predicates.md (easy_fp_constant): Return 0 for SFmode and DFmode before reload when...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75
76 #ifdef XCOFF_DEBUGGING_INFO
77 #include "xcoffout.h" /* Needed for external data
78 declarations for e.g. AIX 4.x. */
79 #endif
80
81 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
82 #include "dwarf2out.h"
83 #endif
84
85 #ifdef DBX_DEBUGGING_INFO
86 #include "dbxout.h"
87 #endif
88
89 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
90 null default for it to save conditionalization later. */
91 #ifndef CC_STATUS_INIT
92 #define CC_STATUS_INIT
93 #endif
94
95 /* How to start an assembler comment. */
96 #ifndef ASM_COMMENT_START
97 #define ASM_COMMENT_START ";#"
98 #endif
99
100 /* Is the given character a logical line separator for the assembler? */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
103 #endif
104
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
107 #endif
108
109 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
110 #define HAVE_READONLY_DATA_SECTION 1
111 #else
112 #define HAVE_READONLY_DATA_SECTION 0
113 #endif
114
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_BB 1
117 #define SEEN_NOTE 2
118 #define SEEN_EMITTED 4
119
120 /* Last insn processed by final_scan_insn. */
121 static rtx debug_insn;
122 rtx current_output_insn;
123
124 /* Line number of last NOTE. */
125 static int last_linenum;
126
127 /* Highest line number in current block. */
128 static int high_block_linenum;
129
130 /* Likewise for function. */
131 static int high_function_linenum;
132
133 /* Filename of last NOTE. */
134 static const char *last_filename;
135
136 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137
138 /* Nonzero while outputting an `asm' with operands.
139 This means that inconsistencies are the user's fault, so don't abort.
140 The precise value is the insn being output, to pass to error_for_asm. */
141 rtx this_is_asm_operands;
142
143 /* Number of operands of this insn, for an `asm' with operands. */
144 static unsigned int insn_noperands;
145
146 /* Compare optimization flag. */
147
148 static rtx last_ignored_compare = 0;
149
150 /* Assign a unique number to each insn that is output.
151 This can be used to generate unique local labels. */
152
153 static int insn_counter = 0;
154
155 #ifdef HAVE_cc0
156 /* This variable contains machine-dependent flags (defined in tm.h)
157 set and examined by output routines
158 that describe how to interpret the condition codes properly. */
159
160 CC_STATUS cc_status;
161
162 /* During output of an insn, this contains a copy of cc_status
163 from before the insn. */
164
165 CC_STATUS cc_prev_status;
166 #endif
167
168 /* Indexed by hardware reg number, is 1 if that register is ever
169 used in the current function.
170
171 In life_analysis, or in stupid_life_analysis, this is set
172 up to record the hard regs used explicitly. Reload adds
173 in the hard regs used for holding pseudo regs. Final uses
174 it to generate the code in the function prologue and epilogue
175 to save and restore registers as needed. */
176
177 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178
179 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
180 Unlike regs_ever_live, elements of this array corresponding to
181 eliminable regs like the frame pointer are set if an asm sets them. */
182
183 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184
185 /* Nonzero means current function must be given a frame pointer.
186 Initialized in function.c to 0. Set only in reload1.c as per
187 the needs of the function. */
188
189 int frame_pointer_needed;
190
191 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192
193 static int block_depth;
194
195 /* Nonzero if have enabled APP processing of our assembler output. */
196
197 static int app_on;
198
199 /* If we are outputting an insn sequence, this contains the sequence rtx.
200 Zero otherwise. */
201
202 rtx final_sequence;
203
204 #ifdef ASSEMBLER_DIALECT
205
206 /* Number of the assembler dialect to use, starting at 0. */
207 static int dialect_number;
208 #endif
209
210 #ifdef HAVE_conditional_execution
211 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
212 rtx current_insn_predicate;
213 #endif
214
215 #ifdef HAVE_ATTR_length
216 static int asm_insn_count (rtx);
217 #endif
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx);
221 static rtx walk_alter_subreg (rtx *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx);
224 static tree get_mem_expr_from_op (rtx, int *);
225 static void output_asm_operand_names (rtx *, int *, int);
226 static void output_operand (rtx, int);
227 #ifdef LEAF_REGISTERS
228 static void leaf_renumber_regs (rtx);
229 #endif
230 #ifdef HAVE_cc0
231 static int alter_cond (rtx);
232 #endif
233 #ifndef ADDR_VEC_ALIGN
234 static int final_addr_vec_align (rtx);
235 #endif
236 #ifdef HAVE_ATTR_length
237 static int align_fuzz (rtx, rtx, int, unsigned);
238 #endif
239 \f
240 /* Initialize data in final at the beginning of a compilation. */
241
242 void
243 init_final (const char *filename ATTRIBUTE_UNUSED)
244 {
245 app_on = 0;
246 final_sequence = 0;
247
248 #ifdef ASSEMBLER_DIALECT
249 dialect_number = ASSEMBLER_DIALECT;
250 #endif
251 }
252
253 /* Default target function prologue and epilogue assembler output.
254
255 If not overridden for epilogue code, then the function body itself
256 contains return instructions wherever needed. */
257 void
258 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
259 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
260 {
261 }
262
263 /* Default target hook that outputs nothing to a stream. */
264 void
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
271
272 void
273 app_enable (void)
274 {
275 if (! app_on)
276 {
277 fputs (ASM_APP_ON, asm_out_file);
278 app_on = 1;
279 }
280 }
281
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
284
285 void
286 app_disable (void)
287 {
288 if (app_on)
289 {
290 fputs (ASM_APP_OFF, asm_out_file);
291 app_on = 0;
292 }
293 }
294 \f
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
298
299 #ifdef DELAY_SLOTS
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 #endif
309 \f
310 /* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
312
313 /* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
315
316 static int *insn_lengths;
317
318 varray_type insn_addresses_;
319
320 /* Max uid for which the above arrays are valid. */
321 static int insn_lengths_max_uid;
322
323 /* Address of insn being processed. Used by `insn_current_length'. */
324 int insn_current_address;
325
326 /* Address of insn being processed in previous iteration. */
327 int insn_last_address;
328
329 /* known invariant alignment of insn being processed. */
330 int insn_current_align;
331
332 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
339 comments. */
340
341 struct label_alignment
342 {
343 short alignment;
344 short max_skip;
345 };
346
347 static rtx *uid_align;
348 static int *uid_shuid;
349 static struct label_alignment *label_align;
350
351 /* Indicate that branch shortening hasn't yet been done. */
352
353 void
354 init_insn_lengths (void)
355 {
356 if (uid_shuid)
357 {
358 free (uid_shuid);
359 uid_shuid = 0;
360 }
361 if (insn_lengths)
362 {
363 free (insn_lengths);
364 insn_lengths = 0;
365 insn_lengths_max_uid = 0;
366 }
367 #ifdef HAVE_ATTR_length
368 INSN_ADDRESSES_FREE ();
369 #endif
370 if (uid_align)
371 {
372 free (uid_align);
373 uid_align = 0;
374 }
375 }
376
377 /* Obtain the current length of an insn. If branch shortening has been done,
378 get its actual length. Otherwise, get its maximum length. */
379
380 int
381 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 {
383 #ifdef HAVE_ATTR_length
384 rtx body;
385 int i;
386 int length = 0;
387
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
392 {
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 return 0;
397
398 case CALL_INSN:
399 length = insn_default_length (insn);
400 break;
401
402 case JUMP_INSN:
403 body = PATTERN (insn);
404 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 {
406 /* Alignment is machine-dependent and should be handled by
407 ADDR_VEC_ALIGN. */
408 }
409 else
410 length = insn_default_length (insn);
411 break;
412
413 case INSN:
414 body = PATTERN (insn);
415 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
416 return 0;
417
418 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
419 length = asm_insn_count (body) * insn_default_length (insn);
420 else if (GET_CODE (body) == SEQUENCE)
421 for (i = 0; i < XVECLEN (body, 0); i++)
422 length += get_attr_length (XVECEXP (body, 0, i));
423 else
424 length = insn_default_length (insn);
425 break;
426
427 default:
428 break;
429 }
430
431 #ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn, length);
433 #endif
434 return length;
435 #else /* not HAVE_ATTR_length */
436 return 0;
437 #endif /* not HAVE_ATTR_length */
438 }
439 \f
440 /* Code to handle alignment inside shorten_branches. */
441
442 /* Here is an explanation how the algorithm in align_fuzz can give
443 proper results:
444
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
447 is used in an expression, it means the alignment value of the
448 alignment point.
449
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
453
454 Likewise with the next alignment-delimited block following X, which we
455 shall call block Y.
456
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
459
460 The estimated padding is then OX - IX.
461
462 OX can be safely estimated as
463
464 if (X >= Y)
465 OX = round_up(IX, Y)
466 else
467 OX = round_up(IX, X) + Y - X
468
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
471
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
474
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
480
481 #ifndef LABEL_ALIGN
482 #define LABEL_ALIGN(LABEL) align_labels_log
483 #endif
484
485 #ifndef LABEL_ALIGN_MAX_SKIP
486 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
487 #endif
488
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
492
493 #ifndef LOOP_ALIGN_MAX_SKIP
494 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
495 #endif
496
497 #ifndef LABEL_ALIGN_AFTER_BARRIER
498 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
499 #endif
500
501 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
502 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
503 #endif
504
505 #ifndef JUMP_ALIGN
506 #define JUMP_ALIGN(LABEL) align_jumps_log
507 #endif
508
509 #ifndef JUMP_ALIGN_MAX_SKIP
510 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
511 #endif
512
513 #ifndef ADDR_VEC_ALIGN
514 static int
515 final_addr_vec_align (rtx addr_vec)
516 {
517 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518
519 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
521 return exact_log2 (align);
522
523 }
524
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526 #endif
527
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530 #endif
531
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533
534 static int min_labelno, max_labelno;
535
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541
542 /* For the benefit of port specific code do this also as a function. */
543
544 int
545 label_to_alignment (rtx label)
546 {
547 return LABEL_TO_ALIGNMENT (label);
548 }
549
550 #ifdef HAVE_ATTR_length
551 /* The differences in addresses
552 between a branch and its target might grow or shrink depending on
553 the alignment the start insn of the range (the branch for a forward
554 branch or the label for a backward branch) starts out on; if these
555 differences are used naively, they can even oscillate infinitely.
556 We therefore want to compute a 'worst case' address difference that
557 is independent of the alignment the start insn of the range end
558 up on, and that is at least as large as the actual difference.
559 The function align_fuzz calculates the amount we have to add to the
560 naively computed difference, by traversing the part of the alignment
561 chain of the start insn of the range that is in front of the end insn
562 of the range, and considering for each alignment the maximum amount
563 that it might contribute to a size increase.
564
565 For casesi tables, we also want to know worst case minimum amounts of
566 address difference, in case a machine description wants to introduce
567 some common offset that is added to all offsets in a table.
568 For this purpose, align_fuzz with a growth argument of 0 computes the
569 appropriate adjustment. */
570
571 /* Compute the maximum delta by which the difference of the addresses of
572 START and END might grow / shrink due to a different address for start
573 which changes the size of alignment insns between START and END.
574 KNOWN_ALIGN_LOG is the alignment known for START.
575 GROWTH should be ~0 if the objective is to compute potential code size
576 increase, and 0 if the objective is to compute potential shrink.
577 The return value is undefined for any other value of GROWTH. */
578
579 static int
580 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 {
582 int uid = INSN_UID (start);
583 rtx align_label;
584 int known_align = 1 << known_align_log;
585 int end_shuid = INSN_SHUID (end);
586 int fuzz = 0;
587
588 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 {
590 int align_addr, new_align;
591
592 uid = INSN_UID (align_label);
593 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
594 if (uid_shuid[uid] > end_shuid)
595 break;
596 known_align_log = LABEL_TO_ALIGNMENT (align_label);
597 new_align = 1 << known_align_log;
598 if (new_align < known_align)
599 continue;
600 fuzz += (-align_addr ^ growth) & (new_align - known_align);
601 known_align = new_align;
602 }
603 return fuzz;
604 }
605
606 /* Compute a worst-case reference address of a branch so that it
607 can be safely used in the presence of aligned labels. Since the
608 size of the branch itself is unknown, the size of the branch is
609 not included in the range. I.e. for a forward branch, the reference
610 address is the end address of the branch as known from the previous
611 branch shortening pass, minus a value to account for possible size
612 increase due to alignment. For a backward branch, it is the start
613 address of the branch as known from the current pass, plus a value
614 to account for possible size increase due to alignment.
615 NB.: Therefore, the maximum offset allowed for backward branches needs
616 to exclude the branch size. */
617
618 int
619 insn_current_reference_address (rtx branch)
620 {
621 rtx dest, seq;
622 int seq_uid;
623
624 if (! INSN_ADDRESSES_SET_P ())
625 return 0;
626
627 seq = NEXT_INSN (PREV_INSN (branch));
628 seq_uid = INSN_UID (seq);
629 if (!JUMP_P (branch))
630 /* This can happen for example on the PA; the objective is to know the
631 offset to address something in front of the start of the function.
