c0a13223b7f5d24f0b0ee7dbc50169c97e17aaba
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
85 null default for it to save conditionalization later. */
86 #ifndef CC_STATUS_INIT
87 #define CC_STATUS_INIT
88 #endif
89
90 /* How to start an assembler comment. */
91 #ifndef ASM_COMMENT_START
92 #define ASM_COMMENT_START ";#"
93 #endif
94
95 /* Is the given character a logical line separator for the assembler? */
96 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
97 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
98 #endif
99
100 #ifndef JUMP_TABLES_IN_TEXT_SECTION
101 #define JUMP_TABLES_IN_TEXT_SECTION 0
102 #endif
103
104 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
105 #define HAVE_READONLY_DATA_SECTION 1
106 #else
107 #define HAVE_READONLY_DATA_SECTION 0
108 #endif
109
110 /* Last insn processed by final_scan_insn. */
111 static rtx debug_insn;
112 rtx current_output_insn;
113
114 /* Line number of last NOTE. */
115 static int last_linenum;
116
117 /* Highest line number in current block. */
118 static int high_block_linenum;
119
120 /* Likewise for function. */
121 static int high_function_linenum;
122
123 /* Filename of last NOTE. */
124 static const char *last_filename;
125
126 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
127
128 /* Nonzero while outputting an `asm' with operands.
129 This means that inconsistencies are the user's fault, so don't abort.
130 The precise value is the insn being output, to pass to error_for_asm. */
131 rtx this_is_asm_operands;
132
133 /* Number of operands of this insn, for an `asm' with operands. */
134 static unsigned int insn_noperands;
135
136 /* Compare optimization flag. */
137
138 static rtx last_ignored_compare = 0;
139
140 /* Assign a unique number to each insn that is output.
141 This can be used to generate unique local labels. */
142
143 static int insn_counter = 0;
144
145 #ifdef HAVE_cc0
146 /* This variable contains machine-dependent flags (defined in tm.h)
147 set and examined by output routines
148 that describe how to interpret the condition codes properly. */
149
150 CC_STATUS cc_status;
151
152 /* During output of an insn, this contains a copy of cc_status
153 from before the insn. */
154
155 CC_STATUS cc_prev_status;
156 #endif
157
158 /* Indexed by hardware reg number, is 1 if that register is ever
159 used in the current function.
160
161 In life_analysis, or in stupid_life_analysis, this is set
162 up to record the hard regs used explicitly. Reload adds
163 in the hard regs used for holding pseudo regs. Final uses
164 it to generate the code in the function prologue and epilogue
165 to save and restore registers as needed. */
166
167 char regs_ever_live[FIRST_PSEUDO_REGISTER];
168
169 /* Nonzero means current function must be given a frame pointer.
170 Set in stmt.c if anything is allocated on the stack there.
171 Set in reload1.c if anything is allocated on the stack there. */
172
173 int frame_pointer_needed;
174
175 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
176
177 static int block_depth;
178
179 /* Nonzero if have enabled APP processing of our assembler output. */
180
181 static int app_on;
182
183 /* If we are outputting an insn sequence, this contains the sequence rtx.
184 Zero otherwise. */
185
186 rtx final_sequence;
187
188 #ifdef ASSEMBLER_DIALECT
189
190 /* Number of the assembler dialect to use, starting at 0. */
191 static int dialect_number;
192 #endif
193
194 /* Indexed by line number, nonzero if there is a note for that line. */
195
196 static char *line_note_exists;
197
198 #ifdef HAVE_conditional_execution
199 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
200 rtx current_insn_predicate;
201 #endif
202
203 #ifdef HAVE_ATTR_length
204 static int asm_insn_count PARAMS ((rtx));
205 #endif
206 static void profile_function PARAMS ((FILE *));
207 static void profile_after_prologue PARAMS ((FILE *));
208 static void notice_source_line PARAMS ((rtx));
209 static rtx walk_alter_subreg PARAMS ((rtx *));
210 static void output_asm_name PARAMS ((void));
211 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
212 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
213 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
214 static void output_operand PARAMS ((rtx, int));
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs PARAMS ((rtx));
217 #endif
218 #ifdef HAVE_cc0
219 static int alter_cond PARAMS ((rtx));
220 #endif
221 #ifndef ADDR_VEC_ALIGN
222 static int final_addr_vec_align PARAMS ((rtx));
223 #endif
224 #ifdef HAVE_ATTR_length
225 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
226 #endif
227 \f
228 /* Initialize data in final at the beginning of a compilation. */
229
230 void
231 init_final (filename)
232 const char *filename ATTRIBUTE_UNUSED;
233 {
234 app_on = 0;
235 final_sequence = 0;
236
237 #ifdef ASSEMBLER_DIALECT
238 dialect_number = ASSEMBLER_DIALECT;
239 #endif
240 }
241
242 /* Default target function prologue and epilogue assembler output.
243
244 If not overridden for epilogue code, then the function body itself
245 contains return instructions wherever needed. */
246 void
247 default_function_pro_epilogue (file, size)
248 FILE *file ATTRIBUTE_UNUSED;
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
250 {
251 }
252
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (file)
256 FILE *file ATTRIBUTE_UNUSED;
257 {
258 }
259
260 /* Enable APP processing of subsequent output.
261 Used before the output from an `asm' statement. */
262
263 void
264 app_enable ()
265 {
266 if (! app_on)
267 {
268 fputs (ASM_APP_ON, asm_out_file);
269 app_on = 1;
270 }
271 }
272
273 /* Disable APP processing of subsequent output.
274 Called from varasm.c before most kinds of output. */
275
276 void
277 app_disable ()
278 {
279 if (app_on)
280 {
281 fputs (ASM_APP_OFF, asm_out_file);
282 app_on = 0;
283 }
284 }
285 \f
286 /* Return the number of slots filled in the current
287 delayed branch sequence (we don't count the insn needing the
288 delay slot). Zero if not in a delayed branch sequence. */
289
290 #ifdef DELAY_SLOTS
291 int
292 dbr_sequence_length ()
293 {
294 if (final_sequence != 0)
295 return XVECLEN (final_sequence, 0) - 1;
296 else
297 return 0;
298 }
299 #endif
300 \f
301 /* The next two pages contain routines used to compute the length of an insn
302 and to shorten branches. */
303
304 /* Arrays for insn lengths, and addresses. The latter is referenced by
305 `insn_current_length'. */
306
307 static int *insn_lengths;
308
309 varray_type insn_addresses_;
310
311 /* Max uid for which the above arrays are valid. */
312 static int insn_lengths_max_uid;
313
314 /* Address of insn being processed. Used by `insn_current_length'. */
315 int insn_current_address;
316
317 /* Address of insn being processed in previous iteration. */
318 int insn_last_address;
319
320 /* known invariant alignment of insn being processed. */
321 int insn_current_align;
322
323 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
324 gives the next following alignment insn that increases the known
325 alignment, or NULL_RTX if there is no such insn.
326 For any alignment obtained this way, we can again index uid_align with
327 its uid to obtain the next following align that in turn increases the
328 alignment, till we reach NULL_RTX; the sequence obtained this way
329 for each insn we'll call the alignment chain of this insn in the following
330 comments. */
331
332 struct label_alignment
333 {
334 short alignment;
335 short max_skip;
336 };
337
338 static rtx *uid_align;
339 static int *uid_shuid;
340 static struct label_alignment *label_align;
341
342 /* Indicate that branch shortening hasn't yet been done. */
343
344 void
345 init_insn_lengths ()
346 {
347 if (uid_shuid)
348 {
349 free (uid_shuid);
350 uid_shuid = 0;
351 }
352 if (insn_lengths)
353 {
354 free (insn_lengths);
355 insn_lengths = 0;
356 insn_lengths_max_uid = 0;
357 }
358 #ifdef HAVE_ATTR_length
359 INSN_ADDRESSES_FREE ();
360 #endif
361 if (uid_align)
362 {
363 free (uid_align);
364 uid_align = 0;
365 }
366 }
367
368 /* Obtain the current length of an insn. If branch shortening has been done,
369 get its actual length. Otherwise, get its maximum length. */
370
371 int
372 get_attr_length (insn)
373 rtx insn ATTRIBUTE_UNUSED;
374 {
375 #ifdef HAVE_ATTR_length
376 rtx body;
377 int i;
378 int length = 0;
379
380 if (insn_lengths_max_uid > INSN_UID (insn))
381 return insn_lengths[INSN_UID (insn)];
382 else
383 switch (GET_CODE (insn))
384 {
385 case NOTE:
386 case BARRIER:
387 case CODE_LABEL:
388 return 0;
389
390 case CALL_INSN:
391 length = insn_default_length (insn);
392 break;
393
394 case JUMP_INSN:
395 body = PATTERN (insn);
396 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
397 {
398 /* Alignment is machine-dependent and should be handled by
399 ADDR_VEC_ALIGN. */
400 }
401 else
402 length = insn_default_length (insn);
403 break;
404
405 case INSN:
406 body = PATTERN (insn);
407 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
408 return 0;
409
410 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
411 length = asm_insn_count (body) * insn_default_length (insn);
412 else if (GET_CODE (body) == SEQUENCE)
413 for (i = 0; i < XVECLEN (body, 0); i++)
414 length += get_attr_length (XVECEXP (body, 0, i));
415 else
416 length = insn_default_length (insn);
417 break;
418
419 default:
420 break;
421 }
422
423 #ifdef ADJUST_INSN_LENGTH
424 ADJUST_INSN_LENGTH (insn, length);
425 #endif
426 return length;
427 #else /* not HAVE_ATTR_length */
428 return 0;
429 #endif /* not HAVE_ATTR_length */
430 }
431 \f
432 /* Code to handle alignment inside shorten_branches. */
433
434 /* Here is an explanation how the algorithm in align_fuzz can give
435 proper results:
436
437 Call a sequence of instructions beginning with alignment point X
438 and continuing until the next alignment point `block X'. When `X'
439 is used in an expression, it means the alignment value of the
440 alignment point.
441
442 Call the distance between the start of the first insn of block X, and
443 the end of the last insn of block X `IX', for the `inner size of X'.
444 This is clearly the sum of the instruction lengths.
445
446 Likewise with the next alignment-delimited block following X, which we
447 shall call block Y.
448
449 Call the distance between the start of the first insn of block X, and
450 the start of the first insn of block Y `OX', for the `outer size of X'.
451
452 The estimated padding is then OX - IX.
453
454 OX can be safely estimated as
455
456 if (X >= Y)
457 OX = round_up(IX, Y)
458 else
459 OX = round_up(IX, X) + Y - X
460
461 Clearly est(IX) >= real(IX), because that only depends on the
462 instruction lengths, and those being overestimated is a given.
463
464 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
465 we needn't worry about that when thinking about OX.
466
467 When X >= Y, the alignment provided by Y adds no uncertainty factor
468 for branch ranges starting before X, so we can just round what we have.
469 But when X < Y, we don't know anything about the, so to speak,
470 `middle bits', so we have to assume the worst when aligning up from an
471 address mod X to one mod Y, which is Y - X. */
472
473 #ifndef LABEL_ALIGN
474 #define LABEL_ALIGN(LABEL) align_labels_log
475 #endif
476
477 #ifndef LABEL_ALIGN_MAX_SKIP
478 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
479 #endif
480
481 #ifndef LOOP_ALIGN
482 #define LOOP_ALIGN(LABEL) align_loops_log
483 #endif
484
485 #ifndef LOOP_ALIGN_MAX_SKIP
486 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
487 #endif
488
489 #ifndef LABEL_ALIGN_AFTER_BARRIER
490 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
491 #endif
492
493 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
494 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
495 #endif
496
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
500
501 #ifndef JUMP_ALIGN_MAX_SKIP
502 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
503 #endif
504
505 #ifndef ADDR_VEC_ALIGN
506 static int
507 final_addr_vec_align (addr_vec)
508 rtx addr_vec;
509 {
510 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
511
512 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
513 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
514 return exact_log2 (align);
515
516 }
517
518 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
519 #endif
520
521 #ifndef INSN_LENGTH_ALIGNMENT
522 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
523 #endif
524
525 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
526
527 static int min_labelno, max_labelno;
528
529 #define LABEL_TO_ALIGNMENT(LABEL) \
530 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
531
532 #define LABEL_TO_MAX_SKIP(LABEL) \
533 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
534
535 /* For the benefit of port specific code do this also as a function. */
536
537 int
538 label_to_alignment (label)
539 rtx label;
540 {
541 return LABEL_TO_ALIGNMENT (label);
542 }
543
544 #ifdef HAVE_ATTR_length
545 /* The differences in addresses
546 between a branch and its target might grow or shrink depending on
547 the alignment the start insn of the range (the branch for a forward
548 branch or the label for a backward branch) starts out on; if these
549 differences are used naively, they can even oscillate infinitely.
550 We therefore want to compute a 'worst case' address difference that
551 is independent of the alignment the start insn of the range end
552 up on, and that is at least as large as the actual difference.
553 The function align_fuzz calculates the amount we have to add to the
554 naively computed difference, by traversing the part of the alignment
555 chain of the start insn of the range that is in front of the end insn
556 of the range, and considering for each alignment the maximum amount
557 that it might contribute to a size increase.
