configure.ac: Test for assembler tolerance to # 0 "".
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79 #include "vecprim.h"
80
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h" /* Needed for external data
83 declarations for e.g. AIX 4.x. */
84 #endif
85
86 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
87 #include "dwarf2out.h"
88 #endif
89
90 #ifdef DBX_DEBUGGING_INFO
91 #include "dbxout.h"
92 #endif
93
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
97
98 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
99 null default for it to save conditionalization later. */
100 #ifndef CC_STATUS_INIT
101 #define CC_STATUS_INIT
102 #endif
103
104 /* How to start an assembler comment. */
105 #ifndef ASM_COMMENT_START
106 #define ASM_COMMENT_START ";#"
107 #endif
108
109 /* Is the given character a logical line separator for the assembler? */
110 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
111 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
112 #endif
113
114 #ifndef JUMP_TABLES_IN_TEXT_SECTION
115 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 #endif
117
118 /* Bitflags used by final_scan_insn. */
119 #define SEEN_BB 1
120 #define SEEN_NOTE 2
121 #define SEEN_EMITTED 4
122
123 /* Last insn processed by final_scan_insn. */
124 static rtx debug_insn;
125 rtx current_output_insn;
126
127 /* Line number of last NOTE. */
128 static int last_linenum;
129
130 /* Highest line number in current block. */
131 static int high_block_linenum;
132
133 /* Likewise for function. */
134 static int high_function_linenum;
135
136 /* Filename of last NOTE. */
137 static const char *last_filename;
138
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
141
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 rtx this_is_asm_operands;
148
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
151
152 /* Compare optimization flag. */
153
154 static rtx last_ignored_compare = 0;
155
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
158
159 static int insn_counter = 0;
160
161 #ifdef HAVE_cc0
162 /* This variable contains machine-dependent flags (defined in tm.h)
163 set and examined by output routines
164 that describe how to interpret the condition codes properly. */
165
166 CC_STATUS cc_status;
167
168 /* During output of an insn, this contains a copy of cc_status
169 from before the insn. */
170
171 CC_STATUS cc_prev_status;
172 #endif
173
174 /* Indexed by hardware reg number, is 1 if that register is ever
175 used in the current function.
176
177 In life_analysis, or in stupid_life_analysis, this is set
178 up to record the hard regs used explicitly. Reload adds
179 in the hard regs used for holding pseudo regs. Final uses
180 it to generate the code in the function prologue and epilogue
181 to save and restore registers as needed. */
182
183 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184
185 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
186 Unlike regs_ever_live, elements of this array corresponding to
187 eliminable regs like the frame pointer are set if an asm sets them. */
188
189 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190
191 /* Nonzero means current function must be given a frame pointer.
192 Initialized in function.c to 0. Set only in reload1.c as per
193 the needs of the function. */
194
195 int frame_pointer_needed;
196
197 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198
199 static int block_depth;
200
201 /* Nonzero if have enabled APP processing of our assembler output. */
202
203 static int app_on;
204
205 /* If we are outputting an insn sequence, this contains the sequence rtx.
206 Zero otherwise. */
207
208 rtx final_sequence;
209
210 #ifdef ASSEMBLER_DIALECT
211
212 /* Number of the assembler dialect to use, starting at 0. */
213 static int dialect_number;
214 #endif
215
216 #ifdef HAVE_conditional_execution
217 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
218 rtx current_insn_predicate;
219 #endif
220
221 #ifdef HAVE_ATTR_length
222 static int asm_insn_count (rtx);
223 #endif
224 static void profile_function (FILE *);
225 static void profile_after_prologue (FILE *);
226 static bool notice_source_line (rtx);
227 static rtx walk_alter_subreg (rtx *);
228 static void output_asm_name (void);
229 static void output_alternate_entry_point (FILE *, rtx);
230 static tree get_mem_expr_from_op (rtx, int *);
231 static void output_asm_operand_names (rtx *, int *, int);
232 static void output_operand (rtx, int);
233 #ifdef LEAF_REGISTERS
234 static void leaf_renumber_regs (rtx);
235 #endif
236 #ifdef HAVE_cc0
237 static int alter_cond (rtx);
238 #endif
239 #ifndef ADDR_VEC_ALIGN
240 static int final_addr_vec_align (rtx);
241 #endif
242 #ifdef HAVE_ATTR_length
243 static int align_fuzz (rtx, rtx, int, unsigned);
244 #endif
245 \f
246 /* Initialize data in final at the beginning of a compilation. */
247
248 void
249 init_final (const char *filename ATTRIBUTE_UNUSED)
250 {
251 app_on = 0;
252 final_sequence = 0;
253
254 #ifdef ASSEMBLER_DIALECT
255 dialect_number = ASSEMBLER_DIALECT;
256 #endif
257 }
258
259 /* Default target function prologue and epilogue assembler output.
260
261 If not overridden for epilogue code, then the function body itself
262 contains return instructions wherever needed. */
263 void
264 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
265 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Default target hook that outputs nothing to a stream. */
270 void
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
272 {
273 }
274
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
277
278 void
279 app_enable (void)
280 {
281 if (! app_on)
282 {
283 fputs (ASM_APP_ON, asm_out_file);
284 app_on = 1;
285 }
286 }
287
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
290
291 void
292 app_disable (void)
293 {
294 if (app_on)
295 {
296 fputs (ASM_APP_OFF, asm_out_file);
297 app_on = 0;
298 }
299 }
300 \f
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
304
305 #ifdef DELAY_SLOTS
306 int
307 dbr_sequence_length (void)
308 {
309 if (final_sequence != 0)
310 return XVECLEN (final_sequence, 0) - 1;
311 else
312 return 0;
313 }
314 #endif
315 \f
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
318
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
321
322 static int *insn_lengths;
323
324 VEC(int,heap) *insn_addresses_;
325
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid;
328
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address;
331
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address;
334
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align;
337
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
345 comments. */
346
347 struct label_alignment
348 {
349 short alignment;
350 short max_skip;
351 };
352
353 static rtx *uid_align;
354 static int *uid_shuid;
355 static struct label_alignment *label_align;
356
357 /* Indicate that branch shortening hasn't yet been done. */
358
359 void
360 init_insn_lengths (void)
361 {
362 if (uid_shuid)
363 {
364 free (uid_shuid);
365 uid_shuid = 0;
366 }
367 if (insn_lengths)
368 {
369 free (insn_lengths);
370 insn_lengths = 0;
371 insn_lengths_max_uid = 0;
372 }
373 #ifdef HAVE_ATTR_length
374 INSN_ADDRESSES_FREE ();
375 #endif
376 if (uid_align)
377 {
378 free (uid_align);
379 uid_align = 0;
380 }
381 }
382
383 /* Obtain the current length of an insn. If branch shortening has been done,
384 get its actual length. Otherwise, use FALLBACK_FN to calculate the
385 length. */
386 static inline int
387 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
388 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 {
390 #ifdef HAVE_ATTR_length
391 rtx body;
392 int i;
393 int length = 0;
394
395 if (insn_lengths_max_uid > INSN_UID (insn))
396 return insn_lengths[INSN_UID (insn)];
397 else
398 switch (GET_CODE (insn))
399 {
400 case NOTE:
401 case BARRIER:
402 case CODE_LABEL:
403 return 0;
404
405 case CALL_INSN:
406 length = fallback_fn (insn);
407 break;
408
409 case JUMP_INSN:
410 body = PATTERN (insn);
411 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 {
413 /* Alignment is machine-dependent and should be handled by
414 ADDR_VEC_ALIGN. */
415 }
416 else
417 length = fallback_fn (insn);
418 break;
419
420 case INSN:
421 body = PATTERN (insn);
422 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
423 return 0;
424
425 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
426 length = asm_insn_count (body) * fallback_fn (insn);
427 else if (GET_CODE (body) == SEQUENCE)
428 for (i = 0; i < XVECLEN (body, 0); i++)
429 length += get_attr_length (XVECEXP (body, 0, i));
430 else
431 length = fallback_fn (insn);
432 break;
433
434 default:
435 break;
436 }
437
438 #ifdef ADJUST_INSN_LENGTH
439 ADJUST_INSN_LENGTH (insn, length);
440 #endif
441 return length;
442 #else /* not HAVE_ATTR_length */
443 return 0;
444 #define insn_default_length 0
445 #define insn_min_length 0
446 #endif /* not HAVE_ATTR_length */
447 }
448
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its maximum length. */
451 int
452 get_attr_length (rtx insn)
453 {
454 return get_attr_length_1 (insn, insn_default_length);
455 }
456
457 /* Obtain the current length of an insn. If branch shortening has been done,
458 get its actual length. Otherwise, get its minimum length. */
459 int
460 get_attr_min_length (rtx insn)
461 {
462 return get_attr_length_1 (insn, insn_min_length);
463 }
464 \f
465 /* Code to handle alignment inside shorten_branches. */
466
467 /* Here is an explanation how the algorithm in align_fuzz can give
468 proper results:
469
470 Call a sequence of instructions beginning with alignment point X
471 and continuing until the next alignment point `block X'. When `X'
472 is used in an expression, it means the alignment value of the
473 alignment point.
474
475 Call the distance between the start of the first insn of block X, and
476 the end of the last insn of block X `IX', for the `inner size of X'.
477 This is clearly the sum of the instruction lengths.
478
479 Likewise with the next alignment-delimited block following X, which we
480 shall call block Y.
481
482 Call the distance between the start of the first insn of block X, and
483 the start of the first insn of block Y `OX', for the `outer size of X'.
484
485 The estimated padding is then OX - IX.
486
487 OX can be safely estimated as
488
489 if (X >= Y)
490 OX = round_up(IX, Y)
491 else
492 OX = round_up(IX, X) + Y - X
493
494 Clearly est(IX) >= real(IX), because that only depends on the
495 instruction lengths, and those being overestimated is a given.
496
497 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
498 we needn't worry about that when thinking about OX.
499
500 When X >= Y, the alignment provided by Y adds no uncertainty factor
501 for branch ranges starting before X, so we can just round what we have.
502 But when X < Y, we don't know anything about the, so to speak,
503 `middle bits', so we have to assume the worst when aligning up from an
504 address mod X to one mod Y, which is Y - X. */
505
506 #ifndef LABEL_ALIGN
507 #define LABEL_ALIGN(LABEL) align_labels_log
508 #endif
509
510 #ifndef LABEL_ALIGN_MAX_SKIP
511 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
512 #endif
513
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517
518 #ifndef LOOP_ALIGN_MAX_SKIP
519 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
520 #endif
521
522 #ifndef LABEL_ALIGN_AFTER_BARRIER
523 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
524 #endif
525
526 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
527 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
528 #endif
529
530 #ifndef JUMP_ALIGN
531 #define JUMP_ALIGN(LABEL) align_jumps_log
532 #endif
533
534 #ifndef JUMP_ALIGN_MAX_SKIP
535 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
536 #endif
537
538 #ifndef ADDR_VEC_ALIGN
539 static int
540 final_addr_vec_align (rtx addr_vec)
541 {
542 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543
544 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
545 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
546 return exact_log2 (align);
547
548 }
549
550 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #endif
552
553 #ifndef INSN_LENGTH_ALIGNMENT
554 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #endif
556
557 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558
559 static int min_labelno, max_labelno;
560
561 #define LABEL_TO_ALIGNMENT(LABEL) \
562 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563
564 #define LABEL_TO_MAX_SKIP(LABEL) \
565 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566
567 /* For the benefit of port specific code do this also as a function. */
568
569 int
570 label_to_alignment (rtx label)
571 {
572 return LABEL_TO_ALIGNMENT (label);
573 }
574
575 #ifdef HAVE_ATTR_length
576 /* The differences in addresses
577 between a branch and its target might grow or shrink depending on
578 the alignment the start insn of the range (the branch for a forward
579 branch or the label for a backward branch) starts out on; if these
580 differences are used naively, they can even oscillate infinitely.
581 We therefore want to compute a 'worst case' address difference that
582 is independent of the alignment the start insn of the range end
583 up on, and that is at least as large as the actual difference.
584 The function align_fuzz calculates the amount we have to add to the
585 naively computed difference, by traversing the part of the alignment
586 chain of the start insn of the range that is in front of the end insn
587 of the range, and considering for each alignment the maximum amount
588 that it might contribute to a size increase.
589
590 For casesi tables, we also want to know worst case minimum amounts of
591 address difference, in case a machine description wants to introduce
592 some common offset that is added to all offsets in a table.
593 For this purpose, align_fuzz with a growth argument of 0 computes the
594 appropriate adjustment. */
595
596 /* Compute the maximum delta by which the difference of the addresses of
597 START and END might grow / shrink due to a different address for start
598 which changes the size of alignment insns between START and END.
599 KNOWN_ALIGN_LOG is the alignment known for START.
600 GROWTH should be ~0 if the objective is to compute potential code size
601 increase, and 0 if the objective is to compute potential shrink.
602 The return value is undefined for any other value of GROWTH. */
603
604 static int
605 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 {
607 int uid = INSN_UID (start);
608 rtx align_label;
609 int known_align = 1 << known_align_log;
610 int end_shuid = INSN_SHUID (end);
611 int fuzz = 0;
612
613 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 {
615 int align_addr, new_align;
616
617 uid = INSN_UID (align_label);
618 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
619 if (uid_shuid[uid] > end_shuid)
620 break;
621 known_align_log = LABEL_TO_ALIGNMENT (align_label);
622 new_align = 1 << known_align_log;
623 if (new_align < known_align)
624 continue;
625 fuzz += (-align_addr ^ growth) & (new_align - known_align);
626 known_align = new_align;
627 }
628 return fuzz;
629 }
630
631 /* Compute a worst-case reference address of a branch so that it
632 can be safely used in the presence of aligned labels. Since the
633 size of the branch itself is unknown, the size of the branch is
634 not included in the range. I.e. for a forward branch, the reference
635 address is the end address of the branch as known from the previous
636 branch shortening pass, minus a value to account for possible size
637 increase due to alignment. For a backward branch, it is the start
638 address of the branch as known from the current pass, plus a value
639 to account for possible size increase due to alignment.