632 Thus, we can treat it like a backward branch.
633 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
634 any alignment we'd encounter, so we skip the call to align_fuzz. */
635 return insn_current_address;
636 dest = JUMP_LABEL (branch);
637
638 /* BRANCH has no proper alignment chain set, so use SEQ.
639 BRANCH also has no INSN_SHUID. */
640 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 {
642 /* Forward branch. */
643 return (insn_last_address + insn_lengths[seq_uid]
644 - align_fuzz (seq, dest, length_unit_log, ~0));
645 }
646 else
647 {
648 /* Backward branch. */
649 return (insn_current_address
650 + align_fuzz (dest, seq, length_unit_log, ~0));
651 }
652 }
653 #endif /* HAVE_ATTR_length */
654 \f
655 void
656 compute_alignments (void)
657 {
658 int log, max_skip, max_log;
659 basic_block bb;
660
661 if (label_align)
662 {
663 free (label_align);
664 label_align = 0;
665 }
666
667 max_labelno = max_label_num ();
668 min_labelno = get_first_label_num ();
669 label_align = xcalloc (max_labelno - min_labelno + 1,
670 sizeof (struct label_alignment));
671
672 /* If not optimizing or optimizing for size, don't assign any alignments. */
673 if (! optimize || optimize_size)
674 return;
675
676 FOR_EACH_BB (bb)
677 {
678 rtx label = BB_HEAD (bb);
679 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
680 edge e;
681 edge_iterator ei;
682
683 if (!LABEL_P (label)
684 || probably_never_executed_bb_p (bb))
685 continue;
686 max_log = LABEL_ALIGN (label);
687 max_skip = LABEL_ALIGN_MAX_SKIP;
688
689 FOR_EACH_EDGE (e, ei, bb->preds)
690 {
691 if (e->flags & EDGE_FALLTHRU)
692 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
693 else
694 branch_frequency += EDGE_FREQUENCY (e);
695 }
696
697 /* There are two purposes to align block with no fallthru incoming edge:
698 1) to avoid fetch stalls when branch destination is near cache boundary
699 2) to improve cache efficiency in case the previous block is not executed
700 (so it does not need to be in the cache).
701
702 We to catch first case, we align frequently executed blocks.
703 To catch the second, we align blocks that are executed more frequently
704 than the predecessor and the predecessor is likely to not be executed
705 when function is called. */
706
707 if (!has_fallthru
708 && (branch_frequency > BB_FREQ_MAX / 10
709 || (bb->frequency > bb->prev_bb->frequency * 10
710 && (bb->prev_bb->frequency
711 <= ENTRY_BLOCK_PTR->frequency / 2))))
712 {
713 log = JUMP_ALIGN (label);
714 if (max_log < log)
715 {
716 max_log = log;
717 max_skip = JUMP_ALIGN_MAX_SKIP;
718 }
719 }
720 /* In case block is frequent and reached mostly by non-fallthru edge,
721 align it. It is most likely a first block of loop. */
722 if (has_fallthru
723 && maybe_hot_bb_p (bb)
724 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
725 && branch_frequency > fallthru_frequency * 2)
726 {
727 log = LOOP_ALIGN (label);
728 if (max_log < log)
729 {
730 max_log = log;
731 max_skip = LOOP_ALIGN_MAX_SKIP;
732 }
733 }
734 LABEL_TO_ALIGNMENT (label) = max_log;
735 LABEL_TO_MAX_SKIP (label) = max_skip;
736 }
737 }
738 \f
739 /* Make a pass over all insns and compute their actual lengths by shortening
740 any branches of variable length if possible. */
741
742 /* shorten_branches might be called multiple times: for example, the SH
743 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
744 In order to do this, it needs proper length information, which it obtains
745 by calling shorten_branches. This cannot be collapsed with
746 shorten_branches itself into a single pass unless we also want to integrate
747 reorg.c, since the branch splitting exposes new instructions with delay
748 slots. */
749
750 void
751 shorten_branches (rtx first ATTRIBUTE_UNUSED)
752 {
753 rtx insn;
754 int max_uid;
755 int i;
756 int max_log;
757 int max_skip;
758 #ifdef HAVE_ATTR_length
759 #define MAX_CODE_ALIGN 16
760 rtx seq;
761 int something_changed = 1;
762 char *varying_length;
763 rtx body;
764 int uid;
765 rtx align_tab[MAX_CODE_ALIGN];
766
767 #endif
768
769 /* Compute maximum UID and allocate label_align / uid_shuid. */
770 max_uid = get_max_uid ();
771
772 /* Free uid_shuid before reallocating it. */
773 free (uid_shuid);
774
775 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
776
777 if (max_labelno != max_label_num ())
778 {
779 int old = max_labelno;
780 int n_labels;
781 int n_old_labels;
782
783 max_labelno = max_label_num ();
784
785 n_labels = max_labelno - min_labelno + 1;
786 n_old_labels = old - min_labelno + 1;
787
788 label_align = xrealloc (label_align,
789 n_labels * sizeof (struct label_alignment));
790
791 /* Range of labels grows monotonically in the function. Abort here
792 means that the initialization of array got lost. */
793 gcc_assert (n_old_labels <= n_labels);
794
795 memset (label_align + n_old_labels, 0,
796 (n_labels - n_old_labels) * sizeof (struct label_alignment));
797 }
798
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
804
805 max_log = 0;
806 max_skip = 0;
807
808 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 {
810 int log;
811
812 INSN_SHUID (insn) = i++;
813 if (INSN_P (insn))
814 {
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
820 }
821 else if (LABEL_P (insn))
822 {
823 rtx next;
824
825 /* Merge in alignments computed by compute_alignments. */
826 log = LABEL_TO_ALIGNMENT (insn);
827 if (max_log < log)
828 {
829 max_log = log;
830 max_skip = LABEL_TO_MAX_SKIP (insn);
831 }
832
833 log = LABEL_ALIGN (insn);
834 if (max_log < log)
835 {
836 max_log = log;
837 max_skip = LABEL_ALIGN_MAX_SKIP;
838 }
839 next = next_nonnote_insn (insn);
840 /* ADDR_VECs only take room if read-only data goes into the text
841 section. */
842 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
843 if (next && JUMP_P (next))
844 {
845 rtx nextbody = PATTERN (next);
846 if (GET_CODE (nextbody) == ADDR_VEC
847 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 {
849 log = ADDR_VEC_ALIGN (next);
850 if (max_log < log)
851 {
852 max_log = log;
853 max_skip = LABEL_ALIGN_MAX_SKIP;
854 }
855 }
856 }
857 LABEL_TO_ALIGNMENT (insn) = max_log;
858 LABEL_TO_MAX_SKIP (insn) = max_skip;
859 max_log = 0;
860 max_skip = 0;
861 }
862 else if (BARRIER_P (insn))
863 {
864 rtx label;
865
866 for (label = insn; label && ! INSN_P (label);
867 label = NEXT_INSN (label))
868 if (LABEL_P (label))
869 {
870 log = LABEL_ALIGN_AFTER_BARRIER (insn);
871 if (max_log < log)
872 {
873 max_log = log;
874 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 }
876 break;
877 }
878 }
879 }
880 #ifdef HAVE_ATTR_length
881
882 /* Allocate the rest of the arrays. */
883 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
884 insn_lengths_max_uid = max_uid;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid);
888
889 varying_length = xcalloc (max_uid, sizeof (char));
890
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
895 alignment of n. */
896 uid_align = xcalloc (max_uid, sizeof *uid_align);
897
898 for (i = MAX_CODE_ALIGN; --i >= 0;)
899 align_tab[i] = NULL_RTX;
900 seq = get_last_insn ();
901 for (; seq; seq = PREV_INSN (seq))
902 {
903 int uid = INSN_UID (seq);
904 int log;
905 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
906 uid_align[uid] = align_tab[0];
907 if (log)
908 {
909 /* Found an alignment label. */
910 uid_align[uid] = align_tab[log];
911 for (i = log - 1; i >= 0; i--)
912 align_tab[i] = seq;
913 }
914 }
915 #ifdef CASE_VECTOR_SHORTEN_MODE
916 if (optimize)
917 {
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 label fields. */
920
921 int min_shuid = INSN_SHUID (get_insns ()) - 1;
922 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
923 int rel;
924
925 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 {
927 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
928 int len, i, min, max, insn_shuid;
929 int min_align;
930 addr_diff_vec_flags flags;
931
932 if (!JUMP_P (insn)
933 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
934 continue;
935 pat = PATTERN (insn);
936 len = XVECLEN (pat, 1);
937 gcc_assert (len > 0);
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 memset (&flags, 0, sizeof (flags));
961 flags.min_align = min_align;
962 flags.base_after_vec = rel > insn_shuid;
963 flags.min_after_vec = min > insn_shuid;
964 flags.max_after_vec = max > insn_shuid;
965 flags.min_after_base = min > rel;
966 flags.max_after_base = max > rel;
967 ADDR_DIFF_VEC_FLAGS (pat) = flags;
968 }
969 }
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
971
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address = 0, insn = first;
974 insn != 0;
975 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 {
977 uid = INSN_UID (insn);
978
979 insn_lengths[uid] = 0;
980
981 if (LABEL_P (insn))
982 {
983 int log = LABEL_TO_ALIGNMENT (insn);
984 if (log)
985 {
986 int align = 1 << log;
987 int new_address = (insn_current_address + align - 1) & -align;
988 insn_lengths[uid] = new_address - insn_current_address;
989 }
990 }
991
992 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
993
994 if (NOTE_P (insn) || BARRIER_P (insn)
995 || LABEL_P (insn))
996 continue;
997 if (INSN_DELETED_P (insn))
998 continue;
999
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 {
1003 /* This only takes room if read-only data goes into the text
1004 section. */
1005 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1006 insn_lengths[uid] = (XVECLEN (body,
1007 GET_CODE (body) == ADDR_DIFF_VEC)
1008 * GET_MODE_SIZE (GET_MODE (body)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 }
1011 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1012 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1013 else if (GET_CODE (body) == SEQUENCE)
1014 {
1015 int i;
1016 int const_delay_slots;
1017 #ifdef DELAY_SLOTS
1018 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1019 #else
1020 const_delay_slots = 0;
1021 #endif
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1024 of the branch. */
1025 for (i = 0; i < XVECLEN (body, 0); i++)
1026 {
1027 rtx inner_insn = XVECEXP (body, 0, i);
1028 int inner_uid = INSN_UID (inner_insn);
1029 int inner_length;
1030
1031 if (GET_CODE (body) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1033 inner_length = (asm_insn_count (PATTERN (inner_insn))
1034 * insn_default_length (inner_insn));
1035 else
1036 inner_length = insn_default_length (inner_insn);
1037
1038 insn_lengths[inner_uid] = inner_length;
1039 if (const_delay_slots)
1040 {
1041 if ((varying_length[inner_uid]
1042 = insn_variable_length_p (inner_insn)) != 0)
1043 varying_length[uid] = 1;
1044 INSN_ADDRESSES (inner_uid) = (insn_current_address
1045 + insn_lengths[uid]);
1046 }
1047 else
1048 varying_length[inner_uid] = 0;
1049 insn_lengths[uid] += inner_length;
1050 }
1051 }
1052 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 {
1054 insn_lengths[uid] = insn_default_length (insn);
1055 varying_length[uid] = insn_variable_length_p (insn);
1056 }
1057
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1061 if (insn_lengths[uid] < 0)
1062 fatal_insn ("negative insn length", insn);
1063 #endif
1064 }
1065
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1069
1070 while (something_changed)
1071 {
1072 something_changed = 0;
1073 insn_current_align = MAX_CODE_ALIGN - 1;
1074 for (insn_current_address = 0, insn = first;
1075 insn != 0;
1076 insn = NEXT_INSN (insn))
1077 {
1078 int new_length;
1079 #ifdef ADJUST_INSN_LENGTH
1080 int tmp_length;
1081 #endif
1082 int length_align;
1083
1084 uid = INSN_UID (insn);
1085
1086 if (LABEL_P (insn))
1087 {
1088 int log = LABEL_TO_ALIGNMENT (insn);
1089 if (log > insn_current_align)
1090 {
1091 int align = 1 << log;
1092 int new_address= (insn_current_address + align - 1) & -align;
1093 insn_lengths[uid] = new_address - insn_current_address;
1094 insn_current_align = log;
1095 insn_current_address = new_address;
1096 }
1097 else
1098 insn_lengths[uid] = 0;
1099 INSN_ADDRESSES (uid) = insn_current_address;
1100 continue;
1101 }
1102
1103 length_align = INSN_LENGTH_ALIGNMENT (insn);
1104 if (length_align < insn_current_align)
1105 insn_current_align = length_align;
1106
1107 insn_last_address = INSN_ADDRESSES (uid);
1108 INSN_ADDRESSES (uid) = insn_current_address;
1109
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize && JUMP_P (insn)
1112 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 {
1114 rtx body = PATTERN (insn);
1115 int old_length = insn_lengths[uid];
1116 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1117 rtx min_lab = XEXP (XEXP (body, 2), 0);
1118 rtx max_lab = XEXP (XEXP (body, 3), 0);
1119 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1120 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1121 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1122 rtx prev;
1123 int rel_align = 0;
1124 addr_diff_vec_flags flags;
1125
1126 /* Avoid automatic aggregate initialization. */
1127 flags = ADDR_DIFF_VEC_FLAGS (body);
1128
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev = rel_lab;
1131 prev
1132 && ! insn_lengths[INSN_UID (prev)]
1133 && ! (varying_length[INSN_UID (prev)] & 1);
1134 prev = PREV_INSN (prev))
1135 if (varying_length[INSN_UID (prev)] & 2)
1136 {
1137 rel_align = LABEL_TO_ALIGNMENT (prev);
1138 break;
1139 }
1140
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags.base_after_vec)
1147 rel_addr += insn_current_address - insn_last_address;
