tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (GET_CODE (branch) != JUMP_INSN)
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (GET_CODE (label) != CODE_LABEL
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (GET_CODE (insn) == CODE_LABEL)
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && GET_CODE (next) == JUMP_INSN)
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (GET_CODE (insn) == BARRIER)
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (GET_CODE (label) == CODE_LABEL)
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (GET_CODE (insn) != JUMP_INSN
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (GET_CODE (insn) == CODE_LABEL)
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
994 || GET_CODE (insn) == CODE_LABEL)
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (GET_CODE (insn) == CODE_LABEL)
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && GET_CODE (insn) == JUMP_INSN
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (GET_CODE (insn) == INSN
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1524 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last))
1525 {
1526 delete_insn (insn); /* Use delete_note. */
1527 continue;
1528 }
1529 last = insn;
1530 }
1531 }
1532 #endif
1533
1534 for (insn = first; insn; insn = NEXT_INSN (insn))
1535 {
1536 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1537 max_uid = INSN_UID (insn);
1538 #ifdef HAVE_cc0
1539 /* If CC tracking across branches is enabled, record the insn which
1540 jumps to each branch only reached from one place. */
1541 if (optimize && GET_CODE (insn) == JUMP_INSN)
1542 {
1543 rtx lab = JUMP_LABEL (insn);
1544 if (lab && LABEL_NUSES (lab) == 1)
1545 {
1546 LABEL_REFS (lab) = insn;
1547 }
1548 }
1549 #endif
1550 }
1551
1552 init_recog ();
1553
1554 CC_STATUS_INIT;
1555
1556 /* Output the insns. */
1557 for (insn = NEXT_INSN (first); insn;)
1558 {
1559 #ifdef HAVE_ATTR_length
1560 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1561 {
1562 /* This can be triggered by bugs elsewhere in the compiler if
1563 new insns are created after init_insn_lengths is called. */
1564 if (GET_CODE (insn) == NOTE)
1565 insn_current_address = -1;
1566 else
1567 abort ();
1568 }
1569 else
1570 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1571 #endif /* HAVE_ATTR_length */
1572
1573 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1574 }
1575 }
1576 \f
1577 const char *
1578 get_insn_template (int code, rtx insn)
1579 {
1580 switch (insn_data[code].output_format)
1581 {
1582 case INSN_OUTPUT_FORMAT_SINGLE:
1583 return insn_data[code].output.single;
1584 case INSN_OUTPUT_FORMAT_MULTI:
1585 return insn_data[code].output.multi[which_alternative];
1586 case INSN_OUTPUT_FORMAT_FUNCTION:
1587 if (insn == NULL)
1588 abort ();
1589 return (*insn_data[code].output.function) (recog_data.operand, insn);
1590
1591 default:
1592 abort ();
1593 }
1594 }
1595
1596 /* Emit the appropriate declaration for an alternate-entry-point
1597 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1598 LABEL_KIND != LABEL_NORMAL.
1599
1600 The case fall-through in this function is intentional. */
1601 static void
1602 output_alternate_entry_point (FILE *file, rtx insn)
1603 {
1604 const char *name = LABEL_NAME (insn);
1605
1606 switch (LABEL_KIND (insn))
1607 {
1608 case LABEL_WEAK_ENTRY:
1609 #ifdef ASM_WEAKEN_LABEL
1610 ASM_WEAKEN_LABEL (file, name);
1611 #endif
1612 case LABEL_GLOBAL_ENTRY:
1613 targetm.asm_out.globalize_label (file, name);
1614 case LABEL_STATIC_ENTRY:
1615 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1616 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1617 #endif
1618 ASM_OUTPUT_LABEL (file, name);
1619 break;
1620
1621 case LABEL_NORMAL:
1622 default:
1623 abort ();
1624 }
1625 }
1626
1627 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1628 note in the instruction chain (going forward) between the current
1629 instruction, and the next 'executable' instruction. */
1630
1631 bool
1632 scan_ahead_for_unlikely_executed_note (rtx insn)
1633 {
1634 rtx temp;
1635 int bb_note_count = 0;
1636
1637 for (temp = insn; temp; temp = NEXT_INSN (temp))
1638 {
1639 if (GET_CODE (temp) == NOTE
1640 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1641 return true;
1642 if (GET_CODE (temp) == NOTE
1643 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1644 {
1645 bb_note_count++;
1646 if (bb_note_count > 1)
1647 return false;
1648 }
1649 if (INSN_P (temp))
1650 return false;
1651 }
1652
1653 return false;
1654 }
1655
1656 /* The final scan for one insn, INSN.
1657 Args are same as in `final', except that INSN
1658 is the insn being scanned.
1659 Value returned is the next insn to be scanned.
1660
1661 NOPEEPHOLES is the flag to disallow peephole processing (currently
1662 used for within delayed branch sequence output).
1663
1664 SEEN is used to track the end of the prologue, for emitting
1665 debug information. We force the emission of a line note after
1666 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1667 at the beginning of the second basic block, whichever comes
1668 first. */
1669
1670 rtx
1671 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1672 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1673 int *seen)
1674 {
1675 #ifdef HAVE_cc0
1676 rtx set;
1677 #endif
1678
1679 insn_counter++;
1680
1681 /* Ignore deleted insns. These can occur when we split insns (due to a
1682 template of "#") while not optimizing. */
1683 if (INSN_DELETED_P (insn))
1684 return NEXT_INSN (insn);
1685
1686 switch (GET_CODE (insn))
1687 {
1688 case NOTE:
1689 if (prescan > 0)
1690 break;
1691
1692 switch (NOTE_LINE_NUMBER (insn))
1693 {
1694 case NOTE_INSN_DELETED:
1695 case NOTE_INSN_LOOP_BEG:
1696 case NOTE_INSN_LOOP_END:
1697 case NOTE_INSN_LOOP_END_TOP_COND:
1698 case NOTE_INSN_LOOP_CONT:
1699 case NOTE_INSN_LOOP_VTOP:
1700 case NOTE_INSN_FUNCTION_END:
1701 case NOTE_INSN_REPEATED_LINE_NUMBER:
1702 case NOTE_INSN_EXPECTED_VALUE:
1703 break;
1704
1705 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1706
1707 /* The presence of this note indicates that this basic block
1708 belongs in the "cold" section of the .o file. If we are
1709 not already writing to the cold section we need to change
1710 to it. */
1711
1712 unlikely_text_section ();
1713 break;
1714
1715 case NOTE_INSN_BASIC_BLOCK:
1716
1717 /* If we are performing the optimization that partitions
1718 basic blocks into hot & cold sections of the .o file,
1719 then at the start of each new basic block, before
1720 beginning to write code for the basic block, we need to
1721 check to see whether the basic block belongs in the hot
1722 or cold section of the .o file, and change the section we
1723 are writing to appropriately. */
1724
1725 if (flag_reorder_blocks_and_partition
1726 && in_unlikely_text_section()
1727 && !scan_ahead_for_unlikely_executed_note (insn))
1728 text_section ();
1729
1730 #ifdef IA64_UNWIND_INFO
1731 IA64_UNWIND_EMIT (asm_out_file, insn);
1732 #endif
1733 if (flag_debug_asm)
1734 fprintf (asm_out_file, "\t%s basic block %d\n",
1735 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1736
1737 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1738 {
1739 *seen |= SEEN_EMITTED;
1740 last_filename = NULL;
1741 }
1742 else
1743 *seen |= SEEN_BB;
1744
1745 break;
1746
1747 case NOTE_INSN_EH_REGION_BEG:
1748 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1749 NOTE_EH_HANDLER (insn));
1750 break;
1751
1752 case NOTE_INSN_EH_REGION_END:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1754 NOTE_EH_HANDLER (insn));
1755 break;
1756
1757 case NOTE_INSN_PROLOGUE_END:
1758 targetm.asm_out.function_end_prologue (file);
1759 profile_after_prologue (file);
1760
1761 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1762 {
1763 *seen |= SEEN_EMITTED;
1764 last_filename = NULL;
1765 }
1766 else
1767 *seen |= SEEN_NOTE;
1768
1769 break;
1770
1771 case NOTE_INSN_EPILOGUE_BEG:
1772 targetm.asm_out.function_begin_epilogue (file);
1773 break;
1774
1775 case NOTE_INSN_FUNCTION_BEG:
1776 app_disable ();
1777 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1778
1779 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1780 {
1781 *seen |= SEEN_EMITTED;
1782 last_filename = NULL;
1783 }
1784 else
1785 *seen |= SEEN_NOTE;
1786
1787 break;
1788
1789 case NOTE_INSN_BLOCK_BEG:
1790 if (debug_info_level == DINFO_LEVEL_NORMAL
1791 || debug_info_level == DINFO_LEVEL_VERBOSE
1792 || write_symbols == DWARF_DEBUG
1793 || write_symbols == DWARF2_DEBUG
1794 || write_symbols == VMS_AND_DWARF2_DEBUG
1795 || write_symbols == VMS_DEBUG)
1796 {
1797 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1798
1799 app_disable ();
1800 ++block_depth;
1801 high_block_linenum = last_linenum;
1802
1803 /* Output debugging info about the symbol-block beginning. */
1804 (*debug_hooks->begin_block) (last_linenum, n);
1805
1806 /* Mark this block as output. */
1807 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1808 }
1809 break;
1810
1811 case NOTE_INSN_BLOCK_END:
1812 if (debug_info_level == DINFO_LEVEL_NORMAL
1813 || debug_info_level == DINFO_LEVEL_VERBOSE
1814 || write_symbols == DWARF_DEBUG
1815 || write_symbols == DWARF2_DEBUG
1816 || write_symbols == VMS_AND_DWARF2_DEBUG
1817 || write_symbols == VMS_DEBUG)
1818 {
1819 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1820