640 NB.: Therefore, the maximum offset allowed for backward branches needs
641 to exclude the branch size. */
642
643 int
644 insn_current_reference_address (rtx branch)
645 {
646 rtx dest, seq;
647 int seq_uid;
648
649 if (! INSN_ADDRESSES_SET_P ())
650 return 0;
651
652 seq = NEXT_INSN (PREV_INSN (branch));
653 seq_uid = INSN_UID (seq);
654 if (!JUMP_P (branch))
655 /* This can happen for example on the PA; the objective is to know the
656 offset to address something in front of the start of the function.
657 Thus, we can treat it like a backward branch.
658 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
659 any alignment we'd encounter, so we skip the call to align_fuzz. */
660 return insn_current_address;
661 dest = JUMP_LABEL (branch);
662
663 /* BRANCH has no proper alignment chain set, so use SEQ.
664 BRANCH also has no INSN_SHUID. */
665 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 {
667 /* Forward branch. */
668 return (insn_last_address + insn_lengths[seq_uid]
669 - align_fuzz (seq, dest, length_unit_log, ~0));
670 }
671 else
672 {
673 /* Backward branch. */
674 return (insn_current_address
675 + align_fuzz (dest, seq, length_unit_log, ~0));
676 }
677 }
678 #endif /* HAVE_ATTR_length */
679 \f
680 /* Compute branch alignments based on frequency information in the
681 CFG. */
682
683 static unsigned int
684 compute_alignments (void)
685 {
686 int log, max_skip, max_log;
687 basic_block bb;
688
689 if (label_align)
690 {
691 free (label_align);
692 label_align = 0;
693 }
694
695 max_labelno = max_label_num ();
696 min_labelno = get_first_label_num ();
697 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return 0;
702
703 FOR_EACH_BB (bb)
704 {
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
715
716 FOR_EACH_EDGE (e, ei, bb->preds)
717 {
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
722 }
723
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
728
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
733
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 {
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
742 {
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
745 }
746 }
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
753 {
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
756 {
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
759 }
760 }
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
763 }
764 return 0;
765 }
766
767 struct tree_opt_pass pass_compute_alignments =
768 {
769 NULL, /* name */
770 NULL, /* gate */
771 compute_alignments, /* execute */
772 NULL, /* sub */
773 NULL, /* next */
774 0, /* static_pass_number */
775 0, /* tv_id */
776 0, /* properties_required */
777 0, /* properties_provided */
778 0, /* properties_destroyed */
779 0, /* todo_flags_start */
780 0, /* todo_flags_finish */
781 0 /* letter */
782 };
783
784 \f
785 /* Make a pass over all insns and compute their actual lengths by shortening
786 any branches of variable length if possible. */
787
788 /* shorten_branches might be called multiple times: for example, the SH
789 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
790 In order to do this, it needs proper length information, which it obtains
791 by calling shorten_branches. This cannot be collapsed with
792 shorten_branches itself into a single pass unless we also want to integrate
793 reorg.c, since the branch splitting exposes new instructions with delay
794 slots. */
795
796 void
797 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 {
799 rtx insn;
800 int max_uid;
801 int i;
802 int max_log;
803 int max_skip;
804 #ifdef HAVE_ATTR_length
805 #define MAX_CODE_ALIGN 16
806 rtx seq;
807 int something_changed = 1;
808 char *varying_length;
809 rtx body;
810 int uid;
811 rtx align_tab[MAX_CODE_ALIGN];
812
813 #endif
814
815 /* Compute maximum UID and allocate label_align / uid_shuid. */
816 max_uid = get_max_uid ();
817
818 /* Free uid_shuid before reallocating it. */
819 free (uid_shuid);
820
821 uid_shuid = XNEWVEC (int, max_uid);
822
823 if (max_labelno != max_label_num ())
824 {
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
828
829 max_labelno = max_label_num ();
830
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
833
834 label_align = xrealloc (label_align,
835 n_labels * sizeof (struct label_alignment));
836
837 /* Range of labels grows monotonically in the function. Failing here
838 means that the initialization of array got lost. */
839 gcc_assert (n_old_labels <= n_labels);
840
841 memset (label_align + n_old_labels, 0,
842 (n_labels - n_old_labels) * sizeof (struct label_alignment));
843 }
844
845 /* Initialize label_align and set up uid_shuid to be strictly
846 monotonically rising with insn order. */
847 /* We use max_log here to keep track of the maximum alignment we want to
848 impose on the next CODE_LABEL (or the current one if we are processing
849 the CODE_LABEL itself). */
850
851 max_log = 0;
852 max_skip = 0;
853
854 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 {
856 int log;
857
858 INSN_SHUID (insn) = i++;
859 if (INSN_P (insn))
860 continue;
861
862 if (LABEL_P (insn))
863 {
864 rtx next;
865
866 /* Merge in alignments computed by compute_alignments. */
867 log = LABEL_TO_ALIGNMENT (insn);
868 if (max_log < log)
869 {
870 max_log = log;
871 max_skip = LABEL_TO_MAX_SKIP (insn);
872 }
873
874 log = LABEL_ALIGN (insn);
875 if (max_log < log)
876 {
877 max_log = log;
878 max_skip = LABEL_ALIGN_MAX_SKIP;
879 }
880 next = next_nonnote_insn (insn);
881 /* ADDR_VECs only take room if read-only data goes into the text
882 section. */
883 if (JUMP_TABLES_IN_TEXT_SECTION
884 || readonly_data_section == text_section)
885 if (next && JUMP_P (next))
886 {
887 rtx nextbody = PATTERN (next);
888 if (GET_CODE (nextbody) == ADDR_VEC
889 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 {
891 log = ADDR_VEC_ALIGN (next);
892 if (max_log < log)
893 {
894 max_log = log;
895 max_skip = LABEL_ALIGN_MAX_SKIP;
896 }
897 }
898 }
899 LABEL_TO_ALIGNMENT (insn) = max_log;
900 LABEL_TO_MAX_SKIP (insn) = max_skip;
901 max_log = 0;
902 max_skip = 0;
903 }
904 else if (BARRIER_P (insn))
905 {
906 rtx label;
907
908 for (label = insn; label && ! INSN_P (label);
909 label = NEXT_INSN (label))
910 if (LABEL_P (label))
911 {
912 log = LABEL_ALIGN_AFTER_BARRIER (insn);
913 if (max_log < log)
914 {
915 max_log = log;
916 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 }
918 break;
919 }
920 }
921 }
922 #ifdef HAVE_ATTR_length
923
924 /* Allocate the rest of the arrays. */
925 insn_lengths = XNEWVEC (int, max_uid);
926 insn_lengths_max_uid = max_uid;
927 /* Syntax errors can lead to labels being outside of the main insn stream.
928 Initialize insn_addresses, so that we get reproducible results. */
929 INSN_ADDRESSES_ALLOC (max_uid);
930
931 varying_length = XCNEWVEC (char, max_uid);
932
933 /* Initialize uid_align. We scan instructions
934 from end to start, and keep in align_tab[n] the last seen insn
935 that does an alignment of at least n+1, i.e. the successor
936 in the alignment chain for an insn that does / has a known
937 alignment of n. */
938 uid_align = XCNEWVEC (rtx, max_uid);
939
940 for (i = MAX_CODE_ALIGN; --i >= 0;)
941 align_tab[i] = NULL_RTX;
942 seq = get_last_insn ();
943 for (; seq; seq = PREV_INSN (seq))
944 {
945 int uid = INSN_UID (seq);
946 int log;
947 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
948 uid_align[uid] = align_tab[0];
949 if (log)
950 {
951 /* Found an alignment label. */
952 uid_align[uid] = align_tab[log];
953 for (i = log - 1; i >= 0; i--)
954 align_tab[i] = seq;
955 }
956 }
957 #ifdef CASE_VECTOR_SHORTEN_MODE
958 if (optimize)
959 {
960 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
961 label fields. */
962
963 int min_shuid = INSN_SHUID (get_insns ()) - 1;
964 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
965 int rel;
966
967 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 {
969 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
970 int len, i, min, max, insn_shuid;
971 int min_align;
972 addr_diff_vec_flags flags;
973
974 if (!JUMP_P (insn)
975 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
976 continue;
977 pat = PATTERN (insn);
978 len = XVECLEN (pat, 1);
979 gcc_assert (len > 0);
980 min_align = MAX_CODE_ALIGN;
981 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 {
983 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
984 int shuid = INSN_SHUID (lab);
985 if (shuid < min)
986 {
987 min = shuid;
988 min_lab = lab;
989 }
990 if (shuid > max)
991 {
992 max = shuid;
993 max_lab = lab;
994 }
995 if (min_align > LABEL_TO_ALIGNMENT (lab))
996 min_align = LABEL_TO_ALIGNMENT (lab);
997 }
998 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
999 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1000 insn_shuid = INSN_SHUID (insn);
1001 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1002 memset (&flags, 0, sizeof (flags));
1003 flags.min_align = min_align;
1004 flags.base_after_vec = rel > insn_shuid;
1005 flags.min_after_vec = min > insn_shuid;
1006 flags.max_after_vec = max > insn_shuid;
1007 flags.min_after_base = min > rel;
1008 flags.max_after_base = max > rel;
1009 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1010 }
1011 }
1012 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013
1014 /* Compute initial lengths, addresses, and varying flags for each insn. */
1015 for (insn_current_address = 0, insn = first;
1016 insn != 0;
1017 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 {
1019 uid = INSN_UID (insn);
1020
1021 insn_lengths[uid] = 0;
1022
1023 if (LABEL_P (insn))
1024 {
1025 int log = LABEL_TO_ALIGNMENT (insn);
1026 if (log)
1027 {
1028 int align = 1 << log;
1029 int new_address = (insn_current_address + align - 1) & -align;
1030 insn_lengths[uid] = new_address - insn_current_address;
1031 }
1032 }
1033
1034 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035
1036 if (NOTE_P (insn) || BARRIER_P (insn)
1037 || LABEL_P (insn))
1038 continue;
1039 if (INSN_DELETED_P (insn))
1040 continue;
1041
1042 body = PATTERN (insn);
1043 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 {
1045 /* This only takes room if read-only data goes into the text
1046 section. */
1047 if (JUMP_TABLES_IN_TEXT_SECTION
1048 || readonly_data_section == text_section)
1049 insn_lengths[uid] = (XVECLEN (body,
1050 GET_CODE (body) == ADDR_DIFF_VEC)
1051 * GET_MODE_SIZE (GET_MODE (body)));
1052 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 }
1054 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1055 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1056 else if (GET_CODE (body) == SEQUENCE)
1057 {
1058 int i;
1059 int const_delay_slots;
1060 #ifdef DELAY_SLOTS
1061 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1062 #else
1063 const_delay_slots = 0;
1064 #endif
1065 /* Inside a delay slot sequence, we do not do any branch shortening
1066 if the shortening could change the number of delay slots
1067 of the branch. */
1068 for (i = 0; i < XVECLEN (body, 0); i++)
1069 {
1070 rtx inner_insn = XVECEXP (body, 0, i);
1071 int inner_uid = INSN_UID (inner_insn);
1072 int inner_length;
1073
1074 if (GET_CODE (body) == ASM_INPUT
1075 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1076 inner_length = (asm_insn_count (PATTERN (inner_insn))
1077 * insn_default_length (inner_insn));
1078 else
1079 inner_length = insn_default_length (inner_insn);
1080
1081 insn_lengths[inner_uid] = inner_length;
1082 if (const_delay_slots)
1083 {
1084 if ((varying_length[inner_uid]
1085 = insn_variable_length_p (inner_insn)) != 0)
1086 varying_length[uid] = 1;
1087 INSN_ADDRESSES (inner_uid) = (insn_current_address
1088 + insn_lengths[uid]);
1089 }
1090 else
1091 varying_length[inner_uid] = 0;
1092 insn_lengths[uid] += inner_length;
1093 }
1094 }
1095 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 {
1097 insn_lengths[uid] = insn_default_length (insn);
1098 varying_length[uid] = insn_variable_length_p (insn);
1099 }
1100
1101 /* If needed, do any adjustment. */
1102 #ifdef ADJUST_INSN_LENGTH
1103 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1104 if (insn_lengths[uid] < 0)
1105 fatal_insn ("negative insn length", insn);
1106 #endif
1107 }
1108
1109 /* Now loop over all the insns finding varying length insns. For each,
1110 get the current insn length. If it has changed, reflect the change.