1148 if (flags.min_after_vec)
1149 min_addr += insn_current_address - insn_last_address;
1150 if (flags.max_after_vec)
1151 max_addr += insn_current_address - insn_last_address;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1156 size increase. */
1157 if (flags.min_after_base)
1158 {
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags.base_after_vec && flags.min_after_vec)
1164 {
1165 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1166 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 }
1168 else
1169 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 }
1171 else
1172 {
1173 if (flags.base_after_vec && ! flags.min_after_vec)
1174 {
1175 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1176 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 }
1178 else
1179 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 }
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags.max_after_base)
1184 {
1185 if (! flags.base_after_vec && flags.max_after_vec)
1186 {
1187 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1188 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 }
1190 else
1191 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 }
1193 else
1194 {
1195 if (flags.base_after_vec && ! flags.max_after_vec)
1196 {
1197 max_addr += align_fuzz (max_lab, insn, 0, 0);
1198 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 }
1200 else
1201 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 }
1203 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1204 max_addr - rel_addr,
1205 body));
1206 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 {
1208 insn_lengths[uid]
1209 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1210 insn_current_address += insn_lengths[uid];
1211 if (insn_lengths[uid] != old_length)
1212 something_changed = 1;
1213 }
1214
1215 continue;
1216 }
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218
1219 if (! (varying_length[uid]))
1220 {
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 {
1224 int i;
1225
1226 body = PATTERN (insn);
1227 for (i = 0; i < XVECLEN (body, 0); i++)
1228 {
1229 rtx inner_insn = XVECEXP (body, 0, i);
1230 int inner_uid = INSN_UID (inner_insn);
1231
1232 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233
1234 insn_current_address += insn_lengths[inner_uid];
1235 }
1236 }
1237 else
1238 insn_current_address += insn_lengths[uid];
1239
1240 continue;
1241 }
1242
1243 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 {
1245 int i;
1246
1247 body = PATTERN (insn);
1248 new_length = 0;
1249 for (i = 0; i < XVECLEN (body, 0); i++)
1250 {
1251 rtx inner_insn = XVECEXP (body, 0, i);
1252 int inner_uid = INSN_UID (inner_insn);
1253 int inner_length;
1254
1255 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length[inner_uid])
1260 inner_length = insn_lengths[inner_uid];
1261 else
1262 inner_length = insn_current_length (inner_insn);
1263
1264 if (inner_length != insn_lengths[inner_uid])
1265 {
1266 insn_lengths[inner_uid] = inner_length;
1267 something_changed = 1;
1268 }
1269 insn_current_address += insn_lengths[inner_uid];
1270 new_length += inner_length;
1271 }
1272 }
1273 else
1274 {
1275 new_length = insn_current_length (insn);
1276 insn_current_address += new_length;
1277 }
1278
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length = new_length;
1282 ADJUST_INSN_LENGTH (insn, new_length);
1283 insn_current_address += (new_length - tmp_length);
1284 #endif
1285
1286 if (new_length != insn_lengths[uid])
1287 {
1288 insn_lengths[uid] = new_length;
1289 something_changed = 1;
1290 }
1291 }
1292 /* For a non-optimizing compile, do only a single pass. */
1293 if (!optimize)
1294 break;
1295 }
1296
1297 free (varying_length);
1298
1299 #endif /* HAVE_ATTR_length */
1300 }
1301
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1306
1307 static int
1308 asm_insn_count (rtx body)
1309 {
1310 const char *template;
1311 int count = 1;
1312
1313 if (GET_CODE (body) == ASM_INPUT)
1314 template = XSTR (body, 0);
1315 else
1316 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1317
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1320 count++;
1321
1322 return count;
1323 }
1324 #endif
1325 \f
1326 /* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1330
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1335
1336 void
1337 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1338 int optimize ATTRIBUTE_UNUSED)
1339 {
1340 block_depth = 0;
1341
1342 this_is_asm_operands = 0;
1343
1344 last_filename = locator_file (prologue_locator);
1345 last_linenum = locator_line (prologue_locator);
1346
1347 high_block_linenum = high_function_linenum = last_linenum;
1348
1349 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1350
1351 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1352 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1353 dwarf2out_begin_prologue (0, NULL);
1354 #endif
1355
1356 #ifdef LEAF_REG_REMAP
1357 if (current_function_uses_only_leaf_regs)
1358 leaf_renumber_regs (first);
1359 #endif
1360
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363 #ifdef PROFILE_BEFORE_PROLOGUE
1364 if (current_function_profile)
1365 profile_function (file);
1366 #endif /* PROFILE_BEFORE_PROLOGUE */
1367
1368 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
1370 dwarf2out_frame_debug (NULL_RTX, false);
1371 #endif
1372
1373 /* If debugging, assign block numbers to all of the blocks in this
1374 function. */
1375 if (write_symbols)
1376 {
1377 remove_unnecessary_notes ();
1378 reemit_insn_block_notes ();
1379 number_blocks (current_function_decl);
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1382 always needed. */
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1384 }
1385
1386 /* First output the function prologue: code to set up the stack frame. */
1387 targetm.asm_out.function_prologue (file, get_frame_size ());
1388
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391 #ifdef HAVE_prologue
1392 if (! HAVE_prologue)
1393 #endif
1394 profile_after_prologue (file);
1395 }
1396
1397 static void
1398 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1399 {
1400 #ifndef PROFILE_BEFORE_PROLOGUE
1401 if (current_function_profile)
1402 profile_function (file);
1403 #endif /* not PROFILE_BEFORE_PROLOGUE */
1404 }
1405
1406 static void
1407 profile_function (FILE *file ATTRIBUTE_UNUSED)
1408 {
1409 #ifndef NO_PROFILE_COUNTERS
1410 # define NO_PROFILE_COUNTERS 0
1411 #endif
1412 #if defined(ASM_OUTPUT_REG_PUSH)
1413 int sval = current_function_returns_struct;
1414 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1415 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1416 int cxt = cfun->static_chain_decl != NULL;
1417 #endif
1418 #endif /* ASM_OUTPUT_REG_PUSH */
1419
1420 if (! NO_PROFILE_COUNTERS)
1421 {
1422 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1423 data_section ();
1424 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1425 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1426 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1427 }
1428
1429 function_section (current_function_decl);
1430
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1433 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1434 #endif
1435
1436 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1438 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1439 #else
1440 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1441 if (cxt)
1442 {
1443 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 }
1445 #endif
1446 #endif
1447
1448 FUNCTION_PROFILER (file, current_function_funcdef_no);
1449
1450 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1452 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1453 #else
1454 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1455 if (cxt)
1456 {
1457 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 }
1459 #endif
1460 #endif
1461
1462 #if defined(ASM_OUTPUT_REG_PUSH)
1463 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1464 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1465 #endif
1466 }
1467
1468 /* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1471
1472 void
1473 final_end_function (void)
1474 {
1475 app_disable ();
1476
1477 (*debug_hooks->end_function) (high_function_linenum);
1478
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
1481 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1482
1483 /* And debug output. */
1484 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1485
1486 #if defined (DWARF2_UNWIND_INFO)
1487 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
1489 dwarf2out_end_epilogue (last_linenum, last_filename);
1490 #endif
1491 }
1492 \f
1493 /* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above.
1495
1496 PRESCAN is 1 if we are not really outputting,
1497 just scanning as if we were outputting.
1498 Prescanning deletes and rearranges insns just like ordinary output.
1499 PRESCAN is -2 if we are outputting after having prescanned.
1500 In this case, don't try to delete or rearrange insns
1501 because that has already been done.
1502 Prescanning is done only on certain machines. */
1503
1504 void
1505 final (rtx first, FILE *file, int optimize, int prescan)
1506 {
1507 rtx insn;
1508 int max_uid = 0;
1509 int seen = 0;
1510
1511 last_ignored_compare = 0;
1512
1513 #ifdef SDB_DEBUGGING_INFO
1514 /* When producing SDB debugging info, delete troublesome line number
1515 notes from inlined functions in other files as well as duplicate
1516 line number notes. */
1517 if (write_symbols == SDB_DEBUG)
1518 {
1519 rtx last = 0;
1520 for (insn = first; insn; insn = NEXT_INSN (insn))
1521 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1522 {
1523 if (last != 0
1524 #ifdef USE_MAPPED_LOCATION
1525 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1526 #else
1527 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1528 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1529 #endif
1530 )
1531 {
1532 delete_insn (insn); /* Use delete_note. */
1533 continue;
1534 }
1535 last = insn;
1536 }
1537 }
1538 #endif
1539
1540 for (insn = first; insn; insn = NEXT_INSN (insn))
1541 {
1542 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1543 max_uid = INSN_UID (insn);
1544 #ifdef HAVE_cc0
1545 /* If CC tracking across branches is enabled, record the insn which
1546 jumps to each branch only reached from one place. */
1547 if (optimize && JUMP_P (insn))
1548 {
1549 rtx lab = JUMP_LABEL (insn);
1550 if (lab && LABEL_NUSES (lab) == 1)
1551 {
1552 LABEL_REFS (lab) = insn;
1553 }
1554 }
1555 #endif
1556 }
1557
1558 init_recog ();
1559
1560 CC_STATUS_INIT;
1561
1562 /* Output the insns. */
1563 for (insn = NEXT_INSN (first); insn;)
1564 {
1565 #ifdef HAVE_ATTR_length
1566 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1567 {
1568 /* This can be triggered by bugs elsewhere in the compiler if
1569 new insns are created after init_insn_lengths is called. */
1570 gcc_assert (NOTE_P (insn));
1571 insn_current_address = -1;
1572 }
1573 else
1574 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1575 #endif /* HAVE_ATTR_length */
1576
1577 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1578 }
1579 }
1580 \f
1581 const char *
1582 get_insn_template (int code, rtx insn)
1583 {
1584 switch (insn_data[code].output_format)
1585 {
1586 case INSN_OUTPUT_FORMAT_SINGLE:
1587 return insn_data[code].output.single;
1588 case INSN_OUTPUT_FORMAT_MULTI:
1589 return insn_data[code].output.multi[which_alternative];
1590 case INSN_OUTPUT_FORMAT_FUNCTION:
1591 gcc_assert (insn);
1592 return (*insn_data[code].output.function) (recog_data.operand, insn);
1593
1594 default:
1595 gcc_unreachable ();
1596 }
1597 }
1598
1599 /* Emit the appropriate declaration for an alternate-entry-point
1600 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1601 LABEL_KIND != LABEL_NORMAL.
1602
1603 The case fall-through in this function is intentional. */
1604 static void
1605 output_alternate_entry_point (FILE *file, rtx insn)
1606 {
1607 const char *name = LABEL_NAME (insn);
1608
1609 switch (LABEL_KIND (insn))
1610 {
1611 case LABEL_WEAK_ENTRY:
1612 #ifdef ASM_WEAKEN_LABEL
1613 ASM_WEAKEN_LABEL (file, name);
1614 #endif
1615 case LABEL_GLOBAL_ENTRY:
1616 targetm.asm_out.globalize_label (file, name);
1617 case LABEL_STATIC_ENTRY:
1618 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1619 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1620 #endif
1621 ASM_OUTPUT_LABEL (file, name);
1622 break;
1623
1624 case LABEL_NORMAL:
1625 default:
1626 gcc_unreachable ();
1627 }
1628 }
1629
1630 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1631 note in the instruction chain (going forward) between the current
1632 instruction, and the next 'executable' instruction. */
1633
1634 bool
1635 scan_ahead_for_unlikely_executed_note (rtx insn)
1636 {
1637 rtx temp;
1638 int bb_note_count = 0;
1639
1640 for (temp = insn; temp; temp = NEXT_INSN (temp))
1641 {
1642 if (NOTE_P (temp)
1643 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1644 return true;
1645 if (NOTE_P (temp)
1646 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1647 {
1648 bb_note_count++;
1649 if (bb_note_count > 1)
1650 return false;
1651 }
1652 if (INSN_P (temp))
1653 return false;
1654 }
1655
1656 return false;
1657 }
1658
1659 /* The final scan for one insn, INSN.
1660 Args are same as in `final', except that INSN
1661 is the insn being scanned.
