cfgcleanup.c (try_simplify_condjump): Don't remove line notes to avoid unreachable...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (LABEL_P (insn))
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (BARRIER_P (insn))
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (LABEL_P (insn))
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (LABEL_P (insn))
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1573 }
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1577
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1579 }
1580 }
1581 \f
1582 const char *
1583 get_insn_template (int code, rtx insn)
1584 {
1585 switch (insn_data[code].output_format)
1586 {
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1595
1596 default:
1597 abort ();
1598 }
1599 }
1600
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1604
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1608 {
1609 const char *name = LABEL_NAME (insn);
1610
1611 switch (LABEL_KIND (insn))
1612 {
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1625
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1629 }
1630 }
1631
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1635
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1638 {
1639 rtx temp;
1640 int bb_note_count = 0;
1641
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1643 {
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1649 {
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1653 }
1654 if (INSN_P (temp))
1655 return false;
1656 }
1657
1658 return false;
1659 }
1660
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1665
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1668
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1674
1675 rtx
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1679 {
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1683
1684 insn_counter++;
1685
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1690
1691 switch (GET_CODE (insn))
1692 {
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1696
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_END_TOP_COND:
1703 case NOTE_INSN_LOOP_CONT:
1704 case NOTE_INSN_LOOP_VTOP:
1705 case NOTE_INSN_FUNCTION_END:
1706 case NOTE_INSN_REPEATED_LINE_NUMBER:
1707 case NOTE_INSN_EXPECTED_VALUE:
1708 break;
1709
1710 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1711
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1715 to it. */
1716
1717 unlikely_text_section ();
1718 break;
1719
1720 case NOTE_INSN_BASIC_BLOCK:
1721
1722 /* If we are performing the optimization that partitions
1723 basic blocks into hot & cold sections of the .o file,
1724 then at the start of each new basic block, before
1725 beginning to write code for the basic block, we need to
1726 check to see whether the basic block belongs in the hot
1727 or cold section of the .o file, and change the section we
1728 are writing to appropriately. */
1729
1730 if (flag_reorder_blocks_and_partition
1731 && in_unlikely_text_section()
1732 && !scan_ahead_for_unlikely_executed_note (insn))
1733 text_section ();
1734
1735 #ifdef TARGET_UNWIND_INFO
1736 targetm.asm_out.unwind_emit (asm_out_file, insn);
1737 #endif
1738
1739 if (flag_debug_asm)
1740 fprintf (asm_out_file, "\t%s basic block %d\n",
1741 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1742
1743 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1744 {
1745 *seen |= SEEN_EMITTED;
1746 last_filename = NULL;
1747 }
1748 else
1749 *seen |= SEEN_BB;
1750
1751 break;
1752
1753 case NOTE_INSN_EH_REGION_BEG:
1754 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1755 NOTE_EH_HANDLER (insn));
1756 break;
1757
1758 case NOTE_INSN_EH_REGION_END:
1759 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1760 NOTE_EH_HANDLER (insn));
1761 break;
1762
1763 case NOTE_INSN_PROLOGUE_END:
1764 targetm.asm_out.function_end_prologue (file);
1765 profile_after_prologue (file);
1766
1767 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1768 {
1769 *seen |= SEEN_EMITTED;
1770 last_filename = NULL;
1771 }
1772 else
1773 *seen |= SEEN_NOTE;
1774
1775 break;
1776
1777 case NOTE_INSN_EPILOGUE_BEG:
1778 targetm.asm_out.function_begin_epilogue (file);
1779 break;
1780
1781 case NOTE_INSN_FUNCTION_BEG:
1782 app_disable ();
1783 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1784
1785 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1786 {
1787 *seen |= SEEN_EMITTED;
1788 last_filename = NULL;
1789 }
1790 else
1791 *seen |= SEEN_NOTE;
1792
1793 break;
1794
1795 case NOTE_INSN_BLOCK_BEG:
1796 if (debug_info_level == DINFO_LEVEL_NORMAL
1797 || debug_info_level == DINFO_LEVEL_VERBOSE
1798 || write_symbols == DWARF_DEBUG
1799 || write_symbols == DWARF2_DEBUG
1800 || write_symbols == VMS_AND_DWARF2_DEBUG
1801 || write_symbols == VMS_DEBUG)
1802 {
1803 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1804
1805 app_disable ();
1806 ++block_depth;
1807 high_block_linenum = last_linenum;
1808
1809 /* Output debugging info about the symbol-block beginning. */
1810 (*debug_hooks->begin_block) (last_linenum, n);
1811
1812 /* Mark this block as output. */
1813 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1814 }
1815 break;
1816
1817 case NOTE_INSN_BLOCK_END:
1818 if (debug_info_level == DINFO_LEVEL_NORMAL
1819 || debug_info_level == DINFO_LEVEL_VERBOSE
1820 || write_symbols == DWARF_DEBUG
1821 || write_symbols == DWARF2_DEBUG
1822 || write_symbols == VMS_AND_DWARF2_DEBUG
1823 || write_symbols == VMS_DEBUG)
1824 {
1825 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1826
1827 app_disable ();
1828
1829 /* End of a symbol-block. */
1830 --block_depth;
1831 if (block_depth < 0)
1832 abort ();
1833
1834 (*debug_hooks->end_block) (high_block_linenum, n);
1835 }
1836 break;
1837
1838 case NOTE_INSN_DELETED_LABEL:
1839 /* Emit the label. We may have deleted the CODE_LABEL because
1840 the label could be proved to be unreachable, though still
1841 referenced (in the form of having its address taken. */
1842 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1843 break;
1844
1845 case NOTE_INSN_VAR_LOCATION:
1846 (*debug_hooks->var_location) (insn);
1847 break;
1848
1849 case 0:
1850 break;
1851
1852 default:
1853 if (NOTE_LINE_NUMBER (insn) <= 0)
1854 abort ();
1855 break;
1856 }
1857 break;
1858
1859 case BARRIER:
1860 #if defined (DWARF2_UNWIND_INFO)
1861 if (dwarf2out_do_frame ())
1862 dwarf2out_frame_debug (insn);
1863 #endif
1864 break;
1865
1866 case CODE_LABEL:
1867 /* The target port might emit labels in the output function for
1868 some insn, e.g. sh.c output_branchy_insn. */
1869 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1870 {
1871 int align = LABEL_TO_ALIGNMENT (insn);
1872 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1873 int max_skip = LABEL_TO_MAX_SKIP (insn);
1874 #endif
1875
1876 if (align && NEXT_INSN (insn))
1877 {
1878 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1879 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1880 #else
1881 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1882 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1883 #else
1884 ASM_OUTPUT_ALIGN (file, align);
1885 #endif
1886 #endif
1887 }
1888 }
1889 #ifdef HAVE_cc0
1890 CC_STATUS_INIT;
1891 /* If this label is reached from only one place, set the condition
1892 codes from the instruction just before the branch. */
1893
1894 /* Disabled because some insns set cc_status in the C output code
1895 and NOTICE_UPDATE_CC alone can set incorrect status. */
1896 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1897 {
1898 rtx jump = LABEL_REFS (insn);
1899 rtx barrier = prev_nonnote_insn (insn);
1900 rtx prev;
1901 /* If the LABEL_REFS field of this label has been set to point
1902 at a branch, the predecessor of the branch is a regular
1903 insn, and that branch is the only way to reach this label,
1904 set the condition codes based on the branch and its
1905 predecessor. */
1906 if (barrier && BARRIER_P (barrier)
1907 && jump && JUMP_P (jump)
1908 && (prev = prev_nonnote_insn (jump))
1909 && NONJUMP_INSN_P (prev))
1910 {
1911 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1912 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1913 }
1914 }
1915 #endif
1916 if (prescan > 0)
1917 break;
1918
1919 if (LABEL_NAME (insn))
1920 (*debug_hooks->label) (insn);
1921
1922 /* If we are doing the optimization that partitions hot & cold
1923 basic blocks into separate sections of the .o file, we need
1924 to ensure the jump table ends up in the correct section... */
1925
1926 if (flag_reorder_blocks_and_partition)
1927 {
1928 rtx tmp_table, tmp_label;
1929 if (LABEL_P (insn)
1930 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1931 {
1932 /* Do nothing; Do NOT change the current section. */
1933 }
1934 else if (scan_ahead_for_unlikely_executed_note (insn))
1935 unlikely_text_section ();
1936 else
1937 {
1938 if (in_unlikely_text_section ())
1939 text_section ();
1940 }
1941 }
1942
1943 if (app_on)
1944 {
1945 fputs (ASM_APP_OFF, file);
1946 app_on = 0;
1947 }
1948 if (NEXT_INSN (insn) != 0
1949 && JUMP_P (NEXT_INSN (insn)))
1950 {
1951 rtx nextbody = PATTERN (NEXT_INSN (insn));
1952
1953 /* If this label is followed by a jump-table,
1954 make sure we put the label in the read-only section. Also
1955 possibly write the label and jump table together. */
1956
1957 if (GET_CODE (nextbody) == ADDR_VEC
1958 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1959 {
1960 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1961 /* In this case, the case vector is being moved by the
1962 target, so don't output the label at all. Leave that
1963 to the back end macros. */
1964 #else
1965 if (! JUMP_TABLES_IN_TEXT_SECTION)
1966 {
1967 int log_align;
1968
1969 readonly_data_section ();
1970
1971 #ifdef ADDR_VEC_ALIGN
1972 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1973 #else
1974 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1975 #endif
1976 ASM_OUTPUT_ALIGN (file, log_align);
1977 }
1978 else
1979 function_section (current_function_decl);
1980
1981 #ifdef ASM_OUTPUT_CASE_LABEL
1982 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1983 NEXT_INSN (insn));
1984 #else
1985 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1986 #endif
1987 #endif
1988 break;
1989 }
1990 }
1991 if (LABEL_ALT_ENTRY_P (insn))
1992 output_alternate_entry_point (file, insn);
1993 else
1994 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1995 break;
1996
1997 default:
1998 {
1999 rtx body = PATTERN (insn);
2000 int insn_code_number;
2001 const char *template;
2002
2003 /* An INSN, JUMP_INSN or CALL_INSN.
