final.c (final): Allow notes to not have computed addresses; kill no longer needed...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
226 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
227 static void output_operand PARAMS ((rtx, int));
228 #ifdef LEAF_REGISTERS
229 static void leaf_renumber_regs PARAMS ((rtx));
230 #endif
231 #ifdef HAVE_cc0
232 static int alter_cond PARAMS ((rtx));
233 #endif
234 #ifndef ADDR_VEC_ALIGN
235 static int final_addr_vec_align PARAMS ((rtx));
236 #endif
237 #ifdef HAVE_ATTR_length
238 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
239 #endif
240 \f
241 /* Initialize data in final at the beginning of a compilation. */
242
243 void
244 init_final (filename)
245 const char *filename ATTRIBUTE_UNUSED;
246 {
247 app_on = 0;
248 final_sequence = 0;
249
250 #ifdef ASSEMBLER_DIALECT
251 dialect_number = ASSEMBLER_DIALECT;
252 #endif
253 }
254
255 /* Called at end of source file,
256 to output the arc-profiling table for this entire compilation. */
257
258 void
259 end_final (filename)
260 const char *filename;
261 {
262 if (profile_arc_flag && profile_info.count_instrumented_edges)
263 {
264 char name[20];
265 tree string_type, string_cst;
266 tree structure_decl, structure_value, structure_pointer_type;
267 tree field_decl, decl_chain, value_chain;
268 tree sizeof_field_value, domain_type;
269
270 /* Build types. */
271 string_type = build_pointer_type (char_type_node);
272
273 /* Libgcc2 bb structure. */
274 structure_decl = make_node (RECORD_TYPE);
275 structure_pointer_type = build_pointer_type (structure_decl);
276
277 /* Output the main header, of 7 words:
278 0: 1 if this file is initialized, else 0.
279 1: address of file name (LPBX1).
280 2: address of table of counts (LPBX2).
281 3: number of counts in the table.
282 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
283
284 The following are GNU extensions:
285
286 5: Number of bytes in this header.
287 6: address of table of function checksums (LPBX7). */
288
289 /* The zero word. */
290 decl_chain =
291 build_decl (FIELD_DECL, get_identifier ("zero_word"),
292 long_integer_type_node);
293 value_chain = build_tree_list (decl_chain,
294 convert (long_integer_type_node,
295 integer_zero_node));
296
297 /* Address of filename. */
298 {
299 char *cwd, *da_filename;
300 int da_filename_len;
301
302 field_decl =
303 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
304 TREE_CHAIN (field_decl) = decl_chain;
305 decl_chain = field_decl;
306
307 cwd = getpwd ();
308 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
309 da_filename = (char *) alloca (da_filename_len);
310 strcpy (da_filename, cwd);
311 strcat (da_filename, "/");
312 strcat (da_filename, filename);
313 strip_off_ending (da_filename, da_filename_len - 3);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
323 }
324
325 /* Table of counts. */
326 {
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
337
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
343
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
351
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
356 }
357
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
364
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
376
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
378
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
386
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
389
390 /* struct bb_function []. */
391 {
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
402
403 bb_fn_struct_type = make_node (RECORD_TYPE);
404
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
407
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
412
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
416
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
418
419 num_nodes = 0;
420
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
423
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
426
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
432
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
437
438 for (item = functions_head; item != 0; item = item->next)
439 {
440 size_t name_len;
441
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
452
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
462
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
469 }
470
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
475
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
480
481
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
497 }
498
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
502
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
511
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
516
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
519 }
520 }
521
522 /* Default target function prologue and epilogue assembler output.
523
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
530 {
531 }
532
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
537 {
538 }
539
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
542
543 void
544 app_enable ()
545 {
546 if (! app_on)
547 {
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
550 }
551 }
552
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
555
556 void
557 app_disable ()
558 {
559 if (app_on)
560 {
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
563 }
564 }
565 \f
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
569
570 #ifdef DELAY_SLOTS
571 int
572 dbr_sequence_length ()
573 {
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
578 }
579 #endif
580 \f
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
583
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
586
587 static int *insn_lengths;
588
589 #ifdef HAVE_ATTR_length
590 varray_type insn_addresses_;
591 #endif
592
593 /* Max uid for which the above arrays are valid. */
594 static int insn_lengths_max_uid;
595
596 /* Address of insn being processed. Used by `insn_current_length'. */
597 int insn_current_address;
598
599 /* Address of insn being processed in previous iteration. */
600 int insn_last_address;
601
602 /* known invariant alignment of insn being processed. */
603 int insn_current_align;
604
605 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
606 gives the next following alignment insn that increases the known
607 alignment, or NULL_RTX if there is no such insn.
608 For any alignment obtained this way, we can again index uid_align with
609 its uid to obtain the next following align that in turn increases the
610 alignment, till we reach NULL_RTX; the sequence obtained this way
611 for each insn we'll call the alignment chain of this insn in the following
612 comments. */
613
614 struct label_alignment
615 {
616 short alignment;
617 short max_skip;
618 };
619
620 static rtx *uid_align;
621 static int *uid_shuid;
622 static struct label_alignment *label_align;
623
624 /* Indicate that branch shortening hasn't yet been done. */
625
626 void
627 init_insn_lengths ()
628 {
629 if (uid_shuid)
630 {
631 free (uid_shuid);
632 uid_shuid = 0;
633 }
634 if (insn_lengths)
635 {
636 free (insn_lengths);
637 insn_lengths = 0;
638 insn_lengths_max_uid = 0;
639 }
640 #ifdef HAVE_ATTR_length
641 INSN_ADDRESSES_FREE ();
642 #endif
643 if (uid_align)
644 {
645 free (uid_align);
646 uid_align = 0;
647 }
648 }
649
650 /* Obtain the current length of an insn. If branch shortening has been done,
651 get its actual length. Otherwise, get its maximum length. */
652
653 int
654 get_attr_length (insn)
655 rtx insn ATTRIBUTE_UNUSED;
656 {
657 #ifdef HAVE_ATTR_length
658 rtx body;
659 int i;
660 int length = 0;
661
662 if (insn_lengths_max_uid > INSN_UID (insn))
663 return insn_lengths[INSN_UID (insn)];
664 else
665 switch (GET_CODE (insn))
666 {
667 case NOTE:
668 case BARRIER:
669 case CODE_LABEL:
670 return 0;
671
672 case CALL_INSN:
673 length = insn_default_length (insn);
674 break;
675
676 case JUMP_INSN:
677 body = PATTERN (insn);
678 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
679 {
680 /* Alignment is machine-dependent and should be handled by
681 ADDR_VEC_ALIGN. */
682 }
683 else
684 length = insn_default_length (insn);
685 break;
686
687 case INSN:
688 body = PATTERN (insn);
689 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
690 return 0;
691
692 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
693 length = asm_insn_count (body) * insn_default_length (insn);
694 else if (GET_CODE (body) == SEQUENCE)
695 for (i = 0; i < XVECLEN (body, 0); i++)
696 length += get_attr_length (XVECEXP (body, 0, i));
697 else
698 length = insn_default_length (insn);
699 break;
700
701 default:
702 break;
703 }
704
705 #ifdef ADJUST_INSN_LENGTH
706 ADJUST_INSN_LENGTH (insn, length);
707 #endif
708 return length;
709 #else /* not HAVE_ATTR_length */
710 return 0;
711 #endif /* not HAVE_ATTR_length */
712 }
713 \f
714 /* Code to handle alignment inside shorten_branches. */
715
716 /* Here is an explanation how the algorithm in align_fuzz can give
717 proper results:
718
719 Call a sequence of instructions beginning with alignment point X
720 and continuing until the next alignment point `block X'. When `X'
721 is used in an expression, it means the alignment value of the
722 alignment point.
723
724 Call the distance between the start of the first insn of block X, and
725 the end of the last insn of block X `IX', for the `inner size of X'.
726 This is clearly the sum of the instruction lengths.
727
728 Likewise with the next alignment-delimited block following X, which we
729 shall call block Y.
730
731 Call the distance between the start of the first insn of block X, and
732 the start of the first insn of block Y `OX', for the `outer size of X'.
733
734 The estimated padding is then OX - IX.
735
736 OX can be safely estimated as
737
738 if (X >= Y)
739 OX = round_up(IX, Y)
740 else
741 OX = round_up(IX, X) + Y - X
742
743 Clearly est(IX) >= real(IX), because that only depends on the
744 instruction lengths, and those being overestimated is a given.
745
746 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
747 we needn't worry about that when thinking about OX.
748
749 When X >= Y, the alignment provided by Y adds no uncertainty factor
750 for branch ranges starting before X, so we can just round what we have.
751 But when X < Y, we don't know anything about the, so to speak,
752 `middle bits', so we have to assume the worst when aligning up from an
753 address mod X to one mod Y, which is Y - X. */
754
755 #ifndef LABEL_ALIGN
756 #define LABEL_ALIGN(LABEL) align_labels_log
757 #endif
758
759 #ifndef LABEL_ALIGN_MAX_SKIP
760 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
761 #endif
762
763 #ifndef LOOP_ALIGN
764 #define LOOP_ALIGN(LABEL) align_loops_log
765 #endif
766
767 #ifndef LOOP_ALIGN_MAX_SKIP
768 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
769 #endif
770
771 #ifndef LABEL_ALIGN_AFTER_BARRIER
772 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
773 #endif
774
775 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
776 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
777 #endif
778
779 #ifndef JUMP_ALIGN
780 #define JUMP_ALIGN(LABEL) align_jumps_log
781 #endif
782
783 #ifndef JUMP_ALIGN_MAX_SKIP
784 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
785 #endif
786
787 #ifndef ADDR_VEC_ALIGN
788 static int
789 final_addr_vec_align (addr_vec)
790 rtx addr_vec;
791 {
792 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
793
794 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
795 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
796 return exact_log2 (align);
797
798 }
799
800 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
801 #endif
802
803 #ifndef INSN_LENGTH_ALIGNMENT
804 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
805 #endif
806
807 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
808
809 static int min_labelno, max_labelno;
810
811 #define LABEL_TO_ALIGNMENT(LABEL) \
812 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
813
814 #define LABEL_TO_MAX_SKIP(LABEL) \
815 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
816
817 /* For the benefit of port specific code do this also as a function. */
818
819 int
820 label_to_alignment (label)
821 rtx label;
822 {
823 return LABEL_TO_ALIGNMENT (label);
824 }
825
826 #ifdef HAVE_ATTR_length
827 /* The differences in addresses
828 between a branch and its target might grow or shrink depending on
829 the alignment the start insn of the range (the branch for a forward
830 branch or the label for a backward branch) starts out on; if these
831 differences are used naively, they can even oscillate infinitely.
832 We therefore want to compute a 'worst case' address difference that
833 is independent of the alignment the start insn of the range end
834 up on, and that is at least as large as the actual difference.
835 The function align_fuzz calculates the amount we have to add to the
836 naively computed difference, by traversing the part of the alignment
837 chain of the start insn of the range that is in front of the end insn
838 of the range, and considering for each alignment the maximum amount
839 that it might contribute to a size increase.
840
841 For casesi tables, we also want to know worst case minimum amounts of
842 address difference, in case a machine description wants to introduce
843 some common offset that is added to all offsets in a table.
844 For this purpose, align_fuzz with a growth argument of 0 computes the
845 appropriate adjustment. */
846
847 /* Compute the maximum delta by which the difference of the addresses of
848 START and END might grow / shrink due to a different address for start
849 which changes the size of alignment insns between START and END.
850 KNOWN_ALIGN_LOG is the alignment known for START.
851 GROWTH should be ~0 if the objective is to compute potential code size
852 increase, and 0 if the objective is to compute potential shrink.
853 The return value is undefined for any other value of GROWTH. */
854
855 static int
856 align_fuzz (start, end, known_align_log, growth)
857 rtx start, end;
858 int known_align_log;
859 unsigned growth;
860 {
861 int uid = INSN_UID (start);
862 rtx align_label;
863 int known_align = 1 << known_align_log;
864 int end_shuid = INSN_SHUID (end);
865 int fuzz = 0;
866
867 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
868 {
869 int align_addr, new_align;
870
871 uid = INSN_UID (align_label);
872 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
873 if (uid_shuid[uid] > end_shuid)
874 break;
875 known_align_log = LABEL_TO_ALIGNMENT (align_label);
876 new_align = 1 << known_align_log;
877 if (new_align < known_align)
878 continue;
879 fuzz += (-align_addr ^ growth) & (new_align - known_align);
880 known_align = new_align;
881 }
882 return fuzz;
883 }
884
885 /* Compute a worst-case reference address of a branch so that it
886 can be safely used in the presence of aligned labels. Since the
887 size of the branch itself is unknown, the size of the branch is
888 not included in the range. I.e. for a forward branch, the reference
889 address is the end address of the branch as known from the previous
890 branch shortening pass, minus a value to account for possible size
891 increase due to alignment. For a backward branch, it is the start
892 address of the branch as known from the current pass, plus a value
893 to account for possible size increase due to alignment.
894 NB.: Therefore, the maximum offset allowed for backward branches needs
895 to exclude the branch size. */
896
897 int
898 insn_current_reference_address (branch)
899 rtx branch;
900 {
901 rtx dest, seq;
902 int seq_uid;
903
904 if (! INSN_ADDRESSES_SET_P ())
905 return 0;
906
907 seq = NEXT_INSN (PREV_INSN (branch));
908 seq_uid = INSN_UID (seq);
909 if (GET_CODE (branch) != JUMP_INSN)
910 /* This can happen for example on the PA; the objective is to know the
911 offset to address something in front of the start of the function.