1662 Value returned is the next insn to be scanned.
1663
1664 NOPEEPHOLES is the flag to disallow peephole processing (currently
1665 used for within delayed branch sequence output).
1666
1667 SEEN is used to track the end of the prologue, for emitting
1668 debug information. We force the emission of a line note after
1669 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1670 at the beginning of the second basic block, whichever comes
1671 first. */
1672
1673 rtx
1674 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1675 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1676 int *seen)
1677 {
1678 #ifdef HAVE_cc0
1679 rtx set;
1680 #endif
1681 rtx next;
1682
1683 insn_counter++;
1684
1685 /* Ignore deleted insns. These can occur when we split insns (due to a
1686 template of "#") while not optimizing. */
1687 if (INSN_DELETED_P (insn))
1688 return NEXT_INSN (insn);
1689
1690 switch (GET_CODE (insn))
1691 {
1692 case NOTE:
1693 if (prescan > 0)
1694 break;
1695
1696 switch (NOTE_LINE_NUMBER (insn))
1697 {
1698 case NOTE_INSN_DELETED:
1699 case NOTE_INSN_LOOP_BEG:
1700 case NOTE_INSN_LOOP_END:
1701 case NOTE_INSN_FUNCTION_END:
1702 case NOTE_INSN_REPEATED_LINE_NUMBER:
1703 case NOTE_INSN_EXPECTED_VALUE:
1704 break;
1705
1706 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1707
1708 /* The presence of this note indicates that this basic block
1709 belongs in the "cold" section of the .o file. If we are
1710 not already writing to the cold section we need to change
1711 to it. */
1712
1713 unlikely_text_section ();
1714 break;
1715
1716 case NOTE_INSN_BASIC_BLOCK:
1717
1718 /* If we are performing the optimization that partitions
1719 basic blocks into hot & cold sections of the .o file,
1720 then at the start of each new basic block, before
1721 beginning to write code for the basic block, we need to
1722 check to see whether the basic block belongs in the hot
1723 or cold section of the .o file, and change the section we
1724 are writing to appropriately. */
1725
1726 if (flag_reorder_blocks_and_partition
1727 && !scan_ahead_for_unlikely_executed_note (insn))
1728 function_section (current_function_decl);
1729
1730 #ifdef TARGET_UNWIND_INFO
1731 targetm.asm_out.unwind_emit (asm_out_file, insn);
1732 #endif
1733
1734 if (flag_debug_asm)
1735 fprintf (asm_out_file, "\t%s basic block %d\n",
1736 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1737
1738 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1739 {
1740 *seen |= SEEN_EMITTED;
1741 last_filename = NULL;
1742 }
1743 else
1744 *seen |= SEEN_BB;
1745
1746 break;
1747
1748 case NOTE_INSN_EH_REGION_BEG:
1749 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1750 NOTE_EH_HANDLER (insn));
1751 break;
1752
1753 case NOTE_INSN_EH_REGION_END:
1754 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1755 NOTE_EH_HANDLER (insn));
1756 break;
1757
1758 case NOTE_INSN_PROLOGUE_END:
1759 targetm.asm_out.function_end_prologue (file);
1760 profile_after_prologue (file);
1761
1762 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1763 {
1764 *seen |= SEEN_EMITTED;
1765 last_filename = NULL;
1766 }
1767 else
1768 *seen |= SEEN_NOTE;
1769
1770 break;
1771
1772 case NOTE_INSN_EPILOGUE_BEG:
1773 targetm.asm_out.function_begin_epilogue (file);
1774 break;
1775
1776 case NOTE_INSN_FUNCTION_BEG:
1777 app_disable ();
1778 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1779
1780 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1781 {
1782 *seen |= SEEN_EMITTED;
1783 last_filename = NULL;
1784 }
1785 else
1786 *seen |= SEEN_NOTE;
1787
1788 break;
1789
1790 case NOTE_INSN_BLOCK_BEG:
1791 if (debug_info_level == DINFO_LEVEL_NORMAL
1792 || debug_info_level == DINFO_LEVEL_VERBOSE
1793 || write_symbols == DWARF2_DEBUG
1794 || write_symbols == VMS_AND_DWARF2_DEBUG
1795 || write_symbols == VMS_DEBUG)
1796 {
1797 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1798
1799 app_disable ();
1800 ++block_depth;
1801 high_block_linenum = last_linenum;
1802
1803 /* Output debugging info about the symbol-block beginning. */
1804 (*debug_hooks->begin_block) (last_linenum, n);
1805
1806 /* Mark this block as output. */
1807 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1808 }
1809 break;
1810
1811 case NOTE_INSN_BLOCK_END:
1812 if (debug_info_level == DINFO_LEVEL_NORMAL
1813 || debug_info_level == DINFO_LEVEL_VERBOSE
1814 || write_symbols == DWARF2_DEBUG
1815 || write_symbols == VMS_AND_DWARF2_DEBUG
1816 || write_symbols == VMS_DEBUG)
1817 {
1818 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1819
1820 app_disable ();
1821
1822 /* End of a symbol-block. */
1823 --block_depth;
1824 gcc_assert (block_depth >= 0);
1825
1826 (*debug_hooks->end_block) (high_block_linenum, n);
1827 }
1828 break;
1829
1830 case NOTE_INSN_DELETED_LABEL:
1831 /* Emit the label. We may have deleted the CODE_LABEL because
1832 the label could be proved to be unreachable, though still
1833 referenced (in the form of having its address taken. */
1834 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1835 break;
1836
1837 case NOTE_INSN_VAR_LOCATION:
1838 (*debug_hooks->var_location) (insn);
1839 break;
1840
1841 case 0:
1842 break;
1843
1844 default:
1845 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1846 break;
1847 }
1848 break;
1849
1850 case BARRIER:
1851 #if defined (DWARF2_UNWIND_INFO)
1852 if (dwarf2out_do_frame ())
1853 dwarf2out_frame_debug (insn, false);
1854 #endif
1855 break;
1856
1857 case CODE_LABEL:
1858 /* The target port might emit labels in the output function for
1859 some insn, e.g. sh.c output_branchy_insn. */
1860 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1861 {
1862 int align = LABEL_TO_ALIGNMENT (insn);
1863 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1864 int max_skip = LABEL_TO_MAX_SKIP (insn);
1865 #endif
1866
1867 if (align && NEXT_INSN (insn))
1868 {
1869 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1870 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1871 #else
1872 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1873 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1874 #else
1875 ASM_OUTPUT_ALIGN (file, align);
1876 #endif
1877 #endif
1878 }
1879 }
1880 #ifdef HAVE_cc0
1881 CC_STATUS_INIT;
1882 /* If this label is reached from only one place, set the condition
1883 codes from the instruction just before the branch. */
1884
1885 /* Disabled because some insns set cc_status in the C output code
1886 and NOTICE_UPDATE_CC alone can set incorrect status. */
1887 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1888 {
1889 rtx jump = LABEL_REFS (insn);
1890 rtx barrier = prev_nonnote_insn (insn);
1891 rtx prev;
1892 /* If the LABEL_REFS field of this label has been set to point
1893 at a branch, the predecessor of the branch is a regular
1894 insn, and that branch is the only way to reach this label,
1895 set the condition codes based on the branch and its
1896 predecessor. */
1897 if (barrier && BARRIER_P (barrier)
1898 && jump && JUMP_P (jump)
1899 && (prev = prev_nonnote_insn (jump))
1900 && NONJUMP_INSN_P (prev))
1901 {
1902 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1903 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1904 }
1905 }
1906 #endif
1907 if (prescan > 0)
1908 break;
1909
1910 if (LABEL_NAME (insn))
1911 (*debug_hooks->label) (insn);
1912
1913 /* If we are doing the optimization that partitions hot & cold
1914 basic blocks into separate sections of the .o file, we need
1915 to ensure the jump table ends up in the correct section... */
1916
1917 if (flag_reorder_blocks_and_partition
1918 && targetm.have_named_sections)
1919 {
1920 rtx tmp_table, tmp_label;
1921 if (LABEL_P (insn)
1922 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1923 {
1924 /* Do nothing; Do NOT change the current section. */
1925 }
1926 else if (scan_ahead_for_unlikely_executed_note (insn))
1927 unlikely_text_section ();
1928 else if (in_unlikely_text_section ())
1929 function_section (current_function_decl);
1930 }
1931
1932 if (app_on)
1933 {
1934 fputs (ASM_APP_OFF, file);
1935 app_on = 0;
1936 }
1937
1938 next = next_nonnote_insn (insn);
1939 if (next != 0 && JUMP_P (next))
1940 {
1941 rtx nextbody = PATTERN (next);
1942
1943 /* If this label is followed by a jump-table,
1944 make sure we put the label in the read-only section. Also
1945 possibly write the label and jump table together. */
1946
1947 if (GET_CODE (nextbody) == ADDR_VEC
1948 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1949 {
1950 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1951 /* In this case, the case vector is being moved by the
1952 target, so don't output the label at all. Leave that
1953 to the back end macros. */
1954 #else
1955 if (! JUMP_TABLES_IN_TEXT_SECTION)
1956 {
1957 int log_align;
1958
1959 targetm.asm_out.function_rodata_section (current_function_decl);
1960
1961 #ifdef ADDR_VEC_ALIGN
1962 log_align = ADDR_VEC_ALIGN (next);
1963 #else
1964 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1965 #endif
1966 ASM_OUTPUT_ALIGN (file, log_align);
1967 }
1968 else
1969 function_section (current_function_decl);
1970
1971 #ifdef ASM_OUTPUT_CASE_LABEL
1972 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1973 next);
1974 #else
1975 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1976 #endif
1977 #endif
1978 break;
1979 }
1980 }
1981 if (LABEL_ALT_ENTRY_P (insn))
1982 output_alternate_entry_point (file, insn);
1983 else
1984 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1985 break;
1986
1987 default:
1988 {
1989 rtx body = PATTERN (insn);
1990 int insn_code_number;
1991 const char *template;
1992
1993 /* An INSN, JUMP_INSN or CALL_INSN.
1994 First check for special kinds that recog doesn't recognize. */
1995
1996 if (GET_CODE (body) == USE /* These are just declarations. */
1997 || GET_CODE (body) == CLOBBER)
1998 break;
1999
2000 #ifdef HAVE_cc0
2001 {
2002 /* If there is a REG_CC_SETTER note on this insn, it means that
2003 the setting of the condition code was done in the delay slot
2004 of the insn that branched here. So recover the cc status
2005 from the insn that set it. */
2006
2007 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2008 if (note)
2009 {
2010 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2011 cc_prev_status = cc_status;
2012 }
2013 }
2014 #endif
2015
2016 /* Detect insns that are really jump-tables
2017 and output them as such. */
2018
2019 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2020 {
2021 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2022 int vlen, idx;
2023 #endif
2024
2025 if (prescan > 0)
2026 break;
2027
2028 if (! JUMP_TABLES_IN_TEXT_SECTION)
2029 targetm.asm_out.function_rodata_section (current_function_decl);
2030 else
2031 function_section (current_function_decl);
2032
2033 if (app_on)
2034 {
2035 fputs (ASM_APP_OFF, file);
2036 app_on = 0;
2037 }
2038
2039 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2040 if (GET_CODE (body) == ADDR_VEC)
2041 {
2042 #ifdef ASM_OUTPUT_ADDR_VEC
2043 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2044 #else
2045 gcc_unreachable ();
2046 #endif
2047 }
2048 else
2049 {
2050 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2051 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2052 #else
2053 gcc_unreachable ();
2054 #endif
2055 }
2056 #else
2057 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2058 for (idx = 0; idx < vlen; idx++)
2059 {
2060 if (GET_CODE (body) == ADDR_VEC)
2061 {
2062 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2063 ASM_OUTPUT_ADDR_VEC_ELT
2064 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2065 #else
2066 gcc_unreachable ();
2067 #endif
2068 }
2069 else
2070 {
2071 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2072 ASM_OUTPUT_ADDR_DIFF_ELT
2073 (file,
2074 body,
2075 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2076 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2077 #else
2078 gcc_unreachable ();
2079 #endif
2080 }
2081 }
2082 #ifdef ASM_OUTPUT_CASE_END
2083 ASM_OUTPUT_CASE_END (file,
2084 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2085 insn);
2086 #endif
2087 #endif
2088
2089 function_section (current_function_decl);
2090
2091 break;
2092 }
2093 /* Output this line note if it is the first or the last line
2094 note in a row. */
2095 if (notice_source_line (insn))
2096 {
2097 (*debug_hooks->source_line) (last_linenum, last_filename);
2098 }
2099
2100 if (GET_CODE (body) == ASM_INPUT)
2101 {
2102 const char *string = XSTR (body, 0);
2103
2104 /* There's no telling what that did to the condition codes. */
2105 CC_STATUS_INIT;
2106 if (prescan > 0)
2107 break;
2108
2109 if (string[0])
2110 {
2111 if (! app_on)
2112 {
2113 fputs (ASM_APP_ON, file);
2114 app_on = 1;
2115 }
2116 fprintf (asm_out_file, "\t%s\n", string);
2117 }
2118 break;
2119 }
2120
2121 /* Detect `asm' construct with operands. */
2122 if (asm_noperands (body) >= 0)
2123 {
2124 unsigned int noperands = asm_noperands (body);
2125 rtx *ops = alloca (noperands * sizeof (rtx));
2126 const char *string;
2127
2128 /* There's no telling what that did to the condition codes. */
2129 CC_STATUS_INIT;
2130 if (prescan > 0)
2131 break;
2132
2133 /* Get out the operand values. */
2134 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2135 /* Inhibit aborts on what would otherwise be compiler bugs. */
2136 insn_noperands = noperands;
2137 this_is_asm_operands = insn;
2138
2139 #ifdef FINAL_PRESCAN_INSN
2140 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2141 #endif
2142
2143 /* Output the insn using them. */
2144 if (string[0])
2145 {
2146 if (! app_on)
2147 {
2148 fputs (ASM_APP_ON, file);
2149 app_on = 1;
2150 }
2151 output_asm_insn (string, ops);
2152 }
2153
2154 this_is_asm_operands = 0;
2155 break;
2156 }
2157
2158 if (prescan <= 0 && app_on)
2159 {
2160 fputs (ASM_APP_OFF, file);
2161 app_on = 0;
2162 }
2163
2164 if (GET_CODE (body) == SEQUENCE)
2165 {
2166 /* A delayed-branch sequence */
2167 int i;
2168
2169 if (prescan > 0)
2170 break;
2171 final_sequence = body;
2172
2173 /* Record the delay slots' frame information before the branch.
