * UNITS_PER_WORD;
3196
3197 if (BYTES_BIG_ENDIAN)
3198 offset -= (MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (x)))
3199 - MIN (UNITS_PER_WORD, GET_MODE_SIZE (GET_MODE (y))));
3200 PUT_CODE (x, MEM);
3201 MEM_COPY_ATTRIBUTES (x, y);
3202 XEXP (x, 0) = plus_constant (XEXP (y, 0), offset);
3203 }
3204
3205 return x;
3206 }
3207
3208 /* Do alter_subreg on all the SUBREGs contained in X. */
3209
3210 static rtx
3211 walk_alter_subreg (x)
3212 rtx x;
3213 {
3214 switch (GET_CODE (x))
3215 {
3216 case PLUS:
3217 case MULT:
3218 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3219 XEXP (x, 1) = walk_alter_subreg (XEXP (x, 1));
3220 break;
3221
3222 case MEM:
3223 XEXP (x, 0) = walk_alter_subreg (XEXP (x, 0));
3224 break;
3225
3226 case SUBREG:
3227 return alter_subreg (x);
3228
3229 default:
3230 break;
3231 }
3232
3233 return x;
3234 }
3235 \f
3236 #ifdef HAVE_cc0
3237
3238 /* Given BODY, the body of a jump instruction, alter the jump condition
3239 as required by the bits that are set in cc_status.flags.
3240 Not all of the bits there can be handled at this level in all cases.
3241
3242 The value is normally 0.
3243 1 means that the condition has become always true.
3244 -1 means that the condition has become always false.
3245 2 means that COND has been altered. */
3246
3247 static int
3248 alter_cond (cond)
3249 register rtx cond;
3250 {
3251 int value = 0;
3252
3253 if (cc_status.flags & CC_REVERSED)
3254 {
3255 value = 2;
3256 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3257 }
3258
3259 if (cc_status.flags & CC_INVERTED)
3260 {
3261 value = 2;
3262 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3263 }
3264
3265 if (cc_status.flags & CC_NOT_POSITIVE)
3266 switch (GET_CODE (cond))
3267 {
3268 case LE:
3269 case LEU:
3270 case GEU:
3271 /* Jump becomes unconditional. */
3272 return 1;
3273
3274 case GT:
3275 case GTU:
3276 case LTU:
3277 /* Jump becomes no-op. */
3278 return -1;
3279
3280 case GE:
3281 PUT_CODE (cond, EQ);
3282 value = 2;
3283 break;
3284
3285 case LT:
3286 PUT_CODE (cond, NE);
3287 value = 2;
3288 break;
3289
3290 default:
3291 break;
3292 }
3293
3294 if (cc_status.flags & CC_NOT_NEGATIVE)
3295 switch (GET_CODE (cond))
3296 {
3297 case GE:
3298 case GEU:
3299 /* Jump becomes unconditional. */
3300 return 1;
3301
3302 case LT:
3303 case LTU:
3304 /* Jump becomes no-op. */
3305 return -1;
3306
3307 case LE:
3308 case LEU:
3309 PUT_CODE (cond, EQ);
3310 value = 2;
3311 break;
3312
3313 case GT:
3314 case GTU:
3315 PUT_CODE (cond, NE);
3316 value = 2;
3317 break;
3318
3319 default:
3320 break;
3321 }
3322
3323 if (cc_status.flags & CC_NO_OVERFLOW)
3324 switch (GET_CODE (cond))
3325 {
3326 case GEU:
3327 /* Jump becomes unconditional. */
3328 return 1;
3329
3330 case LEU:
3331 PUT_CODE (cond, EQ);
3332 value = 2;
3333 break;
3334
3335 case GTU:
3336 PUT_CODE (cond, NE);
3337 value = 2;
3338 break;
3339
3340 case LTU:
3341 /* Jump becomes no-op. */
3342 return -1;
3343
3344 default:
3345 break;
3346 }
3347
3348 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3349 switch (GET_CODE (cond))
3350 {
3351 default:
3352 abort ();
3353
3354 case NE:
3355 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3356 value = 2;
3357 break;
3358
3359 case EQ:
3360 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3361 value = 2;
3362 break;
3363 }
3364
3365 if (cc_status.flags & CC_NOT_SIGNED)
3366 /* The flags are valid if signed condition operators are converted
3367 to unsigned. */
3368 switch (GET_CODE (cond))
3369 {
3370 case LE:
3371 PUT_CODE (cond, LEU);
3372 value = 2;
3373 break;
3374
3375 case LT:
3376 PUT_CODE (cond, LTU);
3377 value = 2;
3378 break;
3379
3380 case GT:
3381 PUT_CODE (cond, GTU);
3382 value = 2;
3383 break;
3384
3385 case GE:
3386 PUT_CODE (cond, GEU);
3387 value = 2;
3388 break;
3389
3390 default:
3391 break;
3392 }
3393
3394 return value;
3395 }
3396 #endif
3397 \f
3398 /* Report inconsistency between the assembler template and the operands.