558
559 For casesi tables, we also want to know worst case minimum amounts of
560 address difference, in case a machine description wants to introduce
561 some common offset that is added to all offsets in a table.
562 For this purpose, align_fuzz with a growth argument of 0 computes the
563 appropriate adjustment. */
564
565 /* Compute the maximum delta by which the difference of the addresses of
566 START and END might grow / shrink due to a different address for start
567 which changes the size of alignment insns between START and END.
568 KNOWN_ALIGN_LOG is the alignment known for START.
569 GROWTH should be ~0 if the objective is to compute potential code size
570 increase, and 0 if the objective is to compute potential shrink.
571 The return value is undefined for any other value of GROWTH. */
572
573 static int
574 align_fuzz (start, end, known_align_log, growth)
575 rtx start, end;
576 int known_align_log;
577 unsigned growth;
578 {
579 int uid = INSN_UID (start);
580 rtx align_label;
581 int known_align = 1 << known_align_log;
582 int end_shuid = INSN_SHUID (end);
583 int fuzz = 0;
584
585 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
586 {
587 int align_addr, new_align;
588
589 uid = INSN_UID (align_label);
590 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
591 if (uid_shuid[uid] > end_shuid)
592 break;
593 known_align_log = LABEL_TO_ALIGNMENT (align_label);
594 new_align = 1 << known_align_log;
595 if (new_align < known_align)
596 continue;
597 fuzz += (-align_addr ^ growth) & (new_align - known_align);
598 known_align = new_align;
599 }
600 return fuzz;
601 }
602
603 /* Compute a worst-case reference address of a branch so that it
604 can be safely used in the presence of aligned labels. Since the
605 size of the branch itself is unknown, the size of the branch is
606 not included in the range. I.e. for a forward branch, the reference
607 address is the end address of the branch as known from the previous
608 branch shortening pass, minus a value to account for possible size
609 increase due to alignment. For a backward branch, it is the start
610 address of the branch as known from the current pass, plus a value
611 to account for possible size increase due to alignment.
612 NB.: Therefore, the maximum offset allowed for backward branches needs
613 to exclude the branch size. */
614
615 int
616 insn_current_reference_address (branch)
617 rtx branch;
618 {
619 rtx dest, seq;
620 int seq_uid;
621
622 if (! INSN_ADDRESSES_SET_P ())
623 return 0;
624
625 seq = NEXT_INSN (PREV_INSN (branch));
626 seq_uid = INSN_UID (seq);
627 if (GET_CODE (branch) != JUMP_INSN)
628 /* This can happen for example on the PA; the objective is to know the
629 offset to address something in front of the start of the function.
630 Thus, we can treat it like a backward branch.
631 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
632 any alignment we'd encounter, so we skip the call to align_fuzz. */
633 return insn_current_address;
634 dest = JUMP_LABEL (branch);
635
636 /* BRANCH has no proper alignment chain set, so use SEQ.
637 BRANCH also has no INSN_SHUID. */
638 if (INSN_SHUID (seq) < INSN_SHUID (dest))
639 {
640 /* Forward branch. */
641 return (insn_last_address + insn_lengths[seq_uid]
642 - align_fuzz (seq, dest, length_unit_log, ~0));
643 }
644 else
645 {
646 /* Backward branch. */
647 return (insn_current_address
648 + align_fuzz (dest, seq, length_unit_log, ~0));
649 }
650 }
651 #endif /* HAVE_ATTR_length */
652 \f
653 void
654 compute_alignments ()
655 {
656 int log, max_skip, max_log;
657 basic_block bb;
658
659 if (label_align)
660 {
661 free (label_align);
662 label_align = 0;
663 }
664
665 max_labelno = max_label_num ();
666 min_labelno = get_first_label_num ();
667 label_align = (struct label_alignment *)
668 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
669
670 /* If not optimizing or optimizing for size, don't assign any alignments. */
671 if (! optimize || optimize_size)
672 return;
673
674 FOR_EACH_BB (bb)
675 {
676 rtx label = bb->head;
677 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
678 edge e;
679
680 if (GET_CODE (label) != CODE_LABEL)
681 continue;
682 max_log = LABEL_ALIGN (label);
683 max_skip = LABEL_ALIGN_MAX_SKIP;
684
685 for (e = bb->pred; e; e = e->pred_next)
686 {
687 if (e->flags & EDGE_FALLTHRU)
688 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
689 else
690 branch_frequency += EDGE_FREQUENCY (e);
691 }
692
693 /* There are two purposes to align block with no fallthru incoming edge:
694 1) to avoid fetch stalls when branch destination is near cache boundary
695 2) to improve cache efficiency in case the previous block is not executed
696 (so it does not need to be in the cache).
697
698 We to catch first case, we align frequently executed blocks.
699 To catch the second, we align blocks that are executed more frequently
700 than the predecessor and the predecessor is likely to not be executed
701 when function is called. */
702
703 if (!has_fallthru
704 && (branch_frequency > BB_FREQ_MAX / 10
705 || (bb->frequency > bb->prev_bb->frequency * 10
706 && (bb->prev_bb->frequency
707 <= ENTRY_BLOCK_PTR->frequency / 2))))
708 {
709 log = JUMP_ALIGN (label);
710 if (max_log < log)
711 {
712 max_log = log;
713 max_skip = JUMP_ALIGN_MAX_SKIP;
714 }
715 }
716 /* In case block is frequent and reached mostly by non-fallthru edge,
717 align it. It is most likely a first block of loop. */
718 if (has_fallthru
719 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
720 && branch_frequency > fallthru_frequency * 2)
721 {
722 log = LOOP_ALIGN (label);
723 if (max_log < log)
724 {
725 max_log = log;
726 max_skip = LOOP_ALIGN_MAX_SKIP;
727 }
728 }
729 LABEL_TO_ALIGNMENT (label) = max_log;
730 LABEL_TO_MAX_SKIP (label) = max_skip;
731 }
732 }
733 \f
734 /* Make a pass over all insns and compute their actual lengths by shortening
735 any branches of variable length if possible. */
736
737 /* Give a default value for the lowest address in a function. */
738
739 #ifndef FIRST_INSN_ADDRESS
740 #define FIRST_INSN_ADDRESS 0
741 #endif
742
743 /* shorten_branches might be called multiple times: for example, the SH
744 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
745 In order to do this, it needs proper length information, which it obtains
746 by calling shorten_branches. This cannot be collapsed with
747 shorten_branches itself into a single pass unless we also want to integrate
748 reorg.c, since the branch splitting exposes new instructions with delay
749 slots. */
750
751 void
752 shorten_branches (first)
753 rtx first ATTRIBUTE_UNUSED;
754 {
755 rtx insn;
756 int max_uid;
757 int i;
758 int max_log;
759 int max_skip;
760 #ifdef HAVE_ATTR_length
761 #define MAX_CODE_ALIGN 16
762 rtx seq;
763 int something_changed = 1;
764 char *varying_length;
765 rtx body;
766 int uid;
767 rtx align_tab[MAX_CODE_ALIGN];
768
769 #endif
770
771 /* Compute maximum UID and allocate label_align / uid_shuid. */
772 max_uid = get_max_uid ();
773
774 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
775
776 if (max_labelno != max_label_num ())
777 {
778 int old = max_labelno;
779 int n_labels;
780 int n_old_labels;
781
782 max_labelno = max_label_num ();
783
784 n_labels = max_labelno - min_labelno + 1;
785 n_old_labels = old - min_labelno + 1;
786
787 label_align = (struct label_alignment *) xrealloc
788 (label_align, n_labels * sizeof (struct label_alignment));
789
790 /* Range of labels grows monotonically in the function. Abort here
791 means that the initialization of array got lost. */
792 if (n_old_labels > n_labels)
793 abort ();
794
795 memset (label_align + n_old_labels, 0,
796 (n_labels - n_old_labels) * sizeof (struct label_alignment));
797 }
798
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
804
805 max_log = 0;
806 max_skip = 0;
807
808 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 {
810 int log;
811
812 INSN_SHUID (insn) = i++;
813 if (INSN_P (insn))
814 {
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
820 }
821 else if (GET_CODE (insn) == CODE_LABEL)
822 {
823 rtx next;
824
825 /* Merge in alignments computed by compute_alignments. */
826 log = LABEL_TO_ALIGNMENT (insn);
827 if (max_log < log)
828 {
829 max_log = log;
830 max_skip = LABEL_TO_MAX_SKIP (insn);
831 }
832
833 log = LABEL_ALIGN (insn);
834 if (max_log < log)
835 {
836 max_log = log;
837 max_skip = LABEL_ALIGN_MAX_SKIP;
838 }
839 next = NEXT_INSN (insn);
840 /* ADDR_VECs only take room if read-only data goes into the text
841 section. */
842 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
843 if (next && GET_CODE (next) == JUMP_INSN)
844 {
845 rtx nextbody = PATTERN (next);
846 if (GET_CODE (nextbody) == ADDR_VEC
847 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 {
849 log = ADDR_VEC_ALIGN (next);
850 if (max_log < log)
851 {
852 max_log = log;
853 max_skip = LABEL_ALIGN_MAX_SKIP;
854 }
855 }
856 }
857 LABEL_TO_ALIGNMENT (insn) = max_log;
858 LABEL_TO_MAX_SKIP (insn) = max_skip;
859 max_log = 0;
860 max_skip = 0;
861 }
862 else if (GET_CODE (insn) == BARRIER)
863 {
864 rtx label;
865
866 for (label = insn; label && ! INSN_P (label);
867 label = NEXT_INSN (label))
868 if (GET_CODE (label) == CODE_LABEL)
869 {
870 log = LABEL_ALIGN_AFTER_BARRIER (insn);
871 if (max_log < log)
872 {
873 max_log = log;
874 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 }
876 break;
877 }
878 }
879 }
880 #ifdef HAVE_ATTR_length
881
882 /* Allocate the rest of the arrays. */
883 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
884 insn_lengths_max_uid = max_uid;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid);
888
889 varying_length = (char *) xcalloc (max_uid, sizeof (char));
890
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
895 alignment of n. */
896 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
897
898 for (i = MAX_CODE_ALIGN; --i >= 0;)
899 align_tab[i] = NULL_RTX;
900 seq = get_last_insn ();
901 for (; seq; seq = PREV_INSN (seq))
902 {
903 int uid = INSN_UID (seq);
904 int log;
905 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
906 uid_align[uid] = align_tab[0];
907 if (log)
908 {
909 /* Found an alignment label. */
910 uid_align[uid] = align_tab[log];
911 for (i = log - 1; i >= 0; i--)
912 align_tab[i] = seq;
913 }
914 }
915 #ifdef CASE_VECTOR_SHORTEN_MODE
916 if (optimize)
917 {
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 label fields. */
920
921 int min_shuid = INSN_SHUID (get_insns ()) - 1;
922 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
923 int rel;
924
925 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 {
927 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
928 int len, i, min, max, insn_shuid;
929 int min_align;
930 addr_diff_vec_flags flags;
931
932 if (GET_CODE (insn) != JUMP_INSN
933 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
934 continue;
935 pat = PATTERN (insn);
936 len = XVECLEN (pat, 1);
937 if (len <= 0)
938 abort ();
939 min_align = MAX_CODE_ALIGN;
940 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
941 {
942 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
943 int shuid = INSN_SHUID (lab);
944 if (shuid < min)
945 {
946 min = shuid;
947 min_lab = lab;
948 }
949 if (shuid > max)
950 {
951 max = shuid;
952 max_lab = lab;
953 }
954 if (min_align > LABEL_TO_ALIGNMENT (lab))
955 min_align = LABEL_TO_ALIGNMENT (lab);
956 }
957 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
958 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
959 insn_shuid = INSN_SHUID (insn);
960 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
961 flags.min_align = min_align;
962 flags.base_after_vec = rel > insn_shuid;
963 flags.min_after_vec = min > insn_shuid;
964 flags.max_after_vec = max > insn_shuid;
965 flags.min_after_base = min > rel;
966 flags.max_after_base = max > rel;
967 ADDR_DIFF_VEC_FLAGS (pat) = flags;
968 }
969 }
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
971
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
974 insn != 0;
975 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 {
977 uid = INSN_UID (insn);
978
979 insn_lengths[uid] = 0;
980
981 if (GET_CODE (insn) == CODE_LABEL)
982 {
983 int log = LABEL_TO_ALIGNMENT (insn);
984 if (log)
985 {
986 int align = 1 << log;
987 int new_address = (insn_current_address + align - 1) & -align;
988 insn_lengths[uid] = new_address - insn_current_address;
989 }
990 }
991
992 INSN_ADDRESSES (uid) = insn_current_address;
993
994 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
995 || GET_CODE (insn) == CODE_LABEL)
996 continue;
997 if (INSN_DELETED_P (insn))
998 continue;
999
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 {
1003 /* This only takes room if read-only data goes into the text
1004 section. */
1005 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1006 insn_lengths[uid] = (XVECLEN (body,
1007 GET_CODE (body) == ADDR_DIFF_VEC)
1008 * GET_MODE_SIZE (GET_MODE (body)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 }
1011 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1012 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1013 else if (GET_CODE (body) == SEQUENCE)
1014 {
1015 int i;
1016 int const_delay_slots;
1017 #ifdef DELAY_SLOTS
1018 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1019 #else
1020 const_delay_slots = 0;
1021 #endif
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1024 of the branch. */
1025 for (i = 0; i < XVECLEN (body, 0); i++)
1026 {
1027 rtx inner_insn = XVECEXP (body, 0, i);
1028 int inner_uid = INSN_UID (inner_insn);
1029 int inner_length;
1030
1031 if (GET_CODE (body) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1033 inner_length = (asm_insn_count (PATTERN (inner_insn))
1034 * insn_default_length (inner_insn));
1035 else
1036 inner_length = insn_default_length (inner_insn);
1037