1111 When nothing changes for a full pass, we are done. */
1112
1113 while (something_changed)
1114 {
1115 something_changed = 0;
1116 insn_current_align = MAX_CODE_ALIGN - 1;
1117 for (insn_current_address = 0, insn = first;
1118 insn != 0;
1119 insn = NEXT_INSN (insn))
1120 {
1121 int new_length;
1122 #ifdef ADJUST_INSN_LENGTH
1123 int tmp_length;
1124 #endif
1125 int length_align;
1126
1127 uid = INSN_UID (insn);
1128
1129 if (LABEL_P (insn))
1130 {
1131 int log = LABEL_TO_ALIGNMENT (insn);
1132 if (log > insn_current_align)
1133 {
1134 int align = 1 << log;
1135 int new_address= (insn_current_address + align - 1) & -align;
1136 insn_lengths[uid] = new_address - insn_current_address;
1137 insn_current_align = log;
1138 insn_current_address = new_address;
1139 }
1140 else
1141 insn_lengths[uid] = 0;
1142 INSN_ADDRESSES (uid) = insn_current_address;
1143 continue;
1144 }
1145
1146 length_align = INSN_LENGTH_ALIGNMENT (insn);
1147 if (length_align < insn_current_align)
1148 insn_current_align = length_align;
1149
1150 insn_last_address = INSN_ADDRESSES (uid);
1151 INSN_ADDRESSES (uid) = insn_current_address;
1152
1153 #ifdef CASE_VECTOR_SHORTEN_MODE
1154 if (optimize && JUMP_P (insn)
1155 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 {
1157 rtx body = PATTERN (insn);
1158 int old_length = insn_lengths[uid];
1159 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1160 rtx min_lab = XEXP (XEXP (body, 2), 0);
1161 rtx max_lab = XEXP (XEXP (body, 3), 0);
1162 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1163 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1164 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1165 rtx prev;
1166 int rel_align = 0;
1167 addr_diff_vec_flags flags;
1168
1169 /* Avoid automatic aggregate initialization. */
1170 flags = ADDR_DIFF_VEC_FLAGS (body);
1171
1172 /* Try to find a known alignment for rel_lab. */
1173 for (prev = rel_lab;
1174 prev
1175 && ! insn_lengths[INSN_UID (prev)]
1176 && ! (varying_length[INSN_UID (prev)] & 1);
1177 prev = PREV_INSN (prev))
1178 if (varying_length[INSN_UID (prev)] & 2)
1179 {
1180 rel_align = LABEL_TO_ALIGNMENT (prev);
1181 break;
1182 }
1183
1184 /* See the comment on addr_diff_vec_flags in rtl.h for the
1185 meaning of the flags values. base: REL_LAB vec: INSN */
1186 /* Anything after INSN has still addresses from the last
1187 pass; adjust these so that they reflect our current
1188 estimate for this pass. */
1189 if (flags.base_after_vec)
1190 rel_addr += insn_current_address - insn_last_address;
1191 if (flags.min_after_vec)
1192 min_addr += insn_current_address - insn_last_address;
1193 if (flags.max_after_vec)
1194 max_addr += insn_current_address - insn_last_address;
1195 /* We want to know the worst case, i.e. lowest possible value
1196 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1197 its offset is positive, and we have to be wary of code shrink;
1198 otherwise, it is negative, and we have to be vary of code
1199 size increase. */
1200 if (flags.min_after_base)
1201 {
1202 /* If INSN is between REL_LAB and MIN_LAB, the size
1203 changes we are about to make can change the alignment
1204 within the observed offset, therefore we have to break
1205 it up into two parts that are independent. */
1206 if (! flags.base_after_vec && flags.min_after_vec)
1207 {
1208 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1209 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 }
1211 else
1212 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 }
1214 else
1215 {
1216 if (flags.base_after_vec && ! flags.min_after_vec)
1217 {
1218 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1219 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 }
1221 else
1222 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 }
1224 /* Likewise, determine the highest lowest possible value
1225 for the offset of MAX_LAB. */
1226 if (flags.max_after_base)
1227 {
1228 if (! flags.base_after_vec && flags.max_after_vec)
1229 {
1230 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1231 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 }
1233 else
1234 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 }
1236 else
1237 {
1238 if (flags.base_after_vec && ! flags.max_after_vec)
1239 {
1240 max_addr += align_fuzz (max_lab, insn, 0, 0);
1241 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 }
1243 else
1244 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 }
1246 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1247 max_addr - rel_addr,
1248 body));
1249 if (JUMP_TABLES_IN_TEXT_SECTION
1250 || readonly_data_section == text_section)
1251 {
1252 insn_lengths[uid]
1253 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1254 insn_current_address += insn_lengths[uid];
1255 if (insn_lengths[uid] != old_length)
1256 something_changed = 1;
1257 }
1258
1259 continue;
1260 }
1261 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262
1263 if (! (varying_length[uid]))
1264 {
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 {
1268 int i;
1269
1270 body = PATTERN (insn);
1271 for (i = 0; i < XVECLEN (body, 0); i++)
1272 {
1273 rtx inner_insn = XVECEXP (body, 0, i);
1274 int inner_uid = INSN_UID (inner_insn);
1275
1276 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277
1278 insn_current_address += insn_lengths[inner_uid];
1279 }
1280 }
1281 else
1282 insn_current_address += insn_lengths[uid];
1283
1284 continue;
1285 }
1286
1287 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 {
1289 int i;
1290
1291 body = PATTERN (insn);
1292 new_length = 0;
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1294 {
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (inner_insn);
1297 int inner_length;
1298
1299 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300
1301 /* insn_current_length returns 0 for insns with a
1302 non-varying length. */
1303 if (! varying_length[inner_uid])
1304 inner_length = insn_lengths[inner_uid];
1305 else
1306 inner_length = insn_current_length (inner_insn);
1307
1308 if (inner_length != insn_lengths[inner_uid])
1309 {
1310 insn_lengths[inner_uid] = inner_length;
1311 something_changed = 1;
1312 }
1313 insn_current_address += insn_lengths[inner_uid];
1314 new_length += inner_length;
1315 }
1316 }
1317 else
1318 {
1319 new_length = insn_current_length (insn);
1320 insn_current_address += new_length;
1321 }
1322
1323 #ifdef ADJUST_INSN_LENGTH
1324 /* If needed, do any adjustment. */
1325 tmp_length = new_length;
1326 ADJUST_INSN_LENGTH (insn, new_length);
1327 insn_current_address += (new_length - tmp_length);
1328 #endif
1329
1330 if (new_length != insn_lengths[uid])
1331 {
1332 insn_lengths[uid] = new_length;
1333 something_changed = 1;
1334 }
1335 }
1336 /* For a non-optimizing compile, do only a single pass. */
1337 if (!optimize)
1338 break;
1339 }
1340
1341 free (varying_length);
1342
1343 #endif /* HAVE_ATTR_length */
1344 }
1345
1346 #ifdef HAVE_ATTR_length
1347 /* Given the body of an INSN known to be generated by an ASM statement, return
1348 the number of machine instructions likely to be generated for this insn.
1349 This is used to compute its length. */
1350
1351 static int
1352 asm_insn_count (rtx body)
1353 {
1354 const char *template;
1355 int count = 1;
1356
1357 if (GET_CODE (body) == ASM_INPUT)
1358 template = XSTR (body, 0);
1359 else
1360 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1361
1362 for (; *template; template++)
1363 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1364 count++;
1365
1366 return count;
1367 }
1368 #endif
1369 \f
1370 /* Output assembler code for the start of a function,
1371 and initialize some of the variables in this file
1372 for the new function. The label for the function and associated
1373 assembler pseudo-ops have already been output in `assemble_start_function'.
1374
1375 FIRST is the first insn of the rtl for the function being compiled.
1376 FILE is the file to write assembler code to.
1377 OPTIMIZE is nonzero if we should eliminate redundant
1378 test and compare insns. */
1379
1380 void
1381 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1382 int optimize ATTRIBUTE_UNUSED)
1383 {
1384 block_depth = 0;
1385
1386 this_is_asm_operands = 0;
1387
1388 last_filename = locator_file (prologue_locator);
1389 last_linenum = locator_line (prologue_locator);
1390
1391 high_block_linenum = high_function_linenum = last_linenum;
1392
1393 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394
1395 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1396 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1397 dwarf2out_begin_prologue (0, NULL);
1398 #endif
1399
1400 #ifdef LEAF_REG_REMAP
1401 if (current_function_uses_only_leaf_regs)
1402 leaf_renumber_regs (first);
1403 #endif
1404
1405 /* The Sun386i and perhaps other machines don't work right
1406 if the profiling code comes after the prologue. */
1407 #ifdef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* PROFILE_BEFORE_PROLOGUE */
1411
1412 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1413 if (dwarf2out_do_frame ())
1414 dwarf2out_frame_debug (NULL_RTX, false);
1415 #endif
1416
1417 /* If debugging, assign block numbers to all of the blocks in this
1418 function. */
1419 if (write_symbols)
1420 {
1421 reemit_insn_block_notes ();
1422 number_blocks (current_function_decl);
1423 /* We never actually put out begin/end notes for the top-level
1424 block in the function. But, conceptually, that block is
1425 always needed. */
1426 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1427 }
1428
1429 /* First output the function prologue: code to set up the stack frame. */
1430 targetm.asm_out.function_prologue (file, get_frame_size ());
1431
1432 /* If the machine represents the prologue as RTL, the profiling code must
1433 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1434 #ifdef HAVE_prologue
1435 if (! HAVE_prologue)
1436 #endif
1437 profile_after_prologue (file);
1438 }
1439
1440 static void
1441 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 {
1443 #ifndef PROFILE_BEFORE_PROLOGUE
1444 if (current_function_profile)
1445 profile_function (file);
1446 #endif /* not PROFILE_BEFORE_PROLOGUE */
1447 }
1448
1449 static void
1450 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 {
1452 #ifndef NO_PROFILE_COUNTERS
1453 # define NO_PROFILE_COUNTERS 0
1454 #endif
1455 #if defined(ASM_OUTPUT_REG_PUSH)
1456 int sval = current_function_returns_struct;
1457 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1459 int cxt = cfun->static_chain_decl != NULL;
1460 #endif
1461 #endif /* ASM_OUTPUT_REG_PUSH */
1462
1463 if (! NO_PROFILE_COUNTERS)
1464 {
1465 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1466 switch_to_section (data_section);
1467 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1468 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1469 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1470 }
1471
1472 switch_to_section (current_function_section ());
1473
1474 #if defined(ASM_OUTPUT_REG_PUSH)
1475 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1476 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1477 #endif
1478
1479 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1482 #else
1483 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 if (cxt)
1485 {
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 }
1488 #endif
1489 #endif
1490
1491 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492
1493 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (cxt)
1495 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1496 #else
1497 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1498 if (cxt)
1499 {
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 }
1502 #endif
1503 #endif
1504
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1507 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1508 #endif
1509 }
1510
1511 /* Output assembler code for the end of a function.
1512 For clarity, args are same as those of `final_start_function'
1513 even though not all of them are needed. */
1514
1515 void
1516 final_end_function (void)
1517 {
1518 app_disable ();
1519
1520 (*debug_hooks->end_function) (high_function_linenum);
1521
1522 /* Finally, output the function epilogue:
1523 code to restore the stack frame and return to the caller. */
1524 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525
1526 /* And debug output. */
1527 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528
1529 #if defined (DWARF2_UNWIND_INFO)
1530 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1531 && dwarf2out_do_frame ())
1532 dwarf2out_end_epilogue (last_linenum, last_filename);
1533 #endif
1534 }
1535 \f
1536 /* Output assembler code for some insns: all or part of a function.
1537 For description of args, see `final_start_function', above. */
1538
1539 void
1540 final (rtx first, FILE *file, int optimize)
1541 {
1542 rtx insn;
1543 int max_uid = 0;
1544 int seen = 0;
1545
1546 last_ignored_compare = 0;
1547
1548 #ifdef SDB_DEBUGGING_INFO
1549 /* When producing SDB debugging info, delete troublesome line number
1550 notes from inlined functions in other files as well as duplicate
1551 line number notes. */
1552 if (write_symbols == SDB_DEBUG)
1553 {
1554 rtx last = 0;
1555 for (insn = first; insn; insn = NEXT_INSN (insn))
1556 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1557 {
1558 if (last != 0
1559 #ifdef USE_MAPPED_LOCATION
1560 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1561 #else
1562 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1563 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1564 #endif
1565 )
1566 {
1567 delete_insn (insn); /* Use delete_note. */
1568 continue;
1569 }
1570 last = insn;
1571 }
1572 }
1573 #endif
1574
1575 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1578 max_uid = INSN_UID (insn);
1579 #ifdef HAVE_cc0
1580 /* If CC tracking across branches is enabled, record the insn which
1581 jumps to each branch only reached from one place. */
1582 if (optimize && JUMP_P (insn))
1583 {
1584 rtx lab = JUMP_LABEL (insn);
1585 if (lab && LABEL_NUSES (lab) == 1)
1586 {
1587 LABEL_REFS (lab) = insn;
1588 }
1589 }
1590 #endif
1591 }
1592
1593 init_recog ();
1594
1595 CC_STATUS_INIT;
1596
1597 /* Output the insns. */
1598 for (insn = first; insn;)
1599 {
1600 #ifdef HAVE_ATTR_length
1601 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1602 {
1603 /* This can be triggered by bugs elsewhere in the compiler if
1604 new insns are created after init_insn_lengths is called. */
1605 gcc_assert (NOTE_P (insn));
1606 insn_current_address = -1;
1607 }
1608 else
1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1610 #endif /* HAVE_ATTR_length */
1611
1612 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1613 }
1614 }
1615 \f
1616 const char *
1617 get_insn_template (int code, rtx insn)
1618 {
1619 switch (insn_data[code].output_format)
1620 {
1621 case INSN_OUTPUT_FORMAT_SINGLE:
1622 return insn_data[code].output.single;
1623 case INSN_OUTPUT_FORMAT_MULTI:
1624 return insn_data[code].output.multi[which_alternative];
1625 case INSN_OUTPUT_FORMAT_FUNCTION:
1626 gcc_assert (insn);
1627 return (*insn_data[code].output.function) (recog_data.operand, insn);
1628
1629 default:
1630 gcc_unreachable ();
1631 }
1632 }
1633
1634 /* Emit the appropriate declaration for an alternate-entry-point
1635 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1636 LABEL_KIND != LABEL_NORMAL.
1637
1638 The case fall-through in this function is intentional. */
1639 static void
1640 output_alternate_entry_point (FILE *file, rtx insn)
1641 {
1642 const char *name = LABEL_NAME (insn);
1643
1644 switch (LABEL_KIND (insn))
1645 {
1646 case LABEL_WEAK_ENTRY:
1647 #ifdef ASM_WEAKEN_LABEL
1648 ASM_WEAKEN_LABEL (file, name);
1649 #endif
1650 case LABEL_GLOBAL_ENTRY:
1651 targetm.asm_out.globalize_label (file, name);
1652 case LABEL_STATIC_ENTRY:
1653 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1654 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1655 #endif
1656 ASM_OUTPUT_LABEL (file, name);
1657 break;
1658
1659 case LABEL_NORMAL:
1660 default:
1661 gcc_unreachable ();
1662 }
1663 }
1664
1665 /* The final scan for one insn, INSN.
1666 Args are same as in `final', except that INSN
1667 is the insn being scanned.
1668 Value returned is the next insn to be scanned.
1669
1670 NOPEEPHOLES is the flag to disallow peephole processing (currently
1671 used for within delayed branch sequence output).
