dojump.h: New header file.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49 #include "hash-set.h"
50 #include "machmode.h"
51 #include "vec.h"
52 #include "double-int.h"
53 #include "input.h"
54 #include "alias.h"
55 #include "symtab.h"
56 #include "wide-int.h"
57 #include "inchash.h"
58 #include "tree.h"
59 #include "varasm.h"
60 #include "hard-reg-set.h"
61 #include "rtl.h"
62 #include "tm_p.h"
63 #include "regs.h"
64 #include "insn-config.h"
65 #include "insn-attr.h"
66 #include "recog.h"
67 #include "conditions.h"
68 #include "flags.h"
69 #include "output.h"
70 #include "except.h"
71 #include "function.h"
72 #include "rtl-error.h"
73 #include "toplev.h" /* exact_log2, floor_log2 */
74 #include "reload.h"
75 #include "intl.h"
76 #include "predict.h"
77 #include "dominance.h"
78 #include "cfg.h"
79 #include "cfgrtl.h"
80 #include "basic-block.h"
81 #include "target.h"
82 #include "targhooks.h"
83 #include "debug.h"
84 #include "hashtab.h"
85 #include "statistics.h"
86 #include "real.h"
87 #include "fixed-value.h"
88 #include "expmed.h"
89 #include "dojump.h"
90 #include "explow.h"
91 #include "calls.h"
92 #include "emit-rtl.h"
93 #include "stmt.h"
94 #include "expr.h"
95 #include "tree-pass.h"
96 #include "hash-map.h"
97 #include "is-a.h"
98 #include "plugin-api.h"
99 #include "ipa-ref.h"
100 #include "cgraph.h"
101 #include "tree-ssa.h"
102 #include "coverage.h"
103 #include "df.h"
104 #include "ggc.h"
105 #include "cfgloop.h"
106 #include "params.h"
107 #include "tree-pretty-print.h" /* for dump_function_header */
108 #include "asan.h"
109 #include "wide-int-print.h"
110 #include "rtl-iter.h"
111
112 #ifdef XCOFF_DEBUGGING_INFO
113 #include "xcoffout.h" /* Needed for external data
114 declarations for e.g. AIX 4.x. */
115 #endif
116
117 #include "dwarf2out.h"
118
119 #ifdef DBX_DEBUGGING_INFO
120 #include "dbxout.h"
121 #endif
122
123 #ifdef SDB_DEBUGGING_INFO
124 #include "sdbout.h"
125 #endif
126
127 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
128 So define a null default for it to save conditionalization later. */
129 #ifndef CC_STATUS_INIT
130 #define CC_STATUS_INIT
131 #endif
132
133 /* Is the given character a logical line separator for the assembler? */
134 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
135 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
136 #endif
137
138 #ifndef JUMP_TABLES_IN_TEXT_SECTION
139 #define JUMP_TABLES_IN_TEXT_SECTION 0
140 #endif
141
142 /* Bitflags used by final_scan_insn. */
143 #define SEEN_NOTE 1
144 #define SEEN_EMITTED 2
145
146 /* Last insn processed by final_scan_insn. */
147 static rtx_insn *debug_insn;
148 rtx_insn *current_output_insn;
149
150 /* Line number of last NOTE. */
151 static int last_linenum;
152
153 /* Last discriminator written to assembly. */
154 static int last_discriminator;
155
156 /* Discriminator of current block. */
157 static int discriminator;
158
159 /* Highest line number in current block. */
160 static int high_block_linenum;
161
162 /* Likewise for function. */
163 static int high_function_linenum;
164
165 /* Filename of last NOTE. */
166 static const char *last_filename;
167
168 /* Override filename and line number. */
169 static const char *override_filename;
170 static int override_linenum;
171
172 /* Whether to force emission of a line note before the next insn. */
173 static bool force_source_line = false;
174
175 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
176
177 /* Nonzero while outputting an `asm' with operands.
178 This means that inconsistencies are the user's fault, so don't die.
179 The precise value is the insn being output, to pass to error_for_asm. */
180 const rtx_insn *this_is_asm_operands;
181
182 /* Number of operands of this insn, for an `asm' with operands. */
183 static unsigned int insn_noperands;
184
185 /* Compare optimization flag. */
186
187 static rtx last_ignored_compare = 0;
188
189 /* Assign a unique number to each insn that is output.