3399 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3400
3401 void
3402 output_operand_lossage (msgid)
3403 const char *msgid;
3404 {
3405 if (this_is_asm_operands)
3406 error_for_asm (this_is_asm_operands, "invalid `asm': %s", _(msgid));
3407 else
3408 {
3409 error ("output_operand: %s", _(msgid));
3410 abort ();
3411 }
3412 }
3413 \f
3414 /* Output of assembler code from a template, and its subroutines. */
3415
3416 /* Output text from TEMPLATE to the assembler output file,
3417 obeying %-directions to substitute operands taken from
3418 the vector OPERANDS.
3419
3420 %N (for N a digit) means print operand N in usual manner.
3421 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3422 and print the label name with no punctuation.
3423 %cN means require operand N to be a constant
3424 and print the constant expression with no punctuation.
3425 %aN means expect operand N to be a memory address
3426 (not a memory reference!) and print a reference
3427 to that address.
3428 %nN means expect operand N to be a constant
3429 and print a constant expression for minus the value
3430 of the operand, with no other punctuation. */
3431
3432 static void
3433 output_asm_name ()
3434 {
3435 if (flag_print_asm_name)
3436 {
3437 /* Annotate the assembly with a comment describing the pattern and
3438 alternative used. */
3439 if (debug_insn)
3440 {
3441 register int num = INSN_CODE (debug_insn);
3442 fprintf (asm_out_file, "\t%s %d\t%s",
3443 ASM_COMMENT_START, INSN_UID (debug_insn),
3444 insn_data[num].name);
3445 if (insn_data[num].n_alternatives > 1)
3446 fprintf (asm_out_file, "/%d", which_alternative + 1);
3447 #ifdef HAVE_ATTR_length
3448 fprintf (asm_out_file, "\t[length = %d]",
3449 get_attr_length (debug_insn));
3450 #endif
3451 /* Clear this so only the first assembler insn
3452 of any rtl insn will get the special comment for -dp. */
3453 debug_insn = 0;
3454 }
3455 }
3456 }
3457
3458 void
3459 output_asm_insn (template, operands)
3460 const char *template;
3461 rtx *operands;
3462 {
3463 register const char *p;
3464 register int c;
3465
3466 /* An insn may return a null string template
3467 in a case where no assembler code is needed. */
3468 if (*template == 0)
3469 return;
3470
3471 p = template;
3472 putc ('\t', asm_out_file);
3473
3474 #ifdef ASM_OUTPUT_OPCODE
3475 ASM_OUTPUT_OPCODE (asm_out_file, p);
3476 #endif
3477
3478 while ((c = *p++))
3479 switch (c)
3480 {
3481 case '\n':
3482 output_asm_name ();
3483 putc (c, asm_out_file);
3484 #ifdef ASM_OUTPUT_OPCODE
3485 while ((c = *p) == '\t')
3486 {
3487 putc (c, asm_out_file);
3488 p++;
3489 }
3490 ASM_OUTPUT_OPCODE (asm_out_file, p);
3491 #endif
3492 break;
3493
3494 #ifdef ASSEMBLER_DIALECT
3495 case '{':
3496 {
3497 register int i;
3498
3499 /* If we want the first dialect, do nothing. Otherwise, skip
3500 DIALECT_NUMBER of strings ending with '|'. */
3501 for (i = 0; i < dialect_number; i++)
3502 {
3503 while (*p && *p != '}' && *p++ != '|')
3504 ;
3505 if (*p == '}')
3506 break;
3507 if (*p == '|')
3508 p++;
3509 }
3510 }
3511 break;
3512
3513 case '|':
3514 /* Skip to close brace. */
3515 while (*p && *p++ != '}')
3516 ;
3517 break;
3518
3519 case '}':
3520 break;
3521 #endif
3522
3523 case '%':