2004 First check for special kinds that recog doesn't recognize. */
2005
2006 if (GET_CODE (body) == USE /* These are just declarations. */
2007 || GET_CODE (body) == CLOBBER)
2008 break;
2009
2010 #ifdef HAVE_cc0
2011 /* If there is a REG_CC_SETTER note on this insn, it means that
2012 the setting of the condition code was done in the delay slot
2013 of the insn that branched here. So recover the cc status
2014 from the insn that set it. */
2015
2016 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2017 if (note)
2018 {
2019 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2020 cc_prev_status = cc_status;
2021 }
2022 #endif
2023
2024 /* Detect insns that are really jump-tables
2025 and output them as such. */
2026
2027 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2028 {
2029 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2030 int vlen, idx;
2031 #endif
2032
2033 if (prescan > 0)
2034 break;
2035
2036 if (app_on)
2037 {
2038 fputs (ASM_APP_OFF, file);
2039 app_on = 0;
2040 }
2041
2042 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2043 if (GET_CODE (body) == ADDR_VEC)
2044 {
2045 #ifdef ASM_OUTPUT_ADDR_VEC
2046 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2047 #else
2048 abort ();
2049 #endif
2050 }
2051 else
2052 {
2053 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2054 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2055 #else
2056 abort ();
2057 #endif
2058 }
2059 #else
2060 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2061 for (idx = 0; idx < vlen; idx++)
2062 {
2063 if (GET_CODE (body) == ADDR_VEC)
2064 {
2065 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2066 ASM_OUTPUT_ADDR_VEC_ELT
2067 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2068 #else
2069 abort ();
2070 #endif
2071 }
2072 else
2073 {
2074 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2075 ASM_OUTPUT_ADDR_DIFF_ELT
2076 (file,
2077 body,
2078 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2079 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2080 #else
2081 abort ();
2082 #endif
2083 }
2084 }
2085 #ifdef ASM_OUTPUT_CASE_END
2086 ASM_OUTPUT_CASE_END (file,
2087 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2088 insn);
2089 #endif
2090 #endif
2091
2092 function_section (current_function_decl);
2093
2094 break;
2095 }
2096 /* Output this line note if it is the first or the last line
2097 note in a row. */
2098 if (notice_source_line (insn))
2099 {
2100 (*debug_hooks->source_line) (last_linenum, last_filename);
2101 }
2102
2103 if (GET_CODE (body) == ASM_INPUT)
2104 {
2105 const char *string = XSTR (body, 0);
2106
2107 /* There's no telling what that did to the condition codes. */
2108 CC_STATUS_INIT;
2109 if (prescan > 0)
2110 break;
2111
2112 if (string[0])
2113 {
2114 if (! app_on)
2115 {
2116 fputs (ASM_APP_ON, file);
2117 app_on = 1;
2118 }
2119 fprintf (asm_out_file, "\t%s\n", string);
2120 }
2121 break;
2122 }
2123
2124 /* Detect `asm' construct with operands. */
2125 if (asm_noperands (body) >= 0)
2126 {
2127 unsigned int noperands = asm_noperands (body);
2128 rtx *ops = alloca (noperands * sizeof (rtx));
2129 const char *string;
2130
2131 /* There's no telling what that did to the condition codes. */
2132 CC_STATUS_INIT;
2133 if (prescan > 0)
2134 break;
2135
2136 /* Get out the operand values. */
2137 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2138 /* Inhibit aborts on what would otherwise be compiler bugs. */
2139 insn_noperands = noperands;
2140 this_is_asm_operands = insn;
2141
2142 #ifdef FINAL_PRESCAN_INSN
2143 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2144 #endif
2145
2146 /* Output the insn using them. */
2147 if (string[0])
2148 {
2149 if (! app_on)
2150 {
2151 fputs (ASM_APP_ON, file);
2152 app_on = 1;
2153 }
2154 output_asm_insn (string, ops);
2155 }
2156
2157 this_is_asm_operands = 0;
2158 break;
2159 }
2160
2161 if (prescan <= 0 && app_on)
2162 {
2163 fputs (ASM_APP_OFF, file);
2164 app_on = 0;
2165 }
2166
2167 if (GET_CODE (body) == SEQUENCE)
2168 {
2169 /* A delayed-branch sequence */
2170 int i;
2171 rtx next;
2172
2173 if (prescan > 0)
2174 break;
2175 final_sequence = body;
2176
2177 /* Record the delay slots' frame information before the branch.
2178 This is needed for delayed calls: see execute_cfa_program(). */
2179 #if defined (DWARF2_UNWIND_INFO)
2180 if (dwarf2out_do_frame ())
2181 for (i = 1; i < XVECLEN (body, 0); i++)
2182 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2183 #endif
2184
2185 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2186 force the restoration of a comparison that was previously
2187 thought unnecessary. If that happens, cancel this sequence
2188 and cause that insn to be restored. */
2189
2190 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2191 if (next != XVECEXP (body, 0, 1))
2192 {
2193 final_sequence = 0;
2194 return next;
2195 }
2196
2197 for (i = 1; i < XVECLEN (body, 0); i++)
2198 {
2199 rtx insn = XVECEXP (body, 0, i);
2200 rtx next = NEXT_INSN (insn);
2201 /* We loop in case any instruction in a delay slot gets
2202 split. */
2203 do
2204 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2205 while (insn != next);
2206 }
2207 #ifdef DBR_OUTPUT_SEQEND
2208 DBR_OUTPUT_SEQEND (file);
2209 #endif
2210 final_sequence = 0;
2211
2212 /* If the insn requiring the delay slot was a CALL_INSN, the
2213 insns in the delay slot are actually executed before the
2214 called function. Hence we don't preserve any CC-setting
2215 actions in these insns and the CC must be marked as being
2216 clobbered by the function. */
2217 if (CALL_P (XVECEXP (body, 0, 0)))
2218 {
2219 CC_STATUS_INIT;
2220 }
2221 break;
2222 }
2223
2224 /* We have a real machine instruction as rtl. */
2225
2226 body = PATTERN (insn);
2227
2228 #ifdef HAVE_cc0
2229 set = single_set (insn);
2230
2231 /* Check for redundant test and compare instructions
2232 (when the condition codes are already set up as desired).