190 This can be used to generate unique local labels. */
191
192 static int insn_counter = 0;
193
194 #ifdef HAVE_cc0
195 /* This variable contains machine-dependent flags (defined in tm.h)
196 set and examined by output routines
197 that describe how to interpret the condition codes properly. */
198
199 CC_STATUS cc_status;
200
201 /* During output of an insn, this contains a copy of cc_status
202 from before the insn. */
203
204 CC_STATUS cc_prev_status;
205 #endif
206
207 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
208
209 static int block_depth;
210
211 /* Nonzero if have enabled APP processing of our assembler output. */
212
213 static int app_on;
214
215 /* If we are outputting an insn sequence, this contains the sequence rtx.
216 Zero otherwise. */
217
218 rtx_sequence *final_sequence;
219
220 #ifdef ASSEMBLER_DIALECT
221
222 /* Number of the assembler dialect to use, starting at 0. */
223 static int dialect_number;
224 #endif
225
226 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
227 rtx current_insn_predicate;
228
229 /* True if printing into -fdump-final-insns= dump. */
230 bool final_insns_dump_p;
231
232 /* True if profile_function should be called, but hasn't been called yet. */
233 static bool need_profile_function;
234
235 static int asm_insn_count (rtx);
236 static void profile_function (FILE *);
237 static void profile_after_prologue (FILE *);
238 static bool notice_source_line (rtx_insn *, bool *);
239 static rtx walk_alter_subreg (rtx *, bool *);
240 static void output_asm_name (void);
241 static void output_alternate_entry_point (FILE *, rtx_insn *);
242 static tree get_mem_expr_from_op (rtx, int *);
243 static void output_asm_operand_names (rtx *, int *, int);
244 #ifdef LEAF_REGISTERS
245 static void leaf_renumber_regs (rtx_insn *);
246 #endif
247 #ifdef HAVE_cc0
248 static int alter_cond (rtx);
249 #endif
250 #ifndef ADDR_VEC_ALIGN
251 static int final_addr_vec_align (rtx);
252 #endif
253 static int align_fuzz (rtx, rtx, int, unsigned);
254 static void collect_fn_hard_reg_usage (void);
255 static tree get_call_fndecl (rtx_insn *);
256 \f
257 /* Initialize data in final at the beginning of a compilation. */
258
259 void
260 init_final (const char *filename ATTRIBUTE_UNUSED)
261 {
262 app_on = 0;
263 final_sequence = 0;
264
265 #ifdef ASSEMBLER_DIALECT
266 dialect_number = ASSEMBLER_DIALECT;
267 #endif
268 }
269
270 /* Default target function prologue and epilogue assembler output.
271
272 If not overridden for epilogue code, then the function body itself
273 contains return instructions wherever needed. */
274 void
275 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
276 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
277 {
278 }
279
280 void
281 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
282 tree decl ATTRIBUTE_UNUSED,
283 bool new_is_cold ATTRIBUTE_UNUSED)
284 {
285 }
286
287 /* Default target hook that outputs nothing to a stream. */
288 void
289 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
290 {
291 }
292
293 /* Enable APP processing of subsequent output.
294 Used before the output from an `asm' statement. */
295
296 void
297 app_enable (void)
298 {
299 if (! app_on)
300 {
301 fputs (ASM_APP_ON, asm_out_file);
302 app_on = 1;
303 }
304 }
305
306 /* Disable APP processing of subsequent output.
307 Called from varasm.c before most kinds of output. */
308
309 void
310 app_disable (void)
311 {
312 if (app_on)
313 {
314 fputs (ASM_APP_OFF, asm_out_file);
315 app_on = 0;
316 }
317 }
318 \f
319 /* Return the number of slots filled in the current
320 delayed branch sequence (we don't count the insn needing the
321 delay slot). Zero if not in a delayed branch sequence. */
322
323 #ifdef DELAY_SLOTS
324 int
325 dbr_sequence_length (void)
326 {
327 if (final_sequence != 0)
328 return XVECLEN (final_sequence, 0) - 1;
329 else
330 return 0;
331 }
332 #endif
333 \f
334 /* The next two pages contain routines used to compute the length of an insn
335 and to shorten branches. */
336
337 /* Arrays for insn lengths, and addresses. The latter is referenced by
338 `insn_current_length'. */
339
340 static int *insn_lengths;
341
342 vec<int> insn_addresses_;
343
344 /* Max uid for which the above arrays are valid. */
345 static int insn_lengths_max_uid;
346
347 /* Address of insn being processed. Used by `insn_current_length'. */
348 int insn_current_address;
349
350 /* Address of insn being processed in previous iteration. */
351 int insn_last_address;
352
353 /* known invariant alignment of insn being processed. */
354 int insn_current_align;
355
356 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
357 gives the next following alignment insn that increases the known
358 alignment, or NULL_RTX if there is no such insn.