1672
1673 SEEN is used to track the end of the prologue, for emitting
1674 debug information. We force the emission of a line note after
1675 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1676 at the beginning of the second basic block, whichever comes
1677 first. */
1678
1679 rtx
1680 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1681 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1682 {
1683 #ifdef HAVE_cc0
1684 rtx set;
1685 #endif
1686 rtx next;
1687
1688 insn_counter++;
1689
1690 /* Ignore deleted insns. These can occur when we split insns (due to a
1691 template of "#") while not optimizing. */
1692 if (INSN_DELETED_P (insn))
1693 return NEXT_INSN (insn);
1694
1695 switch (GET_CODE (insn))
1696 {
1697 case NOTE:
1698 switch (NOTE_LINE_NUMBER (insn))
1699 {
1700 case NOTE_INSN_DELETED:
1701 break;
1702
1703 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1704 in_cold_section_p = !in_cold_section_p;
1705 (*debug_hooks->switch_text_section) ();
1706 switch_to_section (current_function_section ());
1707 break;
1708
1709 case NOTE_INSN_BASIC_BLOCK:
1710 #ifdef TARGET_UNWIND_INFO
1711 targetm.asm_out.unwind_emit (asm_out_file, insn);
1712 #endif
1713
1714 if (flag_debug_asm)
1715 fprintf (asm_out_file, "\t%s basic block %d\n",
1716 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1717
1718 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1719 {
1720 *seen |= SEEN_EMITTED;
1721 force_source_line = true;
1722 }
1723 else
1724 *seen |= SEEN_BB;
1725
1726 break;
1727
1728 case NOTE_INSN_EH_REGION_BEG:
1729 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1730 NOTE_EH_HANDLER (insn));
1731 break;
1732
1733 case NOTE_INSN_EH_REGION_END:
1734 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1735 NOTE_EH_HANDLER (insn));
1736 break;
1737
1738 case NOTE_INSN_PROLOGUE_END:
1739 targetm.asm_out.function_end_prologue (file);
1740 profile_after_prologue (file);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 force_source_line = true;
1746 }
1747 else
1748 *seen |= SEEN_NOTE;
1749
1750 break;
1751
1752 case NOTE_INSN_EPILOGUE_BEG:
1753 targetm.asm_out.function_begin_epilogue (file);
1754 break;
1755
1756 case NOTE_INSN_FUNCTION_BEG:
1757 app_disable ();
1758 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1759
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1761 {
1762 *seen |= SEEN_EMITTED;
1763 force_source_line = true;
1764 }
1765 else
1766 *seen |= SEEN_NOTE;
1767
1768 break;
1769
1770 case NOTE_INSN_BLOCK_BEG:
1771 if (debug_info_level == DINFO_LEVEL_NORMAL
1772 || debug_info_level == DINFO_LEVEL_VERBOSE
1773 || write_symbols == DWARF2_DEBUG
1774 || write_symbols == VMS_AND_DWARF2_DEBUG
1775 || write_symbols == VMS_DEBUG)
1776 {
1777 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1778
1779 app_disable ();
1780 ++block_depth;
1781 high_block_linenum = last_linenum;
1782
1783 /* Output debugging info about the symbol-block beginning. */
1784 (*debug_hooks->begin_block) (last_linenum, n);
1785
1786 /* Mark this block as output. */
1787 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1788 }
1789 break;
1790
1791 case NOTE_INSN_BLOCK_END:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1797 {
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1799
1800 app_disable ();
1801
1802 /* End of a symbol-block. */
1803 --block_depth;
1804 gcc_assert (block_depth >= 0);
1805
1806 (*debug_hooks->end_block) (high_block_linenum, n);
1807 }
1808 break;
1809
1810 case NOTE_INSN_DELETED_LABEL:
1811 /* Emit the label. We may have deleted the CODE_LABEL because
1812 the label could be proved to be unreachable, though still
1813 referenced (in the form of having its address taken. */
1814 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1815 break;
1816
1817 case NOTE_INSN_VAR_LOCATION:
1818 (*debug_hooks->var_location) (insn);
1819 break;
1820
1821 case 0:
1822 break;
1823
1824 default:
1825 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1826 break;
1827 }
1828 break;
1829
1830 case BARRIER:
1831 #if defined (DWARF2_UNWIND_INFO)
1832 if (dwarf2out_do_frame ())
1833 dwarf2out_frame_debug (insn, false);
1834 #endif
1835 break;
1836
1837 case CODE_LABEL:
1838 /* The target port might emit labels in the output function for
1839 some insn, e.g. sh.c output_branchy_insn. */
1840 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1841 {
1842 int align = LABEL_TO_ALIGNMENT (insn);
1843 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1844 int max_skip = LABEL_TO_MAX_SKIP (insn);
1845 #endif
1846
1847 if (align && NEXT_INSN (insn))
1848 {
1849 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1850 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1851 #else
1852 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1853 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1854 #else
1855 ASM_OUTPUT_ALIGN (file, align);
1856 #endif
1857 #endif
1858 }
1859 }
1860 #ifdef HAVE_cc0
1861 CC_STATUS_INIT;
1862 /* If this label is reached from only one place, set the condition
1863 codes from the instruction just before the branch. */
1864
1865 /* Disabled because some insns set cc_status in the C output code
1866 and NOTICE_UPDATE_CC alone can set incorrect status. */
1867 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1868 {
1869 rtx jump = LABEL_REFS (insn);
1870 rtx barrier = prev_nonnote_insn (insn);
1871 rtx prev;
1872 /* If the LABEL_REFS field of this label has been set to point
1873 at a branch, the predecessor of the branch is a regular
1874 insn, and that branch is the only way to reach this label,
1875 set the condition codes based on the branch and its
1876 predecessor. */
1877 if (barrier && BARRIER_P (barrier)
1878 && jump && JUMP_P (jump)
1879 && (prev = prev_nonnote_insn (jump))
1880 && NONJUMP_INSN_P (prev))
1881 {
1882 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1883 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1884 }
1885 }
1886 #endif
1887
1888 if (LABEL_NAME (insn))
1889 (*debug_hooks->label) (insn);
1890
1891 if (app_on)
1892 {
1893 fputs (ASM_APP_OFF, file);
1894 app_on = 0;
1895 }
1896
1897 next = next_nonnote_insn (insn);
1898 if (next != 0 && JUMP_P (next))
1899 {
1900 rtx nextbody = PATTERN (next);
1901
1902 /* If this label is followed by a jump-table,
1903 make sure we put the label in the read-only section. Also
1904 possibly write the label and jump table together. */
1905
1906 if (GET_CODE (nextbody) == ADDR_VEC
1907 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1908 {
1909 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1910 /* In this case, the case vector is being moved by the
1911 target, so don't output the label at all. Leave that
1912 to the back end macros. */
1913 #else
1914 if (! JUMP_TABLES_IN_TEXT_SECTION)
1915 {
1916 int log_align;
1917
1918 switch_to_section (targetm.asm_out.function_rodata_section
1919 (current_function_decl));
1920
1921 #ifdef ADDR_VEC_ALIGN
1922 log_align = ADDR_VEC_ALIGN (next);
1923 #else
1924 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1925 #endif
1926 ASM_OUTPUT_ALIGN (file, log_align);
1927 }
1928 else
1929 switch_to_section (current_function_section ());
1930
1931 #ifdef ASM_OUTPUT_CASE_LABEL
1932 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1933 next);
1934 #else
1935 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1936 #endif
1937 #endif
1938 break;
1939 }
1940 }
1941 if (LABEL_ALT_ENTRY_P (insn))
1942 output_alternate_entry_point (file, insn);
1943 else
1944 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1945 break;
1946
1947 default:
1948 {
1949 rtx body = PATTERN (insn);
1950 int insn_code_number;
1951 const char *template;
1952
1953 #ifdef HAVE_conditional_execution
1954 /* Reset this early so it is correct for ASM statements. */
1955 current_insn_predicate = NULL_RTX;
1956 #endif
1957 /* An INSN, JUMP_INSN or CALL_INSN.
1958 First check for special kinds that recog doesn't recognize. */
1959
1960 if (GET_CODE (body) == USE /* These are just declarations. */
1961 || GET_CODE (body) == CLOBBER)
1962 break;
1963
1964 #ifdef HAVE_cc0
1965 {
1966 /* If there is a REG_CC_SETTER note on this insn, it means that
1967 the setting of the condition code was done in the delay slot
1968 of the insn that branched here. So recover the cc status
1969 from the insn that set it. */
1970
1971 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1972 if (note)
1973 {
1974 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1975 cc_prev_status = cc_status;
1976 }
1977 }
1978 #endif
1979
1980 /* Detect insns that are really jump-tables
1981 and output them as such. */
1982
1983 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1984 {
1985 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1986 int vlen, idx;
1987 #endif
1988
1989 if (! JUMP_TABLES_IN_TEXT_SECTION)
1990 switch_to_section (targetm.asm_out.function_rodata_section
1991 (current_function_decl));
1992 else
1993 switch_to_section (current_function_section ());
1994
1995 if (app_on)
1996 {
1997 fputs (ASM_APP_OFF, file);
1998 app_on = 0;
1999 }
2000
2001 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2002 if (GET_CODE (body) == ADDR_VEC)
2003 {
2004 #ifdef ASM_OUTPUT_ADDR_VEC
2005 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2006 #else
2007 gcc_unreachable ();
2008 #endif
2009 }
2010 else
2011 {
2012 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2013 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2014 #else
2015 gcc_unreachable ();
2016 #endif
2017 }
2018 #else
2019 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2020 for (idx = 0; idx < vlen; idx++)
2021 {
2022 if (GET_CODE (body) == ADDR_VEC)
2023 {
2024 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2025 ASM_OUTPUT_ADDR_VEC_ELT
2026 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2027 #else
2028 gcc_unreachable ();
2029 #endif
2030 }
2031 else
2032 {
2033 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2034 ASM_OUTPUT_ADDR_DIFF_ELT
2035 (file,
2036 body,
2037 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2038 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2039 #else
2040 gcc_unreachable ();
2041 #endif
2042 }
2043 }
2044 #ifdef ASM_OUTPUT_CASE_END
2045 ASM_OUTPUT_CASE_END (file,
2046 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2047 insn);
2048 #endif
2049 #endif
2050
2051 switch_to_section (current_function_section ());
2052
2053 break;
2054 }
2055 /* Output this line note if it is the first or the last line
2056 note in a row. */
2057 if (notice_source_line (insn))
2058 {
2059 (*debug_hooks->source_line) (last_linenum, last_filename);
2060 }
2061
2062 if (GET_CODE (body) == ASM_INPUT)
2063 {
2064 const char *string = XSTR (body, 0);
2065
2066 /* There's no telling what that did to the condition codes. */
2067 CC_STATUS_INIT;
2068
2069 if (string[0])
2070 {
2071 location_t loc;
2072
2073 if (! app_on)
2074 {
2075 fputs (ASM_APP_ON, file);
2076 app_on = 1;
2077 }
2078 #ifdef USE_MAPPED_LOCATION
2079 loc = ASM_INPUT_SOURCE_LOCATION (body);
2080 #else
2081 loc.file = ASM_INPUT_SOURCE_FILE (body);
2082 loc.line = ASM_INPUT_SOURCE_LINE (body);
2083 #endif
2084 if (*loc.file && loc.line)
2085 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2086 ASM_COMMENT_START, loc.line, loc.file);
2087 fprintf (asm_out_file, "\t%s\n", string);
2088 #if HAVE_AS_LINE_ZERO
2089 if (*loc.file && loc.line)
2090 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2091 #endif
2092 }
2093 break;
2094 }
2095
2096 /* Detect `asm' construct with operands. */
2097 if (asm_noperands (body) >= 0)
2098 {
2099 unsigned int noperands = asm_noperands (body);
2100 rtx *ops = alloca (noperands * sizeof (rtx));
2101 const char *string;
2102 location_t loc;
2103
2104 /* There's no telling what that did to the condition codes. */
2105 CC_STATUS_INIT;
2106
2107 /* Get out the operand values. */
2108 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2109 /* Inhibit dieing on what would otherwise be compiler bugs. */
2110 insn_noperands = noperands;
2111 this_is_asm_operands = insn;
2112
2113 #ifdef FINAL_PRESCAN_INSN
2114 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2115 #endif
2116
2117 /* Output the insn using them. */
2118 if (string[0])
2119 {
2120 if (! app_on)
2121 {
2122 fputs (ASM_APP_ON, file);
2123 app_on = 1;
2124 }
2125 if (loc.file && loc.line)
2126 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2127 ASM_COMMENT_START, loc.line, loc.file);
2128 output_asm_insn (string, ops);
2129 #if HAVE_AS_LINE_ZERO
2130 if (loc.file && loc.line)
2131 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2132 #endif
2133 }
2134
2135 this_is_asm_operands = 0;
2136 break;
2137 }
2138
2139 if (app_on)
2140 {
2141 fputs (ASM_APP_OFF, file);
2142 app_on = 0;
2143 }
2144
2145 if (GET_CODE (body) == SEQUENCE)
2146 {
2147 /* A delayed-branch sequence */
2148 int i;
2149
2150 final_sequence = body;
2151
2152 /* Record the delay slots' frame information before the branch.
2153 This is needed for delayed calls: see execute_cfa_program(). */
2154 #if defined (DWARF2_UNWIND_INFO)
2155 if (dwarf2out_do_frame ())
2156 for (i = 1; i < XVECLEN (body, 0); i++)
2157 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2158 #endif
2159
2160 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2161 force the restoration of a comparison that was previously
2162 thought unnecessary. If that happens, cancel this sequence
2163 and cause that insn to be restored. */
2164
2165 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2166 if (next != XVECEXP (body, 0, 1))
2167 {
2168 final_sequence = 0;
2169 return next;
2170 }
2171
2172 for (i = 1; i < XVECLEN (body, 0); i++)
2173 {
2174 rtx insn = XVECEXP (body, 0, i);
2175 rtx next = NEXT_INSN (insn);
2176 /* We loop in case any instruction in a delay slot gets
2177 split. */
2178 do
2179 insn = final_scan_insn (insn, file, 0, 1, seen);
2180 while (insn != next);
2181 }
2182 #ifdef DBR_OUTPUT_SEQEND
2183 DBR_OUTPUT_SEQEND (file);
2184 #endif
2185 final_sequence = 0;
2186
2187 /* If the insn requiring the delay slot was a CALL_INSN, the
2188 insns in the delay slot are actually executed before the
2189 called function. Hence we don't preserve any CC-setting
2190 actions in these insns and the CC must be marked as being
2191 clobbered by the function. */
2192 if (CALL_P (XVECEXP (body, 0, 0)))
2193 {
2194 CC_STATUS_INIT;
2195 }
2196 break;
2197 }
2198
2199 /* We have a real machine instruction as rtl. */
2200
2201 body = PATTERN (insn);
2202
2203 #ifdef HAVE_cc0
2204 set = single_set (insn);
2205
2206 /* Check for redundant test and compare instructions
2207 (when the condition codes are already set up as desired).
