genattrtab.h, [...]: Replace "GNU CC" with "GCC".
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
85 null default for it to save conditionalization later. */
86 #ifndef CC_STATUS_INIT
87 #define CC_STATUS_INIT
88 #endif
89
90 /* How to start an assembler comment. */
91 #ifndef ASM_COMMENT_START
92 #define ASM_COMMENT_START ";#"
93 #endif
94
95 /* Is the given character a logical line separator for the assembler? */
96 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
98 #endif
99
100 #ifndef JUMP_TABLES_IN_TEXT_SECTION
101 #define JUMP_TABLES_IN_TEXT_SECTION 0
102 #endif
103
104 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
105 #define HAVE_READONLY_DATA_SECTION 1
106 #else
107 #define HAVE_READONLY_DATA_SECTION 0
108 #endif
109
110 /* Last insn processed by final_scan_insn. */
111 static rtx debug_insn;
112 rtx current_output_insn;
113
114 /* Line number of last NOTE. */
115 static int last_linenum;
116
117 /* Highest line number in current block. */
118 static int high_block_linenum;
119
120 /* Likewise for function. */
121 static int high_function_linenum;
122
123 /* Filename of last NOTE. */
124 static const char *last_filename;
125
126 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
127
128 /* Nonzero while outputting an `asm' with operands.
129 This means that inconsistencies are the user's fault, so don't abort.
130 The precise value is the insn being output, to pass to error_for_asm. */
131 rtx this_is_asm_operands;
132
133 /* Number of operands of this insn, for an `asm' with operands. */
134 static unsigned int insn_noperands;
135
136 /* Compare optimization flag. */
137
138 static rtx last_ignored_compare = 0;
139
140 /* Assign a unique number to each insn that is output.
141 This can be used to generate unique local labels. */
142
143 static int insn_counter = 0;
144
145 #ifdef HAVE_cc0
146 /* This variable contains machine-dependent flags (defined in tm.h)
147 set and examined by output routines
148 that describe how to interpret the condition codes properly. */
149
150 CC_STATUS cc_status;
151
152 /* During output of an insn, this contains a copy of cc_status
153 from before the insn. */
154
155 CC_STATUS cc_prev_status;
156 #endif
157
158 /* Indexed by hardware reg number, is 1 if that register is ever
159 used in the current function.
160
161 In life_analysis, or in stupid_life_analysis, this is set
162 up to record the hard regs used explicitly. Reload adds
163 in the hard regs used for holding pseudo regs. Final uses
164 it to generate the code in the function prologue and epilogue
165 to save and restore registers as needed. */
166
167 char regs_ever_live[FIRST_PSEUDO_REGISTER];
168
169 /* Nonzero means current function must be given a frame pointer.
170 Set in stmt.c if anything is allocated on the stack there.
171 Set in reload1.c if anything is allocated on the stack there. */
172
173 int frame_pointer_needed;
174
175 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
176
177 static int block_depth;
178
179 /* Nonzero if have enabled APP processing of our assembler output. */
180
181 static int app_on;
182
183 /* If we are outputting an insn sequence, this contains the sequence rtx.
184 Zero otherwise. */
185
186 rtx final_sequence;
187
188 #ifdef ASSEMBLER_DIALECT
189
190 /* Number of the assembler dialect to use, starting at 0. */
191 static int dialect_number;
192 #endif
193
194 /* Indexed by line number, nonzero if there is a note for that line. */
195
196 static char *line_note_exists;
197
198 #ifdef HAVE_conditional_execution
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
201 #endif
202
203 #ifdef HAVE_ATTR_length
204 static int asm_insn_count PARAMS ((rtx));
205 #endif
206 static void profile_function PARAMS ((FILE *));
207 static void profile_after_prologue PARAMS ((FILE *));
208 static void notice_source_line PARAMS ((rtx));
209 static rtx walk_alter_subreg PARAMS ((rtx *));
210 static void output_asm_name PARAMS ((void));
211 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
212 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
213 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
214 static void output_operand PARAMS ((rtx, int));
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs PARAMS ((rtx));
217 #endif
218 #ifdef HAVE_cc0
219 static int alter_cond PARAMS ((rtx));
220 #endif
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align PARAMS ((rtx));
223 #endif
224 #ifdef HAVE_ATTR_length
225 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
226 #endif
227 \f
228 /* Initialize data in final at the beginning of a compilation. */
229
230 void
231 init_final (filename)
232 const char *filename ATTRIBUTE_UNUSED;
233 {
234 app_on = 0;
235 final_sequence = 0;
236
237 #ifdef ASSEMBLER_DIALECT
238 dialect_number = ASSEMBLER_DIALECT;
239 #endif
240 }
241
242 /* Default target function prologue and epilogue assembler output.
243
244 If not overridden for epilogue code, then the function body itself
245 contains return instructions wherever needed. */
246 void
247 default_function_pro_epilogue (file, size)
248 FILE *file ATTRIBUTE_UNUSED;
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
250 {
251 }
252
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (file)
256 FILE *file ATTRIBUTE_UNUSED;
257 {
258 }
259
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
262
263 void
264 app_enable ()
265 {
266 if (! app_on)
267 {
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
270 }
271 }
272
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
275
276 void
277 app_disable ()
278 {
279 if (app_on)
280 {
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
283 }
284 }
285 \f
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
289
290 #ifdef DELAY_SLOTS
291 int
292 dbr_sequence_length ()
293 {
294 if (final_sequence != 0)
295 return XVECLEN (final_sequence, 0) - 1;
296 else
297 return 0;
298 }
299 #endif
300 \f
301 /* The next two pages contain routines used to compute the length of an insn
302 and to shorten branches. */
303
304 /* Arrays for insn lengths, and addresses. The latter is referenced by
305 `insn_current_length'. */
306
307 static int *insn_lengths;
308
309 varray_type insn_addresses_;
310
311 /* Max uid for which the above arrays are valid. */
312 static int insn_lengths_max_uid;
313
314 /* Address of insn being processed. Used by `insn_current_length'. */
315 int insn_current_address;
316
317 /* Address of insn being processed in previous iteration. */
318 int insn_last_address;
319
320 /* known invariant alignment of insn being processed. */
321 int insn_current_align;
322
323 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
324 gives the next following alignment insn that increases the known
325 alignment, or NULL_RTX if there is no such insn.
326 For any alignment obtained this way, we can again index uid_align with
327 its uid to obtain the next following align that in turn increases the
328 alignment, till we reach NULL_RTX; the sequence obtained this way
329 for each insn we'll call the alignment chain of this insn in the following
330 comments. */
331
332 struct label_alignment
333 {
334 short alignment;
335 short max_skip;
336 };
337
338 static rtx *uid_align;
339 static int *uid_shuid;
340 static struct label_alignment *label_align;
341
342 /* Indicate that branch shortening hasn't yet been done. */
343
344 void
345 init_insn_lengths ()
346 {
347 if (uid_shuid)
348 {
349 free (uid_shuid);
350 uid_shuid = 0;
351 }
352 if (insn_lengths)
353 {
354 free (insn_lengths);
355 insn_lengths = 0;
356 insn_lengths_max_uid = 0;
357 }
358 #ifdef HAVE_ATTR_length
359 INSN_ADDRESSES_FREE ();
360 #endif
361 if (uid_align)
362 {
363 free (uid_align);
364 uid_align = 0;
365 }
366 }
367
368 /* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, get its maximum length. */
370
371 int
372 get_attr_length (insn)
373 rtx insn ATTRIBUTE_UNUSED;
374 {
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
379
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
384 {
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
389
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
393
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 {
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
400 }
401 else
402 length = insn_default_length (insn);
403 break;
404
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
409
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
418
419 default:
420 break;
421 }
422
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
430 }
431 \f
432 /* Code to handle alignment inside shorten_branches. */
433
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
436
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
441
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
445
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
448
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
451
452 The estimated padding is then OX - IX.
453
454 OX can be safely estimated as
455
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
460
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
463
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
466
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
472
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
476
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
480
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
484
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
488
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
492
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
496
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
500
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
504
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (addr_vec)
508 rtx addr_vec;
509 {
510 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
511
512 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
513 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
514 return exact_log2 (align);
515
516 }
517
518 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
519 #endif
520
521 #ifndef INSN_LENGTH_ALIGNMENT
522 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
523 #endif
524
525 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526
527 static int min_labelno, max_labelno;
528
529 #define LABEL_TO_ALIGNMENT(LABEL) \
530 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531
532 #define LABEL_TO_MAX_SKIP(LABEL) \
533 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
534
535 /* For the benefit of port specific code do this also as a function. */
536
537 int
538 label_to_alignment (label)
539 rtx label;
540 {
541 return LABEL_TO_ALIGNMENT (label);
542 }
543
544 #ifdef HAVE_ATTR_length
545 /* The differences in addresses
546 between a branch and its target might grow or shrink depending on
547 the alignment the start insn of the range (the branch for a forward
548 branch or the label for a backward branch) starts out on; if these
549 differences are used naively, they can even oscillate infinitely.
550 We therefore want to compute a 'worst case' address difference that
551 is independent of the alignment the start insn of the range end
552 up on, and that is at least as large as the actual difference.
553 The function align_fuzz calculates the amount we have to add to the
554 naively computed difference, by traversing the part of the alignment
555 chain of the start insn of the range that is in front of the end insn
556 of the range, and considering for each alignment the maximum amount
557 that it might contribute to a size increase.
558
559 For casesi tables, we also want to know worst case minimum amounts of
560 address difference, in case a machine description wants to introduce
561 some common offset that is added to all offsets in a table.
562 For this purpose, align_fuzz with a growth argument of 0 computes the
563 appropriate adjustment. */
564
565 /* Compute the maximum delta by which the difference of the addresses of
566 START and END might grow / shrink due to a different address for start
567 which changes the size of alignment insns between START and END.
568 KNOWN_ALIGN_LOG is the alignment known for START.
569 GROWTH should be ~0 if the objective is to compute potential code size
570 increase, and 0 if the objective is to compute potential shrink.
571 The return value is undefined for any other value of GROWTH. */
572
573 static int
574 align_fuzz (start, end, known_align_log, growth)
575 rtx start, end;
576 int known_align_log;
577 unsigned growth;
578 {
579 int uid = INSN_UID (start);
580 rtx align_label;
581 int known_align = 1 << known_align_log;
582 int end_shuid = INSN_SHUID (end);
583 int fuzz = 0;
584
585 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
586 {
587 int align_addr, new_align;
588
589 uid = INSN_UID (align_label);
590 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
591 if (uid_shuid[uid] > end_shuid)
592 break;
593 known_align_log = LABEL_TO_ALIGNMENT (align_label);
594 new_align = 1 << known_align_log;
595 if (new_align < known_align)
596 continue;
597 fuzz += (-align_addr ^ growth) & (new_align - known_align);
598 known_align = new_align;
599 }
600 return fuzz;
601 }
602
603 /* Compute a worst-case reference address of a branch so that it
604 can be safely used in the presence of aligned labels. Since the
605 size of the branch itself is unknown, the size of the branch is
606 not included in the range. I.e. for a forward branch, the reference
607 address is the end address of the branch as known from the previous
608 branch shortening pass, minus a value to account for possible size
609 increase due to alignment. For a backward branch, it is the start
610 address of the branch as known from the current pass, plus a value
611 to account for possible size increase due to alignment.
612 NB.: Therefore, the maximum offset allowed for backward branches needs
613 to exclude the branch size. */
614
615 int
616 insn_current_reference_address (branch)
617 rtx branch;
618 {
619 rtx dest, seq;
620 int seq_uid;
621
622 if (! INSN_ADDRESSES_SET_P ())
623 return 0;
624
625 seq = NEXT_INSN (PREV_INSN (branch));
626 seq_uid = INSN_UID (seq);
627 if (GET_CODE (branch) != JUMP_INSN)
628 /* This can happen for example on the PA; the objective is to know the
629 offset to address something in front of the start of the function.
630 Thus, we can treat it like a backward branch.
631 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
632 any alignment we'd encounter, so we skip the call to align_fuzz. */
633 return insn_current_address;
634 dest = JUMP_LABEL (branch);
635
636 /* BRANCH has no proper alignment chain set, so use SEQ.
637 BRANCH also has no INSN_SHUID. */
638 if (INSN_SHUID (seq) < INSN_SHUID (dest))
639 {
640 /* Forward branch. */
641 return (insn_last_address + insn_lengths[seq_uid]
642 - align_fuzz (seq, dest, length_unit_log, ~0));
643 }
644 else
645 {
646 /* Backward branch. */
647 return (insn_current_address
648 + align_fuzz (dest, seq, length_unit_log, ~0));
649 }
650 }
651 #endif /* HAVE_ATTR_length */
652 \f
653 void
654 compute_alignments ()
655 {
656 int log, max_skip, max_log;
657 basic_block bb;
658
659 if (label_align)
660 {
661 free (label_align);
662 label_align = 0;
663 }
664
665 max_labelno = max_label_num ();
666 min_labelno = get_first_label_num ();
667 label_align = (struct label_alignment *)
668 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
669
670 /* If not optimizing or optimizing for size, don't assign any alignments. */
671 if (! optimize || optimize_size)
672 return;
673
674 FOR_EACH_BB (bb)
675 {
676 rtx label = bb->head;
677 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
678 edge e;
679
680 if (GET_CODE (label) != CODE_LABEL
681 || probably_never_executed_bb_p (bb))
682 continue;
683 max_log = LABEL_ALIGN (label);
684 max_skip = LABEL_ALIGN_MAX_SKIP;
685
686 for (e = bb->pred; e; e = e->pred_next)
687 {
688 if (e->flags & EDGE_FALLTHRU)
689 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
690 else
691 branch_frequency += EDGE_FREQUENCY (e);
692 }
693
694 /* There are two purposes to align block with no fallthru incoming edge:
695 1) to avoid fetch stalls when branch destination is near cache boundary
696 2) to improve cache efficiency in case the previous block is not executed
697 (so it does not need to be in the cache).