359 For any alignment obtained this way, we can again index uid_align with
360 its uid to obtain the next following align that in turn increases the
361 alignment, till we reach NULL_RTX; the sequence obtained this way
362 for each insn we'll call the alignment chain of this insn in the following
363 comments. */
364
365 struct label_alignment
366 {
367 short alignment;
368 short max_skip;
369 };
370
371 static rtx *uid_align;
372 static int *uid_shuid;
373 static struct label_alignment *label_align;
374
375 /* Indicate that branch shortening hasn't yet been done. */
376
377 void
378 init_insn_lengths (void)
379 {
380 if (uid_shuid)
381 {
382 free (uid_shuid);
383 uid_shuid = 0;
384 }
385 if (insn_lengths)
386 {
387 free (insn_lengths);
388 insn_lengths = 0;
389 insn_lengths_max_uid = 0;
390 }
391 if (HAVE_ATTR_length)
392 INSN_ADDRESSES_FREE ();
393 if (uid_align)
394 {
395 free (uid_align);
396 uid_align = 0;
397 }
398 }
399
400 /* Obtain the current length of an insn. If branch shortening has been done,
401 get its actual length. Otherwise, use FALLBACK_FN to calculate the
402 length. */
403 static int
404 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
405 {
406 rtx body;
407 int i;
408 int length = 0;
409
410 if (!HAVE_ATTR_length)
411 return 0;
412
413 if (insn_lengths_max_uid > INSN_UID (insn))
414 return insn_lengths[INSN_UID (insn)];
415 else
416 switch (GET_CODE (insn))
417 {
418 case NOTE:
419 case BARRIER:
420 case CODE_LABEL:
421 case DEBUG_INSN:
422 return 0;
423
424 case CALL_INSN:
425 case JUMP_INSN:
426 length = fallback_fn (insn);
427 break;
428
429 case INSN:
430 body = PATTERN (insn);
431 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
432 return 0;
433
434 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
435 length = asm_insn_count (body) * fallback_fn (insn);
436 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
437 for (i = 0; i < seq->len (); i++)
438 length += get_attr_length_1 (seq->insn (i), fallback_fn);
439 else
440 length = fallback_fn (insn);
441 break;
442
443 default:
444 break;
445 }
446
447 #ifdef ADJUST_INSN_LENGTH
448 ADJUST_INSN_LENGTH (insn, length);
449 #endif
450 return length;
451 }
452
453 /* Obtain the current length of an insn. If branch shortening has been done,
454 get its actual length. Otherwise, get its maximum length. */
455 int
456 get_attr_length (rtx_insn *insn)
457 {
458 return get_attr_length_1 (insn, insn_default_length);
459 }
460
461 /* Obtain the current length of an insn. If branch shortening has been done,
462 get its actual length. Otherwise, get its minimum length. */
463 int
464 get_attr_min_length (rtx_insn *insn)
465 {
466 return get_attr_length_1 (insn, insn_min_length);
467 }
468 \f
469 /* Code to handle alignment inside shorten_branches. */
470
471 /* Here is an explanation how the algorithm in align_fuzz can give
472 proper results:
473
474 Call a sequence of instructions beginning with alignment point X
475 and continuing until the next alignment point `block X'. When `X'
476 is used in an expression, it means the alignment value of the
477 alignment point.
478
479 Call the distance between the start of the first insn of block X, and
480 the end of the last insn of block X `IX', for the `inner size of X'.
481 This is clearly the sum of the instruction lengths.
482
483 Likewise with the next alignment-delimited block following X, which we
484 shall call block Y.
485
486 Call the distance between the start of the first insn of block X, and
487 the start of the first insn of block Y `OX', for the `outer size of X'.
488
489 The estimated padding is then OX - IX.
490
491 OX can be safely estimated as
492
493 if (X >= Y)
494 OX = round_up(IX, Y)
495 else
496 OX = round_up(IX, X) + Y - X
497
498 Clearly est(IX) >= real(IX), because that only depends on the
499 instruction lengths, and those being overestimated is a given.