2233 This is done only when optimizing; if not optimizing,
2234 it should be possible for the user to alter a variable
2235 with the debugger in between statements
2236 and the next statement should reexamine the variable
2237 to compute the condition codes. */
2238
2239 if (optimize)
2240 {
2241 if (set
2242 && GET_CODE (SET_DEST (set)) == CC0
2243 && insn != last_ignored_compare)
2244 {
2245 if (GET_CODE (SET_SRC (set)) == SUBREG)
2246 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2247 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2248 {
2249 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2250 XEXP (SET_SRC (set), 0)
2251 = alter_subreg (&XEXP (SET_SRC (set), 0));
2252 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2253 XEXP (SET_SRC (set), 1)
2254 = alter_subreg (&XEXP (SET_SRC (set), 1));
2255 }
2256 if ((cc_status.value1 != 0
2257 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2258 || (cc_status.value2 != 0
2259 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2260 {
2261 /* Don't delete insn if it has an addressing side-effect. */
2262 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2263 /* or if anything in it is volatile. */
2264 && ! volatile_refs_p (PATTERN (insn)))
2265 {
2266 /* We don't really delete the insn; just ignore it. */
2267 last_ignored_compare = insn;
2268 break;
2269 }
2270 }
2271 }
2272 }
2273 #endif
2274
2275 #ifndef STACK_REGS
2276 /* Don't bother outputting obvious no-ops, even without -O.
2277 This optimization is fast and doesn't interfere with debugging.
2278 Don't do this if the insn is in a delay slot, since this
2279 will cause an improper number of delay insns to be written. */
2280 if (final_sequence == 0
2281 && prescan >= 0
2282 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2283 && REG_P (SET_SRC (body))
2284 && REG_P (SET_DEST (body))
2285 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2286 break;
2287 #endif
2288
2289 #ifdef HAVE_cc0
2290 /* If this is a conditional branch, maybe modify it
2291 if the cc's are in a nonstandard state
2292 so that it accomplishes the same thing that it would
2293 do straightforwardly if the cc's were set up normally. */
2294
2295 if (cc_status.flags != 0
2296 && JUMP_P (insn)
2297 && GET_CODE (body) == SET
2298 && SET_DEST (body) == pc_rtx
2299 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2300 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2301 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2302 /* This is done during prescan; it is not done again
2303 in final scan when prescan has been done. */
2304 && prescan >= 0)
2305 {
2306 /* This function may alter the contents of its argument
2307 and clear some of the cc_status.flags bits.
2308 It may also return 1 meaning condition now always true
2309 or -1 meaning condition now always false
2310 or 2 meaning condition nontrivial but altered. */
2311 int result = alter_cond (XEXP (SET_SRC (body), 0));
2312 /* If condition now has fixed value, replace the IF_THEN_ELSE
2313 with its then-operand or its else-operand. */
2314 if (result == 1)
2315 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2316 if (result == -1)
2317 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2318
2319 /* The jump is now either unconditional or a no-op.
2320 If it has become a no-op, don't try to output it.
2321 (It would not be recognized.) */
2322 if (SET_SRC (body) == pc_rtx)
2323 {
2324 delete_insn (insn);
2325 break;
2326 }
2327 else if (GET_CODE (SET_SRC (body)) == RETURN)
2328 /* Replace (set (pc) (return)) with (return). */
2329 PATTERN (insn) = body = SET_SRC (body);
2330
2331 /* Rerecognize the instruction if it has changed. */
2332 if (result != 0)
2333 INSN_CODE (insn) = -1;
2334 }
2335
2336 /* Make same adjustments to instructions that examine the
2337 condition codes without jumping and instructions that
2338 handle conditional moves (if this machine has either one). */
2339
2340 if (cc_status.flags != 0
2341 && set != 0)
2342 {
2343 rtx cond_rtx, then_rtx, else_rtx;
2344
2345 if (!JUMP_P (insn)
2346 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2347 {
2348 cond_rtx = XEXP (SET_SRC (set), 0);
2349 then_rtx = XEXP (SET_SRC (set), 1);
2350 else_rtx = XEXP (SET_SRC (set), 2);
2351 }
2352 else
2353 {
2354 cond_rtx = SET_SRC (set);
2355 then_rtx = const_true_rtx;
2356 else_rtx = const0_rtx;
2357 }
2358
2359 switch (GET_CODE (cond_rtx))
2360 {
2361 case GTU:
2362 case GT:
2363 case LTU:
2364 case LT:
2365 case GEU:
2366 case GE:
2367 case LEU:
2368 case LE:
2369 case EQ:
2370 case NE:
2371 {
2372 int result;
2373 if (XEXP (cond_rtx, 0) != cc0_rtx)
2374 break;
2375 result = alter_cond (cond_rtx);
2376 if (result == 1)
2377 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2378 else if (result == -1)
2379 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2380 else if (result == 2)
2381 INSN_CODE (insn) = -1;
2382 if (SET_DEST (set) == SET_SRC (set))
2383 delete_insn (insn);
2384 }
2385 break;
2386
2387 default:
2388 break;
2389 }
2390 }
2391
2392 #endif
2393
2394 #ifdef HAVE_peephole
2395 /* Do machine-specific peephole optimizations if desired. */
2396
2397 if (optimize && !flag_no_peephole && !nopeepholes)
2398 {
2399 rtx next = peephole (insn);
2400 /* When peepholing, if there were notes within the peephole,
2401 emit them before the peephole. */
2402 if (next != 0 && next != NEXT_INSN (insn))
2403 {
2404 rtx prev = PREV_INSN (insn);
2405
2406 for (note = NEXT_INSN (insn); note != next;
2407 note = NEXT_INSN (note))
2408 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2409
2410 /* In case this is prescan, put the notes
2411 in proper position for later rescan. */
2412 note = NEXT_INSN (insn);
2413 PREV_INSN (note) = prev;
2414 NEXT_INSN (prev) = note;
2415 NEXT_INSN (PREV_INSN (next)) = insn;
2416 PREV_INSN (insn) = PREV_INSN (next);
2417 NEXT_INSN (insn) = next;
2418 PREV_INSN (next) = insn;
2419 }
2420
2421 /* PEEPHOLE might have changed this. */
2422 body = PATTERN (insn);
2423 }
2424 #endif
2425
2426 /* Try to recognize the instruction.
2427 If successful, verify that the operands satisfy the
2428 constraints for the instruction. Crash if they don't,
2429 since `reload' should have changed them so that they do. */
2430
2431 insn_code_number = recog_memoized (insn);
2432 cleanup_subreg_operands (insn);
2433
2434 /* Dump the insn in the assembly for debugging. */
2435 if (flag_dump_rtl_in_asm)
2436 {
2437 print_rtx_head = ASM_COMMENT_START;
2438 print_rtl_single (asm_out_file, insn);
2439 print_rtx_head = "";
2440 }
2441
2442 if (! constrain_operands_cached (1))
2443 fatal_insn_not_found (insn);
2444
2445 /* Some target machines need to prescan each insn before
2446 it is output. */
2447
2448 #ifdef FINAL_PRESCAN_INSN
2449 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2450 #endif
2451
2452 #ifdef HAVE_conditional_execution
2453 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2454 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2455 else
2456 current_insn_predicate = NULL_RTX;
2457 #endif
2458
2459 #ifdef HAVE_cc0
2460 cc_prev_status = cc_status;
2461
2462 /* Update `cc_status' for this instruction.