698
699 We to catch first case, we align frequently executed blocks.
700 To catch the second, we align blocks that are executed more frequently
701 than the predecessor and the predecessor is likely to not be executed
702 when function is called. */
703
704 if (!has_fallthru
705 && (branch_frequency > BB_FREQ_MAX / 10
706 || (bb->frequency > bb->prev_bb->frequency * 10
707 && (bb->prev_bb->frequency
708 <= ENTRY_BLOCK_PTR->frequency / 2))))
709 {
710 log = JUMP_ALIGN (label);
711 if (max_log < log)
712 {
713 max_log = log;
714 max_skip = JUMP_ALIGN_MAX_SKIP;
715 }
716 }
717 /* In case block is frequent and reached mostly by non-fallthru edge,
718 align it. It is most likely a first block of loop. */
719 if (has_fallthru
720 && maybe_hot_bb_p (bb)
721 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
722 && branch_frequency > fallthru_frequency * 2)
723 {
724 log = LOOP_ALIGN (label);
725 if (max_log < log)
726 {
727 max_log = log;
728 max_skip = LOOP_ALIGN_MAX_SKIP;
729 }
730 }
731 LABEL_TO_ALIGNMENT (label) = max_log;
732 LABEL_TO_MAX_SKIP (label) = max_skip;
733 }
734 }
735 \f
736 /* Make a pass over all insns and compute their actual lengths by shortening
737 any branches of variable length if possible. */
738
739 /* Give a default value for the lowest address in a function. */
740
741 #ifndef FIRST_INSN_ADDRESS
742 #define FIRST_INSN_ADDRESS 0
743 #endif
744
745 /* shorten_branches might be called multiple times: for example, the SH
746 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
747 In order to do this, it needs proper length information, which it obtains
748 by calling shorten_branches. This cannot be collapsed with
749 shorten_branches itself into a single pass unless we also want to integrate
750 reorg.c, since the branch splitting exposes new instructions with delay
751 slots. */
752
753 void
754 shorten_branches (first)
755 rtx first ATTRIBUTE_UNUSED;
756 {
757 rtx insn;
758 int max_uid;
759 int i;
760 int max_log;
761 int max_skip;
762 #ifdef HAVE_ATTR_length
763 #define MAX_CODE_ALIGN 16
764 rtx seq;
765 int something_changed = 1;
766 char *varying_length;
767 rtx body;
768 int uid;
769 rtx align_tab[MAX_CODE_ALIGN];
770
771 #endif
772
773 /* Compute maximum UID and allocate label_align / uid_shuid. */
774 max_uid = get_max_uid ();
775
776 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
777
778 if (max_labelno != max_label_num ())
779 {
780 int old = max_labelno;
781 int n_labels;
782 int n_old_labels;
783
784 max_labelno = max_label_num ();
785
786 n_labels = max_labelno - min_labelno + 1;
787 n_old_labels = old - min_labelno + 1;
788
789 label_align = (struct label_alignment *) xrealloc
790 (label_align, n_labels * sizeof (struct label_alignment));
791
792 /* Range of labels grows monotonically in the function. Abort here
793 means that the initialization of array got lost. */
794 if (n_old_labels > n_labels)
795 abort ();
796
797 memset (label_align + n_old_labels, 0,
798 (n_labels - n_old_labels) * sizeof (struct label_alignment));
799 }
800
801 /* Initialize label_align and set up uid_shuid to be strictly
802 monotonically rising with insn order. */
803 /* We use max_log here to keep track of the maximum alignment we want to
804 impose on the next CODE_LABEL (or the current one if we are processing
805 the CODE_LABEL itself). */
806
807 max_log = 0;
808 max_skip = 0;
809
810 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
811 {
812 int log;
813
814 INSN_SHUID (insn) = i++;
815 if (INSN_P (insn))
816 {
817 /* reorg might make the first insn of a loop being run once only,
818 and delete the label in front of it. Then we want to apply
819 the loop alignment to the new label created by reorg, which
820 is separated by the former loop start insn from the
821 NOTE_INSN_LOOP_BEG. */
822 }
823 else if (GET_CODE (insn) == CODE_LABEL)
824 {
825 rtx next;
826
827 /* Merge in alignments computed by compute_alignments. */
828 log = LABEL_TO_ALIGNMENT (insn);
829 if (max_log < log)
830 {
831 max_log = log;
832 max_skip = LABEL_TO_MAX_SKIP (insn);
833 }
834
835 log = LABEL_ALIGN (insn);
836 if (max_log < log)
837 {
838 max_log = log;
839 max_skip = LABEL_ALIGN_MAX_SKIP;
840 }
841 next = NEXT_INSN (insn);
842 /* ADDR_VECs only take room if read-only data goes into the text
843 section. */
844 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
845 if (next && GET_CODE (next) == JUMP_INSN)
846 {
847 rtx nextbody = PATTERN (next);
848 if (GET_CODE (nextbody) == ADDR_VEC
849 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
850 {
851 log = ADDR_VEC_ALIGN (next);
852 if (max_log < log)
853 {
854 max_log = log;
855 max_skip = LABEL_ALIGN_MAX_SKIP;
856 }
857 }
858 }
859 LABEL_TO_ALIGNMENT (insn) = max_log;
860 LABEL_TO_MAX_SKIP (insn) = max_skip;
861 max_log = 0;
862 max_skip = 0;
863 }
864 else if (GET_CODE (insn) == BARRIER)
865 {
866 rtx label;
867
868 for (label = insn; label && ! INSN_P (label);
869 label = NEXT_INSN (label))
870 if (GET_CODE (label) == CODE_LABEL)
871 {
872 log = LABEL_ALIGN_AFTER_BARRIER (insn);
873 if (max_log < log)
874 {
875 max_log = log;
876 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
877 }
878 break;
879 }
880 }
881 }
882 #ifdef HAVE_ATTR_length
883
884 /* Allocate the rest of the arrays. */
885 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
886 insn_lengths_max_uid = max_uid;
887 /* Syntax errors can lead to labels being outside of the main insn stream.
888 Initialize insn_addresses, so that we get reproducible results. */
889 INSN_ADDRESSES_ALLOC (max_uid);
890
891 varying_length = (char *) xcalloc (max_uid, sizeof (char));
892
893 /* Initialize uid_align. We scan instructions
894 from end to start, and keep in align_tab[n] the last seen insn
895 that does an alignment of at least n+1, i.e. the successor
896 in the alignment chain for an insn that does / has a known
897 alignment of n. */
898 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
899
900 for (i = MAX_CODE_ALIGN; --i >= 0;)
901 align_tab[i] = NULL_RTX;
902 seq = get_last_insn ();
903 for (; seq; seq = PREV_INSN (seq))
904 {
905 int uid = INSN_UID (seq);
906 int log;
907 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
908 uid_align[uid] = align_tab[0];
909 if (log)
910 {
911 /* Found an alignment label. */
912 uid_align[uid] = align_tab[log];
913 for (i = log - 1; i >= 0; i--)
914 align_tab[i] = seq;
915 }
916 }
917 #ifdef CASE_VECTOR_SHORTEN_MODE
918 if (optimize)
919 {
920 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
921 label fields. */
922
923 int min_shuid = INSN_SHUID (get_insns ()) - 1;
924 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
925 int rel;
926
927 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
928 {
929 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
930 int len, i, min, max, insn_shuid;
931 int min_align;
932 addr_diff_vec_flags flags;
933
934 if (GET_CODE (insn) != JUMP_INSN
935 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
936 continue;
937 pat = PATTERN (insn);
938 len = XVECLEN (pat, 1);
939 if (len <= 0)
940 abort ();
941 min_align = MAX_CODE_ALIGN;
942 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
943 {
944 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
945 int shuid = INSN_SHUID (lab);
946 if (shuid < min)
947 {
948 min = shuid;
949 min_lab = lab;
950 }
951 if (shuid > max)
952 {
953 max = shuid;
954 max_lab = lab;
955 }
956 if (min_align > LABEL_TO_ALIGNMENT (lab))
957 min_align = LABEL_TO_ALIGNMENT (lab);
958 }
959 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
960 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
961 insn_shuid = INSN_SHUID (insn);
962 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
963 flags.min_align = min_align;
964 flags.base_after_vec = rel > insn_shuid;
965 flags.min_after_vec = min > insn_shuid;
966 flags.max_after_vec = max > insn_shuid;
967 flags.min_after_base = min > rel;
968 flags.max_after_base = max > rel;
969 ADDR_DIFF_VEC_FLAGS (pat) = flags;
970 }
971 }
972 #endif /* CASE_VECTOR_SHORTEN_MODE */
973
974 /* Compute initial lengths, addresses, and varying flags for each insn. */
975 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
976 insn != 0;
977 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
978 {
979 uid = INSN_UID (insn);
980
981 insn_lengths[uid] = 0;
982
983 if (GET_CODE (insn) == CODE_LABEL)
984 {
985 int log = LABEL_TO_ALIGNMENT (insn);
986 if (log)
987 {
988 int align = 1 << log;
989 int new_address = (insn_current_address + align - 1) & -align;
990 insn_lengths[uid] = new_address - insn_current_address;
991 }
992 }
993
994 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
995
996 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
997 || GET_CODE (insn) == CODE_LABEL)
998 continue;
999 if (INSN_DELETED_P (insn))
1000 continue;
1001
1002 body = PATTERN (insn);
1003 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1004 {
1005 /* This only takes room if read-only data goes into the text
1006 section. */
1007 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1008 insn_lengths[uid] = (XVECLEN (body,
1009 GET_CODE (body) == ADDR_DIFF_VEC)
1010 * GET_MODE_SIZE (GET_MODE (body)));
1011 /* Alignment is handled by ADDR_VEC_ALIGN. */
1012 }
1013 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1014 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1015 else if (GET_CODE (body) == SEQUENCE)
1016 {
1017 int i;
1018 int const_delay_slots;
1019 #ifdef DELAY_SLOTS
1020 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1021 #else
1022 const_delay_slots = 0;
1023 #endif
1024 /* Inside a delay slot sequence, we do not do any branch shortening
1025 if the shortening could change the number of delay slots
1026 of the branch. */
1027 for (i = 0; i < XVECLEN (body, 0); i++)
1028 {
1029 rtx inner_insn = XVECEXP (body, 0, i);
1030 int inner_uid = INSN_UID (inner_insn);
1031 int inner_length;
1032
1033 if (GET_CODE (body) == ASM_INPUT
1034 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1035 inner_length = (asm_insn_count (PATTERN (inner_insn))
1036 * insn_default_length (inner_insn));
1037 else
1038 inner_length = insn_default_length (inner_insn);
1039
1040 insn_lengths[inner_uid] = inner_length;
1041 if (const_delay_slots)
1042 {
1043 if ((varying_length[inner_uid]
1044 = insn_variable_length_p (inner_insn)) != 0)
1045 varying_length[uid] = 1;
1046 INSN_ADDRESSES (inner_uid) = (insn_current_address
1047 + insn_lengths[uid]);
1048 }
1049 else
1050 varying_length[inner_uid] = 0;
1051 insn_lengths[uid] += inner_length;
1052 }
1053 }
1054 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1055 {
1056 insn_lengths[uid] = insn_default_length (insn);
1057 varying_length[uid] = insn_variable_length_p (insn);
1058 }
1059
1060 /* If needed, do any adjustment. */
1061 #ifdef ADJUST_INSN_LENGTH
1062 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1063 if (insn_lengths[uid] < 0)
1064 fatal_insn ("negative insn length", insn);
1065 #endif
1066 }
1067
1068 /* Now loop over all the insns finding varying length insns. For each,
1069 get the current insn length. If it has changed, reflect the change.
