g-expect-vms.adb:
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79 #include "vecprim.h"
80
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h" /* Needed for external data
83 declarations for e.g. AIX 4.x. */
84 #endif
85
86 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
87 #include "dwarf2out.h"
88 #endif
89
90 #ifdef DBX_DEBUGGING_INFO
91 #include "dbxout.h"
92 #endif
93
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
97
98 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
99 null default for it to save conditionalization later. */
100 #ifndef CC_STATUS_INIT
101 #define CC_STATUS_INIT
102 #endif
103
104 /* How to start an assembler comment. */
105 #ifndef ASM_COMMENT_START
106 #define ASM_COMMENT_START ";#"
107 #endif
108
109 /* Is the given character a logical line separator for the assembler? */
110 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
111 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
112 #endif
113
114 #ifndef JUMP_TABLES_IN_TEXT_SECTION
115 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 #endif
117
118 /* Bitflags used by final_scan_insn. */
119 #define SEEN_BB 1
120 #define SEEN_NOTE 2
121 #define SEEN_EMITTED 4
122
123 /* Last insn processed by final_scan_insn. */
124 static rtx debug_insn;
125 rtx current_output_insn;
126
127 /* Line number of last NOTE. */
128 static int last_linenum;
129
130 /* Highest line number in current block. */
131 static int high_block_linenum;
132
133 /* Likewise for function. */
134 static int high_function_linenum;
135
136 /* Filename of last NOTE. */
137 static const char *last_filename;
138
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
141
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 rtx this_is_asm_operands;
148
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
151
152 /* Compare optimization flag. */
153
154 static rtx last_ignored_compare = 0;
155
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
158
159 static int insn_counter = 0;
160
161 #ifdef HAVE_cc0
162 /* This variable contains machine-dependent flags (defined in tm.h)
163 set and examined by output routines
164 that describe how to interpret the condition codes properly. */
165
166 CC_STATUS cc_status;
167
168 /* During output of an insn, this contains a copy of cc_status
169 from before the insn. */
170
171 CC_STATUS cc_prev_status;
172 #endif
173
174 /* Indexed by hardware reg number, is 1 if that register is ever
175 used in the current function.
176
177 In life_analysis, or in stupid_life_analysis, this is set
178 up to record the hard regs used explicitly. Reload adds
179 in the hard regs used for holding pseudo regs. Final uses
180 it to generate the code in the function prologue and epilogue
181 to save and restore registers as needed. */
182
183 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184
185 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
186 Unlike regs_ever_live, elements of this array corresponding to
187 eliminable regs like the frame pointer are set if an asm sets them. */
188
189 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190
191 /* Nonzero means current function must be given a frame pointer.
192 Initialized in function.c to 0. Set only in reload1.c as per
193 the needs of the function. */
194
195 int frame_pointer_needed;
196
197 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198
199 static int block_depth;
200
201 /* Nonzero if have enabled APP processing of our assembler output. */
202
203 static int app_on;
204
205 /* If we are outputting an insn sequence, this contains the sequence rtx.
206 Zero otherwise. */
207
208 rtx final_sequence;
209
210 #ifdef ASSEMBLER_DIALECT
211
212 /* Number of the assembler dialect to use, starting at 0. */
213 static int dialect_number;
214 #endif
215
216 #ifdef HAVE_conditional_execution
217 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
218 rtx current_insn_predicate;
219 #endif
220
221 #ifdef HAVE_ATTR_length
222 static int asm_insn_count (rtx);
223 #endif
224 static void profile_function (FILE *);
225 static void profile_after_prologue (FILE *);
226 static bool notice_source_line (rtx);
227 static rtx walk_alter_subreg (rtx *);
228 static void output_asm_name (void);
229 static void output_alternate_entry_point (FILE *, rtx);
230 static tree get_mem_expr_from_op (rtx, int *);
231 static void output_asm_operand_names (rtx *, int *, int);
232 static void output_operand (rtx, int);
233 #ifdef LEAF_REGISTERS
234 static void leaf_renumber_regs (rtx);
235 #endif
236 #ifdef HAVE_cc0
237 static int alter_cond (rtx);
238 #endif
239 #ifndef ADDR_VEC_ALIGN
240 static int final_addr_vec_align (rtx);
241 #endif
242 #ifdef HAVE_ATTR_length
243 static int align_fuzz (rtx, rtx, int, unsigned);
244 #endif
245 \f
246 /* Initialize data in final at the beginning of a compilation. */
247
248 void
249 init_final (const char *filename ATTRIBUTE_UNUSED)
250 {
251 app_on = 0;
252 final_sequence = 0;
253
254 #ifdef ASSEMBLER_DIALECT
255 dialect_number = ASSEMBLER_DIALECT;
256 #endif
257 }
258
259 /* Default target function prologue and epilogue assembler output.
260
261 If not overridden for epilogue code, then the function body itself
262 contains return instructions wherever needed. */
263 void
264 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
265 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Default target hook that outputs nothing to a stream. */
270 void
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
272 {
273 }
274
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
277
278 void
279 app_enable (void)
280 {
281 if (! app_on)
282 {
283 fputs (ASM_APP_ON, asm_out_file);
284 app_on = 1;
285 }
286 }
287
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
290
291 void
292 app_disable (void)
293 {
294 if (app_on)
295 {
296 fputs (ASM_APP_OFF, asm_out_file);
297 app_on = 0;
298 }
299 }
300 \f
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
304
305 #ifdef DELAY_SLOTS
306 int
307 dbr_sequence_length (void)
308 {
309 if (final_sequence != 0)
310 return XVECLEN (final_sequence, 0) - 1;
311 else
312 return 0;
313 }
314 #endif
315 \f
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
318
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
321
322 static int *insn_lengths;
323
324 VEC(int,heap) *insn_addresses_;
325
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid;
328
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address;
331
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address;
334
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align;
337
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
345 comments. */
346
347 struct label_alignment
348 {
349 short alignment;
350 short max_skip;
351 };
352
353 static rtx *uid_align;
354 static int *uid_shuid;
355 static struct label_alignment *label_align;
356
357 /* Indicate that branch shortening hasn't yet been done. */
358
359 void
360 init_insn_lengths (void)
361 {
362 if (uid_shuid)
363 {
364 free (uid_shuid);
365 uid_shuid = 0;
366 }
367 if (insn_lengths)
368 {
369 free (insn_lengths);
370 insn_lengths = 0;
371 insn_lengths_max_uid = 0;
372 }
373 #ifdef HAVE_ATTR_length
374 INSN_ADDRESSES_FREE ();
375 #endif
376 if (uid_align)
377 {
378 free (uid_align);
379 uid_align = 0;
380 }
381 }
382
383 /* Obtain the current length of an insn. If branch shortening has been done,
384 get its actual length. Otherwise, use FALLBACK_FN to calculate the
385 length. */
386 static inline int
387 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
388 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 {
390 #ifdef HAVE_ATTR_length
391 rtx body;
392 int i;
393 int length = 0;
394
395 if (insn_lengths_max_uid > INSN_UID (insn))
396 return insn_lengths[INSN_UID (insn)];
397 else
398 switch (GET_CODE (insn))
399 {
400 case NOTE:
401 case BARRIER:
402 case CODE_LABEL:
403 return 0;
404
405 case CALL_INSN:
406 length = fallback_fn (insn);
407 break;
408
409 case JUMP_INSN:
410 body = PATTERN (insn);
411 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 {
413 /* Alignment is machine-dependent and should be handled by
414 ADDR_VEC_ALIGN. */
415 }
416 else
417 length = fallback_fn (insn);
418 break;
419
420 case INSN:
421 body = PATTERN (insn);
422 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
423 return 0;
424
425 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
426 length = asm_insn_count (body) * fallback_fn (insn);
427 else if (GET_CODE (body) == SEQUENCE)
428 for (i = 0; i < XVECLEN (body, 0); i++)
429 length += get_attr_length (XVECEXP (body, 0, i));
430 else
431 length = fallback_fn (insn);
432 break;
433
434 default:
435 break;
436 }
437
438 #ifdef ADJUST_INSN_LENGTH
439 ADJUST_INSN_LENGTH (insn, length);
440 #endif
441 return length;
442 #else /* not HAVE_ATTR_length */
443 return 0;
444 #define insn_default_length 0
445 #define insn_min_length 0
446 #endif /* not HAVE_ATTR_length */
447 }
448
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its maximum length. */
451 int
452 get_attr_length (rtx insn)
453 {
454 return get_attr_length_1 (insn, insn_default_length);
455 }
456
457 /* Obtain the current length of an insn. If branch shortening has been done,
458 get its actual length. Otherwise, get its minimum length. */
459 int
460 get_attr_min_length (rtx insn)
461 {
462 return get_attr_length_1 (insn, insn_min_length);
463 }
464 \f
465 /* Code to handle alignment inside shorten_branches. */
466
467 /* Here is an explanation how the algorithm in align_fuzz can give
468 proper results:
469
470 Call a sequence of instructions beginning with alignment point X
471 and continuing until the next alignment point `block X'. When `X'
472 is used in an expression, it means the alignment value of the
473 alignment point.
474
475 Call the distance between the start of the first insn of block X, and
476 the end of the last insn of block X `IX', for the `inner size of X'.
477 This is clearly the sum of the instruction lengths.
478
479 Likewise with the next alignment-delimited block following X, which we
480 shall call block Y.
481
482 Call the distance between the start of the first insn of block X, and
483 the start of the first insn of block Y `OX', for the `outer size of X'.
484
485 The estimated padding is then OX - IX.
486
487 OX can be safely estimated as
488
489 if (X >= Y)
490 OX = round_up(IX, Y)
491 else
492 OX = round_up(IX, X) + Y - X
493
494 Clearly est(IX) >= real(IX), because that only depends on the
495 instruction lengths, and those being overestimated is a given.
496
497 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
498 we needn't worry about that when thinking about OX.
499
500 When X >= Y, the alignment provided by Y adds no uncertainty factor
501 for branch ranges starting before X, so we can just round what we have.
502 But when X < Y, we don't know anything about the, so to speak,
503 `middle bits', so we have to assume the worst when aligning up from an
504 address mod X to one mod Y, which is Y - X. */
505
506 #ifndef LABEL_ALIGN
507 #define LABEL_ALIGN(LABEL) align_labels_log
508 #endif
509
510 #ifndef LABEL_ALIGN_MAX_SKIP
511 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
512 #endif
513
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517
518 #ifndef LOOP_ALIGN_MAX_SKIP
519 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
520 #endif
521
522 #ifndef LABEL_ALIGN_AFTER_BARRIER
523 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
524 #endif
525
526 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
527 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
528 #endif
529
530 #ifndef JUMP_ALIGN
531 #define JUMP_ALIGN(LABEL) align_jumps_log
532 #endif
533
534 #ifndef JUMP_ALIGN_MAX_SKIP
535 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
536 #endif
537
538 #ifndef ADDR_VEC_ALIGN
539 static int
540 final_addr_vec_align (rtx addr_vec)
541 {
542 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543
544 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
545 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
546 return exact_log2 (align);
547
548 }
549
550 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #endif
552
553 #ifndef INSN_LENGTH_ALIGNMENT
554 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #endif
556
557 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558
559 static int min_labelno, max_labelno;
560
561 #define LABEL_TO_ALIGNMENT(LABEL) \
562 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563
564 #define LABEL_TO_MAX_SKIP(LABEL) \
565 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566
567 /* For the benefit of port specific code do this also as a function. */
568
569 int
570 label_to_alignment (rtx label)
571 {
572 return LABEL_TO_ALIGNMENT (label);
573 }
574
575 #ifdef HAVE_ATTR_length
576 /* The differences in addresses
577 between a branch and its target might grow or shrink depending on
578 the alignment the start insn of the range (the branch for a forward
579 branch or the label for a backward branch) starts out on; if these
580 differences are used naively, they can even oscillate infinitely.
581 We therefore want to compute a 'worst case' address difference that
582 is independent of the alignment the start insn of the range end
583 up on, and that is at least as large as the actual difference.
584 The function align_fuzz calculates the amount we have to add to the
585 naively computed difference, by traversing the part of the alignment
586 chain of the start insn of the range that is in front of the end insn
587 of the range, and considering for each alignment the maximum amount
588 that it might contribute to a size increase.
589
590 For casesi tables, we also want to know worst case minimum amounts of
591 address difference, in case a machine description wants to introduce
592 some common offset that is added to all offsets in a table.
593 For this purpose, align_fuzz with a growth argument of 0 computes the
594 appropriate adjustment. */
595
596 /* Compute the maximum delta by which the difference of the addresses of
597 START and END might grow / shrink due to a different address for start
598 which changes the size of alignment insns between START and END.
599 KNOWN_ALIGN_LOG is the alignment known for START.
600 GROWTH should be ~0 if the objective is to compute potential code size
601 increase, and 0 if the objective is to compute potential shrink.
602 The return value is undefined for any other value of GROWTH. */
603
604 static int
605 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 {
607 int uid = INSN_UID (start);
608 rtx align_label;
609 int known_align = 1 << known_align_log;
610 int end_shuid = INSN_SHUID (end);
611 int fuzz = 0;
612
613 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 {
615 int align_addr, new_align;
616
617 uid = INSN_UID (align_label);
618 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
619 if (uid_shuid[uid] > end_shuid)
620 break;
621 known_align_log = LABEL_TO_ALIGNMENT (align_label);
622 new_align = 1 << known_align_log;
623 if (new_align < known_align)
624 continue;
625 fuzz += (-align_addr ^ growth) & (new_align - known_align);
626 known_align = new_align;
627 }
628 return fuzz;
629 }
630
631 /* Compute a worst-case reference address of a branch so that it
632 can be safely used in the presence of aligned labels. Since the
633 size of the branch itself is unknown, the size of the branch is
634 not included in the range. I.e. for a forward branch, the reference
635 address is the end address of the branch as known from the previous
636 branch shortening pass, minus a value to account for possible size
637 increase due to alignment. For a backward branch, it is the start
638 address of the branch as known from the current pass, plus a value
639 to account for possible size increase due to alignment.
640 NB.: Therefore, the maximum offset allowed for backward branches needs
641 to exclude the branch size. */
642
643 int
644 insn_current_reference_address (rtx branch)
645 {
646 rtx dest, seq;
647 int seq_uid;
648
649 if (! INSN_ADDRESSES_SET_P ())
650 return 0;
651
652 seq = NEXT_INSN (PREV_INSN (branch));
653 seq_uid = INSN_UID (seq);
654 if (!JUMP_P (branch))
655 /* This can happen for example on the PA; the objective is to know the
656 offset to address something in front of the start of the function.