2463 The instruction's output routine may change it further.
2464 If the output routine for a jump insn needs to depend
2465 on the cc status, it should look at cc_prev_status. */
2466
2467 NOTICE_UPDATE_CC (body, insn);
2468 #endif
2469
2470 current_output_insn = debug_insn = insn;
2471
2472 #if defined (DWARF2_UNWIND_INFO)
2473 if (CALL_P (insn) && dwarf2out_do_frame ())
2474 dwarf2out_frame_debug (insn);
2475 #endif
2476
2477 /* Find the proper template for this insn. */
2478 template = get_insn_template (insn_code_number, insn);
2479
2480 /* If the C code returns 0, it means that it is a jump insn
2481 which follows a deleted test insn, and that test insn
2482 needs to be reinserted. */
2483 if (template == 0)
2484 {
2485 rtx prev;
2486
2487 if (prev_nonnote_insn (insn) != last_ignored_compare)
2488 abort ();
2489
2490 /* We have already processed the notes between the setter and
2491 the user. Make sure we don't process them again, this is
2492 particularly important if one of the notes is a block
2493 scope note or an EH note. */
2494 for (prev = insn;
2495 prev != last_ignored_compare;
2496 prev = PREV_INSN (prev))
2497 {
2498 if (NOTE_P (prev))
2499 delete_insn (prev); /* Use delete_note. */
2500 }
2501
2502 return prev;
2503 }
2504
2505 /* If the template is the string "#", it means that this insn must
2506 be split. */
2507 if (template[0] == '#' && template[1] == '\0')
2508 {
2509 rtx new = try_split (body, insn, 0);
2510
2511 /* If we didn't split the insn, go away. */
2512 if (new == insn && PATTERN (new) == body)
2513 fatal_insn ("could not split insn", insn);
2514
2515 #ifdef HAVE_ATTR_length
2516 /* This instruction should have been split in shorten_branches,
2517 to ensure that we would have valid length info for the
2518 splitees. */
2519 abort ();
2520 #endif
2521
2522 return new;
2523 }
2524
2525 if (prescan > 0)
2526 break;
2527
2528 #ifdef TARGET_UNWIND_INFO
2529 /* ??? This will put the directives in the wrong place if
2530 get_insn_template outputs assembly directly. However calling it
2531 before get_insn_template breaks if the insns is split. */
2532 targetm.asm_out.unwind_emit (asm_out_file, insn);
2533 #endif
2534
2535 /* Output assembler code from the template. */
2536 output_asm_insn (template, recog_data.operand);
2537
2538 /* If necessary, report the effect that the instruction has on
2539 the unwind info. We've already done this for delay slots
2540 and call instructions. */
2541 #if defined (DWARF2_UNWIND_INFO)
2542 if (NONJUMP_INSN_P (insn)
2543 #if !defined (HAVE_prologue)
2544 && !ACCUMULATE_OUTGOING_ARGS
2545 #endif
2546 && final_sequence == 0
2547 && dwarf2out_do_frame ())
2548 dwarf2out_frame_debug (insn);
2549 #endif
2550
2551 current_output_insn = debug_insn = 0;
2552 }
2553 }
2554 return NEXT_INSN (insn);
2555 }
2556 \f
2557 /* Output debugging info to the assembler file FILE
2558 based on the NOTE-insn INSN, assumed to be a line number. */
2559
2560 static bool
2561 notice_source_line (rtx insn)
2562 {
2563 const char *filename = insn_file (insn);
2564 int linenum = insn_line (insn);
2565
2566 if (filename && (filename != last_filename || last_linenum != linenum))
2567 {
2568 last_filename = filename;
2569 last_linenum = linenum;
2570 high_block_linenum = MAX (last_linenum, high_block_linenum);
2571 high_function_linenum = MAX (last_linenum, high_function_linenum);
2572 return true;
2573 }
2574 return false;
2575 }
2576 \f
2577 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2578 directly to the desired hard register. */
2579
2580 void
2581 cleanup_subreg_operands (rtx insn)
2582 {
2583 int i;
2584 extract_insn_cached (insn);
2585 for (i = 0; i < recog_data.n_operands; i++)
2586 {
2587 /* The following test cannot use recog_data.operand when testing
2588 for a SUBREG: the underlying object might have been changed
2589 already if we are inside a match_operator expression that
2590 matches the else clause. Instead we test the underlying
2591 expression directly. */
2592 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2593 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2594 else if (GET_CODE (recog_data.operand[i]) == PLUS
2595 || GET_CODE (recog_data.operand[i]) == MULT
2596 || MEM_P (recog_data.operand[i]))
2597 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2598 }
2599
2600 for (i = 0; i < recog_data.n_dups; i++)
2601 {
2602 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2603 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2604 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2605 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2606 || MEM_P (*recog_data.dup_loc[i]))
2607 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2608 }
2609 }
2610
2611 /* If X is a SUBREG, replace it with a REG or a MEM,
2612 based on the thing it is a subreg of. */
2613
2614 rtx
2615 alter_subreg (rtx *xp)
2616 {
2617 rtx x = *xp;
2618 rtx y = SUBREG_REG (x);
2619
2620 /* simplify_subreg does not remove subreg from volatile references.
2621 We are required to. */
2622 if (MEM_P (y))
2623 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2624 else
2625 {
2626 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2627 SUBREG_BYTE (x));
2628
2629 if (new != 0)
2630 *xp = new;
2631 /* Simplify_subreg can't handle some REG cases, but we have to. */
2632 else if (REG_P (y))
2633 {
2634 unsigned int regno = subreg_hard_regno (x, 1);
2635 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2636 }
2637 else
2638 abort ();
2639 }
2640
2641 return *xp;
2642 }
2643
2644 /* Do alter_subreg on all the SUBREGs contained in X. */
2645
2646 static rtx
2647 walk_alter_subreg (rtx *xp)
2648 {
2649 rtx x = *xp;
2650 switch (GET_CODE (x))
2651 {
2652 case PLUS:
2653 case MULT:
2654 case AND:
2655 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2656 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2657 break;
2658
2659 case MEM:
2660 case ZERO_EXTEND:
2661 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2662 break;
2663
2664 case SUBREG:
2665 return alter_subreg (xp);
2666
2667 default:
2668 break;
2669 }
2670
2671 return *xp;
2672 }
2673 \f
2674 #ifdef HAVE_cc0
2675
2676 /* Given BODY, the body of a jump instruction, alter the jump condition
2677 as required by the bits that are set in cc_status.flags.
2678 Not all of the bits there can be handled at this level in all cases.
2679
2680 The value is normally 0.
2681 1 means that the condition has become always true.
2682 -1 means that the condition has become always false.
2683 2 means that COND has been altered. */
2684
2685 static int
2686 alter_cond (rtx cond)
2687 {
2688 int value = 0;
2689
2690 if (cc_status.flags & CC_REVERSED)
2691 {
2692 value = 2;
2693 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2694 }
2695
2696 if (cc_status.flags & CC_INVERTED)
2697 {
2698 value = 2;
2699 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2700 }
2701
2702 if (cc_status.flags & CC_NOT_POSITIVE)
2703 switch (GET_CODE (cond))
2704 {
2705 case LE:
2706 case LEU:
2707 case GEU:
2708 /* Jump becomes unconditional. */
2709 return 1;
2710
2711 case GT:
2712 case GTU:
2713 case LTU:
2714 /* Jump becomes no-op. */
2715 return -1;
2716
2717 case GE:
2718 PUT_CODE (cond, EQ);
2719 value = 2;
2720 break;
2721
2722 case LT:
2723 PUT_CODE (cond, NE);
2724 value = 2;
2725 break;
2726
2727 default:
2728 break;
2729 }
2730
2731 if (cc_status.flags & CC_NOT_NEGATIVE)
2732 switch (GET_CODE (cond))
2733 {
2734 case GE:
2735 case GEU:
2736 /* Jump becomes unconditional. */
2737 return 1;
2738
2739 case LT:
2740 case LTU:
2741 /* Jump becomes no-op. */
2742 return -1;
2743
2744 case LE:
2745 case LEU:
2746 PUT_CODE (cond, EQ);
2747 value = 2;
2748 break;
2749
2750 case GT:
2751 case GTU:
2752 PUT_CODE (cond, NE);
2753 value = 2;
2754 break;
2755
2756 default:
2757 break;
2758 }
2759
2760 if (cc_status.flags & CC_NO_OVERFLOW)
2761 switch (GET_CODE (cond))
2762 {
2763 case GEU:
2764 /* Jump becomes unconditional. */
2765 return 1;
2766
2767 case LEU:
2768 PUT_CODE (cond, EQ);
2769 value = 2;
2770 break;
2771
2772 case GTU:
2773 PUT_CODE (cond, NE);
2774 value = 2;
2775 break;
2776
2777 case LTU:
2778 /* Jump becomes no-op. */
2779 return -1;
2780
2781 default:
2782 break;
2783 }
2784
2785 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2786 switch (GET_CODE (cond))
2787 {
2788 default:
2789 abort ();
2790
2791 case NE:
2792 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2793 value = 2;
2794 break;
2795
2796 case EQ:
2797 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2798 value = 2;
2799 break;
2800 }
2801
2802 if (cc_status.flags & CC_NOT_SIGNED)
2803 /* The flags are valid if signed condition operators are converted
2804 to unsigned. */
2805 switch (GET_CODE (cond))
2806 {
2807 case LE:
2808 PUT_CODE (cond, LEU);
2809 value = 2;
2810 break;
2811
2812 case LT:
2813 PUT_CODE (cond, LTU);
2814 value = 2;
2815 break;
2816
2817 case GT:
2818 PUT_CODE (cond, GTU);
2819 value = 2;
2820 break;
2821
2822 case GE:
2823 PUT_CODE (cond, GEU);
2824 value = 2;
2825 break;
2826
2827 default:
2828 break;
2829 }
2830
2831 return value;
2832 }
2833 #endif
2834 \f
2835 /* Report inconsistency between the assembler template and the operands.