1038 insn_lengths[inner_uid] = inner_length;
1039 if (const_delay_slots)
1040 {
1041 if ((varying_length[inner_uid]
1042 = insn_variable_length_p (inner_insn)) != 0)
1043 varying_length[uid] = 1;
1044 INSN_ADDRESSES (inner_uid) = (insn_current_address
1045 + insn_lengths[uid]);
1046 }
1047 else
1048 varying_length[inner_uid] = 0;
1049 insn_lengths[uid] += inner_length;
1050 }
1051 }
1052 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 {
1054 insn_lengths[uid] = insn_default_length (insn);
1055 varying_length[uid] = insn_variable_length_p (insn);
1056 }
1057
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1061 if (insn_lengths[uid] < 0)
1062 fatal_insn ("negative insn length", insn);
1063 #endif
1064 }
1065
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1069
1070 while (something_changed)
1071 {
1072 something_changed = 0;
1073 insn_current_align = MAX_CODE_ALIGN - 1;
1074 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1075 insn != 0;
1076 insn = NEXT_INSN (insn))
1077 {
1078 int new_length;
1079 #ifdef ADJUST_INSN_LENGTH
1080 int tmp_length;
1081 #endif
1082 int length_align;
1083
1084 uid = INSN_UID (insn);
1085
1086 if (GET_CODE (insn) == CODE_LABEL)
1087 {
1088 int log = LABEL_TO_ALIGNMENT (insn);
1089 if (log > insn_current_align)
1090 {
1091 int align = 1 << log;
1092 int new_address= (insn_current_address + align - 1) & -align;
1093 insn_lengths[uid] = new_address - insn_current_address;
1094 insn_current_align = log;
1095 insn_current_address = new_address;
1096 }
1097 else
1098 insn_lengths[uid] = 0;
1099 INSN_ADDRESSES (uid) = insn_current_address;
1100 continue;
1101 }
1102
1103 length_align = INSN_LENGTH_ALIGNMENT (insn);
1104 if (length_align < insn_current_align)
1105 insn_current_align = length_align;
1106
1107 insn_last_address = INSN_ADDRESSES (uid);
1108 INSN_ADDRESSES (uid) = insn_current_address;
1109
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize && GET_CODE (insn) == JUMP_INSN
1112 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 {
1114 rtx body = PATTERN (insn);
1115 int old_length = insn_lengths[uid];
1116 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1117 rtx min_lab = XEXP (XEXP (body, 2), 0);
1118 rtx max_lab = XEXP (XEXP (body, 3), 0);
1119 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1120 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1121 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1122 rtx prev;
1123 int rel_align = 0;
1124 addr_diff_vec_flags flags;
1125
1126 /* Avoid automatic aggregate initialization. */
1127 flags = ADDR_DIFF_VEC_FLAGS (body);
1128
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev = rel_lab;
1131 prev
1132 && ! insn_lengths[INSN_UID (prev)]
1133 && ! (varying_length[INSN_UID (prev)] & 1);
1134 prev = PREV_INSN (prev))
1135 if (varying_length[INSN_UID (prev)] & 2)
1136 {
1137 rel_align = LABEL_TO_ALIGNMENT (prev);
1138 break;
1139 }
1140
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags.base_after_vec)
1147 rel_addr += insn_current_address - insn_last_address;
1148 if (flags.min_after_vec)
1149 min_addr += insn_current_address - insn_last_address;
1150 if (flags.max_after_vec)
1151 max_addr += insn_current_address - insn_last_address;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1156 size increase. */
1157 if (flags.min_after_base)
1158 {
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags.base_after_vec && flags.min_after_vec)
1164 {
1165 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1166 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 }
1168 else
1169 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 }
1171 else
1172 {
1173 if (flags.base_after_vec && ! flags.min_after_vec)
1174 {
1175 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1176 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 }
1178 else
1179 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 }
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags.max_after_base)
1184 {
1185 if (! flags.base_after_vec && flags.max_after_vec)
1186 {
1187 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1188 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 }
1190 else
1191 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 }
1193 else
1194 {
1195 if (flags.base_after_vec && ! flags.max_after_vec)
1196 {
1197 max_addr += align_fuzz (max_lab, insn, 0, 0);
1198 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 }
1200 else
1201 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 }
1203 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1204 max_addr - rel_addr,
1205 body));
1206 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 {
1208 insn_lengths[uid]
1209 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1210 insn_current_address += insn_lengths[uid];
1211 if (insn_lengths[uid] != old_length)
1212 something_changed = 1;
1213 }
1214
1215 continue;
1216 }
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218
1219 if (! (varying_length[uid]))
1220 {
1221 if (GET_CODE (insn) == INSN
1222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 {
1224 int i;
1225
1226 body = PATTERN (insn);
1227 for (i = 0; i < XVECLEN (body, 0); i++)
1228 {
1229 rtx inner_insn = XVECEXP (body, 0, i);
1230 int inner_uid = INSN_UID (inner_insn);
1231
1232 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233
1234 insn_current_address += insn_lengths[inner_uid];
1235 }
1236 }
1237 else
1238 insn_current_address += insn_lengths[uid];
1239
1240 continue;
1241 }
1242
1243 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 {
1245 int i;
1246
1247 body = PATTERN (insn);
1248 new_length = 0;
1249 for (i = 0; i < XVECLEN (body, 0); i++)
1250 {
1251 rtx inner_insn = XVECEXP (body, 0, i);
1252 int inner_uid = INSN_UID (inner_insn);
1253 int inner_length;
1254
1255 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length[inner_uid])
1260 inner_length = insn_lengths[inner_uid];
1261 else
1262 inner_length = insn_current_length (inner_insn);
1263
1264 if (inner_length != insn_lengths[inner_uid])
1265 {
1266 insn_lengths[inner_uid] = inner_length;
1267 something_changed = 1;
1268 }
1269 insn_current_address += insn_lengths[inner_uid];
1270 new_length += inner_length;
1271 }
1272 }
1273 else
1274 {
1275 new_length = insn_current_length (insn);
1276 insn_current_address += new_length;
1277 }
1278
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length = new_length;
1282 ADJUST_INSN_LENGTH (insn, new_length);
1283 insn_current_address += (new_length - tmp_length);
1284 #endif
1285
1286 if (new_length != insn_lengths[uid])
1287 {
1288 insn_lengths[uid] = new_length;
1289 something_changed = 1;
1290 }
1291 }
1292 /* For a non-optimizing compile, do only a single pass. */
1293 if (!optimize)
1294 break;
1295 }
1296
1297 free (varying_length);
1298
1299 #endif /* HAVE_ATTR_length */
1300 }
1301
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1306
1307 static int
1308 asm_insn_count (body)
1309 rtx body;
1310 {
1311 const char *template;
1312 int count = 1;
1313
1314 if (GET_CODE (body) == ASM_INPUT)
1315 template = XSTR (body, 0);
1316 else
1317 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1318
1319 for (; *template; template++)
1320 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1321 count++;
1322
1323 return count;
1324 }
1325 #endif
1326 \f
1327 /* Output assembler code for the start of a function,
1328 and initialize some of the variables in this file
1329 for the new function. The label for the function and associated
1330 assembler pseudo-ops have already been output in `assemble_start_function'.
1331
1332 FIRST is the first insn of the rtl for the function being compiled.
1333 FILE is the file to write assembler code to.
1334 OPTIMIZE is nonzero if we should eliminate redundant
1335 test and compare insns. */
1336
1337 void
1338 final_start_function (first, file, optimize)
1339 rtx first;
1340 FILE *file;
1341 int optimize ATTRIBUTE_UNUSED;
1342 {
1343 block_depth = 0;
1344
1345 this_is_asm_operands = 0;
1346
1347 #ifdef NON_SAVING_SETJMP
1348 /* A function that calls setjmp should save and restore all the
1349 call-saved registers on a system where longjmp clobbers them. */
1350 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1351 {
1352 int i;
1353
1354 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1355 if (!call_used_regs[i])
1356 regs_ever_live[i] = 1;
1357 }
1358 #endif
1359
1360 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1361 notice_source_line (first);
1362 high_block_linenum = high_function_linenum = last_linenum;
1363
1364 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1365
1366 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1367 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1368 dwarf2out_begin_prologue (0, NULL);
1369 #endif
1370
1371 #ifdef LEAF_REG_REMAP
1372 if (current_function_uses_only_leaf_regs)
1373 leaf_renumber_regs (first);
1374 #endif
1375
1376 /* The Sun386i and perhaps other machines don't work right
1377 if the profiling code comes after the prologue. */
1378 #ifdef PROFILE_BEFORE_PROLOGUE
1379 if (current_function_profile)
1380 profile_function (file);
1381 #endif /* PROFILE_BEFORE_PROLOGUE */
1382
1383 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1384 if (dwarf2out_do_frame ())
1385 dwarf2out_frame_debug (NULL_RTX);
1386 #endif
1387
1388 /* If debugging, assign block numbers to all of the blocks in this
1389 function. */
1390 if (write_symbols)
1391 {
1392 remove_unnecessary_notes ();
1393 scope_to_insns_finalize ();
1394 number_blocks (current_function_decl);
1395 /* We never actually put out begin/end notes for the top-level
1396 block in the function. But, conceptually, that block is
1397 always needed. */
1398 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1399 }
1400
1401 /* First output the function prologue: code to set up the stack frame. */
1402 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1403
1404 /* If the machine represents the prologue as RTL, the profiling code must
1405 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1406 #ifdef HAVE_prologue
1407 if (! HAVE_prologue)
1408 #endif
1409 profile_after_prologue (file);
1410 }
1411
1412 static void
1413 profile_after_prologue (file)
1414 FILE *file ATTRIBUTE_UNUSED;
1415 {
1416 #ifndef PROFILE_BEFORE_PROLOGUE
1417 if (current_function_profile)
1418 profile_function (file);
1419 #endif /* not PROFILE_BEFORE_PROLOGUE */
1420 }
1421
1422 static void
1423 profile_function (file)
1424 FILE *file ATTRIBUTE_UNUSED;
1425 {
1426 #ifndef NO_PROFILE_COUNTERS
1427 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1428 #endif
1429 #if defined(ASM_OUTPUT_REG_PUSH)
1430 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1431 int sval = current_function_returns_struct;
1432 #endif
1433 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1434 int cxt = current_function_needs_context;
1435 #endif
1436 #endif /* ASM_OUTPUT_REG_PUSH */
1437
1438 #ifndef NO_PROFILE_COUNTERS
1439 data_section ();
1440 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1441 (*targetm.asm_out.internal_label) (file, "LP", current_function_funcdef_no);
1442 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1443 #endif
1444
1445 function_section (current_function_decl);
1446
1447 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1448 if (sval)
1449 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1450 #else
1451 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1452 if (sval)
1453 {
1454 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1455 }
1456 #endif
1457 #endif
1458
1459 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1460 if (cxt)
1461 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1462 #else
1463 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1464 if (cxt)
1465 {
1466 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1467 }
1468 #endif
1469 #endif
1470
1471 FUNCTION_PROFILER (file, current_function_funcdef_no);
1472
1473 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1474 if (cxt)
1475 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1476 #else
1477 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1478 if (cxt)
1479 {
1480 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1481 }
1482 #endif
1483 #endif
1484
1485 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1486 if (sval)
1487 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1488 #else
1489 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1490 if (sval)
1491 {
1492 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1493 }
1494 #endif
1495 #endif
1496 }
1497
1498 /* Output assembler code for the end of a function.
1499 For clarity, args are same as those of `final_start_function'
1500 even though not all of them are needed. */
1501
1502 void
1503 final_end_function ()
1504 {
1505 app_disable ();
1506
1507 (*debug_hooks->end_function) (high_function_linenum);
1508
1509 /* Finally, output the function epilogue:
1510 code to restore the stack frame and return to the caller. */
1511 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1512
1513 /* And debug output. */
1514 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1515
1516 #if defined (DWARF2_UNWIND_INFO)
1517 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1518 && dwarf2out_do_frame ())
1519 dwarf2out_end_epilogue (last_linenum, last_filename);
1520 #endif
1521 }
1522 \f
1523 /* Output assembler code for some insns: all or part of a function.
1524 For description of args, see `final_start_function', above.
1525
1526 PRESCAN is 1 if we are not really outputting,
1527 just scanning as if we were outputting.
1528 Prescanning deletes and rearranges insns just like ordinary output.
1529 PRESCAN is -2 if we are outputting after having prescanned.
1530 In this case, don't try to delete or rearrange insns
1531 because that has already been done.