1821 app_disable ();
1822
1823 /* End of a symbol-block. */
1824 --block_depth;
1825 if (block_depth < 0)
1826 abort ();
1827
1828 (*debug_hooks->end_block) (high_block_linenum, n);
1829 }
1830 break;
1831
1832 case NOTE_INSN_DELETED_LABEL:
1833 /* Emit the label. We may have deleted the CODE_LABEL because
1834 the label could be proved to be unreachable, though still
1835 referenced (in the form of having its address taken. */
1836 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1837 break;
1838
1839 case NOTE_INSN_VAR_LOCATION:
1840 (*debug_hooks->var_location) (insn);
1841 break;
1842
1843 case 0:
1844 break;
1845
1846 default:
1847 if (NOTE_LINE_NUMBER (insn) <= 0)
1848 abort ();
1849 break;
1850 }
1851 break;
1852
1853 case BARRIER:
1854 #if defined (DWARF2_UNWIND_INFO)
1855 if (dwarf2out_do_frame ())
1856 dwarf2out_frame_debug (insn);
1857 #endif
1858 break;
1859
1860 case CODE_LABEL:
1861 /* The target port might emit labels in the output function for
1862 some insn, e.g. sh.c output_branchy_insn. */
1863 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1864 {
1865 int align = LABEL_TO_ALIGNMENT (insn);
1866 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1867 int max_skip = LABEL_TO_MAX_SKIP (insn);
1868 #endif
1869
1870 if (align && NEXT_INSN (insn))
1871 {
1872 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1873 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1874 #else
1875 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1876 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1877 #else
1878 ASM_OUTPUT_ALIGN (file, align);
1879 #endif
1880 #endif
1881 }
1882 }
1883 #ifdef HAVE_cc0
1884 CC_STATUS_INIT;
1885 /* If this label is reached from only one place, set the condition
1886 codes from the instruction just before the branch. */
1887
1888 /* Disabled because some insns set cc_status in the C output code
1889 and NOTICE_UPDATE_CC alone can set incorrect status. */
1890 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1891 {
1892 rtx jump = LABEL_REFS (insn);
1893 rtx barrier = prev_nonnote_insn (insn);
1894 rtx prev;
1895 /* If the LABEL_REFS field of this label has been set to point
1896 at a branch, the predecessor of the branch is a regular
1897 insn, and that branch is the only way to reach this label,
1898 set the condition codes based on the branch and its
1899 predecessor. */
1900 if (barrier && GET_CODE (barrier) == BARRIER
1901 && jump && GET_CODE (jump) == JUMP_INSN
1902 && (prev = prev_nonnote_insn (jump))
1903 && GET_CODE (prev) == INSN)
1904 {
1905 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1906 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1907 }
1908 }
1909 #endif
1910 if (prescan > 0)
1911 break;
1912
1913 if (LABEL_NAME (insn))
1914 (*debug_hooks->label) (insn);
1915
1916 /* If we are doing the optimization that partitions hot & cold
1917 basic blocks into separate sections of the .o file, we need
1918 to ensure the jump table ends up in the correct section... */
1919
1920 if (flag_reorder_blocks_and_partition)
1921 {
1922 rtx tmp_table, tmp_label;
1923 if (GET_CODE (insn) == CODE_LABEL
1924 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1925 {
1926 /* Do nothing; Do NOT change the current section. */
1927 }
1928 else if (scan_ahead_for_unlikely_executed_note (insn))
1929 unlikely_text_section ();
1930 else
1931 {
1932 if (in_unlikely_text_section ())
1933 text_section ();
1934 }
1935 }
1936
1937 if (app_on)
1938 {
1939 fputs (ASM_APP_OFF, file);
1940 app_on = 0;
1941 }
1942 if (NEXT_INSN (insn) != 0
1943 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1944 {
1945 rtx nextbody = PATTERN (NEXT_INSN (insn));
1946
1947 /* If this label is followed by a jump-table,
1948 make sure we put the label in the read-only section. Also
1949 possibly write the label and jump table together. */
1950
1951 if (GET_CODE (nextbody) == ADDR_VEC
1952 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1953 {
1954 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1955 /* In this case, the case vector is being moved by the
1956 target, so don't output the label at all. Leave that
1957 to the back end macros. */
1958 #else
1959 if (! JUMP_TABLES_IN_TEXT_SECTION)
1960 {
1961 int log_align;
1962
1963 readonly_data_section ();
1964
1965 #ifdef ADDR_VEC_ALIGN
1966 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1967 #else
1968 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1969 #endif
1970 ASM_OUTPUT_ALIGN (file, log_align);
1971 }
1972 else
1973 function_section (current_function_decl);
1974
1975 #ifdef ASM_OUTPUT_CASE_LABEL
1976 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1977 NEXT_INSN (insn));
1978 #else
1979 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1980 #endif
1981 #endif
1982 break;
1983 }
1984 }
1985 if (LABEL_ALT_ENTRY_P (insn))
1986 output_alternate_entry_point (file, insn);
1987 else
1988 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1989 break;
1990
1991 default:
1992 {
1993 rtx body = PATTERN (insn);
1994 int insn_code_number;
1995 const char *template;
1996 rtx note;
1997
1998 /* An INSN, JUMP_INSN or CALL_INSN.
1999 First check for special kinds that recog doesn't recognize. */
2000
2001 if (GET_CODE (body) == USE /* These are just declarations. */
2002 || GET_CODE (body) == CLOBBER)
2003 break;
2004
2005 #ifdef HAVE_cc0
2006 /* If there is a REG_CC_SETTER note on this insn, it means that
2007 the setting of the condition code was done in the delay slot
2008 of the insn that branched here. So recover the cc status
2009 from the insn that set it. */
2010
2011 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2012 if (note)
2013 {
2014 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2015 cc_prev_status = cc_status;
2016 }
2017 #endif
2018
2019 /* Detect insns that are really jump-tables
2020 and output them as such. */
2021
2022 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2023 {
2024 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2025 int vlen, idx;
2026 #endif
2027
2028 if (prescan > 0)
2029 break;
2030
2031 if (app_on)
2032 {
2033 fputs (ASM_APP_OFF, file);
2034 app_on = 0;
2035 }
2036
2037 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2038 if (GET_CODE (body) == ADDR_VEC)
2039 {
2040 #ifdef ASM_OUTPUT_ADDR_VEC
2041 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2042 #else
2043 abort ();
2044 #endif
2045 }
2046 else
2047 {
2048 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2049 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2050 #else
2051 abort ();
2052 #endif
2053 }
2054 #else
2055 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2056 for (idx = 0; idx < vlen; idx++)
2057 {
2058 if (GET_CODE (body) == ADDR_VEC)
2059 {
2060 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2061 ASM_OUTPUT_ADDR_VEC_ELT
2062 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2063 #else
2064 abort ();
2065 #endif
2066 }
2067 else
2068 {
2069 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2070 ASM_OUTPUT_ADDR_DIFF_ELT
2071 (file,
2072 body,
2073 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2074 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2075 #else
2076 abort ();
2077 #endif
2078 }
2079 }
2080 #ifdef ASM_OUTPUT_CASE_END
2081 ASM_OUTPUT_CASE_END (file,
2082 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2083 insn);
2084 #endif
2085 #endif
2086
2087 function_section (current_function_decl);
2088
2089 break;
2090 }
2091 /* Output this line note if it is the first or the last line
2092 note in a row. */
2093 if (notice_source_line (insn))
2094 {
2095 (*debug_hooks->source_line) (last_linenum, last_filename);
2096 }
2097
2098 if (GET_CODE (body) == ASM_INPUT)
2099 {
2100 const char *string = XSTR (body, 0);
2101
2102 /* There's no telling what that did to the condition codes. */
2103 CC_STATUS_INIT;
2104 if (prescan > 0)
2105 break;
2106
2107 if (string[0])
2108 {
2109 if (! app_on)
2110 {
2111 fputs (ASM_APP_ON, file);
2112 app_on = 1;
2113 }
2114 fprintf (asm_out_file, "\t%s\n", string);
2115 }
2116 break;
2117 }
2118
2119 /* Detect `asm' construct with operands. */
2120 if (asm_noperands (body) >= 0)
2121 {
2122 unsigned int noperands = asm_noperands (body);
2123 rtx *ops = alloca (noperands * sizeof (rtx));
2124 const char *string;
2125
2126 /* There's no telling what that did to the condition codes. */
2127 CC_STATUS_INIT;
2128 if (prescan > 0)
2129 break;
2130
2131 /* Get out the operand values. */
2132 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2133 /* Inhibit aborts on what would otherwise be compiler bugs. */
2134 insn_noperands = noperands;
2135 this_is_asm_operands = insn;
2136
2137 #ifdef FINAL_PRESCAN_INSN
2138 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2139 #endif
2140
2141 /* Output the insn using them. */
2142 if (string[0])
2143 {
2144 if (! app_on)
2145 {
2146 fputs (ASM_APP_ON, file);
2147 app_on = 1;
2148 }
2149 output_asm_insn (string, ops);
2150 }
2151
2152 this_is_asm_operands = 0;
2153 break;
2154 }
2155
2156 if (prescan <= 0 && app_on)
2157 {
2158 fputs (ASM_APP_OFF, file);
2159 app_on = 0;
2160 }
2161
2162 if (GET_CODE (body) == SEQUENCE)
2163 {
2164 /* A delayed-branch sequence */
2165 int i;
2166 rtx next;
2167
2168 if (prescan > 0)
2169 break;
2170 final_sequence = body;
2171
2172 /* Record the delay slots' frame information before the branch.