657 Thus, we can treat it like a backward branch.
658 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
659 any alignment we'd encounter, so we skip the call to align_fuzz. */
660 return insn_current_address;
661 dest = JUMP_LABEL (branch);
662
663 /* BRANCH has no proper alignment chain set, so use SEQ.
664 BRANCH also has no INSN_SHUID. */
665 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 {
667 /* Forward branch. */
668 return (insn_last_address + insn_lengths[seq_uid]
669 - align_fuzz (seq, dest, length_unit_log, ~0));
670 }
671 else
672 {
673 /* Backward branch. */
674 return (insn_current_address
675 + align_fuzz (dest, seq, length_unit_log, ~0));
676 }
677 }
678 #endif /* HAVE_ATTR_length */
679 \f
680 /* Compute branch alignments based on frequency information in the
681 CFG. */
682
683 static unsigned int
684 compute_alignments (void)
685 {
686 int log, max_skip, max_log;
687 basic_block bb;
688
689 if (label_align)
690 {
691 free (label_align);
692 label_align = 0;
693 }
694
695 max_labelno = max_label_num ();
696 min_labelno = get_first_label_num ();
697 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return 0;
702
703 FOR_EACH_BB (bb)
704 {
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
715
716 FOR_EACH_EDGE (e, ei, bb->preds)
717 {
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
722 }
723
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
728
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
733
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 {
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
742 {
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
745 }
746 }
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
753 {
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
756 {
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
759 }
760 }
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
763 }
764 return 0;
765 }
766
767 struct tree_opt_pass pass_compute_alignments =
768 {
769 NULL, /* name */
770 NULL, /* gate */
771 compute_alignments, /* execute */
772 NULL, /* sub */
773 NULL, /* next */
774 0, /* static_pass_number */
775 0, /* tv_id */
776 0, /* properties_required */
777 0, /* properties_provided */
778 0, /* properties_destroyed */
779 0, /* todo_flags_start */
780 0, /* todo_flags_finish */
781 0 /* letter */
782 };
783
784 \f
785 /* Make a pass over all insns and compute their actual lengths by shortening
786 any branches of variable length if possible. */
787
788 /* shorten_branches might be called multiple times: for example, the SH
789 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
790 In order to do this, it needs proper length information, which it obtains
791 by calling shorten_branches. This cannot be collapsed with
792 shorten_branches itself into a single pass unless we also want to integrate
793 reorg.c, since the branch splitting exposes new instructions with delay
794 slots. */
795
796 void
797 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 {
799 rtx insn;
800 int max_uid;
801 int i;
802 int max_log;
803 int max_skip;
804 #ifdef HAVE_ATTR_length
805 #define MAX_CODE_ALIGN 16
806 rtx seq;
807 int something_changed = 1;
808 char *varying_length;
809 rtx body;
810 int uid;
811 rtx align_tab[MAX_CODE_ALIGN];
812
813 #endif
814
815 /* Compute maximum UID and allocate label_align / uid_shuid. */
816 max_uid = get_max_uid ();
817
818 /* Free uid_shuid before reallocating it. */
819 free (uid_shuid);
820
821 uid_shuid = XNEWVEC (int, max_uid);
822
823 if (max_labelno != max_label_num ())
824 {
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
828
829 max_labelno = max_label_num ();
830
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
833
834 label_align = xrealloc (label_align,
835 n_labels * sizeof (struct label_alignment));
836
837 /* Range of labels grows monotonically in the function. Failing here
838 means that the initialization of array got lost. */
839 gcc_assert (n_old_labels <= n_labels);
840
841 memset (label_align + n_old_labels, 0,
842 (n_labels - n_old_labels) * sizeof (struct label_alignment));
843 }
844
845 /* Initialize label_align and set up uid_shuid to be strictly
846 monotonically rising with insn order. */
847 /* We use max_log here to keep track of the maximum alignment we want to
848 impose on the next CODE_LABEL (or the current one if we are processing
849 the CODE_LABEL itself). */
850
851 max_log = 0;
852 max_skip = 0;
853
854 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 {
856 int log;
857
858 INSN_SHUID (insn) = i++;
859 if (INSN_P (insn))
860 continue;
861
862 if (LABEL_P (insn))
863 {
864 rtx next;
865
866 /* Merge in alignments computed by compute_alignments. */
867 log = LABEL_TO_ALIGNMENT (insn);
868 if (max_log < log)
869 {
870 max_log = log;
871 max_skip = LABEL_TO_MAX_SKIP (insn);
872 }
873
874 log = LABEL_ALIGN (insn);
875 if (max_log < log)
876 {
877 max_log = log;
878 max_skip = LABEL_ALIGN_MAX_SKIP;
879 }
880 next = next_nonnote_insn (insn);
881 /* ADDR_VECs only take room if read-only data goes into the text
882 section. */
883 if (JUMP_TABLES_IN_TEXT_SECTION
884 || readonly_data_section == text_section)
885 if (next && JUMP_P (next))
886 {
887 rtx nextbody = PATTERN (next);
888 if (GET_CODE (nextbody) == ADDR_VEC
889 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 {
891 log = ADDR_VEC_ALIGN (next);
892 if (max_log < log)
893 {
894 max_log = log;
895 max_skip = LABEL_ALIGN_MAX_SKIP;
896 }
897 }
898 }
899 LABEL_TO_ALIGNMENT (insn) = max_log;
900 LABEL_TO_MAX_SKIP (insn) = max_skip;
901 max_log = 0;
902 max_skip = 0;
903 }
904 else if (BARRIER_P (insn))
905 {
906 rtx label;
907
908 for (label = insn; label && ! INSN_P (label);
909 label = NEXT_INSN (label))
910 if (LABEL_P (label))
911 {
912 log = LABEL_ALIGN_AFTER_BARRIER (insn);
913 if (max_log < log)
914 {
915 max_log = log;
916 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 }
918 break;
919 }
920 }
921 }
922 #ifdef HAVE_ATTR_length
923
924 /* Allocate the rest of the arrays. */
925 insn_lengths = XNEWVEC (int, max_uid);
926 insn_lengths_max_uid = max_uid;
927 /* Syntax errors can lead to labels being outside of the main insn stream.
928 Initialize insn_addresses, so that we get reproducible results. */
929 INSN_ADDRESSES_ALLOC (max_uid);
930
931 varying_length = XCNEWVEC (char, max_uid);
932
933 /* Initialize uid_align. We scan instructions
934 from end to start, and keep in align_tab[n] the last seen insn
935 that does an alignment of at least n+1, i.e. the successor
936 in the alignment chain for an insn that does / has a known
937 alignment of n. */
938 uid_align = XCNEWVEC (rtx, max_uid);
939
940 for (i = MAX_CODE_ALIGN; --i >= 0;)
941 align_tab[i] = NULL_RTX;
942 seq = get_last_insn ();
943 for (; seq; seq = PREV_INSN (seq))
944 {
945 int uid = INSN_UID (seq);
946 int log;
947 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
948 uid_align[uid] = align_tab[0];
949 if (log)
950 {
951 /* Found an alignment label. */
952 uid_align[uid] = align_tab[log];
953 for (i = log - 1; i >= 0; i--)
954 align_tab[i] = seq;
955 }
956 }
957 #ifdef CASE_VECTOR_SHORTEN_MODE
958 if (optimize)
959 {
960 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
961 label fields. */
962
963 int min_shuid = INSN_SHUID (get_insns ()) - 1;
964 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
965 int rel;
966
967 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 {
969 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
970 int len, i, min, max, insn_shuid;
971 int min_align;
972 addr_diff_vec_flags flags;
973
974 if (!JUMP_P (insn)
975 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
976 continue;
977 pat = PATTERN (insn);
978 len = XVECLEN (pat, 1);
979 gcc_assert (len > 0);
980 min_align = MAX_CODE_ALIGN;
981 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 {
983 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
984 int shuid = INSN_SHUID (lab);
985 if (shuid < min)
986 {
987 min = shuid;
988 min_lab = lab;
989 }
990 if (shuid > max)
991 {
992 max = shuid;
993 max_lab = lab;
994 }
995 if (min_align > LABEL_TO_ALIGNMENT (lab))
996 min_align = LABEL_TO_ALIGNMENT (lab);
997 }
998 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
999 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1000 insn_shuid = INSN_SHUID (insn);
1001 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1002 memset (&flags, 0, sizeof (flags));
1003 flags.min_align = min_align;
1004 flags.base_after_vec = rel > insn_shuid;
1005 flags.min_after_vec = min > insn_shuid;
1006 flags.max_after_vec = max > insn_shuid;
1007 flags.min_after_base = min > rel;
1008 flags.max_after_base = max > rel;
1009 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1010 }
1011 }
1012 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013
1014 /* Compute initial lengths, addresses, and varying flags for each insn. */
1015 for (insn_current_address = 0, insn = first;
1016 insn != 0;
1017 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 {
1019 uid = INSN_UID (insn);
1020
1021 insn_lengths[uid] = 0;
1022
1023 if (LABEL_P (insn))
1024 {
1025 int log = LABEL_TO_ALIGNMENT (insn);
1026 if (log)
1027 {
1028 int align = 1 << log;
1029 int new_address = (insn_current_address + align - 1) & -align;
1030 insn_lengths[uid] = new_address - insn_current_address;
1031 }
1032 }
1033
1034 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035
1036 if (NOTE_P (insn) || BARRIER_P (insn)
1037 || LABEL_P (insn))
1038 continue;
1039 if (INSN_DELETED_P (insn))
1040 continue;
1041
1042 body = PATTERN (insn);
1043 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 {
1045 /* This only takes room if read-only data goes into the text
1046 section. */
1047 if (JUMP_TABLES_IN_TEXT_SECTION
1048 || readonly_data_section == text_section)
1049 insn_lengths[uid] = (XVECLEN (body,
1050 GET_CODE (body) == ADDR_DIFF_VEC)
1051 * GET_MODE_SIZE (GET_MODE (body)));
1052 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 }
1054 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1055 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1056 else if (GET_CODE (body) == SEQUENCE)
1057 {
1058 int i;
1059 int const_delay_slots;
1060 #ifdef DELAY_SLOTS
1061 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1062 #else
1063 const_delay_slots = 0;
1064 #endif
1065 /* Inside a delay slot sequence, we do not do any branch shortening
1066 if the shortening could change the number of delay slots
1067 of the branch. */
1068 for (i = 0; i < XVECLEN (body, 0); i++)
1069 {
1070 rtx inner_insn = XVECEXP (body, 0, i);
1071 int inner_uid = INSN_UID (inner_insn);
1072 int inner_length;
1073
1074 if (GET_CODE (body) == ASM_INPUT
1075 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1076 inner_length = (asm_insn_count (PATTERN (inner_insn))
1077 * insn_default_length (inner_insn));
1078 else
1079 inner_length = insn_default_length (inner_insn);
1080
1081 insn_lengths[inner_uid] = inner_length;
1082 if (const_delay_slots)
1083 {
1084 if ((varying_length[inner_uid]
1085 = insn_variable_length_p (inner_insn)) != 0)
1086 varying_length[uid] = 1;
1087 INSN_ADDRESSES (inner_uid) = (insn_current_address
1088 + insn_lengths[uid]);
1089 }
1090 else
1091 varying_length[inner_uid] = 0;
1092 insn_lengths[uid] += inner_length;
1093 }
1094 }
1095 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 {
1097 insn_lengths[uid] = insn_default_length (insn);
1098 varying_length[uid] = insn_variable_length_p (insn);
1099 }
1100
1101 /* If needed, do any adjustment. */
1102 #ifdef ADJUST_INSN_LENGTH
1103 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1104 if (insn_lengths[uid] < 0)
1105 fatal_insn ("negative insn length", insn);
1106 #endif
1107 }
1108
1109 /* Now loop over all the insns finding varying length insns. For each,
1110 get the current insn length. If it has changed, reflect the change.