3524 /* %% outputs a single %. */
3525 if (*p == '%')
3526 {
3527 p++;
3528 putc (c, asm_out_file);
3529 }
3530 /* %= outputs a number which is unique to each insn in the entire
3531 compilation. This is useful for making local labels that are
3532 referred to more than once in a given insn. */
3533 else if (*p == '=')
3534 {
3535 p++;
3536 fprintf (asm_out_file, "%d", insn_counter);
3537 }
3538 /* % followed by a letter and some digits
3539 outputs an operand in a special way depending on the letter.
3540 Letters `acln' are implemented directly.
3541 Other letters are passed to `output_operand' so that
3542 the PRINT_OPERAND macro can define them. */
3543 else if (ISLOWER (*p) || ISUPPER (*p))
3544 {
3545 int letter = *p++;
3546 c = atoi (p);
3547
3548 if (! (*p >= '0' && *p <= '9'))
3549 output_operand_lossage ("operand number missing after %-letter");
3550 else if (this_is_asm_operands && (c < 0 || (unsigned int) c >= insn_noperands))
3551 output_operand_lossage ("operand number out of range");
3552 else if (letter == 'l')
3553 output_asm_label (operands[c]);
3554 else if (letter == 'a')
3555 output_address (operands[c]);
3556 else if (letter == 'c')
3557 {
3558 if (CONSTANT_ADDRESS_P (operands[c]))
3559 output_addr_const (asm_out_file, operands[c]);
3560 else
3561 output_operand (operands[c], 'c');
3562 }
3563 else if (letter == 'n')
3564 {
3565 if (GET_CODE (operands[c]) == CONST_INT)
3566 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3567 - INTVAL (operands[c]));
3568 else
3569 {
3570 putc ('-', asm_out_file);
3571 output_addr_const (asm_out_file, operands[c]);
3572 }
3573 }
3574 else
3575 output_operand (operands[c], letter);
3576
3577 while ((c = *p) >= '0' && c <= '9')
3578 p++;
3579 }
3580 /* % followed by a digit outputs an operand the default way. */
3581 else if (*p >= '0' && *p <= '9')
3582 {
3583 c = atoi (p);
3584 if (this_is_asm_operands
3585 && (c < 0 || (unsigned int) c >= insn_noperands))
3586 output_operand_lossage ("operand number out of range");
3587 else
3588 output_operand (operands[c], 0);
3589 while ((c = *p) >= '0' && c <= '9')
3590 p++;
3591 }
3592 /* % followed by punctuation: output something for that
3593 punctuation character alone, with no operand.
3594 The PRINT_OPERAND macro decides what is actually done. */
3595 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3596 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3597 output_operand (NULL_RTX, *p++);
3598 #endif
3599 else
3600 output_operand_lossage ("invalid %%-code");
3601 break;
3602
3603 default:
3604 putc (c, asm_out_file);
3605 }
3606
3607 output_asm_name ();
3608
3609 putc ('\n', asm_out_file);
3610 }
3611 \f
3612 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3613
3614 void
3615 output_asm_label (x)
3616 rtx x;
3617 {
3618 char buf[256];
3619
3620 if (GET_CODE (x) == LABEL_REF)
3621 x = XEXP (x, 0);
3622 if (GET_CODE (x) == CODE_LABEL
3623 || (GET_CODE (x) == NOTE
3624 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3625 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3626 else
3627 output_operand_lossage ("`%l' operand isn't a label");
3628
3629 assemble_name (asm_out_file, buf);
3630 }
3631
3632 /* Print operand X using machine-dependent assembler syntax.