500
501 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
502 we needn't worry about that when thinking about OX.
503
504 When X >= Y, the alignment provided by Y adds no uncertainty factor
505 for branch ranges starting before X, so we can just round what we have.
506 But when X < Y, we don't know anything about the, so to speak,
507 `middle bits', so we have to assume the worst when aligning up from an
508 address mod X to one mod Y, which is Y - X. */
509
510 #ifndef LABEL_ALIGN
511 #define LABEL_ALIGN(LABEL) align_labels_log
512 #endif
513
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517
518 #ifndef LABEL_ALIGN_AFTER_BARRIER
519 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
520 #endif
521
522 #ifndef JUMP_ALIGN
523 #define JUMP_ALIGN(LABEL) align_jumps_log
524 #endif
525
526 int
527 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
528 {
529 return 0;
530 }
531
532 int
533 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
534 {
535 return align_loops_max_skip;
536 }
537
538 int
539 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
540 {
541 return align_labels_max_skip;
542 }
543
544 int
545 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
546 {
547 return align_jumps_max_skip;
548 }
549
550 #ifndef ADDR_VEC_ALIGN
551 static int
552 final_addr_vec_align (rtx addr_vec)
553 {
554 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
555
556 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
557 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
558 return exact_log2 (align);
559
560 }
561
562 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
563 #endif
564
565 #ifndef INSN_LENGTH_ALIGNMENT
566 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
567 #endif
568
569 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
570
571 static int min_labelno, max_labelno;
572
573 #define LABEL_TO_ALIGNMENT(LABEL) \
574 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
575
576 #define LABEL_TO_MAX_SKIP(LABEL) \
577 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
578
579 /* For the benefit of port specific code do this also as a function. */
580
581 int
582 label_to_alignment (rtx label)
583 {
584 if (CODE_LABEL_NUMBER (label) <= max_labelno)
585 return LABEL_TO_ALIGNMENT (label);
586 return 0;
587 }
588
589 int
590 label_to_max_skip (rtx label)
591 {
592 if (CODE_LABEL_NUMBER (label) <= max_labelno)
593 return LABEL_TO_MAX_SKIP (label);
594 return 0;
595 }
596
597 /* The differences in addresses
598 between a branch and its target might grow or shrink depending on
599 the alignment the start insn of the range (the branch for a forward
600 branch or the label for a backward branch) starts out on; if these
601 differences are used naively, they can even oscillate infinitely.
602 We therefore want to compute a 'worst case' address difference that
603 is independent of the alignment the start insn of the range end
604 up on, and that is at least as large as the actual difference.
605 The function align_fuzz calculates the amount we have to add to the
606 naively computed difference, by traversing the part of the alignment
607 chain of the start insn of the range that is in front of the end insn
608 of the range, and considering for each alignment the maximum amount
609 that it might contribute to a size increase.
610
611 For casesi tables, we also want to know worst case minimum amounts of
612 address difference, in case a machine description wants to introduce
613 some common offset that is added to all offsets in a table.
614 For this purpose, align_fuzz with a growth argument of 0 computes the
615 appropriate adjustment. */
616
617 /* Compute the maximum delta by which the difference of the addresses of
618 START and END might grow / shrink due to a different address for start
619 which changes the size of alignment insns between START and END.
620 KNOWN_ALIGN_LOG is the alignment known for START.
621 GROWTH should be ~0 if the objective is to compute potential code size
622 increase, and 0 if the objective is to compute potential shrink.
623 The return value is undefined for any other value of GROWTH. */
624
625 static int
626 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
627 {
628 int uid = INSN_UID (start);
629 rtx align_label;
630 int known_align = 1 << known_align_log;
631 int end_shuid = INSN_SHUID (end);
632 int fuzz = 0;
633
634 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
635 {
636 int align_addr, new_align;
637
638 uid = INSN_UID (align_label);
639 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
640 if (uid_shuid[uid] > end_shuid)
641 break;
642 known_align_log = LABEL_TO_ALIGNMENT (align_label);
643 new_align = 1 << known_align_log;
644 if (new_align < known_align)
645 continue;
646 fuzz += (-align_addr ^ growth) & (new_align - known_align);
647 known_align = new_align;
648 }
649 return fuzz;
650 }
651
652 /* Compute a worst-case reference address of a branch so that it
653 can be safely used in the presence of aligned labels. Since the
654 size of the branch itself is unknown, the size of the branch is
655 not included in the range. I.e. for a forward branch, the reference
656 address is the end address of the branch as known from the previous
657 branch shortening pass, minus a value to account for possible size
658 increase due to alignment. For a backward branch, it is the start
659 address of the branch as known from the current pass, plus a value
660 to account for possible size increase due to alignment.