1111 When nothing changes for a full pass, we are done. */
1112
1113 while (something_changed)
1114 {
1115 something_changed = 0;
1116 insn_current_align = MAX_CODE_ALIGN - 1;
1117 for (insn_current_address = 0, insn = first;
1118 insn != 0;
1119 insn = NEXT_INSN (insn))
1120 {
1121 int new_length;
1122 #ifdef ADJUST_INSN_LENGTH
1123 int tmp_length;
1124 #endif
1125 int length_align;
1126
1127 uid = INSN_UID (insn);
1128
1129 if (LABEL_P (insn))
1130 {
1131 int log = LABEL_TO_ALIGNMENT (insn);
1132 if (log > insn_current_align)
1133 {
1134 int align = 1 << log;
1135 int new_address= (insn_current_address + align - 1) & -align;
1136 insn_lengths[uid] = new_address - insn_current_address;
1137 insn_current_align = log;
1138 insn_current_address = new_address;
1139 }
1140 else
1141 insn_lengths[uid] = 0;
1142 INSN_ADDRESSES (uid) = insn_current_address;
1143 continue;
1144 }
1145
1146 length_align = INSN_LENGTH_ALIGNMENT (insn);
1147 if (length_align < insn_current_align)
1148 insn_current_align = length_align;
1149
1150 insn_last_address = INSN_ADDRESSES (uid);
1151 INSN_ADDRESSES (uid) = insn_current_address;
1152
1153 #ifdef CASE_VECTOR_SHORTEN_MODE
1154 if (optimize && JUMP_P (insn)
1155 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 {
1157 rtx body = PATTERN (insn);
1158 int old_length = insn_lengths[uid];
1159 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1160 rtx min_lab = XEXP (XEXP (body, 2), 0);
1161 rtx max_lab = XEXP (XEXP (body, 3), 0);
1162 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1163 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1164 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1165 rtx prev;
1166 int rel_align = 0;
1167 addr_diff_vec_flags flags;
1168
1169 /* Avoid automatic aggregate initialization. */
1170 flags = ADDR_DIFF_VEC_FLAGS (body);
1171
1172 /* Try to find a known alignment for rel_lab. */
1173 for (prev = rel_lab;
1174 prev
1175 && ! insn_lengths[INSN_UID (prev)]
1176 && ! (varying_length[INSN_UID (prev)] & 1);
1177 prev = PREV_INSN (prev))
1178 if (varying_length[INSN_UID (prev)] & 2)
1179 {
1180 rel_align = LABEL_TO_ALIGNMENT (prev);
1181 break;
1182 }
1183
1184 /* See the comment on addr_diff_vec_flags in rtl.h for the
1185 meaning of the flags values. base: REL_LAB vec: INSN */
1186 /* Anything after INSN has still addresses from the last
1187 pass; adjust these so that they reflect our current
1188 estimate for this pass. */
1189 if (flags.base_after_vec)
1190 rel_addr += insn_current_address - insn_last_address;
1191 if (flags.min_after_vec)
1192 min_addr += insn_current_address - insn_last_address;
1193 if (flags.max_after_vec)
1194 max_addr += insn_current_address - insn_last_address;
1195 /* We want to know the worst case, i.e. lowest possible value
1196 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1197 its offset is positive, and we have to be wary of code shrink;
1198 otherwise, it is negative, and we have to be vary of code
1199 size increase. */
1200 if (flags.min_after_base)
1201 {
1202 /* If INSN is between REL_LAB and MIN_LAB, the size
1203 changes we are about to make can change the alignment
1204 within the observed offset, therefore we have to break
1205 it up into two parts that are independent. */
1206 if (! flags.base_after_vec && flags.min_after_vec)
1207 {
1208 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1209 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 }
1211 else
1212 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 }
1214 else
1215 {
1216 if (flags.base_after_vec && ! flags.min_after_vec)
1217 {
1218 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1219 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 }
1221 else
1222 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 }
1224 /* Likewise, determine the highest lowest possible value
1225 for the offset of MAX_LAB. */
1226 if (flags.max_after_base)
1227 {
1228 if (! flags.base_after_vec && flags.max_after_vec)
1229 {
1230 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1231 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 }
1233 else
1234 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 }
1236 else
1237 {
1238 if (flags.base_after_vec && ! flags.max_after_vec)
1239 {
1240 max_addr += align_fuzz (max_lab, insn, 0, 0);
1241 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 }
1243 else
1244 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 }
1246 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1247 max_addr - rel_addr,
1248 body));
1249 if (JUMP_TABLES_IN_TEXT_SECTION
1250 || readonly_data_section == text_section)
1251 {
1252 insn_lengths[uid]
1253 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1254 insn_current_address += insn_lengths[uid];
1255 if (insn_lengths[uid] != old_length)
1256 something_changed = 1;
1257 }
1258
1259 continue;
1260 }
1261 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262
1263 if (! (varying_length[uid]))
1264 {
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 {
1268 int i;
1269
1270 body = PATTERN (insn);
1271 for (i = 0; i < XVECLEN (body, 0); i++)
1272 {
1273 rtx inner_insn = XVECEXP (body, 0, i);
1274 int inner_uid = INSN_UID (inner_insn);
1275
1276 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277
1278 insn_current_address += insn_lengths[inner_uid];
1279 }
1280 }
1281 else
1282 insn_current_address += insn_lengths[uid];
1283
1284 continue;
1285 }
1286
1287 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 {
1289 int i;
1290
1291 body = PATTERN (insn);
1292 new_length = 0;
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1294 {
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (inner_insn);
1297 int inner_length;
1298
1299 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300
1301 /* insn_current_length returns 0 for insns with a
1302 non-varying length. */
1303 if (! varying_length[inner_uid])
1304 inner_length = insn_lengths[inner_uid];
1305 else
1306 inner_length = insn_current_length (inner_insn);
1307
1308 if (inner_length != insn_lengths[inner_uid])
1309 {
1310 insn_lengths[inner_uid] = inner_length;
1311 something_changed = 1;
1312 }
1313 insn_current_address += insn_lengths[inner_uid];
1314 new_length += inner_length;
1315 }
1316 }
1317 else
1318 {
1319 new_length = insn_current_length (insn);
1320 insn_current_address += new_length;
1321 }
1322
1323 #ifdef ADJUST_INSN_LENGTH
1324 /* If needed, do any adjustment. */
1325 tmp_length = new_length;
1326 ADJUST_INSN_LENGTH (insn, new_length);
1327 insn_current_address += (new_length - tmp_length);
1328 #endif
1329
1330 if (new_length != insn_lengths[uid])
1331 {
1332 insn_lengths[uid] = new_length;
1333 something_changed = 1;
1334 }
1335 }
1336 /* For a non-optimizing compile, do only a single pass. */
1337 if (!optimize)
1338 break;
1339 }
1340
1341 free (varying_length);
1342
1343 #endif /* HAVE_ATTR_length */
1344 }
1345
1346 #ifdef HAVE_ATTR_length
1347 /* Given the body of an INSN known to be generated by an ASM statement, return
1348 the number of machine instructions likely to be generated for this insn.
1349 This is used to compute its length. */
1350
1351 static int
1352 asm_insn_count (rtx body)
1353 {
1354 const char *template;
1355 int count = 1;
1356
1357 if (GET_CODE (body) == ASM_INPUT)
1358 template = XSTR (body, 0);
1359 else
1360 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1361
1362 for (; *template; template++)
1363 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1364 count++;
1365
1366 return count;
1367 }
1368 #endif
1369 \f
1370 /* Output assembler code for the start of a function,
1371 and initialize some of the variables in this file
1372 for the new function. The label for the function and associated
1373 assembler pseudo-ops have already been output in `assemble_start_function'.
1374
1375 FIRST is the first insn of the rtl for the function being compiled.
1376 FILE is the file to write assembler code to.
1377 OPTIMIZE is nonzero if we should eliminate redundant
1378 test and compare insns. */
1379
1380 void
1381 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1382 int optimize ATTRIBUTE_UNUSED)
1383 {
1384 block_depth = 0;
1385
1386 this_is_asm_operands = 0;
1387
1388 last_filename = locator_file (prologue_locator);
1389 last_linenum = locator_line (prologue_locator);
1390
1391 high_block_linenum = high_function_linenum = last_linenum;
1392
1393 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394
1395 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1396 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1397 dwarf2out_begin_prologue (0, NULL);
1398 #endif
1399
1400 #ifdef LEAF_REG_REMAP
1401 if (current_function_uses_only_leaf_regs)
1402 leaf_renumber_regs (first);
1403 #endif
1404
1405 /* The Sun386i and perhaps other machines don't work right
1406 if the profiling code comes after the prologue. */
1407 #ifdef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* PROFILE_BEFORE_PROLOGUE */
1411
1412 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1413 if (dwarf2out_do_frame ())
1414 dwarf2out_frame_debug (NULL_RTX, false);
1415 #endif
1416
1417 /* If debugging, assign block numbers to all of the blocks in this
1418 function. */
1419 if (write_symbols)
1420 {
1421 reemit_insn_block_notes ();
1422 number_blocks (current_function_decl);
1423 /* We never actually put out begin/end notes for the top-level
1424 block in the function. But, conceptually, that block is
1425 always needed. */
1426 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1427 }
1428
1429 /* First output the function prologue: code to set up the stack frame. */
1430 targetm.asm_out.function_prologue (file, get_frame_size ());
1431
1432 /* If the machine represents the prologue as RTL, the profiling code must
1433 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1434 #ifdef HAVE_prologue
1435 if (! HAVE_prologue)
1436 #endif
1437 profile_after_prologue (file);
1438 }
1439
1440 static void
1441 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 {
1443 #ifndef PROFILE_BEFORE_PROLOGUE
1444 if (current_function_profile)
1445 profile_function (file);
1446 #endif /* not PROFILE_BEFORE_PROLOGUE */
1447 }
1448
1449 static void
1450 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 {
1452 #ifndef NO_PROFILE_COUNTERS
1453 # define NO_PROFILE_COUNTERS 0
1454 #endif
1455 #if defined(ASM_OUTPUT_REG_PUSH)
1456 int sval = current_function_returns_struct;
1457 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1459 int cxt = cfun->static_chain_decl != NULL;
1460 #endif
1461 #endif /* ASM_OUTPUT_REG_PUSH */
1462
1463 if (! NO_PROFILE_COUNTERS)
1464 {
1465 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1466 switch_to_section (data_section);
1467 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1468 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1469 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1470 }
1471
1472 switch_to_section (current_function_section ());
1473
1474 #if defined(ASM_OUTPUT_REG_PUSH)
1475 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1476 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1477 #endif
1478
1479 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1482 #else
1483 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 if (cxt)
1485 {
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 }
1488 #endif
1489 #endif
1490
1491 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492
1493 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (cxt)
1495 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1496 #else
1497 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1498 if (cxt)
1499 {
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 }
1502 #endif
1503 #endif
1504
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1507 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1508 #endif
1509 }
1510
1511 /* Output assembler code for the end of a function.
1512 For clarity, args are same as those of `final_start_function'
1513 even though not all of them are needed. */
1514
1515 void
1516 final_end_function (void)
1517 {
1518 app_disable ();
1519
1520 (*debug_hooks->end_function) (high_function_linenum);
1521
1522 /* Finally, output the function epilogue:
1523 code to restore the stack frame and return to the caller. */
1524 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525
1526 /* And debug output. */
1527 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528
1529 #if defined (DWARF2_UNWIND_INFO)
1530 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1531 && dwarf2out_do_frame ())
1532 dwarf2out_end_epilogue (last_linenum, last_filename);
1533 #endif
1534 }
1535 \f
1536 /* Output assembler code for some insns: all or part of a function.
1537 For description of args, see `final_start_function', above. */
1538
1539 void
1540 final (rtx first, FILE *file, int optimize)
1541 {
1542 rtx insn;
1543 int max_uid = 0;
1544 int seen = 0;
1545
1546 last_ignored_compare = 0;
1547
1548 for (insn = first; insn; insn = NEXT_INSN (insn))
1549 {
1550 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1551 max_uid = INSN_UID (insn);
1552 #ifdef HAVE_cc0
1553 /* If CC tracking across branches is enabled, record the insn which
1554 jumps to each branch only reached from one place. */
1555 if (optimize && JUMP_P (insn))
1556 {
1557 rtx lab = JUMP_LABEL (insn);
1558 if (lab && LABEL_NUSES (lab) == 1)
1559 {
1560 LABEL_REFS (lab) = insn;
1561 }
1562 }
1563 #endif
1564 }
1565
1566 init_recog ();
1567
1568 CC_STATUS_INIT;
1569
1570 /* Output the insns. */
1571 for (insn = first; insn;)
1572 {
1573 #ifdef HAVE_ATTR_length
1574 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1575 {
1576 /* This can be triggered by bugs elsewhere in the compiler if
1577 new insns are created after init_insn_lengths is called. */
1578 gcc_assert (NOTE_P (insn));
1579 insn_current_address = -1;
1580 }
1581 else
1582 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1583 #endif /* HAVE_ATTR_length */
1584
1585 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1586 }
1587 }
1588 \f
1589 const char *
1590 get_insn_template (int code, rtx insn)
1591 {
1592 switch (insn_data[code].output_format)
1593 {
1594 case INSN_OUTPUT_FORMAT_SINGLE:
1595 return insn_data[code].output.single;
1596 case INSN_OUTPUT_FORMAT_MULTI:
1597 return insn_data[code].output.multi[which_alternative];
1598 case INSN_OUTPUT_FORMAT_FUNCTION:
1599 gcc_assert (insn);
1600 return (*insn_data[code].output.function) (recog_data.operand, insn);
1601
1602 default:
1603 gcc_unreachable ();
1604 }
1605 }
1606
1607 /* Emit the appropriate declaration for an alternate-entry-point
1608 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1609 LABEL_KIND != LABEL_NORMAL.
1610
1611 The case fall-through in this function is intentional. */
1612 static void
1613 output_alternate_entry_point (FILE *file, rtx insn)
1614 {
1615 const char *name = LABEL_NAME (insn);
1616
1617 switch (LABEL_KIND (insn))
1618 {
1619 case LABEL_WEAK_ENTRY:
1620 #ifdef ASM_WEAKEN_LABEL
1621 ASM_WEAKEN_LABEL (file, name);
1622 #endif
1623 case LABEL_GLOBAL_ENTRY:
1624 targetm.asm_out.globalize_label (file, name);
1625 case LABEL_STATIC_ENTRY:
1626 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1627 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1628 #endif
1629 ASM_OUTPUT_LABEL (file, name);
1630 break;
1631
1632 case LABEL_NORMAL:
1633 default:
1634 gcc_unreachable ();
1635 }
1636 }
1637
1638 /* The final scan for one insn, INSN.
1639 Args are same as in `final', except that INSN
1640 is the insn being scanned.
1641 Value returned is the next insn to be scanned.
1642
1643 NOPEEPHOLES is the flag to disallow peephole processing (currently
1644 used for within delayed branch sequence output).