2836 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2837
2838 void
2839 output_operand_lossage (const char *msgid, ...)
2840 {
2841 char *fmt_string;
2842 char *new_message;
2843 const char *pfx_str;
2844 va_list ap;
2845
2846 va_start (ap, msgid);
2847
2848 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2849 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2850 vasprintf (&new_message, fmt_string, ap);
2851
2852 if (this_is_asm_operands)
2853 error_for_asm (this_is_asm_operands, "%s", new_message);
2854 else
2855 internal_error ("%s", new_message);
2856
2857 free (fmt_string);
2858 free (new_message);
2859 va_end (ap);
2860 }
2861 \f
2862 /* Output of assembler code from a template, and its subroutines. */
2863
2864 /* Annotate the assembly with a comment describing the pattern and
2865 alternative used. */
2866
2867 static void
2868 output_asm_name (void)
2869 {
2870 if (debug_insn)
2871 {
2872 int num = INSN_CODE (debug_insn);
2873 fprintf (asm_out_file, "\t%s %d\t%s",
2874 ASM_COMMENT_START, INSN_UID (debug_insn),
2875 insn_data[num].name);
2876 if (insn_data[num].n_alternatives > 1)
2877 fprintf (asm_out_file, "/%d", which_alternative + 1);
2878 #ifdef HAVE_ATTR_length
2879 fprintf (asm_out_file, "\t[length = %d]",
2880 get_attr_length (debug_insn));
2881 #endif
2882 /* Clear this so only the first assembler insn
2883 of any rtl insn will get the special comment for -dp. */
2884 debug_insn = 0;
2885 }
2886 }
2887
2888 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2889 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2890 corresponds to the address of the object and 0 if to the object. */
2891
2892 static tree
2893 get_mem_expr_from_op (rtx op, int *paddressp)
2894 {
2895 tree expr;
2896 int inner_addressp;
2897
2898 *paddressp = 0;
2899
2900 if (REG_P (op))
2901 return REG_EXPR (op);
2902 else if (!MEM_P (op))
2903 return 0;
2904
2905 if (MEM_EXPR (op) != 0)
2906 return MEM_EXPR (op);
2907
2908 /* Otherwise we have an address, so indicate it and look at the address. */
2909 *paddressp = 1;
2910 op = XEXP (op, 0);
2911
2912 /* First check if we have a decl for the address, then look at the right side
2913 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2914 But don't allow the address to itself be indirect. */
2915 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2916 return expr;
2917 else if (GET_CODE (op) == PLUS
2918 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2919 return expr;
2920
2921 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2922 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2923 op = XEXP (op, 0);
2924
2925 expr = get_mem_expr_from_op (op, &inner_addressp);
2926 return inner_addressp ? 0 : expr;
2927 }
2928
2929 /* Output operand names for assembler instructions. OPERANDS is the
2930 operand vector, OPORDER is the order to write the operands, and NOPS
2931 is the number of operands to write. */
2932
2933 static void
2934 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2935 {
2936 int wrote = 0;
2937 int i;
2938
2939 for (i = 0; i < nops; i++)
2940 {
2941 int addressp;
2942 rtx op = operands[oporder[i]];
2943 tree expr = get_mem_expr_from_op (op, &addressp);
2944
2945 fprintf (asm_out_file, "%c%s",
2946 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2947 wrote = 1;
2948 if (expr)
2949 {
2950 fprintf (asm_out_file, "%s",
2951 addressp ? "*" : "");
2952 print_mem_expr (asm_out_file, expr);
2953 wrote = 1;
2954 }
2955 else if (REG_P (op) && ORIGINAL_REGNO (op)
2956 && ORIGINAL_REGNO (op) != REGNO (op))
2957 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2958 }
2959 }
2960
2961 /* Output text from TEMPLATE to the assembler output file,
2962 obeying %-directions to substitute operands taken from
2963 the vector OPERANDS.
2964
2965 %N (for N a digit) means print operand N in usual manner.
2966 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2967 and print the label name with no punctuation.
2968 %cN means require operand N to be a constant
2969 and print the constant expression with no punctuation.
2970 %aN means expect operand N to be a memory address
2971 (not a memory reference!) and print a reference
2972 to that address.
2973 %nN means expect operand N to be a constant
2974 and print a constant expression for minus the value
2975 of the operand, with no other punctuation. */
2976
2977 void
2978 output_asm_insn (const char *template, rtx *operands)
2979 {
2980 const char *p;
2981 int c;
2982 #ifdef ASSEMBLER_DIALECT
2983 int dialect = 0;
2984 #endif
2985 int oporder[MAX_RECOG_OPERANDS];
2986 char opoutput[MAX_RECOG_OPERANDS];
2987 int ops = 0;
2988
2989 /* An insn may return a null string template
2990 in a case where no assembler code is needed. */
2991 if (*template == 0)
2992 return;
2993
2994 memset (opoutput, 0, sizeof opoutput);
2995 p = template;
2996 putc ('\t', asm_out_file);
2997
2998 #ifdef ASM_OUTPUT_OPCODE
2999 ASM_OUTPUT_OPCODE (asm_out_file, p);
3000 #endif
3001
3002 while ((c = *p++))
3003 switch (c)
3004 {
3005 case '\n':
3006 if (flag_verbose_asm)
3007 output_asm_operand_names (operands, oporder, ops);
3008 if (flag_print_asm_name)
3009 output_asm_name ();
3010
3011 ops = 0;
3012 memset (opoutput, 0, sizeof opoutput);
3013
3014 putc (c, asm_out_file);
3015 #ifdef ASM_OUTPUT_OPCODE
3016 while ((c = *p) == '\t')
3017 {
3018 putc (c, asm_out_file);
3019 p++;
3020 }
3021 ASM_OUTPUT_OPCODE (asm_out_file, p);
3022 #endif
3023 break;
3024
3025 #ifdef ASSEMBLER_DIALECT
3026 case '{':
3027 {
3028 int i;
3029
3030 if (dialect)
3031 output_operand_lossage ("nested assembly dialect alternatives");
3032 else
3033 dialect = 1;
3034
3035 /* If we want the first dialect, do nothing. Otherwise, skip
3036 DIALECT_NUMBER of strings ending with '|'. */
3037 for (i = 0; i < dialect_number; i++)
3038 {
3039 while (*p && *p != '}' && *p++ != '|')
3040 ;
3041 if (*p == '}')
3042 break;
3043 if (*p == '|')
3044 p++;
3045 }
3046
3047 if (*p == '\0')
3048 output_operand_lossage ("unterminated assembly dialect alternative");
3049 }
3050 break;
3051
3052 case '|':
3053 if (dialect)
3054 {
3055 /* Skip to close brace. */
3056 do
3057 {
3058 if (*p == '\0')
3059 {
3060 output_operand_lossage ("unterminated assembly dialect alternative");
3061 break;
3062 }
3063 }
3064 while (*p++ != '}');
3065 dialect = 0;
3066 }
3067 else
3068 putc (c, asm_out_file);
3069 break;
3070
3071 case '}':
3072 if (! dialect)
3073 putc (c, asm_out_file);
3074 dialect = 0;
3075 break;
3076 #endif
3077
3078 case '%':
3079 /* %% outputs a single %. */
3080 if (*p == '%')
3081 {
3082 p++;
3083 putc (c, asm_out_file);
3084 }
3085 /* %= outputs a number which is unique to each insn in the entire
3086 compilation. This is useful for making local labels that are
3087 referred to more than once in a given insn. */
3088 else if (*p == '=')
3089 {
3090 p++;
3091 fprintf (asm_out_file, "%d", insn_counter);
3092 }
3093 /* % followed by a letter and some digits
3094 outputs an operand in a special way depending on the letter.