1070 When nothing changes for a full pass, we are done. */
1071
1072 while (something_changed)
1073 {
1074 something_changed = 0;
1075 insn_current_align = MAX_CODE_ALIGN - 1;
1076 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1077 insn != 0;
1078 insn = NEXT_INSN (insn))
1079 {
1080 int new_length;
1081 #ifdef ADJUST_INSN_LENGTH
1082 int tmp_length;
1083 #endif
1084 int length_align;
1085
1086 uid = INSN_UID (insn);
1087
1088 if (GET_CODE (insn) == CODE_LABEL)
1089 {
1090 int log = LABEL_TO_ALIGNMENT (insn);
1091 if (log > insn_current_align)
1092 {
1093 int align = 1 << log;
1094 int new_address= (insn_current_address + align - 1) & -align;
1095 insn_lengths[uid] = new_address - insn_current_address;
1096 insn_current_align = log;
1097 insn_current_address = new_address;
1098 }
1099 else
1100 insn_lengths[uid] = 0;
1101 INSN_ADDRESSES (uid) = insn_current_address;
1102 continue;
1103 }
1104
1105 length_align = INSN_LENGTH_ALIGNMENT (insn);
1106 if (length_align < insn_current_align)
1107 insn_current_align = length_align;
1108
1109 insn_last_address = INSN_ADDRESSES (uid);
1110 INSN_ADDRESSES (uid) = insn_current_address;
1111
1112 #ifdef CASE_VECTOR_SHORTEN_MODE
1113 if (optimize && GET_CODE (insn) == JUMP_INSN
1114 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1115 {
1116 rtx body = PATTERN (insn);
1117 int old_length = insn_lengths[uid];
1118 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1119 rtx min_lab = XEXP (XEXP (body, 2), 0);
1120 rtx max_lab = XEXP (XEXP (body, 3), 0);
1121 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1122 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1123 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1124 rtx prev;
1125 int rel_align = 0;
1126 addr_diff_vec_flags flags;
1127
1128 /* Avoid automatic aggregate initialization. */
1129 flags = ADDR_DIFF_VEC_FLAGS (body);
1130
1131 /* Try to find a known alignment for rel_lab. */
1132 for (prev = rel_lab;
1133 prev
1134 && ! insn_lengths[INSN_UID (prev)]
1135 && ! (varying_length[INSN_UID (prev)] & 1);
1136 prev = PREV_INSN (prev))
1137 if (varying_length[INSN_UID (prev)] & 2)
1138 {
1139 rel_align = LABEL_TO_ALIGNMENT (prev);
1140 break;
1141 }
1142
1143 /* See the comment on addr_diff_vec_flags in rtl.h for the
1144 meaning of the flags values. base: REL_LAB vec: INSN */
1145 /* Anything after INSN has still addresses from the last
1146 pass; adjust these so that they reflect our current
1147 estimate for this pass. */
1148 if (flags.base_after_vec)
1149 rel_addr += insn_current_address - insn_last_address;
1150 if (flags.min_after_vec)
1151 min_addr += insn_current_address - insn_last_address;
1152 if (flags.max_after_vec)
1153 max_addr += insn_current_address - insn_last_address;
1154 /* We want to know the worst case, i.e. lowest possible value
1155 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1156 its offset is positive, and we have to be wary of code shrink;
1157 otherwise, it is negative, and we have to be vary of code
1158 size increase. */
1159 if (flags.min_after_base)
1160 {
1161 /* If INSN is between REL_LAB and MIN_LAB, the size
1162 changes we are about to make can change the alignment
1163 within the observed offset, therefore we have to break
1164 it up into two parts that are independent. */
1165 if (! flags.base_after_vec && flags.min_after_vec)
1166 {
1167 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1168 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1169 }
1170 else
1171 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1172 }
1173 else
1174 {
1175 if (flags.base_after_vec && ! flags.min_after_vec)
1176 {
1177 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1178 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1179 }
1180 else
1181 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1182 }
1183 /* Likewise, determine the highest lowest possible value
1184 for the offset of MAX_LAB. */
1185 if (flags.max_after_base)
1186 {
1187 if (! flags.base_after_vec && flags.max_after_vec)
1188 {
1189 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1190 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1191 }
1192 else
1193 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1194 }
1195 else
1196 {
1197 if (flags.base_after_vec && ! flags.max_after_vec)
1198 {
1199 max_addr += align_fuzz (max_lab, insn, 0, 0);
1200 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1201 }
1202 else
1203 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1204 }
1205 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1206 max_addr - rel_addr,
1207 body));
1208 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1209 {
1210 insn_lengths[uid]
1211 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1212 insn_current_address += insn_lengths[uid];
1213 if (insn_lengths[uid] != old_length)
1214 something_changed = 1;
1215 }
1216
1217 continue;
1218 }
1219 #endif /* CASE_VECTOR_SHORTEN_MODE */
1220
1221 if (! (varying_length[uid]))
1222 {
1223 if (GET_CODE (insn) == INSN
1224 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1225 {
1226 int i;
1227
1228 body = PATTERN (insn);
1229 for (i = 0; i < XVECLEN (body, 0); i++)
1230 {
1231 rtx inner_insn = XVECEXP (body, 0, i);
1232 int inner_uid = INSN_UID (inner_insn);
1233
1234 INSN_ADDRESSES (inner_uid) = insn_current_address;
1235
1236 insn_current_address += insn_lengths[inner_uid];
1237 }
1238 }
1239 else
1240 insn_current_address += insn_lengths[uid];
1241
1242 continue;
1243 }
1244
1245 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1246 {
1247 int i;
1248
1249 body = PATTERN (insn);
1250 new_length = 0;
1251 for (i = 0; i < XVECLEN (body, 0); i++)
1252 {
1253 rtx inner_insn = XVECEXP (body, 0, i);
1254 int inner_uid = INSN_UID (inner_insn);
1255 int inner_length;
1256
1257 INSN_ADDRESSES (inner_uid) = insn_current_address;
1258
1259 /* insn_current_length returns 0 for insns with a
1260 non-varying length. */
1261 if (! varying_length[inner_uid])
1262 inner_length = insn_lengths[inner_uid];
1263 else
1264 inner_length = insn_current_length (inner_insn);
1265
1266 if (inner_length != insn_lengths[inner_uid])
1267 {
1268 insn_lengths[inner_uid] = inner_length;
1269 something_changed = 1;
1270 }
1271 insn_current_address += insn_lengths[inner_uid];
1272 new_length += inner_length;
1273 }
1274 }
1275 else
1276 {
1277 new_length = insn_current_length (insn);
1278 insn_current_address += new_length;
1279 }
1280
1281 #ifdef ADJUST_INSN_LENGTH
1282 /* If needed, do any adjustment. */
1283 tmp_length = new_length;
1284 ADJUST_INSN_LENGTH (insn, new_length);
1285 insn_current_address += (new_length - tmp_length);
1286 #endif
1287
1288 if (new_length != insn_lengths[uid])
1289 {
1290 insn_lengths[uid] = new_length;
1291 something_changed = 1;
1292 }
1293 }
1294 /* For a non-optimizing compile, do only a single pass. */
1295 if (!optimize)
1296 break;
1297 }
1298
1299 free (varying_length);
1300
1301 #endif /* HAVE_ATTR_length */
1302 }
1303
1304 #ifdef HAVE_ATTR_length
1305 /* Given the body of an INSN known to be generated by an ASM statement, return
1306 the number of machine instructions likely to be generated for this insn.
1307 This is used to compute its length. */
1308
1309 static int
1310 asm_insn_count (body)
1311 rtx body;
1312 {
1313 const char *template;
1314 int count = 1;
1315
1316 if (GET_CODE (body) == ASM_INPUT)
1317 template = XSTR (body, 0);
1318 else
1319 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1320
1321 for (; *template; template++)
1322 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1323 count++;
1324
1325 return count;
1326 }
1327 #endif
1328 \f
1329 /* Output assembler code for the start of a function,
1330 and initialize some of the variables in this file
1331 for the new function. The label for the function and associated
1332 assembler pseudo-ops have already been output in `assemble_start_function'.
1333
1334 FIRST is the first insn of the rtl for the function being compiled.
1335 FILE is the file to write assembler code to.
1336 OPTIMIZE is nonzero if we should eliminate redundant
1337 test and compare insns. */
1338
1339 void
1340 final_start_function (first, file, optimize)
1341 rtx first;
1342 FILE *file;
1343 int optimize ATTRIBUTE_UNUSED;
1344 {
1345 block_depth = 0;
1346
1347 this_is_asm_operands = 0;
1348
1349 #ifdef NON_SAVING_SETJMP
1350 /* A function that calls setjmp should save and restore all the
1351 call-saved registers on a system where longjmp clobbers them. */
1352 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1353 {
1354 int i;
1355
1356 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1357 if (!call_used_regs[i])
1358 regs_ever_live[i] = 1;
1359 }
1360 #endif
1361
1362 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1363 notice_source_line (first);
1364 high_block_linenum = high_function_linenum = last_linenum;
1365
1366 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1367
1368 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1369 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1370 dwarf2out_begin_prologue (0, NULL);
1371 #endif
1372
1373 #ifdef LEAF_REG_REMAP
1374 if (current_function_uses_only_leaf_regs)
1375 leaf_renumber_regs (first);
1376 #endif
1377
1378 /* The Sun386i and perhaps other machines don't work right
1379 if the profiling code comes after the prologue. */
1380 #ifdef PROFILE_BEFORE_PROLOGUE
1381 if (current_function_profile)
1382 profile_function (file);
1383 #endif /* PROFILE_BEFORE_PROLOGUE */
1384
1385 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1386 if (dwarf2out_do_frame ())
1387 dwarf2out_frame_debug (NULL_RTX);
1388 #endif
1389
1390 /* If debugging, assign block numbers to all of the blocks in this
1391 function. */
1392 if (write_symbols)
1393 {
1394 remove_unnecessary_notes ();
1395 scope_to_insns_finalize ();
1396 number_blocks (current_function_decl);
1397 /* We never actually put out begin/end notes for the top-level
1398 block in the function. But, conceptually, that block is
1399 always needed. */
1400 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1401 }
1402
1403 /* First output the function prologue: code to set up the stack frame. */
1404 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1405
1406 /* If the machine represents the prologue as RTL, the profiling code must
1407 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1408 #ifdef HAVE_prologue
1409 if (! HAVE_prologue)
1410 #endif
1411 profile_after_prologue (file);
1412 }
1413
1414 static void
1415 profile_after_prologue (file)
1416 FILE *file ATTRIBUTE_UNUSED;
1417 {
1418 #ifndef PROFILE_BEFORE_PROLOGUE
1419 if (current_function_profile)
1420 profile_function (file);
1421 #endif /* not PROFILE_BEFORE_PROLOGUE */
1422 }
1423
1424 static void
1425 profile_function (file)
1426 FILE *file ATTRIBUTE_UNUSED;
1427 {
1428 #ifndef NO_PROFILE_COUNTERS
1429 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1430 #endif
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1433 int sval = current_function_returns_struct;
1434 #endif
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1436 int cxt = current_function_needs_context;
1437 #endif
1438 #endif /* ASM_OUTPUT_REG_PUSH */
1439
1440 #ifndef NO_PROFILE_COUNTERS
1441 data_section ();
1442 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1443 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1444 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1445 #endif
1446
1447 function_section (current_function_decl);
1448
1449 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (sval)
1451 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1452 #else
1453 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (sval)
1455 {
1456 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1462 if (cxt)
1463 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1464 #else
1465 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1466 if (cxt)
1467 {
1468 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1469 }
1470 #endif
1471 #endif
1472
1473 FUNCTION_PROFILER (file, current_function_funcdef_no);
1474
1475 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1476 if (cxt)
1477 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1478 #else
1479 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 {
1482 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1483 }
1484 #endif
1485 #endif
1486
1487 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1488 if (sval)
1489 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1490 #else
1491 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1492 if (sval)
1493 {
1494 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1495 }
1496 #endif
1497 #endif
1498 }
1499
1500 /* Output assembler code for the end of a function.
1501 For clarity, args are same as those of `final_start_function'
1502 even though not all of them are needed. */
1503
1504 void
1505 final_end_function ()
1506 {
1507 app_disable ();
1508
1509 (*debug_hooks->end_function) (high_function_linenum);
1510
1511 /* Finally, output the function epilogue:
1512 code to restore the stack frame and return to the caller. */
1513 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1514
1515 /* And debug output. */
1516 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1517
1518 #if defined (DWARF2_UNWIND_INFO)
1519 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1520 && dwarf2out_do_frame ())
1521 dwarf2out_end_epilogue (last_linenum, last_filename);
1522 #endif
1523 }
1524 \f
1525 /* Output assembler code for some insns: all or part of a function.
1526 For description of args, see `final_start_function', above.
1527
1528 PRESCAN is 1 if we are not really outputting,
1529 just scanning as if we were outputting.
1530 Prescanning deletes and rearranges insns just like ordinary output.
1531 PRESCAN is -2 if we are outputting after having prescanned.
1532 In this case, don't try to delete or rearrange insns
1533 because that has already been done.
1534 Prescanning is done only on certain machines. */
1535
1536 void
1537 final (first, file, optimize, prescan)
1538 rtx first;
1539 FILE *file;
1540 int optimize;
1541 int prescan;
1542 {
1543 rtx insn;
1544 int max_line = 0;
1545 int max_uid = 0;
1546
1547 last_ignored_compare = 0;
1548
1549 /* Make a map indicating which line numbers appear in this function.