2173 This is needed for delayed calls: see execute_cfa_program(). */
2174 #if defined (DWARF2_UNWIND_INFO)
2175 if (dwarf2out_do_frame ())
2176 for (i = 1; i < XVECLEN (body, 0); i++)
2177 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2178 #endif
2179
2180 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2181 force the restoration of a comparison that was previously
2182 thought unnecessary. If that happens, cancel this sequence
2183 and cause that insn to be restored. */
2184
2185 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2186 if (next != XVECEXP (body, 0, 1))
2187 {
2188 final_sequence = 0;
2189 return next;
2190 }
2191
2192 for (i = 1; i < XVECLEN (body, 0); i++)
2193 {
2194 rtx insn = XVECEXP (body, 0, i);
2195 rtx next = NEXT_INSN (insn);
2196 /* We loop in case any instruction in a delay slot gets
2197 split. */
2198 do
2199 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2200 while (insn != next);
2201 }
2202 #ifdef DBR_OUTPUT_SEQEND
2203 DBR_OUTPUT_SEQEND (file);
2204 #endif
2205 final_sequence = 0;
2206
2207 /* If the insn requiring the delay slot was a CALL_INSN, the
2208 insns in the delay slot are actually executed before the
2209 called function. Hence we don't preserve any CC-setting
2210 actions in these insns and the CC must be marked as being
2211 clobbered by the function. */
2212 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2213 {
2214 CC_STATUS_INIT;
2215 }
2216 break;
2217 }
2218
2219 /* We have a real machine instruction as rtl. */
2220
2221 body = PATTERN (insn);
2222
2223 #ifdef HAVE_cc0
2224 set = single_set (insn);
2225
2226 /* Check for redundant test and compare instructions
2227 (when the condition codes are already set up as desired).
2228 This is done only when optimizing; if not optimizing,
2229 it should be possible for the user to alter a variable
2230 with the debugger in between statements
2231 and the next statement should reexamine the variable
2232 to compute the condition codes. */
2233
2234 if (optimize)
2235 {
2236 if (set
2237 && GET_CODE (SET_DEST (set)) == CC0
2238 && insn != last_ignored_compare)
2239 {
2240 if (GET_CODE (SET_SRC (set)) == SUBREG)
2241 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2242 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2243 {
2244 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2245 XEXP (SET_SRC (set), 0)
2246 = alter_subreg (&XEXP (SET_SRC (set), 0));
2247 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2248 XEXP (SET_SRC (set), 1)
2249 = alter_subreg (&XEXP (SET_SRC (set), 1));
2250 }
2251 if ((cc_status.value1 != 0
2252 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2253 || (cc_status.value2 != 0
2254 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2255 {
2256 /* Don't delete insn if it has an addressing side-effect. */
2257 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2258 /* or if anything in it is volatile. */
2259 && ! volatile_refs_p (PATTERN (insn)))
2260 {
2261 /* We don't really delete the insn; just ignore it. */
2262 last_ignored_compare = insn;
2263 break;
2264 }
2265 }
2266 }
2267 }
2268 #endif
2269
2270 #ifndef STACK_REGS
2271 /* Don't bother outputting obvious no-ops, even without -O.
2272 This optimization is fast and doesn't interfere with debugging.
2273 Don't do this if the insn is in a delay slot, since this
2274 will cause an improper number of delay insns to be written. */
2275 if (final_sequence == 0
2276 && prescan >= 0
2277 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2278 && REG_P (SET_SRC (body))
2279 && REG_P (SET_DEST (body))
2280 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2281 break;
2282 #endif
2283
2284 #ifdef HAVE_cc0
2285 /* If this is a conditional branch, maybe modify it
2286 if the cc's are in a nonstandard state
2287 so that it accomplishes the same thing that it would
2288 do straightforwardly if the cc's were set up normally. */
2289
2290 if (cc_status.flags != 0
2291 && GET_CODE (insn) == JUMP_INSN
2292 && GET_CODE (body) == SET
2293 && SET_DEST (body) == pc_rtx
2294 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2295 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2296 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2297 /* This is done during prescan; it is not done again
2298 in final scan when prescan has been done. */
2299 && prescan >= 0)
2300 {
2301 /* This function may alter the contents of its argument
2302 and clear some of the cc_status.flags bits.
2303 It may also return 1 meaning condition now always true
2304 or -1 meaning condition now always false
2305 or 2 meaning condition nontrivial but altered. */
2306 int result = alter_cond (XEXP (SET_SRC (body), 0));
2307 /* If condition now has fixed value, replace the IF_THEN_ELSE
2308 with its then-operand or its else-operand. */
2309 if (result == 1)
2310 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2311 if (result == -1)
2312 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2313
2314 /* The jump is now either unconditional or a no-op.
2315 If it has become a no-op, don't try to output it.
2316 (It would not be recognized.) */
2317 if (SET_SRC (body) == pc_rtx)
2318 {
2319 delete_insn (insn);
2320 break;
2321 }
2322 else if (GET_CODE (SET_SRC (body)) == RETURN)
2323 /* Replace (set (pc) (return)) with (return). */
2324 PATTERN (insn) = body = SET_SRC (body);
2325
2326 /* Rerecognize the instruction if it has changed. */
2327 if (result != 0)
2328 INSN_CODE (insn) = -1;
2329 }
2330
2331 /* Make same adjustments to instructions that examine the
2332 condition codes without jumping and instructions that
2333 handle conditional moves (if this machine has either one). */
2334
2335 if (cc_status.flags != 0
2336 && set != 0)
2337 {
2338 rtx cond_rtx, then_rtx, else_rtx;
2339
2340 if (GET_CODE (insn) != JUMP_INSN
2341 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2342 {
2343 cond_rtx = XEXP (SET_SRC (set), 0);
2344 then_rtx = XEXP (SET_SRC (set), 1);
2345 else_rtx = XEXP (SET_SRC (set), 2);
2346 }
2347 else
2348 {
2349 cond_rtx = SET_SRC (set);
2350 then_rtx = const_true_rtx;
2351 else_rtx = const0_rtx;
2352 }
2353
2354 switch (GET_CODE (cond_rtx))
2355 {
2356 case GTU:
2357 case GT:
2358 case LTU:
2359 case LT:
2360 case GEU:
2361 case GE:
2362 case LEU:
2363 case LE:
2364 case EQ:
2365 case NE:
2366 {
2367 int result;
2368 if (XEXP (cond_rtx, 0) != cc0_rtx)
2369 break;
2370 result = alter_cond (cond_rtx);
2371 if (result == 1)
2372 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2373 else if (result == -1)
2374 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2375 else if (result == 2)
2376 INSN_CODE (insn) = -1;
2377 if (SET_DEST (set) == SET_SRC (set))
2378 delete_insn (insn);
2379 }
2380 break;
2381
2382 default:
2383 break;
2384 }
2385 }
2386
2387 #endif
2388
2389 #ifdef HAVE_peephole
2390 /* Do machine-specific peephole optimizations if desired. */
2391
2392 if (optimize && !flag_no_peephole && !nopeepholes)
2393 {
2394 rtx next = peephole (insn);
2395 /* When peepholing, if there were notes within the peephole,
2396 emit them before the peephole. */
2397 if (next != 0 && next != NEXT_INSN (insn))
2398 {
2399 rtx prev = PREV_INSN (insn);
2400
2401 for (note = NEXT_INSN (insn); note != next;
2402 note = NEXT_INSN (note))
2403 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2404
2405 /* In case this is prescan, put the notes
2406 in proper position for later rescan. */
2407 note = NEXT_INSN (insn);
2408 PREV_INSN (note) = prev;
2409 NEXT_INSN (prev) = note;
2410 NEXT_INSN (PREV_INSN (next)) = insn;
2411 PREV_INSN (insn) = PREV_INSN (next);
2412 NEXT_INSN (insn) = next;
2413 PREV_INSN (next) = insn;
2414 }
2415
2416 /* PEEPHOLE might have changed this. */
2417 body = PATTERN (insn);
2418 }
2419 #endif
2420
2421 /* Try to recognize the instruction.