912 Thus, we can treat it like a backward branch.
913 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
914 any alignment we'd encounter, so we skip the call to align_fuzz. */
915 return insn_current_address;
916 dest = JUMP_LABEL (branch);
917
918 /* BRANCH has no proper alignment chain set, so use SEQ.
919 BRANCH also has no INSN_SHUID. */
920 if (INSN_SHUID (seq) < INSN_SHUID (dest))
921 {
922 /* Forward branch. */
923 return (insn_last_address + insn_lengths[seq_uid]
924 - align_fuzz (seq, dest, length_unit_log, ~0));
925 }
926 else
927 {
928 /* Backward branch. */
929 return (insn_current_address
930 + align_fuzz (dest, seq, length_unit_log, ~0));
931 }
932 }
933 #endif /* HAVE_ATTR_length */
934 \f
935 void
936 compute_alignments ()
937 {
938 int log, max_skip, max_log;
939 basic_block bb;
940
941 if (label_align)
942 {
943 free (label_align);
944 label_align = 0;
945 }
946
947 max_labelno = max_label_num ();
948 min_labelno = get_first_label_num ();
949 label_align = (struct label_alignment *)
950 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
951
952 /* If not optimizing or optimizing for size, don't assign any alignments. */
953 if (! optimize || optimize_size)
954 return;
955
956 FOR_EACH_BB (bb)
957 {
958 rtx label = bb->head;
959 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
960 edge e;
961
962 if (GET_CODE (label) != CODE_LABEL)
963 continue;
964 max_log = LABEL_ALIGN (label);
965 max_skip = LABEL_ALIGN_MAX_SKIP;
966
967 for (e = bb->pred; e; e = e->pred_next)
968 {
969 if (e->flags & EDGE_FALLTHRU)
970 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
971 else
972 branch_frequency += EDGE_FREQUENCY (e);
973 }
974
975 /* There are two purposes to align block with no fallthru incoming edge:
976 1) to avoid fetch stalls when branch destination is near cache boundary
977 2) to improve cache efficiency in case the previous block is not executed
978 (so it does not need to be in the cache).
979
980 We to catch first case, we align frequently executed blocks.
981 To catch the second, we align blocks that are executed more frequently
982 than the predecessor and the predecessor is likely to not be executed
983 when function is called. */
984
985 if (!has_fallthru
986 && (branch_frequency > BB_FREQ_MAX / 10
987 || (bb->frequency > bb->prev_bb->frequency * 10
988 && (bb->prev_bb->frequency
989 <= ENTRY_BLOCK_PTR->frequency / 2))))
990 {
991 log = JUMP_ALIGN (label);
992 if (max_log < log)
993 {
994 max_log = log;
995 max_skip = JUMP_ALIGN_MAX_SKIP;
996 }
997 }
998 /* In case block is frequent and reached mostly by non-fallthru edge,
999 align it. It is most likely an first block of loop. */
1000 if (has_fallthru
1001 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1002 && branch_frequency > fallthru_frequency * 5)
1003 {
1004 log = LOOP_ALIGN (label);
1005 if (max_log < log)
1006 {
1007 max_log = log;
1008 max_skip = LOOP_ALIGN_MAX_SKIP;
1009 }
1010 }
1011 LABEL_TO_ALIGNMENT (label) = max_log;
1012 LABEL_TO_MAX_SKIP (label) = max_skip;
1013 }
1014 }
1015 \f
1016 /* Make a pass over all insns and compute their actual lengths by shortening
1017 any branches of variable length if possible. */
1018
1019 /* Give a default value for the lowest address in a function. */
1020
1021 #ifndef FIRST_INSN_ADDRESS
1022 #define FIRST_INSN_ADDRESS 0
1023 #endif
1024
1025 /* shorten_branches might be called multiple times: for example, the SH
1026 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1027 In order to do this, it needs proper length information, which it obtains
1028 by calling shorten_branches. This cannot be collapsed with
1029 shorten_branches itself into a single pass unless we also want to integrate
1030 reorg.c, since the branch splitting exposes new instructions with delay
1031 slots. */
1032
1033 void
1034 shorten_branches (first)
1035 rtx first ATTRIBUTE_UNUSED;
1036 {
1037 rtx insn;
1038 int max_uid;
1039 int i;
1040 int max_log;
1041 int max_skip;
1042 #ifdef HAVE_ATTR_length
1043 #define MAX_CODE_ALIGN 16
1044 rtx seq;
1045 int something_changed = 1;
1046 char *varying_length;
1047 rtx body;
1048 int uid;
1049 rtx align_tab[MAX_CODE_ALIGN];
1050
1051 #endif
1052
1053 /* Compute maximum UID and allocate label_align / uid_shuid. */
1054 max_uid = get_max_uid ();
1055
1056 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1057
1058 if (max_labelno != max_label_num ())
1059 {
1060 int old = max_labelno;
1061 int n_labels;
1062 int n_old_labels;
1063
1064 max_labelno = max_label_num ();
1065
1066 n_labels = max_labelno - min_labelno + 1;
1067 n_old_labels = old - min_labelno + 1;
1068
1069 label_align = (struct label_alignment *) xrealloc
1070 (label_align, n_labels * sizeof (struct label_alignment));
1071
1072 /* Range of labels grows monotonically in the function. Abort here
1073 means that the initialization of array got lost. */
1074 if (n_old_labels > n_labels)
1075 abort ();
1076
1077 memset (label_align + n_old_labels, 0,
1078 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1079 }
1080
1081 /* Initialize label_align and set up uid_shuid to be strictly
1082 monotonically rising with insn order. */
1083 /* We use max_log here to keep track of the maximum alignment we want to
1084 impose on the next CODE_LABEL (or the current one if we are processing
1085 the CODE_LABEL itself). */
1086
1087 max_log = 0;
1088 max_skip = 0;
1089
1090 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1091 {
1092 int log;
1093
1094 INSN_SHUID (insn) = i++;
1095 if (INSN_P (insn))
1096 {
1097 /* reorg might make the first insn of a loop being run once only,
1098 and delete the label in front of it. Then we want to apply
1099 the loop alignment to the new label created by reorg, which
1100 is separated by the former loop start insn from the
1101 NOTE_INSN_LOOP_BEG. */
1102 }
1103 else if (GET_CODE (insn) == CODE_LABEL)
1104 {
1105 rtx next;
1106
1107 /* Merge in alignments computed by compute_alignments. */
1108 log = LABEL_TO_ALIGNMENT (insn);
1109 if (max_log < log)
1110 {
1111 max_log = log;
1112 max_skip = LABEL_TO_MAX_SKIP (insn);
1113 }
1114
1115 log = LABEL_ALIGN (insn);
1116 if (max_log < log)
1117 {
1118 max_log = log;
1119 max_skip = LABEL_ALIGN_MAX_SKIP;
1120 }
1121 next = NEXT_INSN (insn);
1122 /* ADDR_VECs only take room if read-only data goes into the text
1123 section. */
1124 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1125 if (next && GET_CODE (next) == JUMP_INSN)
1126 {
1127 rtx nextbody = PATTERN (next);
1128 if (GET_CODE (nextbody) == ADDR_VEC
1129 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1130 {
1131 log = ADDR_VEC_ALIGN (next);
1132 if (max_log < log)
1133 {
1134 max_log = log;
1135 max_skip = LABEL_ALIGN_MAX_SKIP;
1136 }
1137 }
1138 }
1139 LABEL_TO_ALIGNMENT (insn) = max_log;
1140 LABEL_TO_MAX_SKIP (insn) = max_skip;
1141 max_log = 0;
1142 max_skip = 0;
1143 }
1144 else if (GET_CODE (insn) == BARRIER)
1145 {
1146 rtx label;
1147
1148 for (label = insn; label && ! INSN_P (label);
1149 label = NEXT_INSN (label))
1150 if (GET_CODE (label) == CODE_LABEL)
1151 {
1152 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1153 if (max_log < log)
1154 {
1155 max_log = log;
1156 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1157 }
1158 break;
1159 }
1160 }
1161 }
1162 #ifdef HAVE_ATTR_length
1163
1164 /* Allocate the rest of the arrays. */
1165 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1166 insn_lengths_max_uid = max_uid;
1167 /* Syntax errors can lead to labels being outside of the main insn stream.
1168 Initialize insn_addresses, so that we get reproducible results. */
1169 INSN_ADDRESSES_ALLOC (max_uid);
1170
1171 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1172
1173 /* Initialize uid_align. We scan instructions
1174 from end to start, and keep in align_tab[n] the last seen insn
1175 that does an alignment of at least n+1, i.e. the successor
1176 in the alignment chain for an insn that does / has a known
1177 alignment of n. */
1178 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1179
1180 for (i = MAX_CODE_ALIGN; --i >= 0;)
1181 align_tab[i] = NULL_RTX;
1182 seq = get_last_insn ();
1183 for (; seq; seq = PREV_INSN (seq))
1184 {
1185 int uid = INSN_UID (seq);
1186 int log;
1187 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1188 uid_align[uid] = align_tab[0];
1189 if (log)
1190 {
1191 /* Found an alignment label. */
1192 uid_align[uid] = align_tab[log];
1193 for (i = log - 1; i >= 0; i--)
1194 align_tab[i] = seq;
1195 }
1196 }
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 if (optimize)
1199 {
1200 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1201 label fields. */
1202
1203 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1204 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1205 int rel;
1206
1207 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1208 {
1209 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1210 int len, i, min, max, insn_shuid;
1211 int min_align;
1212 addr_diff_vec_flags flags;
1213
1214 if (GET_CODE (insn) != JUMP_INSN
1215 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1216 continue;
1217 pat = PATTERN (insn);
1218 len = XVECLEN (pat, 1);
1219 if (len <= 0)
1220 abort ();
1221 min_align = MAX_CODE_ALIGN;
1222 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1223 {
1224 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1225 int shuid = INSN_SHUID (lab);
1226 if (shuid < min)
1227 {
1228 min = shuid;
1229 min_lab = lab;
1230 }
1231 if (shuid > max)
1232 {
1233 max = shuid;
1234 max_lab = lab;
1235 }
1236 if (min_align > LABEL_TO_ALIGNMENT (lab))
1237 min_align = LABEL_TO_ALIGNMENT (lab);
1238 }
1239 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1240 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1241 insn_shuid = INSN_SHUID (insn);
1242 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1243 flags.min_align = min_align;
1244 flags.base_after_vec = rel > insn_shuid;
1245 flags.min_after_vec = min > insn_shuid;
1246 flags.max_after_vec = max > insn_shuid;
1247 flags.min_after_base = min > rel;
1248 flags.max_after_base = max > rel;
1249 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1250 }
1251 }
1252 #endif /* CASE_VECTOR_SHORTEN_MODE */
1253
1254 /* Compute initial lengths, addresses, and varying flags for each insn. */
1255 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1256 insn != 0;
1257 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1258 {
1259 uid = INSN_UID (insn);
1260
1261 insn_lengths[uid] = 0;
1262
1263 if (GET_CODE (insn) == CODE_LABEL)
1264 {
1265 int log = LABEL_TO_ALIGNMENT (insn);
1266 if (log)
1267 {
1268 int align = 1 << log;
1269 int new_address = (insn_current_address + align - 1) & -align;
1270 insn_lengths[uid] = new_address - insn_current_address;
1271 }
1272 }
1273
1274 INSN_ADDRESSES (uid) = insn_current_address;
1275
1276 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1277 || GET_CODE (insn) == CODE_LABEL)
1278 continue;
1279 if (INSN_DELETED_P (insn))
1280 continue;
1281
1282 body = PATTERN (insn);
1283 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1284 {
1285 /* This only takes room if read-only data goes into the text
1286 section. */
1287 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1288 insn_lengths[uid] = (XVECLEN (body,
1289 GET_CODE (body) == ADDR_DIFF_VEC)
1290 * GET_MODE_SIZE (GET_MODE (body)));
1291 /* Alignment is handled by ADDR_VEC_ALIGN. */
1292 }
1293 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1294 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1295 else if (GET_CODE (body) == SEQUENCE)
1296 {
1297 int i;
1298 int const_delay_slots;
1299 #ifdef DELAY_SLOTS
1300 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1301 #else
1302 const_delay_slots = 0;
1303 #endif
1304 /* Inside a delay slot sequence, we do not do any branch shortening
1305 if the shortening could change the number of delay slots
1306 of the branch. */
1307 for (i = 0; i < XVECLEN (body, 0); i++)
1308 {
1309 rtx inner_insn = XVECEXP (body, 0, i);
1310 int inner_uid = INSN_UID (inner_insn);
1311 int inner_length;
1312
1313 if (GET_CODE (body) == ASM_INPUT
1314 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1315 inner_length = (asm_insn_count (PATTERN (inner_insn))
1316 * insn_default_length (inner_insn));
1317 else
1318 inner_length = insn_default_length (inner_insn);
1319
1320 insn_lengths[inner_uid] = inner_length;
1321 if (const_delay_slots)
1322 {
1323 if ((varying_length[inner_uid]
1324 = insn_variable_length_p (inner_insn)) != 0)
1325 varying_length[uid] = 1;
1326 INSN_ADDRESSES (inner_uid) = (insn_current_address
1327 + insn_lengths[uid]);
1328 }
1329 else
1330 varying_length[inner_uid] = 0;
1331 insn_lengths[uid] += inner_length;
1332 }
1333 }
1334 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1335 {
1336 insn_lengths[uid] = insn_default_length (insn);
1337 varying_length[uid] = insn_variable_length_p (insn);
1338 }
1339
1340 /* If needed, do any adjustment. */
1341 #ifdef ADJUST_INSN_LENGTH
1342 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1343 if (insn_lengths[uid] < 0)
1344 fatal_insn ("negative insn length", insn);
1345 #endif
1346 }
1347
1348 /* Now loop over all the insns finding varying length insns. For each,
1349 get the current insn length. If it has changed, reflect the change.