1532 Prescanning is done only on certain machines. */
1533
1534 void
1535 final (first, file, optimize, prescan)
1536 rtx first;
1537 FILE *file;
1538 int optimize;
1539 int prescan;
1540 {
1541 rtx insn;
1542 int max_line = 0;
1543 int max_uid = 0;
1544
1545 last_ignored_compare = 0;
1546
1547 /* Make a map indicating which line numbers appear in this function.
1548 When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 #ifdef SDB_DEBUGGING_INFO
1552 if (write_symbols == SDB_DEBUG)
1553 {
1554 rtx last = 0;
1555 for (insn = first; insn; insn = NEXT_INSN (insn))
1556 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1557 {
1558 if ((RTX_INTEGRATED_P (insn)
1559 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1560 || (last != 0
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1563 {
1564 delete_insn (insn); /* Use delete_note. */
1565 continue;
1566 }
1567 last = insn;
1568 if (NOTE_LINE_NUMBER (insn) > max_line)
1569 max_line = NOTE_LINE_NUMBER (insn);
1570 }
1571 }
1572 else
1573 #endif
1574 {
1575 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1577 max_line = NOTE_LINE_NUMBER (insn);
1578 }
1579
1580 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1581
1582 for (insn = first; insn; insn = NEXT_INSN (insn))
1583 {
1584 if (INSN_UID (insn) > max_uid) /* find largest UID */
1585 max_uid = INSN_UID (insn);
1586 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1587 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1588 #ifdef HAVE_cc0
1589 /* If CC tracking across branches is enabled, record the insn which
1590 jumps to each branch only reached from one place. */
1591 if (optimize && GET_CODE (insn) == JUMP_INSN)
1592 {
1593 rtx lab = JUMP_LABEL (insn);
1594 if (lab && LABEL_NUSES (lab) == 1)
1595 {
1596 LABEL_REFS (lab) = insn;
1597 }
1598 }
1599 #endif
1600 }
1601
1602 init_recog ();
1603
1604 CC_STATUS_INIT;
1605
1606 /* Output the insns. */
1607 for (insn = NEXT_INSN (first); insn;)
1608 {
1609 #ifdef HAVE_ATTR_length
1610 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1611 {
1612 /* This can be triggered by bugs elsewhere in the compiler if
1613 new insns are created after init_insn_lengths is called. */
1614 if (GET_CODE (insn) == NOTE)
1615 insn_current_address = -1;
1616 else
1617 abort ();
1618 }
1619 else
1620 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1621 #endif /* HAVE_ATTR_length */
1622
1623 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1624 }
1625
1626 free (line_note_exists);
1627 line_note_exists = NULL;
1628 }
1629 \f
1630 const char *
1631 get_insn_template (code, insn)
1632 int code;
1633 rtx insn;
1634 {
1635 const void *output = insn_data[code].output;
1636 switch (insn_data[code].output_format)
1637 {
1638 case INSN_OUTPUT_FORMAT_SINGLE:
1639 return (const char *) output;
1640 case INSN_OUTPUT_FORMAT_MULTI:
1641 return ((const char *const *) output)[which_alternative];
1642 case INSN_OUTPUT_FORMAT_FUNCTION:
1643 if (insn == NULL)
1644 abort ();
1645 return (*(insn_output_fn) output) (recog_data.operand, insn);
1646
1647 default:
1648 abort ();
1649 }
1650 }
1651
1652 /* Emit the appropriate declaration for an alternate-entry-point
1653 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1654 LABEL_KIND != LABEL_NORMAL.
1655
1656 The case fall-through in this function is intentional. */
1657 static void
1658 output_alternate_entry_point (file, insn)
1659 FILE *file;
1660 rtx insn;
1661 {
1662 const char *name = LABEL_NAME (insn);
1663
1664 switch (LABEL_KIND (insn))
1665 {
1666 case LABEL_WEAK_ENTRY:
1667 #ifdef ASM_WEAKEN_LABEL
1668 ASM_WEAKEN_LABEL (file, name);
1669 #endif
1670 case LABEL_GLOBAL_ENTRY:
1671 (*targetm.asm_out.globalize_label) (file, name);
1672 case LABEL_STATIC_ENTRY:
1673 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1674 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1675 #endif
1676 ASM_OUTPUT_LABEL (file, name);
1677 break;
1678
1679 case LABEL_NORMAL:
1680 default:
1681 abort ();
1682 }
1683 }
1684
1685 /* The final scan for one insn, INSN.
1686 Args are same as in `final', except that INSN
1687 is the insn being scanned.
1688 Value returned is the next insn to be scanned.
1689
1690 NOPEEPHOLES is the flag to disallow peephole processing (currently
1691 used for within delayed branch sequence output). */
1692
1693 rtx
1694 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1695 rtx insn;
1696 FILE *file;
1697 int optimize ATTRIBUTE_UNUSED;
1698 int prescan;
1699 int nopeepholes ATTRIBUTE_UNUSED;
1700 {
1701 #ifdef HAVE_cc0
1702 rtx set;
1703 #endif
1704
1705 insn_counter++;
1706
1707 /* Ignore deleted insns. These can occur when we split insns (due to a
1708 template of "#") while not optimizing. */
1709 if (INSN_DELETED_P (insn))
1710 return NEXT_INSN (insn);
1711
1712 switch (GET_CODE (insn))
1713 {
1714 case NOTE:
1715 if (prescan > 0)
1716 break;
1717
1718 switch (NOTE_LINE_NUMBER (insn))
1719 {
1720 case NOTE_INSN_DELETED:
1721 case NOTE_INSN_LOOP_BEG:
1722 case NOTE_INSN_LOOP_END:
1723 case NOTE_INSN_LOOP_END_TOP_COND:
1724 case NOTE_INSN_LOOP_CONT:
1725 case NOTE_INSN_LOOP_VTOP:
1726 case NOTE_INSN_FUNCTION_END:
1727 case NOTE_INSN_REPEATED_LINE_NUMBER:
1728 case NOTE_INSN_EXPECTED_VALUE:
1729 break;
1730
1731 case NOTE_INSN_BASIC_BLOCK:
1732 #ifdef IA64_UNWIND_INFO
1733 IA64_UNWIND_EMIT (asm_out_file, insn);
1734 #endif
1735 if (flag_debug_asm)
1736 fprintf (asm_out_file, "\t%s basic block %d\n",
1737 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1738 break;
1739
1740 case NOTE_INSN_EH_REGION_BEG:
1741 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1742 NOTE_EH_HANDLER (insn));
1743 break;
1744
1745 case NOTE_INSN_EH_REGION_END:
1746 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1747 NOTE_EH_HANDLER (insn));
1748 break;
1749
1750 case NOTE_INSN_PROLOGUE_END:
1751 (*targetm.asm_out.function_end_prologue) (file);
1752 profile_after_prologue (file);
1753 break;
1754
1755 case NOTE_INSN_EPILOGUE_BEG:
1756 (*targetm.asm_out.function_begin_epilogue) (file);
1757 break;
1758
1759 case NOTE_INSN_FUNCTION_BEG:
1760 app_disable ();
1761 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1762 break;
1763
1764 case NOTE_INSN_BLOCK_BEG:
1765 if (debug_info_level == DINFO_LEVEL_NORMAL
1766 || debug_info_level == DINFO_LEVEL_VERBOSE
1767 || write_symbols == DWARF_DEBUG
1768 || write_symbols == DWARF2_DEBUG
1769 || write_symbols == VMS_AND_DWARF2_DEBUG
1770 || write_symbols == VMS_DEBUG)
1771 {
1772 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1773
1774 app_disable ();
1775 ++block_depth;
1776 high_block_linenum = last_linenum;
1777
1778 /* Output debugging info about the symbol-block beginning. */
1779 (*debug_hooks->begin_block) (last_linenum, n);
1780
1781 /* Mark this block as output. */
1782 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1783 }
1784 break;
1785
1786 case NOTE_INSN_BLOCK_END:
1787 if (debug_info_level == DINFO_LEVEL_NORMAL
1788 || debug_info_level == DINFO_LEVEL_VERBOSE
1789 || write_symbols == DWARF_DEBUG
1790 || write_symbols == DWARF2_DEBUG
1791 || write_symbols == VMS_AND_DWARF2_DEBUG
1792 || write_symbols == VMS_DEBUG)
1793 {
1794 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1795
1796 app_disable ();
1797
1798 /* End of a symbol-block. */
1799 --block_depth;
1800 if (block_depth < 0)
1801 abort ();
1802
1803 (*debug_hooks->end_block) (high_block_linenum, n);
1804 }
1805 break;
1806
1807 case NOTE_INSN_DELETED_LABEL:
1808 /* Emit the label. We may have deleted the CODE_LABEL because
1809 the label could be proved to be unreachable, though still
1810 referenced (in the form of having its address taken. */
1811 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1812 break;
1813
1814 case 0:
1815 break;
1816
1817 default:
1818 if (NOTE_LINE_NUMBER (insn) <= 0)
1819 abort ();
1820
1821 /* This note is a line-number. */
1822 {
1823 rtx note;
1824 int note_after = 0;
1825
1826 /* If there is anything real after this note, output it.
1827 If another line note follows, omit this one. */
1828 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
1829 {
1830 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
1831 break;
1832
1833 /* These types of notes can be significant
1834 so make sure the preceding line number stays. */
1835 else if (GET_CODE (note) == NOTE
1836 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
1837 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
1838 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
1839 break;
1840 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
1841 {
1842 /* Another line note follows; we can delete this note
1843 if no intervening line numbers have notes elsewhere. */
1844 int num;
1845 for (num = NOTE_LINE_NUMBER (insn) + 1;
1846 num < NOTE_LINE_NUMBER (note);
1847 num++)
1848 if (line_note_exists[num])
1849 break;
1850
1851 if (num >= NOTE_LINE_NUMBER (note))
1852 note_after = 1;
1853 break;
1854 }
1855 }
1856
1857 /* Output this line note if it is the first or the last line
1858 note in a row. */
1859 if (!note_after)
1860 {
1861 notice_source_line (insn);
1862 (*debug_hooks->source_line) (last_linenum, last_filename);
1863 }
1864 }
1865 break;
1866 }
1867 break;
1868
1869 case BARRIER:
1870 #if defined (DWARF2_UNWIND_INFO)
1871 if (dwarf2out_do_frame ())
1872 dwarf2out_frame_debug (insn);
1873 #endif
1874 break;
1875
1876 case CODE_LABEL:
1877 /* The target port might emit labels in the output function for
1878 some insn, e.g. sh.c output_branchy_insn. */
1879 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1880 {
1881 int align = LABEL_TO_ALIGNMENT (insn);
1882 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1883 int max_skip = LABEL_TO_MAX_SKIP (insn);
1884 #endif
1885
1886 if (align && NEXT_INSN (insn))
1887 {
1888 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1889 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1890 #else
1891 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1892 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1893 #else
1894 ASM_OUTPUT_ALIGN (file, align);
1895 #endif
1896 #endif
1897 }
1898 }
1899 #ifdef HAVE_cc0
1900 CC_STATUS_INIT;
1901 /* If this label is reached from only one place, set the condition
1902 codes from the instruction just before the branch. */
1903
1904 /* Disabled because some insns set cc_status in the C output code
1905 and NOTICE_UPDATE_CC alone can set incorrect status. */
1906 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1907 {
1908 rtx jump = LABEL_REFS (insn);
1909 rtx barrier = prev_nonnote_insn (insn);
1910 rtx prev;
1911 /* If the LABEL_REFS field of this label has been set to point
1912 at a branch, the predecessor of the branch is a regular
1913 insn, and that branch is the only way to reach this label,
1914 set the condition codes based on the branch and its
1915 predecessor. */
1916 if (barrier && GET_CODE (barrier) == BARRIER
1917 && jump && GET_CODE (jump) == JUMP_INSN
1918 && (prev = prev_nonnote_insn (jump))
1919 && GET_CODE (prev) == INSN)
1920 {
1921 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1922 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1923 }
1924 }
1925 #endif
1926 if (prescan > 0)
1927 break;
1928
1929 #ifdef FINAL_PRESCAN_LABEL
1930 FINAL_PRESCAN_INSN (insn, NULL, 0);
1931 #endif
1932
1933 if (LABEL_NAME (insn))
1934 (*debug_hooks->label) (insn);
1935
1936 if (app_on)
1937 {
1938 fputs (ASM_APP_OFF, file);
1939 app_on = 0;
1940 }
1941 if (NEXT_INSN (insn) != 0
1942 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
1943 {
1944 rtx nextbody = PATTERN (NEXT_INSN (insn));
1945
1946 /* If this label is followed by a jump-table,
1947 make sure we put the label in the read-only section. Also
1948 possibly write the label and jump table together. */
1949
1950 if (GET_CODE (nextbody) == ADDR_VEC
1951 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1952 {
1953 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1954 /* In this case, the case vector is being moved by the
1955 target, so don't output the label at all. Leave that
1956 to the back end macros. */
1957 #else
1958 if (! JUMP_TABLES_IN_TEXT_SECTION)
1959 {
1960 int log_align;
1961
1962 readonly_data_section ();
1963
1964 #ifdef ADDR_VEC_ALIGN
1965 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1966 #else
1967 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1968 #endif
1969 ASM_OUTPUT_ALIGN (file, log_align);
1970 }
1971 else
1972 function_section (current_function_decl);
1973
1974 #ifdef ASM_OUTPUT_CASE_LABEL
1975 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1976 NEXT_INSN (insn));
1977 #else
1978 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1979 #endif
1980 #endif
1981 break;
1982 }
1983 }
1984 if (LABEL_ALT_ENTRY_P (insn))
1985 output_alternate_entry_point (file, insn);
1986 else
1987 (*targetm.asm_out.internal_label) (file, "L", CODE_LABEL_NUMBER (insn));
1988 break;
1989
1990 default:
1991 {
1992 rtx body = PATTERN (insn);
1993 int insn_code_number;
1994 const char *template;
1995 rtx note;
1996
1997 /* An INSN, JUMP_INSN or CALL_INSN.