2208 This is done only when optimizing; if not optimizing,
2209 it should be possible for the user to alter a variable
2210 with the debugger in between statements
2211 and the next statement should reexamine the variable
2212 to compute the condition codes. */
2213
2214 if (optimize)
2215 {
2216 if (set
2217 && GET_CODE (SET_DEST (set)) == CC0
2218 && insn != last_ignored_compare)
2219 {
2220 if (GET_CODE (SET_SRC (set)) == SUBREG)
2221 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2222 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2223 {
2224 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2225 XEXP (SET_SRC (set), 0)
2226 = alter_subreg (&XEXP (SET_SRC (set), 0));
2227 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2228 XEXP (SET_SRC (set), 1)
2229 = alter_subreg (&XEXP (SET_SRC (set), 1));
2230 }
2231 if ((cc_status.value1 != 0
2232 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2233 || (cc_status.value2 != 0
2234 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2235 {
2236 /* Don't delete insn if it has an addressing side-effect. */
2237 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2238 /* or if anything in it is volatile. */
2239 && ! volatile_refs_p (PATTERN (insn)))
2240 {
2241 /* We don't really delete the insn; just ignore it. */
2242 last_ignored_compare = insn;
2243 break;
2244 }
2245 }
2246 }
2247 }
2248 #endif
2249
2250 #ifdef HAVE_cc0
2251 /* If this is a conditional branch, maybe modify it
2252 if the cc's are in a nonstandard state
2253 so that it accomplishes the same thing that it would
2254 do straightforwardly if the cc's were set up normally. */
2255
2256 if (cc_status.flags != 0
2257 && JUMP_P (insn)
2258 && GET_CODE (body) == SET
2259 && SET_DEST (body) == pc_rtx
2260 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2261 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2262 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2263 {
2264 /* This function may alter the contents of its argument
2265 and clear some of the cc_status.flags bits.
2266 It may also return 1 meaning condition now always true
2267 or -1 meaning condition now always false
2268 or 2 meaning condition nontrivial but altered. */
2269 int result = alter_cond (XEXP (SET_SRC (body), 0));
2270 /* If condition now has fixed value, replace the IF_THEN_ELSE
2271 with its then-operand or its else-operand. */
2272 if (result == 1)
2273 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2274 if (result == -1)
2275 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2276
2277 /* The jump is now either unconditional or a no-op.
2278 If it has become a no-op, don't try to output it.
2279 (It would not be recognized.) */
2280 if (SET_SRC (body) == pc_rtx)
2281 {
2282 delete_insn (insn);
2283 break;
2284 }
2285 else if (GET_CODE (SET_SRC (body)) == RETURN)
2286 /* Replace (set (pc) (return)) with (return). */
2287 PATTERN (insn) = body = SET_SRC (body);
2288
2289 /* Rerecognize the instruction if it has changed. */
2290 if (result != 0)
2291 INSN_CODE (insn) = -1;
2292 }
2293
2294 /* Make same adjustments to instructions that examine the
2295 condition codes without jumping and instructions that
2296 handle conditional moves (if this machine has either one). */
2297
2298 if (cc_status.flags != 0
2299 && set != 0)
2300 {
2301 rtx cond_rtx, then_rtx, else_rtx;
2302
2303 if (!JUMP_P (insn)
2304 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2305 {
2306 cond_rtx = XEXP (SET_SRC (set), 0);
2307 then_rtx = XEXP (SET_SRC (set), 1);
2308 else_rtx = XEXP (SET_SRC (set), 2);
2309 }
2310 else
2311 {
2312 cond_rtx = SET_SRC (set);
2313 then_rtx = const_true_rtx;
2314 else_rtx = const0_rtx;
2315 }
2316
2317 switch (GET_CODE (cond_rtx))
2318 {
2319 case GTU:
2320 case GT:
2321 case LTU:
2322 case LT:
2323 case GEU:
2324 case GE:
2325 case LEU:
2326 case LE:
2327 case EQ:
2328 case NE:
2329 {
2330 int result;
2331 if (XEXP (cond_rtx, 0) != cc0_rtx)
2332 break;
2333 result = alter_cond (cond_rtx);
2334 if (result == 1)
2335 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2336 else if (result == -1)
2337 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2338 else if (result == 2)
2339 INSN_CODE (insn) = -1;
2340 if (SET_DEST (set) == SET_SRC (set))
2341 delete_insn (insn);
2342 }
2343 break;
2344
2345 default:
2346 break;
2347 }
2348 }
2349
2350 #endif
2351
2352 #ifdef HAVE_peephole
2353 /* Do machine-specific peephole optimizations if desired. */
2354
2355 if (optimize && !flag_no_peephole && !nopeepholes)
2356 {
2357 rtx next = peephole (insn);
2358 /* When peepholing, if there were notes within the peephole,
2359 emit them before the peephole. */
2360 if (next != 0 && next != NEXT_INSN (insn))
2361 {
2362 rtx note, prev = PREV_INSN (insn);
2363
2364 for (note = NEXT_INSN (insn); note != next;
2365 note = NEXT_INSN (note))
2366 final_scan_insn (note, file, optimize, nopeepholes, seen);
2367
2368 /* Put the notes in the proper position for a later
2369 rescan. For example, the SH target can do this
2370 when generating a far jump in a delayed branch
2371 sequence. */
2372 note = NEXT_INSN (insn);
2373 PREV_INSN (note) = prev;
2374 NEXT_INSN (prev) = note;
2375 NEXT_INSN (PREV_INSN (next)) = insn;
2376 PREV_INSN (insn) = PREV_INSN (next);
2377 NEXT_INSN (insn) = next;
2378 PREV_INSN (next) = insn;
2379 }
2380
2381 /* PEEPHOLE might have changed this. */
2382 body = PATTERN (insn);
2383 }
2384 #endif
2385
2386 /* Try to recognize the instruction.
2387 If successful, verify that the operands satisfy the
2388 constraints for the instruction. Crash if they don't,
2389 since `reload' should have changed them so that they do. */
2390
2391 insn_code_number = recog_memoized (insn);
2392 cleanup_subreg_operands (insn);
2393
2394 /* Dump the insn in the assembly for debugging. */
2395 if (flag_dump_rtl_in_asm)
2396 {
2397 print_rtx_head = ASM_COMMENT_START;
2398 print_rtl_single (asm_out_file, insn);
2399 print_rtx_head = "";
2400 }
2401
2402 if (! constrain_operands_cached (1))
2403 fatal_insn_not_found (insn);
2404
2405 /* Some target machines need to prescan each insn before
2406 it is output. */
2407
2408 #ifdef FINAL_PRESCAN_INSN
2409 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2410 #endif
2411
2412 #ifdef HAVE_conditional_execution
2413 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2414 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2415 #endif
2416
2417 #ifdef HAVE_cc0
2418 cc_prev_status = cc_status;
2419
2420 /* Update `cc_status' for this instruction.
2421 The instruction's output routine may change it further.
2422 If the output routine for a jump insn needs to depend
2423 on the cc status, it should look at cc_prev_status. */
2424
2425 NOTICE_UPDATE_CC (body, insn);
2426 #endif
2427
2428 current_output_insn = debug_insn = insn;
2429
2430 #if defined (DWARF2_UNWIND_INFO)
2431 if (CALL_P (insn) && dwarf2out_do_frame ())
2432 dwarf2out_frame_debug (insn, false);
2433 #endif
2434
2435 /* Find the proper template for this insn. */
2436 template = get_insn_template (insn_code_number, insn);
2437
2438 /* If the C code returns 0, it means that it is a jump insn
2439 which follows a deleted test insn, and that test insn
2440 needs to be reinserted. */
2441 if (template == 0)
2442 {
2443 rtx prev;
2444
2445 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2446
2447 /* We have already processed the notes between the setter and
2448 the user. Make sure we don't process them again, this is
2449 particularly important if one of the notes is a block
2450 scope note or an EH note. */
2451 for (prev = insn;
2452 prev != last_ignored_compare;
2453 prev = PREV_INSN (prev))
2454 {
2455 if (NOTE_P (prev))
2456 delete_insn (prev); /* Use delete_note. */
2457 }
2458
2459 return prev;
2460 }
2461
2462 /* If the template is the string "#", it means that this insn must
2463 be split. */
2464 if (template[0] == '#' && template[1] == '\0')
2465 {
2466 rtx new = try_split (body, insn, 0);
2467
2468 /* If we didn't split the insn, go away. */
2469 if (new == insn && PATTERN (new) == body)
2470 fatal_insn ("could not split insn", insn);
2471
2472 #ifdef HAVE_ATTR_length
2473 /* This instruction should have been split in shorten_branches,
2474 to ensure that we would have valid length info for the
2475 splitees. */
2476 gcc_unreachable ();
2477 #endif
2478
2479 return new;
2480 }
2481
2482 #ifdef TARGET_UNWIND_INFO
2483 /* ??? This will put the directives in the wrong place if
2484 get_insn_template outputs assembly directly. However calling it
2485 before get_insn_template breaks if the insns is split. */
2486 targetm.asm_out.unwind_emit (asm_out_file, insn);
2487 #endif
2488
2489 /* Output assembler code from the template. */
2490 output_asm_insn (template, recog_data.operand);
2491
2492 /* If necessary, report the effect that the instruction has on
2493 the unwind info. We've already done this for delay slots
2494 and call instructions. */
2495 #if defined (DWARF2_UNWIND_INFO)
2496 if (final_sequence == 0
2497 #if !defined (HAVE_prologue)
2498 && !ACCUMULATE_OUTGOING_ARGS
2499 #endif
2500 && dwarf2out_do_frame ())
2501 dwarf2out_frame_debug (insn, true);
2502 #endif
2503
2504 current_output_insn = debug_insn = 0;
2505 }
2506 }
2507 return NEXT_INSN (insn);
2508 }
2509 \f
2510 /* Return whether a source line note needs to be emitted before INSN. */
2511
2512 static bool
2513 notice_source_line (rtx insn)
2514 {
2515 const char *filename = insn_file (insn);
2516 int linenum = insn_line (insn);
2517
2518 if (filename
2519 && (force_source_line
2520 || filename != last_filename
2521 || last_linenum != linenum))
2522 {
2523 force_source_line = false;
2524 last_filename = filename;
2525 last_linenum = linenum;
2526 high_block_linenum = MAX (last_linenum, high_block_linenum);
2527 high_function_linenum = MAX (last_linenum, high_function_linenum);
2528 return true;
2529 }
2530 return false;
2531 }
2532 \f
2533 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2534 directly to the desired hard register. */
2535
2536 void
2537 cleanup_subreg_operands (rtx insn)
2538 {
2539 int i;
2540 extract_insn_cached (insn);
2541 for (i = 0; i < recog_data.n_operands; i++)
2542 {
2543 /* The following test cannot use recog_data.operand when testing
2544 for a SUBREG: the underlying object might have been changed
2545 already if we are inside a match_operator expression that
2546 matches the else clause. Instead we test the underlying
2547 expression directly. */
2548 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2549 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2550 else if (GET_CODE (recog_data.operand[i]) == PLUS
2551 || GET_CODE (recog_data.operand[i]) == MULT
2552 || MEM_P (recog_data.operand[i]))
2553 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2554 }
2555
2556 for (i = 0; i < recog_data.n_dups; i++)
2557 {
2558 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2559 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2560 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2561 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2562 || MEM_P (*recog_data.dup_loc[i]))
2563 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2564 }
2565 }
2566
2567 /* If X is a SUBREG, replace it with a REG or a MEM,
2568 based on the thing it is a subreg of. */
2569
2570 rtx
2571 alter_subreg (rtx *xp)
2572 {
2573 rtx x = *xp;
2574 rtx y = SUBREG_REG (x);
2575
2576 /* simplify_subreg does not remove subreg from volatile references.
2577 We are required to. */
2578 if (MEM_P (y))
2579 {
2580 int offset = SUBREG_BYTE (x);
2581
2582 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2583 contains 0 instead of the proper offset. See simplify_subreg. */
2584 if (offset == 0
2585 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2586 {
2587 int difference = GET_MODE_SIZE (GET_MODE (y))
2588 - GET_MODE_SIZE (GET_MODE (x));
2589 if (WORDS_BIG_ENDIAN)
2590 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2591 if (BYTES_BIG_ENDIAN)
2592 offset += difference % UNITS_PER_WORD;
2593 }
2594
2595 *xp = adjust_address (y, GET_MODE (x), offset);
2596 }
2597 else
2598 {
2599 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2600 SUBREG_BYTE (x));
2601
2602 if (new != 0)
2603 *xp = new;
2604 else if (REG_P (y))
2605 {
2606 /* Simplify_subreg can't handle some REG cases, but we have to. */
2607 unsigned int regno = subreg_regno (x);
2608 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2609 }
2610 }
2611
2612 return *xp;
2613 }
2614
2615 /* Do alter_subreg on all the SUBREGs contained in X. */
2616
2617 static rtx
2618 walk_alter_subreg (rtx *xp)
2619 {
2620 rtx x = *xp;
2621 switch (GET_CODE (x))
2622 {
2623 case PLUS:
2624 case MULT:
2625 case AND:
2626 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2627 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2628 break;
2629
2630 case MEM:
2631 case ZERO_EXTEND:
2632 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2633 break;
2634
2635 case SUBREG:
2636 return alter_subreg (xp);
2637
2638 default:
2639 break;
2640 }
2641
2642 return *xp;
2643 }
2644 \f
2645 #ifdef HAVE_cc0
2646
2647 /* Given BODY, the body of a jump instruction, alter the jump condition
2648 as required by the bits that are set in cc_status.flags.