1550 When producing SDB debugging info, delete troublesome line number
1551 notes from inlined functions in other files as well as duplicate
1552 line number notes. */
1553 #ifdef SDB_DEBUGGING_INFO
1554 if (write_symbols == SDB_DEBUG)
1555 {
1556 rtx last = 0;
1557 for (insn = first; insn; insn = NEXT_INSN (insn))
1558 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1559 {
1560 if ((RTX_INTEGRATED_P (insn)
1561 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1562 || (last != 0
1563 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1564 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1565 {
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1568 }
1569 last = insn;
1570 if (NOTE_LINE_NUMBER (insn) > max_line)
1571 max_line = NOTE_LINE_NUMBER (insn);
1572 }
1573 }
1574 else
1575 #endif
1576 {
1577 for (insn = first; insn; insn = NEXT_INSN (insn))
1578 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1579 max_line = NOTE_LINE_NUMBER (insn);
1580 }
1581
1582 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1583
1584 for (insn = first; insn; insn = NEXT_INSN (insn))
1585 {
1586 if (INSN_UID (insn) > max_uid) /* find largest UID */
1587 max_uid = INSN_UID (insn);
1588 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1589 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1590 #ifdef HAVE_cc0
1591 /* If CC tracking across branches is enabled, record the insn which
1592 jumps to each branch only reached from one place. */
1593 if (optimize && GET_CODE (insn) == JUMP_INSN)
1594 {
1595 rtx lab = JUMP_LABEL (insn);
1596 if (lab && LABEL_NUSES (lab) == 1)
1597 {
1598 LABEL_REFS (lab) = insn;
1599 }
1600 }
1601 #endif
1602 }
1603
1604 init_recog ();
1605
1606 CC_STATUS_INIT;
1607
1608 /* Output the insns. */
1609 for (insn = NEXT_INSN (first); insn;)
1610 {
1611 #ifdef HAVE_ATTR_length
1612 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1613 {
1614 /* This can be triggered by bugs elsewhere in the compiler if
1615 new insns are created after init_insn_lengths is called. */
1616 if (GET_CODE (insn) == NOTE)
1617 insn_current_address = -1;
1618 else
1619 abort ();
1620 }
1621 else
1622 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1623 #endif /* HAVE_ATTR_length */
1624
1625 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1626 }
1627
1628 free (line_note_exists);
1629 line_note_exists = NULL;
1630 }
1631 \f
1632 const char *
1633 get_insn_template (code, insn)
1634 int code;
1635 rtx insn;
1636 {
1637 const void *output = insn_data[code].output;
1638 switch (insn_data[code].output_format)
1639 {
1640 case INSN_OUTPUT_FORMAT_SINGLE:
1641 return (const char *) output;
1642 case INSN_OUTPUT_FORMAT_MULTI:
1643 return ((const char *const *) output)[which_alternative];
1644 case INSN_OUTPUT_FORMAT_FUNCTION:
1645 if (insn == NULL)
1646 abort ();
1647 return (*(insn_output_fn) output) (recog_data.operand, insn);
1648
1649 default:
1650 abort ();
1651 }
1652 }
1653
1654 /* Emit the appropriate declaration for an alternate-entry-point
1655 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1656 LABEL_KIND != LABEL_NORMAL.
1657
1658 The case fall-through in this function is intentional. */
1659 static void
1660 output_alternate_entry_point (file, insn)
1661 FILE *file;
1662 rtx insn;
1663 {
1664 const char *name = LABEL_NAME (insn);
1665
1666 switch (LABEL_KIND (insn))
1667 {
1668 case LABEL_WEAK_ENTRY:
1669 #ifdef ASM_WEAKEN_LABEL
1670 ASM_WEAKEN_LABEL (file, name);
1671 #endif
1672 case LABEL_GLOBAL_ENTRY:
1673 (*targetm.asm_out.globalize_label) (file, name);
1674 case LABEL_STATIC_ENTRY:
1675 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1676 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1677 #endif
1678 ASM_OUTPUT_LABEL (file, name);
1679 break;
1680
1681 case LABEL_NORMAL:
1682 default:
1683 abort ();
1684 }
1685 }
1686
1687 /* The final scan for one insn, INSN.
1688 Args are same as in `final', except that INSN
1689 is the insn being scanned.
1690 Value returned is the next insn to be scanned.
1691
1692 NOPEEPHOLES is the flag to disallow peephole processing (currently
1693 used for within delayed branch sequence output). */
1694
1695 rtx
1696 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1697 rtx insn;
1698 FILE *file;
1699 int optimize ATTRIBUTE_UNUSED;
1700 int prescan;
1701 int nopeepholes ATTRIBUTE_UNUSED;
1702 {
1703 #ifdef HAVE_cc0
1704 rtx set;
1705 #endif
1706
1707 insn_counter++;
1708
1709 /* Ignore deleted insns. These can occur when we split insns (due to a
1710 template of "#") while not optimizing. */
1711 if (INSN_DELETED_P (insn))
1712 return NEXT_INSN (insn);
1713
1714 switch (GET_CODE (insn))
1715 {
1716 case NOTE:
1717 if (prescan > 0)
1718 break;
1719
1720 switch (NOTE_LINE_NUMBER (insn))
1721 {
1722 case NOTE_INSN_DELETED:
1723 case NOTE_INSN_LOOP_BEG:
1724 case NOTE_INSN_LOOP_END:
1725 case NOTE_INSN_LOOP_END_TOP_COND:
1726 case NOTE_INSN_LOOP_CONT:
1727 case NOTE_INSN_LOOP_VTOP:
1728 case NOTE_INSN_FUNCTION_END:
1729 case NOTE_INSN_REPEATED_LINE_NUMBER:
1730 case NOTE_INSN_EXPECTED_VALUE:
1731 break;
1732
1733 case NOTE_INSN_BASIC_BLOCK:
1734 #ifdef IA64_UNWIND_INFO
1735 IA64_UNWIND_EMIT (asm_out_file, insn);
1736 #endif
1737 if (flag_debug_asm)
1738 fprintf (asm_out_file, "\t%s basic block %d\n",
1739 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1740 break;
1741
1742 case NOTE_INSN_EH_REGION_BEG:
1743 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1744 NOTE_EH_HANDLER (insn));
1745 break;
1746
1747 case NOTE_INSN_EH_REGION_END:
1748 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1749 NOTE_EH_HANDLER (insn));
1750 break;
1751
1752 case NOTE_INSN_PROLOGUE_END:
1753 (*targetm.asm_out.function_end_prologue) (file);
1754 profile_after_prologue (file);
1755 break;
1756
1757 case NOTE_INSN_EPILOGUE_BEG:
1758 (*targetm.asm_out.function_begin_epilogue) (file);
1759 break;
1760
1761 case NOTE_INSN_FUNCTION_BEG:
1762 app_disable ();
1763 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1764 break;
1765
1766 case NOTE_INSN_BLOCK_BEG:
1767 if (debug_info_level == DINFO_LEVEL_NORMAL
1768 || debug_info_level == DINFO_LEVEL_VERBOSE
1769 || write_symbols == DWARF_DEBUG
1770 || write_symbols == DWARF2_DEBUG
1771 || write_symbols == VMS_AND_DWARF2_DEBUG
1772 || write_symbols == VMS_DEBUG)
1773 {
1774 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1775
1776 app_disable ();
1777 ++block_depth;
1778 high_block_linenum = last_linenum;
1779
1780 /* Output debugging info about the symbol-block beginning. */
1781 (*debug_hooks->begin_block) (last_linenum, n);
1782
1783 /* Mark this block as output. */
1784 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1785 }
1786 break;
1787
1788 case NOTE_INSN_BLOCK_END:
1789 if (debug_info_level == DINFO_LEVEL_NORMAL
1790 || debug_info_level == DINFO_LEVEL_VERBOSE
1791 || write_symbols == DWARF_DEBUG
1792 || write_symbols == DWARF2_DEBUG
1793 || write_symbols == VMS_AND_DWARF2_DEBUG
1794 || write_symbols == VMS_DEBUG)
1795 {
1796 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1797
1798 app_disable ();
1799
1800 /* End of a symbol-block. */
1801 --block_depth;
1802 if (block_depth < 0)
1803 abort ();
1804
1805 (*debug_hooks->end_block) (high_block_linenum, n);
1806 }
1807 break;
1808
1809 case NOTE_INSN_DELETED_LABEL:
1810 /* Emit the label. We may have deleted the CODE_LABEL because
1811 the label could be proved to be unreachable, though still
1812 referenced (in the form of having its address taken. */
1813 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1814 break;
1815
1816 case 0:
1817 break;
1818
1819 default:
1820 if (NOTE_LINE_NUMBER (insn) <= 0)
1821 abort ();
1822
1823 /* This note is a line-number. */
1824 {
1825 rtx note;
1826 int note_after = 0;
1827
1828 /* If there is anything real after this note, output it.
1829 If another line note follows, omit this one. */
1830 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
1831 {
1832 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
1833 break;
1834
1835 /* These types of notes can be significant
1836 so make sure the preceding line number stays. */
1837 else if (GET_CODE (note) == NOTE
1838 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
1839 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
1840 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
1841 break;
1842 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
1843 {
1844 /* Another line note follows; we can delete this note
1845 if no intervening line numbers have notes elsewhere. */
1846 int num;
1847 for (num = NOTE_LINE_NUMBER (insn) + 1;
1848 num < NOTE_LINE_NUMBER (note);
1849 num++)
1850 if (line_note_exists[num])
1851 break;
1852
1853 if (num >= NOTE_LINE_NUMBER (note))
1854 note_after = 1;
1855 break;
1856 }
1857 }
1858
1859 /* Output this line note if it is the first or the last line
1860 note in a row. */
1861 if (!note_after)
1862 {
1863 notice_source_line (insn);
1864 (*debug_hooks->source_line) (last_linenum, last_filename);
1865 }
1866 }
1867 break;
1868 }
1869 break;
1870
1871 case BARRIER:
1872 #if defined (DWARF2_UNWIND_INFO)
1873 if (dwarf2out_do_frame ())
1874 dwarf2out_frame_debug (insn);
1875 #endif
1876 break;
1877
1878 case CODE_LABEL:
1879 /* The target port might emit labels in the output function for
1880 some insn, e.g. sh.c output_branchy_insn. */
1881 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1882 {
1883 int align = LABEL_TO_ALIGNMENT (insn);
1884 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1885 int max_skip = LABEL_TO_MAX_SKIP (insn);
1886 #endif
1887
1888 if (align && NEXT_INSN (insn))
1889 {
1890 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1891 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1892 #else
1893 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1894 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1895 #else
1896 ASM_OUTPUT_ALIGN (file, align);
1897 #endif
1898 #endif
1899 }
1900 }
1901 #ifdef HAVE_cc0
1902 CC_STATUS_INIT;
1903 /* If this label is reached from only one place, set the condition
1904 codes from the instruction just before the branch. */
1905
1906 /* Disabled because some insns set cc_status in the C output code
1907 and NOTICE_UPDATE_CC alone can set incorrect status. */
1908 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1909 {
1910 rtx jump = LABEL_REFS (insn);
1911 rtx barrier = prev_nonnote_insn (insn);
1912 rtx prev;
1913 /* If the LABEL_REFS field of this label has been set to point
1914 at a branch, the predecessor of the branch is a regular
1915 insn, and that branch is the only way to reach this label,
1916 set the condition codes based on the branch and its
1917 predecessor. */
1918 if (barrier && GET_CODE (barrier) == BARRIER
1919 && jump && GET_CODE (jump) == JUMP_INSN
1920 && (prev = prev_nonnote_insn (jump))
1921 && GET_CODE (prev) == INSN)
1922 {
1923 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1924 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1925 }
1926 }
1927 #endif
1928 if (prescan > 0)
1929 break;
1930
1931 #ifdef FINAL_PRESCAN_LABEL
1932 FINAL_PRESCAN_INSN (insn, NULL, 0);
1933 #endif
1934
1935 if (LABEL_NAME (insn))
1936 (*debug_hooks->label) (insn);
1937
1938 if (app_on)
1939 {
1940 fputs (ASM_APP_OFF, file);
1941 app_on = 0;
1942 }
1943 if (NEXT_INSN (insn) != 0
1944 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1945 {
1946 rtx nextbody = PATTERN (NEXT_INSN (insn));
1947
1948 /* If this label is followed by a jump-table,
1949 make sure we put the label in the read-only section. Also
1950 possibly write the label and jump table together. */
1951
1952 if (GET_CODE (nextbody) == ADDR_VEC
1953 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1954 {
1955 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1956 /* In this case, the case vector is being moved by the
1957 target, so don't output the label at all. Leave that
1958 to the back end macros. */
1959 #else
1960 if (! JUMP_TABLES_IN_TEXT_SECTION)
1961 {
1962 int log_align;
1963
1964 readonly_data_section ();
1965
1966 #ifdef ADDR_VEC_ALIGN
1967 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1968 #else
1969 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1970 #endif
1971 ASM_OUTPUT_ALIGN (file, log_align);
1972 }
1973 else
1974 function_section (current_function_decl);
1975
1976 #ifdef ASM_OUTPUT_CASE_LABEL
1977 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1978 NEXT_INSN (insn));
1979 #else
1980 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1981 #endif
1982 #endif
1983 break;
1984 }
1985 }
1986 if (LABEL_ALT_ENTRY_P (insn))
1987 output_alternate_entry_point (file, insn);
1988 else
1989 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1990 break;
1991
1992 default:
1993 {
1994 rtx body = PATTERN (insn);
1995 int insn_code_number;
1996 const char *template;
1997 rtx note;
1998
1999 /* An INSN, JUMP_INSN or CALL_INSN.