1998 First check for special kinds that recog doesn't recognize. */
1999
2000 if (GET_CODE (body) == USE /* These are just declarations */
2001 || GET_CODE (body) == CLOBBER)
2002 break;
2003
2004 #ifdef HAVE_cc0
2005 /* If there is a REG_CC_SETTER note on this insn, it means that
2006 the setting of the condition code was done in the delay slot
2007 of the insn that branched here. So recover the cc status
2008 from the insn that set it. */
2009
2010 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2011 if (note)
2012 {
2013 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2014 cc_prev_status = cc_status;
2015 }
2016 #endif
2017
2018 /* Detect insns that are really jump-tables
2019 and output them as such. */
2020
2021 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2022 {
2023 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2024 int vlen, idx;
2025 #endif
2026
2027 if (prescan > 0)
2028 break;
2029
2030 if (app_on)
2031 {
2032 fputs (ASM_APP_OFF, file);
2033 app_on = 0;
2034 }
2035
2036 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2037 if (GET_CODE (body) == ADDR_VEC)
2038 {
2039 #ifdef ASM_OUTPUT_ADDR_VEC
2040 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2041 #else
2042 abort ();
2043 #endif
2044 }
2045 else
2046 {
2047 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2048 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2049 #else
2050 abort ();
2051 #endif
2052 }
2053 #else
2054 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2055 for (idx = 0; idx < vlen; idx++)
2056 {
2057 if (GET_CODE (body) == ADDR_VEC)
2058 {
2059 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2060 ASM_OUTPUT_ADDR_VEC_ELT
2061 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2062 #else
2063 abort ();
2064 #endif
2065 }
2066 else
2067 {
2068 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2069 ASM_OUTPUT_ADDR_DIFF_ELT
2070 (file,
2071 body,
2072 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2073 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2074 #else
2075 abort ();
2076 #endif
2077 }
2078 }
2079 #ifdef ASM_OUTPUT_CASE_END
2080 ASM_OUTPUT_CASE_END (file,
2081 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2082 insn);
2083 #endif
2084 #endif
2085
2086 function_section (current_function_decl);
2087
2088 break;
2089 }
2090
2091 if (GET_CODE (body) == ASM_INPUT)
2092 {
2093 const char *string = XSTR (body, 0);
2094
2095 /* There's no telling what that did to the condition codes. */
2096 CC_STATUS_INIT;
2097 if (prescan > 0)
2098 break;
2099
2100 if (string[0])
2101 {
2102 if (! app_on)
2103 {
2104 fputs (ASM_APP_ON, file);
2105 app_on = 1;
2106 }
2107 fprintf (asm_out_file, "\t%s\n", string);
2108 }
2109 break;
2110 }
2111
2112 /* Detect `asm' construct with operands. */
2113 if (asm_noperands (body) >= 0)
2114 {
2115 unsigned int noperands = asm_noperands (body);
2116 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2117 const char *string;
2118
2119 /* There's no telling what that did to the condition codes. */
2120 CC_STATUS_INIT;
2121 if (prescan > 0)
2122 break;
2123
2124 /* Get out the operand values. */
2125 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2126 /* Inhibit aborts on what would otherwise be compiler bugs. */
2127 insn_noperands = noperands;
2128 this_is_asm_operands = insn;
2129
2130 /* Output the insn using them. */
2131 if (string[0])
2132 {
2133 if (! app_on)
2134 {
2135 fputs (ASM_APP_ON, file);
2136 app_on = 1;
2137 }
2138 output_asm_insn (string, ops);
2139 }
2140
2141 this_is_asm_operands = 0;
2142 break;
2143 }
2144
2145 if (prescan <= 0 && app_on)
2146 {
2147 fputs (ASM_APP_OFF, file);
2148 app_on = 0;
2149 }
2150
2151 if (GET_CODE (body) == SEQUENCE)
2152 {
2153 /* A delayed-branch sequence */
2154 int i;
2155 rtx next;
2156
2157 if (prescan > 0)
2158 break;
2159 final_sequence = body;
2160
2161 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2162 force the restoration of a comparison that was previously
2163 thought unnecessary. If that happens, cancel this sequence
2164 and cause that insn to be restored. */
2165
2166 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2167 if (next != XVECEXP (body, 0, 1))
2168 {
2169 final_sequence = 0;
2170 return next;
2171 }
2172
2173 for (i = 1; i < XVECLEN (body, 0); i++)
2174 {
2175 rtx insn = XVECEXP (body, 0, i);
2176 rtx next = NEXT_INSN (insn);
2177 /* We loop in case any instruction in a delay slot gets
2178 split. */
2179 do
2180 insn = final_scan_insn (insn, file, 0, prescan, 1);
2181 while (insn != next);
2182 }
2183 #ifdef DBR_OUTPUT_SEQEND
2184 DBR_OUTPUT_SEQEND (file);
2185 #endif
2186 final_sequence = 0;
2187
2188 /* If the insn requiring the delay slot was a CALL_INSN, the
2189 insns in the delay slot are actually executed before the
2190 called function. Hence we don't preserve any CC-setting
2191 actions in these insns and the CC must be marked as being
2192 clobbered by the function. */
2193 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2194 {
2195 CC_STATUS_INIT;
2196 }
2197 break;
2198 }
2199
2200 /* We have a real machine instruction as rtl. */
2201
2202 body = PATTERN (insn);
2203
2204 #ifdef HAVE_cc0
2205 set = single_set (insn);
2206
2207 /* Check for redundant test and compare instructions
2208 (when the condition codes are already set up as desired).
2209 This is done only when optimizing; if not optimizing,
2210 it should be possible for the user to alter a variable
2211 with the debugger in between statements
2212 and the next statement should reexamine the variable
2213 to compute the condition codes. */
2214
2215 if (optimize)
2216 {
2217 #if 0
2218 rtx set = single_set (insn);
2219 #endif
2220
2221 if (set
2222 && GET_CODE (SET_DEST (set)) == CC0
2223 && insn != last_ignored_compare)
2224 {
2225 if (GET_CODE (SET_SRC (set)) == SUBREG)
2226 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2227 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2228 {
2229 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2230 XEXP (SET_SRC (set), 0)
2231 = alter_subreg (&XEXP (SET_SRC (set), 0));
2232 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2233 XEXP (SET_SRC (set), 1)
2234 = alter_subreg (&XEXP (SET_SRC (set), 1));
2235 }
2236 if ((cc_status.value1 != 0
2237 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2238 || (cc_status.value2 != 0
2239 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2240 {
2241 /* Don't delete insn if it has an addressing side-effect. */
2242 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2243 /* or if anything in it is volatile. */
2244 && ! volatile_refs_p (PATTERN (insn)))
2245 {
2246 /* We don't really delete the insn; just ignore it. */
2247 last_ignored_compare = insn;
2248 break;
2249 }
2250 }
2251 }
2252 }
2253 #endif
2254
2255 #ifndef STACK_REGS
2256 /* Don't bother outputting obvious no-ops, even without -O.
2257 This optimization is fast and doesn't interfere with debugging.
2258 Don't do this if the insn is in a delay slot, since this
2259 will cause an improper number of delay insns to be written. */
2260 if (final_sequence == 0
2261 && prescan >= 0
2262 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2263 && GET_CODE (SET_SRC (body)) == REG
2264 && GET_CODE (SET_DEST (body)) == REG
2265 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2266 break;
2267 #endif
2268
2269 #ifdef HAVE_cc0
2270 /* If this is a conditional branch, maybe modify it
2271 if the cc's are in a nonstandard state
2272 so that it accomplishes the same thing that it would
2273 do straightforwardly if the cc's were set up normally. */
2274
2275 if (cc_status.flags != 0
2276 && GET_CODE (insn) == JUMP_INSN
2277 && GET_CODE (body) == SET
2278 && SET_DEST (body) == pc_rtx
2279 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2280 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2281 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2282 /* This is done during prescan; it is not done again
2283 in final scan when prescan has been done. */
2284 && prescan >= 0)
2285 {
2286 /* This function may alter the contents of its argument
2287 and clear some of the cc_status.flags bits.
2288 It may also return 1 meaning condition now always true
2289 or -1 meaning condition now always false
2290 or 2 meaning condition nontrivial but altered. */
2291 int result = alter_cond (XEXP (SET_SRC (body), 0));
2292 /* If condition now has fixed value, replace the IF_THEN_ELSE
2293 with its then-operand or its else-operand. */
2294 if (result == 1)
2295 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2296 if (result == -1)
2297 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2298
2299 /* The jump is now either unconditional or a no-op.
2300 If it has become a no-op, don't try to output it.
2301 (It would not be recognized.) */
2302 if (SET_SRC (body) == pc_rtx)
2303 {
2304 delete_insn (insn);
2305 break;
2306 }
2307 else if (GET_CODE (SET_SRC (body)) == RETURN)
2308 /* Replace (set (pc) (return)) with (return). */
2309 PATTERN (insn) = body = SET_SRC (body);
2310
2311 /* Rerecognize the instruction if it has changed. */
2312 if (result != 0)
2313 INSN_CODE (insn) = -1;
2314 }
2315
2316 /* Make same adjustments to instructions that examine the
2317 condition codes without jumping and instructions that
2318 handle conditional moves (if this machine has either one). */
2319
2320 if (cc_status.flags != 0
2321 && set != 0)
2322 {
2323 rtx cond_rtx, then_rtx, else_rtx;
2324
2325 if (GET_CODE (insn) != JUMP_INSN
2326 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2327 {
2328 cond_rtx = XEXP (SET_SRC (set), 0);
2329 then_rtx = XEXP (SET_SRC (set), 1);
2330 else_rtx = XEXP (SET_SRC (set), 2);
2331 }
2332 else
2333 {
2334 cond_rtx = SET_SRC (set);
2335 then_rtx = const_true_rtx;
2336 else_rtx = const0_rtx;
2337 }
2338
2339 switch (GET_CODE (cond_rtx))
2340 {
2341 case GTU:
2342 case GT:
2343 case LTU:
2344 case LT:
2345 case GEU:
2346 case GE:
2347 case LEU:
2348 case LE:
2349 case EQ:
2350 case NE:
2351 {
2352 int result;
2353 if (XEXP (cond_rtx, 0) != cc0_rtx)
2354 break;
2355 result = alter_cond (cond_rtx);
2356 if (result == 1)
2357 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2358 else if (result == -1)
2359 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2360 else if (result == 2)
2361 INSN_CODE (insn) = -1;
2362 if (SET_DEST (set) == SET_SRC (set))
2363 delete_insn (insn);
2364 }
2365 break;
2366
2367 default:
2368 break;
2369 }
2370 }
2371
2372 #endif
2373
2374 #ifdef HAVE_peephole
2375 /* Do machine-specific peephole optimizations if desired. */
2376
2377 if (optimize && !flag_no_peephole && !nopeepholes)
2378 {
2379 rtx next = peephole (insn);
2380 /* When peepholing, if there were notes within the peephole,
2381 emit them before the peephole. */
2382 if (next != 0 && next != NEXT_INSN (insn))
2383 {
2384 rtx prev = PREV_INSN (insn);
2385
2386 for (note = NEXT_INSN (insn); note != next;
2387 note = NEXT_INSN (note))
2388 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2389
2390 /* In case this is prescan, put the notes
2391 in proper position for later rescan. */
2392 note = NEXT_INSN (insn);
2393 PREV_INSN (note) = prev;
2394 NEXT_INSN (prev) = note;
2395 NEXT_INSN (PREV_INSN (next)) = insn;
2396 PREV_INSN (insn) = PREV_INSN (next);
2397 NEXT_INSN (insn) = next;
2398 PREV_INSN (next) = insn;
2399 }
2400
2401 /* PEEPHOLE might have changed this. */
2402 body = PATTERN (insn);
2403 }
2404 #endif
2405
2406 /* Try to recognize the instruction.