1350 When nothing changes for a full pass, we are done. */
1351
1352 while (something_changed)
1353 {
1354 something_changed = 0;
1355 insn_current_align = MAX_CODE_ALIGN - 1;
1356 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1357 insn != 0;
1358 insn = NEXT_INSN (insn))
1359 {
1360 int new_length;
1361 #ifdef ADJUST_INSN_LENGTH
1362 int tmp_length;
1363 #endif
1364 int length_align;
1365
1366 uid = INSN_UID (insn);
1367
1368 if (GET_CODE (insn) == CODE_LABEL)
1369 {
1370 int log = LABEL_TO_ALIGNMENT (insn);
1371 if (log > insn_current_align)
1372 {
1373 int align = 1 << log;
1374 int new_address= (insn_current_address + align - 1) & -align;
1375 insn_lengths[uid] = new_address - insn_current_address;
1376 insn_current_align = log;
1377 insn_current_address = new_address;
1378 }
1379 else
1380 insn_lengths[uid] = 0;
1381 INSN_ADDRESSES (uid) = insn_current_address;
1382 continue;
1383 }
1384
1385 length_align = INSN_LENGTH_ALIGNMENT (insn);
1386 if (length_align < insn_current_align)
1387 insn_current_align = length_align;
1388
1389 insn_last_address = INSN_ADDRESSES (uid);
1390 INSN_ADDRESSES (uid) = insn_current_address;
1391
1392 #ifdef CASE_VECTOR_SHORTEN_MODE
1393 if (optimize && GET_CODE (insn) == JUMP_INSN
1394 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1395 {
1396 rtx body = PATTERN (insn);
1397 int old_length = insn_lengths[uid];
1398 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1399 rtx min_lab = XEXP (XEXP (body, 2), 0);
1400 rtx max_lab = XEXP (XEXP (body, 3), 0);
1401 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1402 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1403 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1404 rtx prev;
1405 int rel_align = 0;
1406 addr_diff_vec_flags flags;
1407
1408 /* Avoid automatic aggregate initialization. */
1409 flags = ADDR_DIFF_VEC_FLAGS (body);
1410
1411 /* Try to find a known alignment for rel_lab. */
1412 for (prev = rel_lab;
1413 prev
1414 && ! insn_lengths[INSN_UID (prev)]
1415 && ! (varying_length[INSN_UID (prev)] & 1);
1416 prev = PREV_INSN (prev))
1417 if (varying_length[INSN_UID (prev)] & 2)
1418 {
1419 rel_align = LABEL_TO_ALIGNMENT (prev);
1420 break;
1421 }
1422
1423 /* See the comment on addr_diff_vec_flags in rtl.h for the
1424 meaning of the flags values. base: REL_LAB vec: INSN */
1425 /* Anything after INSN has still addresses from the last
1426 pass; adjust these so that they reflect our current
1427 estimate for this pass. */
1428 if (flags.base_after_vec)
1429 rel_addr += insn_current_address - insn_last_address;
1430 if (flags.min_after_vec)
1431 min_addr += insn_current_address - insn_last_address;
1432 if (flags.max_after_vec)
1433 max_addr += insn_current_address - insn_last_address;
1434 /* We want to know the worst case, i.e. lowest possible value
1435 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1436 its offset is positive, and we have to be wary of code shrink;
1437 otherwise, it is negative, and we have to be vary of code
1438 size increase. */
1439 if (flags.min_after_base)
1440 {
1441 /* If INSN is between REL_LAB and MIN_LAB, the size
1442 changes we are about to make can change the alignment
1443 within the observed offset, therefore we have to break
1444 it up into two parts that are independent. */
1445 if (! flags.base_after_vec && flags.min_after_vec)
1446 {
1447 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1448 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1449 }
1450 else
1451 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1452 }
1453 else
1454 {
1455 if (flags.base_after_vec && ! flags.min_after_vec)
1456 {
1457 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1458 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1459 }
1460 else
1461 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1462 }
1463 /* Likewise, determine the highest lowest possible value
1464 for the offset of MAX_LAB. */
1465 if (flags.max_after_base)
1466 {
1467 if (! flags.base_after_vec && flags.max_after_vec)
1468 {
1469 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1470 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1471 }
1472 else
1473 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1474 }
1475 else
1476 {
1477 if (flags.base_after_vec && ! flags.max_after_vec)
1478 {
1479 max_addr += align_fuzz (max_lab, insn, 0, 0);
1480 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1481 }
1482 else
1483 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1484 }
1485 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1486 max_addr - rel_addr,
1487 body));
1488 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1489 {
1490 insn_lengths[uid]
1491 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1492 insn_current_address += insn_lengths[uid];
1493 if (insn_lengths[uid] != old_length)
1494 something_changed = 1;
1495 }
1496
1497 continue;
1498 }
1499 #endif /* CASE_VECTOR_SHORTEN_MODE */
1500
1501 if (! (varying_length[uid]))
1502 {
1503 if (GET_CODE (insn) == INSN
1504 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1505 {
1506 int i;
1507
1508 body = PATTERN (insn);
1509 for (i = 0; i < XVECLEN (body, 0); i++)
1510 {
1511 rtx inner_insn = XVECEXP (body, 0, i);
1512 int inner_uid = INSN_UID (inner_insn);
1513
1514 INSN_ADDRESSES (inner_uid) = insn_current_address;
1515
1516 insn_current_address += insn_lengths[inner_uid];
1517 }
1518 }
1519 else
1520 insn_current_address += insn_lengths[uid];
1521
1522 continue;
1523 }
1524
1525 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1526 {
1527 int i;
1528
1529 body = PATTERN (insn);
1530 new_length = 0;
1531 for (i = 0; i < XVECLEN (body, 0); i++)
1532 {
1533 rtx inner_insn = XVECEXP (body, 0, i);
1534 int inner_uid = INSN_UID (inner_insn);
1535 int inner_length;
1536
1537 INSN_ADDRESSES (inner_uid) = insn_current_address;
1538
1539 /* insn_current_length returns 0 for insns with a
1540 non-varying length. */
1541 if (! varying_length[inner_uid])
1542 inner_length = insn_lengths[inner_uid];
1543 else
1544 inner_length = insn_current_length (inner_insn);
1545
1546 if (inner_length != insn_lengths[inner_uid])
1547 {
1548 insn_lengths[inner_uid] = inner_length;
1549 something_changed = 1;
1550 }
1551 insn_current_address += insn_lengths[inner_uid];
1552 new_length += inner_length;
1553 }
1554 }
1555 else
1556 {
1557 new_length = insn_current_length (insn);
1558 insn_current_address += new_length;
1559 }
1560
1561 #ifdef ADJUST_INSN_LENGTH
1562 /* If needed, do any adjustment. */
1563 tmp_length = new_length;
1564 ADJUST_INSN_LENGTH (insn, new_length);
1565 insn_current_address += (new_length - tmp_length);
1566 #endif
1567
1568 if (new_length != insn_lengths[uid])
1569 {
1570 insn_lengths[uid] = new_length;
1571 something_changed = 1;
1572 }
1573 }
1574 /* For a non-optimizing compile, do only a single pass. */
1575 if (!optimize)
1576 break;
1577 }
1578
1579 free (varying_length);
1580
1581 #endif /* HAVE_ATTR_length */
1582 }
1583
1584 #ifdef HAVE_ATTR_length
1585 /* Given the body of an INSN known to be generated by an ASM statement, return
1586 the number of machine instructions likely to be generated for this insn.
1587 This is used to compute its length. */
1588
1589 static int
1590 asm_insn_count (body)
1591 rtx body;
1592 {
1593 const char *template;
1594 int count = 1;
1595
1596 if (GET_CODE (body) == ASM_INPUT)
1597 template = XSTR (body, 0);
1598 else
1599 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1600
1601 for (; *template; template++)
1602 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1603 count++;
1604
1605 return count;
1606 }
1607 #endif
1608 \f
1609 /* Output assembler code for the start of a function,
1610 and initialize some of the variables in this file
1611 for the new function. The label for the function and associated
1612 assembler pseudo-ops have already been output in `assemble_start_function'.
1613
1614 FIRST is the first insn of the rtl for the function being compiled.
1615 FILE is the file to write assembler code to.
1616 OPTIMIZE is nonzero if we should eliminate redundant
1617 test and compare insns. */
1618
1619 void
1620 final_start_function (first, file, optimize)
1621 rtx first;
1622 FILE *file;
1623 int optimize ATTRIBUTE_UNUSED;
1624 {
1625 block_depth = 0;
1626
1627 this_is_asm_operands = 0;
1628
1629 #ifdef NON_SAVING_SETJMP
1630 /* A function that calls setjmp should save and restore all the
1631 call-saved registers on a system where longjmp clobbers them. */
1632 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1633 {
1634 int i;
1635
1636 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1637 if (!call_used_regs[i])
1638 regs_ever_live[i] = 1;
1639 }
1640 #endif
1641
1642 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1643 notice_source_line (first);
1644 high_block_linenum = high_function_linenum = last_linenum;
1645
1646 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1647
1648 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1649 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1650 dwarf2out_begin_prologue (0, NULL);
1651 #endif
1652
1653 #ifdef LEAF_REG_REMAP
1654 if (current_function_uses_only_leaf_regs)
1655 leaf_renumber_regs (first);
1656 #endif
1657
1658 /* The Sun386i and perhaps other machines don't work right
1659 if the profiling code comes after the prologue. */
1660 #ifdef PROFILE_BEFORE_PROLOGUE
1661 if (current_function_profile)
1662 profile_function (file);
1663 #endif /* PROFILE_BEFORE_PROLOGUE */
1664
1665 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1666 if (dwarf2out_do_frame ())
1667 dwarf2out_frame_debug (NULL_RTX);
1668 #endif
1669
1670 /* If debugging, assign block numbers to all of the blocks in this
1671 function. */
1672 if (write_symbols)
1673 {
1674 remove_unnecessary_notes ();
1675 scope_to_insns_finalize ();
1676 number_blocks (current_function_decl);
1677 /* We never actually put out begin/end notes for the top-level
1678 block in the function. But, conceptually, that block is
1679 always needed. */
1680 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1681 }
1682
1683 /* First output the function prologue: code to set up the stack frame. */
1684 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1685
1686 #ifdef VMS_DEBUGGING_INFO
1687 /* Output label after the prologue of the function. */
1688 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1689 vmsdbgout_after_prologue ();
1690 #endif
1691
1692 /* If the machine represents the prologue as RTL, the profiling code must
1693 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1694 #ifdef HAVE_prologue
1695 if (! HAVE_prologue)
1696 #endif
1697 profile_after_prologue (file);
1698 }
1699
1700 static void
1701 profile_after_prologue (file)
1702 FILE *file ATTRIBUTE_UNUSED;
1703 {
1704 #ifndef PROFILE_BEFORE_PROLOGUE
1705 if (current_function_profile)
1706 profile_function (file);
1707 #endif /* not PROFILE_BEFORE_PROLOGUE */
1708 }
1709
1710 static void
1711 profile_function (file)
1712 FILE *file ATTRIBUTE_UNUSED;
1713 {
1714 #ifndef NO_PROFILE_COUNTERS
1715 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1716 #endif
1717 #if defined(ASM_OUTPUT_REG_PUSH)
1718 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1719 int sval = current_function_returns_struct;
1720 #endif
1721 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1722 int cxt = current_function_needs_context;
1723 #endif
1724 #endif /* ASM_OUTPUT_REG_PUSH */
1725
1726 #ifndef NO_PROFILE_COUNTERS
1727 data_section ();
1728 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1729 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_profile_label_no);
1730 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1731 #endif
1732
1733 function_section (current_function_decl);
1734
1735 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1736 if (sval)
1737 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1738 #else
1739 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740 if (sval)
1741 {
1742 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1743 }
1744 #endif
1745 #endif
1746
1747 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1748 if (cxt)
1749 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1750 #else
1751 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1752 if (cxt)
1753 {
1754 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1755 }
1756 #endif
1757 #endif
1758
1759 FUNCTION_PROFILER (file, current_function_profile_label_no);
1760
1761 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1762 if (cxt)
1763 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1764 #else
1765 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766 if (cxt)
1767 {
1768 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1769 }
1770 #endif
1771 #endif
1772
1773 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1774 if (sval)
1775 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1776 #else
1777 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1778 if (sval)
1779 {
1780 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1781 }
1782 #endif
1783 #endif
1784 }
1785
1786 /* Output assembler code for the end of a function.
1787 For clarity, args are same as those of `final_start_function'
1788 even though not all of them are needed. */
1789
1790 void
1791 final_end_function ()
1792 {
1793 app_disable ();
1794
1795 (*debug_hooks->end_function) (high_function_linenum);
1796
1797 /* Finally, output the function epilogue:
1798 code to restore the stack frame and return to the caller. */
1799 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1800
1801 /* And debug output. */
1802 (*debug_hooks->end_epilogue) ();
1803
1804 #if defined (DWARF2_UNWIND_INFO)
1805 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1806 && dwarf2out_do_frame ())
1807 dwarf2out_end_epilogue ();
1808 #endif
1809 }
1810 \f
1811 /* Output assembler code for some insns: all or part of a function.