3633 The macro PRINT_OPERAND is defined just to control this function.
3634 CODE is a non-digit that preceded the operand-number in the % spec,
3635 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3636 between the % and the digits.
3637 When CODE is a non-letter, X is 0.
3638
3639 The meanings of the letters are machine-dependent and controlled
3640 by PRINT_OPERAND. */
3641
3642 static void
3643 output_operand (x, code)
3644 rtx x;
3645 int code ATTRIBUTE_UNUSED;
3646 {
3647 if (x && GET_CODE (x) == SUBREG)
3648 x = alter_subreg (x);
3649
3650 /* If X is a pseudo-register, abort now rather than writing trash to the
3651 assembler file. */
3652
3653 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3654 abort ();
3655
3656 PRINT_OPERAND (asm_out_file, x, code);
3657 }
3658
3659 /* Print a memory reference operand for address X
3660 using machine-dependent assembler syntax.
3661 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3662
3663 void
3664 output_address (x)
3665 rtx x;
3666 {
3667 walk_alter_subreg (x);
3668 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3669 }
3670 \f
3671 /* Print an integer constant expression in assembler syntax.
3672 Addition and subtraction are the only arithmetic
3673 that may appear in these expressions. */
3674
3675 void
3676 output_addr_const (file, x)
3677 FILE *file;
3678 rtx x;
3679 {
3680 char buf[256];
3681
3682 restart:
3683 switch (GET_CODE (x))
3684 {
3685 case PC:
3686 if (flag_pic)
3687 putc ('.', file);
3688 else
3689 abort ();
3690 break;
3691
3692 case SYMBOL_REF:
3693 assemble_name (file, XSTR (x, 0));
3694 break;
3695
3696 case LABEL_REF:
3697 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (XEXP (x, 0)));
3698 assemble_name (file, buf);
3699 break;
3700
3701 case CODE_LABEL:
3702 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3703 assemble_name (file, buf);
3704 break;
3705
3706 case CONST_INT:
3707 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3708 break;
3709
3710 case CONST:
3711 /* This used to output parentheses around the expression,
3712 but that does not work on the 386 (either ATT or BSD assembler). */
3713 output_addr_const (file, XEXP (x, 0));
3714 break;
3715
3716 case CONST_DOUBLE:
3717 if (GET_MODE (x) == VOIDmode)
3718 {
3719 /* We can use %d if the number is one word and positive. */
3720 if (CONST_DOUBLE_HIGH (x))
3721 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3722 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3723 else if (CONST_DOUBLE_LOW (x) < 0)
3724 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3725 else
3726 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3727 }
3728 else
3729 /* We can't handle floating point constants;
3730 PRINT_OPERAND must handle them. */
3731 output_operand_lossage ("floating constant misused");
3732 break;
3733
3734 case PLUS:
3735 /* Some assemblers need integer constants to appear last (eg masm). */
3736 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3737 {
3738 output_addr_const (file, XEXP (x, 1));
3739 if (INTVAL (XEXP (x, 0)) >= 0)
3740 fprintf (file, "+");
3741 output_addr_const (file, XEXP (x, 0));
3742 }
3743 else
3744 {
3745 output_addr_const (file, XEXP (x, 0));
3746 if (INTVAL (XEXP (x, 1)) >= 0)
3747 fprintf (file, "+");
3748 output_addr_const (file, XEXP (x, 1));
3749 }
3750 break;
3751
3752 case MINUS:
3753 /* Avoid outputting things like x-x or x+5-x,
3754 since some assemblers can't handle that. */
3755 x = simplify_subtraction (x);
3756 if (GET_CODE (x) != MINUS)
3757 goto restart;
3758
3759 output_addr_const (file, XEXP (x, 0));
3760 fprintf (file, "-");
3761 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3762 && INTVAL (XEXP (x, 1)) < 0)
3763 {
3764 fprintf (file, "%s", ASM_OPEN_PAREN);
3765 output_addr_const (file, XEXP (x, 1));
3766 fprintf (file, "%s", ASM_CLOSE_PAREN);
3767 }
3768 else
3769 output_addr_const (file, XEXP (x, 1));
3770 break;
3771
3772 case ZERO_EXTEND:
3773 case SIGN_EXTEND:
3774 output_addr_const (file, XEXP (x, 0));
3775 break;
3776
3777 default:
3778 output_operand_lossage ("invalid expression as operand");
3779 }
3780 }
3781 \f
3782 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3783 %R prints the value of REGISTER_PREFIX.