1645
1646 SEEN is used to track the end of the prologue, for emitting
1647 debug information. We force the emission of a line note after
1648 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1649 at the beginning of the second basic block, whichever comes
1650 first. */
1651
1652 rtx
1653 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1654 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1655 {
1656 #ifdef HAVE_cc0
1657 rtx set;
1658 #endif
1659 rtx next;
1660
1661 insn_counter++;
1662
1663 /* Ignore deleted insns. These can occur when we split insns (due to a
1664 template of "#") while not optimizing. */
1665 if (INSN_DELETED_P (insn))
1666 return NEXT_INSN (insn);
1667
1668 switch (GET_CODE (insn))
1669 {
1670 case NOTE:
1671 switch (NOTE_KIND (insn))
1672 {
1673 case NOTE_INSN_DELETED:
1674 break;
1675
1676 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1677 in_cold_section_p = !in_cold_section_p;
1678 (*debug_hooks->switch_text_section) ();
1679 switch_to_section (current_function_section ());
1680 break;
1681
1682 case NOTE_INSN_BASIC_BLOCK:
1683 #ifdef TARGET_UNWIND_INFO
1684 targetm.asm_out.unwind_emit (asm_out_file, insn);
1685 #endif
1686
1687 if (flag_debug_asm)
1688 fprintf (asm_out_file, "\t%s basic block %d\n",
1689 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1690
1691 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1692 {
1693 *seen |= SEEN_EMITTED;
1694 force_source_line = true;
1695 }
1696 else
1697 *seen |= SEEN_BB;
1698
1699 break;
1700
1701 case NOTE_INSN_EH_REGION_BEG:
1702 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1703 NOTE_EH_HANDLER (insn));
1704 break;
1705
1706 case NOTE_INSN_EH_REGION_END:
1707 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1708 NOTE_EH_HANDLER (insn));
1709 break;
1710
1711 case NOTE_INSN_PROLOGUE_END:
1712 targetm.asm_out.function_end_prologue (file);
1713 profile_after_prologue (file);
1714
1715 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1716 {
1717 *seen |= SEEN_EMITTED;
1718 force_source_line = true;
1719 }
1720 else
1721 *seen |= SEEN_NOTE;
1722
1723 break;
1724
1725 case NOTE_INSN_EPILOGUE_BEG:
1726 targetm.asm_out.function_begin_epilogue (file);
1727 break;
1728
1729 case NOTE_INSN_FUNCTION_BEG:
1730 app_disable ();
1731 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1732
1733 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1734 {
1735 *seen |= SEEN_EMITTED;
1736 force_source_line = true;
1737 }
1738 else
1739 *seen |= SEEN_NOTE;
1740
1741 break;
1742
1743 case NOTE_INSN_BLOCK_BEG:
1744 if (debug_info_level == DINFO_LEVEL_NORMAL
1745 || debug_info_level == DINFO_LEVEL_VERBOSE
1746 || write_symbols == DWARF2_DEBUG
1747 || write_symbols == VMS_AND_DWARF2_DEBUG
1748 || write_symbols == VMS_DEBUG)
1749 {
1750 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1751
1752 app_disable ();
1753 ++block_depth;
1754 high_block_linenum = last_linenum;
1755
1756 /* Output debugging info about the symbol-block beginning. */
1757 (*debug_hooks->begin_block) (last_linenum, n);
1758
1759 /* Mark this block as output. */
1760 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1761 }
1762 break;
1763
1764 case NOTE_INSN_BLOCK_END:
1765 if (debug_info_level == DINFO_LEVEL_NORMAL
1766 || debug_info_level == DINFO_LEVEL_VERBOSE
1767 || write_symbols == DWARF2_DEBUG
1768 || write_symbols == VMS_AND_DWARF2_DEBUG
1769 || write_symbols == VMS_DEBUG)
1770 {
1771 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1772
1773 app_disable ();
1774
1775 /* End of a symbol-block. */
1776 --block_depth;
1777 gcc_assert (block_depth >= 0);
1778
1779 (*debug_hooks->end_block) (high_block_linenum, n);
1780 }
1781 break;
1782
1783 case NOTE_INSN_DELETED_LABEL:
1784 /* Emit the label. We may have deleted the CODE_LABEL because
1785 the label could be proved to be unreachable, though still
1786 referenced (in the form of having its address taken. */
1787 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1788 break;
1789
1790 case NOTE_INSN_VAR_LOCATION:
1791 (*debug_hooks->var_location) (insn);
1792 break;
1793
1794 default:
1795 gcc_unreachable ();
1796 break;
1797 }
1798 break;
1799
1800 case BARRIER:
1801 #if defined (DWARF2_UNWIND_INFO)
1802 if (dwarf2out_do_frame ())
1803 dwarf2out_frame_debug (insn, false);
1804 #endif
1805 break;
1806
1807 case CODE_LABEL:
1808 /* The target port might emit labels in the output function for
1809 some insn, e.g. sh.c output_branchy_insn. */
1810 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1811 {
1812 int align = LABEL_TO_ALIGNMENT (insn);
1813 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1814 int max_skip = LABEL_TO_MAX_SKIP (insn);
1815 #endif
1816
1817 if (align && NEXT_INSN (insn))
1818 {
1819 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1820 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1821 #else
1822 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1823 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1824 #else
1825 ASM_OUTPUT_ALIGN (file, align);
1826 #endif
1827 #endif
1828 }
1829 }
1830 #ifdef HAVE_cc0
1831 CC_STATUS_INIT;
1832 /* If this label is reached from only one place, set the condition
1833 codes from the instruction just before the branch. */
1834
1835 /* Disabled because some insns set cc_status in the C output code
1836 and NOTICE_UPDATE_CC alone can set incorrect status. */
1837 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1838 {
1839 rtx jump = LABEL_REFS (insn);
1840 rtx barrier = prev_nonnote_insn (insn);
1841 rtx prev;
1842 /* If the LABEL_REFS field of this label has been set to point
1843 at a branch, the predecessor of the branch is a regular
1844 insn, and that branch is the only way to reach this label,
1845 set the condition codes based on the branch and its
1846 predecessor. */
1847 if (barrier && BARRIER_P (barrier)
1848 && jump && JUMP_P (jump)
1849 && (prev = prev_nonnote_insn (jump))
1850 && NONJUMP_INSN_P (prev))
1851 {
1852 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1853 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1854 }
1855 }
1856 #endif
1857
1858 if (LABEL_NAME (insn))
1859 (*debug_hooks->label) (insn);
1860
1861 if (app_on)
1862 {
1863 fputs (ASM_APP_OFF, file);
1864 app_on = 0;
1865 }
1866
1867 next = next_nonnote_insn (insn);
1868 if (next != 0 && JUMP_P (next))
1869 {
1870 rtx nextbody = PATTERN (next);
1871
1872 /* If this label is followed by a jump-table,
1873 make sure we put the label in the read-only section. Also
1874 possibly write the label and jump table together. */
1875
1876 if (GET_CODE (nextbody) == ADDR_VEC
1877 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1878 {
1879 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1880 /* In this case, the case vector is being moved by the
1881 target, so don't output the label at all. Leave that
1882 to the back end macros. */
1883 #else
1884 if (! JUMP_TABLES_IN_TEXT_SECTION)
1885 {
1886 int log_align;
1887
1888 switch_to_section (targetm.asm_out.function_rodata_section
1889 (current_function_decl));
1890
1891 #ifdef ADDR_VEC_ALIGN
1892 log_align = ADDR_VEC_ALIGN (next);
1893 #else
1894 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1895 #endif
1896 ASM_OUTPUT_ALIGN (file, log_align);
1897 }
1898 else
1899 switch_to_section (current_function_section ());
1900
1901 #ifdef ASM_OUTPUT_CASE_LABEL
1902 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1903 next);
1904 #else
1905 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1906 #endif
1907 #endif
1908 break;
1909 }
1910 }
1911 if (LABEL_ALT_ENTRY_P (insn))
1912 output_alternate_entry_point (file, insn);
1913 else
1914 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1915 break;
1916
1917 default:
1918 {
1919 rtx body = PATTERN (insn);
1920 int insn_code_number;
1921 const char *template;
1922
1923 #ifdef HAVE_conditional_execution
1924 /* Reset this early so it is correct for ASM statements. */
1925 current_insn_predicate = NULL_RTX;
1926 #endif
1927 /* An INSN, JUMP_INSN or CALL_INSN.
1928 First check for special kinds that recog doesn't recognize. */
1929
1930 if (GET_CODE (body) == USE /* These are just declarations. */
1931 || GET_CODE (body) == CLOBBER)
1932 break;
1933
1934 #ifdef HAVE_cc0
1935 {
1936 /* If there is a REG_CC_SETTER note on this insn, it means that
1937 the setting of the condition code was done in the delay slot
1938 of the insn that branched here. So recover the cc status
1939 from the insn that set it. */
1940
1941 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1942 if (note)
1943 {
1944 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1945 cc_prev_status = cc_status;
1946 }
1947 }
1948 #endif
1949
1950 /* Detect insns that are really jump-tables
1951 and output them as such. */
1952
1953 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1954 {
1955 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1956 int vlen, idx;
1957 #endif
1958
1959 if (! JUMP_TABLES_IN_TEXT_SECTION)
1960 switch_to_section (targetm.asm_out.function_rodata_section
1961 (current_function_decl));
1962 else
1963 switch_to_section (current_function_section ());
1964
1965 if (app_on)
1966 {
1967 fputs (ASM_APP_OFF, file);
1968 app_on = 0;
1969 }
1970
1971 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1972 if (GET_CODE (body) == ADDR_VEC)
1973 {
1974 #ifdef ASM_OUTPUT_ADDR_VEC
1975 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1976 #else
1977 gcc_unreachable ();
1978 #endif
1979 }
1980 else
1981 {
1982 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1983 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1984 #else
1985 gcc_unreachable ();
1986 #endif
1987 }
1988 #else
1989 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1990 for (idx = 0; idx < vlen; idx++)
1991 {
1992 if (GET_CODE (body) == ADDR_VEC)
1993 {
1994 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1995 ASM_OUTPUT_ADDR_VEC_ELT
1996 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1997 #else
1998 gcc_unreachable ();
1999 #endif
2000 }
2001 else
2002 {
2003 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2004 ASM_OUTPUT_ADDR_DIFF_ELT
2005 (file,
2006 body,
2007 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2008 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2009 #else
2010 gcc_unreachable ();
2011 #endif
2012 }
2013 }
2014 #ifdef ASM_OUTPUT_CASE_END
2015 ASM_OUTPUT_CASE_END (file,
2016 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2017 insn);
2018 #endif
2019 #endif
2020
2021 switch_to_section (current_function_section ());
2022
2023 break;
2024 }
2025 /* Output this line note if it is the first or the last line
2026 note in a row. */
2027 if (notice_source_line (insn))
2028 {
2029 (*debug_hooks->source_line) (last_linenum, last_filename);
2030 }
2031
2032 if (GET_CODE (body) == ASM_INPUT)
2033 {
2034 const char *string = XSTR (body, 0);
2035
2036 /* There's no telling what that did to the condition codes. */
2037 CC_STATUS_INIT;
2038
2039 if (string[0])
2040 {
2041 location_t loc;
2042
2043 if (! app_on)
2044 {
2045 fputs (ASM_APP_ON, file);
2046 app_on = 1;
2047 }
2048 #ifdef USE_MAPPED_LOCATION
2049 loc = ASM_INPUT_SOURCE_LOCATION (body);
2050 #else
2051 loc.file = ASM_INPUT_SOURCE_FILE (body);
2052 loc.line = ASM_INPUT_SOURCE_LINE (body);
2053 #endif
2054 if (*loc.file && loc.line)
2055 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2056 ASM_COMMENT_START, loc.line, loc.file);
2057 fprintf (asm_out_file, "\t%s\n", string);
2058 #if HAVE_AS_LINE_ZERO
2059 if (*loc.file && loc.line)
2060 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2061 #endif
2062 }
2063 break;
2064 }
2065
2066 /* Detect `asm' construct with operands. */
2067 if (asm_noperands (body) >= 0)
2068 {
2069 unsigned int noperands = asm_noperands (body);
2070 rtx *ops = alloca (noperands * sizeof (rtx));
2071 const char *string;
2072 location_t loc;
2073
2074 /* There's no telling what that did to the condition codes. */
2075 CC_STATUS_INIT;
2076
2077 /* Get out the operand values. */
2078 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2079 /* Inhibit dieing on what would otherwise be compiler bugs. */
2080 insn_noperands = noperands;
2081 this_is_asm_operands = insn;
2082
2083 #ifdef FINAL_PRESCAN_INSN
2084 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2085 #endif
2086
2087 /* Output the insn using them. */
2088 if (string[0])
2089 {
2090 if (! app_on)
2091 {
2092 fputs (ASM_APP_ON, file);
2093 app_on = 1;
2094 }
2095 if (loc.file && loc.line)
2096 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2097 ASM_COMMENT_START, loc.line, loc.file);
2098 output_asm_insn (string, ops);
2099 #if HAVE_AS_LINE_ZERO
2100 if (loc.file && loc.line)
2101 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2102 #endif
2103 }
2104
2105 this_is_asm_operands = 0;
2106 break;
2107 }
2108
2109 if (app_on)
2110 {
2111 fputs (ASM_APP_OFF, file);
2112 app_on = 0;
2113 }
2114
2115 if (GET_CODE (body) == SEQUENCE)
2116 {
2117 /* A delayed-branch sequence */
2118 int i;
2119
2120 final_sequence = body;
2121
2122 /* Record the delay slots' frame information before the branch.
2123 This is needed for delayed calls: see execute_cfa_program(). */
2124 #if defined (DWARF2_UNWIND_INFO)
2125 if (dwarf2out_do_frame ())
2126 for (i = 1; i < XVECLEN (body, 0); i++)
2127 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2128 #endif
2129
2130 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2131 force the restoration of a comparison that was previously
2132 thought unnecessary. If that happens, cancel this sequence
2133 and cause that insn to be restored. */
2134
2135 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2136 if (next != XVECEXP (body, 0, 1))
2137 {
2138 final_sequence = 0;
2139 return next;
2140 }
2141
2142 for (i = 1; i < XVECLEN (body, 0); i++)
2143 {
2144 rtx insn = XVECEXP (body, 0, i);
2145 rtx next = NEXT_INSN (insn);
2146 /* We loop in case any instruction in a delay slot gets
2147 split. */
2148 do
2149 insn = final_scan_insn (insn, file, 0, 1, seen);
2150 while (insn != next);
2151 }
2152 #ifdef DBR_OUTPUT_SEQEND
2153 DBR_OUTPUT_SEQEND (file);
2154 #endif
2155 final_sequence = 0;
2156
2157 /* If the insn requiring the delay slot was a CALL_INSN, the
2158 insns in the delay slot are actually executed before the
2159 called function. Hence we don't preserve any CC-setting
2160 actions in these insns and the CC must be marked as being
2161 clobbered by the function. */
2162 if (CALL_P (XVECEXP (body, 0, 0)))
2163 {
2164 CC_STATUS_INIT;
2165 }
2166 break;
2167 }
2168
2169 /* We have a real machine instruction as rtl. */
2170
2171 body = PATTERN (insn);
2172
2173 #ifdef HAVE_cc0
2174 set = single_set (insn);
2175
2176 /* Check for redundant test and compare instructions
2177 (when the condition codes are already set up as desired).
2178 This is done only when optimizing; if not optimizing,
2179 it should be possible for the user to alter a variable
2180 with the debugger in between statements
2181 and the next statement should reexamine the variable
2182 to compute the condition codes. */
2183
2184 if (optimize)
2185 {
2186 if (set
2187 && GET_CODE (SET_DEST (set)) == CC0
2188 && insn != last_ignored_compare)
2189 {
2190 if (GET_CODE (SET_SRC (set)) == SUBREG)
2191 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2192 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2193 {
2194 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2195 XEXP (SET_SRC (set), 0)
2196 = alter_subreg (&XEXP (SET_SRC (set), 0));
2197 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2198 XEXP (SET_SRC (set), 1)
2199 = alter_subreg (&XEXP (SET_SRC (set), 1));
2200 }
2201 if ((cc_status.value1 != 0
2202 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2203 || (cc_status.value2 != 0
2204 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2205 {
2206 /* Don't delete insn if it has an addressing side-effect. */
2207 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2208 /* or if anything in it is volatile. */
2209 && ! volatile_refs_p (PATTERN (insn)))
2210 {
2211 /* We don't really delete the insn; just ignore it. */
2212 last_ignored_compare = insn;
2213 break;
2214 }
2215 }
2216 }
2217 }
2218 #endif
2219
2220 #ifdef HAVE_cc0
2221 /* If this is a conditional branch, maybe modify it
2222 if the cc's are in a nonstandard state
2223 so that it accomplishes the same thing that it would
2224 do straightforwardly if the cc's were set up normally. */
2225
2226 if (cc_status.flags != 0
2227 && JUMP_P (insn)
2228 && GET_CODE (body) == SET
2229 && SET_DEST (body) == pc_rtx
2230 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2231 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2232 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2233 {
2234 /* This function may alter the contents of its argument
2235 and clear some of the cc_status.flags bits.