1812 For description of args, see `final_start_function', above.
1813
1814 PRESCAN is 1 if we are not really outputting,
1815 just scanning as if we were outputting.
1816 Prescanning deletes and rearranges insns just like ordinary output.
1817 PRESCAN is -2 if we are outputting after having prescanned.
1818 In this case, don't try to delete or rearrange insns
1819 because that has already been done.
1820 Prescanning is done only on certain machines. */
1821
1822 void
1823 final (first, file, optimize, prescan)
1824 rtx first;
1825 FILE *file;
1826 int optimize;
1827 int prescan;
1828 {
1829 rtx insn;
1830 int max_line = 0;
1831 int max_uid = 0;
1832
1833 last_ignored_compare = 0;
1834 new_block = 1;
1835
1836 /* Make a map indicating which line numbers appear in this function.
1837 When producing SDB debugging info, delete troublesome line number
1838 notes from inlined functions in other files as well as duplicate
1839 line number notes. */
1840 #ifdef SDB_DEBUGGING_INFO
1841 if (write_symbols == SDB_DEBUG)
1842 {
1843 rtx last = 0;
1844 for (insn = first; insn; insn = NEXT_INSN (insn))
1845 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1846 {
1847 if ((RTX_INTEGRATED_P (insn)
1848 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1849 || (last != 0
1850 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1851 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1852 {
1853 delete_insn (insn); /* Use delete_note. */
1854 continue;
1855 }
1856 last = insn;
1857 if (NOTE_LINE_NUMBER (insn) > max_line)
1858 max_line = NOTE_LINE_NUMBER (insn);
1859 }
1860 }
1861 else
1862 #endif
1863 {
1864 for (insn = first; insn; insn = NEXT_INSN (insn))
1865 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1866 max_line = NOTE_LINE_NUMBER (insn);
1867 }
1868
1869 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1870
1871 for (insn = first; insn; insn = NEXT_INSN (insn))
1872 {
1873 if (INSN_UID (insn) > max_uid) /* find largest UID */
1874 max_uid = INSN_UID (insn);
1875 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1876 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1877 #ifdef HAVE_cc0
1878 /* If CC tracking across branches is enabled, record the insn which
1879 jumps to each branch only reached from one place. */
1880 if (optimize && GET_CODE (insn) == JUMP_INSN)
1881 {
1882 rtx lab = JUMP_LABEL (insn);
1883 if (lab && LABEL_NUSES (lab) == 1)
1884 {
1885 LABEL_REFS (lab) = insn;
1886 }
1887 }
1888 #endif
1889 }
1890
1891 init_recog ();
1892
1893 CC_STATUS_INIT;
1894
1895 /* Output the insns. */
1896 for (insn = NEXT_INSN (first); insn;)
1897 {
1898 #ifdef HAVE_ATTR_length
1899 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1900 {
1901 /* This can be triggered by bugs elsewhere in the compiler if
1902 new insns are created after init_insn_lengths is called. */
1903 if (GET_CODE (insn) == NOTE)
1904 insn_current_address = -1;
1905 else
1906 abort ();
1907 }
1908 else
1909 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1910 #endif /* HAVE_ATTR_length */
1911
1912 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1913 }
1914
1915 /* Store function names for edge-profiling. */
1916 /* ??? Probably should re-use the existing struct function. */
1917
1918 if (cfun->arc_profile)
1919 {
1920 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1921
1922 *functions_tail = new_item;
1923 functions_tail = &new_item->next;
1924
1925 new_item->next = 0;
1926 new_item->name = xstrdup (current_function_name);
1927 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1928 new_item->count_edges = profile_info.count_edges_instrumented_now;
1929 }
1930
1931 free (line_note_exists);
1932 line_note_exists = NULL;
1933 }
1934 \f
1935 const char *
1936 get_insn_template (code, insn)
1937 int code;
1938 rtx insn;
1939 {
1940 const void *output = insn_data[code].output;
1941 switch (insn_data[code].output_format)
1942 {
1943 case INSN_OUTPUT_FORMAT_SINGLE:
1944 return (const char *) output;
1945 case INSN_OUTPUT_FORMAT_MULTI:
1946 return ((const char *const *) output)[which_alternative];
1947 case INSN_OUTPUT_FORMAT_FUNCTION:
1948 if (insn == NULL)
1949 abort ();
1950 return (*(insn_output_fn) output) (recog_data.operand, insn);
1951
1952 default:
1953 abort ();
1954 }
1955 }
1956
1957 /* The final scan for one insn, INSN.
1958 Args are same as in `final', except that INSN
1959 is the insn being scanned.
1960 Value returned is the next insn to be scanned.
1961
1962 NOPEEPHOLES is the flag to disallow peephole processing (currently
1963 used for within delayed branch sequence output). */
1964
1965 rtx
1966 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1967 rtx insn;
1968 FILE *file;
1969 int optimize ATTRIBUTE_UNUSED;
1970 int prescan;
1971 int nopeepholes ATTRIBUTE_UNUSED;
1972 {
1973 #ifdef HAVE_cc0
1974 rtx set;
1975 #endif
1976
1977 insn_counter++;
1978
1979 /* Ignore deleted insns. These can occur when we split insns (due to a
1980 template of "#") while not optimizing. */
1981 if (INSN_DELETED_P (insn))
1982 return NEXT_INSN (insn);
1983
1984 switch (GET_CODE (insn))
1985 {
1986 case NOTE:
1987 if (prescan > 0)
1988 break;
1989
1990 switch (NOTE_LINE_NUMBER (insn))
1991 {
1992 case NOTE_INSN_DELETED:
1993 case NOTE_INSN_LOOP_BEG:
1994 case NOTE_INSN_LOOP_END:
1995 case NOTE_INSN_LOOP_END_TOP_COND:
1996 case NOTE_INSN_LOOP_CONT:
1997 case NOTE_INSN_LOOP_VTOP:
1998 case NOTE_INSN_FUNCTION_END:
1999 case NOTE_INSN_REPEATED_LINE_NUMBER:
2000 case NOTE_INSN_RANGE_BEG:
2001 case NOTE_INSN_RANGE_END:
2002 case NOTE_INSN_LIVE:
2003 case NOTE_INSN_EXPECTED_VALUE:
2004 break;
2005
2006 case NOTE_INSN_BASIC_BLOCK:
2007 #ifdef IA64_UNWIND_INFO
2008 IA64_UNWIND_EMIT (asm_out_file, insn);
2009 #endif
2010 if (flag_debug_asm)
2011 fprintf (asm_out_file, "\t%s basic block %d\n",
2012 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2013 break;
2014
2015 case NOTE_INSN_EH_REGION_BEG:
2016 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2017 NOTE_EH_HANDLER (insn));
2018 break;
2019
2020 case NOTE_INSN_EH_REGION_END:
2021 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2022 NOTE_EH_HANDLER (insn));
2023 break;
2024
2025 case NOTE_INSN_PROLOGUE_END:
2026 (*targetm.asm_out.function_end_prologue) (file);
2027 profile_after_prologue (file);
2028 break;
2029
2030 case NOTE_INSN_EPILOGUE_BEG:
2031 (*targetm.asm_out.function_begin_epilogue) (file);
2032 break;
2033
2034 case NOTE_INSN_FUNCTION_BEG:
2035 app_disable ();
2036 (*debug_hooks->end_prologue) (last_linenum);
2037 break;
2038
2039 case NOTE_INSN_BLOCK_BEG:
2040 if (debug_info_level == DINFO_LEVEL_NORMAL
2041 || debug_info_level == DINFO_LEVEL_VERBOSE
2042 || write_symbols == DWARF_DEBUG
2043 || write_symbols == DWARF2_DEBUG
2044 || write_symbols == VMS_AND_DWARF2_DEBUG
2045 || write_symbols == VMS_DEBUG)
2046 {
2047 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2048
2049 app_disable ();
2050 ++block_depth;
2051 high_block_linenum = last_linenum;
2052
2053 /* Output debugging info about the symbol-block beginning. */
2054 (*debug_hooks->begin_block) (last_linenum, n);
2055
2056 /* Mark this block as output. */
2057 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2058 }
2059 break;
2060
2061 case NOTE_INSN_BLOCK_END:
2062 if (debug_info_level == DINFO_LEVEL_NORMAL
2063 || debug_info_level == DINFO_LEVEL_VERBOSE
2064 || write_symbols == DWARF_DEBUG
2065 || write_symbols == DWARF2_DEBUG
2066 || write_symbols == VMS_AND_DWARF2_DEBUG
2067 || write_symbols == VMS_DEBUG)
2068 {
2069 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2070
2071 app_disable ();
2072
2073 /* End of a symbol-block. */
2074 --block_depth;
2075 if (block_depth < 0)
2076 abort ();
2077
2078 (*debug_hooks->end_block) (high_block_linenum, n);
2079 }
2080 break;
2081
2082 case NOTE_INSN_DELETED_LABEL:
2083 /* Emit the label. We may have deleted the CODE_LABEL because
2084 the label could be proved to be unreachable, though still
2085 referenced (in the form of having its address taken. */
2086 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2087 break;
2088
2089 case 0:
2090 break;
2091
2092 default:
2093 if (NOTE_LINE_NUMBER (insn) <= 0)
2094 abort ();
2095
2096 /* This note is a line-number. */
2097 {
2098 rtx note;
2099 int note_after = 0;
2100
2101 /* If there is anything real after this note, output it.
2102 If another line note follows, omit this one. */
2103 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2104 {
2105 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2106 break;
2107
2108 /* These types of notes can be significant
2109 so make sure the preceding line number stays. */
2110 else if (GET_CODE (note) == NOTE
2111 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2112 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2113 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2114 break;
2115 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2116 {
2117 /* Another line note follows; we can delete this note
2118 if no intervening line numbers have notes elsewhere. */
2119 int num;
2120 for (num = NOTE_LINE_NUMBER (insn) + 1;
2121 num < NOTE_LINE_NUMBER (note);
2122 num++)
2123 if (line_note_exists[num])
2124 break;
2125
2126 if (num >= NOTE_LINE_NUMBER (note))
2127 note_after = 1;
2128 break;
2129 }
2130 }
2131
2132 /* Output this line note if it is the first or the last line
2133 note in a row. */
2134 if (!note_after)
2135 {
2136 notice_source_line (insn);
2137 (*debug_hooks->source_line) (last_linenum, last_filename);
2138 }
2139 }
2140 break;
2141 }
2142 break;
2143
2144 case BARRIER:
2145 #if defined (DWARF2_UNWIND_INFO)
2146 if (dwarf2out_do_frame ())
2147 dwarf2out_frame_debug (insn);
2148 #endif
2149 break;
2150
2151 case CODE_LABEL:
2152 /* The target port might emit labels in the output function for
2153 some insn, e.g. sh.c output_branchy_insn. */
2154 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2155 {
2156 int align = LABEL_TO_ALIGNMENT (insn);
2157 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2158 int max_skip = LABEL_TO_MAX_SKIP (insn);
2159 #endif
2160
2161 if (align && NEXT_INSN (insn))
2162 {
2163 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2164 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2165 #else
2166 ASM_OUTPUT_ALIGN (file, align);
2167 #endif
2168 }
2169 }
2170 #ifdef HAVE_cc0
2171 CC_STATUS_INIT;
2172 /* If this label is reached from only one place, set the condition
2173 codes from the instruction just before the branch. */
2174
2175 /* Disabled because some insns set cc_status in the C output code
2176 and NOTICE_UPDATE_CC alone can set incorrect status. */
2177 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2178 {
2179 rtx jump = LABEL_REFS (insn);
2180 rtx barrier = prev_nonnote_insn (insn);
2181 rtx prev;
2182 /* If the LABEL_REFS field of this label has been set to point
2183 at a branch, the predecessor of the branch is a regular
2184 insn, and that branch is the only way to reach this label,
2185 set the condition codes based on the branch and its
2186 predecessor. */
2187 if (barrier && GET_CODE (barrier) == BARRIER
2188 && jump && GET_CODE (jump) == JUMP_INSN
2189 && (prev = prev_nonnote_insn (jump))
2190 && GET_CODE (prev) == INSN)
2191 {
2192 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2193 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2194 }
2195 }
2196 #endif
2197 if (prescan > 0)
2198 break;
2199 new_block = 1;
2200
2201 #ifdef FINAL_PRESCAN_LABEL
2202 FINAL_PRESCAN_INSN (insn, NULL, 0);
2203 #endif
2204
2205 if (LABEL_NAME (insn))
2206 (*debug_hooks->label) (insn);
2207
2208 if (app_on)
2209 {
2210 fputs (ASM_APP_OFF, file);
2211 app_on = 0;
2212 }
2213 if (NEXT_INSN (insn) != 0
2214 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2215 {
2216 rtx nextbody = PATTERN (NEXT_INSN (insn));
2217
2218 /* If this label is followed by a jump-table,
2219 make sure we put the label in the read-only section. Also
2220 possibly write the label and jump table together. */
2221
2222 if (GET_CODE (nextbody) == ADDR_VEC
2223 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2224 {
2225 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2226 /* In this case, the case vector is being moved by the
2227 target, so don't output the label at all. Leave that
2228 to the back end macros. */
2229 #else
2230 if (! JUMP_TABLES_IN_TEXT_SECTION)
2231 {
2232 int log_align;
2233
2234 readonly_data_section ();
2235
2236 #ifdef ADDR_VEC_ALIGN
2237 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2238 #else
2239 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2240 #endif
2241 ASM_OUTPUT_ALIGN (file, log_align);
2242 }
2243 else
2244 function_section (current_function_decl);
2245
2246 #ifdef ASM_OUTPUT_CASE_LABEL
2247 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2248 NEXT_INSN (insn));
2249 #else
2250 if (LABEL_ALTERNATE_NAME (insn))
2251 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2252 else
2253 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2254 #endif
2255 #endif
2256 break;
2257 }
2258 }
2259 if (LABEL_ALTERNATE_NAME (insn))
2260 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2261 else
2262 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2263 break;
2264
2265 default:
2266 {
2267 rtx body = PATTERN (insn);
2268 int insn_code_number;
2269 const char *template;
2270 rtx note;
2271
2272 /* An INSN, JUMP_INSN or CALL_INSN.