661 NB.: Therefore, the maximum offset allowed for backward branches needs
662 to exclude the branch size. */
663
664 int
665 insn_current_reference_address (rtx_insn *branch)
666 {
667 rtx dest, seq;
668 int seq_uid;
669
670 if (! INSN_ADDRESSES_SET_P ())
671 return 0;
672
673 seq = NEXT_INSN (PREV_INSN (branch));
674 seq_uid = INSN_UID (seq);
675 if (!JUMP_P (branch))
676 /* This can happen for example on the PA; the objective is to know the
677 offset to address something in front of the start of the function.
678 Thus, we can treat it like a backward branch.
679 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
680 any alignment we'd encounter, so we skip the call to align_fuzz. */
681 return insn_current_address;
682 dest = JUMP_LABEL (branch);
683
684 /* BRANCH has no proper alignment chain set, so use SEQ.
685 BRANCH also has no INSN_SHUID. */
686 if (INSN_SHUID (seq) < INSN_SHUID (dest))
687 {
688 /* Forward branch. */
689 return (insn_last_address + insn_lengths[seq_uid]
690 - align_fuzz (seq, dest, length_unit_log, ~0));
691 }
692 else
693 {
694 /* Backward branch. */
695 return (insn_current_address
696 + align_fuzz (dest, seq, length_unit_log, ~0));
697 }
698 }
699 \f
700 /* Compute branch alignments based on frequency information in the
701 CFG. */
702
703 unsigned int
704 compute_alignments (void)
705 {
706 int log, max_skip, max_log;
707 basic_block bb;
708 int freq_max = 0;
709 int freq_threshold = 0;
710
711 if (label_align)
712 {
713 free (label_align);
714 label_align = 0;
715 }
716
717 max_labelno = max_label_num ();
718 min_labelno = get_first_label_num ();
719 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
720
721 /* If not optimizing or optimizing for size, don't assign any alignments. */
722 if (! optimize || optimize_function_for_size_p (cfun))
723 return 0;
724
725 if (dump_file)
726 {
727 dump_reg_info (dump_file);
728 dump_flow_info (dump_file, TDF_DETAILS);
729 flow_loops_dump (dump_file, NULL, 1);
730 }
731 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
732 FOR_EACH_BB_FN (bb, cfun)
733 if (bb->frequency > freq_max)
734 freq_max = bb->frequency;
735 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
736
737 if (dump_file)
738 fprintf (dump_file, "freq_max: %i\n",freq_max);
739 FOR_EACH_BB_FN (bb, cfun)
740 {
741 rtx_insn *label = BB_HEAD (bb);
742 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
743 edge e;
744 edge_iterator ei;
745
746 if (!LABEL_P (label)
747 || optimize_bb_for_size_p (bb))
748 {
749 if (dump_file)
750 fprintf (dump_file,
751 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
752 bb->index, bb->frequency, bb->loop_father->num,
753 bb_loop_depth (bb));
754 continue;
755 }
756 max_log = LABEL_ALIGN (label);
757 max_skip = targetm.asm_out.label_align_max_skip (label);
758
759 FOR_EACH_EDGE (e, ei, bb->preds)
760 {
761 if (e->flags & EDGE_FALLTHRU)
762 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
763 else
764 branch_frequency += EDGE_FREQUENCY (e);
765 }
766 if (dump_file)
767 {
768 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
769 " %2i fall %4i branch %4i",
770 bb->index, bb->frequency, bb->loop_father->num,
771 bb_loop_depth (bb),
772 fallthru_frequency, branch_frequency);
773 if (!bb->loop_father->inner && bb->loop_father->num)
774 fprintf (dump_file, " inner_loop");
775 if (bb->loop_father->header == bb)
776 fprintf (dump_file, " loop_header");
777 fprintf (dump_file, "\n");
778 }
779
780 /* There are two purposes to align block with no fallthru incoming edge:
781 1) to avoid fetch stalls when branch destination is near cache boundary
782 2) to improve cache efficiency in case the previous block is not executed
783 (so it does not need to be in the cache).