2236 It may also return 1 meaning condition now always true
2237 or -1 meaning condition now always false
2238 or 2 meaning condition nontrivial but altered. */
2239 int result = alter_cond (XEXP (SET_SRC (body), 0));
2240 /* If condition now has fixed value, replace the IF_THEN_ELSE
2241 with its then-operand or its else-operand. */
2242 if (result == 1)
2243 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2244 if (result == -1)
2245 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2246
2247 /* The jump is now either unconditional or a no-op.
2248 If it has become a no-op, don't try to output it.
2249 (It would not be recognized.) */
2250 if (SET_SRC (body) == pc_rtx)
2251 {
2252 delete_insn (insn);
2253 break;
2254 }
2255 else if (GET_CODE (SET_SRC (body)) == RETURN)
2256 /* Replace (set (pc) (return)) with (return). */
2257 PATTERN (insn) = body = SET_SRC (body);
2258
2259 /* Rerecognize the instruction if it has changed. */
2260 if (result != 0)
2261 INSN_CODE (insn) = -1;
2262 }
2263
2264 /* If this is a conditional trap, maybe modify it if the cc's
2265 are in a nonstandard state so that it accomplishes the same
2266 thing that it would do straightforwardly if the cc's were
2267 set up normally. */
2268 if (cc_status.flags != 0
2269 && NONJUMP_INSN_P (insn)
2270 && GET_CODE (body) == TRAP_IF
2271 && COMPARISON_P (TRAP_CONDITION (body))
2272 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2273 {
2274 /* This function may alter the contents of its argument
2275 and clear some of the cc_status.flags bits.
2276 It may also return 1 meaning condition now always true
2277 or -1 meaning condition now always false
2278 or 2 meaning condition nontrivial but altered. */
2279 int result = alter_cond (TRAP_CONDITION (body));
2280
2281 /* If TRAP_CONDITION has become always false, delete the
2282 instruction. */
2283 if (result == -1)
2284 {
2285 delete_insn (insn);
2286 break;
2287 }
2288
2289 /* If TRAP_CONDITION has become always true, replace
2290 TRAP_CONDITION with const_true_rtx. */
2291 if (result == 1)
2292 TRAP_CONDITION (body) = const_true_rtx;
2293
2294 /* Rerecognize the instruction if it has changed. */
2295 if (result != 0)
2296 INSN_CODE (insn) = -1;
2297 }
2298
2299 /* If this is a conditional trap, maybe modify it if the cc's
2300 are in a nonstandard state so that it accomplishes the same
2301 thing that it would do straightforwardly if the cc's were
2302 set up normally. */
2303 if (cc_status.flags != 0
2304 && NONJUMP_INSN_P (insn)
2305 && GET_CODE (body) == TRAP_IF
2306 && COMPARISON_P (TRAP_CONDITION (body))
2307 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2308 {
2309 /* This function may alter the contents of its argument
2310 and clear some of the cc_status.flags bits.
2311 It may also return 1 meaning condition now always true
2312 or -1 meaning condition now always false
2313 or 2 meaning condition nontrivial but altered. */
2314 int result = alter_cond (TRAP_CONDITION (body));
2315
2316 /* If TRAP_CONDITION has become always false, delete the
2317 instruction. */
2318 if (result == -1)
2319 {
2320 delete_insn (insn);
2321 break;
2322 }
2323
2324 /* If TRAP_CONDITION has become always true, replace
2325 TRAP_CONDITION with const_true_rtx. */
2326 if (result == 1)
2327 TRAP_CONDITION (body) = const_true_rtx;
2328
2329 /* Rerecognize the instruction if it has changed. */
2330 if (result != 0)
2331 INSN_CODE (insn) = -1;
2332 }
2333
2334 /* Make same adjustments to instructions that examine the
2335 condition codes without jumping and instructions that
2336 handle conditional moves (if this machine has either one). */
2337
2338 if (cc_status.flags != 0
2339 && set != 0)
2340 {
2341 rtx cond_rtx, then_rtx, else_rtx;
2342
2343 if (!JUMP_P (insn)
2344 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2345 {
2346 cond_rtx = XEXP (SET_SRC (set), 0);
2347 then_rtx = XEXP (SET_SRC (set), 1);
2348 else_rtx = XEXP (SET_SRC (set), 2);
2349 }
2350 else
2351 {
2352 cond_rtx = SET_SRC (set);
2353 then_rtx = const_true_rtx;
2354 else_rtx = const0_rtx;
2355 }
2356
2357 switch (GET_CODE (cond_rtx))
2358 {
2359 case GTU:
2360 case GT:
2361 case LTU:
2362 case LT:
2363 case GEU:
2364 case GE:
2365 case LEU:
2366 case LE:
2367 case EQ:
2368 case NE:
2369 {
2370 int result;
2371 if (XEXP (cond_rtx, 0) != cc0_rtx)
2372 break;
2373 result = alter_cond (cond_rtx);
2374 if (result == 1)
2375 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2376 else if (result == -1)
2377 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2378 else if (result == 2)
2379 INSN_CODE (insn) = -1;
2380 if (SET_DEST (set) == SET_SRC (set))
2381 delete_insn (insn);
2382 }
2383 break;
2384
2385 default:
2386 break;
2387 }
2388 }
2389
2390 #endif
2391
2392 #ifdef HAVE_peephole
2393 /* Do machine-specific peephole optimizations if desired. */
2394
2395 if (optimize && !flag_no_peephole && !nopeepholes)
2396 {
2397 rtx next = peephole (insn);
2398 /* When peepholing, if there were notes within the peephole,
2399 emit them before the peephole. */
2400 if (next != 0 && next != NEXT_INSN (insn))
2401 {
2402 rtx note, prev = PREV_INSN (insn);
2403
2404 for (note = NEXT_INSN (insn); note != next;
2405 note = NEXT_INSN (note))
2406 final_scan_insn (note, file, optimize, nopeepholes, seen);
2407
2408 /* Put the notes in the proper position for a later
2409 rescan. For example, the SH target can do this
2410 when generating a far jump in a delayed branch
2411 sequence. */
2412 note = NEXT_INSN (insn);
2413 PREV_INSN (note) = prev;
2414 NEXT_INSN (prev) = note;
2415 NEXT_INSN (PREV_INSN (next)) = insn;
2416 PREV_INSN (insn) = PREV_INSN (next);
2417 NEXT_INSN (insn) = next;
2418 PREV_INSN (next) = insn;
2419 }
2420
2421 /* PEEPHOLE might have changed this. */
2422 body = PATTERN (insn);
2423 }
2424 #endif
2425
2426 /* Try to recognize the instruction.
2427 If successful, verify that the operands satisfy the
2428 constraints for the instruction. Crash if they don't,
2429 since `reload' should have changed them so that they do. */
2430
2431 insn_code_number = recog_memoized (insn);
2432 cleanup_subreg_operands (insn);
2433
2434 /* Dump the insn in the assembly for debugging. */
2435 if (flag_dump_rtl_in_asm)
2436 {
2437 print_rtx_head = ASM_COMMENT_START;
2438 print_rtl_single (asm_out_file, insn);
2439 print_rtx_head = "";
2440 }
2441
2442 if (! constrain_operands_cached (1))
2443 fatal_insn_not_found (insn);
2444
2445 /* Some target machines need to prescan each insn before
2446 it is output. */
2447
2448 #ifdef FINAL_PRESCAN_INSN
2449 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2450 #endif
2451
2452 #ifdef HAVE_conditional_execution
2453 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2454 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2455 #endif
2456
2457 #ifdef HAVE_cc0
2458 cc_prev_status = cc_status;
2459
2460 /* Update `cc_status' for this instruction.
2461 The instruction's output routine may change it further.
2462 If the output routine for a jump insn needs to depend
2463 on the cc status, it should look at cc_prev_status. */
2464
2465 NOTICE_UPDATE_CC (body, insn);
2466 #endif
2467
2468 current_output_insn = debug_insn = insn;
2469
2470 #if defined (DWARF2_UNWIND_INFO)
2471 if (CALL_P (insn) && dwarf2out_do_frame ())
2472 dwarf2out_frame_debug (insn, false);
2473 #endif
2474
2475 /* Find the proper template for this insn. */
2476 template = get_insn_template (insn_code_number, insn);
2477
2478 /* If the C code returns 0, it means that it is a jump insn
2479 which follows a deleted test insn, and that test insn
2480 needs to be reinserted. */
2481 if (template == 0)
2482 {
2483 rtx prev;
2484
2485 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2486
2487 /* We have already processed the notes between the setter and
2488 the user. Make sure we don't process them again, this is
2489 particularly important if one of the notes is a block
2490 scope note or an EH note. */
2491 for (prev = insn;
2492 prev != last_ignored_compare;
2493 prev = PREV_INSN (prev))
2494 {
2495 if (NOTE_P (prev))
2496 delete_insn (prev); /* Use delete_note. */
2497 }
2498
2499 return prev;
2500 }
2501
2502 /* If the template is the string "#", it means that this insn must
2503 be split. */
2504 if (template[0] == '#' && template[1] == '\0')
2505 {
2506 rtx new = try_split (body, insn, 0);
2507
2508 /* If we didn't split the insn, go away. */
2509 if (new == insn && PATTERN (new) == body)
2510 fatal_insn ("could not split insn", insn);
2511
2512 #ifdef HAVE_ATTR_length
2513 /* This instruction should have been split in shorten_branches,
2514 to ensure that we would have valid length info for the
2515 splitees. */
2516 gcc_unreachable ();
2517 #endif
2518
2519 return new;
2520 }
2521
2522 #ifdef TARGET_UNWIND_INFO
2523 /* ??? This will put the directives in the wrong place if
2524 get_insn_template outputs assembly directly. However calling it
2525 before get_insn_template breaks if the insns is split. */
2526 targetm.asm_out.unwind_emit (asm_out_file, insn);
2527 #endif
2528
2529 /* Output assembler code from the template. */
2530 output_asm_insn (template, recog_data.operand);
2531
2532 /* If necessary, report the effect that the instruction has on
2533 the unwind info. We've already done this for delay slots
2534 and call instructions. */
2535 #if defined (DWARF2_UNWIND_INFO)
2536 if (final_sequence == 0
2537 #if !defined (HAVE_prologue)
2538 && !ACCUMULATE_OUTGOING_ARGS
2539 #endif
2540 && dwarf2out_do_frame ())
2541 dwarf2out_frame_debug (insn, true);
2542 #endif
2543
2544 current_output_insn = debug_insn = 0;
2545 }
2546 }
2547 return NEXT_INSN (insn);
2548 }
2549 \f
2550 /* Return whether a source line note needs to be emitted before INSN. */
2551
2552 static bool
2553 notice_source_line (rtx insn)
2554 {
2555 const char *filename = insn_file (insn);
2556 int linenum = insn_line (insn);
2557
2558 if (filename
2559 && (force_source_line
2560 || filename != last_filename
2561 || last_linenum != linenum))
2562 {
2563 force_source_line = false;
2564 last_filename = filename;
2565 last_linenum = linenum;
2566 high_block_linenum = MAX (last_linenum, high_block_linenum);
2567 high_function_linenum = MAX (last_linenum, high_function_linenum);
2568 return true;
2569 }
2570 return false;
2571 }
2572 \f
2573 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2574 directly to the desired hard register. */
2575
2576 void
2577 cleanup_subreg_operands (rtx insn)
2578 {
2579 int i;
2580 extract_insn_cached (insn);
2581 for (i = 0; i < recog_data.n_operands; i++)
2582 {
2583 /* The following test cannot use recog_data.operand when testing
2584 for a SUBREG: the underlying object might have been changed
2585 already if we are inside a match_operator expression that
2586 matches the else clause. Instead we test the underlying
2587 expression directly. */
2588 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2589 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2590 else if (GET_CODE (recog_data.operand[i]) == PLUS
2591 || GET_CODE (recog_data.operand[i]) == MULT
2592 || MEM_P (recog_data.operand[i]))
2593 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2594 }
2595
2596 for (i = 0; i < recog_data.n_dups; i++)
2597 {
2598 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2599 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2600 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2601 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2602 || MEM_P (*recog_data.dup_loc[i]))
2603 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2604 }
2605 }
2606
2607 /* If X is a SUBREG, replace it with a REG or a MEM,
2608 based on the thing it is a subreg of. */
2609
2610 rtx
2611 alter_subreg (rtx *xp)
2612 {
2613 rtx x = *xp;
2614 rtx y = SUBREG_REG (x);
2615
2616 /* simplify_subreg does not remove subreg from volatile references.
2617 We are required to. */
2618 if (MEM_P (y))
2619 {
2620 int offset = SUBREG_BYTE (x);
2621
2622 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2623 contains 0 instead of the proper offset. See simplify_subreg. */
2624 if (offset == 0
2625 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2626 {
2627 int difference = GET_MODE_SIZE (GET_MODE (y))
2628 - GET_MODE_SIZE (GET_MODE (x));
2629 if (WORDS_BIG_ENDIAN)
2630 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2631 if (BYTES_BIG_ENDIAN)
2632 offset += difference % UNITS_PER_WORD;
2633 }
2634
2635 *xp = adjust_address (y, GET_MODE (x), offset);
2636 }
2637 else
2638 {
2639 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2640 SUBREG_BYTE (x));
2641
2642 if (new != 0)
2643 *xp = new;
2644 else if (REG_P (y))
2645 {
2646 /* Simplify_subreg can't handle some REG cases, but we have to. */
2647 unsigned int regno = subreg_regno (x);
2648 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2649 }
2650 }
2651
2652 return *xp;
2653 }
2654
2655 /* Do alter_subreg on all the SUBREGs contained in X. */
2656
2657 static rtx
2658 walk_alter_subreg (rtx *xp)
2659 {
2660 rtx x = *xp;
2661 switch (GET_CODE (x))
2662 {
2663 case PLUS:
2664 case MULT:
2665 case AND:
2666 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2667 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2668 break;
2669
2670 case MEM:
2671 case ZERO_EXTEND:
2672 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2673 break;
2674
2675 case SUBREG:
2676 return alter_subreg (xp);
2677
2678 default:
2679 break;
2680 }
2681
2682 return *xp;
2683 }
2684 \f
2685 #ifdef HAVE_cc0
2686
2687 /* Given BODY, the body of a jump instruction, alter the jump condition
2688 as required by the bits that are set in cc_status.flags.