2174 This is needed for delayed calls: see execute_cfa_program(). */
2175 #if defined (DWARF2_UNWIND_INFO)
2176 if (dwarf2out_do_frame ())
2177 for (i = 1; i < XVECLEN (body, 0); i++)
2178 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2179 #endif
2180
2181 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2182 force the restoration of a comparison that was previously
2183 thought unnecessary. If that happens, cancel this sequence
2184 and cause that insn to be restored. */
2185
2186 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2187 if (next != XVECEXP (body, 0, 1))
2188 {
2189 final_sequence = 0;
2190 return next;
2191 }
2192
2193 for (i = 1; i < XVECLEN (body, 0); i++)
2194 {
2195 rtx insn = XVECEXP (body, 0, i);
2196 rtx next = NEXT_INSN (insn);
2197 /* We loop in case any instruction in a delay slot gets
2198 split. */
2199 do
2200 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2201 while (insn != next);
2202 }
2203 #ifdef DBR_OUTPUT_SEQEND
2204 DBR_OUTPUT_SEQEND (file);
2205 #endif
2206 final_sequence = 0;
2207
2208 /* If the insn requiring the delay slot was a CALL_INSN, the
2209 insns in the delay slot are actually executed before the
2210 called function. Hence we don't preserve any CC-setting
2211 actions in these insns and the CC must be marked as being
2212 clobbered by the function. */
2213 if (CALL_P (XVECEXP (body, 0, 0)))
2214 {
2215 CC_STATUS_INIT;
2216 }
2217 break;
2218 }
2219
2220 /* We have a real machine instruction as rtl. */
2221
2222 body = PATTERN (insn);
2223
2224 #ifdef HAVE_cc0
2225 set = single_set (insn);
2226
2227 /* Check for redundant test and compare instructions
2228 (when the condition codes are already set up as desired).
2229 This is done only when optimizing; if not optimizing,
2230 it should be possible for the user to alter a variable
2231 with the debugger in between statements
2232 and the next statement should reexamine the variable
2233 to compute the condition codes. */
2234
2235 if (optimize)
2236 {
2237 if (set
2238 && GET_CODE (SET_DEST (set)) == CC0
2239 && insn != last_ignored_compare)
2240 {
2241 if (GET_CODE (SET_SRC (set)) == SUBREG)
2242 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2243 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2244 {
2245 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2246 XEXP (SET_SRC (set), 0)
2247 = alter_subreg (&XEXP (SET_SRC (set), 0));
2248 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2249 XEXP (SET_SRC (set), 1)
2250 = alter_subreg (&XEXP (SET_SRC (set), 1));
2251 }
2252 if ((cc_status.value1 != 0
2253 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2254 || (cc_status.value2 != 0
2255 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2256 {
2257 /* Don't delete insn if it has an addressing side-effect. */
2258 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2259 /* or if anything in it is volatile. */
2260 && ! volatile_refs_p (PATTERN (insn)))
2261 {
2262 /* We don't really delete the insn; just ignore it. */
2263 last_ignored_compare = insn;
2264 break;
2265 }
2266 }
2267 }
2268 }
2269 #endif
2270
2271 #ifdef HAVE_cc0
2272 /* If this is a conditional branch, maybe modify it
2273 if the cc's are in a nonstandard state
2274 so that it accomplishes the same thing that it would
2275 do straightforwardly if the cc's were set up normally. */
2276
2277 if (cc_status.flags != 0
2278 && JUMP_P (insn)
2279 && GET_CODE (body) == SET
2280 && SET_DEST (body) == pc_rtx
2281 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2282 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2283 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2284 /* This is done during prescan; it is not done again
2285 in final scan when prescan has been done. */
2286 && prescan >= 0)
2287 {
2288 /* This function may alter the contents of its argument
2289 and clear some of the cc_status.flags bits.
2290 It may also return 1 meaning condition now always true
2291 or -1 meaning condition now always false
2292 or 2 meaning condition nontrivial but altered. */
2293 int result = alter_cond (XEXP (SET_SRC (body), 0));
2294 /* If condition now has fixed value, replace the IF_THEN_ELSE
2295 with its then-operand or its else-operand. */
2296 if (result == 1)
2297 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2298 if (result == -1)
2299 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2300
2301 /* The jump is now either unconditional or a no-op.
2302 If it has become a no-op, don't try to output it.
2303 (It would not be recognized.) */
2304 if (SET_SRC (body) == pc_rtx)
2305 {
2306 delete_insn (insn);
2307 break;
2308 }
2309 else if (GET_CODE (SET_SRC (body)) == RETURN)
2310 /* Replace (set (pc) (return)) with (return). */
2311 PATTERN (insn) = body = SET_SRC (body);
2312
2313 /* Rerecognize the instruction if it has changed. */
2314 if (result != 0)
2315 INSN_CODE (insn) = -1;
2316 }
2317
2318 /* Make same adjustments to instructions that examine the
2319 condition codes without jumping and instructions that
2320 handle conditional moves (if this machine has either one). */
2321
2322 if (cc_status.flags != 0
2323 && set != 0)
2324 {
2325 rtx cond_rtx, then_rtx, else_rtx;
2326
2327 if (!JUMP_P (insn)
2328 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2329 {
2330 cond_rtx = XEXP (SET_SRC (set), 0);
2331 then_rtx = XEXP (SET_SRC (set), 1);
2332 else_rtx = XEXP (SET_SRC (set), 2);
2333 }
2334 else
2335 {
2336 cond_rtx = SET_SRC (set);
2337 then_rtx = const_true_rtx;
2338 else_rtx = const0_rtx;
2339 }
2340
2341 switch (GET_CODE (cond_rtx))
2342 {
2343 case GTU:
2344 case GT:
2345 case LTU:
2346 case LT:
2347 case GEU:
2348 case GE:
2349 case LEU:
2350 case LE:
2351 case EQ:
2352 case NE:
2353 {
2354 int result;
2355 if (XEXP (cond_rtx, 0) != cc0_rtx)
2356 break;
2357 result = alter_cond (cond_rtx);
2358 if (result == 1)
2359 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2360 else if (result == -1)
2361 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2362 else if (result == 2)
2363 INSN_CODE (insn) = -1;
2364 if (SET_DEST (set) == SET_SRC (set))
2365 delete_insn (insn);
2366 }
2367 break;
2368
2369 default:
2370 break;
2371 }
2372 }
2373
2374 #endif
2375
2376 #ifdef HAVE_peephole
2377 /* Do machine-specific peephole optimizations if desired. */
2378
2379 if (optimize && !flag_no_peephole && !nopeepholes)
2380 {
2381 rtx next = peephole (insn);
2382 /* When peepholing, if there were notes within the peephole,
2383 emit them before the peephole. */
2384 if (next != 0 && next != NEXT_INSN (insn))
2385 {
2386 rtx note, prev = PREV_INSN (insn);
2387
2388 for (note = NEXT_INSN (insn); note != next;
2389 note = NEXT_INSN (note))
2390 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2391
2392 /* In case this is prescan, put the notes
2393 in proper position for later rescan. */
2394 note = NEXT_INSN (insn);
2395 PREV_INSN (note) = prev;
2396 NEXT_INSN (prev) = note;
2397 NEXT_INSN (PREV_INSN (next)) = insn;
2398 PREV_INSN (insn) = PREV_INSN (next);
2399 NEXT_INSN (insn) = next;
2400 PREV_INSN (next) = insn;
2401 }
2402
2403 /* PEEPHOLE might have changed this. */
2404 body = PATTERN (insn);
2405 }
2406 #endif
2407
2408 /* Try to recognize the instruction.
2409 If successful, verify that the operands satisfy the
2410 constraints for the instruction. Crash if they don't,
2411 since `reload' should have changed them so that they do. */
2412
2413 insn_code_number = recog_memoized (insn);
2414 cleanup_subreg_operands (insn);
2415
2416 /* Dump the insn in the assembly for debugging. */
2417 if (flag_dump_rtl_in_asm)
2418 {
2419 print_rtx_head = ASM_COMMENT_START;
2420 print_rtl_single (asm_out_file, insn);
2421 print_rtx_head = "";
2422 }
2423
2424 if (! constrain_operands_cached (1))
2425 fatal_insn_not_found (insn);
2426
2427 /* Some target machines need to prescan each insn before
2428 it is output. */
2429
2430 #ifdef FINAL_PRESCAN_INSN
2431 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2432 #endif
2433
2434 #ifdef HAVE_conditional_execution
2435 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2436 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2437 else
2438 current_insn_predicate = NULL_RTX;
2439 #endif
2440
2441 #ifdef HAVE_cc0
2442 cc_prev_status = cc_status;
2443
2444 /* Update `cc_status' for this instruction.
2445 The instruction's output routine may change it further.
2446 If the output routine for a jump insn needs to depend
2447 on the cc status, it should look at cc_prev_status. */
2448
2449 NOTICE_UPDATE_CC (body, insn);
2450 #endif
2451
2452 current_output_insn = debug_insn = insn;
2453
2454 #if defined (DWARF2_UNWIND_INFO)
2455 if (CALL_P (insn) && dwarf2out_do_frame ())
2456 dwarf2out_frame_debug (insn, false);
2457 #endif
2458
2459 /* Find the proper template for this insn. */
2460 template = get_insn_template (insn_code_number, insn);
2461
2462 /* If the C code returns 0, it means that it is a jump insn
2463 which follows a deleted test insn, and that test insn
2464 needs to be reinserted. */
2465 if (template == 0)
2466 {
2467 rtx prev;
2468
2469 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2470
2471 /* We have already processed the notes between the setter and
2472 the user. Make sure we don't process them again, this is
2473 particularly important if one of the notes is a block
2474 scope note or an EH note. */
2475 for (prev = insn;
2476 prev != last_ignored_compare;
2477 prev = PREV_INSN (prev))
2478 {
2479 if (NOTE_P (prev))
2480 delete_insn (prev); /* Use delete_note. */
2481 }
2482
2483 return prev;
2484 }
2485
2486 /* If the template is the string "#", it means that this insn must
2487 be split. */
2488 if (template[0] == '#' && template[1] == '\0')
2489 {
2490 rtx new = try_split (body, insn, 0);
2491
2492 /* If we didn't split the insn, go away. */
2493 if (new == insn && PATTERN (new) == body)
2494 fatal_insn ("could not split insn", insn);
2495
2496 #ifdef HAVE_ATTR_length
2497 /* This instruction should have been split in shorten_branches,
2498 to ensure that we would have valid length info for the
2499 splitees. */
2500 gcc_unreachable ();
2501 #endif
2502
2503 return new;
2504 }
2505
2506 if (prescan > 0)
2507 break;
2508
2509 #ifdef TARGET_UNWIND_INFO
2510 /* ??? This will put the directives in the wrong place if
2511 get_insn_template outputs assembly directly. However calling it
2512 before get_insn_template breaks if the insns is split. */
2513 targetm.asm_out.unwind_emit (asm_out_file, insn);
2514 #endif
2515
2516 /* Output assembler code from the template. */
2517 output_asm_insn (template, recog_data.operand);
2518
2519 /* If necessary, report the effect that the instruction has on
2520 the unwind info. We've already done this for delay slots
2521 and call instructions. */
2522 #if defined (DWARF2_UNWIND_INFO)
2523 if (final_sequence == 0
2524 #if !defined (HAVE_prologue)
2525 && !ACCUMULATE_OUTGOING_ARGS
2526 #endif
2527 && dwarf2out_do_frame ())
2528 dwarf2out_frame_debug (insn, true);
2529 #endif
2530
2531 current_output_insn = debug_insn = 0;
2532 }
2533 }
2534 return NEXT_INSN (insn);
2535 }
2536 \f
2537 /* Output debugging info to the assembler file FILE
2538 based on the NOTE-insn INSN, assumed to be a line number. */
2539
2540 static bool
2541 notice_source_line (rtx insn)
2542 {
2543 const char *filename = insn_file (insn);
2544 int linenum = insn_line (insn);
2545
2546 if (filename && (filename != last_filename || last_linenum != linenum))
2547 {
2548 last_filename = filename;
2549 last_linenum = linenum;
2550 high_block_linenum = MAX (last_linenum, high_block_linenum);
2551 high_function_linenum = MAX (last_linenum, high_function_linenum);
2552 return true;
2553 }
2554 return false;
2555 }
2556 \f
2557 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2558 directly to the desired hard register. */
2559
2560 void
2561 cleanup_subreg_operands (rtx insn)
2562 {
2563 int i;
2564 extract_insn_cached (insn);
2565 for (i = 0; i < recog_data.n_operands; i++)
2566 {
2567 /* The following test cannot use recog_data.operand when testing
2568 for a SUBREG: the underlying object might have been changed
2569 already if we are inside a match_operator expression that
2570 matches the else clause. Instead we test the underlying
2571 expression directly. */
2572 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2573 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2574 else if (GET_CODE (recog_data.operand[i]) == PLUS
2575 || GET_CODE (recog_data.operand[i]) == MULT
2576 || MEM_P (recog_data.operand[i]))
2577 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2578 }
2579
2580 for (i = 0; i < recog_data.n_dups; i++)
2581 {
2582 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2583 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2584 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2585 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2586 || MEM_P (*recog_data.dup_loc[i]))
2587 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2588 }
2589 }
2590
2591 /* If X is a SUBREG, replace it with a REG or a MEM,
2592 based on the thing it is a subreg of. */
2593
2594 rtx
2595 alter_subreg (rtx *xp)
2596 {
2597 rtx x = *xp;
2598 rtx y = SUBREG_REG (x);
2599
2600 /* simplify_subreg does not remove subreg from volatile references.