2273 First check for special kinds that recog doesn't recognize. */
2274
2275 if (GET_CODE (body) == USE /* These are just declarations */
2276 || GET_CODE (body) == CLOBBER)
2277 break;
2278
2279 #ifdef HAVE_cc0
2280 /* If there is a REG_CC_SETTER note on this insn, it means that
2281 the setting of the condition code was done in the delay slot
2282 of the insn that branched here. So recover the cc status
2283 from the insn that set it. */
2284
2285 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2286 if (note)
2287 {
2288 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2289 cc_prev_status = cc_status;
2290 }
2291 #endif
2292
2293 /* Detect insns that are really jump-tables
2294 and output them as such. */
2295
2296 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2297 {
2298 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2299 int vlen, idx;
2300 #endif
2301
2302 if (prescan > 0)
2303 break;
2304
2305 if (app_on)
2306 {
2307 fputs (ASM_APP_OFF, file);
2308 app_on = 0;
2309 }
2310
2311 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2312 if (GET_CODE (body) == ADDR_VEC)
2313 {
2314 #ifdef ASM_OUTPUT_ADDR_VEC
2315 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2316 #else
2317 abort ();
2318 #endif
2319 }
2320 else
2321 {
2322 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2323 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2324 #else
2325 abort ();
2326 #endif
2327 }
2328 #else
2329 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2330 for (idx = 0; idx < vlen; idx++)
2331 {
2332 if (GET_CODE (body) == ADDR_VEC)
2333 {
2334 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2335 ASM_OUTPUT_ADDR_VEC_ELT
2336 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2337 #else
2338 abort ();
2339 #endif
2340 }
2341 else
2342 {
2343 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2344 ASM_OUTPUT_ADDR_DIFF_ELT
2345 (file,
2346 body,
2347 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2348 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2349 #else
2350 abort ();
2351 #endif
2352 }
2353 }
2354 #ifdef ASM_OUTPUT_CASE_END
2355 ASM_OUTPUT_CASE_END (file,
2356 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2357 insn);
2358 #endif
2359 #endif
2360
2361 function_section (current_function_decl);
2362
2363 break;
2364 }
2365
2366 if (GET_CODE (body) == ASM_INPUT)
2367 {
2368 const char *string = XSTR (body, 0);
2369
2370 /* There's no telling what that did to the condition codes. */
2371 CC_STATUS_INIT;
2372 if (prescan > 0)
2373 break;
2374
2375 if (string[0])
2376 {
2377 if (! app_on)
2378 {
2379 fputs (ASM_APP_ON, file);
2380 app_on = 1;
2381 }
2382 fprintf (asm_out_file, "\t%s\n", string);
2383 }
2384 break;
2385 }
2386
2387 /* Detect `asm' construct with operands. */
2388 if (asm_noperands (body) >= 0)
2389 {
2390 unsigned int noperands = asm_noperands (body);
2391 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2392 const char *string;
2393
2394 /* There's no telling what that did to the condition codes. */
2395 CC_STATUS_INIT;
2396 if (prescan > 0)
2397 break;
2398
2399 /* Get out the operand values. */
2400 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2401 /* Inhibit aborts on what would otherwise be compiler bugs. */
2402 insn_noperands = noperands;
2403 this_is_asm_operands = insn;
2404
2405 /* Output the insn using them. */
2406 if (string[0])
2407 {
2408 if (! app_on)
2409 {
2410 fputs (ASM_APP_ON, file);
2411 app_on = 1;
2412 }
2413 output_asm_insn (string, ops);
2414 }
2415
2416 this_is_asm_operands = 0;
2417 break;
2418 }
2419
2420 if (prescan <= 0 && app_on)
2421 {
2422 fputs (ASM_APP_OFF, file);
2423 app_on = 0;
2424 }
2425
2426 if (GET_CODE (body) == SEQUENCE)
2427 {
2428 /* A delayed-branch sequence */
2429 int i;
2430 rtx next;
2431
2432 if (prescan > 0)
2433 break;
2434 final_sequence = body;
2435
2436 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2437 force the restoration of a comparison that was previously
2438 thought unnecessary. If that happens, cancel this sequence
2439 and cause that insn to be restored. */
2440
2441 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2442 if (next != XVECEXP (body, 0, 1))
2443 {
2444 final_sequence = 0;
2445 return next;
2446 }
2447
2448 for (i = 1; i < XVECLEN (body, 0); i++)
2449 {
2450 rtx insn = XVECEXP (body, 0, i);
2451 rtx next = NEXT_INSN (insn);
2452 /* We loop in case any instruction in a delay slot gets
2453 split. */
2454 do
2455 insn = final_scan_insn (insn, file, 0, prescan, 1);
2456 while (insn != next);
2457 }
2458 #ifdef DBR_OUTPUT_SEQEND
2459 DBR_OUTPUT_SEQEND (file);
2460 #endif
2461 final_sequence = 0;
2462
2463 /* If the insn requiring the delay slot was a CALL_INSN, the
2464 insns in the delay slot are actually executed before the
2465 called function. Hence we don't preserve any CC-setting
2466 actions in these insns and the CC must be marked as being
2467 clobbered by the function. */
2468 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2469 {
2470 CC_STATUS_INIT;
2471 }
2472 break;
2473 }
2474
2475 /* We have a real machine instruction as rtl. */
2476
2477 body = PATTERN (insn);
2478
2479 #ifdef HAVE_cc0
2480 set = single_set (insn);
2481
2482 /* Check for redundant test and compare instructions
2483 (when the condition codes are already set up as desired).
2484 This is done only when optimizing; if not optimizing,
2485 it should be possible for the user to alter a variable
2486 with the debugger in between statements
2487 and the next statement should reexamine the variable
2488 to compute the condition codes. */
2489
2490 if (optimize)
2491 {
2492 #if 0
2493 rtx set = single_set (insn);
2494 #endif
2495
2496 if (set
2497 && GET_CODE (SET_DEST (set)) == CC0
2498 && insn != last_ignored_compare)
2499 {
2500 if (GET_CODE (SET_SRC (set)) == SUBREG)
2501 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2502 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2503 {
2504 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2505 XEXP (SET_SRC (set), 0)
2506 = alter_subreg (&XEXP (SET_SRC (set), 0));
2507 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2508 XEXP (SET_SRC (set), 1)
2509 = alter_subreg (&XEXP (SET_SRC (set), 1));
2510 }
2511 if ((cc_status.value1 != 0
2512 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2513 || (cc_status.value2 != 0
2514 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2515 {
2516 /* Don't delete insn if it has an addressing side-effect. */
2517 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2518 /* or if anything in it is volatile. */
2519 && ! volatile_refs_p (PATTERN (insn)))
2520 {
2521 /* We don't really delete the insn; just ignore it. */
2522 last_ignored_compare = insn;
2523 break;
2524 }
2525 }
2526 }
2527 }
2528 #endif
2529
2530 #ifndef STACK_REGS
2531 /* Don't bother outputting obvious no-ops, even without -O.
2532 This optimization is fast and doesn't interfere with debugging.
2533 Don't do this if the insn is in a delay slot, since this
2534 will cause an improper number of delay insns to be written. */
2535 if (final_sequence == 0
2536 && prescan >= 0
2537 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2538 && GET_CODE (SET_SRC (body)) == REG
2539 && GET_CODE (SET_DEST (body)) == REG
2540 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2541 break;
2542 #endif
2543
2544 #ifdef HAVE_cc0
2545 /* If this is a conditional branch, maybe modify it
2546 if the cc's are in a nonstandard state
2547 so that it accomplishes the same thing that it would
2548 do straightforwardly if the cc's were set up normally. */
2549
2550 if (cc_status.flags != 0
2551 && GET_CODE (insn) == JUMP_INSN
2552 && GET_CODE (body) == SET
2553 && SET_DEST (body) == pc_rtx
2554 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2555 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2556 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2557 /* This is done during prescan; it is not done again
2558 in final scan when prescan has been done. */
2559 && prescan >= 0)
2560 {
2561 /* This function may alter the contents of its argument
2562 and clear some of the cc_status.flags bits.
2563 It may also return 1 meaning condition now always true
2564 or -1 meaning condition now always false
2565 or 2 meaning condition nontrivial but altered. */
2566 int result = alter_cond (XEXP (SET_SRC (body), 0));
2567 /* If condition now has fixed value, replace the IF_THEN_ELSE
2568 with its then-operand or its else-operand. */
2569 if (result == 1)
2570 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2571 if (result == -1)
2572 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2573
2574 /* The jump is now either unconditional or a no-op.
2575 If it has become a no-op, don't try to output it.
2576 (It would not be recognized.) */
2577 if (SET_SRC (body) == pc_rtx)
2578 {
2579 delete_insn (insn);
2580 break;
2581 }
2582 else if (GET_CODE (SET_SRC (body)) == RETURN)
2583 /* Replace (set (pc) (return)) with (return). */
2584 PATTERN (insn) = body = SET_SRC (body);
2585
2586 /* Rerecognize the instruction if it has changed. */
2587 if (result != 0)
2588 INSN_CODE (insn) = -1;
2589 }
2590
2591 /* Make same adjustments to instructions that examine the
2592 condition codes without jumping and instructions that
2593 handle conditional moves (if this machine has either one). */
2594
2595 if (cc_status.flags != 0
2596 && set != 0)
2597 {
2598 rtx cond_rtx, then_rtx, else_rtx;
2599
2600 if (GET_CODE (insn) != JUMP_INSN
2601 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2602 {
2603 cond_rtx = XEXP (SET_SRC (set), 0);
2604 then_rtx = XEXP (SET_SRC (set), 1);
2605 else_rtx = XEXP (SET_SRC (set), 2);
2606 }
2607 else
2608 {
2609 cond_rtx = SET_SRC (set);
2610 then_rtx = const_true_rtx;
2611 else_rtx = const0_rtx;
2612 }
2613
2614 switch (GET_CODE (cond_rtx))
2615 {
2616 case GTU:
2617 case GT:
2618 case LTU:
2619 case LT:
2620 case GEU:
2621 case GE:
2622 case LEU:
2623 case LE:
2624 case EQ:
2625 case NE:
2626 {
2627 int result;
2628 if (XEXP (cond_rtx, 0) != cc0_rtx)
2629 break;
2630 result = alter_cond (cond_rtx);
2631 if (result == 1)
2632 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2633 else if (result == -1)
2634 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2635 else if (result == 2)
2636 INSN_CODE (insn) = -1;
2637 if (SET_DEST (set) == SET_SRC (set))
2638 delete_insn (insn);
2639 }
2640 break;
2641
2642 default:
2643 break;
2644 }
2645 }
2646
2647 #endif
2648
2649 #ifdef HAVE_peephole
2650 /* Do machine-specific peephole optimizations if desired. */
2651
2652 if (optimize && !flag_no_peephole && !nopeepholes)
2653 {
2654 rtx next = peephole (insn);
2655 /* When peepholing, if there were notes within the peephole,
2656 emit them before the peephole. */
2657 if (next != 0 && next != NEXT_INSN (insn))
2658 {
2659 rtx prev = PREV_INSN (insn);
2660
2661 for (note = NEXT_INSN (insn); note != next;
2662 note = NEXT_INSN (note))
2663 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2664
2665 /* In case this is prescan, put the notes
2666 in proper position for later rescan. */
2667 note = NEXT_INSN (insn);
2668 PREV_INSN (note) = prev;
2669 NEXT_INSN (prev) = note;
2670 NEXT_INSN (PREV_INSN (next)) = insn;
2671 PREV_INSN (insn) = PREV_INSN (next);
2672 NEXT_INSN (insn) = next;
2673 PREV_INSN (next) = insn;
2674 }
2675
2676 /* PEEPHOLE might have changed this. */
2677 body = PATTERN (insn);
2678 }
2679 #endif
2680
2681 /* Try to recognize the instruction.
2682 If successful, verify that the operands satisfy the
2683 constraints for the instruction. Crash if they don't,
2684 since `reload' should have changed them so that they do. */
2685
2686 insn_code_number = recog_memoized (insn);
2687 cleanup_subreg_operands (insn);
2688
2689 /* Dump the insn in the assembly for debugging. */
2690 if (flag_dump_rtl_in_asm)
2691 {
2692 print_rtx_head = ASM_COMMENT_START;
2693 print_rtl_single (asm_out_file, insn);
2694 print_rtx_head = "";
2695 }
2696
2697 if (! constrain_operands_cached (1))
2698 fatal_insn_not_found (insn);
2699
2700 /* Some target machines need to prescan each insn before
2701 it is output. */
2702
2703 #ifdef FINAL_PRESCAN_INSN
2704 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2705 #endif
2706
2707 #ifdef HAVE_conditional_execution
2708 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2709 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2710 else
2711 current_insn_predicate = NULL_RTX;
2712 #endif
2713
2714 #ifdef HAVE_cc0
2715 cc_prev_status = cc_status;
2716
2717 /* Update `cc_status' for this instruction.