3784 %L prints the value of LOCAL_LABEL_PREFIX.
3785 %U prints the value of USER_LABEL_PREFIX.
3786 %I prints the value of IMMEDIATE_PREFIX.
3787 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3788 Also supported are %d, %x, %s, %e, %f, %g and %%.
3789
3790 We handle alternate assembler dialects here, just like output_asm_insn. */
3791
3792 void
3793 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3794 {
3795 #ifndef ANSI_PROTOTYPES
3796 FILE *file;
3797 const char *p;
3798 #endif
3799 va_list argptr;
3800 char buf[10];
3801 char *q, c;
3802
3803 VA_START (argptr, p);
3804
3805 #ifndef ANSI_PROTOTYPES
3806 file = va_arg (argptr, FILE *);
3807 p = va_arg (argptr, const char *);
3808 #endif
3809
3810 buf[0] = '%';
3811
3812 while ((c = *p++))
3813 switch (c)
3814 {
3815 #ifdef ASSEMBLER_DIALECT
3816 case '{':
3817 {
3818 int i;
3819
3820 /* If we want the first dialect, do nothing. Otherwise, skip
3821 DIALECT_NUMBER of strings ending with '|'. */
3822 for (i = 0; i < dialect_number; i++)
3823 {
3824 while (*p && *p++ != '|')
3825 ;
3826
3827 if (*p == '|')
3828 p++;
3829 }
3830 }
3831 break;
3832
3833 case '|':
3834 /* Skip to close brace. */
3835 while (*p && *p++ != '}')
3836 ;
3837 break;
3838
3839 case '}':
3840 break;
3841 #endif
3842
3843 case '%':
3844 c = *p++;
3845 q = &buf[1];
3846 while ((c >= '0' && c <= '9') || c == '.')
3847 {
3848 *q++ = c;
3849 c = *p++;
3850 }
3851 switch (c)
3852 {
3853 case '%':
3854 fprintf (file, "%%");
3855 break;
3856
3857 case 'd': case 'i': case 'u':
3858 case 'x': case 'p': case 'X':
3859 case 'o':
3860 *q++ = c;
3861 *q = 0;
3862 fprintf (file, buf, va_arg (argptr, int));
3863 break;
3864
3865 case 'w':
3866 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3867 but we do not check for those cases. It means that the value
3868 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3869
3870 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3871 #else
3872 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3873 *q++ = 'l';
3874 #else
3875 *q++ = 'l';
3876 *q++ = 'l';
3877 #endif
3878 #endif
3879
3880 *q++ = *p++;
3881 *q = 0;
3882 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3883 break;
3884
3885 case 'l':
3886 *q++ = c;
3887 *q++ = *p++;
3888 *q = 0;
3889 fprintf (file, buf, va_arg (argptr, long));
3890 break;
3891
3892 case 'e':
3893 case 'f':
3894 case 'g':
3895 *q++ = c;
3896 *q = 0;
3897 fprintf (file, buf, va_arg (argptr, double));
3898 break;
3899
3900 case 's':
3901 *q++ = c;
3902 *q = 0;
3903 fprintf (file, buf, va_arg (argptr, char *));
3904 break;
3905
3906 case 'O':
3907 #ifdef ASM_OUTPUT_OPCODE
3908 ASM_OUTPUT_OPCODE (asm_out_file, p);
3909 #endif
3910 break;
3911
3912 case 'R':
3913 #ifdef REGISTER_PREFIX
3914 fprintf (file, "%s", REGISTER_PREFIX);
3915 #endif
3916 break;
3917
3918 case 'I':
3919 #ifdef IMMEDIATE_PREFIX
3920 fprintf (file, "%s", IMMEDIATE_PREFIX);
3921 #endif
3922 break;
3923
3924 case 'L':
3925 #ifdef LOCAL_LABEL_PREFIX