2689 Not all of the bits there can be handled at this level in all cases.
2690
2691 The value is normally 0.
2692 1 means that the condition has become always true.
2693 -1 means that the condition has become always false.
2694 2 means that COND has been altered. */
2695
2696 static int
2697 alter_cond (rtx cond)
2698 {
2699 int value = 0;
2700
2701 if (cc_status.flags & CC_REVERSED)
2702 {
2703 value = 2;
2704 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2705 }
2706
2707 if (cc_status.flags & CC_INVERTED)
2708 {
2709 value = 2;
2710 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2711 }
2712
2713 if (cc_status.flags & CC_NOT_POSITIVE)
2714 switch (GET_CODE (cond))
2715 {
2716 case LE:
2717 case LEU:
2718 case GEU:
2719 /* Jump becomes unconditional. */
2720 return 1;
2721
2722 case GT:
2723 case GTU:
2724 case LTU:
2725 /* Jump becomes no-op. */
2726 return -1;
2727
2728 case GE:
2729 PUT_CODE (cond, EQ);
2730 value = 2;
2731 break;
2732
2733 case LT:
2734 PUT_CODE (cond, NE);
2735 value = 2;
2736 break;
2737
2738 default:
2739 break;
2740 }
2741
2742 if (cc_status.flags & CC_NOT_NEGATIVE)
2743 switch (GET_CODE (cond))
2744 {
2745 case GE:
2746 case GEU:
2747 /* Jump becomes unconditional. */
2748 return 1;
2749
2750 case LT:
2751 case LTU:
2752 /* Jump becomes no-op. */
2753 return -1;
2754
2755 case LE:
2756 case LEU:
2757 PUT_CODE (cond, EQ);
2758 value = 2;
2759 break;
2760
2761 case GT:
2762 case GTU:
2763 PUT_CODE (cond, NE);
2764 value = 2;
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 if (cc_status.flags & CC_NO_OVERFLOW)
2772 switch (GET_CODE (cond))
2773 {
2774 case GEU:
2775 /* Jump becomes unconditional. */
2776 return 1;
2777
2778 case LEU:
2779 PUT_CODE (cond, EQ);
2780 value = 2;
2781 break;
2782
2783 case GTU:
2784 PUT_CODE (cond, NE);
2785 value = 2;
2786 break;
2787
2788 case LTU:
2789 /* Jump becomes no-op. */
2790 return -1;
2791
2792 default:
2793 break;
2794 }
2795
2796 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2797 switch (GET_CODE (cond))
2798 {
2799 default:
2800 gcc_unreachable ();
2801
2802 case NE:
2803 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2804 value = 2;
2805 break;
2806
2807 case EQ:
2808 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2809 value = 2;
2810 break;
2811 }
2812
2813 if (cc_status.flags & CC_NOT_SIGNED)
2814 /* The flags are valid if signed condition operators are converted
2815 to unsigned. */
2816 switch (GET_CODE (cond))
2817 {
2818 case LE:
2819 PUT_CODE (cond, LEU);
2820 value = 2;
2821 break;
2822
2823 case LT:
2824 PUT_CODE (cond, LTU);
2825 value = 2;
2826 break;
2827
2828 case GT:
2829 PUT_CODE (cond, GTU);
2830 value = 2;
2831 break;
2832
2833 case GE:
2834 PUT_CODE (cond, GEU);
2835 value = 2;
2836 break;
2837
2838 default:
2839 break;
2840 }
2841
2842 return value;
2843 }
2844 #endif
2845 \f
2846 /* Report inconsistency between the assembler template and the operands.
2847 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2848
2849 void
2850 output_operand_lossage (const char *cmsgid, ...)
2851 {
2852 char *fmt_string;
2853 char *new_message;
2854 const char *pfx_str;
2855 va_list ap;
2856
2857 va_start (ap, cmsgid);
2858
2859 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2860 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2861 vasprintf (&new_message, fmt_string, ap);
2862
2863 if (this_is_asm_operands)
2864 error_for_asm (this_is_asm_operands, "%s", new_message);
2865 else
2866 internal_error ("%s", new_message);
2867
2868 free (fmt_string);
2869 free (new_message);
2870 va_end (ap);
2871 }
2872 \f
2873 /* Output of assembler code from a template, and its subroutines. */
2874
2875 /* Annotate the assembly with a comment describing the pattern and
2876 alternative used. */
2877
2878 static void
2879 output_asm_name (void)
2880 {
2881 if (debug_insn)
2882 {
2883 int num = INSN_CODE (debug_insn);
2884 fprintf (asm_out_file, "\t%s %d\t%s",
2885 ASM_COMMENT_START, INSN_UID (debug_insn),
2886 insn_data[num].name);
2887 if (insn_data[num].n_alternatives > 1)
2888 fprintf (asm_out_file, "/%d", which_alternative + 1);
2889 #ifdef HAVE_ATTR_length
2890 fprintf (asm_out_file, "\t[length = %d]",
2891 get_attr_length (debug_insn));
2892 #endif
2893 /* Clear this so only the first assembler insn
2894 of any rtl insn will get the special comment for -dp. */
2895 debug_insn = 0;
2896 }
2897 }
2898
2899 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2900 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2901 corresponds to the address of the object and 0 if to the object. */
2902
2903 static tree
2904 get_mem_expr_from_op (rtx op, int *paddressp)
2905 {
2906 tree expr;
2907 int inner_addressp;
2908
2909 *paddressp = 0;
2910
2911 if (REG_P (op))
2912 return REG_EXPR (op);
2913 else if (!MEM_P (op))
2914 return 0;
2915
2916 if (MEM_EXPR (op) != 0)
2917 return MEM_EXPR (op);
2918
2919 /* Otherwise we have an address, so indicate it and look at the address. */
2920 *paddressp = 1;
2921 op = XEXP (op, 0);
2922
2923 /* First check if we have a decl for the address, then look at the right side
2924 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2925 But don't allow the address to itself be indirect. */
2926 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2927 return expr;
2928 else if (GET_CODE (op) == PLUS
2929 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2930 return expr;
2931
2932 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2933 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2934 op = XEXP (op, 0);
2935
2936 expr = get_mem_expr_from_op (op, &inner_addressp);
2937 return inner_addressp ? 0 : expr;
2938 }
2939
2940 /* Output operand names for assembler instructions. OPERANDS is the
2941 operand vector, OPORDER is the order to write the operands, and NOPS
2942 is the number of operands to write. */
2943
2944 static void
2945 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2946 {
2947 int wrote = 0;
2948 int i;
2949
2950 for (i = 0; i < nops; i++)
2951 {
2952 int addressp;
2953 rtx op = operands[oporder[i]];
2954 tree expr = get_mem_expr_from_op (op, &addressp);
2955
2956 fprintf (asm_out_file, "%c%s",
2957 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2958 wrote = 1;
2959 if (expr)
2960 {
2961 fprintf (asm_out_file, "%s",
2962 addressp ? "*" : "");
2963 print_mem_expr (asm_out_file, expr);
2964 wrote = 1;
2965 }
2966 else if (REG_P (op) && ORIGINAL_REGNO (op)
2967 && ORIGINAL_REGNO (op) != REGNO (op))
2968 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2969 }
2970 }
2971
2972 /* Output text from TEMPLATE to the assembler output file,
2973 obeying %-directions to substitute operands taken from
2974 the vector OPERANDS.
2975
2976 %N (for N a digit) means print operand N in usual manner.
2977 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2978 and print the label name with no punctuation.
2979 %cN means require operand N to be a constant
2980 and print the constant expression with no punctuation.
2981 %aN means expect operand N to be a memory address
2982 (not a memory reference!) and print a reference
2983 to that address.
2984 %nN means expect operand N to be a constant
2985 and print a constant expression for minus the value
2986 of the operand, with no other punctuation. */
2987
2988 void
2989 output_asm_insn (const char *template, rtx *operands)
2990 {
2991 const char *p;
2992 int c;
2993 #ifdef ASSEMBLER_DIALECT
2994 int dialect = 0;
2995 #endif
2996 int oporder[MAX_RECOG_OPERANDS];
2997 char opoutput[MAX_RECOG_OPERANDS];
2998 int ops = 0;
2999
3000 /* An insn may return a null string template
3001 in a case where no assembler code is needed. */
3002 if (*template == 0)
3003 return;
3004
3005 memset (opoutput, 0, sizeof opoutput);
3006 p = template;
3007 putc ('\t', asm_out_file);
3008
3009 #ifdef ASM_OUTPUT_OPCODE
3010 ASM_OUTPUT_OPCODE (asm_out_file, p);
3011 #endif
3012
3013 while ((c = *p++))
3014 switch (c)
3015 {
3016 case '\n':
3017 if (flag_verbose_asm)
3018 output_asm_operand_names (operands, oporder, ops);
3019 if (flag_print_asm_name)
3020 output_asm_name ();
3021
3022 ops = 0;
3023 memset (opoutput, 0, sizeof opoutput);
3024
3025 putc (c, asm_out_file);
3026 #ifdef ASM_OUTPUT_OPCODE
3027 while ((c = *p) == '\t')
3028 {
3029 putc (c, asm_out_file);
3030 p++;
3031 }
3032 ASM_OUTPUT_OPCODE (asm_out_file, p);
3033 #endif
3034 break;
3035
3036 #ifdef ASSEMBLER_DIALECT
3037 case '{':
3038 {
3039 int i;
3040
3041 if (dialect)
3042 output_operand_lossage ("nested assembly dialect alternatives");
3043 else
3044 dialect = 1;
3045
3046 /* If we want the first dialect, do nothing. Otherwise, skip
3047 DIALECT_NUMBER of strings ending with '|'. */
3048 for (i = 0; i < dialect_number; i++)
3049 {
3050 while (*p && *p != '}' && *p++ != '|')
3051 ;
3052 if (*p == '}')
3053 break;
3054 if (*p == '|')
3055 p++;
3056 }
3057
3058 if (*p == '\0')
3059 output_operand_lossage ("unterminated assembly dialect alternative");
3060 }
3061 break;
3062
3063 case '|':
3064 if (dialect)
3065 {
3066 /* Skip to close brace. */
3067 do
3068 {
3069 if (*p == '\0')
3070 {
3071 output_operand_lossage ("unterminated assembly dialect alternative");
3072 break;
3073 }
3074 }
3075 while (*p++ != '}');
3076 dialect = 0;
3077 }
3078 else
3079 putc (c, asm_out_file);
3080 break;
3081
3082 case '}':
3083 if (! dialect)
3084 putc (c, asm_out_file);
3085 dialect = 0;
3086 break;
3087 #endif
3088
3089 case '%':
3090 /* %% outputs a single %. */
3091 if (*p == '%')
3092 {
3093 p++;
3094 putc (c, asm_out_file);
3095 }
3096 /* %= outputs a number which is unique to each insn in the entire
3097 compilation. This is useful for making local labels that are
3098 referred to more than once in a given insn. */
3099 else if (*p == '=')
3100 {
3101 p++;
3102 fprintf (asm_out_file, "%d", insn_counter);
3103 }
3104 /* % followed by a letter and some digits
3105 outputs an operand in a special way depending on the letter.
3106 Letters `acln' are implemented directly.
3107 Other letters are passed to `output_operand' so that
3108 the PRINT_OPERAND macro can define them. */
3109 else if (ISALPHA (*p))
3110 {
3111 int letter = *p++;
3112 unsigned long opnum;
3113 char *endptr;
3114
3115 opnum = strtoul (p, &endptr, 10);
3116
3117 if (endptr == p)
3118 output_operand_lossage ("operand number missing "
3119 "after %%-letter");
3120 else if (this_is_asm_operands && opnum >= insn_noperands)
3121 output_operand_lossage ("operand number out of range");
3122 else if (letter == 'l')
3123 output_asm_label (operands[opnum]);
3124 else if (letter == 'a')
3125 output_address (operands[opnum]);
3126 else if (letter == 'c')
3127 {
3128 if (CONSTANT_ADDRESS_P (operands[opnum]))
3129 output_addr_const (asm_out_file, operands[opnum]);
3130 else
3131 output_operand (operands[opnum], 'c');
3132 }
3133 else if (letter == 'n')
3134 {
3135 if (GET_CODE (operands[opnum]) == CONST_INT)
3136 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3137 - INTVAL (operands[opnum]));
3138 else
3139 {
3140 putc ('-', asm_out_file);
3141 output_addr_const (asm_out_file, operands[opnum]);
3142 }
3143 }
3144 else
3145 output_operand (operands[opnum], letter);
3146
3147 if (!opoutput[opnum])
3148 oporder[ops++] = opnum;
3149 opoutput[opnum] = 1;
3150
3151 p = endptr;
3152 c = *p;
3153 }
3154 /* % followed by a digit outputs an operand the default way. */
3155 else if (ISDIGIT (*p))
3156 {
3157 unsigned long opnum;
3158 char *endptr;
3159
3160 opnum = strtoul (p, &endptr, 10);
3161 if (this_is_asm_operands && opnum >= insn_noperands)
3162 output_operand_lossage ("operand number out of range");
3163 else
3164 output_operand (operands[opnum], 0);
3165
3166 if (!opoutput[opnum])
3167 oporder[ops++] = opnum;
3168 opoutput[opnum] = 1;
3169
3170 p = endptr;
3171 c = *p;
3172 }
3173 /* % followed by punctuation: output something for that
3174 punctuation character alone, with no operand.