2422 If successful, verify that the operands satisfy the
2423 constraints for the instruction. Crash if they don't,
2424 since `reload' should have changed them so that they do. */
2425
2426 insn_code_number = recog_memoized (insn);
2427 cleanup_subreg_operands (insn);
2428
2429 /* Dump the insn in the assembly for debugging. */
2430 if (flag_dump_rtl_in_asm)
2431 {
2432 print_rtx_head = ASM_COMMENT_START;
2433 print_rtl_single (asm_out_file, insn);
2434 print_rtx_head = "";
2435 }
2436
2437 if (! constrain_operands_cached (1))
2438 fatal_insn_not_found (insn);
2439
2440 /* Some target machines need to prescan each insn before
2441 it is output. */
2442
2443 #ifdef FINAL_PRESCAN_INSN
2444 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2445 #endif
2446
2447 #ifdef HAVE_conditional_execution
2448 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2449 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2450 else
2451 current_insn_predicate = NULL_RTX;
2452 #endif
2453
2454 #ifdef HAVE_cc0
2455 cc_prev_status = cc_status;
2456
2457 /* Update `cc_status' for this instruction.
2458 The instruction's output routine may change it further.
2459 If the output routine for a jump insn needs to depend
2460 on the cc status, it should look at cc_prev_status. */
2461
2462 NOTICE_UPDATE_CC (body, insn);
2463 #endif
2464
2465 current_output_insn = debug_insn = insn;
2466
2467 #if defined (DWARF2_UNWIND_INFO)
2468 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2469 dwarf2out_frame_debug (insn);
2470 #endif
2471
2472 /* Find the proper template for this insn. */
2473 template = get_insn_template (insn_code_number, insn);
2474
2475 /* If the C code returns 0, it means that it is a jump insn
2476 which follows a deleted test insn, and that test insn
2477 needs to be reinserted. */
2478 if (template == 0)
2479 {
2480 rtx prev;
2481
2482 if (prev_nonnote_insn (insn) != last_ignored_compare)
2483 abort ();
2484
2485 /* We have already processed the notes between the setter and
2486 the user. Make sure we don't process them again, this is
2487 particularly important if one of the notes is a block
2488 scope note or an EH note. */
2489 for (prev = insn;
2490 prev != last_ignored_compare;
2491 prev = PREV_INSN (prev))
2492 {
2493 if (GET_CODE (prev) == NOTE)
2494 delete_insn (prev); /* Use delete_note. */
2495 }
2496
2497 return prev;
2498 }
2499
2500 /* If the template is the string "#", it means that this insn must
2501 be split. */
2502 if (template[0] == '#' && template[1] == '\0')
2503 {
2504 rtx new = try_split (body, insn, 0);
2505
2506 /* If we didn't split the insn, go away. */
2507 if (new == insn && PATTERN (new) == body)
2508 fatal_insn ("could not split insn", insn);
2509
2510 #ifdef HAVE_ATTR_length
2511 /* This instruction should have been split in shorten_branches,
2512 to ensure that we would have valid length info for the
2513 splitees. */
2514 abort ();
2515 #endif
2516
2517 return new;
2518 }
2519
2520 if (prescan > 0)
2521 break;
2522
2523 #ifdef IA64_UNWIND_INFO
2524 IA64_UNWIND_EMIT (asm_out_file, insn);
2525 #endif
2526 /* Output assembler code from the template. */
2527
2528 output_asm_insn (template, recog_data.operand);
2529
2530 /* If necessary, report the effect that the instruction has on
2531 the unwind info. We've already done this for delay slots
2532 and call instructions. */
2533 #if defined (DWARF2_UNWIND_INFO)
2534 if (GET_CODE (insn) == INSN
2535 #if !defined (HAVE_prologue)
2536 && !ACCUMULATE_OUTGOING_ARGS
2537 #endif
2538 && final_sequence == 0
2539 && dwarf2out_do_frame ())
2540 dwarf2out_frame_debug (insn);
2541 #endif
2542
2543 #if 0
2544 /* It's not at all clear why we did this and doing so used to
2545 interfere with tests that used REG_WAS_0 notes, which are
2546 now gone, so let's try with this out. */
2547
2548 /* Mark this insn as having been output. */
2549 INSN_DELETED_P (insn) = 1;
2550 #endif
2551
2552 /* Emit information for vtable gc. */
2553 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2554
2555 current_output_insn = debug_insn = 0;
2556 }
2557 }
2558 return NEXT_INSN (insn);
2559 }
2560 \f
2561 /* Output debugging info to the assembler file FILE
2562 based on the NOTE-insn INSN, assumed to be a line number. */
2563
2564 static bool
2565 notice_source_line (rtx insn)
2566 {
2567 const char *filename = insn_file (insn);
2568 int linenum = insn_line (insn);
2569
2570 if (filename && (filename != last_filename || last_linenum != linenum))
2571 {
2572 last_filename = filename;
2573 last_linenum = linenum;
2574 high_block_linenum = MAX (last_linenum, high_block_linenum);
2575 high_function_linenum = MAX (last_linenum, high_function_linenum);
2576 return true;
2577 }
2578 return false;
2579 }
2580 \f
2581 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2582 directly to the desired hard register. */
2583
2584 void
2585 cleanup_subreg_operands (rtx insn)
2586 {
2587 int i;
2588 extract_insn_cached (insn);
2589 for (i = 0; i < recog_data.n_operands; i++)
2590 {
2591 /* The following test cannot use recog_data.operand when testing
2592 for a SUBREG: the underlying object might have been changed
2593 already if we are inside a match_operator expression that
2594 matches the else clause. Instead we test the underlying
2595 expression directly. */
2596 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2597 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2598 else if (GET_CODE (recog_data.operand[i]) == PLUS
2599 || GET_CODE (recog_data.operand[i]) == MULT
2600 || GET_CODE (recog_data.operand[i]) == MEM)
2601 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2602 }
2603
2604 for (i = 0; i < recog_data.n_dups; i++)
2605 {
2606 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2607 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2608 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2609 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2610 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2611 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2612 }
2613 }
2614
2615 /* If X is a SUBREG, replace it with a REG or a MEM,
2616 based on the thing it is a subreg of. */
2617
2618 rtx
2619 alter_subreg (rtx *xp)
2620 {
2621 rtx x = *xp;
2622 rtx y = SUBREG_REG (x);
2623
2624 /* simplify_subreg does not remove subreg from volatile references.
2625 We are required to. */
2626 if (GET_CODE (y) == MEM)
2627 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2628 else
2629 {
2630 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2631 SUBREG_BYTE (x));
2632
2633 if (new != 0)
2634 *xp = new;
2635 /* Simplify_subreg can't handle some REG cases, but we have to. */
2636 else if (REG_P (y))
2637 {
2638 unsigned int regno = subreg_hard_regno (x, 1);
2639 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2640 }
2641 else
2642 abort ();
2643 }
2644
2645 return *xp;
2646 }
2647
2648 /* Do alter_subreg on all the SUBREGs contained in X. */
2649
2650 static rtx
2651 walk_alter_subreg (rtx *xp)
2652 {
2653 rtx x = *xp;
2654 switch (GET_CODE (x))
2655 {
2656 case PLUS:
2657 case MULT:
2658 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2659 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2660 break;
2661
2662 case MEM:
2663 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2664 break;
2665
2666 case SUBREG:
2667 return alter_subreg (xp);
2668
2669 default:
2670 break;
2671 }
2672
2673 return *xp;
2674 }
2675 \f
2676 #ifdef HAVE_cc0
2677
2678 /* Given BODY, the body of a jump instruction, alter the jump condition
2679 as required by the bits that are set in cc_status.flags.
2680 Not all of the bits there can be handled at this level in all cases.
2681
2682 The value is normally 0.
2683 1 means that the condition has become always true.
2684 -1 means that the condition has become always false.