2718 The instruction's output routine may change it further.
2719 If the output routine for a jump insn needs to depend
2720 on the cc status, it should look at cc_prev_status. */
2721
2722 NOTICE_UPDATE_CC (body, insn);
2723 #endif
2724
2725 current_output_insn = debug_insn = insn;
2726
2727 #if defined (DWARF2_UNWIND_INFO)
2728 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2729 dwarf2out_frame_debug (insn);
2730 #endif
2731
2732 /* Find the proper template for this insn. */
2733 template = get_insn_template (insn_code_number, insn);
2734
2735 /* If the C code returns 0, it means that it is a jump insn
2736 which follows a deleted test insn, and that test insn
2737 needs to be reinserted. */
2738 if (template == 0)
2739 {
2740 rtx prev;
2741
2742 if (prev_nonnote_insn (insn) != last_ignored_compare)
2743 abort ();
2744 new_block = 0;
2745
2746 /* We have already processed the notes between the setter and
2747 the user. Make sure we don't process them again, this is
2748 particularly important if one of the notes is a block
2749 scope note or an EH note. */
2750 for (prev = insn;
2751 prev != last_ignored_compare;
2752 prev = PREV_INSN (prev))
2753 {
2754 if (GET_CODE (prev) == NOTE)
2755 delete_insn (prev); /* Use delete_note. */
2756 }
2757
2758 return prev;
2759 }
2760
2761 /* If the template is the string "#", it means that this insn must
2762 be split. */
2763 if (template[0] == '#' && template[1] == '\0')
2764 {
2765 rtx new = try_split (body, insn, 0);
2766
2767 /* If we didn't split the insn, go away. */
2768 if (new == insn && PATTERN (new) == body)
2769 fatal_insn ("could not split insn", insn);
2770
2771 #ifdef HAVE_ATTR_length
2772 /* This instruction should have been split in shorten_branches,
2773 to ensure that we would have valid length info for the
2774 splitees. */
2775 abort ();
2776 #endif
2777
2778 new_block = 0;
2779 return new;
2780 }
2781
2782 if (prescan > 0)
2783 break;
2784
2785 #ifdef IA64_UNWIND_INFO
2786 IA64_UNWIND_EMIT (asm_out_file, insn);
2787 #endif
2788 /* Output assembler code from the template. */
2789
2790 output_asm_insn (template, recog_data.operand);
2791
2792 #if defined (DWARF2_UNWIND_INFO)
2793 #if defined (HAVE_prologue)
2794 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2795 dwarf2out_frame_debug (insn);
2796 #else
2797 if (!ACCUMULATE_OUTGOING_ARGS
2798 && GET_CODE (insn) == INSN
2799 && dwarf2out_do_frame ())
2800 dwarf2out_frame_debug (insn);
2801 #endif
2802 #endif
2803
2804 #if 0
2805 /* It's not at all clear why we did this and doing so interferes
2806 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2807 with this out. */
2808
2809 /* Mark this insn as having been output. */
2810 INSN_DELETED_P (insn) = 1;
2811 #endif
2812
2813 /* Emit information for vtable gc. */
2814 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2815 if (note)
2816 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2817 INTVAL (XEXP (XEXP (note, 0), 1)));
2818
2819 current_output_insn = debug_insn = 0;
2820 }
2821 }
2822 return NEXT_INSN (insn);
2823 }
2824 \f
2825 /* Output debugging info to the assembler file FILE
2826 based on the NOTE-insn INSN, assumed to be a line number. */
2827
2828 static void
2829 notice_source_line (insn)
2830 rtx insn;
2831 {
2832 const char *filename = NOTE_SOURCE_FILE (insn);
2833
2834 last_filename = filename;
2835 last_linenum = NOTE_LINE_NUMBER (insn);
2836 high_block_linenum = MAX (last_linenum, high_block_linenum);
2837 high_function_linenum = MAX (last_linenum, high_function_linenum);
2838 }
2839 \f
2840 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2841 directly to the desired hard register. */
2842
2843 void
2844 cleanup_subreg_operands (insn)
2845 rtx insn;
2846 {
2847 int i;
2848 extract_insn_cached (insn);
2849 for (i = 0; i < recog_data.n_operands; i++)
2850 {
2851 /* The following test cannot use recog_data.operand when tesing
2852 for a SUBREG: the underlying object might have been changed
2853 already if we are inside a match_operator expression that
2854 matches the else clause. Instead we test the underlying
2855 expression directly. */
2856 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2857 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2858 else if (GET_CODE (recog_data.operand[i]) == PLUS
2859 || GET_CODE (recog_data.operand[i]) == MULT
2860 || GET_CODE (recog_data.operand[i]) == MEM)
2861 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2862 }
2863
2864 for (i = 0; i < recog_data.n_dups; i++)
2865 {
2866 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2867 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2868 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2869 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2870 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2871 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2872 }
2873 }
2874
2875 /* If X is a SUBREG, replace it with a REG or a MEM,
2876 based on the thing it is a subreg of. */
2877
2878 rtx
2879 alter_subreg (xp)
2880 rtx *xp;
2881 {
2882 rtx x = *xp;
2883 rtx y = SUBREG_REG (x);
2884
2885 /* simplify_subreg does not remove subreg from volatile references.
2886 We are required to. */
2887 if (GET_CODE (y) == MEM)
2888 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2889 else
2890 {
2891 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2892 SUBREG_BYTE (x));
2893
2894 if (new != 0)
2895 *xp = new;
2896 /* Simplify_subreg can't handle some REG cases, but we have to. */
2897 else if (GET_CODE (y) == REG)
2898 {
2899 unsigned int regno = subreg_hard_regno (x, 1);
2900 PUT_CODE (x, REG);
2901 REGNO (x) = regno;
2902 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2903 /* This field has a different meaning for REGs and SUBREGs. Make
2904 sure to clear it! */
2905 RTX_FLAG (x, used) = 0;
2906 }
2907 else
2908 abort ();
2909 }
2910
2911 return *xp;
2912 }
2913
2914 /* Do alter_subreg on all the SUBREGs contained in X. */
2915
2916 static rtx
2917 walk_alter_subreg (xp)
2918 rtx *xp;
2919 {
2920 rtx x = *xp;
2921 switch (GET_CODE (x))
2922 {
2923 case PLUS:
2924 case MULT:
2925 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2926 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2927 break;
2928
2929 case MEM:
2930 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2931 break;
2932
2933 case SUBREG:
2934 return alter_subreg (xp);
2935
2936 default:
2937 break;
2938 }
2939
2940 return *xp;
2941 }
2942 \f
2943 #ifdef HAVE_cc0
2944
2945 /* Given BODY, the body of a jump instruction, alter the jump condition
2946 as required by the bits that are set in cc_status.flags.
2947 Not all of the bits there can be handled at this level in all cases.
2948
2949 The value is normally 0.
2950 1 means that the condition has become always true.
2951 -1 means that the condition has become always false.
2952 2 means that COND has been altered. */
2953
2954 static int
2955 alter_cond (cond)
2956 rtx cond;
2957 {
2958 int value = 0;
2959
2960 if (cc_status.flags & CC_REVERSED)
2961 {
2962 value = 2;
2963 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2964 }
2965
2966 if (cc_status.flags & CC_INVERTED)
2967 {
2968 value = 2;
2969 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2970 }
2971
2972 if (cc_status.flags & CC_NOT_POSITIVE)
2973 switch (GET_CODE (cond))
2974 {
2975 case LE:
2976 case LEU:
2977 case GEU:
2978 /* Jump becomes unconditional. */
2979 return 1;
2980
2981 case GT:
2982 case GTU:
2983 case LTU:
2984 /* Jump becomes no-op. */
2985 return -1;
2986
2987 case GE:
2988 PUT_CODE (cond, EQ);
2989 value = 2;
2990 break;
2991
2992 case LT:
2993 PUT_CODE (cond, NE);
2994 value = 2;
2995 break;
2996
2997 default:
2998 break;
2999 }
3000
3001 if (cc_status.flags & CC_NOT_NEGATIVE)
3002 switch (GET_CODE (cond))
3003 {
3004 case GE:
3005 case GEU:
3006 /* Jump becomes unconditional. */
3007 return 1;
3008
3009 case LT:
3010 case LTU:
3011 /* Jump becomes no-op. */
3012 return -1;
3013
3014 case LE:
3015 case LEU:
3016 PUT_CODE (cond, EQ);
3017 value = 2;
3018 break;
3019
3020 case GT:
3021 case GTU:
3022 PUT_CODE (cond, NE);
3023 value = 2;
3024 break;
3025
3026 default:
3027 break;
3028 }
3029
3030 if (cc_status.flags & CC_NO_OVERFLOW)
3031 switch (GET_CODE (cond))
3032 {
3033 case GEU:
3034 /* Jump becomes unconditional. */
3035 return 1;
3036
3037 case LEU:
3038 PUT_CODE (cond, EQ);
3039 value = 2;
3040 break;
3041
3042 case GTU:
3043 PUT_CODE (cond, NE);
3044 value = 2;
3045 break;
3046
3047 case LTU:
3048 /* Jump becomes no-op. */
3049 return -1;
3050
3051 default:
3052 break;
3053 }
3054
3055 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3056 switch (GET_CODE (cond))
3057 {
3058 default:
3059 abort ();
3060
3061 case NE:
3062 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3063 value = 2;
3064 break;
3065
3066 case EQ:
3067 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3068 value = 2;
3069 break;
3070 }
3071
3072 if (cc_status.flags & CC_NOT_SIGNED)
3073 /* The flags are valid if signed condition operators are converted
3074 to unsigned. */
3075 switch (GET_CODE (cond))
3076 {
3077 case LE:
3078 PUT_CODE (cond, LEU);
3079 value = 2;
3080 break;
3081
3082 case LT:
3083 PUT_CODE (cond, LTU);
3084 value = 2;
3085 break;
3086
3087 case GT:
3088 PUT_CODE (cond, GTU);
3089 value = 2;
3090 break;
3091
3092 case GE:
3093 PUT_CODE (cond, GEU);
3094 value = 2;
3095 break;
3096
3097 default:
3098 break;
3099 }
3100
3101 return value;
3102 }
3103 #endif
3104 \f
3105 /* Report inconsistency between the assembler template and the operands.
3106 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3107
3108 void
3109 output_operand_lossage VPARAMS ((const char *msgid, ...))
3110 {
3111 char *fmt_string;
3112 char *new_message;
3113 const char *pfx_str;
3114 VA_OPEN (ap, msgid);
3115 VA_FIXEDARG (ap, const char *, msgid);
3116
3117 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3118 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3119 vasprintf (&new_message, fmt_string, ap);
3120
3121 if (this_is_asm_operands)
3122 error_for_asm (this_is_asm_operands, "%s", new_message);
3123 else
3124 internal_error ("%s", new_message);
3125
3126 free (fmt_string);
3127 free (new_message);
3128 VA_CLOSE (ap);
3129 }
3130 \f
3131 /* Output of assembler code from a template, and its subroutines. */
3132
3133 /* Annotate the assembly with a comment describing the pattern and
3134 alternative used. */
3135
3136 static void
3137 output_asm_name ()
3138 {
3139 if (debug_insn)
3140 {
3141 int num = INSN_CODE (debug_insn);
3142 fprintf (asm_out_file, "\t%s %d\t%s",
3143 ASM_COMMENT_START, INSN_UID (debug_insn),
3144 insn_data[num].name);
3145 if (insn_data[num].n_alternatives > 1)
3146 fprintf (asm_out_file, "/%d", which_alternative + 1);
3147 #ifdef HAVE_ATTR_length
3148 fprintf (asm_out_file, "\t[length = %d]",
3149 get_attr_length (debug_insn));
3150 #endif
3151 /* Clear this so only the first assembler insn
3152 of any rtl insn will get the special comment for -dp. */
3153 debug_insn = 0;
3154 }
3155 }
3156
3157 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3158 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3159 corresponds to the address of the object and 0 if to the object. */
3160
3161 static tree
3162 get_mem_expr_from_op (op, paddressp)
3163 rtx op;
3164 int *paddressp;
3165 {
3166 tree expr;
3167 int inner_addressp;
3168
3169 *paddressp = 0;
3170
3171 if (op == NULL)
3172 return 0;
3173
3174 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3175 return REGNO_DECL (ORIGINAL_REGNO (op));
3176 else if (GET_CODE (op) != MEM)
3177 return 0;
3178
3179 if (MEM_EXPR (op) != 0)
3180 return MEM_EXPR (op);
3181
3182 /* Otherwise we have an address, so indicate it and look at the address. */
3183 *paddressp = 1;
3184 op = XEXP (op, 0);
3185
3186 /* First check if we have a decl for the address, then look at the right side
3187 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3188 But don't allow the address to itself be indirect. */
3189 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3190 return expr;
3191 else if (GET_CODE (op) == PLUS
3192 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3193 return expr;
3194
3195 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3196 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3197 op = XEXP (op, 0);
3198
3199 expr = get_mem_expr_from_op (op, &inner_addressp);
3200 return inner_addressp ? 0 : expr;
3201 }
3202
3203 /* Output operand names for assembler instructions. OPERANDS is the
3204 operand vector, OPORDER is the order to write the operands, and NOPS
3205 is the number of operands to write. */
3206
3207 static void
3208 output_asm_operand_names (operands, oporder, nops)
3209 rtx *operands;
3210 int *oporder;
3211 int nops;
3212 {
3213 int wrote = 0;
3214 int i;
3215
3216 for (i = 0; i < nops; i++)
3217 {
3218 int addressp;
3219 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3220
3221 if (expr)
3222 {
3223 fprintf (asm_out_file, "%c%s %s",
3224 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3225 addressp ? "*" : "");
3226 print_mem_expr (asm_out_file, expr);
3227 wrote = 1;
3228 }
3229 }
3230 }
3231
3232 /* Output text from TEMPLATE to the assembler output file,
3233 obeying %-directions to substitute operands taken from
3234 the vector OPERANDS.