2649 Not all of the bits there can be handled at this level in all cases.
2650
2651 The value is normally 0.
2652 1 means that the condition has become always true.
2653 -1 means that the condition has become always false.
2654 2 means that COND has been altered. */
2655
2656 static int
2657 alter_cond (rtx cond)
2658 {
2659 int value = 0;
2660
2661 if (cc_status.flags & CC_REVERSED)
2662 {
2663 value = 2;
2664 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2665 }
2666
2667 if (cc_status.flags & CC_INVERTED)
2668 {
2669 value = 2;
2670 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2671 }
2672
2673 if (cc_status.flags & CC_NOT_POSITIVE)
2674 switch (GET_CODE (cond))
2675 {
2676 case LE:
2677 case LEU:
2678 case GEU:
2679 /* Jump becomes unconditional. */
2680 return 1;
2681
2682 case GT:
2683 case GTU:
2684 case LTU:
2685 /* Jump becomes no-op. */
2686 return -1;
2687
2688 case GE:
2689 PUT_CODE (cond, EQ);
2690 value = 2;
2691 break;
2692
2693 case LT:
2694 PUT_CODE (cond, NE);
2695 value = 2;
2696 break;
2697
2698 default:
2699 break;
2700 }
2701
2702 if (cc_status.flags & CC_NOT_NEGATIVE)
2703 switch (GET_CODE (cond))
2704 {
2705 case GE:
2706 case GEU:
2707 /* Jump becomes unconditional. */
2708 return 1;
2709
2710 case LT:
2711 case LTU:
2712 /* Jump becomes no-op. */
2713 return -1;
2714
2715 case LE:
2716 case LEU:
2717 PUT_CODE (cond, EQ);
2718 value = 2;
2719 break;
2720
2721 case GT:
2722 case GTU:
2723 PUT_CODE (cond, NE);
2724 value = 2;
2725 break;
2726
2727 default:
2728 break;
2729 }
2730
2731 if (cc_status.flags & CC_NO_OVERFLOW)
2732 switch (GET_CODE (cond))
2733 {
2734 case GEU:
2735 /* Jump becomes unconditional. */
2736 return 1;
2737
2738 case LEU:
2739 PUT_CODE (cond, EQ);
2740 value = 2;
2741 break;
2742
2743 case GTU:
2744 PUT_CODE (cond, NE);
2745 value = 2;
2746 break;
2747
2748 case LTU:
2749 /* Jump becomes no-op. */
2750 return -1;
2751
2752 default:
2753 break;
2754 }
2755
2756 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2757 switch (GET_CODE (cond))
2758 {
2759 default:
2760 gcc_unreachable ();
2761
2762 case NE:
2763 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2764 value = 2;
2765 break;
2766
2767 case EQ:
2768 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2769 value = 2;
2770 break;
2771 }
2772
2773 if (cc_status.flags & CC_NOT_SIGNED)
2774 /* The flags are valid if signed condition operators are converted
2775 to unsigned. */
2776 switch (GET_CODE (cond))
2777 {
2778 case LE:
2779 PUT_CODE (cond, LEU);
2780 value = 2;
2781 break;
2782
2783 case LT:
2784 PUT_CODE (cond, LTU);
2785 value = 2;
2786 break;
2787
2788 case GT:
2789 PUT_CODE (cond, GTU);
2790 value = 2;
2791 break;
2792
2793 case GE:
2794 PUT_CODE (cond, GEU);
2795 value = 2;
2796 break;
2797
2798 default:
2799 break;
2800 }
2801
2802 return value;
2803 }
2804 #endif
2805 \f
2806 /* Report inconsistency between the assembler template and the operands.
2807 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2808
2809 void
2810 output_operand_lossage (const char *cmsgid, ...)
2811 {
2812 char *fmt_string;
2813 char *new_message;
2814 const char *pfx_str;
2815 va_list ap;
2816
2817 va_start (ap, cmsgid);
2818
2819 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2820 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2821 vasprintf (&new_message, fmt_string, ap);
2822
2823 if (this_is_asm_operands)
2824 error_for_asm (this_is_asm_operands, "%s", new_message);
2825 else
2826 internal_error ("%s", new_message);
2827
2828 free (fmt_string);
2829 free (new_message);
2830 va_end (ap);
2831 }
2832 \f
2833 /* Output of assembler code from a template, and its subroutines. */
2834
2835 /* Annotate the assembly with a comment describing the pattern and
2836 alternative used. */
2837
2838 static void
2839 output_asm_name (void)
2840 {
2841 if (debug_insn)
2842 {
2843 int num = INSN_CODE (debug_insn);
2844 fprintf (asm_out_file, "\t%s %d\t%s",
2845 ASM_COMMENT_START, INSN_UID (debug_insn),
2846 insn_data[num].name);
2847 if (insn_data[num].n_alternatives > 1)
2848 fprintf (asm_out_file, "/%d", which_alternative + 1);
2849 #ifdef HAVE_ATTR_length
2850 fprintf (asm_out_file, "\t[length = %d]",
2851 get_attr_length (debug_insn));
2852 #endif
2853 /* Clear this so only the first assembler insn
2854 of any rtl insn will get the special comment for -dp. */
2855 debug_insn = 0;
2856 }
2857 }
2858
2859 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2860 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2861 corresponds to the address of the object and 0 if to the object. */
2862
2863 static tree
2864 get_mem_expr_from_op (rtx op, int *paddressp)
2865 {
2866 tree expr;
2867 int inner_addressp;
2868
2869 *paddressp = 0;
2870
2871 if (REG_P (op))
2872 return REG_EXPR (op);
2873 else if (!MEM_P (op))
2874 return 0;
2875
2876 if (MEM_EXPR (op) != 0)
2877 return MEM_EXPR (op);
2878
2879 /* Otherwise we have an address, so indicate it and look at the address. */
2880 *paddressp = 1;
2881 op = XEXP (op, 0);
2882
2883 /* First check if we have a decl for the address, then look at the right side
2884 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2885 But don't allow the address to itself be indirect. */
2886 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2887 return expr;
2888 else if (GET_CODE (op) == PLUS
2889 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2890 return expr;
2891
2892 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2893 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2894 op = XEXP (op, 0);
2895
2896 expr = get_mem_expr_from_op (op, &inner_addressp);
2897 return inner_addressp ? 0 : expr;
2898 }
2899
2900 /* Output operand names for assembler instructions. OPERANDS is the
2901 operand vector, OPORDER is the order to write the operands, and NOPS
2902 is the number of operands to write. */
2903
2904 static void
2905 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2906 {
2907 int wrote = 0;
2908 int i;
2909
2910 for (i = 0; i < nops; i++)
2911 {
2912 int addressp;
2913 rtx op = operands[oporder[i]];
2914 tree expr = get_mem_expr_from_op (op, &addressp);
2915
2916 fprintf (asm_out_file, "%c%s",
2917 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2918 wrote = 1;
2919 if (expr)
2920 {
2921 fprintf (asm_out_file, "%s",
2922 addressp ? "*" : "");
2923 print_mem_expr (asm_out_file, expr);
2924 wrote = 1;
2925 }
2926 else if (REG_P (op) && ORIGINAL_REGNO (op)
2927 && ORIGINAL_REGNO (op) != REGNO (op))
2928 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2929 }
2930 }
2931
2932 /* Output text from TEMPLATE to the assembler output file,
2933 obeying %-directions to substitute operands taken from
2934 the vector OPERANDS.
2935
2936 %N (for N a digit) means print operand N in usual manner.
2937 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2938 and print the label name with no punctuation.
2939 %cN means require operand N to be a constant
2940 and print the constant expression with no punctuation.
2941 %aN means expect operand N to be a memory address
2942 (not a memory reference!) and print a reference
2943 to that address.
2944 %nN means expect operand N to be a constant
2945 and print a constant expression for minus the value
2946 of the operand, with no other punctuation. */
2947
2948 void
2949 output_asm_insn (const char *template, rtx *operands)
2950 {
2951 const char *p;
2952 int c;
2953 #ifdef ASSEMBLER_DIALECT
2954 int dialect = 0;
2955 #endif
2956 int oporder[MAX_RECOG_OPERANDS];
2957 char opoutput[MAX_RECOG_OPERANDS];
2958 int ops = 0;
2959
2960 /* An insn may return a null string template
2961 in a case where no assembler code is needed. */
2962 if (*template == 0)
2963 return;
2964
2965 memset (opoutput, 0, sizeof opoutput);
2966 p = template;
2967 putc ('\t', asm_out_file);
2968
2969 #ifdef ASM_OUTPUT_OPCODE
2970 ASM_OUTPUT_OPCODE (asm_out_file, p);
2971 #endif
2972
2973 while ((c = *p++))
2974 switch (c)
2975 {
2976 case '\n':
2977 if (flag_verbose_asm)
2978 output_asm_operand_names (operands, oporder, ops);
2979 if (flag_print_asm_name)
2980 output_asm_name ();
2981
2982 ops = 0;
2983 memset (opoutput, 0, sizeof opoutput);
2984
2985 putc (c, asm_out_file);
2986 #ifdef ASM_OUTPUT_OPCODE
2987 while ((c = *p) == '\t')
2988 {
2989 putc (c, asm_out_file);
2990 p++;
2991 }
2992 ASM_OUTPUT_OPCODE (asm_out_file, p);
2993 #endif
2994 break;
2995
2996 #ifdef ASSEMBLER_DIALECT
2997 case '{':
2998 {
2999 int i;
3000
3001 if (dialect)
3002 output_operand_lossage ("nested assembly dialect alternatives");
3003 else
3004 dialect = 1;
3005
3006 /* If we want the first dialect, do nothing. Otherwise, skip
3007 DIALECT_NUMBER of strings ending with '|'. */
3008 for (i = 0; i < dialect_number; i++)
3009 {
3010 while (*p && *p != '}' && *p++ != '|')
3011 ;
3012 if (*p == '}')
3013 break;
3014 if (*p == '|')
3015 p++;
3016 }
3017
3018 if (*p == '\0')
3019 output_operand_lossage ("unterminated assembly dialect alternative");
3020 }
3021 break;
3022
3023 case '|':
3024 if (dialect)
3025 {
3026 /* Skip to close brace. */
3027 do
3028 {
3029 if (*p == '\0')
3030 {
3031 output_operand_lossage ("unterminated assembly dialect alternative");
3032 break;
3033 }
3034 }
3035 while (*p++ != '}');
3036 dialect = 0;
3037 }
3038 else
3039 putc (c, asm_out_file);
3040 break;
3041
3042 case '}':
3043 if (! dialect)
3044 putc (c, asm_out_file);
3045 dialect = 0;
3046 break;
3047 #endif
3048
3049 case '%':
3050 /* %% outputs a single %. */
3051 if (*p == '%')
3052 {
3053 p++;
3054 putc (c, asm_out_file);
3055 }
3056 /* %= outputs a number which is unique to each insn in the entire
3057 compilation. This is useful for making local labels that are
3058 referred to more than once in a given insn. */
3059 else if (*p == '=')
3060 {
3061 p++;
3062 fprintf (asm_out_file, "%d", insn_counter);
3063 }
3064 /* % followed by a letter and some digits
3065 outputs an operand in a special way depending on the letter.
3066 Letters `acln' are implemented directly.
3067 Other letters are passed to `output_operand' so that
3068 the PRINT_OPERAND macro can define them. */
3069 else if (ISALPHA (*p))
3070 {
3071 int letter = *p++;
3072 unsigned long opnum;
3073 char *endptr;
3074
3075 opnum = strtoul (p, &endptr, 10);
3076
3077 if (endptr == p)
3078 output_operand_lossage ("operand number missing "
3079 "after %%-letter");
3080 else if (this_is_asm_operands && opnum >= insn_noperands)
3081 output_operand_lossage ("operand number out of range");
3082 else if (letter == 'l')
3083 output_asm_label (operands[opnum]);
3084 else if (letter == 'a')
3085 output_address (operands[opnum]);
3086 else if (letter == 'c')
3087 {
3088 if (CONSTANT_ADDRESS_P (operands[opnum]))
3089 output_addr_const (asm_out_file, operands[opnum]);
3090 else
3091 output_operand (operands[opnum], 'c');
3092 }
3093 else if (letter == 'n')
3094 {
3095 if (GET_CODE (operands[opnum]) == CONST_INT)
3096 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3097 - INTVAL (operands[opnum]));
3098 else
3099 {
3100 putc ('-', asm_out_file);
3101 output_addr_const (asm_out_file, operands[opnum]);
3102 }
3103 }
3104 else
3105 output_operand (operands[opnum], letter);
3106
3107 if (!opoutput[opnum])
3108 oporder[ops++] = opnum;
3109 opoutput[opnum] = 1;
3110
3111 p = endptr;
3112 c = *p;
3113 }
3114 /* % followed by a digit outputs an operand the default way. */
3115 else if (ISDIGIT (*p))
3116 {
3117 unsigned long opnum;
3118 char *endptr;
3119
3120 opnum = strtoul (p, &endptr, 10);
3121 if (this_is_asm_operands && opnum >= insn_noperands)
3122 output_operand_lossage ("operand number out of range");
3123 else
3124 output_operand (operands[opnum], 0);
3125
3126 if (!opoutput[opnum])
3127 oporder[ops++] = opnum;
3128 opoutput[opnum] = 1;
3129
3130 p = endptr;
3131 c = *p;
3132 }
3133 /* % followed by punctuation: output something for that
3134 punctuation character alone, with no operand.
3135 The PRINT_OPERAND macro decides what is actually done. */
3136 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3137 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3138 output_operand (NULL_RTX, *p++);
3139 #endif
3140 else
3141 output_operand_lossage ("invalid %%-code");
3142 break;
3143
3144 default:
3145 putc (c, asm_out_file);
3146 }
3147
3148 /* Write out the variable names for operands, if we know them. */
3149 if (flag_verbose_asm)
3150 output_asm_operand_names (operands, oporder, ops);
3151 if (flag_print_asm_name)
3152 output_asm_name ();
3153
3154 putc ('\n', asm_out_file);
3155 }
3156 \f
3157 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3158
3159 void
3160 output_asm_label (rtx x)
3161 {
3162 char buf[256];
3163
3164 if (GET_CODE (x) == LABEL_REF)
3165 x = XEXP (x, 0);
3166 if (LABEL_P (x)
3167 || (NOTE_P (x)
3168 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3169 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3170 else
3171 output_operand_lossage ("'%%l' operand isn't a label");
3172
3173 assemble_name (asm_out_file, buf);
3174 }
3175
3176 /* Print operand X using machine-dependent assembler syntax.