2000 First check for special kinds that recog doesn't recognize. */
2001
2002 if (GET_CODE (body) == USE /* These are just declarations */
2003 || GET_CODE (body) == CLOBBER)
2004 break;
2005
2006 #ifdef HAVE_cc0
2007 /* If there is a REG_CC_SETTER note on this insn, it means that
2008 the setting of the condition code was done in the delay slot
2009 of the insn that branched here. So recover the cc status
2010 from the insn that set it. */
2011
2012 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2013 if (note)
2014 {
2015 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2016 cc_prev_status = cc_status;
2017 }
2018 #endif
2019
2020 /* Detect insns that are really jump-tables
2021 and output them as such. */
2022
2023 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2024 {
2025 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2026 int vlen, idx;
2027 #endif
2028
2029 if (prescan > 0)
2030 break;
2031
2032 if (app_on)
2033 {
2034 fputs (ASM_APP_OFF, file);
2035 app_on = 0;
2036 }
2037
2038 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2039 if (GET_CODE (body) == ADDR_VEC)
2040 {
2041 #ifdef ASM_OUTPUT_ADDR_VEC
2042 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2043 #else
2044 abort ();
2045 #endif
2046 }
2047 else
2048 {
2049 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2050 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2051 #else
2052 abort ();
2053 #endif
2054 }
2055 #else
2056 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2057 for (idx = 0; idx < vlen; idx++)
2058 {
2059 if (GET_CODE (body) == ADDR_VEC)
2060 {
2061 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2062 ASM_OUTPUT_ADDR_VEC_ELT
2063 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2064 #else
2065 abort ();
2066 #endif
2067 }
2068 else
2069 {
2070 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2071 ASM_OUTPUT_ADDR_DIFF_ELT
2072 (file,
2073 body,
2074 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2075 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2076 #else
2077 abort ();
2078 #endif
2079 }
2080 }
2081 #ifdef ASM_OUTPUT_CASE_END
2082 ASM_OUTPUT_CASE_END (file,
2083 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2084 insn);
2085 #endif
2086 #endif
2087
2088 function_section (current_function_decl);
2089
2090 break;
2091 }
2092
2093 if (GET_CODE (body) == ASM_INPUT)
2094 {
2095 const char *string = XSTR (body, 0);
2096
2097 /* There's no telling what that did to the condition codes. */
2098 CC_STATUS_INIT;
2099 if (prescan > 0)
2100 break;
2101
2102 if (string[0])
2103 {
2104 if (! app_on)
2105 {
2106 fputs (ASM_APP_ON, file);
2107 app_on = 1;
2108 }
2109 fprintf (asm_out_file, "\t%s\n", string);
2110 }
2111 break;
2112 }
2113
2114 /* Detect `asm' construct with operands. */
2115 if (asm_noperands (body) >= 0)
2116 {
2117 unsigned int noperands = asm_noperands (body);
2118 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2119 const char *string;
2120
2121 /* There's no telling what that did to the condition codes. */
2122 CC_STATUS_INIT;
2123 if (prescan > 0)
2124 break;
2125
2126 /* Get out the operand values. */
2127 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2128 /* Inhibit aborts on what would otherwise be compiler bugs. */
2129 insn_noperands = noperands;
2130 this_is_asm_operands = insn;
2131
2132 /* Output the insn using them. */
2133 if (string[0])
2134 {
2135 if (! app_on)
2136 {
2137 fputs (ASM_APP_ON, file);
2138 app_on = 1;
2139 }
2140 output_asm_insn (string, ops);
2141 }
2142
2143 this_is_asm_operands = 0;
2144 break;
2145 }
2146
2147 if (prescan <= 0 && app_on)
2148 {
2149 fputs (ASM_APP_OFF, file);
2150 app_on = 0;
2151 }
2152
2153 if (GET_CODE (body) == SEQUENCE)
2154 {
2155 /* A delayed-branch sequence */
2156 int i;
2157 rtx next;
2158
2159 if (prescan > 0)
2160 break;
2161 final_sequence = body;
2162
2163 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2164 force the restoration of a comparison that was previously
2165 thought unnecessary. If that happens, cancel this sequence
2166 and cause that insn to be restored. */
2167
2168 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2169 if (next != XVECEXP (body, 0, 1))
2170 {
2171 final_sequence = 0;
2172 return next;
2173 }
2174
2175 for (i = 1; i < XVECLEN (body, 0); i++)
2176 {
2177 rtx insn = XVECEXP (body, 0, i);
2178 rtx next = NEXT_INSN (insn);
2179 /* We loop in case any instruction in a delay slot gets
2180 split. */
2181 do
2182 insn = final_scan_insn (insn, file, 0, prescan, 1);
2183 while (insn != next);
2184 }
2185 #ifdef DBR_OUTPUT_SEQEND
2186 DBR_OUTPUT_SEQEND (file);
2187 #endif
2188 final_sequence = 0;
2189
2190 /* If the insn requiring the delay slot was a CALL_INSN, the
2191 insns in the delay slot are actually executed before the
2192 called function. Hence we don't preserve any CC-setting
2193 actions in these insns and the CC must be marked as being
2194 clobbered by the function. */
2195 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2196 {
2197 CC_STATUS_INIT;
2198 }
2199 break;
2200 }
2201
2202 /* We have a real machine instruction as rtl. */
2203
2204 body = PATTERN (insn);
2205
2206 #ifdef HAVE_cc0
2207 set = single_set (insn);
2208
2209 /* Check for redundant test and compare instructions
2210 (when the condition codes are already set up as desired).
2211 This is done only when optimizing; if not optimizing,
2212 it should be possible for the user to alter a variable
2213 with the debugger in between statements
2214 and the next statement should reexamine the variable
2215 to compute the condition codes. */
2216
2217 if (optimize)
2218 {
2219 #if 0
2220 rtx set = single_set (insn);
2221 #endif
2222
2223 if (set
2224 && GET_CODE (SET_DEST (set)) == CC0
2225 && insn != last_ignored_compare)
2226 {
2227 if (GET_CODE (SET_SRC (set)) == SUBREG)
2228 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2229 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2230 {
2231 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2232 XEXP (SET_SRC (set), 0)
2233 = alter_subreg (&XEXP (SET_SRC (set), 0));
2234 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2235 XEXP (SET_SRC (set), 1)
2236 = alter_subreg (&XEXP (SET_SRC (set), 1));
2237 }
2238 if ((cc_status.value1 != 0
2239 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2240 || (cc_status.value2 != 0
2241 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2242 {
2243 /* Don't delete insn if it has an addressing side-effect. */
2244 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2245 /* or if anything in it is volatile. */
2246 && ! volatile_refs_p (PATTERN (insn)))
2247 {
2248 /* We don't really delete the insn; just ignore it. */
2249 last_ignored_compare = insn;
2250 break;
2251 }
2252 }
2253 }
2254 }
2255 #endif
2256
2257 #ifndef STACK_REGS
2258 /* Don't bother outputting obvious no-ops, even without -O.
2259 This optimization is fast and doesn't interfere with debugging.
2260 Don't do this if the insn is in a delay slot, since this
2261 will cause an improper number of delay insns to be written. */
2262 if (final_sequence == 0
2263 && prescan >= 0
2264 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2265 && GET_CODE (SET_SRC (body)) == REG
2266 && GET_CODE (SET_DEST (body)) == REG
2267 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2268 break;
2269 #endif
2270
2271 #ifdef HAVE_cc0
2272 /* If this is a conditional branch, maybe modify it
2273 if the cc's are in a nonstandard state
2274 so that it accomplishes the same thing that it would
2275 do straightforwardly if the cc's were set up normally. */
2276
2277 if (cc_status.flags != 0
2278 && GET_CODE (insn) == JUMP_INSN
2279 && GET_CODE (body) == SET
2280 && SET_DEST (body) == pc_rtx
2281 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2282 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2283 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2284 /* This is done during prescan; it is not done again
2285 in final scan when prescan has been done. */
2286 && prescan >= 0)
2287 {
2288 /* This function may alter the contents of its argument
2289 and clear some of the cc_status.flags bits.
2290 It may also return 1 meaning condition now always true
2291 or -1 meaning condition now always false
2292 or 2 meaning condition nontrivial but altered. */
2293 int result = alter_cond (XEXP (SET_SRC (body), 0));
2294 /* If condition now has fixed value, replace the IF_THEN_ELSE
2295 with its then-operand or its else-operand. */
2296 if (result == 1)
2297 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2298 if (result == -1)
2299 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2300
2301 /* The jump is now either unconditional or a no-op.
2302 If it has become a no-op, don't try to output it.
2303 (It would not be recognized.) */
2304 if (SET_SRC (body) == pc_rtx)
2305 {
2306 delete_insn (insn);
2307 break;
2308 }
2309 else if (GET_CODE (SET_SRC (body)) == RETURN)
2310 /* Replace (set (pc) (return)) with (return). */
2311 PATTERN (insn) = body = SET_SRC (body);
2312
2313 /* Rerecognize the instruction if it has changed. */
2314 if (result != 0)
2315 INSN_CODE (insn) = -1;
2316 }
2317
2318 /* Make same adjustments to instructions that examine the
2319 condition codes without jumping and instructions that
2320 handle conditional moves (if this machine has either one). */
2321
2322 if (cc_status.flags != 0
2323 && set != 0)
2324 {
2325 rtx cond_rtx, then_rtx, else_rtx;
2326
2327 if (GET_CODE (insn) != JUMP_INSN
2328 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2329 {
2330 cond_rtx = XEXP (SET_SRC (set), 0);
2331 then_rtx = XEXP (SET_SRC (set), 1);
2332 else_rtx = XEXP (SET_SRC (set), 2);
2333 }
2334 else
2335 {
2336 cond_rtx = SET_SRC (set);
2337 then_rtx = const_true_rtx;
2338 else_rtx = const0_rtx;
2339 }
2340
2341 switch (GET_CODE (cond_rtx))
2342 {
2343 case GTU:
2344 case GT:
2345 case LTU:
2346 case LT:
2347 case GEU:
2348 case GE:
2349 case LEU:
2350 case LE:
2351 case EQ:
2352 case NE:
2353 {
2354 int result;
2355 if (XEXP (cond_rtx, 0) != cc0_rtx)
2356 break;
2357 result = alter_cond (cond_rtx);
2358 if (result == 1)
2359 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2360 else if (result == -1)
2361 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2362 else if (result == 2)
2363 INSN_CODE (insn) = -1;
2364 if (SET_DEST (set) == SET_SRC (set))
2365 delete_insn (insn);
2366 }
2367 break;
2368
2369 default:
2370 break;
2371 }
2372 }
2373
2374 #endif
2375
2376 #ifdef HAVE_peephole
2377 /* Do machine-specific peephole optimizations if desired. */
2378
2379 if (optimize && !flag_no_peephole && !nopeepholes)
2380 {
2381 rtx next = peephole (insn);
2382 /* When peepholing, if there were notes within the peephole,
2383 emit them before the peephole. */
2384 if (next != 0 && next != NEXT_INSN (insn))
2385 {
2386 rtx prev = PREV_INSN (insn);
2387
2388 for (note = NEXT_INSN (insn); note != next;
2389 note = NEXT_INSN (note))
2390 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2391
2392 /* In case this is prescan, put the notes
2393 in proper position for later rescan. */
2394 note = NEXT_INSN (insn);
2395 PREV_INSN (note) = prev;
2396 NEXT_INSN (prev) = note;
2397 NEXT_INSN (PREV_INSN (next)) = insn;
2398 PREV_INSN (insn) = PREV_INSN (next);
2399 NEXT_INSN (insn) = next;
2400 PREV_INSN (next) = insn;
2401 }
2402
2403 /* PEEPHOLE might have changed this. */
2404 body = PATTERN (insn);
2405 }
2406 #endif
2407
2408 /* Try to recognize the instruction.
2409 If successful, verify that the operands satisfy the
2410 constraints for the instruction. Crash if they don't,
2411 since `reload' should have changed them so that they do. */
2412
2413 insn_code_number = recog_memoized (insn);
2414 cleanup_subreg_operands (insn);
2415
2416 /* Dump the insn in the assembly for debugging. */
2417 if (flag_dump_rtl_in_asm)
2418 {
2419 print_rtx_head = ASM_COMMENT_START;
2420 print_rtl_single (asm_out_file, insn);
2421 print_rtx_head = "";
2422 }
2423
2424 if (! constrain_operands_cached (1))
2425 fatal_insn_not_found (insn);
2426
2427 /* Some target machines need to prescan each insn before
2428 it is output. */
2429
2430 #ifdef FINAL_PRESCAN_INSN
2431 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2432 #endif
2433
2434 #ifdef HAVE_conditional_execution
2435 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2436 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2437 else
2438 current_insn_predicate = NULL_RTX;
2439 #endif
2440
2441 #ifdef HAVE_cc0
2442 cc_prev_status = cc_status;
2443
2444 /* Update `cc_status' for this instruction.