2601 We are required to. */
2602 if (MEM_P (y))
2603 {
2604 int offset = SUBREG_BYTE (x);
2605
2606 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2607 contains 0 instead of the proper offset. See simplify_subreg. */
2608 if (offset == 0
2609 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2610 {
2611 int difference = GET_MODE_SIZE (GET_MODE (y))
2612 - GET_MODE_SIZE (GET_MODE (x));
2613 if (WORDS_BIG_ENDIAN)
2614 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2615 if (BYTES_BIG_ENDIAN)
2616 offset += difference % UNITS_PER_WORD;
2617 }
2618
2619 *xp = adjust_address (y, GET_MODE (x), offset);
2620 }
2621 else
2622 {
2623 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2624 SUBREG_BYTE (x));
2625
2626 if (new != 0)
2627 *xp = new;
2628 else
2629 {
2630 /* Simplify_subreg can't handle some REG cases, but we have to. */
2631 unsigned int regno = subreg_regno (x);
2632 gcc_assert (REG_P (y));
2633 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2634 }
2635 }
2636
2637 return *xp;
2638 }
2639
2640 /* Do alter_subreg on all the SUBREGs contained in X. */
2641
2642 static rtx
2643 walk_alter_subreg (rtx *xp)
2644 {
2645 rtx x = *xp;
2646 switch (GET_CODE (x))
2647 {
2648 case PLUS:
2649 case MULT:
2650 case AND:
2651 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2652 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2653 break;
2654
2655 case MEM:
2656 case ZERO_EXTEND:
2657 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2658 break;
2659
2660 case SUBREG:
2661 return alter_subreg (xp);
2662
2663 default:
2664 break;
2665 }
2666
2667 return *xp;
2668 }
2669 \f
2670 #ifdef HAVE_cc0
2671
2672 /* Given BODY, the body of a jump instruction, alter the jump condition
2673 as required by the bits that are set in cc_status.flags.
2674 Not all of the bits there can be handled at this level in all cases.
2675
2676 The value is normally 0.
2677 1 means that the condition has become always true.
2678 -1 means that the condition has become always false.
2679 2 means that COND has been altered. */
2680
2681 static int
2682 alter_cond (rtx cond)
2683 {
2684 int value = 0;
2685
2686 if (cc_status.flags & CC_REVERSED)
2687 {
2688 value = 2;
2689 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2690 }
2691
2692 if (cc_status.flags & CC_INVERTED)
2693 {
2694 value = 2;
2695 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2696 }
2697
2698 if (cc_status.flags & CC_NOT_POSITIVE)
2699 switch (GET_CODE (cond))
2700 {
2701 case LE:
2702 case LEU:
2703 case GEU:
2704 /* Jump becomes unconditional. */
2705 return 1;
2706
2707 case GT:
2708 case GTU:
2709 case LTU:
2710 /* Jump becomes no-op. */
2711 return -1;
2712
2713 case GE:
2714 PUT_CODE (cond, EQ);
2715 value = 2;
2716 break;
2717
2718 case LT:
2719 PUT_CODE (cond, NE);
2720 value = 2;
2721 break;
2722
2723 default:
2724 break;
2725 }
2726
2727 if (cc_status.flags & CC_NOT_NEGATIVE)
2728 switch (GET_CODE (cond))
2729 {
2730 case GE:
2731 case GEU:
2732 /* Jump becomes unconditional. */
2733 return 1;
2734
2735 case LT:
2736 case LTU:
2737 /* Jump becomes no-op. */
2738 return -1;
2739
2740 case LE:
2741 case LEU:
2742 PUT_CODE (cond, EQ);
2743 value = 2;
2744 break;
2745
2746 case GT:
2747 case GTU:
2748 PUT_CODE (cond, NE);
2749 value = 2;
2750 break;
2751
2752 default:
2753 break;
2754 }
2755
2756 if (cc_status.flags & CC_NO_OVERFLOW)
2757 switch (GET_CODE (cond))
2758 {
2759 case GEU:
2760 /* Jump becomes unconditional. */
2761 return 1;
2762
2763 case LEU:
2764 PUT_CODE (cond, EQ);
2765 value = 2;
2766 break;
2767
2768 case GTU:
2769 PUT_CODE (cond, NE);
2770 value = 2;
2771 break;
2772
2773 case LTU:
2774 /* Jump becomes no-op. */
2775 return -1;
2776
2777 default:
2778 break;
2779 }
2780
2781 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2782 switch (GET_CODE (cond))
2783 {
2784 default:
2785 gcc_unreachable ();
2786
2787 case NE:
2788 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2789 value = 2;
2790 break;
2791
2792 case EQ:
2793 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2794 value = 2;
2795 break;
2796 }
2797
2798 if (cc_status.flags & CC_NOT_SIGNED)
2799 /* The flags are valid if signed condition operators are converted
2800 to unsigned. */
2801 switch (GET_CODE (cond))
2802 {
2803 case LE:
2804 PUT_CODE (cond, LEU);
2805 value = 2;
2806 break;
2807
2808 case LT:
2809 PUT_CODE (cond, LTU);
2810 value = 2;
2811 break;
2812
2813 case GT:
2814 PUT_CODE (cond, GTU);
2815 value = 2;
2816 break;
2817
2818 case GE:
2819 PUT_CODE (cond, GEU);
2820 value = 2;
2821 break;
2822
2823 default:
2824 break;
2825 }
2826
2827 return value;
2828 }
2829 #endif
2830 \f
2831 /* Report inconsistency between the assembler template and the operands.
2832 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2833
2834 void
2835 output_operand_lossage (const char *msgid, ...)
2836 {
2837 char *fmt_string;
2838 char *new_message;
2839 const char *pfx_str;
2840 va_list ap;
2841
2842 va_start (ap, msgid);
2843
2844 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2845 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2846 vasprintf (&new_message, fmt_string, ap);
2847
2848 if (this_is_asm_operands)
2849 error_for_asm (this_is_asm_operands, "%s", new_message);
2850 else
2851 internal_error ("%s", new_message);
2852
2853 free (fmt_string);
2854 free (new_message);
2855 va_end (ap);
2856 }
2857 \f
2858 /* Output of assembler code from a template, and its subroutines. */
2859
2860 /* Annotate the assembly with a comment describing the pattern and
2861 alternative used. */
2862
2863 static void
2864 output_asm_name (void)
2865 {
2866 if (debug_insn)
2867 {
2868 int num = INSN_CODE (debug_insn);
2869 fprintf (asm_out_file, "\t%s %d\t%s",
2870 ASM_COMMENT_START, INSN_UID (debug_insn),
2871 insn_data[num].name);
2872 if (insn_data[num].n_alternatives > 1)
2873 fprintf (asm_out_file, "/%d", which_alternative + 1);
2874 #ifdef HAVE_ATTR_length
2875 fprintf (asm_out_file, "\t[length = %d]",
2876 get_attr_length (debug_insn));
2877 #endif
2878 /* Clear this so only the first assembler insn
2879 of any rtl insn will get the special comment for -dp. */
2880 debug_insn = 0;
2881 }
2882 }
2883
2884 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2885 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2886 corresponds to the address of the object and 0 if to the object. */
2887
2888 static tree
2889 get_mem_expr_from_op (rtx op, int *paddressp)
2890 {
2891 tree expr;
2892 int inner_addressp;
2893
2894 *paddressp = 0;
2895
2896 if (REG_P (op))
2897 return REG_EXPR (op);
2898 else if (!MEM_P (op))
2899 return 0;
2900
2901 if (MEM_EXPR (op) != 0)
2902 return MEM_EXPR (op);
2903
2904 /* Otherwise we have an address, so indicate it and look at the address. */
2905 *paddressp = 1;
2906 op = XEXP (op, 0);
2907
2908 /* First check if we have a decl for the address, then look at the right side
2909 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2910 But don't allow the address to itself be indirect. */
2911 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2912 return expr;
2913 else if (GET_CODE (op) == PLUS
2914 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2915 return expr;
2916
2917 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2918 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2919 op = XEXP (op, 0);
2920
2921 expr = get_mem_expr_from_op (op, &inner_addressp);
2922 return inner_addressp ? 0 : expr;
2923 }
2924
2925 /* Output operand names for assembler instructions. OPERANDS is the
2926 operand vector, OPORDER is the order to write the operands, and NOPS
2927 is the number of operands to write. */
2928
2929 static void
2930 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2931 {
2932 int wrote = 0;
2933 int i;
2934
2935 for (i = 0; i < nops; i++)
2936 {
2937 int addressp;
2938 rtx op = operands[oporder[i]];
2939 tree expr = get_mem_expr_from_op (op, &addressp);
2940
2941 fprintf (asm_out_file, "%c%s",
2942 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2943 wrote = 1;
2944 if (expr)
2945 {
2946 fprintf (asm_out_file, "%s",
2947 addressp ? "*" : "");
2948 print_mem_expr (asm_out_file, expr);
2949 wrote = 1;
2950 }
2951 else if (REG_P (op) && ORIGINAL_REGNO (op)
2952 && ORIGINAL_REGNO (op) != REGNO (op))
2953 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2954 }
2955 }
2956
2957 /* Output text from TEMPLATE to the assembler output file,
2958 obeying %-directions to substitute operands taken from
2959 the vector OPERANDS.
2960
2961 %N (for N a digit) means print operand N in usual manner.
2962 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2963 and print the label name with no punctuation.
2964 %cN means require operand N to be a constant
2965 and print the constant expression with no punctuation.
2966 %aN means expect operand N to be a memory address
2967 (not a memory reference!) and print a reference
2968 to that address.