2685 2 means that COND has been altered. */
2686
2687 static int
2688 alter_cond (rtx cond)
2689 {
2690 int value = 0;
2691
2692 if (cc_status.flags & CC_REVERSED)
2693 {
2694 value = 2;
2695 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2696 }
2697
2698 if (cc_status.flags & CC_INVERTED)
2699 {
2700 value = 2;
2701 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2702 }
2703
2704 if (cc_status.flags & CC_NOT_POSITIVE)
2705 switch (GET_CODE (cond))
2706 {
2707 case LE:
2708 case LEU:
2709 case GEU:
2710 /* Jump becomes unconditional. */
2711 return 1;
2712
2713 case GT:
2714 case GTU:
2715 case LTU:
2716 /* Jump becomes no-op. */
2717 return -1;
2718
2719 case GE:
2720 PUT_CODE (cond, EQ);
2721 value = 2;
2722 break;
2723
2724 case LT:
2725 PUT_CODE (cond, NE);
2726 value = 2;
2727 break;
2728
2729 default:
2730 break;
2731 }
2732
2733 if (cc_status.flags & CC_NOT_NEGATIVE)
2734 switch (GET_CODE (cond))
2735 {
2736 case GE:
2737 case GEU:
2738 /* Jump becomes unconditional. */
2739 return 1;
2740
2741 case LT:
2742 case LTU:
2743 /* Jump becomes no-op. */
2744 return -1;
2745
2746 case LE:
2747 case LEU:
2748 PUT_CODE (cond, EQ);
2749 value = 2;
2750 break;
2751
2752 case GT:
2753 case GTU:
2754 PUT_CODE (cond, NE);
2755 value = 2;
2756 break;
2757
2758 default:
2759 break;
2760 }
2761
2762 if (cc_status.flags & CC_NO_OVERFLOW)
2763 switch (GET_CODE (cond))
2764 {
2765 case GEU:
2766 /* Jump becomes unconditional. */
2767 return 1;
2768
2769 case LEU:
2770 PUT_CODE (cond, EQ);
2771 value = 2;
2772 break;
2773
2774 case GTU:
2775 PUT_CODE (cond, NE);
2776 value = 2;
2777 break;
2778
2779 case LTU:
2780 /* Jump becomes no-op. */
2781 return -1;
2782
2783 default:
2784 break;
2785 }
2786
2787 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2788 switch (GET_CODE (cond))
2789 {
2790 default:
2791 abort ();
2792
2793 case NE:
2794 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2795 value = 2;
2796 break;
2797
2798 case EQ:
2799 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2800 value = 2;
2801 break;
2802 }
2803
2804 if (cc_status.flags & CC_NOT_SIGNED)
2805 /* The flags are valid if signed condition operators are converted
2806 to unsigned. */
2807 switch (GET_CODE (cond))
2808 {
2809 case LE:
2810 PUT_CODE (cond, LEU);
2811 value = 2;
2812 break;
2813
2814 case LT:
2815 PUT_CODE (cond, LTU);
2816 value = 2;
2817 break;
2818
2819 case GT:
2820 PUT_CODE (cond, GTU);
2821 value = 2;
2822 break;
2823
2824 case GE:
2825 PUT_CODE (cond, GEU);
2826 value = 2;
2827 break;
2828
2829 default:
2830 break;
2831 }
2832
2833 return value;
2834 }
2835 #endif
2836 \f
2837 /* Report inconsistency between the assembler template and the operands.
2838 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2839
2840 void
2841 output_operand_lossage (const char *msgid, ...)
2842 {
2843 char *fmt_string;
2844 char *new_message;
2845 const char *pfx_str;
2846 va_list ap;
2847
2848 va_start (ap, msgid);
2849
2850 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2851 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2852 vasprintf (&new_message, fmt_string, ap);
2853
2854 if (this_is_asm_operands)
2855 error_for_asm (this_is_asm_operands, "%s", new_message);
2856 else
2857 internal_error ("%s", new_message);
2858
2859 free (fmt_string);
2860 free (new_message);
2861 va_end (ap);
2862 }
2863 \f
2864 /* Output of assembler code from a template, and its subroutines. */
2865
2866 /* Annotate the assembly with a comment describing the pattern and
2867 alternative used. */
2868
2869 static void
2870 output_asm_name (void)
2871 {
2872 if (debug_insn)
2873 {
2874 int num = INSN_CODE (debug_insn);
2875 fprintf (asm_out_file, "\t%s %d\t%s",
2876 ASM_COMMENT_START, INSN_UID (debug_insn),
2877 insn_data[num].name);
2878 if (insn_data[num].n_alternatives > 1)
2879 fprintf (asm_out_file, "/%d", which_alternative + 1);
2880 #ifdef HAVE_ATTR_length
2881 fprintf (asm_out_file, "\t[length = %d]",
2882 get_attr_length (debug_insn));
2883 #endif
2884 /* Clear this so only the first assembler insn
2885 of any rtl insn will get the special comment for -dp. */
2886 debug_insn = 0;
2887 }
2888 }
2889
2890 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2891 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2892 corresponds to the address of the object and 0 if to the object. */
2893
2894 static tree
2895 get_mem_expr_from_op (rtx op, int *paddressp)
2896 {
2897 tree expr;
2898 int inner_addressp;
2899
2900 *paddressp = 0;
2901
2902 if (REG_P (op))
2903 return REG_EXPR (op);
2904 else if (GET_CODE (op) != MEM)
2905 return 0;
2906
2907 if (MEM_EXPR (op) != 0)
2908 return MEM_EXPR (op);
2909
2910 /* Otherwise we have an address, so indicate it and look at the address. */
2911 *paddressp = 1;
2912 op = XEXP (op, 0);
2913
2914 /* First check if we have a decl for the address, then look at the right side
2915 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2916 But don't allow the address to itself be indirect. */
2917 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2918 return expr;
2919 else if (GET_CODE (op) == PLUS
2920 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2921 return expr;
2922
2923 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2924 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2925 op = XEXP (op, 0);
2926
2927 expr = get_mem_expr_from_op (op, &inner_addressp);
2928 return inner_addressp ? 0 : expr;
2929 }
2930
2931 /* Output operand names for assembler instructions. OPERANDS is the
2932 operand vector, OPORDER is the order to write the operands, and NOPS
2933 is the number of operands to write. */
2934
2935 static void
2936 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2937 {
2938 int wrote = 0;
2939 int i;
2940
2941 for (i = 0; i < nops; i++)
2942 {
2943 int addressp;
2944 rtx op = operands[oporder[i]];
2945 tree expr = get_mem_expr_from_op (op, &addressp);
2946
2947 fprintf (asm_out_file, "%c%s",
2948 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2949 wrote = 1;
2950 if (expr)
2951 {
2952 fprintf (asm_out_file, "%s",
2953 addressp ? "*" : "");
2954 print_mem_expr (asm_out_file, expr);
2955 wrote = 1;
2956 }
2957 else if (REG_P (op) && ORIGINAL_REGNO (op)
2958 && ORIGINAL_REGNO (op) != REGNO (op))
2959 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2960 }
2961 }
2962
2963 /* Output text from TEMPLATE to the assembler output file,
2964 obeying %-directions to substitute operands taken from
2965 the vector OPERANDS.
2966
2967 %N (for N a digit) means print operand N in usual manner.
2968 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2969 and print the label name with no punctuation.
2970 %cN means require operand N to be a constant
2971 and print the constant expression with no punctuation.
2972 %aN means expect operand N to be a memory address
2973 (not a memory reference!) and print a reference
2974 to that address.
2975 %nN means expect operand N to be a constant
2976 and print a constant expression for minus the value
2977 of the operand, with no other punctuation. */
2978
2979 void
2980 output_asm_insn (const char *template, rtx *operands)
2981 {
2982 const char *p;
2983 int c;
2984 #ifdef ASSEMBLER_DIALECT
2985 int dialect = 0;
2986 #endif
2987 int oporder[MAX_RECOG_OPERANDS];
2988 char opoutput[MAX_RECOG_OPERANDS];
2989 int ops = 0;
2990
2991 /* An insn may return a null string template
2992 in a case where no assembler code is needed. */
2993 if (*template == 0)
2994 return;
2995
2996 memset (opoutput, 0, sizeof opoutput);
2997 p = template;
2998 putc ('\t', asm_out_file);
2999
3000 #ifdef ASM_OUTPUT_OPCODE
3001 ASM_OUTPUT_OPCODE (asm_out_file, p);
3002 #endif
3003
3004 while ((c = *p++))
3005 switch (c)
3006 {
3007 case '\n':
3008 if (flag_verbose_asm)
3009 output_asm_operand_names (operands, oporder, ops);
3010 if (flag_print_asm_name)
3011 output_asm_name ();
3012
3013 ops = 0;
3014 memset (opoutput, 0, sizeof opoutput);
3015
3016 putc (c, asm_out_file);
3017 #ifdef ASM_OUTPUT_OPCODE
3018 while ((c = *p) == '\t')
3019 {
3020 putc (c, asm_out_file);
3021 p++;
3022 }
3023 ASM_OUTPUT_OPCODE (asm_out_file, p);
3024 #endif
3025 break;
3026
3027 #ifdef ASSEMBLER_DIALECT
3028 case '{':
3029 {
3030 int i;
3031
3032 if (dialect)
3033 output_operand_lossage ("nested assembly dialect alternatives");
3034 else
3035 dialect = 1;
3036
3037 /* If we want the first dialect, do nothing. Otherwise, skip
3038 DIALECT_NUMBER of strings ending with '|'. */
3039 for (i = 0; i < dialect_number; i++)
3040 {
3041 while (*p && *p != '}' && *p++ != '|')
3042 ;
3043 if (*p == '}')
3044 break;
3045 if (*p == '|')
3046 p++;
3047 }
3048
3049 if (*p == '\0')
3050 output_operand_lossage ("unterminated assembly dialect alternative");
3051 }
3052 break;
3053
3054 case '|':
3055 if (dialect)
3056 {
3057 /* Skip to close brace. */
3058 do
3059 {
3060 if (*p == '\0')
3061 {
3062 output_operand_lossage ("unterminated assembly dialect alternative");
3063 break;
3064 }
3065 }
3066 while (*p++ != '}');
3067 dialect = 0;
3068 }
3069 else
3070 putc (c, asm_out_file);
3071 break;
3072
3073 case '}':
3074 if (! dialect)
3075 putc (c, asm_out_file);
3076 dialect = 0;
3077 break;
3078 #endif
3079
3080 case '%':
3081 /* %% outputs a single %. */
3082 if (*p == '%')
3083 {
3084 p++;
3085 putc (c, asm_out_file);
3086 }
3087 /* %= outputs a number which is unique to each insn in the entire
3088 compilation. This is useful for making local labels that are
3089 referred to more than once in a given insn. */
3090 else if (*p == '=')
3091 {
3092 p++;
3093 fprintf (asm_out_file, "%d", insn_counter);
3094 }
3095 /* % followed by a letter and some digits
3096 outputs an operand in a special way depending on the letter.