3235
3236 %N (for N a digit) means print operand N in usual manner.
3237 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3238 and print the label name with no punctuation.
3239 %cN means require operand N to be a constant
3240 and print the constant expression with no punctuation.
3241 %aN means expect operand N to be a memory address
3242 (not a memory reference!) and print a reference
3243 to that address.
3244 %nN means expect operand N to be a constant
3245 and print a constant expression for minus the value
3246 of the operand, with no other punctuation. */
3247
3248 void
3249 output_asm_insn (template, operands)
3250 const char *template;
3251 rtx *operands;
3252 {
3253 const char *p;
3254 int c;
3255 #ifdef ASSEMBLER_DIALECT
3256 int dialect = 0;
3257 #endif
3258 int oporder[MAX_RECOG_OPERANDS];
3259 char opoutput[MAX_RECOG_OPERANDS];
3260 int ops = 0;
3261
3262 /* An insn may return a null string template
3263 in a case where no assembler code is needed. */
3264 if (*template == 0)
3265 return;
3266
3267 memset (opoutput, 0, sizeof opoutput);
3268 p = template;
3269 putc ('\t', asm_out_file);
3270
3271 #ifdef ASM_OUTPUT_OPCODE
3272 ASM_OUTPUT_OPCODE (asm_out_file, p);
3273 #endif
3274
3275 while ((c = *p++))
3276 switch (c)
3277 {
3278 case '\n':
3279 if (flag_verbose_asm)
3280 output_asm_operand_names (operands, oporder, ops);
3281 if (flag_print_asm_name)
3282 output_asm_name ();
3283
3284 ops = 0;
3285 memset (opoutput, 0, sizeof opoutput);
3286
3287 putc (c, asm_out_file);
3288 #ifdef ASM_OUTPUT_OPCODE
3289 while ((c = *p) == '\t')
3290 {
3291 putc (c, asm_out_file);
3292 p++;
3293 }
3294 ASM_OUTPUT_OPCODE (asm_out_file, p);
3295 #endif
3296 break;
3297
3298 #ifdef ASSEMBLER_DIALECT
3299 case '{':
3300 {
3301 int i;
3302
3303 if (dialect)
3304 output_operand_lossage ("nested assembly dialect alternatives");
3305 else
3306 dialect = 1;
3307
3308 /* If we want the first dialect, do nothing. Otherwise, skip
3309 DIALECT_NUMBER of strings ending with '|'. */
3310 for (i = 0; i < dialect_number; i++)
3311 {
3312 while (*p && *p != '}' && *p++ != '|')
3313 ;
3314 if (*p == '}')
3315 break;
3316 if (*p == '|')
3317 p++;
3318 }
3319
3320 if (*p == '\0')
3321 output_operand_lossage ("unterminated assembly dialect alternative");
3322 }
3323 break;
3324
3325 case '|':
3326 if (dialect)
3327 {
3328 /* Skip to close brace. */
3329 do
3330 {
3331 if (*p == '\0')
3332 {
3333 output_operand_lossage ("unterminated assembly dialect alternative");
3334 break;
3335 }
3336 }
3337 while (*p++ != '}');
3338 dialect = 0;
3339 }
3340 else
3341 putc (c, asm_out_file);
3342 break;
3343
3344 case '}':
3345 if (! dialect)
3346 putc (c, asm_out_file);
3347 dialect = 0;
3348 break;
3349 #endif
3350
3351 case '%':
3352 /* %% outputs a single %. */
3353 if (*p == '%')
3354 {
3355 p++;
3356 putc (c, asm_out_file);
3357 }
3358 /* %= outputs a number which is unique to each insn in the entire
3359 compilation. This is useful for making local labels that are
3360 referred to more than once in a given insn. */
3361 else if (*p == '=')
3362 {
3363 p++;
3364 fprintf (asm_out_file, "%d", insn_counter);
3365 }
3366 /* % followed by a letter and some digits
3367 outputs an operand in a special way depending on the letter.
3368 Letters `acln' are implemented directly.
3369 Other letters are passed to `output_operand' so that
3370 the PRINT_OPERAND macro can define them. */
3371 else if (ISALPHA (*p))
3372 {
3373 int letter = *p++;
3374 c = atoi (p);
3375
3376 if (! ISDIGIT (*p))
3377 output_operand_lossage ("operand number missing after %%-letter");
3378 else if (this_is_asm_operands
3379 && (c < 0 || (unsigned int) c >= insn_noperands))
3380 output_operand_lossage ("operand number out of range");
3381 else if (letter == 'l')
3382 output_asm_label (operands[c]);
3383 else if (letter == 'a')
3384 output_address (operands[c]);
3385 else if (letter == 'c')
3386 {
3387 if (CONSTANT_ADDRESS_P (operands[c]))
3388 output_addr_const (asm_out_file, operands[c]);
3389 else
3390 output_operand (operands[c], 'c');
3391 }
3392 else if (letter == 'n')
3393 {
3394 if (GET_CODE (operands[c]) == CONST_INT)
3395 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3396 - INTVAL (operands[c]));
3397 else
3398 {
3399 putc ('-', asm_out_file);
3400 output_addr_const (asm_out_file, operands[c]);
3401 }
3402 }
3403 else
3404 output_operand (operands[c], letter);
3405
3406 if (!opoutput[c])
3407 oporder[ops++] = c;
3408 opoutput[c] = 1;
3409
3410 while (ISDIGIT (c = *p))
3411 p++;
3412 }
3413 /* % followed by a digit outputs an operand the default way. */
3414 else if (ISDIGIT (*p))
3415 {
3416 c = atoi (p);
3417 if (this_is_asm_operands
3418 && (c < 0 || (unsigned int) c >= insn_noperands))
3419 output_operand_lossage ("operand number out of range");
3420 else
3421 output_operand (operands[c], 0);
3422
3423 if (!opoutput[c])
3424 oporder[ops++] = c;
3425 opoutput[c] = 1;
3426
3427 while (ISDIGIT (c = *p))
3428 p++;
3429 }
3430 /* % followed by punctuation: output something for that
3431 punctuation character alone, with no operand.
3432 The PRINT_OPERAND macro decides what is actually done. */
3433 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3434 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3435 output_operand (NULL_RTX, *p++);
3436 #endif
3437 else
3438 output_operand_lossage ("invalid %%-code");
3439 break;
3440
3441 default:
3442 putc (c, asm_out_file);
3443 }
3444
3445 /* Write out the variable names for operands, if we know them. */
3446 if (flag_verbose_asm)
3447 output_asm_operand_names (operands, oporder, ops);
3448 if (flag_print_asm_name)
3449 output_asm_name ();
3450
3451 putc ('\n', asm_out_file);
3452 }
3453 \f
3454 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3455
3456 void
3457 output_asm_label (x)
3458 rtx x;
3459 {
3460 char buf[256];
3461
3462 if (GET_CODE (x) == LABEL_REF)
3463 x = XEXP (x, 0);
3464 if (GET_CODE (x) == CODE_LABEL
3465 || (GET_CODE (x) == NOTE
3466 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3467 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3468 else
3469 output_operand_lossage ("`%%l' operand isn't a label");
3470
3471 assemble_name (asm_out_file, buf);
3472 }
3473
3474 /* Print operand X using machine-dependent assembler syntax.
3475 The macro PRINT_OPERAND is defined just to control this function.
3476 CODE is a non-digit that preceded the operand-number in the % spec,
3477 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3478 between the % and the digits.
3479 When CODE is a non-letter, X is 0.
3480
3481 The meanings of the letters are machine-dependent and controlled
3482 by PRINT_OPERAND. */
3483
3484 static void
3485 output_operand (x, code)
3486 rtx x;
3487 int code ATTRIBUTE_UNUSED;
3488 {
3489 if (x && GET_CODE (x) == SUBREG)
3490 x = alter_subreg (&x);
3491
3492 /* If X is a pseudo-register, abort now rather than writing trash to the
3493 assembler file. */
3494
3495 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3496 abort ();
3497
3498 PRINT_OPERAND (asm_out_file, x, code);
3499 }
3500
3501 /* Print a memory reference operand for address X
3502 using machine-dependent assembler syntax.
3503 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3504
3505 void
3506 output_address (x)
3507 rtx x;
3508 {
3509 walk_alter_subreg (&x);
3510 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3511 }
3512 \f
3513 /* Print an integer constant expression in assembler syntax.
3514 Addition and subtraction are the only arithmetic
3515 that may appear in these expressions. */
3516
3517 void
3518 output_addr_const (file, x)
3519 FILE *file;
3520 rtx x;
3521 {
3522 char buf[256];
3523
3524 restart:
3525 switch (GET_CODE (x))
3526 {
3527 case PC:
3528 putc ('.', file);
3529 break;
3530
3531 case SYMBOL_REF:
3532 #ifdef ASM_OUTPUT_SYMBOL_REF
3533 ASM_OUTPUT_SYMBOL_REF (file, x);
3534 #else
3535 assemble_name (file, XSTR (x, 0));
3536 #endif
3537 break;
3538
3539 case LABEL_REF:
3540 x = XEXP (x, 0);
3541 /* Fall through. */
3542 case CODE_LABEL:
3543 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3544 #ifdef ASM_OUTPUT_LABEL_REF
3545 ASM_OUTPUT_LABEL_REF (file, buf);
3546 #else
3547 assemble_name (file, buf);
3548 #endif
3549 break;
3550
3551 case CONST_INT:
3552 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3553 break;
3554
3555 case CONST:
3556 /* This used to output parentheses around the expression,
3557 but that does not work on the 386 (either ATT or BSD assembler). */
3558 output_addr_const (file, XEXP (x, 0));
3559 break;
3560
3561 case CONST_DOUBLE:
3562 if (GET_MODE (x) == VOIDmode)
3563 {
3564 /* We can use %d if the number is one word and positive. */
3565 if (CONST_DOUBLE_HIGH (x))
3566 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3567 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3568 else if (CONST_DOUBLE_LOW (x) < 0)
3569 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3570 else
3571 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3572 }
3573 else
3574 /* We can't handle floating point constants;
3575 PRINT_OPERAND must handle them. */
3576 output_operand_lossage ("floating constant misused");
3577 break;
3578
3579 case PLUS:
3580 /* Some assemblers need integer constants to appear last (eg masm). */
3581 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3582 {
3583 output_addr_const (file, XEXP (x, 1));
3584 if (INTVAL (XEXP (x, 0)) >= 0)
3585 fprintf (file, "+");
3586 output_addr_const (file, XEXP (x, 0));
3587 }
3588 else
3589 {
3590 output_addr_const (file, XEXP (x, 0));
3591 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3592 || INTVAL (XEXP (x, 1)) >= 0)
3593 fprintf (file, "+");
3594 output_addr_const (file, XEXP (x, 1));
3595 }
3596 break;
3597
3598 case MINUS:
3599 /* Avoid outputting things like x-x or x+5-x,
3600 since some assemblers can't handle that. */
3601 x = simplify_subtraction (x);
3602 if (GET_CODE (x) != MINUS)
3603 goto restart;
3604
3605 output_addr_const (file, XEXP (x, 0));
3606 fprintf (file, "-");
3607 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3608 || GET_CODE (XEXP (x, 1)) == PC
3609 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3610 output_addr_const (file, XEXP (x, 1));
3611 else
3612 {
3613 fputs (targetm.asm_out.open_paren, file);
3614 output_addr_const (file, XEXP (x, 1));
3615 fputs (targetm.asm_out.close_paren, file);
3616 }
3617 break;
3618
3619 case ZERO_EXTEND:
3620 case SIGN_EXTEND:
3621 case SUBREG:
3622 output_addr_const (file, XEXP (x, 0));
3623 break;
3624
3625 default:
3626 #ifdef OUTPUT_ADDR_CONST_EXTRA
3627 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3628 break;
3629
3630 fail:
3631 #endif
3632 output_operand_lossage ("invalid expression as operand");
3633 }
3634 }
3635 \f
3636 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3637 %R prints the value of REGISTER_PREFIX.
3638 %L prints the value of LOCAL_LABEL_PREFIX.
3639 %U prints the value of USER_LABEL_PREFIX.
3640 %I prints the value of IMMEDIATE_PREFIX.
3641 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3642 Also supported are %d, %x, %s, %e, %f, %g and %%.