2445 The instruction's output routine may change it further.
2446 If the output routine for a jump insn needs to depend
2447 on the cc status, it should look at cc_prev_status. */
2448
2449 NOTICE_UPDATE_CC (body, insn);
2450 #endif
2451
2452 current_output_insn = debug_insn = insn;
2453
2454 #if defined (DWARF2_UNWIND_INFO)
2455 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2456 dwarf2out_frame_debug (insn);
2457 #endif
2458
2459 /* Find the proper template for this insn. */
2460 template = get_insn_template (insn_code_number, insn);
2461
2462 /* If the C code returns 0, it means that it is a jump insn
2463 which follows a deleted test insn, and that test insn
2464 needs to be reinserted. */
2465 if (template == 0)
2466 {
2467 rtx prev;
2468
2469 if (prev_nonnote_insn (insn) != last_ignored_compare)
2470 abort ();
2471
2472 /* We have already processed the notes between the setter and
2473 the user. Make sure we don't process them again, this is
2474 particularly important if one of the notes is a block
2475 scope note or an EH note. */
2476 for (prev = insn;
2477 prev != last_ignored_compare;
2478 prev = PREV_INSN (prev))
2479 {
2480 if (GET_CODE (prev) == NOTE)
2481 delete_insn (prev); /* Use delete_note. */
2482 }
2483
2484 return prev;
2485 }
2486
2487 /* If the template is the string "#", it means that this insn must
2488 be split. */
2489 if (template[0] == '#' && template[1] == '\0')
2490 {
2491 rtx new = try_split (body, insn, 0);
2492
2493 /* If we didn't split the insn, go away. */
2494 if (new == insn && PATTERN (new) == body)
2495 fatal_insn ("could not split insn", insn);
2496
2497 #ifdef HAVE_ATTR_length
2498 /* This instruction should have been split in shorten_branches,
2499 to ensure that we would have valid length info for the
2500 splitees. */
2501 abort ();
2502 #endif
2503
2504 return new;
2505 }
2506
2507 if (prescan > 0)
2508 break;
2509
2510 #ifdef IA64_UNWIND_INFO
2511 IA64_UNWIND_EMIT (asm_out_file, insn);
2512 #endif
2513 /* Output assembler code from the template. */
2514
2515 output_asm_insn (template, recog_data.operand);
2516
2517 #if defined (DWARF2_UNWIND_INFO)
2518 #if defined (HAVE_prologue)
2519 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2520 dwarf2out_frame_debug (insn);
2521 #else
2522 if (!ACCUMULATE_OUTGOING_ARGS
2523 && GET_CODE (insn) == INSN
2524 && dwarf2out_do_frame ())
2525 dwarf2out_frame_debug (insn);
2526 #endif
2527 #endif
2528
2529 #if 0
2530 /* It's not at all clear why we did this and doing so interferes
2531 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2532 with this out. */
2533
2534 /* Mark this insn as having been output. */
2535 INSN_DELETED_P (insn) = 1;
2536 #endif
2537
2538 /* Emit information for vtable gc. */
2539 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2540 if (note)
2541 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2542 INTVAL (XEXP (XEXP (note, 0), 1)));
2543
2544 current_output_insn = debug_insn = 0;
2545 }
2546 }
2547 return NEXT_INSN (insn);
2548 }
2549 \f
2550 /* Output debugging info to the assembler file FILE
2551 based on the NOTE-insn INSN, assumed to be a line number. */
2552
2553 static void
2554 notice_source_line (insn)
2555 rtx insn;
2556 {
2557 const char *filename = NOTE_SOURCE_FILE (insn);
2558
2559 last_filename = filename;
2560 last_linenum = NOTE_LINE_NUMBER (insn);
2561 high_block_linenum = MAX (last_linenum, high_block_linenum);
2562 high_function_linenum = MAX (last_linenum, high_function_linenum);
2563 }
2564 \f
2565 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2566 directly to the desired hard register. */
2567
2568 void
2569 cleanup_subreg_operands (insn)
2570 rtx insn;
2571 {
2572 int i;
2573 extract_insn_cached (insn);
2574 for (i = 0; i < recog_data.n_operands; i++)
2575 {
2576 /* The following test cannot use recog_data.operand when tesing
2577 for a SUBREG: the underlying object might have been changed
2578 already if we are inside a match_operator expression that
2579 matches the else clause. Instead we test the underlying
2580 expression directly. */
2581 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2582 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2583 else if (GET_CODE (recog_data.operand[i]) == PLUS
2584 || GET_CODE (recog_data.operand[i]) == MULT
2585 || GET_CODE (recog_data.operand[i]) == MEM)
2586 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2587 }
2588
2589 for (i = 0; i < recog_data.n_dups; i++)
2590 {
2591 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2592 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2593 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2594 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2595 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2596 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2597 }
2598 }
2599
2600 /* If X is a SUBREG, replace it with a REG or a MEM,
2601 based on the thing it is a subreg of. */
2602
2603 rtx
2604 alter_subreg (xp)
2605 rtx *xp;
2606 {
2607 rtx x = *xp;
2608 rtx y = SUBREG_REG (x);
2609
2610 /* simplify_subreg does not remove subreg from volatile references.
2611 We are required to. */
2612 if (GET_CODE (y) == MEM)
2613 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2614 else
2615 {
2616 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2617 SUBREG_BYTE (x));
2618
2619 if (new != 0)
2620 *xp = new;
2621 /* Simplify_subreg can't handle some REG cases, but we have to. */
2622 else if (GET_CODE (y) == REG)
2623 {
2624 unsigned int regno = subreg_hard_regno (x, 1);
2625 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2626 }
2627 else
2628 abort ();
2629 }
2630
2631 return *xp;
2632 }
2633
2634 /* Do alter_subreg on all the SUBREGs contained in X. */
2635
2636 static rtx
2637 walk_alter_subreg (xp)
2638 rtx *xp;
2639 {
2640 rtx x = *xp;
2641 switch (GET_CODE (x))
2642 {
2643 case PLUS:
2644 case MULT:
2645 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2646 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2647 break;
2648
2649 case MEM:
2650 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2651 break;
2652
2653 case SUBREG:
2654 return alter_subreg (xp);
2655
2656 default:
2657 break;
2658 }
2659
2660 return *xp;
2661 }
2662 \f
2663 #ifdef HAVE_cc0
2664
2665 /* Given BODY, the body of a jump instruction, alter the jump condition
2666 as required by the bits that are set in cc_status.flags.
2667 Not all of the bits there can be handled at this level in all cases.
2668
2669 The value is normally 0.
2670 1 means that the condition has become always true.
2671 -1 means that the condition has become always false.
2672 2 means that COND has been altered. */
2673
2674 static int
2675 alter_cond (cond)
2676 rtx cond;
2677 {
2678 int value = 0;
2679
2680 if (cc_status.flags & CC_REVERSED)
2681 {
2682 value = 2;
2683 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2684 }
2685
2686 if (cc_status.flags & CC_INVERTED)
2687 {
2688 value = 2;
2689 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2690 }
2691
2692 if (cc_status.flags & CC_NOT_POSITIVE)
2693 switch (GET_CODE (cond))
2694 {
2695 case LE:
2696 case LEU:
2697 case GEU:
2698 /* Jump becomes unconditional. */
2699 return 1;
2700
2701 case GT:
2702 case GTU:
2703 case LTU:
2704 /* Jump becomes no-op. */
2705 return -1;
2706
2707 case GE:
2708 PUT_CODE (cond, EQ);
2709 value = 2;
2710 break;
2711
2712 case LT:
2713 PUT_CODE (cond, NE);
2714 value = 2;
2715 break;
2716
2717 default:
2718 break;
2719 }
2720
2721 if (cc_status.flags & CC_NOT_NEGATIVE)
2722 switch (GET_CODE (cond))
2723 {
2724 case GE:
2725 case GEU:
2726 /* Jump becomes unconditional. */
2727 return 1;
2728
2729 case LT:
2730 case LTU:
2731 /* Jump becomes no-op. */
2732 return -1;
2733
2734 case LE:
2735 case LEU:
2736 PUT_CODE (cond, EQ);
2737 value = 2;
2738 break;
2739
2740 case GT:
2741 case GTU:
2742 PUT_CODE (cond, NE);
2743 value = 2;
2744 break;
2745
2746 default:
2747 break;
2748 }
2749
2750 if (cc_status.flags & CC_NO_OVERFLOW)
2751 switch (GET_CODE (cond))
2752 {
2753 case GEU:
2754 /* Jump becomes unconditional. */
2755 return 1;
2756
2757 case LEU:
2758 PUT_CODE (cond, EQ);
2759 value = 2;
2760 break;
2761
2762 case GTU:
2763 PUT_CODE (cond, NE);
2764 value = 2;
2765 break;
2766
2767 case LTU:
2768 /* Jump becomes no-op. */
2769 return -1;
2770
2771 default:
2772 break;
2773 }
2774
2775 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2776 switch (GET_CODE (cond))
2777 {
2778 default:
2779 abort ();
2780
2781 case NE:
2782 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2783 value = 2;
2784 break;
2785
2786 case EQ:
2787 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2788 value = 2;
2789 break;
2790 }
2791
2792 if (cc_status.flags & CC_NOT_SIGNED)
2793 /* The flags are valid if signed condition operators are converted
2794 to unsigned. */
2795 switch (GET_CODE (cond))
2796 {
2797 case LE:
2798 PUT_CODE (cond, LEU);
2799 value = 2;
2800 break;
2801
2802 case LT:
2803 PUT_CODE (cond, LTU);
2804 value = 2;
2805 break;
2806
2807 case GT:
2808 PUT_CODE (cond, GTU);
2809 value = 2;
2810 break;
2811
2812 case GE:
2813 PUT_CODE (cond, GEU);
2814 value = 2;
2815 break;
2816
2817 default:
2818 break;
2819 }
2820
2821 return value;
2822 }
2823 #endif
2824 \f
2825 /* Report inconsistency between the assembler template and the operands.
2826 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2827
2828 void
2829 output_operand_lossage VPARAMS ((const char *msgid, ...))
2830 {
2831 char *fmt_string;
2832 char *new_message;
2833 const char *pfx_str;
2834 VA_OPEN (ap, msgid);
2835 VA_FIXEDARG (ap, const char *, msgid);
2836
2837 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2838 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2839 vasprintf (&new_message, fmt_string, ap);
2840
2841 if (this_is_asm_operands)
2842 error_for_asm (this_is_asm_operands, "%s", new_message);
2843 else
2844 internal_error ("%s", new_message);
2845
2846 free (fmt_string);
2847 free (new_message);
2848 VA_CLOSE (ap);
2849 }
2850 \f
2851 /* Output of assembler code from a template, and its subroutines. */
2852
2853 /* Annotate the assembly with a comment describing the pattern and
2854 alternative used. */
2855
2856 static void
2857 output_asm_name ()
2858 {
2859 if (debug_insn)
2860 {
2861 int num = INSN_CODE (debug_insn);
2862 fprintf (asm_out_file, "\t%s %d\t%s",
2863 ASM_COMMENT_START, INSN_UID (debug_insn),
2864 insn_data[num].name);
2865 if (insn_data[num].n_alternatives > 1)
2866 fprintf (asm_out_file, "/%d", which_alternative + 1);
2867 #ifdef HAVE_ATTR_length
2868 fprintf (asm_out_file, "\t[length = %d]",
2869 get_attr_length (debug_insn));
2870 #endif
2871 /* Clear this so only the first assembler insn
2872 of any rtl insn will get the special comment for -dp. */
2873 debug_insn = 0;
2874 }
2875 }
2876
2877 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2878 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2879 corresponds to the address of the object and 0 if to the object. */
2880
2881 static tree
2882 get_mem_expr_from_op (op, paddressp)
2883 rtx op;
2884 int *paddressp;
2885 {
2886 tree expr;
2887 int inner_addressp;
2888
2889 *paddressp = 0;
2890
2891 if (GET_CODE (op) == REG)
2892 return REG_EXPR (op);
2893 else if (GET_CODE (op) != MEM)
2894 return 0;
2895
2896 if (MEM_EXPR (op) != 0)
2897 return MEM_EXPR (op);
2898
2899 /* Otherwise we have an address, so indicate it and look at the address. */
2900 *paddressp = 1;
2901 op = XEXP (op, 0);
2902
2903 /* First check if we have a decl for the address, then look at the right side
2904 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2905 But don't allow the address to itself be indirect. */
2906 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2907 return expr;
2908 else if (GET_CODE (op) == PLUS
2909 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2910 return expr;
2911
2912 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2913 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2914 op = XEXP (op, 0);
2915
2916 expr = get_mem_expr_from_op (op, &inner_addressp);
2917 return inner_addressp ? 0 : expr;
2918 }
2919
2920 /* Output operand names for assembler instructions. OPERANDS is the
2921 operand vector, OPORDER is the order to write the operands, and NOPS
2922 is the number of operands to write. */
2923
2924 static void
2925 output_asm_operand_names (operands, oporder, nops)
2926 rtx *operands;
2927 int *oporder;
2928 int nops;
2929 {
2930 int wrote = 0;
2931 int i;
2932
2933 for (i = 0; i < nops; i++)
2934 {
2935 int addressp;
2936 rtx op = operands[oporder[i]];
2937 tree expr = get_mem_expr_from_op (op, &addressp);
2938
2939 fprintf (asm_out_file, "%c%s",
2940 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2941 wrote = 1;
2942 if (expr)
2943 {
2944 fprintf (asm_out_file, "%s",
2945 addressp ? "*" : "");
2946 print_mem_expr (asm_out_file, expr);
2947 wrote = 1;
2948 }
2949 else if (REG_P (op) && ORIGINAL_REGNO (op)
2950 && ORIGINAL_REGNO (op) != REGNO (op))
2951 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2952 }
2953 }
2954
2955 /* Output text from TEMPLATE to the assembler output file,
2956 obeying %-directions to substitute operands taken from
2957 the vector OPERANDS.