3097 Letters `acln' are implemented directly.
3098 Other letters are passed to `output_operand' so that
3099 the PRINT_OPERAND macro can define them. */
3100 else if (ISALPHA (*p))
3101 {
3102 int letter = *p++;
3103 c = atoi (p);
3104
3105 if (! ISDIGIT (*p))
3106 output_operand_lossage ("operand number missing after %%-letter");
3107 else if (this_is_asm_operands
3108 && (c < 0 || (unsigned int) c >= insn_noperands))
3109 output_operand_lossage ("operand number out of range");
3110 else if (letter == 'l')
3111 output_asm_label (operands[c]);
3112 else if (letter == 'a')
3113 output_address (operands[c]);
3114 else if (letter == 'c')
3115 {
3116 if (CONSTANT_ADDRESS_P (operands[c]))
3117 output_addr_const (asm_out_file, operands[c]);
3118 else
3119 output_operand (operands[c], 'c');
3120 }
3121 else if (letter == 'n')
3122 {
3123 if (GET_CODE (operands[c]) == CONST_INT)
3124 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3125 - INTVAL (operands[c]));
3126 else
3127 {
3128 putc ('-', asm_out_file);
3129 output_addr_const (asm_out_file, operands[c]);
3130 }
3131 }
3132 else
3133 output_operand (operands[c], letter);
3134
3135 if (!opoutput[c])
3136 oporder[ops++] = c;
3137 opoutput[c] = 1;
3138
3139 while (ISDIGIT (c = *p))
3140 p++;
3141 }
3142 /* % followed by a digit outputs an operand the default way. */
3143 else if (ISDIGIT (*p))
3144 {
3145 c = atoi (p);
3146 if (this_is_asm_operands
3147 && (c < 0 || (unsigned int) c >= insn_noperands))
3148 output_operand_lossage ("operand number out of range");
3149 else
3150 output_operand (operands[c], 0);
3151
3152 if (!opoutput[c])
3153 oporder[ops++] = c;
3154 opoutput[c] = 1;
3155
3156 while (ISDIGIT (c = *p))
3157 p++;
3158 }
3159 /* % followed by punctuation: output something for that
3160 punctuation character alone, with no operand.
3161 The PRINT_OPERAND macro decides what is actually done. */
3162 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3163 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3164 output_operand (NULL_RTX, *p++);
3165 #endif
3166 else
3167 output_operand_lossage ("invalid %%-code");
3168 break;
3169
3170 default:
3171 putc (c, asm_out_file);
3172 }
3173
3174 /* Write out the variable names for operands, if we know them. */
3175 if (flag_verbose_asm)
3176 output_asm_operand_names (operands, oporder, ops);
3177 if (flag_print_asm_name)
3178 output_asm_name ();
3179
3180 putc ('\n', asm_out_file);
3181 }
3182 \f
3183 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3184
3185 void
3186 output_asm_label (rtx x)
3187 {
3188 char buf[256];
3189
3190 if (GET_CODE (x) == LABEL_REF)
3191 x = XEXP (x, 0);
3192 if (GET_CODE (x) == CODE_LABEL
3193 || (GET_CODE (x) == NOTE
3194 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3195 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3196 else
3197 output_operand_lossage ("`%%l' operand isn't a label");
3198
3199 assemble_name (asm_out_file, buf);
3200 }
3201
3202 /* Print operand X using machine-dependent assembler syntax.
3203 The macro PRINT_OPERAND is defined just to control this function.
3204 CODE is a non-digit that preceded the operand-number in the % spec,
3205 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3206 between the % and the digits.
3207 When CODE is a non-letter, X is 0.
3208
3209 The meanings of the letters are machine-dependent and controlled
3210 by PRINT_OPERAND. */
3211
3212 static void
3213 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3214 {
3215 if (x && GET_CODE (x) == SUBREG)
3216 x = alter_subreg (&x);
3217
3218 /* If X is a pseudo-register, abort now rather than writing trash to the
3219 assembler file. */
3220
3221 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3222 abort ();
3223
3224 PRINT_OPERAND (asm_out_file, x, code);
3225 }
3226
3227 /* Print a memory reference operand for address X
3228 using machine-dependent assembler syntax.
3229 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3230
3231 void
3232 output_address (rtx x)
3233 {
3234 walk_alter_subreg (&x);
3235 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3236 }
3237 \f
3238 /* Print an integer constant expression in assembler syntax.
3239 Addition and subtraction are the only arithmetic
3240 that may appear in these expressions. */
3241
3242 void
3243 output_addr_const (FILE *file, rtx x)
3244 {
3245 char buf[256];
3246
3247 restart:
3248 switch (GET_CODE (x))
3249 {
3250 case PC:
3251 putc ('.', file);
3252 break;
3253
3254 case SYMBOL_REF:
3255 if (SYMBOL_REF_DECL (x))
3256 mark_decl_referenced (SYMBOL_REF_DECL (x));
3257 #ifdef ASM_OUTPUT_SYMBOL_REF
3258 ASM_OUTPUT_SYMBOL_REF (file, x);
3259 #else
3260 assemble_name (file, XSTR (x, 0));
3261 #endif
3262 break;
3263
3264 case LABEL_REF:
3265 x = XEXP (x, 0);
3266 /* Fall through. */
3267 case CODE_LABEL:
3268 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3269 #ifdef ASM_OUTPUT_LABEL_REF
3270 ASM_OUTPUT_LABEL_REF (file, buf);
3271 #else
3272 assemble_name (file, buf);
3273 #endif
3274 break;
3275
3276 case CONST_INT:
3277 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3278 break;
3279
3280 case CONST:
3281 /* This used to output parentheses around the expression,
3282 but that does not work on the 386 (either ATT or BSD assembler). */
3283 output_addr_const (file, XEXP (x, 0));
3284 break;
3285
3286 case CONST_DOUBLE:
3287 if (GET_MODE (x) == VOIDmode)
3288 {
3289 /* We can use %d if the number is one word and positive. */
3290 if (CONST_DOUBLE_HIGH (x))
3291 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3292 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3293 else if (CONST_DOUBLE_LOW (x) < 0)
3294 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3295 else
3296 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3297 }
3298 else
3299 /* We can't handle floating point constants;
3300 PRINT_OPERAND must handle them. */
3301 output_operand_lossage ("floating constant misused");
3302 break;
3303
3304 case PLUS:
3305 /* Some assemblers need integer constants to appear last (eg masm). */
3306 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3307 {
3308 output_addr_const (file, XEXP (x, 1));
3309 if (INTVAL (XEXP (x, 0)) >= 0)
3310 fprintf (file, "+");
3311 output_addr_const (file, XEXP (x, 0));
3312 }
3313 else
3314 {
3315 output_addr_const (file, XEXP (x, 0));
3316 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3317 || INTVAL (XEXP (x, 1)) >= 0)
3318 fprintf (file, "+");
3319 output_addr_const (file, XEXP (x, 1));
3320 }
3321 break;
3322
3323 case MINUS:
3324 /* Avoid outputting things like x-x or x+5-x,
3325 since some assemblers can't handle that. */
3326 x = simplify_subtraction (x);
3327 if (GET_CODE (x) != MINUS)
3328 goto restart;
3329
3330 output_addr_const (file, XEXP (x, 0));
3331 fprintf (file, "-");
3332 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3333 || GET_CODE (XEXP (x, 1)) == PC
3334 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3335 output_addr_const (file, XEXP (x, 1));
3336 else
3337 {
3338 fputs (targetm.asm_out.open_paren, file);
3339 output_addr_const (file, XEXP (x, 1));
3340 fputs (targetm.asm_out.close_paren, file);
3341 }
3342 break;
3343
3344 case ZERO_EXTEND:
3345 case SIGN_EXTEND:
3346 case SUBREG:
3347 output_addr_const (file, XEXP (x, 0));
3348 break;
3349
3350 default:
3351 #ifdef OUTPUT_ADDR_CONST_EXTRA
3352 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3353 break;
3354
3355 fail:
3356 #endif
3357 output_operand_lossage ("invalid expression as operand");
3358 }
3359 }
3360 \f
3361 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3362 %R prints the value of REGISTER_PREFIX.