2407 If successful, verify that the operands satisfy the
2408 constraints for the instruction. Crash if they don't,
2409 since `reload' should have changed them so that they do. */
2410
2411 insn_code_number = recog_memoized (insn);
2412 cleanup_subreg_operands (insn);
2413
2414 /* Dump the insn in the assembly for debugging. */
2415 if (flag_dump_rtl_in_asm)
2416 {
2417 print_rtx_head = ASM_COMMENT_START;
2418 print_rtl_single (asm_out_file, insn);
2419 print_rtx_head = "";
2420 }
2421
2422 if (! constrain_operands_cached (1))
2423 fatal_insn_not_found (insn);
2424
2425 /* Some target machines need to prescan each insn before
2426 it is output. */
2427
2428 #ifdef FINAL_PRESCAN_INSN
2429 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2430 #endif
2431
2432 #ifdef HAVE_conditional_execution
2433 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2434 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2435 else
2436 current_insn_predicate = NULL_RTX;
2437 #endif
2438
2439 #ifdef HAVE_cc0
2440 cc_prev_status = cc_status;
2441
2442 /* Update `cc_status' for this instruction.
2443 The instruction's output routine may change it further.
2444 If the output routine for a jump insn needs to depend
2445 on the cc status, it should look at cc_prev_status. */
2446
2447 NOTICE_UPDATE_CC (body, insn);
2448 #endif
2449
2450 current_output_insn = debug_insn = insn;
2451
2452 #if defined (DWARF2_UNWIND_INFO)
2453 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2454 dwarf2out_frame_debug (insn);
2455 #endif
2456
2457 /* Find the proper template for this insn. */
2458 template = get_insn_template (insn_code_number, insn);
2459
2460 /* If the C code returns 0, it means that it is a jump insn
2461 which follows a deleted test insn, and that test insn
2462 needs to be reinserted. */
2463 if (template == 0)
2464 {
2465 rtx prev;
2466
2467 if (prev_nonnote_insn (insn) != last_ignored_compare)
2468 abort ();
2469
2470 /* We have already processed the notes between the setter and
2471 the user. Make sure we don't process them again, this is
2472 particularly important if one of the notes is a block
2473 scope note or an EH note. */
2474 for (prev = insn;
2475 prev != last_ignored_compare;
2476 prev = PREV_INSN (prev))
2477 {
2478 if (GET_CODE (prev) == NOTE)
2479 delete_insn (prev); /* Use delete_note. */
2480 }
2481
2482 return prev;
2483 }
2484
2485 /* If the template is the string "#", it means that this insn must
2486 be split. */
2487 if (template[0] == '#' && template[1] == '\0')
2488 {
2489 rtx new = try_split (body, insn, 0);
2490
2491 /* If we didn't split the insn, go away. */
2492 if (new == insn && PATTERN (new) == body)
2493 fatal_insn ("could not split insn", insn);
2494
2495 #ifdef HAVE_ATTR_length
2496 /* This instruction should have been split in shorten_branches,
2497 to ensure that we would have valid length info for the
2498 splitees. */
2499 abort ();
2500 #endif
2501
2502 return new;
2503 }
2504
2505 if (prescan > 0)
2506 break;
2507
2508 #ifdef IA64_UNWIND_INFO
2509 IA64_UNWIND_EMIT (asm_out_file, insn);
2510 #endif
2511 /* Output assembler code from the template. */
2512
2513 output_asm_insn (template, recog_data.operand);
2514
2515 #if defined (DWARF2_UNWIND_INFO)
2516 #if defined (HAVE_prologue)
2517 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2518 dwarf2out_frame_debug (insn);
2519 #else
2520 if (!ACCUMULATE_OUTGOING_ARGS
2521 && GET_CODE (insn) == INSN
2522 && dwarf2out_do_frame ())
2523 dwarf2out_frame_debug (insn);
2524 #endif
2525 #endif
2526
2527 #if 0
2528 /* It's not at all clear why we did this and doing so interferes
2529 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2530 with this out. */
2531
2532 /* Mark this insn as having been output. */
2533 INSN_DELETED_P (insn) = 1;
2534 #endif
2535
2536 /* Emit information for vtable gc. */
2537 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2538 if (note)
2539 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2540 INTVAL (XEXP (XEXP (note, 0), 1)));
2541
2542 current_output_insn = debug_insn = 0;
2543 }
2544 }
2545 return NEXT_INSN (insn);
2546 }
2547 \f
2548 /* Output debugging info to the assembler file FILE
2549 based on the NOTE-insn INSN, assumed to be a line number. */
2550
2551 static void
2552 notice_source_line (insn)
2553 rtx insn;
2554 {
2555 const char *filename = NOTE_SOURCE_FILE (insn);
2556
2557 last_filename = filename;
2558 last_linenum = NOTE_LINE_NUMBER (insn);
2559 high_block_linenum = MAX (last_linenum, high_block_linenum);
2560 high_function_linenum = MAX (last_linenum, high_function_linenum);
2561 }
2562 \f
2563 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2564 directly to the desired hard register. */
2565
2566 void
2567 cleanup_subreg_operands (insn)
2568 rtx insn;
2569 {
2570 int i;
2571 extract_insn_cached (insn);
2572 for (i = 0; i < recog_data.n_operands; i++)
2573 {
2574 /* The following test cannot use recog_data.operand when tesing
2575 for a SUBREG: the underlying object might have been changed
2576 already if we are inside a match_operator expression that
2577 matches the else clause. Instead we test the underlying
2578 expression directly. */
2579 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2580 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2581 else if (GET_CODE (recog_data.operand[i]) == PLUS
2582 || GET_CODE (recog_data.operand[i]) == MULT
2583 || GET_CODE (recog_data.operand[i]) == MEM)
2584 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2585 }
2586
2587 for (i = 0; i < recog_data.n_dups; i++)
2588 {
2589 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2590 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2591 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2592 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2593 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2594 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2595 }
2596 }
2597
2598 /* If X is a SUBREG, replace it with a REG or a MEM,
2599 based on the thing it is a subreg of. */
2600
2601 rtx
2602 alter_subreg (xp)
2603 rtx *xp;
2604 {
2605 rtx x = *xp;
2606 rtx y = SUBREG_REG (x);
2607
2608 /* simplify_subreg does not remove subreg from volatile references.
2609 We are required to. */
2610 if (GET_CODE (y) == MEM)
2611 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2612 else
2613 {
2614 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2615 SUBREG_BYTE (x));
2616
2617 if (new != 0)
2618 *xp = new;
2619 /* Simplify_subreg can't handle some REG cases, but we have to. */
2620 else if (GET_CODE (y) == REG)
2621 {
2622 unsigned int regno = subreg_hard_regno (x, 1);
2623 PUT_CODE (x, REG);
2624 REGNO (x) = regno;
2625 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2626 /* This field has a different meaning for REGs and SUBREGs. Make
2627 sure to clear it! */
2628 RTX_FLAG (x, used) = 0;
2629 }
2630 else
2631 abort ();
2632 }
2633
2634 return *xp;
2635 }
2636
2637 /* Do alter_subreg on all the SUBREGs contained in X. */
2638
2639 static rtx
2640 walk_alter_subreg (xp)
2641 rtx *xp;
2642 {
2643 rtx x = *xp;
2644 switch (GET_CODE (x))
2645 {
2646 case PLUS:
2647 case MULT:
2648 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2649 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2650 break;
2651
2652 case MEM:
2653 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2654 break;
2655
2656 case SUBREG:
2657 return alter_subreg (xp);
2658
2659 default:
2660 break;
2661 }
2662
2663 return *xp;
2664 }
2665 \f
2666 #ifdef HAVE_cc0
2667
2668 /* Given BODY, the body of a jump instruction, alter the jump condition
2669 as required by the bits that are set in cc_status.flags.
2670 Not all of the bits there can be handled at this level in all cases.
2671
2672 The value is normally 0.
2673 1 means that the condition has become always true.
2674 -1 means that the condition has become always false.
2675 2 means that COND has been altered. */
2676
2677 static int
2678 alter_cond (cond)
2679 rtx cond;
2680 {
2681 int value = 0;
2682
2683 if (cc_status.flags & CC_REVERSED)
2684 {
2685 value = 2;
2686 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2687 }
2688
2689 if (cc_status.flags & CC_INVERTED)
2690 {
2691 value = 2;
2692 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2693 }
2694
2695 if (cc_status.flags & CC_NOT_POSITIVE)
2696 switch (GET_CODE (cond))
2697 {
2698 case LE:
2699 case LEU:
2700 case GEU:
2701 /* Jump becomes unconditional. */
2702 return 1;
2703
2704 case GT:
2705 case GTU:
2706 case LTU:
2707 /* Jump becomes no-op. */
2708 return -1;
2709
2710 case GE:
2711 PUT_CODE (cond, EQ);
2712 value = 2;
2713 break;
2714
2715 case LT:
2716 PUT_CODE (cond, NE);
2717 value = 2;
2718 break;
2719
2720 default:
2721 break;
2722 }
2723
2724 if (cc_status.flags & CC_NOT_NEGATIVE)
2725 switch (GET_CODE (cond))
2726 {
2727 case GE:
2728 case GEU:
2729 /* Jump becomes unconditional. */
2730 return 1;
2731
2732 case LT:
2733 case LTU:
2734 /* Jump becomes no-op. */
2735 return -1;
2736
2737 case LE:
2738 case LEU:
2739 PUT_CODE (cond, EQ);
2740 value = 2;
2741 break;
2742
2743 case GT:
2744 case GTU:
2745 PUT_CODE (cond, NE);
2746 value = 2;
2747 break;
2748
2749 default:
2750 break;
2751 }
2752
2753 if (cc_status.flags & CC_NO_OVERFLOW)
2754 switch (GET_CODE (cond))
2755 {
2756 case GEU:
2757 /* Jump becomes unconditional. */
2758 return 1;
2759
2760 case LEU:
2761 PUT_CODE (cond, EQ);
2762 value = 2;
2763 break;
2764
2765 case GTU:
2766 PUT_CODE (cond, NE);
2767 value = 2;
2768 break;
2769
2770 case LTU:
2771 /* Jump becomes no-op. */
2772 return -1;
2773
2774 default:
2775 break;
2776 }
2777
2778 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2779 switch (GET_CODE (cond))
2780 {
2781 default:
2782 abort ();
2783
2784 case NE:
2785 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2786 value = 2;
2787 break;
2788
2789 case EQ:
2790 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2791 value = 2;
2792 break;
2793 }
2794
2795 if (cc_status.flags & CC_NOT_SIGNED)
2796 /* The flags are valid if signed condition operators are converted
2797 to unsigned. */
2798 switch (GET_CODE (cond))
2799 {
2800 case LE:
2801 PUT_CODE (cond, LEU);
2802 value = 2;
2803 break;
2804
2805 case LT:
2806 PUT_CODE (cond, LTU);
2807 value = 2;
2808 break;
2809
2810 case GT:
2811 PUT_CODE (cond, GTU);
2812 value = 2;
2813 break;
2814
2815 case GE:
2816 PUT_CODE (cond, GEU);
2817 value = 2;
2818 break;
2819
2820 default:
2821 break;
2822 }
2823
2824 return value;
2825 }
2826 #endif
2827 \f
2828 /* Report inconsistency between the assembler template and the operands.
2829 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2830
2831 void
2832 output_operand_lossage VPARAMS ((const char *msgid, ...))
2833 {
2834 char *fmt_string;
2835 char *new_message;
2836 const char *pfx_str;
2837 VA_OPEN (ap, msgid);
2838 VA_FIXEDARG (ap, const char *, msgid);
2839
2840 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2841 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2842 vasprintf (&new_message, fmt_string, ap);
2843
2844 if (this_is_asm_operands)
2845 error_for_asm (this_is_asm_operands, "%s", new_message);
2846 else
2847 internal_error ("%s", new_message);
2848
2849 free (fmt_string);
2850 free (new_message);
2851 VA_CLOSE (ap);
2852 }
2853 \f
2854 /* Output of assembler code from a template, and its subroutines. */
2855
2856 /* Annotate the assembly with a comment describing the pattern and
2857 alternative used. */
2858
2859 static void
2860 output_asm_name ()
2861 {
2862 if (debug_insn)
2863 {
2864 int num = INSN_CODE (debug_insn);
2865 fprintf (asm_out_file, "\t%s %d\t%s",
2866 ASM_COMMENT_START, INSN_UID (debug_insn),
2867 insn_data[num].name);
2868 if (insn_data[num].n_alternatives > 1)
2869 fprintf (asm_out_file, "/%d", which_alternative + 1);
2870 #ifdef HAVE_ATTR_length
2871 fprintf (asm_out_file, "\t[length = %d]",
2872 get_attr_length (debug_insn));
2873 #endif
2874 /* Clear this so only the first assembler insn
2875 of any rtl insn will get the special comment for -dp. */
2876 debug_insn = 0;
2877 }
2878 }
2879
2880 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2881 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2882 corresponds to the address of the object and 0 if to the object. */
2883
2884 static tree
2885 get_mem_expr_from_op (op, paddressp)
2886 rtx op;
2887 int *paddressp;
2888 {
2889 tree expr;
2890 int inner_addressp;
2891
2892 *paddressp = 0;
2893
2894 if (op == NULL)
2895 return 0;
2896
2897 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
2898 return REGNO_DECL (ORIGINAL_REGNO (op));
2899 else if (GET_CODE (op) != MEM)
2900 return 0;
2901
2902 if (MEM_EXPR (op) != 0)
2903 return MEM_EXPR (op);
2904
2905 /* Otherwise we have an address, so indicate it and look at the address. */
2906 *paddressp = 1;
2907 op = XEXP (op, 0);
2908
2909 /* First check if we have a decl for the address, then look at the right side
2910 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2911 But don't allow the address to itself be indirect. */
2912 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2913 return expr;
2914 else if (GET_CODE (op) == PLUS
2915 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2916 return expr;
2917
2918 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
2919 || GET_RTX_CLASS (GET_CODE (op)) == '2')
2920 op = XEXP (op, 0);
2921
2922 expr = get_mem_expr_from_op (op, &inner_addressp);
2923 return inner_addressp ? 0 : expr;
2924 }
2925
2926 /* Output operand names for assembler instructions. OPERANDS is the
2927 operand vector, OPORDER is the order to write the operands, and NOPS
2928 is the number of operands to write. */
2929
2930 static void
2931 output_asm_operand_names (operands, oporder, nops)
2932 rtx *operands;
2933 int *oporder;
2934 int nops;
2935 {
2936 int wrote = 0;
2937 int i;
2938
2939 for (i = 0; i < nops; i++)
2940 {
2941 int addressp;
2942 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
2943
2944 if (expr)
2945 {
2946 fprintf (asm_out_file, "%c%s %s",
2947 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
2948 addressp ? "*" : "");
2949 print_mem_expr (asm_out_file, expr);
2950 wrote = 1;
2951 }
2952 }
2953 }
2954
2955 /* Output text from TEMPLATE to the assembler output file,
2956 obeying %-directions to substitute operands taken from
2957 the vector OPERANDS.