2958
2959 %N (for N a digit) means print operand N in usual manner.
2960 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2961 and print the label name with no punctuation.
2962 %cN means require operand N to be a constant
2963 and print the constant expression with no punctuation.
2964 %aN means expect operand N to be a memory address
2965 (not a memory reference!) and print a reference
2966 to that address.
2967 %nN means expect operand N to be a constant
2968 and print a constant expression for minus the value
2969 of the operand, with no other punctuation. */
2970
2971 void
2972 output_asm_insn (template, operands)
2973 const char *template;
2974 rtx *operands;
2975 {
2976 const char *p;
2977 int c;
2978 #ifdef ASSEMBLER_DIALECT
2979 int dialect = 0;
2980 #endif
2981 int oporder[MAX_RECOG_OPERANDS];
2982 char opoutput[MAX_RECOG_OPERANDS];
2983 int ops = 0;
2984
2985 /* An insn may return a null string template
2986 in a case where no assembler code is needed. */
2987 if (*template == 0)
2988 return;
2989
2990 memset (opoutput, 0, sizeof opoutput);
2991 p = template;
2992 putc ('\t', asm_out_file);
2993
2994 #ifdef ASM_OUTPUT_OPCODE
2995 ASM_OUTPUT_OPCODE (asm_out_file, p);
2996 #endif
2997
2998 while ((c = *p++))
2999 switch (c)
3000 {
3001 case '\n':
3002 if (flag_verbose_asm)
3003 output_asm_operand_names (operands, oporder, ops);
3004 if (flag_print_asm_name)
3005 output_asm_name ();
3006
3007 ops = 0;
3008 memset (opoutput, 0, sizeof opoutput);
3009
3010 putc (c, asm_out_file);
3011 #ifdef ASM_OUTPUT_OPCODE
3012 while ((c = *p) == '\t')
3013 {
3014 putc (c, asm_out_file);
3015 p++;
3016 }
3017 ASM_OUTPUT_OPCODE (asm_out_file, p);
3018 #endif
3019 break;
3020
3021 #ifdef ASSEMBLER_DIALECT
3022 case '{':
3023 {
3024 int i;
3025
3026 if (dialect)
3027 output_operand_lossage ("nested assembly dialect alternatives");
3028 else
3029 dialect = 1;
3030
3031 /* If we want the first dialect, do nothing. Otherwise, skip
3032 DIALECT_NUMBER of strings ending with '|'. */
3033 for (i = 0; i < dialect_number; i++)
3034 {
3035 while (*p && *p != '}' && *p++ != '|')
3036 ;
3037 if (*p == '}')
3038 break;
3039 if (*p == '|')
3040 p++;
3041 }
3042
3043 if (*p == '\0')
3044 output_operand_lossage ("unterminated assembly dialect alternative");
3045 }
3046 break;
3047
3048 case '|':
3049 if (dialect)
3050 {
3051 /* Skip to close brace. */
3052 do
3053 {
3054 if (*p == '\0')
3055 {
3056 output_operand_lossage ("unterminated assembly dialect alternative");
3057 break;
3058 }
3059 }
3060 while (*p++ != '}');
3061 dialect = 0;
3062 }
3063 else
3064 putc (c, asm_out_file);
3065 break;
3066
3067 case '}':
3068 if (! dialect)
3069 putc (c, asm_out_file);
3070 dialect = 0;
3071 break;
3072 #endif
3073
3074 case '%':
3075 /* %% outputs a single %. */
3076 if (*p == '%')
3077 {
3078 p++;
3079 putc (c, asm_out_file);
3080 }
3081 /* %= outputs a number which is unique to each insn in the entire
3082 compilation. This is useful for making local labels that are
3083 referred to more than once in a given insn. */
3084 else if (*p == '=')
3085 {
3086 p++;
3087 fprintf (asm_out_file, "%d", insn_counter);
3088 }
3089 /* % followed by a letter and some digits
3090 outputs an operand in a special way depending on the letter.
3091 Letters `acln' are implemented directly.
3092 Other letters are passed to `output_operand' so that
3093 the PRINT_OPERAND macro can define them. */
3094 else if (ISALPHA (*p))
3095 {
3096 int letter = *p++;
3097 c = atoi (p);
3098
3099 if (! ISDIGIT (*p))
3100 output_operand_lossage ("operand number missing after %%-letter");
3101 else if (this_is_asm_operands
3102 && (c < 0 || (unsigned int) c >= insn_noperands))
3103 output_operand_lossage ("operand number out of range");
3104 else if (letter == 'l')
3105 output_asm_label (operands[c]);
3106 else if (letter == 'a')
3107 output_address (operands[c]);
3108 else if (letter == 'c')
3109 {
3110 if (CONSTANT_ADDRESS_P (operands[c]))
3111 output_addr_const (asm_out_file, operands[c]);
3112 else
3113 output_operand (operands[c], 'c');
3114 }
3115 else if (letter == 'n')
3116 {
3117 if (GET_CODE (operands[c]) == CONST_INT)
3118 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3119 - INTVAL (operands[c]));
3120 else
3121 {
3122 putc ('-', asm_out_file);
3123 output_addr_const (asm_out_file, operands[c]);
3124 }
3125 }
3126 else
3127 output_operand (operands[c], letter);
3128
3129 if (!opoutput[c])
3130 oporder[ops++] = c;
3131 opoutput[c] = 1;
3132
3133 while (ISDIGIT (c = *p))
3134 p++;
3135 }
3136 /* % followed by a digit outputs an operand the default way. */
3137 else if (ISDIGIT (*p))
3138 {
3139 c = atoi (p);
3140 if (this_is_asm_operands
3141 && (c < 0 || (unsigned int) c >= insn_noperands))
3142 output_operand_lossage ("operand number out of range");
3143 else
3144 output_operand (operands[c], 0);
3145
3146 if (!opoutput[c])
3147 oporder[ops++] = c;
3148 opoutput[c] = 1;
3149
3150 while (ISDIGIT (c = *p))
3151 p++;
3152 }
3153 /* % followed by punctuation: output something for that
3154 punctuation character alone, with no operand.
3155 The PRINT_OPERAND macro decides what is actually done. */
3156 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3157 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3158 output_operand (NULL_RTX, *p++);
3159 #endif
3160 else
3161 output_operand_lossage ("invalid %%-code");
3162 break;
3163
3164 default:
3165 putc (c, asm_out_file);
3166 }
3167
3168 /* Write out the variable names for operands, if we know them. */
3169 if (flag_verbose_asm)
3170 output_asm_operand_names (operands, oporder, ops);
3171 if (flag_print_asm_name)
3172 output_asm_name ();
3173
3174 putc ('\n', asm_out_file);
3175 }
3176 \f
3177 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3178
3179 void
3180 output_asm_label (x)
3181 rtx x;
3182 {
3183 char buf[256];
3184
3185 if (GET_CODE (x) == LABEL_REF)
3186 x = XEXP (x, 0);
3187 if (GET_CODE (x) == CODE_LABEL
3188 || (GET_CODE (x) == NOTE
3189 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3190 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3191 else
3192 output_operand_lossage ("`%%l' operand isn't a label");
3193
3194 assemble_name (asm_out_file, buf);
3195 }
3196
3197 /* Print operand X using machine-dependent assembler syntax.
3198 The macro PRINT_OPERAND is defined just to control this function.
3199 CODE is a non-digit that preceded the operand-number in the % spec,
3200 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3201 between the % and the digits.
3202 When CODE is a non-letter, X is 0.
3203
3204 The meanings of the letters are machine-dependent and controlled
3205 by PRINT_OPERAND. */
3206
3207 static void
3208 output_operand (x, code)
3209 rtx x;
3210 int code ATTRIBUTE_UNUSED;
3211 {
3212 if (x && GET_CODE (x) == SUBREG)
3213 x = alter_subreg (&x);
3214
3215 /* If X is a pseudo-register, abort now rather than writing trash to the
3216 assembler file. */
3217
3218 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3219 abort ();
3220
3221 PRINT_OPERAND (asm_out_file, x, code);
3222 }
3223
3224 /* Print a memory reference operand for address X
3225 using machine-dependent assembler syntax.
3226 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227
3228 void
3229 output_address (x)
3230 rtx x;
3231 {
3232 walk_alter_subreg (&x);
3233 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3234 }
3235 \f
3236 /* Print an integer constant expression in assembler syntax.
3237 Addition and subtraction are the only arithmetic
3238 that may appear in these expressions. */
3239
3240 void
3241 output_addr_const (file, x)
3242 FILE *file;
3243 rtx x;
3244 {
3245 char buf[256];
3246
3247 restart:
3248 switch (GET_CODE (x))
3249 {
3250 case PC:
3251 putc ('.', file);
3252 break;
3253
3254 case SYMBOL_REF:
3255 #ifdef ASM_OUTPUT_SYMBOL_REF
3256 ASM_OUTPUT_SYMBOL_REF (file, x);
3257 #else
3258 assemble_name (file, XSTR (x, 0));
3259 #endif
3260 break;
3261
3262 case LABEL_REF:
3263 x = XEXP (x, 0);
3264 /* Fall through. */
3265 case CODE_LABEL:
3266 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3267 #ifdef ASM_OUTPUT_LABEL_REF
3268 ASM_OUTPUT_LABEL_REF (file, buf);
3269 #else
3270 assemble_name (file, buf);
3271 #endif
3272 break;
3273
3274 case CONST_INT:
3275 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3276 break;
3277
3278 case CONST:
3279 /* This used to output parentheses around the expression,
3280 but that does not work on the 386 (either ATT or BSD assembler). */
3281 output_addr_const (file, XEXP (x, 0));
3282 break;
3283
3284 case CONST_DOUBLE:
3285 if (GET_MODE (x) == VOIDmode)
3286 {
3287 /* We can use %d if the number is one word and positive. */
3288 if (CONST_DOUBLE_HIGH (x))
3289 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3290 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3291 else if (CONST_DOUBLE_LOW (x) < 0)
3292 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3293 else
3294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3295 }
3296 else
3297 /* We can't handle floating point constants;
3298 PRINT_OPERAND must handle them. */
3299 output_operand_lossage ("floating constant misused");
3300 break;
3301
3302 case PLUS:
3303 /* Some assemblers need integer constants to appear last (eg masm). */
3304 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3305 {
3306 output_addr_const (file, XEXP (x, 1));
3307 if (INTVAL (XEXP (x, 0)) >= 0)
3308 fprintf (file, "+");
3309 output_addr_const (file, XEXP (x, 0));
3310 }
3311 else
3312 {
3313 output_addr_const (file, XEXP (x, 0));
3314 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3315 || INTVAL (XEXP (x, 1)) >= 0)
3316 fprintf (file, "+");
3317 output_addr_const (file, XEXP (x, 1));
3318 }
3319 break;
3320
3321 case MINUS:
3322 /* Avoid outputting things like x-x or x+5-x,
3323 since some assemblers can't handle that. */
3324 x = simplify_subtraction (x);
3325 if (GET_CODE (x) != MINUS)
3326 goto restart;
3327
3328 output_addr_const (file, XEXP (x, 0));
3329 fprintf (file, "-");
3330 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3331 || GET_CODE (XEXP (x, 1)) == PC
3332 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3333 output_addr_const (file, XEXP (x, 1));
3334 else
3335 {
3336 fputs (targetm.asm_out.open_paren, file);
3337 output_addr_const (file, XEXP (x, 1));
3338 fputs (targetm.asm_out.close_paren, file);
3339 }
3340 break;
3341
3342 case ZERO_EXTEND:
3343 case SIGN_EXTEND:
3344 case SUBREG:
3345 output_addr_const (file, XEXP (x, 0));
3346 break;
3347
3348 default:
3349 #ifdef OUTPUT_ADDR_CONST_EXTRA
3350 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3351 break;
3352
3353 fail:
3354 #endif
3355 output_operand_lossage ("invalid expression as operand");
3356 }
3357 }
3358 \f
3359 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3360 %R prints the value of REGISTER_PREFIX.