3177 The macro PRINT_OPERAND is defined just to control this function.
3178 CODE is a non-digit that preceded the operand-number in the % spec,
3179 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3180 between the % and the digits.
3181 When CODE is a non-letter, X is 0.
3182
3183 The meanings of the letters are machine-dependent and controlled
3184 by PRINT_OPERAND. */
3185
3186 static void
3187 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3188 {
3189 if (x && GET_CODE (x) == SUBREG)
3190 x = alter_subreg (&x);
3191
3192 /* X must not be a pseudo reg. */
3193 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3194
3195 PRINT_OPERAND (asm_out_file, x, code);
3196 }
3197
3198 /* Print a memory reference operand for address X
3199 using machine-dependent assembler syntax.
3200 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3201
3202 void
3203 output_address (rtx x)
3204 {
3205 walk_alter_subreg (&x);
3206 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3207 }
3208 \f
3209 /* Print an integer constant expression in assembler syntax.
3210 Addition and subtraction are the only arithmetic
3211 that may appear in these expressions. */
3212
3213 void
3214 output_addr_const (FILE *file, rtx x)
3215 {
3216 char buf[256];
3217
3218 restart:
3219 switch (GET_CODE (x))
3220 {
3221 case PC:
3222 putc ('.', file);
3223 break;
3224
3225 case SYMBOL_REF:
3226 if (SYMBOL_REF_DECL (x))
3227 mark_decl_referenced (SYMBOL_REF_DECL (x));
3228 #ifdef ASM_OUTPUT_SYMBOL_REF
3229 ASM_OUTPUT_SYMBOL_REF (file, x);
3230 #else
3231 assemble_name (file, XSTR (x, 0));
3232 #endif
3233 break;
3234
3235 case LABEL_REF:
3236 x = XEXP (x, 0);
3237 /* Fall through. */
3238 case CODE_LABEL:
3239 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3240 #ifdef ASM_OUTPUT_LABEL_REF
3241 ASM_OUTPUT_LABEL_REF (file, buf);
3242 #else
3243 assemble_name (file, buf);
3244 #endif
3245 break;
3246
3247 case CONST_INT:
3248 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3249 break;
3250
3251 case CONST:
3252 /* This used to output parentheses around the expression,
3253 but that does not work on the 386 (either ATT or BSD assembler). */
3254 output_addr_const (file, XEXP (x, 0));
3255 break;
3256
3257 case CONST_DOUBLE:
3258 if (GET_MODE (x) == VOIDmode)
3259 {
3260 /* We can use %d if the number is one word and positive. */
3261 if (CONST_DOUBLE_HIGH (x))
3262 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3263 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3264 else if (CONST_DOUBLE_LOW (x) < 0)
3265 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3266 else
3267 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3268 }
3269 else
3270 /* We can't handle floating point constants;
3271 PRINT_OPERAND must handle them. */
3272 output_operand_lossage ("floating constant misused");
3273 break;
3274
3275 case PLUS:
3276 /* Some assemblers need integer constants to appear last (eg masm). */
3277 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3278 {
3279 output_addr_const (file, XEXP (x, 1));
3280 if (INTVAL (XEXP (x, 0)) >= 0)
3281 fprintf (file, "+");
3282 output_addr_const (file, XEXP (x, 0));
3283 }
3284 else
3285 {
3286 output_addr_const (file, XEXP (x, 0));
3287 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3288 || INTVAL (XEXP (x, 1)) >= 0)
3289 fprintf (file, "+");
3290 output_addr_const (file, XEXP (x, 1));
3291 }
3292 break;
3293
3294 case MINUS:
3295 /* Avoid outputting things like x-x or x+5-x,
3296 since some assemblers can't handle that. */
3297 x = simplify_subtraction (x);
3298 if (GET_CODE (x) != MINUS)
3299 goto restart;
3300
3301 output_addr_const (file, XEXP (x, 0));
3302 fprintf (file, "-");
3303 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3304 || GET_CODE (XEXP (x, 1)) == PC
3305 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3306 output_addr_const (file, XEXP (x, 1));
3307 else
3308 {
3309 fputs (targetm.asm_out.open_paren, file);
3310 output_addr_const (file, XEXP (x, 1));
3311 fputs (targetm.asm_out.close_paren, file);
3312 }
3313 break;
3314
3315 case ZERO_EXTEND:
3316 case SIGN_EXTEND:
3317 case SUBREG:
3318 output_addr_const (file, XEXP (x, 0));
3319 break;
3320
3321 default:
3322 #ifdef OUTPUT_ADDR_CONST_EXTRA
3323 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3324 break;
3325
3326 fail:
3327 #endif
3328 output_operand_lossage ("invalid expression as operand");
3329 }
3330 }
3331 \f
3332 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3333 %R prints the value of REGISTER_PREFIX.
3334 %L prints the value of LOCAL_LABEL_PREFIX.
3335 %U prints the value of USER_LABEL_PREFIX.
3336 %I prints the value of IMMEDIATE_PREFIX.
3337 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3338 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3339
3340 We handle alternate assembler dialects here, just like output_asm_insn. */
3341
3342 void
3343 asm_fprintf (FILE *file, const char *p, ...)
3344 {
3345 char buf[10];
3346 char *q, c;
3347 va_list argptr;
3348
3349 va_start (argptr, p);
3350
3351 buf[0] = '%';
3352
3353 while ((c = *p++))
3354 switch (c)
3355 {
3356 #ifdef ASSEMBLER_DIALECT
3357 case '{':
3358 {
3359 int i;
3360
3361 /* If we want the first dialect, do nothing. Otherwise, skip
3362 DIALECT_NUMBER of strings ending with '|'. */
3363 for (i = 0; i < dialect_number; i++)
3364 {
3365 while (*p && *p++ != '|')
3366 ;
3367
3368 if (*p == '|')
3369 p++;
3370 }
3371 }
3372 break;
3373
3374 case '|':
3375 /* Skip to close brace. */
3376 while (*p && *p++ != '}')
3377 ;
3378 break;
3379
3380 case '}':
3381 break;
3382 #endif
3383
3384 case '%':
3385 c = *p++;
3386 q = &buf[1];
3387 while (strchr ("-+ #0", c))
3388 {
3389 *q++ = c;
3390 c = *p++;
3391 }
3392 while (ISDIGIT (c) || c == '.')
3393 {
3394 *q++ = c;
3395 c = *p++;
3396 }
3397 switch (c)
3398 {
3399 case '%':
3400 putc ('%', file);
3401 break;
3402
3403 case 'd': case 'i': case 'u':
3404 case 'x': case 'X': case 'o':
3405 case 'c':
3406 *q++ = c;
3407 *q = 0;
3408 fprintf (file, buf, va_arg (argptr, int));
3409 break;
3410
3411 case 'w':
3412 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3413 'o' cases, but we do not check for those cases. It
3414 means that the value is a HOST_WIDE_INT, which may be
3415 either `long' or `long long'. */
3416 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3417 q += strlen (HOST_WIDE_INT_PRINT);
3418 *q++ = *p++;
3419 *q = 0;
3420 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3421 break;
3422
3423 case 'l':
3424 *q++ = c;
3425 #ifdef HAVE_LONG_LONG
3426 if (*p == 'l')
3427 {
3428 *q++ = *p++;
3429 *q++ = *p++;
3430 *q = 0;
3431 fprintf (file, buf, va_arg (argptr, long long));
3432 }
3433 else
3434 #endif
3435 {
3436 *q++ = *p++;
3437 *q = 0;
3438 fprintf (file, buf, va_arg (argptr, long));
3439 }
3440
3441 break;
3442
3443 case 's':
3444 *q++ = c;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, char *));
3447 break;
3448
3449 case 'O':
3450 #ifdef ASM_OUTPUT_OPCODE
3451 ASM_OUTPUT_OPCODE (asm_out_file, p);
3452 #endif
3453 break;
3454
3455 case 'R':
3456 #ifdef REGISTER_PREFIX
3457 fprintf (file, "%s", REGISTER_PREFIX);
3458 #endif
3459 break;
3460
3461 case 'I':
3462 #ifdef IMMEDIATE_PREFIX
3463 fprintf (file, "%s", IMMEDIATE_PREFIX);
3464 #endif
3465 break;
3466
3467 case 'L':
3468 #ifdef LOCAL_LABEL_PREFIX
3469 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3470 #endif
3471 break;
3472
3473 case 'U':
3474 fputs (user_label_prefix, file);
3475 break;
3476
3477 #ifdef ASM_FPRINTF_EXTENSIONS
3478 /* Uppercase letters are reserved for general use by asm_fprintf
3479 and so are not available to target specific code. In order to
3480 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3481 they are defined here. As they get turned into real extensions
3482 to asm_fprintf they should be removed from this list. */
3483 case 'A': case 'B': case 'C': case 'D': case 'E':
3484 case 'F': case 'G': case 'H': case 'J': case 'K':
3485 case 'M': case 'N': case 'P': case 'Q': case 'S':
3486 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3487 break;
3488
3489 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3490 #endif
3491 default:
3492 gcc_unreachable ();
3493 }
3494 break;
3495
3496 default:
3497 putc (c, file);
3498 }
3499 va_end (argptr);
3500 }
3501 \f
3502 /* Split up a CONST_DOUBLE or integer constant rtx
3503 into two rtx's for single words,
3504 storing in *FIRST the word that comes first in memory in the target
3505 and in *SECOND the other. */
3506
3507 void
3508 split_double (rtx value, rtx *first, rtx *second)
3509 {
3510 if (GET_CODE (value) == CONST_INT)
3511 {
3512 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3513 {
3514 /* In this case the CONST_INT holds both target words.
3515 Extract the bits from it into two word-sized pieces.
3516 Sign extend each half to HOST_WIDE_INT. */
3517 unsigned HOST_WIDE_INT low, high;
3518 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3519
3520 /* Set sign_bit to the most significant bit of a word. */
3521 sign_bit = 1;
3522 sign_bit <<= BITS_PER_WORD - 1;
3523
3524 /* Set mask so that all bits of the word are set. We could
3525 have used 1 << BITS_PER_WORD instead of basing the
3526 calculation on sign_bit. However, on machines where
3527 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3528 compiler warning, even though the code would never be
3529 executed. */
3530 mask = sign_bit << 1;
3531 mask--;
3532
3533 /* Set sign_extend as any remaining bits. */
3534 sign_extend = ~mask;
3535
3536 /* Pick the lower word and sign-extend it. */
3537 low = INTVAL (value);
3538 low &= mask;
3539 if (low & sign_bit)
3540 low |= sign_extend;
3541
3542 /* Pick the higher word, shifted to the least significant
3543 bits, and sign-extend it. */
3544 high = INTVAL (value);
3545 high >>= BITS_PER_WORD - 1;
3546 high >>= 1;
3547 high &= mask;
3548 if (high & sign_bit)
3549 high |= sign_extend;
3550
3551 /* Store the words in the target machine order. */
3552 if (WORDS_BIG_ENDIAN)
3553 {
3554 *first = GEN_INT (high);
3555 *second = GEN_INT (low);
3556 }
3557 else
3558 {
3559 *first = GEN_INT (low);
3560 *second = GEN_INT (high);
3561 }
3562 }
3563 else
3564 {
3565 /* The rule for using CONST_INT for a wider mode
3566 is that we regard the value as signed.
3567 So sign-extend it. */
3568 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3569 if (WORDS_BIG_ENDIAN)
3570 {
3571 *first = high;
3572 *second = value;
3573 }
3574 else
3575 {
3576 *first = value;
3577 *second = high;
3578 }
3579 }
3580 }
3581 else if (GET_CODE (value) != CONST_DOUBLE)
3582 {
3583 if (WORDS_BIG_ENDIAN)
3584 {
3585 *first = const0_rtx;
3586 *second = value;
3587 }
3588 else
3589 {
3590 *first = value;
3591 *second = const0_rtx;
3592 }
3593 }
3594 else if (GET_MODE (value) == VOIDmode
3595 /* This is the old way we did CONST_DOUBLE integers. */
3596 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3597 {
3598 /* In an integer, the words are defined as most and least significant.
3599 So order them by the target's convention. */
3600 if (WORDS_BIG_ENDIAN)
3601 {
3602 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3603 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3604 }
3605 else
3606 {
3607 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3608 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3609 }
3610 }
3611 else
3612 {
3613 REAL_VALUE_TYPE r;
3614 long l[2];
3615 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3616
3617 /* Note, this converts the REAL_VALUE_TYPE to the target's
3618 format, splits up the floating point double and outputs
3619 exactly 32 bits of it into each of l[0] and l[1] --
3620 not necessarily BITS_PER_WORD bits. */
3621 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3622
3623 /* If 32 bits is an entire word for the target, but not for the host,
3624 then sign-extend on the host so that the number will look the same
3625 way on the host that it would on the target. See for instance
3626 simplify_unary_operation. The #if is needed to avoid compiler
3627 warnings. */
3628
3629 #if HOST_BITS_PER_LONG > 32
3630 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3631 {
3632 if (l[0] & ((long) 1 << 31))
3633 l[0] |= ((long) (-1) << 32);
3634 if (l[1] & ((long) 1 << 31))
3635 l[1] |= ((long) (-1) << 32);
3636 }
3637 #endif
3638
3639 *first = GEN_INT (l[0]);
3640 *second = GEN_INT (l[1]);
3641 }
3642 }
3643 \f
3644 /* Return nonzero if this function has no function calls. */
3645
3646 int
3647 leaf_function_p (void)
3648 {
3649 rtx insn;
3650 rtx link;
3651
3652 if (current_function_profile || profile_arc_flag)
3653 return 0;
3654
3655 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3656 {
3657 if (CALL_P (insn)
3658 && ! SIBLING_CALL_P (insn))
3659 return 0;
3660 if (NONJUMP_INSN_P (insn)
3661 && GET_CODE (PATTERN (insn)) == SEQUENCE
3662 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3663 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3664 return 0;
3665 }
3666 for (link = current_function_epilogue_delay_list;
3667 link;
3668 link = XEXP (link, 1))
3669 {
3670 insn = XEXP (link, 0);
3671
3672 if (CALL_P (insn)
3673 && ! SIBLING_CALL_P (insn))
3674 return 0;
3675 if (NONJUMP_INSN_P (insn)
3676 && GET_CODE (PATTERN (insn)) == SEQUENCE
3677 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3678 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3679 return 0;
3680 }
3681
3682 return 1;
3683 }
3684
3685 /* Return 1 if branch is a forward branch.