3095 Letters `acln' are implemented directly.
3096 Other letters are passed to `output_operand' so that
3097 the PRINT_OPERAND macro can define them. */
3098 else if (ISALPHA (*p))
3099 {
3100 int letter = *p++;
3101 c = atoi (p);
3102
3103 if (! ISDIGIT (*p))
3104 output_operand_lossage ("operand number missing after %%-letter");
3105 else if (this_is_asm_operands
3106 && (c < 0 || (unsigned int) c >= insn_noperands))
3107 output_operand_lossage ("operand number out of range");
3108 else if (letter == 'l')
3109 output_asm_label (operands[c]);
3110 else if (letter == 'a')
3111 output_address (operands[c]);
3112 else if (letter == 'c')
3113 {
3114 if (CONSTANT_ADDRESS_P (operands[c]))
3115 output_addr_const (asm_out_file, operands[c]);
3116 else
3117 output_operand (operands[c], 'c');
3118 }
3119 else if (letter == 'n')
3120 {
3121 if (GET_CODE (operands[c]) == CONST_INT)
3122 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3123 - INTVAL (operands[c]));
3124 else
3125 {
3126 putc ('-', asm_out_file);
3127 output_addr_const (asm_out_file, operands[c]);
3128 }
3129 }
3130 else
3131 output_operand (operands[c], letter);
3132
3133 if (!opoutput[c])
3134 oporder[ops++] = c;
3135 opoutput[c] = 1;
3136
3137 while (ISDIGIT (c = *p))
3138 p++;
3139 }
3140 /* % followed by a digit outputs an operand the default way. */
3141 else if (ISDIGIT (*p))
3142 {
3143 c = atoi (p);
3144 if (this_is_asm_operands
3145 && (c < 0 || (unsigned int) c >= insn_noperands))
3146 output_operand_lossage ("operand number out of range");
3147 else
3148 output_operand (operands[c], 0);
3149
3150 if (!opoutput[c])
3151 oporder[ops++] = c;
3152 opoutput[c] = 1;
3153
3154 while (ISDIGIT (c = *p))
3155 p++;
3156 }
3157 /* % followed by punctuation: output something for that
3158 punctuation character alone, with no operand.
3159 The PRINT_OPERAND macro decides what is actually done. */
3160 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3161 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3162 output_operand (NULL_RTX, *p++);
3163 #endif
3164 else
3165 output_operand_lossage ("invalid %%-code");
3166 break;
3167
3168 default:
3169 putc (c, asm_out_file);
3170 }
3171
3172 /* Write out the variable names for operands, if we know them. */
3173 if (flag_verbose_asm)
3174 output_asm_operand_names (operands, oporder, ops);
3175 if (flag_print_asm_name)
3176 output_asm_name ();
3177
3178 putc ('\n', asm_out_file);
3179 }
3180 \f
3181 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3182
3183 void
3184 output_asm_label (rtx x)
3185 {
3186 char buf[256];
3187
3188 if (GET_CODE (x) == LABEL_REF)
3189 x = XEXP (x, 0);
3190 if (LABEL_P (x)
3191 || (NOTE_P (x)
3192 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3193 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3194 else
3195 output_operand_lossage ("`%%l' operand isn't a label");
3196
3197 assemble_name (asm_out_file, buf);
3198 }
3199
3200 /* Print operand X using machine-dependent assembler syntax.
3201 The macro PRINT_OPERAND is defined just to control this function.
3202 CODE is a non-digit that preceded the operand-number in the % spec,
3203 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3204 between the % and the digits.
3205 When CODE is a non-letter, X is 0.
3206
3207 The meanings of the letters are machine-dependent and controlled
3208 by PRINT_OPERAND. */
3209
3210 static void
3211 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3212 {
3213 if (x && GET_CODE (x) == SUBREG)
3214 x = alter_subreg (&x);
3215
3216 /* If X is a pseudo-register, abort now rather than writing trash to the
3217 assembler file. */
3218
3219 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3220 abort ();
3221
3222 PRINT_OPERAND (asm_out_file, x, code);
3223 }
3224
3225 /* Print a memory reference operand for address X
3226 using machine-dependent assembler syntax.
3227 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3228
3229 void
3230 output_address (rtx x)
3231 {
3232 walk_alter_subreg (&x);
3233 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3234 }
3235 \f
3236 /* Print an integer constant expression in assembler syntax.
3237 Addition and subtraction are the only arithmetic
3238 that may appear in these expressions. */
3239
3240 void
3241 output_addr_const (FILE *file, rtx x)
3242 {
3243 char buf[256];
3244
3245 restart:
3246 switch (GET_CODE (x))
3247 {
3248 case PC:
3249 putc ('.', file);
3250 break;
3251
3252 case SYMBOL_REF:
3253 if (SYMBOL_REF_DECL (x))
3254 mark_decl_referenced (SYMBOL_REF_DECL (x));
3255 #ifdef ASM_OUTPUT_SYMBOL_REF
3256 ASM_OUTPUT_SYMBOL_REF (file, x);
3257 #else
3258 assemble_name (file, XSTR (x, 0));
3259 #endif
3260 break;
3261
3262 case LABEL_REF:
3263 x = XEXP (x, 0);
3264 /* Fall through. */
3265 case CODE_LABEL:
3266 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3267 #ifdef ASM_OUTPUT_LABEL_REF
3268 ASM_OUTPUT_LABEL_REF (file, buf);
3269 #else
3270 assemble_name (file, buf);
3271 #endif
3272 break;
3273
3274 case CONST_INT:
3275 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3276 break;
3277
3278 case CONST:
3279 /* This used to output parentheses around the expression,
3280 but that does not work on the 386 (either ATT or BSD assembler). */
3281 output_addr_const (file, XEXP (x, 0));
3282 break;
3283
3284 case CONST_DOUBLE:
3285 if (GET_MODE (x) == VOIDmode)
3286 {
3287 /* We can use %d if the number is one word and positive. */
3288 if (CONST_DOUBLE_HIGH (x))
3289 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3290 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3291 else if (CONST_DOUBLE_LOW (x) < 0)
3292 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3293 else
3294 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3295 }
3296 else
3297 /* We can't handle floating point constants;
3298 PRINT_OPERAND must handle them. */
3299 output_operand_lossage ("floating constant misused");
3300 break;
3301
3302 case PLUS:
3303 /* Some assemblers need integer constants to appear last (eg masm). */
3304 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3305 {
3306 output_addr_const (file, XEXP (x, 1));
3307 if (INTVAL (XEXP (x, 0)) >= 0)
3308 fprintf (file, "+");
3309 output_addr_const (file, XEXP (x, 0));
3310 }
3311 else
3312 {
3313 output_addr_const (file, XEXP (x, 0));
3314 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3315 || INTVAL (XEXP (x, 1)) >= 0)
3316 fprintf (file, "+");
3317 output_addr_const (file, XEXP (x, 1));
3318 }
3319 break;
3320
3321 case MINUS:
3322 /* Avoid outputting things like x-x or x+5-x,
3323 since some assemblers can't handle that. */
3324 x = simplify_subtraction (x);
3325 if (GET_CODE (x) != MINUS)
3326 goto restart;
3327
3328 output_addr_const (file, XEXP (x, 0));
3329 fprintf (file, "-");
3330 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3331 || GET_CODE (XEXP (x, 1)) == PC
3332 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3333 output_addr_const (file, XEXP (x, 1));
3334 else
3335 {
3336 fputs (targetm.asm_out.open_paren, file);
3337 output_addr_const (file, XEXP (x, 1));
3338 fputs (targetm.asm_out.close_paren, file);
3339 }
3340 break;
3341
3342 case ZERO_EXTEND:
3343 case SIGN_EXTEND:
3344 case SUBREG:
3345 output_addr_const (file, XEXP (x, 0));
3346 break;
3347
3348 default:
3349 #ifdef OUTPUT_ADDR_CONST_EXTRA
3350 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3351 break;
3352
3353 fail:
3354 #endif
3355 output_operand_lossage ("invalid expression as operand");
3356 }
3357 }
3358 \f
3359 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3360 %R prints the value of REGISTER_PREFIX.
3361 %L prints the value of LOCAL_LABEL_PREFIX.
3362 %U prints the value of USER_LABEL_PREFIX.
3363 %I prints the value of IMMEDIATE_PREFIX.
3364 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3365 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3366
3367 We handle alternate assembler dialects here, just like output_asm_insn. */
3368
3369 void
3370 asm_fprintf (FILE *file, const char *p, ...)