3926 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3927 #endif
3928 break;
3929
3930 case 'U':
3931 fputs (user_label_prefix, file);
3932 break;
3933
3934 #ifdef ASM_FPRINTF_EXTENSIONS
3935 /* Upper case letters are reserved for general use by asm_fprintf
3936 and so are not available to target specific code. In order to
3937 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3938 they are defined here. As they get turned into real extensions
3939 to asm_fprintf they should be removed from this list. */
3940 case 'A': case 'B': case 'C': case 'D': case 'E':
3941 case 'F': case 'G': case 'H': case 'J': case 'K':
3942 case 'M': case 'N': case 'P': case 'Q': case 'S':
3943 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3944 break;
3945
3946 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3947 #endif
3948 default:
3949 abort ();
3950 }
3951 break;
3952
3953 default:
3954 fputc (c, file);
3955 }
3956 va_end (argptr);
3957 }
3958 \f
3959 /* Split up a CONST_DOUBLE or integer constant rtx
3960 into two rtx's for single words,
3961 storing in *FIRST the word that comes first in memory in the target
3962 and in *SECOND the other. */
3963
3964 void
3965 split_double (value, first, second)
3966 rtx value;
3967 rtx *first, *second;
3968 {
3969 if (GET_CODE (value) == CONST_INT)
3970 {
3971 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3972 {
3973 /* In this case the CONST_INT holds both target words.
3974 Extract the bits from it into two word-sized pieces.
3975 Sign extend each half to HOST_WIDE_INT. */
3976 unsigned HOST_WIDE_INT low, high;
3977 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3978
3979 /* Set sign_bit to the most significant bit of a word. */
3980 sign_bit = 1;
3981 sign_bit <<= BITS_PER_WORD - 1;
3982
3983 /* Set mask so that all bits of the word are set. We could
3984 have used 1 << BITS_PER_WORD instead of basing the
3985 calculation on sign_bit. However, on machines where
3986 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3987 compiler warning, even though the code would never be
3988 executed. */
3989 mask = sign_bit << 1;
3990 mask--;
3991
3992 /* Set sign_extend as any remaining bits. */
3993 sign_extend = ~mask;
3994
3995 /* Pick the lower word and sign-extend it. */
3996 low = INTVAL (value);
3997 low &= mask;
3998 if (low & sign_bit)
3999 low |= sign_extend;
4000
4001 /* Pick the higher word, shifted to the least significant
4002 bits, and sign-extend it. */
4003 high = INTVAL (value);
4004 high >>= BITS_PER_WORD - 1;
4005 high >>= 1;
4006 high &= mask;
4007 if (high & sign_bit)
4008 high |= sign_extend;
4009
4010 /* Store the words in the target machine order. */
4011 if (WORDS_BIG_ENDIAN)
4012 {
4013 *first = GEN_INT (high);
4014 *second = GEN_INT (low);
4015 }
4016 else
4017 {
4018 *first = GEN_INT (low);
4019 *second = GEN_INT (high);
4020 }
4021 }
4022 else
4023 {
4024 /* The rule for using CONST_INT for a wider mode
4025 is that we regard the value as signed.