3363 %L prints the value of LOCAL_LABEL_PREFIX.
3364 %U prints the value of USER_LABEL_PREFIX.
3365 %I prints the value of IMMEDIATE_PREFIX.
3366 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3367 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3368
3369 We handle alternate assembler dialects here, just like output_asm_insn. */
3370
3371 void
3372 asm_fprintf (FILE *file, const char *p, ...)
3373 {
3374 char buf[10];
3375 char *q, c;
3376 va_list argptr;
3377
3378 va_start (argptr, p);
3379
3380 buf[0] = '%';
3381
3382 while ((c = *p++))
3383 switch (c)
3384 {
3385 #ifdef ASSEMBLER_DIALECT
3386 case '{':
3387 {
3388 int i;
3389
3390 /* If we want the first dialect, do nothing. Otherwise, skip
3391 DIALECT_NUMBER of strings ending with '|'. */
3392 for (i = 0; i < dialect_number; i++)
3393 {
3394 while (*p && *p++ != '|')
3395 ;
3396
3397 if (*p == '|')
3398 p++;
3399 }
3400 }
3401 break;
3402
3403 case '|':
3404 /* Skip to close brace. */
3405 while (*p && *p++ != '}')
3406 ;
3407 break;
3408
3409 case '}':
3410 break;
3411 #endif
3412
3413 case '%':
3414 c = *p++;
3415 q = &buf[1];
3416 while (strchr ("-+ #0", c))
3417 {
3418 *q++ = c;
3419 c = *p++;
3420 }
3421 while (ISDIGIT (c) || c == '.')
3422 {
3423 *q++ = c;
3424 c = *p++;
3425 }
3426 switch (c)
3427 {
3428 case '%':
3429 putc ('%', file);
3430 break;
3431
3432 case 'd': case 'i': case 'u':
3433 case 'x': case 'X': case 'o':
3434 case 'c':
3435 *q++ = c;
3436 *q = 0;
3437 fprintf (file, buf, va_arg (argptr, int));
3438 break;
3439
3440 case 'w':
3441 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3442 'o' cases, but we do not check for those cases. It
3443 means that the value is a HOST_WIDE_INT, which may be
3444 either `long' or `long long'. */
3445 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3446 q += strlen (HOST_WIDE_INT_PRINT);
3447 *q++ = *p++;
3448 *q = 0;
3449 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3450 break;
3451
3452 case 'l':
3453 *q++ = c;
3454 #ifdef HAVE_LONG_LONG
3455 if (*p == 'l')
3456 {
3457 *q++ = *p++;
3458 *q++ = *p++;
3459 *q = 0;
3460 fprintf (file, buf, va_arg (argptr, long long));
3461 }
3462 else
3463 #endif
3464 {
3465 *q++ = *p++;
3466 *q = 0;
3467 fprintf (file, buf, va_arg (argptr, long));
3468 }
3469
3470 break;
3471
3472 case 's':
3473 *q++ = c;
3474 *q = 0;
3475 fprintf (file, buf, va_arg (argptr, char *));
3476 break;
3477
3478 case 'O':
3479 #ifdef ASM_OUTPUT_OPCODE
3480 ASM_OUTPUT_OPCODE (asm_out_file, p);
3481 #endif
3482 break;
3483
3484 case 'R':
3485 #ifdef REGISTER_PREFIX
3486 fprintf (file, "%s", REGISTER_PREFIX);
3487 #endif
3488 break;
3489
3490 case 'I':
3491 #ifdef IMMEDIATE_PREFIX
3492 fprintf (file, "%s", IMMEDIATE_PREFIX);
3493 #endif
3494 break;
3495
3496 case 'L':
3497 #ifdef LOCAL_LABEL_PREFIX
3498 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3499 #endif
3500 break;
3501
3502 case 'U':
3503 fputs (user_label_prefix, file);
3504 break;
3505
3506 #ifdef ASM_FPRINTF_EXTENSIONS
3507 /* Uppercase letters are reserved for general use by asm_fprintf
3508 and so are not available to target specific code. In order to
3509 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3510 they are defined here. As they get turned into real extensions
3511 to asm_fprintf they should be removed from this list. */
3512 case 'A': case 'B': case 'C': case 'D': case 'E':
3513 case 'F': case 'G': case 'H': case 'J': case 'K':
3514 case 'M': case 'N': case 'P': case 'Q': case 'S':
3515 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3516 break;
3517
3518 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3519 #endif
3520 default:
3521 abort ();
3522 }
3523 break;
3524
3525 default:
3526 putc (c, file);
3527 }
3528 va_end (argptr);
3529 }
3530 \f
3531 /* Split up a CONST_DOUBLE or integer constant rtx
3532 into two rtx's for single words,
3533 storing in *FIRST the word that comes first in memory in the target
3534 and in *SECOND the other. */
3535
3536 void
3537 split_double (rtx value, rtx *first, rtx *second)
3538 {
3539 if (GET_CODE (value) == CONST_INT)
3540 {
3541 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3542 {
3543 /* In this case the CONST_INT holds both target words.
3544 Extract the bits from it into two word-sized pieces.
3545 Sign extend each half to HOST_WIDE_INT. */
3546 unsigned HOST_WIDE_INT low, high;
3547 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3548
3549 /* Set sign_bit to the most significant bit of a word. */
3550 sign_bit = 1;
3551 sign_bit <<= BITS_PER_WORD - 1;
3552
3553 /* Set mask so that all bits of the word are set. We could
3554 have used 1 << BITS_PER_WORD instead of basing the
3555 calculation on sign_bit. However, on machines where
3556 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3557 compiler warning, even though the code would never be
3558 executed. */
3559 mask = sign_bit << 1;
3560 mask--;
3561
3562 /* Set sign_extend as any remaining bits. */
3563 sign_extend = ~mask;
3564
3565 /* Pick the lower word and sign-extend it. */
3566 low = INTVAL (value);
3567 low &= mask;
3568 if (low & sign_bit)
3569 low |= sign_extend;
3570
3571 /* Pick the higher word, shifted to the least significant
3572 bits, and sign-extend it. */
3573 high = INTVAL (value);
3574 high >>= BITS_PER_WORD - 1;
3575 high >>= 1;
3576 high &= mask;
3577 if (high & sign_bit)
3578 high |= sign_extend;
3579
3580 /* Store the words in the target machine order. */
3581 if (WORDS_BIG_ENDIAN)
3582 {
3583 *first = GEN_INT (high);
3584 *second = GEN_INT (low);
3585 }
3586 else
3587 {
3588 *first = GEN_INT (low);
3589 *second = GEN_INT (high);
3590 }
3591 }
3592 else
3593 {
3594 /* The rule for using CONST_INT for a wider mode
3595 is that we regard the value as signed.
3596 So sign-extend it. */
3597 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3598 if (WORDS_BIG_ENDIAN)
3599 {
3600 *first = high;
3601 *second = value;
3602 }
3603 else
3604 {
3605 *first = value;
3606 *second = high;
3607 }
3608 }
3609 }
3610 else if (GET_CODE (value) != CONST_DOUBLE)
3611 {
3612 if (WORDS_BIG_ENDIAN)
3613 {
3614 *first = const0_rtx;
3615 *second = value;
3616 }
3617 else
3618 {
3619 *first = value;
3620 *second = const0_rtx;
3621 }
3622 }
3623 else if (GET_MODE (value) == VOIDmode
3624 /* This is the old way we did CONST_DOUBLE integers. */
3625 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3626 {
3627 /* In an integer, the words are defined as most and least significant.