3175 The PRINT_OPERAND macro decides what is actually done. */
3176 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3177 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3178 output_operand (NULL_RTX, *p++);
3179 #endif
3180 else
3181 output_operand_lossage ("invalid %%-code");
3182 break;
3183
3184 default:
3185 putc (c, asm_out_file);
3186 }
3187
3188 /* Write out the variable names for operands, if we know them. */
3189 if (flag_verbose_asm)
3190 output_asm_operand_names (operands, oporder, ops);
3191 if (flag_print_asm_name)
3192 output_asm_name ();
3193
3194 putc ('\n', asm_out_file);
3195 }
3196 \f
3197 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3198
3199 void
3200 output_asm_label (rtx x)
3201 {
3202 char buf[256];
3203
3204 if (GET_CODE (x) == LABEL_REF)
3205 x = XEXP (x, 0);
3206 if (LABEL_P (x)
3207 || (NOTE_P (x)
3208 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3209 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3210 else
3211 output_operand_lossage ("'%%l' operand isn't a label");
3212
3213 assemble_name (asm_out_file, buf);
3214 }
3215
3216 /* Print operand X using machine-dependent assembler syntax.
3217 The macro PRINT_OPERAND is defined just to control this function.
3218 CODE is a non-digit that preceded the operand-number in the % spec,
3219 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3220 between the % and the digits.
3221 When CODE is a non-letter, X is 0.
3222
3223 The meanings of the letters are machine-dependent and controlled
3224 by PRINT_OPERAND. */
3225
3226 static void
3227 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3228 {
3229 if (x && GET_CODE (x) == SUBREG)
3230 x = alter_subreg (&x);
3231
3232 /* X must not be a pseudo reg. */
3233 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3234
3235 PRINT_OPERAND (asm_out_file, x, code);
3236 }
3237
3238 /* Print a memory reference operand for address X
3239 using machine-dependent assembler syntax.
3240 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3241
3242 void
3243 output_address (rtx x)
3244 {
3245 walk_alter_subreg (&x);
3246 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3247 }
3248 \f
3249 /* Print an integer constant expression in assembler syntax.
3250 Addition and subtraction are the only arithmetic
3251 that may appear in these expressions. */
3252
3253 void
3254 output_addr_const (FILE *file, rtx x)
3255 {
3256 char buf[256];
3257
3258 restart:
3259 switch (GET_CODE (x))
3260 {
3261 case PC:
3262 putc ('.', file);
3263 break;
3264
3265 case SYMBOL_REF:
3266 if (SYMBOL_REF_DECL (x))
3267 mark_decl_referenced (SYMBOL_REF_DECL (x));
3268 #ifdef ASM_OUTPUT_SYMBOL_REF
3269 ASM_OUTPUT_SYMBOL_REF (file, x);
3270 #else
3271 assemble_name (file, XSTR (x, 0));
3272 #endif
3273 break;
3274
3275 case LABEL_REF:
3276 x = XEXP (x, 0);
3277 /* Fall through. */
3278 case CODE_LABEL:
3279 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3280 #ifdef ASM_OUTPUT_LABEL_REF
3281 ASM_OUTPUT_LABEL_REF (file, buf);
3282 #else
3283 assemble_name (file, buf);
3284 #endif
3285 break;
3286
3287 case CONST_INT:
3288 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3289 break;
3290
3291 case CONST:
3292 /* This used to output parentheses around the expression,
3293 but that does not work on the 386 (either ATT or BSD assembler). */
3294 output_addr_const (file, XEXP (x, 0));
3295 break;
3296
3297 case CONST_DOUBLE:
3298 if (GET_MODE (x) == VOIDmode)
3299 {
3300 /* We can use %d if the number is one word and positive. */
3301 if (CONST_DOUBLE_HIGH (x))
3302 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3303 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3304 else if (CONST_DOUBLE_LOW (x) < 0)
3305 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3306 else
3307 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3308 }
3309 else
3310 /* We can't handle floating point constants;
3311 PRINT_OPERAND must handle them. */
3312 output_operand_lossage ("floating constant misused");
3313 break;
3314
3315 case PLUS:
3316 /* Some assemblers need integer constants to appear last (eg masm). */
3317 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3318 {
3319 output_addr_const (file, XEXP (x, 1));
3320 if (INTVAL (XEXP (x, 0)) >= 0)
3321 fprintf (file, "+");
3322 output_addr_const (file, XEXP (x, 0));
3323 }
3324 else
3325 {
3326 output_addr_const (file, XEXP (x, 0));
3327 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3328 || INTVAL (XEXP (x, 1)) >= 0)
3329 fprintf (file, "+");
3330 output_addr_const (file, XEXP (x, 1));
3331 }
3332 break;
3333
3334 case MINUS:
3335 /* Avoid outputting things like x-x or x+5-x,
3336 since some assemblers can't handle that. */
3337 x = simplify_subtraction (x);
3338 if (GET_CODE (x) != MINUS)
3339 goto restart;
3340
3341 output_addr_const (file, XEXP (x, 0));
3342 fprintf (file, "-");
3343 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3344 || GET_CODE (XEXP (x, 1)) == PC
3345 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3346 output_addr_const (file, XEXP (x, 1));
3347 else
3348 {
3349 fputs (targetm.asm_out.open_paren, file);
3350 output_addr_const (file, XEXP (x, 1));
3351 fputs (targetm.asm_out.close_paren, file);
3352 }
3353 break;
3354
3355 case ZERO_EXTEND:
3356 case SIGN_EXTEND:
3357 case SUBREG:
3358 output_addr_const (file, XEXP (x, 0));
3359 break;
3360
3361 default:
3362 #ifdef OUTPUT_ADDR_CONST_EXTRA
3363 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3364 break;
3365
3366 fail:
3367 #endif
3368 output_operand_lossage ("invalid expression as operand");
3369 }
3370 }
3371 \f
3372 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3373 %R prints the value of REGISTER_PREFIX.
3374 %L prints the value of LOCAL_LABEL_PREFIX.
3375 %U prints the value of USER_LABEL_PREFIX.
3376 %I prints the value of IMMEDIATE_PREFIX.
3377 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3378 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3379
3380 We handle alternate assembler dialects here, just like output_asm_insn. */
3381
3382 void
3383 asm_fprintf (FILE *file, const char *p, ...)
3384 {
3385 char buf[10];
3386 char *q, c;
3387 va_list argptr;
3388
3389 va_start (argptr, p);
3390
3391 buf[0] = '%';
3392
3393 while ((c = *p++))
3394 switch (c)
3395 {
3396 #ifdef ASSEMBLER_DIALECT
3397 case '{':
3398 {
3399 int i;
3400
3401 /* If we want the first dialect, do nothing. Otherwise, skip
3402 DIALECT_NUMBER of strings ending with '|'. */
3403 for (i = 0; i < dialect_number; i++)
3404 {
3405 while (*p && *p++ != '|')
3406 ;
3407
3408 if (*p == '|')
3409 p++;
3410 }
3411 }
3412 break;
3413
3414 case '|':
3415 /* Skip to close brace. */
3416 while (*p && *p++ != '}')
3417 ;
3418 break;
3419
3420 case '}':
3421 break;
3422 #endif
3423
3424 case '%':
3425 c = *p++;
3426 q = &buf[1];
3427 while (strchr ("-+ #0", c))
3428 {
3429 *q++ = c;
3430 c = *p++;
3431 }
3432 while (ISDIGIT (c) || c == '.')
3433 {
3434 *q++ = c;
3435 c = *p++;
3436 }
3437 switch (c)
3438 {
3439 case '%':
3440 putc ('%', file);
3441 break;
3442
3443 case 'd': case 'i': case 'u':
3444 case 'x': case 'X': case 'o':
3445 case 'c':
3446 *q++ = c;
3447 *q = 0;
3448 fprintf (file, buf, va_arg (argptr, int));
3449 break;
3450
3451 case 'w':
3452 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3453 'o' cases, but we do not check for those cases. It
3454 means that the value is a HOST_WIDE_INT, which may be
3455 either `long' or `long long'. */
3456 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3457 q += strlen (HOST_WIDE_INT_PRINT);
3458 *q++ = *p++;
3459 *q = 0;
3460 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3461 break;
3462
3463 case 'l':
3464 *q++ = c;
3465 #ifdef HAVE_LONG_LONG
3466 if (*p == 'l')
3467 {
3468 *q++ = *p++;
3469 *q++ = *p++;
3470 *q = 0;
3471 fprintf (file, buf, va_arg (argptr, long long));
3472 }
3473 else
3474 #endif
3475 {
3476 *q++ = *p++;
3477 *q = 0;
3478 fprintf (file, buf, va_arg (argptr, long));
3479 }
3480
3481 break;
3482
3483 case 's':
3484 *q++ = c;
3485 *q = 0;
3486 fprintf (file, buf, va_arg (argptr, char *));
3487 break;
3488
3489 case 'O':
3490 #ifdef ASM_OUTPUT_OPCODE
3491 ASM_OUTPUT_OPCODE (asm_out_file, p);
3492 #endif
3493 break;
3494
3495 case 'R':
3496 #ifdef REGISTER_PREFIX
3497 fprintf (file, "%s", REGISTER_PREFIX);
3498 #endif
3499 break;
3500
3501 case 'I':
3502 #ifdef IMMEDIATE_PREFIX
3503 fprintf (file, "%s", IMMEDIATE_PREFIX);
3504 #endif
3505 break;
3506
3507 case 'L':
3508 #ifdef LOCAL_LABEL_PREFIX
3509 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3510 #endif
3511 break;
3512
3513 case 'U':
3514 fputs (user_label_prefix, file);
3515 break;
3516
3517 #ifdef ASM_FPRINTF_EXTENSIONS
3518 /* Uppercase letters are reserved for general use by asm_fprintf
3519 and so are not available to target specific code. In order to
3520 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3521 they are defined here. As they get turned into real extensions
3522 to asm_fprintf they should be removed from this list. */
3523 case 'A': case 'B': case 'C': case 'D': case 'E':
3524 case 'F': case 'G': case 'H': case 'J': case 'K':
3525 case 'M': case 'N': case 'P': case 'Q': case 'S':
3526 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3527 break;
3528
3529 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3530 #endif
3531 default:
3532 gcc_unreachable ();
3533 }
3534 break;
3535
3536 default:
3537 putc (c, file);
3538 }
3539 va_end (argptr);
3540 }
3541 \f
3542 /* Split up a CONST_DOUBLE or integer constant rtx
3543 into two rtx's for single words,
3544 storing in *FIRST the word that comes first in memory in the target
3545 and in *SECOND the other. */
3546
3547 void
3548 split_double (rtx value, rtx *first, rtx *second)
3549 {
3550 if (GET_CODE (value) == CONST_INT)
3551 {
3552 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3553 {
3554 /* In this case the CONST_INT holds both target words.
3555 Extract the bits from it into two word-sized pieces.
3556 Sign extend each half to HOST_WIDE_INT. */
3557 unsigned HOST_WIDE_INT low, high;
3558 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3559
3560 /* Set sign_bit to the most significant bit of a word. */
3561 sign_bit = 1;
3562 sign_bit <<= BITS_PER_WORD - 1;
3563
3564 /* Set mask so that all bits of the word are set. We could
3565 have used 1 << BITS_PER_WORD instead of basing the
3566 calculation on sign_bit. However, on machines where
3567 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3568 compiler warning, even though the code would never be
3569 executed. */
3570 mask = sign_bit << 1;
3571 mask--;
3572
3573 /* Set sign_extend as any remaining bits. */
3574 sign_extend = ~mask;
3575
3576 /* Pick the lower word and sign-extend it. */
3577 low = INTVAL (value);
3578 low &= mask;
3579 if (low & sign_bit)
3580 low |= sign_extend;
3581
3582 /* Pick the higher word, shifted to the least significant
3583 bits, and sign-extend it. */
3584 high = INTVAL (value);
3585 high >>= BITS_PER_WORD - 1;
3586 high >>= 1;
3587 high &= mask;
3588 if (high & sign_bit)
3589 high |= sign_extend;
3590
3591 /* Store the words in the target machine order. */
3592 if (WORDS_BIG_ENDIAN)
3593 {
3594 *first = GEN_INT (high);
3595 *second = GEN_INT (low);
3596 }
3597 else
3598 {
3599 *first = GEN_INT (low);
3600 *second = GEN_INT (high);
3601 }
3602 }
3603 else
3604 {
3605 /* The rule for using CONST_INT for a wider mode
3606 is that we regard the value as signed.
3607 So sign-extend it. */
3608 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3609 if (WORDS_BIG_ENDIAN)
3610 {
3611 *first = high;
3612 *second = value;
3613 }
3614 else
3615 {
3616 *first = value;
3617 *second = high;
3618 }
3619 }
3620 }
3621 else if (GET_CODE (value) != CONST_DOUBLE)
3622 {
3623 if (WORDS_BIG_ENDIAN)
3624 {
3625 *first = const0_rtx;
3626 *second = value;
3627 }
3628 else
3629 {
3630 *first = value;
3631 *second = const0_rtx;
3632 }
3633 }
3634 else if (GET_MODE (value) == VOIDmode
3635 /* This is the old way we did CONST_DOUBLE integers. */
3636 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3637 {
3638 /* In an integer, the words are defined as most and least significant.
3639 So order them by the target's convention. */
3640 if (WORDS_BIG_ENDIAN)
3641 {
3642 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3643 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3644 }
3645 else
3646 {
3647 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3648 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3649 }
3650 }
3651 else
3652 {
3653 REAL_VALUE_TYPE r;
3654 long l[2];
3655 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3656
3657 /* Note, this converts the REAL_VALUE_TYPE to the target's
3658 format, splits up the floating point double and outputs
3659 exactly 32 bits of it into each of l[0] and l[1] --
3660 not necessarily BITS_PER_WORD bits. */
3661 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3662
3663 /* If 32 bits is an entire word for the target, but not for the host,
3664 then sign-extend on the host so that the number will look the same
3665 way on the host that it would on the target. See for instance
3666 simplify_unary_operation. The #if is needed to avoid compiler
3667 warnings. */
3668
3669 #if HOST_BITS_PER_LONG > 32
3670 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3671 {
3672 if (l[0] & ((long) 1 << 31))
3673 l[0] |= ((long) (-1) << 32);
3674 if (l[1] & ((long) 1 << 31))
3675 l[1] |= ((long) (-1) << 32);
3676 }
3677 #endif
3678
3679 *first = GEN_INT (l[0]);
3680 *second = GEN_INT (l[1]);
3681 }
3682 }
3683 \f
3684 /* Return nonzero if this function has no function calls. */
3685
3686 int
3687 leaf_function_p (void)
3688 {
3689 rtx insn;
3690 rtx link;
3691
3692 if (current_function_profile || profile_arc_flag)
3693 return 0;
3694
3695 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3696 {
3697 if (CALL_P (insn)
3698 && ! SIBLING_CALL_P (insn))
3699 return 0;
3700 if (NONJUMP_INSN_P (insn)
3701 && GET_CODE (PATTERN (insn)) == SEQUENCE
3702 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3703 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3704 return 0;
3705 }
3706 for (link = current_function_epilogue_delay_list;
3707 link;
3708 link = XEXP (link, 1))
3709 {
3710 insn = XEXP (link, 0);
3711
3712 if (CALL_P (insn)
3713 && ! SIBLING_CALL_P (insn))
3714 return 0;
3715 if (NONJUMP_INSN_P (insn)
3716 && GET_CODE (PATTERN (insn)) == SEQUENCE
3717 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3718 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3719 return 0;
3720 }
3721
3722 return 1;
3723 }
3724
3725 /* Return 1 if branch is a forward branch.