2969 %nN means expect operand N to be a constant
2970 and print a constant expression for minus the value
2971 of the operand, with no other punctuation. */
2972
2973 void
2974 output_asm_insn (const char *template, rtx *operands)
2975 {
2976 const char *p;
2977 int c;
2978 #ifdef ASSEMBLER_DIALECT
2979 int dialect = 0;
2980 #endif
2981 int oporder[MAX_RECOG_OPERANDS];
2982 char opoutput[MAX_RECOG_OPERANDS];
2983 int ops = 0;
2984
2985 /* An insn may return a null string template
2986 in a case where no assembler code is needed. */
2987 if (*template == 0)
2988 return;
2989
2990 memset (opoutput, 0, sizeof opoutput);
2991 p = template;
2992 putc ('\t', asm_out_file);
2993
2994 #ifdef ASM_OUTPUT_OPCODE
2995 ASM_OUTPUT_OPCODE (asm_out_file, p);
2996 #endif
2997
2998 while ((c = *p++))
2999 switch (c)
3000 {
3001 case '\n':
3002 if (flag_verbose_asm)
3003 output_asm_operand_names (operands, oporder, ops);
3004 if (flag_print_asm_name)
3005 output_asm_name ();
3006
3007 ops = 0;
3008 memset (opoutput, 0, sizeof opoutput);
3009
3010 putc (c, asm_out_file);
3011 #ifdef ASM_OUTPUT_OPCODE
3012 while ((c = *p) == '\t')
3013 {
3014 putc (c, asm_out_file);
3015 p++;
3016 }
3017 ASM_OUTPUT_OPCODE (asm_out_file, p);
3018 #endif
3019 break;
3020
3021 #ifdef ASSEMBLER_DIALECT
3022 case '{':
3023 {
3024 int i;
3025
3026 if (dialect)
3027 output_operand_lossage ("nested assembly dialect alternatives");
3028 else
3029 dialect = 1;
3030
3031 /* If we want the first dialect, do nothing. Otherwise, skip
3032 DIALECT_NUMBER of strings ending with '|'. */
3033 for (i = 0; i < dialect_number; i++)
3034 {
3035 while (*p && *p != '}' && *p++ != '|')
3036 ;
3037 if (*p == '}')
3038 break;
3039 if (*p == '|')
3040 p++;
3041 }
3042
3043 if (*p == '\0')
3044 output_operand_lossage ("unterminated assembly dialect alternative");
3045 }
3046 break;
3047
3048 case '|':
3049 if (dialect)
3050 {
3051 /* Skip to close brace. */
3052 do
3053 {
3054 if (*p == '\0')
3055 {
3056 output_operand_lossage ("unterminated assembly dialect alternative");
3057 break;
3058 }
3059 }
3060 while (*p++ != '}');
3061 dialect = 0;
3062 }
3063 else
3064 putc (c, asm_out_file);
3065 break;
3066
3067 case '}':
3068 if (! dialect)
3069 putc (c, asm_out_file);
3070 dialect = 0;
3071 break;
3072 #endif
3073
3074 case '%':
3075 /* %% outputs a single %. */
3076 if (*p == '%')
3077 {
3078 p++;
3079 putc (c, asm_out_file);
3080 }
3081 /* %= outputs a number which is unique to each insn in the entire
3082 compilation. This is useful for making local labels that are
3083 referred to more than once in a given insn. */
3084 else if (*p == '=')
3085 {
3086 p++;
3087 fprintf (asm_out_file, "%d", insn_counter);
3088 }
3089 /* % followed by a letter and some digits
3090 outputs an operand in a special way depending on the letter.
3091 Letters `acln' are implemented directly.
3092 Other letters are passed to `output_operand' so that
3093 the PRINT_OPERAND macro can define them. */
3094 else if (ISALPHA (*p))
3095 {
3096 int letter = *p++;
3097 unsigned long opnum;
3098 char *endptr;
3099
3100 opnum = strtoul (p, &endptr, 10);
3101
3102 if (endptr == p)
3103 output_operand_lossage ("operand number missing "
3104 "after %%-letter");
3105 else if (this_is_asm_operands && opnum >= insn_noperands)
3106 output_operand_lossage ("operand number out of range");
3107 else if (letter == 'l')
3108 output_asm_label (operands[opnum]);
3109 else if (letter == 'a')
3110 output_address (operands[opnum]);
3111 else if (letter == 'c')
3112 {
3113 if (CONSTANT_ADDRESS_P (operands[opnum]))
3114 output_addr_const (asm_out_file, operands[opnum]);
3115 else
3116 output_operand (operands[opnum], 'c');
3117 }
3118 else if (letter == 'n')
3119 {
3120 if (GET_CODE (operands[opnum]) == CONST_INT)
3121 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3122 - INTVAL (operands[opnum]));
3123 else
3124 {
3125 putc ('-', asm_out_file);
3126 output_addr_const (asm_out_file, operands[opnum]);
3127 }
3128 }
3129 else
3130 output_operand (operands[opnum], letter);
3131
3132 if (!opoutput[opnum])
3133 oporder[ops++] = opnum;
3134 opoutput[opnum] = 1;
3135
3136 p = endptr;
3137 c = *p;
3138 }
3139 /* % followed by a digit outputs an operand the default way. */
3140 else if (ISDIGIT (*p))
3141 {
3142 unsigned long opnum;
3143 char *endptr;
3144
3145 opnum = strtoul (p, &endptr, 10);
3146 if (this_is_asm_operands && opnum >= insn_noperands)
3147 output_operand_lossage ("operand number out of range");
3148 else
3149 output_operand (operands[opnum], 0);
3150
3151 if (!opoutput[opnum])
3152 oporder[ops++] = opnum;
3153 opoutput[opnum] = 1;
3154
3155 p = endptr;
3156 c = *p;
3157 }
3158 /* % followed by punctuation: output something for that
3159 punctuation character alone, with no operand.
3160 The PRINT_OPERAND macro decides what is actually done. */
3161 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3162 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3163 output_operand (NULL_RTX, *p++);
3164 #endif
3165 else
3166 output_operand_lossage ("invalid %%-code");
3167 break;
3168
3169 default:
3170 putc (c, asm_out_file);
3171 }
3172
3173 /* Write out the variable names for operands, if we know them. */
3174 if (flag_verbose_asm)
3175 output_asm_operand_names (operands, oporder, ops);
3176 if (flag_print_asm_name)
3177 output_asm_name ();
3178
3179 putc ('\n', asm_out_file);
3180 }
3181 \f
3182 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3183
3184 void
3185 output_asm_label (rtx x)
3186 {
3187 char buf[256];
3188
3189 if (GET_CODE (x) == LABEL_REF)
3190 x = XEXP (x, 0);
3191 if (LABEL_P (x)
3192 || (NOTE_P (x)
3193 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3194 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3195 else
3196 output_operand_lossage ("'%%l' operand isn't a label");
3197
3198 assemble_name (asm_out_file, buf);
3199 }
3200
3201 /* Print operand X using machine-dependent assembler syntax.
3202 The macro PRINT_OPERAND is defined just to control this function.
3203 CODE is a non-digit that preceded the operand-number in the % spec,
3204 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3205 between the % and the digits.
3206 When CODE is a non-letter, X is 0.
3207
3208 The meanings of the letters are machine-dependent and controlled
3209 by PRINT_OPERAND. */
3210
3211 static void
3212 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3213 {
3214 if (x && GET_CODE (x) == SUBREG)
3215 x = alter_subreg (&x);
3216
3217 /* If X is a pseudo-register, abort now rather than writing trash to the
3218 assembler file. */
3219 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3220
3221 PRINT_OPERAND (asm_out_file, x, code);
3222 }
3223
3224 /* Print a memory reference operand for address X
3225 using machine-dependent assembler syntax.
3226 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227
3228 void
3229 output_address (rtx x)
3230 {
3231 walk_alter_subreg (&x);
3232 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3233 }
3234 \f
3235 /* Print an integer constant expression in assembler syntax.
3236 Addition and subtraction are the only arithmetic
3237 that may appear in these expressions. */
3238
3239 void
3240 output_addr_const (FILE *file, rtx x)
3241 {
3242 char buf[256];
3243
3244 restart:
3245 switch (GET_CODE (x))
3246 {
3247 case PC:
3248 putc ('.', file);
3249 break;
3250
3251 case SYMBOL_REF:
3252 if (SYMBOL_REF_DECL (x))
3253 mark_decl_referenced (SYMBOL_REF_DECL (x));
3254 #ifdef ASM_OUTPUT_SYMBOL_REF
3255 ASM_OUTPUT_SYMBOL_REF (file, x);
3256 #else
3257 assemble_name (file, XSTR (x, 0));
3258 #endif
3259 break;
3260
3261 case LABEL_REF:
3262 x = XEXP (x, 0);
3263 /* Fall through. */
3264 case CODE_LABEL:
3265 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3266 #ifdef ASM_OUTPUT_LABEL_REF
3267 ASM_OUTPUT_LABEL_REF (file, buf);
3268 #else
3269 assemble_name (file, buf);
3270 #endif
3271 break;
3272
3273 case CONST_INT:
3274 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3275 break;
3276
3277 case CONST:
3278 /* This used to output parentheses around the expression,
3279 but that does not work on the 386 (either ATT or BSD assembler). */
3280 output_addr_const (file, XEXP (x, 0));
3281 break;
3282
3283 case CONST_DOUBLE:
3284 if (GET_MODE (x) == VOIDmode)
3285 {
3286 /* We can use %d if the number is one word and positive. */
3287 if (CONST_DOUBLE_HIGH (x))
3288 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3289 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3290 else if (CONST_DOUBLE_LOW (x) < 0)
3291 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3292 else
3293 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3294 }
3295 else
3296 /* We can't handle floating point constants;
3297 PRINT_OPERAND must handle them. */
3298 output_operand_lossage ("floating constant misused");
3299 break;
3300
3301 case PLUS:
3302 /* Some assemblers need integer constants to appear last (eg masm). */
3303 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3304 {
3305 output_addr_const (file, XEXP (x, 1));
3306 if (INTVAL (XEXP (x, 0)) >= 0)
3307 fprintf (file, "+");
3308 output_addr_const (file, XEXP (x, 0));
3309 }
3310 else
3311 {
3312 output_addr_const (file, XEXP (x, 0));
3313 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3314 || INTVAL (XEXP (x, 1)) >= 0)
3315 fprintf (file, "+");
3316 output_addr_const (file, XEXP (x, 1));
3317 }
3318 break;
3319
3320 case MINUS:
3321 /* Avoid outputting things like x-x or x+5-x,
3322 since some assemblers can't handle that. */
3323 x = simplify_subtraction (x);
3324 if (GET_CODE (x) != MINUS)
3325 goto restart;
3326
3327 output_addr_const (file, XEXP (x, 0));
3328 fprintf (file, "-");
3329 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3330 || GET_CODE (XEXP (x, 1)) == PC
3331 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3332 output_addr_const (file, XEXP (x, 1));
3333 else
3334 {
3335 fputs (targetm.asm_out.open_paren, file);
3336 output_addr_const (file, XEXP (x, 1));
3337 fputs (targetm.asm_out.close_paren, file);
3338 }
3339 break;
3340
3341 case ZERO_EXTEND:
3342 case SIGN_EXTEND:
3343 case SUBREG:
3344 output_addr_const (file, XEXP (x, 0));
3345 break;
3346
3347 default:
3348 #ifdef OUTPUT_ADDR_CONST_EXTRA
3349 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3350 break;
3351
3352 fail:
3353 #endif
3354 output_operand_lossage ("invalid expression as operand");
3355 }
3356 }
3357 \f
3358 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3359 %R prints the value of REGISTER_PREFIX.
3360 %L prints the value of LOCAL_LABEL_PREFIX.
3361 %U prints the value of USER_LABEL_PREFIX.
3362 %I prints the value of IMMEDIATE_PREFIX.
3363 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3364 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3365
3366 We handle alternate assembler dialects here, just like output_asm_insn. */
3367
3368 void
3369 asm_fprintf (FILE *file, const char *p, ...)
3370 {
3371 char buf[10];
3372 char *q, c;
3373 va_list argptr;
3374
3375 va_start (argptr, p);
3376
3377 buf[0] = '%';
3378
3379 while ((c = *p++))
3380 switch (c)
3381 {
3382 #ifdef ASSEMBLER_DIALECT
3383 case '{':
3384 {
3385 int i;
3386
3387 /* If we want the first dialect, do nothing. Otherwise, skip
3388 DIALECT_NUMBER of strings ending with '|'. */
3389 for (i = 0; i < dialect_number; i++)
3390 {
3391 while (*p && *p++ != '|')
3392 ;
3393
3394 if (*p == '|')
3395 p++;
3396 }
3397 }
3398 break;
3399
3400 case '|':
3401 /* Skip to close brace. */
3402 while (*p && *p++ != '}')
3403 ;
3404 break;
3405
3406 case '}':
3407 break;
3408 #endif
3409
3410 case '%':
3411 c = *p++;
3412 q = &buf[1];
3413 while (strchr ("-+ #0", c))
3414 {
3415 *q++ = c;
3416 c = *p++;
3417 }
3418 while (ISDIGIT (c) || c == '.')