3628 So order them by the target's convention. */
3629 if (WORDS_BIG_ENDIAN)
3630 {
3631 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3632 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3633 }
3634 else
3635 {
3636 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3637 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3638 }
3639 }
3640 else
3641 {
3642 REAL_VALUE_TYPE r;
3643 long l[2];
3644 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3645
3646 /* Note, this converts the REAL_VALUE_TYPE to the target's
3647 format, splits up the floating point double and outputs
3648 exactly 32 bits of it into each of l[0] and l[1] --
3649 not necessarily BITS_PER_WORD bits. */
3650 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3651
3652 /* If 32 bits is an entire word for the target, but not for the host,
3653 then sign-extend on the host so that the number will look the same
3654 way on the host that it would on the target. See for instance
3655 simplify_unary_operation. The #if is needed to avoid compiler
3656 warnings. */
3657
3658 #if HOST_BITS_PER_LONG > 32
3659 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3660 {
3661 if (l[0] & ((long) 1 << 31))
3662 l[0] |= ((long) (-1) << 32);
3663 if (l[1] & ((long) 1 << 31))
3664 l[1] |= ((long) (-1) << 32);
3665 }
3666 #endif
3667
3668 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3669 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3670 }
3671 }
3672 \f
3673 /* Return nonzero if this function has no function calls. */
3674
3675 int
3676 leaf_function_p (void)
3677 {
3678 rtx insn;
3679 rtx link;
3680
3681 if (current_function_profile || profile_arc_flag)
3682 return 0;
3683
3684 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3685 {
3686 if (GET_CODE (insn) == CALL_INSN
3687 && ! SIBLING_CALL_P (insn))
3688 return 0;
3689 if (GET_CODE (insn) == INSN
3690 && GET_CODE (PATTERN (insn)) == SEQUENCE
3691 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3692 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3693 return 0;
3694 }
3695 for (link = current_function_epilogue_delay_list;
3696 link;
3697 link = XEXP (link, 1))
3698 {
3699 insn = XEXP (link, 0);
3700
3701 if (GET_CODE (insn) == CALL_INSN
3702 && ! SIBLING_CALL_P (insn))
3703 return 0;
3704 if (GET_CODE (insn) == INSN
3705 && GET_CODE (PATTERN (insn)) == SEQUENCE
3706 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3707 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3708 return 0;
3709 }
3710
3711 return 1;
3712 }
3713
3714 /* Return 1 if branch is a forward branch.
3715 Uses insn_shuid array, so it works only in the final pass. May be used by
3716 output templates to customary add branch prediction hints.
3717 */
3718 int
3719 final_forward_branch_p (rtx insn)
3720 {
3721 int insn_id, label_id;
3722 if (!uid_shuid)
3723 abort ();
3724 insn_id = INSN_SHUID (insn);
3725 label_id = INSN_SHUID (JUMP_LABEL (insn));
3726 /* We've hit some insns that does not have id information available. */
3727 if (!insn_id || !label_id)
3728 abort ();
3729 return insn_id < label_id;
3730 }
3731
3732 /* On some machines, a function with no call insns
3733 can run faster if it doesn't create its own register window.
3734 When output, the leaf function should use only the "output"
3735 registers. Ordinarily, the function would be compiled to use
3736 the "input" registers to find its arguments; it is a candidate
3737 for leaf treatment if it uses only the "input" registers.
3738 Leaf function treatment means renumbering so the function
3739 uses the "output" registers instead. */
3740
3741 #ifdef LEAF_REGISTERS
3742
3743 /* Return 1 if this function uses only the registers that can be
3744 safely renumbered. */
3745
3746 int
3747 only_leaf_regs_used (void)
3748 {
3749 int i;
3750 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3751
3752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3753 if ((regs_ever_live[i] || global_regs[i])
3754 && ! permitted_reg_in_leaf_functions[i])
3755 return 0;
3756
3757 if (current_function_uses_pic_offset_table
3758 && pic_offset_table_rtx != 0
3759 && REG_P (pic_offset_table_rtx)
3760 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3761 return 0;
3762
3763 return 1;
3764 }
3765
3766 /* Scan all instructions and renumber all registers into those
3767 available in leaf functions. */
3768
3769 static void
3770 leaf_renumber_regs (rtx first)
3771 {
3772 rtx insn;
3773
3774 /* Renumber only the actual patterns.
3775 The reg-notes can contain frame pointer refs,
3776 and renumbering them could crash, and should not be needed. */
3777 for (insn = first; insn; insn = NEXT_INSN (insn))
3778 if (INSN_P (insn))
3779 leaf_renumber_regs_insn (PATTERN (insn));
3780 for (insn = current_function_epilogue_delay_list;
3781 insn;
3782 insn = XEXP (insn, 1))
3783 if (INSN_P (XEXP (insn, 0)))
3784 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3785 }
3786
3787 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3788 available in leaf functions. */
3789
3790 void
3791 leaf_renumber_regs_insn (rtx in_rtx)
3792 {
3793 int i, j;
3794 const char *format_ptr;
3795
3796 if (in_rtx == 0)
3797 return;
3798
3799 /* Renumber all input-registers into output-registers.
3800 renumbered_regs would be 1 for an output-register;
3801 they */
3802
3803 if (REG_P (in_rtx))
3804 {
3805 int newreg;
3806
3807 /* Don't renumber the same reg twice. */
3808 if (in_rtx->used)
3809 return;
3810
3811 newreg = REGNO (in_rtx);
3812 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3813 to reach here as part of a REG_NOTE. */
3814 if (newreg >= FIRST_PSEUDO_REGISTER)
3815 {
3816 in_rtx->used = 1;
3817 return;
3818 }
3819 newreg = LEAF_REG_REMAP (newreg);
3820 if (newreg < 0)
3821 abort ();
3822 regs_ever_live[REGNO (in_rtx)] = 0;
3823 regs_ever_live[newreg] = 1;
3824 REGNO (in_rtx) = newreg;
3825 in_rtx->used = 1;
3826 }
3827
3828 if (INSN_P (in_rtx))
3829 {
3830 /* Inside a SEQUENCE, we find insns.
3831 Renumber just the patterns of these insns,
3832 just as we do for the top-level insns. */
3833 leaf_renumber_regs_insn (PATTERN (in_rtx));
3834 return;
3835 }
3836
3837 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3838
3839 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3840 switch (*format_ptr++)
3841 {
3842 case 'e':
3843 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3844 break;
3845
3846 case 'E':
3847 if (NULL != XVEC (in_rtx, i))
3848 {
3849 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3850 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3851 }
3852 break;
3853
3854 case 'S':
3855 case 's':
3856 case '0':
3857 case 'i':
3858 case 'w':
3859 case 'n':
3860 case 'u':
3861 break;
3862
3863 default:
3864 abort ();
3865 }
3866 }
3867 #endif
3868
3869
3870 /* When -gused is used, emit debug info for only used symbols. But in
3871 addition to the standard intercepted debug_hooks there are some direct
3872 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3873 Those routines may also be called from a higher level intercepted routine. So
3874 to prevent recording data for an inner call to one of these for an intercept,
3875 we maintain an intercept nesting counter (debug_nesting). We only save the
3876 intercepted arguments if the nesting is 1. */
3877 int debug_nesting = 0;
3878
3879 static tree *symbol_queue;
3880 int symbol_queue_index = 0;
3881 static int symbol_queue_size = 0;
3882
3883 /* Generate the symbols for any queued up type symbols we encountered
3884 while generating the type info for some originally used symbol.
3885 This might generate additional entries in the queue. Only when
3886 the nesting depth goes to 0 is this routine called. */
3887
3888 void
3889 debug_flush_symbol_queue (void)
3890 {
3891 int i;
3892
3893 /* Make sure that additionally queued items are not flushed
3894 prematurely. */
3895
3896 ++debug_nesting;
3897
3898 for (i = 0; i < symbol_queue_index; ++i)
3899 {
3900 /* If we pushed queued symbols then such symbols are must be
3901 output no matter what anyone else says. Specifically,
3902 we need to make sure dbxout_symbol() thinks the symbol was
3903 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3904 which may be set for outside reasons. */
3905 int saved_tree_used = TREE_USED (symbol_queue[i]);
3906 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3907 TREE_USED (symbol_queue[i]) = 1;
3908 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3909
3910 #ifdef DBX_DEBUGGING_INFO
3911 dbxout_symbol (symbol_queue[i], 0);
3912 #endif
3913
3914 TREE_USED (symbol_queue[i]) = saved_tree_used;
3915 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3916 }
3917
3918 symbol_queue_index = 0;
3919 --debug_nesting;
3920 }
3921
3922 /* Queue a type symbol needed as part of the definition of a decl
3923 symbol. These symbols are generated when debug_flush_symbol_queue()
3924 is called. */
3925
3926 void
3927 debug_queue_symbol (tree decl)
3928 {
3929 if (symbol_queue_index >= symbol_queue_size)
3930 {
3931 symbol_queue_size += 10;
3932 symbol_queue = xrealloc (symbol_queue,
3933 symbol_queue_size * sizeof (tree));
3934 }
3935
3936 symbol_queue[symbol_queue_index++] = decl;
3937 }
3938
3939 /* Free symbol queue. */
3940 void
3941 debug_free_queue (void)
3942 {
3943 if (symbol_queue)
3944 {
3945 free (symbol_queue);
3946 symbol_queue = NULL;
3947 symbol_queue_size = 0;
3948 }
3949 }