3726 Uses insn_shuid array, so it works only in the final pass. May be used by
3727 output templates to customary add branch prediction hints.
3728 */
3729 int
3730 final_forward_branch_p (rtx insn)
3731 {
3732 int insn_id, label_id;
3733
3734 gcc_assert (uid_shuid);
3735 insn_id = INSN_SHUID (insn);
3736 label_id = INSN_SHUID (JUMP_LABEL (insn));
3737 /* We've hit some insns that does not have id information available. */
3738 gcc_assert (insn_id && label_id);
3739 return insn_id < label_id;
3740 }
3741
3742 /* On some machines, a function with no call insns
3743 can run faster if it doesn't create its own register window.
3744 When output, the leaf function should use only the "output"
3745 registers. Ordinarily, the function would be compiled to use
3746 the "input" registers to find its arguments; it is a candidate
3747 for leaf treatment if it uses only the "input" registers.
3748 Leaf function treatment means renumbering so the function
3749 uses the "output" registers instead. */
3750
3751 #ifdef LEAF_REGISTERS
3752
3753 /* Return 1 if this function uses only the registers that can be
3754 safely renumbered. */
3755
3756 int
3757 only_leaf_regs_used (void)
3758 {
3759 int i;
3760 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3761
3762 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3763 if ((regs_ever_live[i] || global_regs[i])
3764 && ! permitted_reg_in_leaf_functions[i])
3765 return 0;
3766
3767 if (current_function_uses_pic_offset_table
3768 && pic_offset_table_rtx != 0
3769 && REG_P (pic_offset_table_rtx)
3770 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3771 return 0;
3772
3773 return 1;
3774 }
3775
3776 /* Scan all instructions and renumber all registers into those
3777 available in leaf functions. */
3778
3779 static void
3780 leaf_renumber_regs (rtx first)
3781 {
3782 rtx insn;
3783
3784 /* Renumber only the actual patterns.
3785 The reg-notes can contain frame pointer refs,
3786 and renumbering them could crash, and should not be needed. */
3787 for (insn = first; insn; insn = NEXT_INSN (insn))
3788 if (INSN_P (insn))
3789 leaf_renumber_regs_insn (PATTERN (insn));
3790 for (insn = current_function_epilogue_delay_list;
3791 insn;
3792 insn = XEXP (insn, 1))
3793 if (INSN_P (XEXP (insn, 0)))
3794 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3795 }
3796
3797 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3798 available in leaf functions. */
3799
3800 void
3801 leaf_renumber_regs_insn (rtx in_rtx)
3802 {
3803 int i, j;
3804 const char *format_ptr;
3805
3806 if (in_rtx == 0)
3807 return;
3808
3809 /* Renumber all input-registers into output-registers.
3810 renumbered_regs would be 1 for an output-register;
3811 they */
3812
3813 if (REG_P (in_rtx))
3814 {
3815 int newreg;
3816
3817 /* Don't renumber the same reg twice. */
3818 if (in_rtx->used)
3819 return;
3820
3821 newreg = REGNO (in_rtx);
3822 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3823 to reach here as part of a REG_NOTE. */
3824 if (newreg >= FIRST_PSEUDO_REGISTER)
3825 {
3826 in_rtx->used = 1;
3827 return;
3828 }
3829 newreg = LEAF_REG_REMAP (newreg);
3830 gcc_assert (newreg >= 0);
3831 regs_ever_live[REGNO (in_rtx)] = 0;
3832 regs_ever_live[newreg] = 1;
3833 REGNO (in_rtx) = newreg;
3834 in_rtx->used = 1;
3835 }
3836
3837 if (INSN_P (in_rtx))
3838 {
3839 /* Inside a SEQUENCE, we find insns.
3840 Renumber just the patterns of these insns,
3841 just as we do for the top-level insns. */
3842 leaf_renumber_regs_insn (PATTERN (in_rtx));
3843 return;
3844 }
3845
3846 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3847
3848 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3849 switch (*format_ptr++)
3850 {
3851 case 'e':
3852 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3853 break;
3854
3855 case 'E':
3856 if (NULL != XVEC (in_rtx, i))
3857 {
3858 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3859 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3860 }
3861 break;
3862
3863 case 'S':
3864 case 's':
3865 case '0':
3866 case 'i':
3867 case 'w':
3868 case 'n':
3869 case 'u':
3870 break;
3871
3872 default:
3873 gcc_unreachable ();
3874 }
3875 }
3876 #endif
3877
3878
3879 /* When -gused is used, emit debug info for only used symbols. But in
3880 addition to the standard intercepted debug_hooks there are some direct
3881 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3882 Those routines may also be called from a higher level intercepted routine. So
3883 to prevent recording data for an inner call to one of these for an intercept,
3884 we maintain an intercept nesting counter (debug_nesting). We only save the
3885 intercepted arguments if the nesting is 1. */
3886 int debug_nesting = 0;
3887
3888 static tree *symbol_queue;
3889 int symbol_queue_index = 0;
3890 static int symbol_queue_size = 0;
3891
3892 /* Generate the symbols for any queued up type symbols we encountered
3893 while generating the type info for some originally used symbol.
3894 This might generate additional entries in the queue. Only when
3895 the nesting depth goes to 0 is this routine called. */
3896
3897 void
3898 debug_flush_symbol_queue (void)
3899 {
3900 int i;
3901
3902 /* Make sure that additionally queued items are not flushed
3903 prematurely. */
3904
3905 ++debug_nesting;
3906
3907 for (i = 0; i < symbol_queue_index; ++i)
3908 {
3909 /* If we pushed queued symbols then such symbols must be
3910 output no matter what anyone else says. Specifically,
3911 we need to make sure dbxout_symbol() thinks the symbol was
3912 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3913 which may be set for outside reasons. */
3914 int saved_tree_used = TREE_USED (symbol_queue[i]);
3915 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3916 TREE_USED (symbol_queue[i]) = 1;
3917 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3918
3919 #ifdef DBX_DEBUGGING_INFO
3920 dbxout_symbol (symbol_queue[i], 0);
3921 #endif
3922
3923 TREE_USED (symbol_queue[i]) = saved_tree_used;
3924 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3925 }
3926
3927 symbol_queue_index = 0;
3928 --debug_nesting;
3929 }
3930
3931 /* Queue a type symbol needed as part of the definition of a decl
3932 symbol. These symbols are generated when debug_flush_symbol_queue()
3933 is called. */
3934
3935 void
3936 debug_queue_symbol (tree decl)
3937 {
3938 if (symbol_queue_index >= symbol_queue_size)
3939 {
3940 symbol_queue_size += 10;
3941 symbol_queue = xrealloc (symbol_queue,
3942 symbol_queue_size * sizeof (tree));
3943 }
3944
3945 symbol_queue[symbol_queue_index++] = decl;
3946 }
3947
3948 /* Free symbol queue. */
3949 void
3950 debug_free_queue (void)
3951 {
3952 if (symbol_queue)
3953 {
3954 free (symbol_queue);
3955 symbol_queue = NULL;
3956 symbol_queue_size = 0;
3957 }
3958 }
3959 \f
3960 /* Turn the RTL into assembly. */
3961 static unsigned int
3962 rest_of_handle_final (void)
3963 {
3964 rtx x;
3965 const char *fnname;
3966
3967 /* Get the function's name, as described by its RTL. This may be
3968 different from the DECL_NAME name used in the source file. */
3969
3970 x = DECL_RTL (current_function_decl);
3971 gcc_assert (MEM_P (x));
3972 x = XEXP (x, 0);
3973 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3974 fnname = XSTR (x, 0);
3975
3976 assemble_start_function (current_function_decl, fnname);
3977 final_start_function (get_insns (), asm_out_file, optimize);
3978 final (get_insns (), asm_out_file, optimize);
3979 final_end_function ();
3980
3981 #ifdef TARGET_UNWIND_INFO
3982 /* ??? The IA-64 ".handlerdata" directive must be issued before
3983 the ".endp" directive that closes the procedure descriptor. */
3984 output_function_exception_table (fnname);
3985 #endif
3986
3987 assemble_end_function (current_function_decl, fnname);
3988
3989 #ifndef TARGET_UNWIND_INFO
3990 /* Otherwise, it feels unclean to switch sections in the middle. */
3991 output_function_exception_table (fnname);
3992 #endif
3993
3994 user_defined_section_attribute = false;
3995
3996 if (! quiet_flag)
3997 fflush (asm_out_file);
3998
3999 /* Release all memory allocated by flow. */
4000 free_basic_block_vars ();
4001
4002 /* Write DBX symbols if requested. */
4003
4004 /* Note that for those inline functions where we don't initially
4005 know for certain that we will be generating an out-of-line copy,
4006 the first invocation of this routine (rest_of_compilation) will
4007 skip over this code by doing a `goto exit_rest_of_compilation;'.
4008 Later on, wrapup_global_declarations will (indirectly) call
4009 rest_of_compilation again for those inline functions that need
4010 to have out-of-line copies generated. During that call, we
4011 *will* be routed past here. */
4012
4013 timevar_push (TV_SYMOUT);
4014 (*debug_hooks->function_decl) (current_function_decl);
4015 timevar_pop (TV_SYMOUT);
4016 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4017 && targetm.have_ctors_dtors)
4018 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4019 decl_init_priority_lookup
4020 (current_function_decl));
4021 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4022 && targetm.have_ctors_dtors)
4023 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4024 decl_fini_priority_lookup
4025 (current_function_decl));
4026 return 0;
4027 }
4028
4029 struct tree_opt_pass pass_final =
4030 {
4031 NULL, /* name */
4032 NULL, /* gate */
4033 rest_of_handle_final, /* execute */
4034 NULL, /* sub */
4035 NULL, /* next */
4036 0, /* static_pass_number */
4037 TV_FINAL, /* tv_id */
4038 0, /* properties_required */
4039 0, /* properties_provided */
4040 0, /* properties_destroyed */
4041 0, /* todo_flags_start */
4042 TODO_ggc_collect, /* todo_flags_finish */
4043 0 /* letter */
4044 };
4045
4046
4047 static unsigned int
4048 rest_of_handle_shorten_branches (void)
4049 {
4050 /* Shorten branches. */
4051 shorten_branches (get_insns ());
4052 return 0;
4053 }
4054
4055 struct tree_opt_pass pass_shorten_branches =
4056 {
4057 "shorten", /* name */
4058 NULL, /* gate */
4059 rest_of_handle_shorten_branches, /* execute */
4060 NULL, /* sub */
4061 NULL, /* next */
4062 0, /* static_pass_number */
4063 TV_FINAL, /* tv_id */
4064 0, /* properties_required */
4065 0, /* properties_provided */
4066 0, /* properties_destroyed */
4067 0, /* todo_flags_start */
4068 TODO_dump_func, /* todo_flags_finish */
4069 0 /* letter */
4070 };
4071
4072
4073 static unsigned int
4074 rest_of_clean_state (void)
4075 {
4076 rtx insn, next;
4077
4078 /* It is very important to decompose the RTL instruction chain here:
4079 debug information keeps pointing into CODE_LABEL insns inside the function
4080 body. If these remain pointing to the other insns, we end up preserving
4081 whole RTL chain and attached detailed debug info in memory. */
4082 for (insn = get_insns (); insn; insn = next)
4083 {
4084 next = NEXT_INSN (insn);
4085 NEXT_INSN (insn) = NULL;
4086 PREV_INSN (insn) = NULL;
4087 }
4088
4089 /* In case the function was not output,
4090 don't leave any temporary anonymous types
4091 queued up for sdb output. */
4092 #ifdef SDB_DEBUGGING_INFO
4093 if (write_symbols == SDB_DEBUG)
4094 sdbout_types (NULL_TREE);
4095 #endif
4096
4097 reload_completed = 0;
4098 epilogue_completed = 0;
4099 flow2_completed = 0;
4100 no_new_pseudos = 0;
4101 #ifdef STACK_REGS
4102 regstack_completed = 0;
4103 #endif
4104
4105 /* Clear out the insn_length contents now that they are no
4106 longer valid. */
4107 init_insn_lengths ();
4108
4109 /* Show no temporary slots allocated. */
4110 init_temp_slots ();
4111
4112 free_basic_block_vars ();
4113 free_bb_for_insn ();
4114
4115
4116 if (targetm.binds_local_p (current_function_decl))
4117 {
4118 int pref = cfun->preferred_stack_boundary;
4119 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4120 pref = cfun->stack_alignment_needed;
4121 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4122 = pref;
4123 }
4124
4125 /* Make sure volatile mem refs aren't considered valid operands for
4126 arithmetic insns. We must call this here if this is a nested inline
4127 function, since the above code leaves us in the init_recog state,
4128 and the function context push/pop code does not save/restore volatile_ok.
4129
4130 ??? Maybe it isn't necessary for expand_start_function to call this
4131 anymore if we do it here? */
4132
4133 init_recog_no_volatile ();
4134
4135 /* We're done with this function. Free up memory if we can. */
4136 free_after_parsing (cfun);
4137 free_after_compilation (cfun);
4138 return 0;
4139 }
4140
4141 struct tree_opt_pass pass_clean_state =
4142 {
4143 NULL, /* name */
4144 NULL, /* gate */
4145 rest_of_clean_state, /* execute */
4146 NULL, /* sub */
4147 NULL, /* next */
4148 0, /* static_pass_number */
4149 TV_FINAL, /* tv_id */
4150 0, /* properties_required */
4151 0, /* properties_provided */
4152 PROP_rtl, /* properties_destroyed */
4153 0, /* todo_flags_start */
4154 0, /* todo_flags_finish */
4155 0 /* letter */
4156 };
4157