3419 {
3420 *q++ = c;
3421 c = *p++;
3422 }
3423 switch (c)
3424 {
3425 case '%':
3426 putc ('%', file);
3427 break;
3428
3429 case 'd': case 'i': case 'u':
3430 case 'x': case 'X': case 'o':
3431 case 'c':
3432 *q++ = c;
3433 *q = 0;
3434 fprintf (file, buf, va_arg (argptr, int));
3435 break;
3436
3437 case 'w':
3438 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3439 'o' cases, but we do not check for those cases. It
3440 means that the value is a HOST_WIDE_INT, which may be
3441 either `long' or `long long'. */
3442 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3443 q += strlen (HOST_WIDE_INT_PRINT);
3444 *q++ = *p++;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3447 break;
3448
3449 case 'l':
3450 *q++ = c;
3451 #ifdef HAVE_LONG_LONG
3452 if (*p == 'l')
3453 {
3454 *q++ = *p++;
3455 *q++ = *p++;
3456 *q = 0;
3457 fprintf (file, buf, va_arg (argptr, long long));
3458 }
3459 else
3460 #endif
3461 {
3462 *q++ = *p++;
3463 *q = 0;
3464 fprintf (file, buf, va_arg (argptr, long));
3465 }
3466
3467 break;
3468
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3474
3475 case 'O':
3476 #ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478 #endif
3479 break;
3480
3481 case 'R':
3482 #ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484 #endif
3485 break;
3486
3487 case 'I':
3488 #ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490 #endif
3491 break;
3492
3493 case 'L':
3494 #ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496 #endif
3497 break;
3498
3499 case 'U':
3500 fputs (user_label_prefix, file);
3501 break;
3502
3503 #ifdef ASM_FPRINTF_EXTENSIONS
3504 /* Uppercase letters are reserved for general use by asm_fprintf
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
3514
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516 #endif
3517 default:
3518 gcc_unreachable ();
3519 }
3520 break;
3521
3522 default:
3523 putc (c, file);
3524 }
3525 va_end (argptr);
3526 }
3527 \f
3528 /* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3532
3533 void
3534 split_double (rtx value, rtx *first, rtx *second)
3535 {
3536 if (GET_CODE (value) == CONST_INT)
3537 {
3538 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3539 {
3540 /* In this case the CONST_INT holds both target words.
3541 Extract the bits from it into two word-sized pieces.
3542 Sign extend each half to HOST_WIDE_INT. */
3543 unsigned HOST_WIDE_INT low, high;
3544 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3545
3546 /* Set sign_bit to the most significant bit of a word. */
3547 sign_bit = 1;
3548 sign_bit <<= BITS_PER_WORD - 1;
3549
3550 /* Set mask so that all bits of the word are set. We could
3551 have used 1 << BITS_PER_WORD instead of basing the
3552 calculation on sign_bit. However, on machines where
3553 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3554 compiler warning, even though the code would never be
3555 executed. */
3556 mask = sign_bit << 1;
3557 mask--;
3558
3559 /* Set sign_extend as any remaining bits. */
3560 sign_extend = ~mask;
3561
3562 /* Pick the lower word and sign-extend it. */
3563 low = INTVAL (value);
3564 low &= mask;
3565 if (low & sign_bit)
3566 low |= sign_extend;
3567
3568 /* Pick the higher word, shifted to the least significant
3569 bits, and sign-extend it. */
3570 high = INTVAL (value);
3571 high >>= BITS_PER_WORD - 1;
3572 high >>= 1;
3573 high &= mask;
3574 if (high & sign_bit)
3575 high |= sign_extend;
3576
3577 /* Store the words in the target machine order. */
3578 if (WORDS_BIG_ENDIAN)
3579 {
3580 *first = GEN_INT (high);
3581 *second = GEN_INT (low);
3582 }
3583 else
3584 {
3585 *first = GEN_INT (low);
3586 *second = GEN_INT (high);
3587 }
3588 }
3589 else
3590 {
3591 /* The rule for using CONST_INT for a wider mode
3592 is that we regard the value as signed.
3593 So sign-extend it. */
3594 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3595 if (WORDS_BIG_ENDIAN)
3596 {
3597 *first = high;
3598 *second = value;
3599 }
3600 else
3601 {
3602 *first = value;
3603 *second = high;
3604 }
3605 }
3606 }
3607 else if (GET_CODE (value) != CONST_DOUBLE)
3608 {
3609 if (WORDS_BIG_ENDIAN)
3610 {
3611 *first = const0_rtx;
3612 *second = value;
3613 }
3614 else
3615 {
3616 *first = value;
3617 *second = const0_rtx;
3618 }
3619 }
3620 else if (GET_MODE (value) == VOIDmode
3621 /* This is the old way we did CONST_DOUBLE integers. */
3622 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3623 {
3624 /* In an integer, the words are defined as most and least significant.
3625 So order them by the target's convention. */
3626 if (WORDS_BIG_ENDIAN)
3627 {
3628 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3629 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3630 }
3631 else
3632 {
3633 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3634 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3635 }
3636 }
3637 else
3638 {
3639 REAL_VALUE_TYPE r;
3640 long l[2];
3641 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3642
3643 /* Note, this converts the REAL_VALUE_TYPE to the target's
3644 format, splits up the floating point double and outputs
3645 exactly 32 bits of it into each of l[0] and l[1] --
3646 not necessarily BITS_PER_WORD bits. */
3647 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3648
3649 /* If 32 bits is an entire word for the target, but not for the host,
3650 then sign-extend on the host so that the number will look the same
3651 way on the host that it would on the target. See for instance
3652 simplify_unary_operation. The #if is needed to avoid compiler
3653 warnings. */
3654
3655 #if HOST_BITS_PER_LONG > 32
3656 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3657 {
3658 if (l[0] & ((long) 1 << 31))
3659 l[0] |= ((long) (-1) << 32);
3660 if (l[1] & ((long) 1 << 31))
3661 l[1] |= ((long) (-1) << 32);
3662 }
3663 #endif
3664
3665 *first = GEN_INT (l[0]);
3666 *second = GEN_INT (l[1]);
3667 }
3668 }
3669 \f
3670 /* Return nonzero if this function has no function calls. */
3671
3672 int
3673 leaf_function_p (void)
3674 {
3675 rtx insn;
3676 rtx link;
3677
3678 if (current_function_profile || profile_arc_flag)
3679 return 0;
3680
3681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3682 {
3683 if (CALL_P (insn)
3684 && ! SIBLING_CALL_P (insn))
3685 return 0;
3686 if (NONJUMP_INSN_P (insn)
3687 && GET_CODE (PATTERN (insn)) == SEQUENCE
3688 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3689 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3690 return 0;
3691 }
3692 for (link = current_function_epilogue_delay_list;
3693 link;
3694 link = XEXP (link, 1))
3695 {
3696 insn = XEXP (link, 0);
3697
3698 if (CALL_P (insn)
3699 && ! SIBLING_CALL_P (insn))
3700 return 0;
3701 if (NONJUMP_INSN_P (insn)
3702 && GET_CODE (PATTERN (insn)) == SEQUENCE
3703 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3704 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3705 return 0;
3706 }
3707
3708 return 1;
3709 }
3710
3711 /* Return 1 if branch is a forward branch.
3712 Uses insn_shuid array, so it works only in the final pass. May be used by
3713 output templates to customary add branch prediction hints.
3714 */
3715 int
3716 final_forward_branch_p (rtx insn)
3717 {
3718 int insn_id, label_id;
3719
3720 gcc_assert (uid_shuid);
3721 insn_id = INSN_SHUID (insn);
3722 label_id = INSN_SHUID (JUMP_LABEL (insn));
3723 /* We've hit some insns that does not have id information available. */
3724 gcc_assert (insn_id && label_id);
3725 return insn_id < label_id;
3726 }
3727
3728 /* On some machines, a function with no call insns
3729 can run faster if it doesn't create its own register window.
3730 When output, the leaf function should use only the "output"
3731 registers. Ordinarily, the function would be compiled to use
3732 the "input" registers to find its arguments; it is a candidate
3733 for leaf treatment if it uses only the "input" registers.
3734 Leaf function treatment means renumbering so the function
3735 uses the "output" registers instead. */
3736
3737 #ifdef LEAF_REGISTERS
3738
3739 /* Return 1 if this function uses only the registers that can be
3740 safely renumbered. */
3741
3742 int
3743 only_leaf_regs_used (void)
3744 {
3745 int i;
3746 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3747
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3749 if ((regs_ever_live[i] || global_regs[i])
3750 && ! permitted_reg_in_leaf_functions[i])
3751 return 0;
3752
3753 if (current_function_uses_pic_offset_table
3754 && pic_offset_table_rtx != 0
3755 && REG_P (pic_offset_table_rtx)
3756 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3757 return 0;
3758
3759 return 1;
3760 }
3761
3762 /* Scan all instructions and renumber all registers into those
3763 available in leaf functions. */
3764
3765 static void
3766 leaf_renumber_regs (rtx first)
3767 {
3768 rtx insn;
3769
3770 /* Renumber only the actual patterns.
3771 The reg-notes can contain frame pointer refs,
3772 and renumbering them could crash, and should not be needed. */
3773 for (insn = first; insn; insn = NEXT_INSN (insn))
3774 if (INSN_P (insn))
3775 leaf_renumber_regs_insn (PATTERN (insn));
3776 for (insn = current_function_epilogue_delay_list;
3777 insn;
3778 insn = XEXP (insn, 1))
3779 if (INSN_P (XEXP (insn, 0)))
3780 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3781 }
3782
3783 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3784 available in leaf functions. */
3785
3786 void
3787 leaf_renumber_regs_insn (rtx in_rtx)
3788 {
3789 int i, j;
3790 const char *format_ptr;
3791
3792 if (in_rtx == 0)
3793 return;
3794
3795 /* Renumber all input-registers into output-registers.
3796 renumbered_regs would be 1 for an output-register;
3797 they */
3798
3799 if (REG_P (in_rtx))
3800 {
3801 int newreg;
3802
3803 /* Don't renumber the same reg twice. */
3804 if (in_rtx->used)
3805 return;
3806
3807 newreg = REGNO (in_rtx);
3808 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3809 to reach here as part of a REG_NOTE. */
3810 if (newreg >= FIRST_PSEUDO_REGISTER)
3811 {
3812 in_rtx->used = 1;
3813 return;
3814 }
3815 newreg = LEAF_REG_REMAP (newreg);
3816 gcc_assert (newreg >= 0);
3817 regs_ever_live[REGNO (in_rtx)] = 0;
3818 regs_ever_live[newreg] = 1;
3819 REGNO (in_rtx) = newreg;
3820 in_rtx->used = 1;
3821 }
3822
3823 if (INSN_P (in_rtx))
3824 {
3825 /* Inside a SEQUENCE, we find insns.
3826 Renumber just the patterns of these insns,
3827 just as we do for the top-level insns. */
3828 leaf_renumber_regs_insn (PATTERN (in_rtx));
3829 return;
3830 }
3831
3832 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3833
3834 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3835 switch (*format_ptr++)
3836 {
3837 case 'e':
3838 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3839 break;
3840
3841 case 'E':
3842 if (NULL != XVEC (in_rtx, i))
3843 {
3844 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3845 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3846 }
3847 break;
3848
3849 case 'S':
3850 case 's':
3851 case '0':
3852 case 'i':
3853 case 'w':
3854 case 'n':
3855 case 'u':
3856 break;
3857
3858 default:
3859 gcc_unreachable ();
3860 }
3861 }
3862 #endif
3863
3864
3865 /* When -gused is used, emit debug info for only used symbols. But in
3866 addition to the standard intercepted debug_hooks there are some direct
3867 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3868 Those routines may also be called from a higher level intercepted routine. So
3869 to prevent recording data for an inner call to one of these for an intercept,
3870 we maintain an intercept nesting counter (debug_nesting). We only save the
3871 intercepted arguments if the nesting is 1. */
3872 int debug_nesting = 0;
3873
3874 static tree *symbol_queue;
3875 int symbol_queue_index = 0;
3876 static int symbol_queue_size = 0;
3877
3878 /* Generate the symbols for any queued up type symbols we encountered
3879 while generating the type info for some originally used symbol.
3880 This might generate additional entries in the queue. Only when
3881 the nesting depth goes to 0 is this routine called. */
3882
3883 void
3884 debug_flush_symbol_queue (void)
3885 {
3886 int i;
3887
3888 /* Make sure that additionally queued items are not flushed
3889 prematurely. */
3890
3891 ++debug_nesting;
3892
3893 for (i = 0; i < symbol_queue_index; ++i)
3894 {
3895 /* If we pushed queued symbols then such symbols are must be
3896 output no matter what anyone else says. Specifically,
3897 we need to make sure dbxout_symbol() thinks the symbol was
3898 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3899 which may be set for outside reasons. */
3900 int saved_tree_used = TREE_USED (symbol_queue[i]);
3901 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3902 TREE_USED (symbol_queue[i]) = 1;
3903 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3904
3905 #ifdef DBX_DEBUGGING_INFO
3906 dbxout_symbol (symbol_queue[i], 0);
3907 #endif
3908
3909 TREE_USED (symbol_queue[i]) = saved_tree_used;
3910 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3911 }
3912
3913 symbol_queue_index = 0;
3914 --debug_nesting;
3915 }
3916
3917 /* Queue a type symbol needed as part of the definition of a decl
3918 symbol. These symbols are generated when debug_flush_symbol_queue()
3919 is called. */
3920
3921 void
3922 debug_queue_symbol (tree decl)
3923 {
3924 if (symbol_queue_index >= symbol_queue_size)
3925 {
3926 symbol_queue_size += 10;
3927 symbol_queue = xrealloc (symbol_queue,
3928 symbol_queue_size * sizeof (tree));
3929 }
3930
3931 symbol_queue[symbol_queue_index++] = decl;
3932 }
3933
3934 /* Free symbol queue. */
3935 void
3936 debug_free_queue (void)
3937 {
3938 if (symbol_queue)
3939 {
3940 free (symbol_queue);
3941 symbol_queue = NULL;
3942 symbol_queue_size = 0;
3943 }
3944 }