3371 {
3372 char buf[10];
3373 char *q, c;
3374 va_list argptr;
3375
3376 va_start (argptr, p);
3377
3378 buf[0] = '%';
3379
3380 while ((c = *p++))
3381 switch (c)
3382 {
3383 #ifdef ASSEMBLER_DIALECT
3384 case '{':
3385 {
3386 int i;
3387
3388 /* If we want the first dialect, do nothing. Otherwise, skip
3389 DIALECT_NUMBER of strings ending with '|'. */
3390 for (i = 0; i < dialect_number; i++)
3391 {
3392 while (*p && *p++ != '|')
3393 ;
3394
3395 if (*p == '|')
3396 p++;
3397 }
3398 }
3399 break;
3400
3401 case '|':
3402 /* Skip to close brace. */
3403 while (*p && *p++ != '}')
3404 ;
3405 break;
3406
3407 case '}':
3408 break;
3409 #endif
3410
3411 case '%':
3412 c = *p++;
3413 q = &buf[1];
3414 while (strchr ("-+ #0", c))
3415 {
3416 *q++ = c;
3417 c = *p++;
3418 }
3419 while (ISDIGIT (c) || c == '.')
3420 {
3421 *q++ = c;
3422 c = *p++;
3423 }
3424 switch (c)
3425 {
3426 case '%':
3427 putc ('%', file);
3428 break;
3429
3430 case 'd': case 'i': case 'u':
3431 case 'x': case 'X': case 'o':
3432 case 'c':
3433 *q++ = c;
3434 *q = 0;
3435 fprintf (file, buf, va_arg (argptr, int));
3436 break;
3437
3438 case 'w':
3439 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3440 'o' cases, but we do not check for those cases. It
3441 means that the value is a HOST_WIDE_INT, which may be
3442 either `long' or `long long'. */
3443 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3444 q += strlen (HOST_WIDE_INT_PRINT);
3445 *q++ = *p++;
3446 *q = 0;
3447 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3448 break;
3449
3450 case 'l':
3451 *q++ = c;
3452 #ifdef HAVE_LONG_LONG
3453 if (*p == 'l')
3454 {
3455 *q++ = *p++;
3456 *q++ = *p++;
3457 *q = 0;
3458 fprintf (file, buf, va_arg (argptr, long long));
3459 }
3460 else
3461 #endif
3462 {
3463 *q++ = *p++;
3464 *q = 0;
3465 fprintf (file, buf, va_arg (argptr, long));
3466 }
3467
3468 break;
3469
3470 case 's':
3471 *q++ = c;
3472 *q = 0;
3473 fprintf (file, buf, va_arg (argptr, char *));
3474 break;
3475
3476 case 'O':
3477 #ifdef ASM_OUTPUT_OPCODE
3478 ASM_OUTPUT_OPCODE (asm_out_file, p);
3479 #endif
3480 break;
3481
3482 case 'R':
3483 #ifdef REGISTER_PREFIX
3484 fprintf (file, "%s", REGISTER_PREFIX);
3485 #endif
3486 break;
3487
3488 case 'I':
3489 #ifdef IMMEDIATE_PREFIX
3490 fprintf (file, "%s", IMMEDIATE_PREFIX);
3491 #endif
3492 break;
3493
3494 case 'L':
3495 #ifdef LOCAL_LABEL_PREFIX
3496 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3497 #endif
3498 break;
3499
3500 case 'U':
3501 fputs (user_label_prefix, file);
3502 break;
3503
3504 #ifdef ASM_FPRINTF_EXTENSIONS
3505 /* Uppercase letters are reserved for general use by asm_fprintf
3506 and so are not available to target specific code. In order to
3507 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3508 they are defined here. As they get turned into real extensions
3509 to asm_fprintf they should be removed from this list. */
3510 case 'A': case 'B': case 'C': case 'D': case 'E':
3511 case 'F': case 'G': case 'H': case 'J': case 'K':
3512 case 'M': case 'N': case 'P': case 'Q': case 'S':
3513 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3514 break;
3515
3516 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3517 #endif
3518 default:
3519 abort ();
3520 }
3521 break;
3522
3523 default:
3524 putc (c, file);
3525 }
3526 va_end (argptr);
3527 }
3528 \f
3529 /* Split up a CONST_DOUBLE or integer constant rtx
3530 into two rtx's for single words,
3531 storing in *FIRST the word that comes first in memory in the target
3532 and in *SECOND the other. */
3533
3534 void
3535 split_double (rtx value, rtx *first, rtx *second)
3536 {
3537 if (GET_CODE (value) == CONST_INT)
3538 {
3539 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3540 {
3541 /* In this case the CONST_INT holds both target words.
3542 Extract the bits from it into two word-sized pieces.
3543 Sign extend each half to HOST_WIDE_INT. */
3544 unsigned HOST_WIDE_INT low, high;
3545 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3546
3547 /* Set sign_bit to the most significant bit of a word. */
3548 sign_bit = 1;
3549 sign_bit <<= BITS_PER_WORD - 1;
3550
3551 /* Set mask so that all bits of the word are set. We could
3552 have used 1 << BITS_PER_WORD instead of basing the
3553 calculation on sign_bit. However, on machines where
3554 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3555 compiler warning, even though the code would never be
3556 executed. */
3557 mask = sign_bit << 1;
3558 mask--;
3559
3560 /* Set sign_extend as any remaining bits. */
3561 sign_extend = ~mask;
3562
3563 /* Pick the lower word and sign-extend it. */
3564 low = INTVAL (value);
3565 low &= mask;
3566 if (low & sign_bit)
3567 low |= sign_extend;
3568
3569 /* Pick the higher word, shifted to the least significant
3570 bits, and sign-extend it. */
3571 high = INTVAL (value);
3572 high >>= BITS_PER_WORD - 1;
3573 high >>= 1;
3574 high &= mask;
3575 if (high & sign_bit)
3576 high |= sign_extend;
3577
3578 /* Store the words in the target machine order. */
3579 if (WORDS_BIG_ENDIAN)
3580 {
3581 *first = GEN_INT (high);
3582 *second = GEN_INT (low);
3583 }
3584 else
3585 {
3586 *first = GEN_INT (low);
3587 *second = GEN_INT (high);
3588 }
3589 }
3590 else
3591 {
3592 /* The rule for using CONST_INT for a wider mode
3593 is that we regard the value as signed.
3594 So sign-extend it. */
3595 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3596 if (WORDS_BIG_ENDIAN)
3597 {
3598 *first = high;
3599 *second = value;
3600 }
3601 else
3602 {
3603 *first = value;
3604 *second = high;
3605 }
3606 }
3607 }
3608 else if (GET_CODE (value) != CONST_DOUBLE)
3609 {
3610 if (WORDS_BIG_ENDIAN)
3611 {
3612 *first = const0_rtx;
3613 *second = value;
3614 }
3615 else
3616 {
3617 *first = value;
3618 *second = const0_rtx;
3619 }
3620 }
3621 else if (GET_MODE (value) == VOIDmode
3622 /* This is the old way we did CONST_DOUBLE integers. */
3623 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3624 {
3625 /* In an integer, the words are defined as most and least significant.