2958
2959 %N (for N a digit) means print operand N in usual manner.
2960 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2961 and print the label name with no punctuation.
2962 %cN means require operand N to be a constant
2963 and print the constant expression with no punctuation.
2964 %aN means expect operand N to be a memory address
2965 (not a memory reference!) and print a reference
2966 to that address.
2967 %nN means expect operand N to be a constant
2968 and print a constant expression for minus the value
2969 of the operand, with no other punctuation. */
2970
2971 void
2972 output_asm_insn (template, operands)
2973 const char *template;
2974 rtx *operands;
2975 {
2976 const char *p;
2977 int c;
2978 #ifdef ASSEMBLER_DIALECT
2979 int dialect = 0;
2980 #endif
2981 int oporder[MAX_RECOG_OPERANDS];
2982 char opoutput[MAX_RECOG_OPERANDS];
2983 int ops = 0;
2984
2985 /* An insn may return a null string template
2986 in a case where no assembler code is needed. */
2987 if (*template == 0)
2988 return;
2989
2990 memset (opoutput, 0, sizeof opoutput);
2991 p = template;
2992 putc ('\t', asm_out_file);
2993
2994 #ifdef ASM_OUTPUT_OPCODE
2995 ASM_OUTPUT_OPCODE (asm_out_file, p);
2996 #endif
2997
2998 while ((c = *p++))
2999 switch (c)
3000 {
3001 case '\n':
3002 if (flag_verbose_asm)
3003 output_asm_operand_names (operands, oporder, ops);
3004 if (flag_print_asm_name)
3005 output_asm_name ();
3006
3007 ops = 0;
3008 memset (opoutput, 0, sizeof opoutput);
3009
3010 putc (c, asm_out_file);
3011 #ifdef ASM_OUTPUT_OPCODE
3012 while ((c = *p) == '\t')
3013 {
3014 putc (c, asm_out_file);
3015 p++;
3016 }
3017 ASM_OUTPUT_OPCODE (asm_out_file, p);
3018 #endif
3019 break;
3020
3021 #ifdef ASSEMBLER_DIALECT
3022 case '{':
3023 {
3024 int i;
3025
3026 if (dialect)
3027 output_operand_lossage ("nested assembly dialect alternatives");
3028 else
3029 dialect = 1;
3030
3031 /* If we want the first dialect, do nothing. Otherwise, skip
3032 DIALECT_NUMBER of strings ending with '|'. */
3033 for (i = 0; i < dialect_number; i++)
3034 {
3035 while (*p && *p != '}' && *p++ != '|')
3036 ;
3037 if (*p == '}')
3038 break;
3039 if (*p == '|')
3040 p++;
3041 }
3042
3043 if (*p == '\0')
3044 output_operand_lossage ("unterminated assembly dialect alternative");
3045 }
3046 break;
3047
3048 case '|':
3049 if (dialect)
3050 {
3051 /* Skip to close brace. */
3052 do
3053 {
3054 if (*p == '\0')
3055 {
3056 output_operand_lossage ("unterminated assembly dialect alternative");
3057 break;
3058 }
3059 }
3060 while (*p++ != '}');
3061 dialect = 0;
3062 }
3063 else
3064 putc (c, asm_out_file);
3065 break;
3066
3067 case '}':
3068 if (! dialect)
3069 putc (c, asm_out_file);
3070 dialect = 0;
3071 break;
3072 #endif
3073
3074 case '%':
3075 /* %% outputs a single %. */
3076 if (*p == '%')
3077 {
3078 p++;
3079 putc (c, asm_out_file);
3080 }
3081 /* %= outputs a number which is unique to each insn in the entire
3082 compilation. This is useful for making local labels that are
3083 referred to more than once in a given insn. */
3084 else if (*p == '=')
3085 {
3086 p++;
3087 fprintf (asm_out_file, "%d", insn_counter);
3088 }
3089 /* % followed by a letter and some digits
3090 outputs an operand in a special way depending on the letter.
3091 Letters `acln' are implemented directly.
3092 Other letters are passed to `output_operand' so that
3093 the PRINT_OPERAND macro can define them. */
3094 else if (ISALPHA (*p))
3095 {
3096 int letter = *p++;
3097 c = atoi (p);
3098
3099 if (! ISDIGIT (*p))
3100 output_operand_lossage ("operand number missing after %%-letter");
3101 else if (this_is_asm_operands
3102 && (c < 0 || (unsigned int) c >= insn_noperands))
3103 output_operand_lossage ("operand number out of range");
3104 else if (letter == 'l')
3105 output_asm_label (operands[c]);
3106 else if (letter == 'a')
3107 output_address (operands[c]);
3108 else if (letter == 'c')
3109 {
3110 if (CONSTANT_ADDRESS_P (operands[c]))
3111 output_addr_const (asm_out_file, operands[c]);
3112 else
3113 output_operand (operands[c], 'c');
3114 }
3115 else if (letter == 'n')
3116 {
3117 if (GET_CODE (operands[c]) == CONST_INT)
3118 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3119 - INTVAL (operands[c]));
3120 else
3121 {
3122 putc ('-', asm_out_file);
3123 output_addr_const (asm_out_file, operands[c]);
3124 }
3125 }
3126 else
3127 output_operand (operands[c], letter);
3128
3129 if (!opoutput[c])
3130 oporder[ops++] = c;
3131 opoutput[c] = 1;
3132
3133 while (ISDIGIT (c = *p))
3134 p++;
3135 }
3136 /* % followed by a digit outputs an operand the default way. */
3137 else if (ISDIGIT (*p))
3138 {
3139 c = atoi (p);
3140 if (this_is_asm_operands
3141 && (c < 0 || (unsigned int) c >= insn_noperands))
3142 output_operand_lossage ("operand number out of range");
3143 else
3144 output_operand (operands[c], 0);
3145
3146 if (!opoutput[c])
3147 oporder[ops++] = c;
3148 opoutput[c] = 1;
3149
3150 while (ISDIGIT (c = *p))
3151 p++;
3152 }
3153 /* % followed by punctuation: output something for that
3154 punctuation character alone, with no operand.
3155 The PRINT_OPERAND macro decides what is actually done. */
3156 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3157 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3158 output_operand (NULL_RTX, *p++);
3159 #endif
3160 else
3161 output_operand_lossage ("invalid %%-code");
3162 break;
3163
3164 default:
3165 putc (c, asm_out_file);
3166 }
3167
3168 /* Write out the variable names for operands, if we know them. */
3169 if (flag_verbose_asm)
3170 output_asm_operand_names (operands, oporder, ops);
3171 if (flag_print_asm_name)
3172 output_asm_name ();
3173
3174 putc ('\n', asm_out_file);
3175 }
3176 \f
3177 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3178
3179 void
3180 output_asm_label (x)
3181 rtx x;
3182 {
3183 char buf[256];
3184
3185 if (GET_CODE (x) == LABEL_REF)
3186 x = XEXP (x, 0);
3187 if (GET_CODE (x) == CODE_LABEL
3188 || (GET_CODE (x) == NOTE
3189 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3190 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3191 else
3192 output_operand_lossage ("`%%l' operand isn't a label");
3193
3194 assemble_name (asm_out_file, buf);
3195 }
3196
3197 /* Print operand X using machine-dependent assembler syntax.
3198 The macro PRINT_OPERAND is defined just to control this function.
3199 CODE is a non-digit that preceded the operand-number in the % spec,
3200 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3201 between the % and the digits.
3202 When CODE is a non-letter, X is 0.
3203
3204 The meanings of the letters are machine-dependent and controlled
3205 by PRINT_OPERAND. */
3206
3207 static void
3208 output_operand (x, code)
3209 rtx x;
3210 int code ATTRIBUTE_UNUSED;
3211 {
3212 if (x && GET_CODE (x) == SUBREG)
3213 x = alter_subreg (&x);
3214
3215 /* If X is a pseudo-register, abort now rather than writing trash to the
3216 assembler file. */
3217
3218 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3219 abort ();
3220
3221 PRINT_OPERAND (asm_out_file, x, code);
3222 }
3223
3224 /* Print a memory reference operand for address X
3225 using machine-dependent assembler syntax.
3226 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227
3228 void
3229 output_address (x)
3230 rtx x;
3231 {
3232 walk_alter_subreg (&x);
3233 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3234 }
3235 \f
3236 /* Print an integer constant expression in assembler syntax.
3237 Addition and subtraction are the only arithmetic
3238 that may appear in these expressions. */
3239
3240 void
3241 output_addr_const (file, x)
3242 FILE *file;
3243 rtx x;
3244 {
3245 char buf[256];
3246
3247 restart:
3248 switch (GET_CODE (x))
3249 {
3250 case PC:
3251 putc ('.', file);
3252 break;
3253
3254 case SYMBOL_REF:
3255 #ifdef ASM_OUTPUT_SYMBOL_REF
3256 ASM_OUTPUT_SYMBOL_REF (file, x);
3257 #else
3258 assemble_name (file, XSTR (x, 0));
3259 #endif
3260 break;
3261
3262 case LABEL_REF:
3263 x = XEXP (x, 0);
3264 /* Fall through. */
3265 case CODE_LABEL:
3266 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3267 #ifdef ASM_OUTPUT_LABEL_REF
3268 ASM_OUTPUT_LABEL_REF (file, buf);
3269 #else
3270 assemble_name (file, buf);
3271 #endif
3272 break;
3273
3274 case CONST_INT:
3275 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3276 break;
3277
3278 case CONST:
3279 /* This used to output parentheses around the expression,
3280 but that does not work on the 386 (either ATT or BSD assembler). */
3281 output_addr_const (file, XEXP (x, 0));
3282 break;
3283
3284 case CONST_DOUBLE:
3285 if (GET_MODE (x) == VOIDmode)
3286 {
3287 /* We can use %d if the number is one word and positive. */
3288 if (CONST_DOUBLE_HIGH (x))
3289 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3290 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3291 else if (CONST_DOUBLE_LOW (x) < 0)
3292 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3293 else
3294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3295 }
3296 else
3297 /* We can't handle floating point constants;
3298 PRINT_OPERAND must handle them. */
3299 output_operand_lossage ("floating constant misused");
3300 break;
3301
3302 case PLUS:
3303 /* Some assemblers need integer constants to appear last (eg masm). */
3304 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3305 {
3306 output_addr_const (file, XEXP (x, 1));
3307 if (INTVAL (XEXP (x, 0)) >= 0)
3308 fprintf (file, "+");
3309 output_addr_const (file, XEXP (x, 0));
3310 }
3311 else
3312 {
3313 output_addr_const (file, XEXP (x, 0));
3314 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3315 || INTVAL (XEXP (x, 1)) >= 0)
3316 fprintf (file, "+");
3317 output_addr_const (file, XEXP (x, 1));
3318 }
3319 break;
3320
3321 case MINUS:
3322 /* Avoid outputting things like x-x or x+5-x,
3323 since some assemblers can't handle that. */
3324 x = simplify_subtraction (x);
3325 if (GET_CODE (x) != MINUS)
3326 goto restart;
3327
3328 output_addr_const (file, XEXP (x, 0));
3329 fprintf (file, "-");
3330 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3331 || GET_CODE (XEXP (x, 1)) == PC
3332 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3333 output_addr_const (file, XEXP (x, 1));
3334 else
3335 {
3336 fputs (targetm.asm_out.open_paren, file);
3337 output_addr_const (file, XEXP (x, 1));
3338 fputs (targetm.asm_out.close_paren, file);
3339 }
3340 break;
3341
3342 case ZERO_EXTEND:
3343 case SIGN_EXTEND:
3344 case SUBREG:
3345 output_addr_const (file, XEXP (x, 0));
3346 break;
3347
3348 default:
3349 #ifdef OUTPUT_ADDR_CONST_EXTRA
3350 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3351 break;
3352
3353 fail:
3354 #endif
3355 output_operand_lossage ("invalid expression as operand");
3356 }
3357 }
3358 \f
3359 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3360 %R prints the value of REGISTER_PREFIX.