4026 So sign-extend it. */
4027 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
4028 if (WORDS_BIG_ENDIAN)
4029 {
4030 *first = high;
4031 *second = value;
4032 }
4033 else
4034 {
4035 *first = value;
4036 *second = high;
4037 }
4038 }
4039 }
4040 else if (GET_CODE (value) != CONST_DOUBLE)
4041 {
4042 if (WORDS_BIG_ENDIAN)
4043 {
4044 *first = const0_rtx;
4045 *second = value;
4046 }
4047 else
4048 {
4049 *first = value;
4050 *second = const0_rtx;
4051 }
4052 }
4053 else if (GET_MODE (value) == VOIDmode
4054 /* This is the old way we did CONST_DOUBLE integers. */
4055 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
4056 {
4057 /* In an integer, the words are defined as most and least significant.
4058 So order them by the target's convention. */
4059 if (WORDS_BIG_ENDIAN)
4060 {
4061 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4062 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4063 }
4064 else
4065 {
4066 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4067 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4068 }
4069 }
4070 else
4071 {
4072 #ifdef REAL_ARITHMETIC
4073 REAL_VALUE_TYPE r;
4074 long l[2];
4075 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
4076
4077 /* Note, this converts the REAL_VALUE_TYPE to the target's
4078 format, splits up the floating point double and outputs
4079 exactly 32 bits of it into each of l[0] and l[1] --
4080 not necessarily BITS_PER_WORD bits. */
4081 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
4082
4083 /* If 32 bits is an entire word for the target, but not for the host,
4084 then sign-extend on the host so that the number will look the same
4085 way on the host that it would on the target. See for instance
4086 simplify_unary_operation. The #if is needed to avoid compiler
4087 warnings. */
4088
4089 #if HOST_BITS_PER_LONG > 32
4090 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
4091 {
4092 if (l[0] & ((long) 1 << 31))
4093 l[0] |= ((long) (-1) << 32);
4094 if (l[1] & ((long) 1 << 31))
4095 l[1] |= ((long) (-1) << 32);
4096 }
4097 #endif
4098
4099 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
4100 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
4101 #else
4102 if ((HOST_FLOAT_FORMAT != TARGET_FLOAT_FORMAT
4103 || HOST_BITS_PER_WIDE_INT != BITS_PER_WORD)
4104 && ! flag_pretend_float)
4105 abort ();
4106
4107 if (
4108 #ifdef HOST_WORDS_BIG_ENDIAN
4109 WORDS_BIG_ENDIAN
4110 #else
4111 ! WORDS_BIG_ENDIAN
4112 #endif
4113 )
4114 {
4115 /* Host and target agree => no need to swap. */
4116 *first = GEN_INT (CONST_DOUBLE_LOW (value));
4117 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
4118 }
4119 else
4120 {
4121 *second = GEN_INT (CONST_DOUBLE_LOW (value));
4122 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
4123 }
4124 #endif /* no REAL_ARITHMETIC */
4125 }
4126 }
4127 \f
4128 /* Return nonzero if this function has no function calls. */
4129
4130 int
4131 leaf_function_p ()
4132 {
4133 rtx insn;
4134
4135 if (profile_flag || profile_block_flag || profile_arc_flag)
4136 return 0;
4137
4138 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4139 {
4140 if (GET_CODE (insn) == CALL_INSN
4141 && ! SIBLING_CALL_P (insn))
4142 return 0;
4143 if (GET_CODE (insn) == INSN
4144 && GET_CODE (PATTERN (insn)) == SEQUENCE
4145 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4146 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4147 return 0;
4148 }
4149 for (insn = current_function_epilogue_delay_list;
4150 insn;
4151 insn = XEXP (insn, 1))
4152 {
4153 if (GET_CODE (XEXP (insn, 0)) == CALL_INSN
4154 && ! SIBLING_CALL_P (insn))
4155 return 0;
4156 if (GET_CODE (XEXP (insn, 0)) == INSN
4157 && GET_CODE (PATTERN (XEXP (insn, 0))) == SEQUENCE
4158 && GET_CODE (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)) == CALL_INSN
4159 && ! SIBLING_CALL_P (XVECEXP (PATTERN (XEXP (insn, 0)), 0, 0)))
4160 return 0;
4161 }
4162
4163 return 1;
4164 }
4165
4166 /* On some machines, a function with no call insns
4167 can run faster if it doesn't create its own register window.