3361 %L prints the value of LOCAL_LABEL_PREFIX.
3362 %U prints the value of USER_LABEL_PREFIX.
3363 %I prints the value of IMMEDIATE_PREFIX.
3364 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3365 Also supported are %d, %x, %s, %e, %f, %g and %%.
3366
3367 We handle alternate assembler dialects here, just like output_asm_insn. */
3368
3369 void
3370 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3371 {
3372 char buf[10];
3373 char *q, c;
3374
3375 VA_OPEN (argptr, p);
3376 VA_FIXEDARG (argptr, FILE *, file);
3377 VA_FIXEDARG (argptr, const char *, p);
3378
3379 buf[0] = '%';
3380
3381 while ((c = *p++))
3382 switch (c)
3383 {
3384 #ifdef ASSEMBLER_DIALECT
3385 case '{':
3386 {
3387 int i;
3388
3389 /* If we want the first dialect, do nothing. Otherwise, skip
3390 DIALECT_NUMBER of strings ending with '|'. */
3391 for (i = 0; i < dialect_number; i++)
3392 {
3393 while (*p && *p++ != '|')
3394 ;
3395
3396 if (*p == '|')
3397 p++;
3398 }
3399 }
3400 break;
3401
3402 case '|':
3403 /* Skip to close brace. */
3404 while (*p && *p++ != '}')
3405 ;
3406 break;
3407
3408 case '}':
3409 break;
3410 #endif
3411
3412 case '%':
3413 c = *p++;
3414 q = &buf[1];
3415 while (ISDIGIT (c) || c == '.')
3416 {
3417 *q++ = c;
3418 c = *p++;
3419 }
3420 switch (c)
3421 {
3422 case '%':
3423 fprintf (file, "%%");
3424 break;
3425
3426 case 'd': case 'i': case 'u':
3427 case 'x': case 'p': case 'X':
3428 case 'o':
3429 *q++ = c;
3430 *q = 0;
3431 fprintf (file, buf, va_arg (argptr, int));
3432 break;
3433
3434 case 'w':
3435 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3436 but we do not check for those cases. It means that the value
3437 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3438
3439 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3440 #else
3441 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3442 *q++ = 'l';
3443 #else
3444 *q++ = 'l';
3445 *q++ = 'l';
3446 #endif
3447 #endif
3448
3449 *q++ = *p++;
3450 *q = 0;
3451 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3452 break;
3453
3454 case 'l':
3455 *q++ = c;
3456 *q++ = *p++;
3457 *q = 0;
3458 fprintf (file, buf, va_arg (argptr, long));
3459 break;
3460
3461 case 'e':
3462 case 'f':
3463 case 'g':
3464 *q++ = c;
3465 *q = 0;
3466 fprintf (file, buf, va_arg (argptr, double));
3467 break;
3468
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3474
3475 case 'O':
3476 #ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478 #endif
3479 break;
3480
3481 case 'R':
3482 #ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484 #endif
3485 break;
3486
3487 case 'I':
3488 #ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490 #endif
3491 break;
3492
3493 case 'L':
3494 #ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496 #endif
3497 break;
3498
3499 case 'U':
3500 fputs (user_label_prefix, file);
3501 break;
3502
3503 #ifdef ASM_FPRINTF_EXTENSIONS
3504 /* Upper case letters are reserved for general use by asm_fprintf
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
3514
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516 #endif
3517 default:
3518 abort ();
3519 }
3520 break;
3521
3522 default:
3523 fputc (c, file);
3524 }
3525 VA_CLOSE (argptr);
3526 }
3527 \f
3528 /* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3532
3533 void
3534 split_double (value, first, second)
3535 rtx value;
3536 rtx *first, *second;
3537 {
3538 if (GET_CODE (value) == CONST_INT)
3539 {
3540 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3541 {
3542 /* In this case the CONST_INT holds both target words.
3543 Extract the bits from it into two word-sized pieces.
3544 Sign extend each half to HOST_WIDE_INT. */
3545 unsigned HOST_WIDE_INT low, high;
3546 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3547
3548 /* Set sign_bit to the most significant bit of a word. */
3549 sign_bit = 1;
3550 sign_bit <<= BITS_PER_WORD - 1;
3551
3552 /* Set mask so that all bits of the word are set. We could
3553 have used 1 << BITS_PER_WORD instead of basing the
3554 calculation on sign_bit. However, on machines where
3555 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3556 compiler warning, even though the code would never be
3557 executed. */
3558 mask = sign_bit << 1;
3559 mask--;
3560
3561 /* Set sign_extend as any remaining bits. */
3562 sign_extend = ~mask;
3563
3564 /* Pick the lower word and sign-extend it. */
3565 low = INTVAL (value);
3566 low &= mask;
3567 if (low & sign_bit)
3568 low |= sign_extend;
3569
3570 /* Pick the higher word, shifted to the least significant
3571 bits, and sign-extend it. */
3572 high = INTVAL (value);
3573 high >>= BITS_PER_WORD - 1;
3574 high >>= 1;
3575 high &= mask;
3576 if (high & sign_bit)
3577 high |= sign_extend;
3578
3579 /* Store the words in the target machine order. */
3580 if (WORDS_BIG_ENDIAN)
3581 {
3582 *first = GEN_INT (high);
3583 *second = GEN_INT (low);
3584 }
3585 else
3586 {
3587 *first = GEN_INT (low);
3588 *second = GEN_INT (high);
3589 }
3590 }
3591 else
3592 {
3593 /* The rule for using CONST_INT for a wider mode
3594 is that we regard the value as signed.
3595 So sign-extend it. */
3596 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3597 if (WORDS_BIG_ENDIAN)
3598 {
3599 *first = high;
3600 *second = value;
3601 }
3602 else
3603 {
3604 *first = value;
3605 *second = high;
3606 }
3607 }
3608 }
3609 else if (GET_CODE (value) != CONST_DOUBLE)
3610 {
3611 if (WORDS_BIG_ENDIAN)
3612 {
3613 *first = const0_rtx;
3614 *second = value;
3615 }
3616 else
3617 {
3618 *first = value;
3619 *second = const0_rtx;
3620 }
3621 }
3622 else if (GET_MODE (value) == VOIDmode
3623 /* This is the old way we did CONST_DOUBLE integers. */
3624 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3625 {
3626 /* In an integer, the words are defined as most and least significant.
3627 So order them by the target's convention. */
3628 if (WORDS_BIG_ENDIAN)
3629 {
3630 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3631 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3632 }
3633 else
3634 {
3635 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3636 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3637 }
3638 }
3639 else
3640 {
3641 REAL_VALUE_TYPE r;
3642 long l[2];
3643 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3644
3645 /* Note, this converts the REAL_VALUE_TYPE to the target's
3646 format, splits up the floating point double and outputs
3647 exactly 32 bits of it into each of l[0] and l[1] --
3648 not necessarily BITS_PER_WORD bits. */
3649 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3650
3651 /* If 32 bits is an entire word for the target, but not for the host,
3652 then sign-extend on the host so that the number will look the same
3653 way on the host that it would on the target. See for instance
3654 simplify_unary_operation. The #if is needed to avoid compiler
3655 warnings. */
3656
3657 #if HOST_BITS_PER_LONG > 32
3658 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3659 {
3660 if (l[0] & ((long) 1 << 31))
3661 l[0] |= ((long) (-1) << 32);
3662 if (l[1] & ((long) 1 << 31))
3663 l[1] |= ((long) (-1) << 32);
3664 }
3665 #endif
3666
3667 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3668 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3669 }
3670 }
3671 \f
3672 /* Return nonzero if this function has no function calls. */
3673
3674 int
3675 leaf_function_p ()
3676 {
3677 rtx insn;
3678 rtx link;
3679
3680 if (current_function_profile || profile_arc_flag)
3681 return 0;
3682
3683 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3684 {
3685 if (GET_CODE (insn) == CALL_INSN
3686 && ! SIBLING_CALL_P (insn))
3687 return 0;
3688 if (GET_CODE (insn) == INSN
3689 && GET_CODE (PATTERN (insn)) == SEQUENCE
3690 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3691 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3692 return 0;
3693 }
3694 for (link = current_function_epilogue_delay_list;
3695 link;
3696 link = XEXP (link, 1))
3697 {
3698 insn = XEXP (link, 0);
3699
3700 if (GET_CODE (insn) == CALL_INSN
3701 && ! SIBLING_CALL_P (insn))
3702 return 0;
3703 if (GET_CODE (insn) == INSN
3704 && GET_CODE (PATTERN (insn)) == SEQUENCE
3705 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3706 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3707 return 0;
3708 }
3709
3710 return 1;
3711 }
3712
3713 /* Return 1 if branch is a forward branch.
3714 Uses insn_shuid array, so it works only in the final pass. May be used by
3715 output templates to customary add branch prediction hints.
3716 */
3717 int
3718 final_forward_branch_p (insn)
3719 rtx insn;
3720 {
3721 int insn_id, label_id;
3722 if (!uid_shuid)
3723 abort ();
3724 insn_id = INSN_SHUID (insn);
3725 label_id = INSN_SHUID (JUMP_LABEL (insn));
3726 /* We've hit some insns that does not have id information available. */
3727 if (!insn_id || !label_id)
3728 abort ();
3729 return insn_id < label_id;
3730 }
3731
3732 /* On some machines, a function with no call insns
3733 can run faster if it doesn't create its own register window.
3734 When output, the leaf function should use only the "output"
3735 registers. Ordinarily, the function would be compiled to use
3736 the "input" registers to find its arguments; it is a candidate
3737 for leaf treatment if it uses only the "input" registers.
3738 Leaf function treatment means renumbering so the function
3739 uses the "output" registers instead. */
3740
3741 #ifdef LEAF_REGISTERS
3742
3743 /* Return 1 if this function uses only the registers that can be
3744 safely renumbered. */
3745
3746 int
3747 only_leaf_regs_used ()
3748 {
3749 int i;
3750 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3751
3752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3753 if ((regs_ever_live[i] || global_regs[i])
3754 && ! permitted_reg_in_leaf_functions[i])
3755 return 0;
3756
3757 if (current_function_uses_pic_offset_table
3758 && pic_offset_table_rtx != 0
3759 && GET_CODE (pic_offset_table_rtx) == REG
3760 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3761 return 0;
3762
3763 return 1;
3764 }
3765
3766 /* Scan all instructions and renumber all registers into those
3767 available in leaf functions. */
3768
3769 static void
3770 leaf_renumber_regs (first)
3771 rtx first;
3772 {
3773 rtx insn;
3774
3775 /* Renumber only the actual patterns.
3776 The reg-notes can contain frame pointer refs,
3777 and renumbering them could crash, and should not be needed. */
3778 for (insn = first; insn; insn = NEXT_INSN (insn))
3779 if (INSN_P (insn))
3780 leaf_renumber_regs_insn (PATTERN (insn));
3781 for (insn = current_function_epilogue_delay_list;
3782 insn;
3783 insn = XEXP (insn, 1))
3784 if (INSN_P (XEXP (insn, 0)))
3785 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3786 }
3787
3788 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3789 available in leaf functions. */
3790
3791 void
3792 leaf_renumber_regs_insn (in_rtx)
3793 rtx in_rtx;
3794 {
3795 int i, j;
3796 const char *format_ptr;
3797
3798 if (in_rtx == 0)
3799 return;
3800
3801 /* Renumber all input-registers into output-registers.
3802 renumbered_regs would be 1 for an output-register;
3803 they */
3804
3805 if (GET_CODE (in_rtx) == REG)
3806 {
3807 int newreg;
3808
3809 /* Don't renumber the same reg twice. */
3810 if (in_rtx->used)
3811 return;
3812
3813 newreg = REGNO (in_rtx);
3814 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3815 to reach here as part of a REG_NOTE. */
3816 if (newreg >= FIRST_PSEUDO_REGISTER)
3817 {
3818 in_rtx->used = 1;
3819 return;
3820 }
3821 newreg = LEAF_REG_REMAP (newreg);
3822 if (newreg < 0)
3823 abort ();
3824 regs_ever_live[REGNO (in_rtx)] = 0;
3825 regs_ever_live[newreg] = 1;
3826 REGNO (in_rtx) = newreg;
3827 in_rtx->used = 1;
3828 }
3829
3830 if (INSN_P (in_rtx))
3831 {
3832 /* Inside a SEQUENCE, we find insns.
3833 Renumber just the patterns of these insns,
3834 just as we do for the top-level insns. */
3835 leaf_renumber_regs_insn (PATTERN (in_rtx));
3836 return;
3837 }
3838
3839 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3840
3841 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3842 switch (*format_ptr++)
3843 {
3844 case 'e':
3845 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3846 break;
3847
3848 case 'E':
3849 if (NULL != XVEC (in_rtx, i))
3850 {
3851 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3852 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3853 }
3854 break;
3855
3856 case 'S':
3857 case 's':
3858 case '0':
3859 case 'i':
3860 case 'w':
3861 case 'n':
3862 case 'u':
3863 break;
3864
3865 default:
3866 abort ();
3867 }
3868 }
3869 #endif