3643
3644 We handle alternate assembler dialects here, just like output_asm_insn. */
3645
3646 void
3647 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3648 {
3649 char buf[10];
3650 char *q, c;
3651
3652 VA_OPEN (argptr, p);
3653 VA_FIXEDARG (argptr, FILE *, file);
3654 VA_FIXEDARG (argptr, const char *, p);
3655
3656 buf[0] = '%';
3657
3658 while ((c = *p++))
3659 switch (c)
3660 {
3661 #ifdef ASSEMBLER_DIALECT
3662 case '{':
3663 {
3664 int i;
3665
3666 /* If we want the first dialect, do nothing. Otherwise, skip
3667 DIALECT_NUMBER of strings ending with '|'. */
3668 for (i = 0; i < dialect_number; i++)
3669 {
3670 while (*p && *p++ != '|')
3671 ;
3672
3673 if (*p == '|')
3674 p++;
3675 }
3676 }
3677 break;
3678
3679 case '|':
3680 /* Skip to close brace. */
3681 while (*p && *p++ != '}')
3682 ;
3683 break;
3684
3685 case '}':
3686 break;
3687 #endif
3688
3689 case '%':
3690 c = *p++;
3691 q = &buf[1];
3692 while (ISDIGIT (c) || c == '.')
3693 {
3694 *q++ = c;
3695 c = *p++;
3696 }
3697 switch (c)
3698 {
3699 case '%':
3700 fprintf (file, "%%");
3701 break;
3702
3703 case 'd': case 'i': case 'u':
3704 case 'x': case 'p': case 'X':
3705 case 'o':
3706 *q++ = c;
3707 *q = 0;
3708 fprintf (file, buf, va_arg (argptr, int));
3709 break;
3710
3711 case 'w':
3712 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3713 but we do not check for those cases. It means that the value
3714 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3715
3716 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3717 #else
3718 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3719 *q++ = 'l';
3720 #else
3721 *q++ = 'l';
3722 *q++ = 'l';
3723 #endif
3724 #endif
3725
3726 *q++ = *p++;
3727 *q = 0;
3728 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3729 break;
3730
3731 case 'l':
3732 *q++ = c;
3733 *q++ = *p++;
3734 *q = 0;
3735 fprintf (file, buf, va_arg (argptr, long));
3736 break;
3737
3738 case 'e':
3739 case 'f':
3740 case 'g':
3741 *q++ = c;
3742 *q = 0;
3743 fprintf (file, buf, va_arg (argptr, double));
3744 break;
3745
3746 case 's':
3747 *q++ = c;
3748 *q = 0;
3749 fprintf (file, buf, va_arg (argptr, char *));
3750 break;
3751
3752 case 'O':
3753 #ifdef ASM_OUTPUT_OPCODE
3754 ASM_OUTPUT_OPCODE (asm_out_file, p);
3755 #endif
3756 break;
3757
3758 case 'R':
3759 #ifdef REGISTER_PREFIX
3760 fprintf (file, "%s", REGISTER_PREFIX);
3761 #endif
3762 break;
3763
3764 case 'I':
3765 #ifdef IMMEDIATE_PREFIX
3766 fprintf (file, "%s", IMMEDIATE_PREFIX);
3767 #endif
3768 break;
3769
3770 case 'L':
3771 #ifdef LOCAL_LABEL_PREFIX
3772 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3773 #endif
3774 break;
3775
3776 case 'U':
3777 fputs (user_label_prefix, file);
3778 break;
3779
3780 #ifdef ASM_FPRINTF_EXTENSIONS
3781 /* Upper case letters are reserved for general use by asm_fprintf
3782 and so are not available to target specific code. In order to
3783 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3784 they are defined here. As they get turned into real extensions
3785 to asm_fprintf they should be removed from this list. */
3786 case 'A': case 'B': case 'C': case 'D': case 'E':
3787 case 'F': case 'G': case 'H': case 'J': case 'K':
3788 case 'M': case 'N': case 'P': case 'Q': case 'S':
3789 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3790 break;
3791
3792 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3793 #endif
3794 default:
3795 abort ();
3796 }
3797 break;
3798
3799 default:
3800 fputc (c, file);
3801 }
3802 VA_CLOSE (argptr);
3803 }
3804 \f
3805 /* Split up a CONST_DOUBLE or integer constant rtx
3806 into two rtx's for single words,
3807 storing in *FIRST the word that comes first in memory in the target
3808 and in *SECOND the other. */
3809
3810 void
3811 split_double (value, first, second)
3812 rtx value;
3813 rtx *first, *second;
3814 {
3815 if (GET_CODE (value) == CONST_INT)
3816 {
3817 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3818 {
3819 /* In this case the CONST_INT holds both target words.
3820 Extract the bits from it into two word-sized pieces.
3821 Sign extend each half to HOST_WIDE_INT. */
3822 unsigned HOST_WIDE_INT low, high;
3823 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3824
3825 /* Set sign_bit to the most significant bit of a word. */
3826 sign_bit = 1;
3827 sign_bit <<= BITS_PER_WORD - 1;
3828
3829 /* Set mask so that all bits of the word are set. We could
3830 have used 1 << BITS_PER_WORD instead of basing the
3831 calculation on sign_bit. However, on machines where
3832 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3833 compiler warning, even though the code would never be
3834 executed. */
3835 mask = sign_bit << 1;
3836 mask--;
3837
3838 /* Set sign_extend as any remaining bits. */
3839 sign_extend = ~mask;
3840
3841 /* Pick the lower word and sign-extend it. */
3842 low = INTVAL (value);
3843 low &= mask;
3844 if (low & sign_bit)
3845 low |= sign_extend;
3846
3847 /* Pick the higher word, shifted to the least significant
3848 bits, and sign-extend it. */
3849 high = INTVAL (value);
3850 high >>= BITS_PER_WORD - 1;
3851 high >>= 1;
3852 high &= mask;
3853 if (high & sign_bit)
3854 high |= sign_extend;
3855
3856 /* Store the words in the target machine order. */
3857 if (WORDS_BIG_ENDIAN)
3858 {
3859 *first = GEN_INT (high);
3860 *second = GEN_INT (low);
3861 }
3862 else
3863 {
3864 *first = GEN_INT (low);
3865 *second = GEN_INT (high);
3866 }
3867 }
3868 else
3869 {
3870 /* The rule for using CONST_INT for a wider mode
3871 is that we regard the value as signed.
3872 So sign-extend it. */
3873 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3874 if (WORDS_BIG_ENDIAN)
3875 {
3876 *first = high;
3877 *second = value;
3878 }
3879 else
3880 {
3881 *first = value;
3882 *second = high;
3883 }
3884 }
3885 }
3886 else if (GET_CODE (value) != CONST_DOUBLE)
3887 {
3888 if (WORDS_BIG_ENDIAN)
3889 {
3890 *first = const0_rtx;
3891 *second = value;
3892 }
3893 else
3894 {
3895 *first = value;
3896 *second = const0_rtx;
3897 }
3898 }
3899 else if (GET_MODE (value) == VOIDmode
3900 /* This is the old way we did CONST_DOUBLE integers. */
3901 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3902 {
3903 /* In an integer, the words are defined as most and least significant.
3904 So order them by the target's convention. */
3905 if (WORDS_BIG_ENDIAN)
3906 {
3907 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3908 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3909 }
3910 else
3911 {
3912 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3913 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3914 }
3915 }
3916 else
3917 {
3918 REAL_VALUE_TYPE r;
3919 long l[2];
3920 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3921
3922 /* Note, this converts the REAL_VALUE_TYPE to the target's
3923 format, splits up the floating point double and outputs
3924 exactly 32 bits of it into each of l[0] and l[1] --
3925 not necessarily BITS_PER_WORD bits. */
3926 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3927
3928 /* If 32 bits is an entire word for the target, but not for the host,
3929 then sign-extend on the host so that the number will look the same
3930 way on the host that it would on the target. See for instance
3931 simplify_unary_operation. The #if is needed to avoid compiler
3932 warnings. */
3933
3934 #if HOST_BITS_PER_LONG > 32
3935 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3936 {
3937 if (l[0] & ((long) 1 << 31))
3938 l[0] |= ((long) (-1) << 32);
3939 if (l[1] & ((long) 1 << 31))
3940 l[1] |= ((long) (-1) << 32);
3941 }
3942 #endif
3943
3944 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3945 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3946 }
3947 }
3948 \f
3949 /* Return nonzero if this function has no function calls. */
3950
3951 int
3952 leaf_function_p ()
3953 {
3954 rtx insn;
3955 rtx link;
3956
3957 if (current_function_profile || profile_arc_flag)
3958 return 0;
3959
3960 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3961 {
3962 if (GET_CODE (insn) == CALL_INSN
3963 && ! SIBLING_CALL_P (insn))
3964 return 0;
3965 if (GET_CODE (insn) == INSN
3966 && GET_CODE (PATTERN (insn)) == SEQUENCE
3967 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3968 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3969 return 0;
3970 }
3971 for (link = current_function_epilogue_delay_list;
3972 link;
3973 link = XEXP (link, 1))
3974 {
3975 insn = XEXP (link, 0);
3976
3977 if (GET_CODE (insn) == CALL_INSN
3978 && ! SIBLING_CALL_P (insn))
3979 return 0;
3980 if (GET_CODE (insn) == INSN
3981 && GET_CODE (PATTERN (insn)) == SEQUENCE
3982 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3983 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3984 return 0;
3985 }
3986
3987 return 1;
3988 }
3989
3990 /* Return 1 if branch is an forward branch.
3991 Uses insn_shuid array, so it works only in the final pass. May be used by
3992 output templates to customary add branch prediction hints.
3993 */
3994 int
3995 final_forward_branch_p (insn)
3996 rtx insn;
3997 {
3998 int insn_id, label_id;
3999 if (!uid_shuid)
4000 abort ();
4001 insn_id = INSN_SHUID (insn);
4002 label_id = INSN_SHUID (JUMP_LABEL (insn));
4003 /* We've hit some insns that does not have id information available. */
4004 if (!insn_id || !label_id)
4005 abort ();
4006 return insn_id < label_id;
4007 }
4008
4009 /* On some machines, a function with no call insns
4010 can run faster if it doesn't create its own register window.
4011 When output, the leaf function should use only the "output"
4012 registers. Ordinarily, the function would be compiled to use
4013 the "input" registers to find its arguments; it is a candidate
4014 for leaf treatment if it uses only the "input" registers.
4015 Leaf function treatment means renumbering so the function
4016 uses the "output" registers instead. */
4017
4018 #ifdef LEAF_REGISTERS
4019
4020 /* Return 1 if this function uses only the registers that can be
4021 safely renumbered. */
4022
4023 int
4024 only_leaf_regs_used ()
4025 {
4026 int i;
4027 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4028
4029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4030 if ((regs_ever_live[i] || global_regs[i])
4031 && ! permitted_reg_in_leaf_functions[i])
4032 return 0;
4033
4034 if (current_function_uses_pic_offset_table
4035 && pic_offset_table_rtx != 0
4036 && GET_CODE (pic_offset_table_rtx) == REG
4037 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4038 return 0;
4039
4040 return 1;
4041 }
4042
4043 /* Scan all instructions and renumber all registers into those
4044 available in leaf functions. */
4045
4046 static void
4047 leaf_renumber_regs (first)
4048 rtx first;
4049 {
4050 rtx insn;
4051
4052 /* Renumber only the actual patterns.
4053 The reg-notes can contain frame pointer refs,
4054 and renumbering them could crash, and should not be needed. */
4055 for (insn = first; insn; insn = NEXT_INSN (insn))
4056 if (INSN_P (insn))
4057 leaf_renumber_regs_insn (PATTERN (insn));
4058 for (insn = current_function_epilogue_delay_list;
4059 insn;
4060 insn = XEXP (insn, 1))
4061 if (INSN_P (XEXP (insn, 0)))
4062 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4063 }
4064
4065 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4066 available in leaf functions. */
4067
4068 void
4069 leaf_renumber_regs_insn (in_rtx)
4070 rtx in_rtx;
4071 {
4072 int i, j;
4073 const char *format_ptr;
4074
4075 if (in_rtx == 0)
4076 return;
4077
4078 /* Renumber all input-registers into output-registers.
4079 renumbered_regs would be 1 for an output-register;
4080 they */
4081
4082 if (GET_CODE (in_rtx) == REG)
4083 {
4084 int newreg;
4085
4086 /* Don't renumber the same reg twice. */
4087 if (in_rtx->used)
4088 return;
4089
4090 newreg = REGNO (in_rtx);
4091 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4092 to reach here as part of a REG_NOTE. */
4093 if (newreg >= FIRST_PSEUDO_REGISTER)
4094 {
4095 in_rtx->used = 1;
4096 return;
4097 }
4098 newreg = LEAF_REG_REMAP (newreg);
4099 if (newreg < 0)
4100 abort ();
4101 regs_ever_live[REGNO (in_rtx)] = 0;
4102 regs_ever_live[newreg] = 1;
4103 REGNO (in_rtx) = newreg;
4104 in_rtx->used = 1;
4105 }
4106
4107 if (INSN_P (in_rtx))
4108 {
4109 /* Inside a SEQUENCE, we find insns.
4110 Renumber just the patterns of these insns,
4111 just as we do for the top-level insns. */
4112 leaf_renumber_regs_insn (PATTERN (in_rtx));
4113 return;
4114 }
4115
4116 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4117
4118 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4119 switch (*format_ptr++)
4120 {
4121 case 'e':
4122 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4123 break;
4124
4125 case 'E':
4126 if (NULL != XVEC (in_rtx, i))
4127 {
4128 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4129 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4130 }
4131 break;
4132
4133 case 'S':
4134 case 's':
4135 case '0':
4136 case 'i':
4137 case 'w':
4138 case 'n':
4139 case 'u':
4140 break;
4141
4142 default:
4143 abort ();
4144 }
4145 }
4146 #endif