3361 %L prints the value of LOCAL_LABEL_PREFIX.
3362 %U prints the value of USER_LABEL_PREFIX.
3363 %I prints the value of IMMEDIATE_PREFIX.
3364 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3365 Also supported are %d, %x, %s, %e, %f, %g and %%.
3366
3367 We handle alternate assembler dialects here, just like output_asm_insn. */
3368
3369 void
3370 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3371 {
3372 char buf[10];
3373 char *q, c;
3374
3375 VA_OPEN (argptr, p);
3376 VA_FIXEDARG (argptr, FILE *, file);
3377 VA_FIXEDARG (argptr, const char *, p);
3378
3379 buf[0] = '%';
3380
3381 while ((c = *p++))
3382 switch (c)
3383 {
3384 #ifdef ASSEMBLER_DIALECT
3385 case '{':
3386 {
3387 int i;
3388
3389 /* If we want the first dialect, do nothing. Otherwise, skip
3390 DIALECT_NUMBER of strings ending with '|'. */
3391 for (i = 0; i < dialect_number; i++)
3392 {
3393 while (*p && *p++ != '|')
3394 ;
3395
3396 if (*p == '|')
3397 p++;
3398 }
3399 }
3400 break;
3401
3402 case '|':
3403 /* Skip to close brace. */
3404 while (*p && *p++ != '}')
3405 ;
3406 break;
3407
3408 case '}':
3409 break;
3410 #endif
3411
3412 case '%':
3413 c = *p++;
3414 q = &buf[1];
3415 while (ISDIGIT (c) || c == '.')
3416 {
3417 *q++ = c;
3418 c = *p++;
3419 }
3420 switch (c)
3421 {
3422 case '%':
3423 fprintf (file, "%%");
3424 break;
3425
3426 case 'd': case 'i': case 'u':
3427 case 'x': case 'p': case 'X':
3428 case 'o':
3429 *q++ = c;
3430 *q = 0;
3431 fprintf (file, buf, va_arg (argptr, int));
3432 break;
3433
3434 case 'w':
3435 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3436 but we do not check for those cases. It means that the value
3437 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3438
3439 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3440 #else
3441 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3442 *q++ = 'l';
3443 #else
3444 *q++ = 'l';
3445 *q++ = 'l';
3446 #endif
3447 #endif
3448
3449 *q++ = *p++;
3450 *q = 0;
3451 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3452 break;
3453
3454 case 'l':
3455 *q++ = c;
3456 *q++ = *p++;
3457 *q = 0;
3458 fprintf (file, buf, va_arg (argptr, long));
3459 break;
3460
3461 case 'e':
3462 case 'f':
3463 case 'g':
3464 *q++ = c;
3465 *q = 0;
3466 fprintf (file, buf, va_arg (argptr, double));
3467 break;
3468
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3474
3475 case 'O':
3476 #ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478 #endif
3479 break;
3480
3481 case 'R':
3482 #ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484 #endif
3485 break;
3486
3487 case 'I':
3488 #ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490 #endif
3491 break;
3492
3493 case 'L':
3494 #ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496 #endif
3497 break;
3498
3499 case 'U':
3500 fputs (user_label_prefix, file);
3501 break;
3502
3503 #ifdef ASM_FPRINTF_EXTENSIONS
3504 /* Upper case letters are reserved for general use by asm_fprintf
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
3514
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516 #endif
3517 default:
3518 abort ();
3519 }
3520 break;
3521
3522 default:
3523 fputc (c, file);
3524 }
3525 VA_CLOSE (argptr);
3526 }
3527 \f
3528 /* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3532
3533 void
3534 split_double (value, first, second)
3535 rtx value;
3536 rtx *first, *second;
3537 {
3538 if (GET_CODE (value) == CONST_INT)
3539 {
3540 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3541 {
3542 /* In this case the CONST_INT holds both target words.
3543 Extract the bits from it into two word-sized pieces.
3544 Sign extend each half to HOST_WIDE_INT. */
3545 unsigned HOST_WIDE_INT low, high;
3546 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3547
3548 /* Set sign_bit to the most significant bit of a word. */
3549 sign_bit = 1;
3550 sign_bit <<= BITS_PER_WORD - 1;
3551
3552 /* Set mask so that all bits of the word are set. We could
3553 have used 1 << BITS_PER_WORD instead of basing the
3554 calculation on sign_bit. However, on machines where
3555 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3556 compiler warning, even though the code would never be
3557 executed. */
3558 mask = sign_bit << 1;
3559 mask--;
3560
3561 /* Set sign_extend as any remaining bits. */
3562 sign_extend = ~mask;
3563
3564 /* Pick the lower word and sign-extend it. */
3565 low = INTVAL (value);
3566 low &= mask;
3567 if (low & sign_bit)
3568 low |= sign_extend;
3569
3570 /* Pick the higher word, shifted to the least significant
3571 bits, and sign-extend it. */
3572 high = INTVAL (value);
3573 high >>= BITS_PER_WORD - 1;
3574 high >>= 1;
3575 high &= mask;
3576 if (high & sign_bit)
3577 high |= sign_extend;
3578
3579 /* Store the words in the target machine order. */
3580 if (WORDS_BIG_ENDIAN)
3581 {
3582 *first = GEN_INT (high);
3583 *second = GEN_INT (low);
3584 }
3585 else
3586 {
3587 *first = GEN_INT (low);
3588 *second = GEN_INT (high);
3589 }
3590 }
3591 else
3592 {
3593 /* The rule for using CONST_INT for a wider mode
3594 is that we regard the value as signed.
3595 So sign-extend it. */
3596 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3597 if (WORDS_BIG_ENDIAN)
3598 {
3599 *first = high;
3600 *second = value;
3601 }
3602 else
3603 {
3604 *first = value;
3605 *second = high;
3606 }
3607 }
3608 }
3609 else if (GET_CODE (value) != CONST_DOUBLE)
3610 {
3611 if (WORDS_BIG_ENDIAN)
3612 {
3613 *first = const0_rtx;
3614 *second = value;
3615 }
3616 else
3617 {
3618 *first = value;
3619 *second = const0_rtx;
3620 }
3621 }
3622 else if (GET_MODE (value) == VOIDmode
3623 /* This is the old way we did CONST_DOUBLE integers. */
3624 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3625 {
3626 /* In an integer, the words are defined as most and least significant.
3627 So order them by the target's convention. */
3628 if (WORDS_BIG_ENDIAN)
3629 {
3630 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3631 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3632 }
3633 else
3634 {
3635 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3636 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3637 }
3638 }
3639 else
3640 {
3641 REAL_VALUE_TYPE r;
3642 long l[2];
3643 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3644
3645 /* Note, this converts the REAL_VALUE_TYPE to the target's
3646 format, splits up the floating point double and outputs
3647 exactly 32 bits of it into each of l[0] and l[1] --
3648 not necessarily BITS_PER_WORD bits. */
3649 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3650
3651 /* If 32 bits is an entire word for the target, but not for the host,
3652 then sign-extend on the host so that the number will look the same
3653 way on the host that it would on the target. See for instance
3654 simplify_unary_operation. The #if is needed to avoid compiler
3655 warnings. */
3656
3657 #if HOST_BITS_PER_LONG > 32
3658 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3659 {
3660 if (l[0] & ((long) 1 << 31))
3661 l[0] |= ((long) (-1) << 32);
3662 if (l[1] & ((long) 1 << 31))
3663 l[1] |= ((long) (-1) << 32);
3664 }
3665 #endif
3666
3667 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3668 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3669 }
3670 }
3671 \f
3672 /* Return nonzero if this function has no function calls. */
3673
3674 int
3675 leaf_function_p ()
3676 {
3677 rtx insn;
3678 rtx link;
3679
3680 if (current_function_profile || profile_arc_flag)
3681 return 0;
3682
3683 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3684 {
3685 if (GET_CODE (insn) == CALL_INSN
3686 && ! SIBLING_CALL_P (insn))
3687 return 0;
3688 if (GET_CODE (insn) == INSN
3689 && GET_CODE (PATTERN (insn)) == SEQUENCE
3690 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3691 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3692 return 0;
3693 }
3694 for (link = current_function_epilogue_delay_list;
3695 link;
3696 link = XEXP (link, 1))
3697 {
3698 insn = XEXP (link, 0);
3699
3700 if (GET_CODE (insn) == CALL_INSN
3701 && ! SIBLING_CALL_P (insn))
3702 return 0;
3703 if (GET_CODE (insn) == INSN
3704 && GET_CODE (PATTERN (insn)) == SEQUENCE
3705 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3706 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3707 return 0;
3708 }
3709
3710 return 1;
3711 }
3712
3713 /* Return 1 if branch is a forward branch.
3714 Uses insn_shuid array, so it works only in the final pass. May be used by
3715 output templates to customary add branch prediction hints.
3716 */
3717 int
3718 final_forward_branch_p (insn)
3719 rtx insn;
3720 {
3721 int insn_id, label_id;
3722 if (!uid_shuid)
3723 abort ();
3724 insn_id = INSN_SHUID (insn);
3725 label_id = INSN_SHUID (JUMP_LABEL (insn));
3726 /* We've hit some insns that does not have id information available. */
3727 if (!insn_id || !label_id)
3728 abort ();
3729 return insn_id < label_id;
3730 }
3731
3732 /* On some machines, a function with no call insns
3733 can run faster if it doesn't create its own register window.
3734 When output, the leaf function should use only the "output"
3735 registers. Ordinarily, the function would be compiled to use
3736 the "input" registers to find its arguments; it is a candidate
3737 for leaf treatment if it uses only the "input" registers.
3738 Leaf function treatment means renumbering so the function
3739 uses the "output" registers instead. */
3740
3741 #ifdef LEAF_REGISTERS
3742
3743 /* Return 1 if this function uses only the registers that can be
3744 safely renumbered. */
3745
3746 int
3747 only_leaf_regs_used ()
3748 {
3749 int i;
3750 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3751
3752 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3753 if ((regs_ever_live[i] || global_regs[i])
3754 && ! permitted_reg_in_leaf_functions[i])
3755 return 0;
3756
3757 if (current_function_uses_pic_offset_table
3758 && pic_offset_table_rtx != 0
3759 && GET_CODE (pic_offset_table_rtx) == REG
3760 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3761 return 0;
3762
3763 return 1;
3764 }
3765
3766 /* Scan all instructions and renumber all registers into those
3767 available in leaf functions. */
3768
3769 static void
3770 leaf_renumber_regs (first)
3771 rtx first;
3772 {
3773 rtx insn;
3774
3775 /* Renumber only the actual patterns.
3776 The reg-notes can contain frame pointer refs,
3777 and renumbering them could crash, and should not be needed. */
3778 for (insn = first; insn; insn = NEXT_INSN (insn))
3779 if (INSN_P (insn))
3780 leaf_renumber_regs_insn (PATTERN (insn));
3781 for (insn = current_function_epilogue_delay_list;
3782 insn;
3783 insn = XEXP (insn, 1))
3784 if (INSN_P (XEXP (insn, 0)))
3785 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3786 }
3787
3788 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3789 available in leaf functions. */
3790
3791 void
3792 leaf_renumber_regs_insn (in_rtx)
3793 rtx in_rtx;
3794 {
3795 int i, j;
3796 const char *format_ptr;
3797
3798 if (in_rtx == 0)
3799 return;
3800
3801 /* Renumber all input-registers into output-registers.
3802 renumbered_regs would be 1 for an output-register;
3803 they */
3804
3805 if (GET_CODE (in_rtx) == REG)
3806 {
3807 int newreg;
3808
3809 /* Don't renumber the same reg twice. */
3810 if (in_rtx->used)
3811 return;
3812
3813 newreg = REGNO (in_rtx);
3814 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3815 to reach here as part of a REG_NOTE. */
3816 if (newreg >= FIRST_PSEUDO_REGISTER)
3817 {
3818 in_rtx->used = 1;
3819 return;
3820 }
3821 newreg = LEAF_REG_REMAP (newreg);
3822 if (newreg < 0)
3823 abort ();
3824 regs_ever_live[REGNO (in_rtx)] = 0;
3825 regs_ever_live[newreg] = 1;
3826 REGNO (in_rtx) = newreg;
3827 in_rtx->used = 1;
3828 }
3829
3830 if (INSN_P (in_rtx))
3831 {
3832 /* Inside a SEQUENCE, we find insns.
3833 Renumber just the patterns of these insns,
3834 just as we do for the top-level insns. */
3835 leaf_renumber_regs_insn (PATTERN (in_rtx));
3836 return;
3837 }
3838
3839 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3840
3841 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3842 switch (*format_ptr++)
3843 {
3844 case 'e':
3845 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3846 break;
3847
3848 case 'E':
3849 if (NULL != XVEC (in_rtx, i))
3850 {
3851 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3852 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3853 }
3854 break;
3855
3856 case 'S':
3857 case 's':
3858 case '0':
3859 case 'i':
3860 case 'w':
3861 case 'n':
3862 case 'u':
3863 break;
3864
3865 default:
3866 abort ();
3867 }
3868 }
3869 #endif