3626 So order them by the target's convention. */
3627 if (WORDS_BIG_ENDIAN)
3628 {
3629 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3630 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3631 }
3632 else
3633 {
3634 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3635 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3636 }
3637 }
3638 else
3639 {
3640 REAL_VALUE_TYPE r;
3641 long l[2];
3642 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3643
3644 /* Note, this converts the REAL_VALUE_TYPE to the target's
3645 format, splits up the floating point double and outputs
3646 exactly 32 bits of it into each of l[0] and l[1] --
3647 not necessarily BITS_PER_WORD bits. */
3648 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3649
3650 /* If 32 bits is an entire word for the target, but not for the host,
3651 then sign-extend on the host so that the number will look the same
3652 way on the host that it would on the target. See for instance
3653 simplify_unary_operation. The #if is needed to avoid compiler
3654 warnings. */
3655
3656 #if HOST_BITS_PER_LONG > 32
3657 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3658 {
3659 if (l[0] & ((long) 1 << 31))
3660 l[0] |= ((long) (-1) << 32);
3661 if (l[1] & ((long) 1 << 31))
3662 l[1] |= ((long) (-1) << 32);
3663 }
3664 #endif
3665
3666 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3667 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3668 }
3669 }
3670 \f
3671 /* Return nonzero if this function has no function calls. */
3672
3673 int
3674 leaf_function_p (void)
3675 {
3676 rtx insn;
3677 rtx link;
3678
3679 if (current_function_profile || profile_arc_flag)
3680 return 0;
3681
3682 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3683 {
3684 if (CALL_P (insn)
3685 && ! SIBLING_CALL_P (insn))
3686 return 0;
3687 if (NONJUMP_INSN_P (insn)
3688 && GET_CODE (PATTERN (insn)) == SEQUENCE
3689 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3690 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3691 return 0;
3692 }
3693 for (link = current_function_epilogue_delay_list;
3694 link;
3695 link = XEXP (link, 1))
3696 {
3697 insn = XEXP (link, 0);
3698
3699 if (CALL_P (insn)
3700 && ! SIBLING_CALL_P (insn))
3701 return 0;
3702 if (NONJUMP_INSN_P (insn)
3703 && GET_CODE (PATTERN (insn)) == SEQUENCE
3704 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3705 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3706 return 0;
3707 }
3708
3709 return 1;
3710 }
3711
3712 /* Return 1 if branch is a forward branch.
3713 Uses insn_shuid array, so it works only in the final pass. May be used by
3714 output templates to customary add branch prediction hints.
3715 */
3716 int
3717 final_forward_branch_p (rtx insn)
3718 {
3719 int insn_id, label_id;
3720 if (!uid_shuid)
3721 abort ();
3722 insn_id = INSN_SHUID (insn);
3723 label_id = INSN_SHUID (JUMP_LABEL (insn));
3724 /* We've hit some insns that does not have id information available. */
3725 if (!insn_id || !label_id)
3726 abort ();
3727 return insn_id < label_id;
3728 }
3729
3730 /* On some machines, a function with no call insns
3731 can run faster if it doesn't create its own register window.
3732 When output, the leaf function should use only the "output"
3733 registers. Ordinarily, the function would be compiled to use
3734 the "input" registers to find its arguments; it is a candidate
3735 for leaf treatment if it uses only the "input" registers.
3736 Leaf function treatment means renumbering so the function
3737 uses the "output" registers instead. */
3738
3739 #ifdef LEAF_REGISTERS
3740
3741 /* Return 1 if this function uses only the registers that can be
3742 safely renumbered. */
3743
3744 int
3745 only_leaf_regs_used (void)
3746 {
3747 int i;
3748 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3749
3750 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3751 if ((regs_ever_live[i] || global_regs[i])
3752 && ! permitted_reg_in_leaf_functions[i])
3753 return 0;
3754
3755 if (current_function_uses_pic_offset_table
3756 && pic_offset_table_rtx != 0
3757 && REG_P (pic_offset_table_rtx)
3758 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3759 return 0;
3760
3761 return 1;
3762 }
3763
3764 /* Scan all instructions and renumber all registers into those
3765 available in leaf functions. */
3766
3767 static void
3768 leaf_renumber_regs (rtx first)
3769 {
3770 rtx insn;
3771
3772 /* Renumber only the actual patterns.
3773 The reg-notes can contain frame pointer refs,
3774 and renumbering them could crash, and should not be needed. */
3775 for (insn = first; insn; insn = NEXT_INSN (insn))
3776 if (INSN_P (insn))
3777 leaf_renumber_regs_insn (PATTERN (insn));
3778 for (insn = current_function_epilogue_delay_list;
3779 insn;
3780 insn = XEXP (insn, 1))
3781 if (INSN_P (XEXP (insn, 0)))
3782 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3783 }
3784
3785 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3786 available in leaf functions. */
3787
3788 void
3789 leaf_renumber_regs_insn (rtx in_rtx)
3790 {
3791 int i, j;
3792 const char *format_ptr;
3793
3794 if (in_rtx == 0)
3795 return;
3796
3797 /* Renumber all input-registers into output-registers.
3798 renumbered_regs would be 1 for an output-register;
3799 they */
3800
3801 if (REG_P (in_rtx))
3802 {
3803 int newreg;
3804
3805 /* Don't renumber the same reg twice. */
3806 if (in_rtx->used)
3807 return;
3808
3809 newreg = REGNO (in_rtx);
3810 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3811 to reach here as part of a REG_NOTE. */
3812 if (newreg >= FIRST_PSEUDO_REGISTER)
3813 {
3814 in_rtx->used = 1;
3815 return;
3816 }
3817 newreg = LEAF_REG_REMAP (newreg);
3818 if (newreg < 0)
3819 abort ();
3820 regs_ever_live[REGNO (in_rtx)] = 0;
3821 regs_ever_live[newreg] = 1;
3822 REGNO (in_rtx) = newreg;
3823 in_rtx->used = 1;
3824 }
3825
3826 if (INSN_P (in_rtx))
3827 {
3828 /* Inside a SEQUENCE, we find insns.
3829 Renumber just the patterns of these insns,
3830 just as we do for the top-level insns. */
3831 leaf_renumber_regs_insn (PATTERN (in_rtx));
3832 return;
3833 }
3834
3835 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3836
3837 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3838 switch (*format_ptr++)
3839 {
3840 case 'e':
3841 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3842 break;
3843
3844 case 'E':
3845 if (NULL != XVEC (in_rtx, i))
3846 {
3847 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3848 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3849 }
3850 break;
3851
3852 case 'S':
3853 case 's':
3854 case '0':
3855 case 'i':
3856 case 'w':
3857 case 'n':
3858 case 'u':
3859 break;
3860
3861 default:
3862 abort ();
3863 }
3864 }
3865 #endif
3866
3867
3868 /* When -gused is used, emit debug info for only used symbols. But in
3869 addition to the standard intercepted debug_hooks there are some direct
3870 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3871 Those routines may also be called from a higher level intercepted routine. So
3872 to prevent recording data for an inner call to one of these for an intercept,
3873 we maintain an intercept nesting counter (debug_nesting). We only save the
3874 intercepted arguments if the nesting is 1. */
3875 int debug_nesting = 0;
3876
3877 static tree *symbol_queue;
3878 int symbol_queue_index = 0;
3879 static int symbol_queue_size = 0;
3880
3881 /* Generate the symbols for any queued up type symbols we encountered
3882 while generating the type info for some originally used symbol.
3883 This might generate additional entries in the queue. Only when
3884 the nesting depth goes to 0 is this routine called. */
3885
3886 void
3887 debug_flush_symbol_queue (void)
3888 {
3889 int i;
3890
3891 /* Make sure that additionally queued items are not flushed
3892 prematurely. */
3893
3894 ++debug_nesting;
3895
3896 for (i = 0; i < symbol_queue_index; ++i)
3897 {
3898 /* If we pushed queued symbols then such symbols are must be
3899 output no matter what anyone else says. Specifically,
3900 we need to make sure dbxout_symbol() thinks the symbol was
3901 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3902 which may be set for outside reasons. */
3903 int saved_tree_used = TREE_USED (symbol_queue[i]);
3904 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3905 TREE_USED (symbol_queue[i]) = 1;
3906 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3907
3908 #ifdef DBX_DEBUGGING_INFO
3909 dbxout_symbol (symbol_queue[i], 0);
3910 #endif
3911
3912 TREE_USED (symbol_queue[i]) = saved_tree_used;
3913 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3914 }
3915
3916 symbol_queue_index = 0;
3917 --debug_nesting;
3918 }
3919
3920 /* Queue a type symbol needed as part of the definition of a decl
3921 symbol. These symbols are generated when debug_flush_symbol_queue()
3922 is called. */
3923
3924 void
3925 debug_queue_symbol (tree decl)
3926 {
3927 if (symbol_queue_index >= symbol_queue_size)
3928 {
3929 symbol_queue_size += 10;
3930 symbol_queue = xrealloc (symbol_queue,
3931 symbol_queue_size * sizeof (tree));
3932 }
3933
3934 symbol_queue[symbol_queue_index++] = decl;
3935 }
3936
3937 /* Free symbol queue. */
3938 void
3939 debug_free_queue (void)
3940 {
3941 if (symbol_queue)
3942 {
3943 free (symbol_queue);
3944 symbol_queue = NULL;
3945 symbol_queue_size = 0;
3946 }
3947 }