4168 When output, the leaf function should use only the "output"
4169 registers. Ordinarily, the function would be compiled to use
4170 the "input" registers to find its arguments; it is a candidate
4171 for leaf treatment if it uses only the "input" registers.
4172 Leaf function treatment means renumbering so the function
4173 uses the "output" registers instead. */
4174
4175 #ifdef LEAF_REGISTERS
4176
4177 /* Return 1 if this function uses only the registers that can be
4178 safely renumbered. */
4179
4180 int
4181 only_leaf_regs_used ()
4182 {
4183 int i;
4184 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4185
4186 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4187 if ((regs_ever_live[i] || global_regs[i])
4188 && ! permitted_reg_in_leaf_functions[i])
4189 return 0;
4190
4191 if (current_function_uses_pic_offset_table
4192 && pic_offset_table_rtx != 0
4193 && GET_CODE (pic_offset_table_rtx) == REG
4194 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4195 return 0;
4196
4197 return 1;
4198 }
4199
4200 /* Scan all instructions and renumber all registers into those
4201 available in leaf functions. */
4202
4203 static void
4204 leaf_renumber_regs (first)
4205 rtx first;
4206 {
4207 rtx insn;
4208
4209 /* Renumber only the actual patterns.
4210 The reg-notes can contain frame pointer refs,
4211 and renumbering them could crash, and should not be needed. */
4212 for (insn = first; insn; insn = NEXT_INSN (insn))
4213 if (INSN_P (insn))
4214 leaf_renumber_regs_insn (PATTERN (insn));
4215 for (insn = current_function_epilogue_delay_list;
4216 insn;
4217 insn = XEXP (insn, 1))
4218 if (INSN_P (XEXP (insn, 0)))
4219 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4220 }
4221
4222 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4223 available in leaf functions. */
4224
4225 void
4226 leaf_renumber_regs_insn (in_rtx)
4227 register rtx in_rtx;
4228 {
4229 register int i, j;
4230 register const char *format_ptr;
4231
4232 if (in_rtx == 0)
4233 return;
4234
4235 /* Renumber all input-registers into output-registers.
4236 renumbered_regs would be 1 for an output-register;
4237 they */
4238
4239 if (GET_CODE (in_rtx) == REG)
4240 {
4241 int newreg;
4242
4243 /* Don't renumber the same reg twice. */
4244 if (in_rtx->used)
4245 return;
4246
4247 newreg = REGNO (in_rtx);
4248 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4249 to reach here as part of a REG_NOTE. */
4250 if (newreg >= FIRST_PSEUDO_REGISTER)
4251 {
4252 in_rtx->used = 1;
4253 return;
4254 }
4255 newreg = LEAF_REG_REMAP (newreg);
4256 if (newreg < 0)
4257 abort ();
4258 regs_ever_live[REGNO (in_rtx)] = 0;
4259 regs_ever_live[newreg] = 1;
4260 REGNO (in_rtx) = newreg;
4261 in_rtx->used = 1;
4262 }
4263
4264 if (INSN_P (in_rtx))
4265 {
4266 /* Inside a SEQUENCE, we find insns.
4267 Renumber just the patterns of these insns,
4268 just as we do for the top-level insns. */
4269 leaf_renumber_regs_insn (PATTERN (in_rtx));
4270 return;
4271 }
4272
4273 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4274
4275 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4276 switch (*format_ptr++)
4277 {
4278 case 'e':
4279 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4280 break;
4281
4282 case 'E':
4283 if (NULL != XVEC (in_rtx, i))
4284 {
4285 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4286 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4287 }
4288 break;
4289
4290 case 'S':
4291 case 's':
4292 case '0':
4293 case 'i':
4294 case 'w':
4295 case 'n':
4296 case 'u':
4297 break;
4298
4299 default:
4300 abort ();
4301 }
4302 }
4303 #endif