3686 Uses insn_shuid array, so it works only in the final pass. May be used by
3687 output templates to customary add branch prediction hints.
3688 */
3689 int
3690 final_forward_branch_p (rtx insn)
3691 {
3692 int insn_id, label_id;
3693
3694 gcc_assert (uid_shuid);
3695 insn_id = INSN_SHUID (insn);
3696 label_id = INSN_SHUID (JUMP_LABEL (insn));
3697 /* We've hit some insns that does not have id information available. */
3698 gcc_assert (insn_id && label_id);
3699 return insn_id < label_id;
3700 }
3701
3702 /* On some machines, a function with no call insns
3703 can run faster if it doesn't create its own register window.
3704 When output, the leaf function should use only the "output"
3705 registers. Ordinarily, the function would be compiled to use
3706 the "input" registers to find its arguments; it is a candidate
3707 for leaf treatment if it uses only the "input" registers.
3708 Leaf function treatment means renumbering so the function
3709 uses the "output" registers instead. */
3710
3711 #ifdef LEAF_REGISTERS
3712
3713 /* Return 1 if this function uses only the registers that can be
3714 safely renumbered. */
3715
3716 int
3717 only_leaf_regs_used (void)
3718 {
3719 int i;
3720 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3721
3722 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3723 if ((regs_ever_live[i] || global_regs[i])
3724 && ! permitted_reg_in_leaf_functions[i])
3725 return 0;
3726
3727 if (current_function_uses_pic_offset_table
3728 && pic_offset_table_rtx != 0
3729 && REG_P (pic_offset_table_rtx)
3730 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3731 return 0;
3732
3733 return 1;
3734 }
3735
3736 /* Scan all instructions and renumber all registers into those
3737 available in leaf functions. */
3738
3739 static void
3740 leaf_renumber_regs (rtx first)
3741 {
3742 rtx insn;
3743
3744 /* Renumber only the actual patterns.
3745 The reg-notes can contain frame pointer refs,
3746 and renumbering them could crash, and should not be needed. */
3747 for (insn = first; insn; insn = NEXT_INSN (insn))
3748 if (INSN_P (insn))
3749 leaf_renumber_regs_insn (PATTERN (insn));
3750 for (insn = current_function_epilogue_delay_list;
3751 insn;
3752 insn = XEXP (insn, 1))
3753 if (INSN_P (XEXP (insn, 0)))
3754 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3755 }
3756
3757 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3758 available in leaf functions. */
3759
3760 void
3761 leaf_renumber_regs_insn (rtx in_rtx)
3762 {
3763 int i, j;
3764 const char *format_ptr;
3765
3766 if (in_rtx == 0)
3767 return;
3768
3769 /* Renumber all input-registers into output-registers.
3770 renumbered_regs would be 1 for an output-register;
3771 they */
3772
3773 if (REG_P (in_rtx))
3774 {
3775 int newreg;
3776
3777 /* Don't renumber the same reg twice. */
3778 if (in_rtx->used)
3779 return;
3780
3781 newreg = REGNO (in_rtx);
3782 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3783 to reach here as part of a REG_NOTE. */
3784 if (newreg >= FIRST_PSEUDO_REGISTER)
3785 {
3786 in_rtx->used = 1;
3787 return;
3788 }
3789 newreg = LEAF_REG_REMAP (newreg);
3790 gcc_assert (newreg >= 0);
3791 regs_ever_live[REGNO (in_rtx)] = 0;
3792 regs_ever_live[newreg] = 1;
3793 REGNO (in_rtx) = newreg;
3794 in_rtx->used = 1;
3795 }
3796
3797 if (INSN_P (in_rtx))
3798 {
3799 /* Inside a SEQUENCE, we find insns.
3800 Renumber just the patterns of these insns,
3801 just as we do for the top-level insns. */
3802 leaf_renumber_regs_insn (PATTERN (in_rtx));
3803 return;
3804 }
3805
3806 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3807
3808 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3809 switch (*format_ptr++)
3810 {
3811 case 'e':
3812 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3813 break;
3814
3815 case 'E':
3816 if (NULL != XVEC (in_rtx, i))
3817 {
3818 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3819 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3820 }
3821 break;
3822
3823 case 'S':
3824 case 's':
3825 case '0':
3826 case 'i':
3827 case 'w':
3828 case 'n':
3829 case 'u':
3830 break;
3831
3832 default:
3833 gcc_unreachable ();
3834 }
3835 }
3836 #endif
3837
3838
3839 /* When -gused is used, emit debug info for only used symbols. But in
3840 addition to the standard intercepted debug_hooks there are some direct
3841 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3842 Those routines may also be called from a higher level intercepted routine. So
3843 to prevent recording data for an inner call to one of these for an intercept,
3844 we maintain an intercept nesting counter (debug_nesting). We only save the
3845 intercepted arguments if the nesting is 1. */
3846 int debug_nesting = 0;
3847
3848 static tree *symbol_queue;
3849 int symbol_queue_index = 0;
3850 static int symbol_queue_size = 0;
3851
3852 /* Generate the symbols for any queued up type symbols we encountered
3853 while generating the type info for some originally used symbol.
3854 This might generate additional entries in the queue. Only when
3855 the nesting depth goes to 0 is this routine called. */
3856
3857 void
3858 debug_flush_symbol_queue (void)
3859 {
3860 int i;
3861
3862 /* Make sure that additionally queued items are not flushed
3863 prematurely. */
3864
3865 ++debug_nesting;
3866
3867 for (i = 0; i < symbol_queue_index; ++i)
3868 {
3869 /* If we pushed queued symbols then such symbols must be
3870 output no matter what anyone else says. Specifically,
3871 we need to make sure dbxout_symbol() thinks the symbol was
3872 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3873 which may be set for outside reasons. */
3874 int saved_tree_used = TREE_USED (symbol_queue[i]);
3875 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3876 TREE_USED (symbol_queue[i]) = 1;
3877 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3878
3879 #ifdef DBX_DEBUGGING_INFO
3880 dbxout_symbol (symbol_queue[i], 0);
3881 #endif
3882
3883 TREE_USED (symbol_queue[i]) = saved_tree_used;
3884 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3885 }
3886
3887 symbol_queue_index = 0;
3888 --debug_nesting;
3889 }
3890
3891 /* Queue a type symbol needed as part of the definition of a decl
3892 symbol. These symbols are generated when debug_flush_symbol_queue()
3893 is called. */
3894
3895 void
3896 debug_queue_symbol (tree decl)
3897 {
3898 if (symbol_queue_index >= symbol_queue_size)
3899 {
3900 symbol_queue_size += 10;
3901 symbol_queue = xrealloc (symbol_queue,
3902 symbol_queue_size * sizeof (tree));
3903 }
3904
3905 symbol_queue[symbol_queue_index++] = decl;
3906 }
3907
3908 /* Free symbol queue. */
3909 void
3910 debug_free_queue (void)
3911 {
3912 if (symbol_queue)
3913 {
3914 free (symbol_queue);
3915 symbol_queue = NULL;
3916 symbol_queue_size = 0;
3917 }
3918 }
3919 \f
3920 /* Turn the RTL into assembly. */
3921 static unsigned int
3922 rest_of_handle_final (void)
3923 {
3924 rtx x;
3925 const char *fnname;
3926
3927 /* Get the function's name, as described by its RTL. This may be
3928 different from the DECL_NAME name used in the source file. */
3929
3930 x = DECL_RTL (current_function_decl);
3931 gcc_assert (MEM_P (x));
3932 x = XEXP (x, 0);
3933 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3934 fnname = XSTR (x, 0);
3935
3936 assemble_start_function (current_function_decl, fnname);
3937 final_start_function (get_insns (), asm_out_file, optimize);
3938 final (get_insns (), asm_out_file, optimize);
3939 final_end_function ();
3940
3941 #ifdef TARGET_UNWIND_INFO
3942 /* ??? The IA-64 ".handlerdata" directive must be issued before
3943 the ".endp" directive that closes the procedure descriptor. */
3944 output_function_exception_table (fnname);
3945 #endif
3946
3947 assemble_end_function (current_function_decl, fnname);
3948
3949 #ifndef TARGET_UNWIND_INFO
3950 /* Otherwise, it feels unclean to switch sections in the middle. */
3951 output_function_exception_table (fnname);
3952 #endif
3953
3954 user_defined_section_attribute = false;
3955
3956 if (! quiet_flag)
3957 fflush (asm_out_file);
3958
3959 /* Release all memory allocated by flow. */
3960 free_basic_block_vars ();
3961
3962 /* Write DBX symbols if requested. */
3963
3964 /* Note that for those inline functions where we don't initially
3965 know for certain that we will be generating an out-of-line copy,
3966 the first invocation of this routine (rest_of_compilation) will
3967 skip over this code by doing a `goto exit_rest_of_compilation;'.
3968 Later on, wrapup_global_declarations will (indirectly) call
3969 rest_of_compilation again for those inline functions that need
3970 to have out-of-line copies generated. During that call, we
3971 *will* be routed past here. */
3972
3973 timevar_push (TV_SYMOUT);
3974 (*debug_hooks->function_decl) (current_function_decl);
3975 timevar_pop (TV_SYMOUT);
3976 return 0;
3977 }
3978
3979 struct tree_opt_pass pass_final =
3980 {
3981 NULL, /* name */
3982 NULL, /* gate */
3983 rest_of_handle_final, /* execute */
3984 NULL, /* sub */
3985 NULL, /* next */
3986 0, /* static_pass_number */
3987 TV_FINAL, /* tv_id */
3988 0, /* properties_required */
3989 0, /* properties_provided */
3990 0, /* properties_destroyed */
3991 0, /* todo_flags_start */
3992 TODO_ggc_collect, /* todo_flags_finish */
3993 0 /* letter */
3994 };
3995
3996
3997 static unsigned int
3998 rest_of_handle_shorten_branches (void)
3999 {
4000 /* Shorten branches. */
4001 shorten_branches (get_insns ());
4002 return 0;
4003 }
4004
4005 struct tree_opt_pass pass_shorten_branches =
4006 {
4007 "shorten", /* name */
4008 NULL, /* gate */
4009 rest_of_handle_shorten_branches, /* execute */
4010 NULL, /* sub */
4011 NULL, /* next */
4012 0, /* static_pass_number */
4013 TV_FINAL, /* tv_id */
4014 0, /* properties_required */
4015 0, /* properties_provided */
4016 0, /* properties_destroyed */
4017 0, /* todo_flags_start */
4018 TODO_dump_func, /* todo_flags_finish */
4019 0 /* letter */
4020 };
4021
4022
4023 static unsigned int
4024 rest_of_clean_state (void)
4025 {
4026 rtx insn, next;
4027
4028 /* It is very important to decompose the RTL instruction chain here:
4029 debug information keeps pointing into CODE_LABEL insns inside the function
4030 body. If these remain pointing to the other insns, we end up preserving
4031 whole RTL chain and attached detailed debug info in memory. */
4032 for (insn = get_insns (); insn; insn = next)
4033 {
4034 next = NEXT_INSN (insn);
4035 NEXT_INSN (insn) = NULL;
4036 PREV_INSN (insn) = NULL;
4037 }
4038
4039 /* In case the function was not output,
4040 don't leave any temporary anonymous types
4041 queued up for sdb output. */
4042 #ifdef SDB_DEBUGGING_INFO
4043 if (write_symbols == SDB_DEBUG)
4044 sdbout_types (NULL_TREE);
4045 #endif
4046
4047 reload_completed = 0;
4048 epilogue_completed = 0;
4049 flow2_completed = 0;
4050 no_new_pseudos = 0;
4051 #ifdef STACK_REGS
4052 regstack_completed = 0;
4053 #endif
4054
4055 /* Clear out the insn_length contents now that they are no
4056 longer valid. */
4057 init_insn_lengths ();
4058
4059 /* Show no temporary slots allocated. */
4060 init_temp_slots ();
4061
4062 free_basic_block_vars ();
4063 free_bb_for_insn ();
4064
4065
4066 if (targetm.binds_local_p (current_function_decl))
4067 {
4068 int pref = cfun->preferred_stack_boundary;
4069 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4070 pref = cfun->stack_alignment_needed;
4071 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4072 = pref;
4073 }
4074
4075 /* Make sure volatile mem refs aren't considered valid operands for
4076 arithmetic insns. We must call this here if this is a nested inline
4077 function, since the above code leaves us in the init_recog state,
4078 and the function context push/pop code does not save/restore volatile_ok.
4079
4080 ??? Maybe it isn't necessary for expand_start_function to call this
4081 anymore if we do it here? */
4082
4083 init_recog_no_volatile ();
4084
4085 /* We're done with this function. Free up memory if we can. */
4086 free_after_parsing (cfun);
4087 free_after_compilation (cfun);
4088 return 0;
4089 }
4090
4091 struct tree_opt_pass pass_clean_state =
4092 {
4093 NULL, /* name */
4094 NULL, /* gate */
4095 rest_of_clean_state, /* execute */
4096 NULL, /* sub */
4097 NULL, /* next */
4098 0, /* static_pass_number */
4099 TV_FINAL, /* tv_id */
4100 0, /* properties_required */
4101 0, /* properties_provided */
4102 PROP_rtl, /* properties_destroyed */
4103 0, /* todo_flags_start */
4104 0, /* todo_flags_finish */
4105 0 /* letter */
4106 };
4107