784
785 We to catch first case, we align frequently executed blocks.
786 To catch the second, we align blocks that are executed more frequently
787 than the predecessor and the predecessor is likely to not be executed
788 when function is called. */
789
790 if (!has_fallthru
791 && (branch_frequency > freq_threshold
792 || (bb->frequency > bb->prev_bb->frequency * 10
793 && (bb->prev_bb->frequency
794 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
795 {
796 log = JUMP_ALIGN (label);
797 if (dump_file)
798 fprintf (dump_file, " jump alignment added.\n");
799 if (max_log < log)
800 {
801 max_log = log;
802 max_skip = targetm.asm_out.jump_align_max_skip (label);
803 }
804 }
805 /* In case block is frequent and reached mostly by non-fallthru edge,
806 align it. It is most likely a first block of loop. */
807 if (has_fallthru
808 && !(single_succ_p (bb)
809 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
810 && optimize_bb_for_speed_p (bb)
811 && branch_frequency + fallthru_frequency > freq_threshold
812 && (branch_frequency
813 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
814 {
815 log = LOOP_ALIGN (label);
816 if (dump_file)
817 fprintf (dump_file, " internal loop alignment added.\n");
818 if (max_log < log)
819 {
820 max_log = log;
821 max_skip = targetm.asm_out.loop_align_max_skip (label);
822 }
823 }
824 LABEL_TO_ALIGNMENT (label) = max_log;
825 LABEL_TO_MAX_SKIP (label) = max_skip;
826 }
827
828 loop_optimizer_finalize ();
829 free_dominance_info (CDI_DOMINATORS);
830 return 0;
831 }
832
833 /* Grow the LABEL_ALIGN array after new labels are created. */
834
835 static void
836 grow_label_align (void)
837 {
838 int old = max_labelno;
839 int n_labels;
840 int n_old_labels;
841
842 max_labelno = max_label_num ();
843
844 n_labels = max_labelno - min_labelno + 1;
845 n_old_labels = old - min_labelno + 1;
846
847 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
848
849 /* Range of labels grows monotonically in the function. Failing here
850 means that the initialization of array got lost. */
851 gcc_assert (n_old_labels <= n_labels);
852
853 memset (label_align + n_old_labels, 0,
854 (n_labels - n_old_labels) * sizeof (struct label_alignment));
855 }
856
857 /* Update the already computed alignment information. LABEL_PAIRS is a vector
858 made up of pairs of labels for which the alignment information of the first
859 element will be copied from that of the second element. */
860
861 void
862 update_alignments (vec<rtx> &label_pairs)
863 {
864 unsigned int i = 0;
865 rtx iter, label = NULL_RTX;
866
867 if (max_labelno != max_label_num ())
868 grow_label_align ();
869
870 FOR_EACH_VEC_ELT (label_pairs, i, iter)
871 if (i & 1)
872 {
873 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
874 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
875 }
876 else
877 label = iter;
878 }
879
880 namespace {
881
882 const pass_data pass_data_compute_alignments =
883 {
884 RTL_PASS, /* type */
885 "alignments", /* name */
886 OPTGROUP_NONE, /* optinfo_flags */
887 TV_NONE, /* tv_id */
888 0, /* properties_required */
889 0, /* properties_provided */
890 0, /* properties_destroyed */
891 0, /* todo_flags_start */
892 0, /* todo_flags_finish */
893 };
894
895 class pass_compute_alignments : public rtl_opt_pass
896 {
897 public:
898 pass_compute_alignments (gcc::context *ctxt)
899 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
900 {}
901
902 /* opt_pass methods: */
903 virtual unsigned int execute (function *) { return compute_alignments (); }
904
905 }; // class pass_compute_alignments
906
907 } // anon namespace
908
909 rtl_opt_pass *
910 make_pass_compute_alignments (gcc::context *ctxt)
911 {
912 return new pass_compute_alignments (ctxt);
913 }
914
915 \f
916 /* Make a pass over all insns and compute their actual lengths by shortening
917 any branches of variable length if possible. */
918
919 /* shorten_branches might be called multiple times: for example, the SH
920 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
921 In order to do this, it needs proper length information, which it obtains
922 by calling shorten_branches. This cannot be collapsed with
923 shorten_branches itself into a single pass unless we also want to integrate
924 reorg.c, since the branch splitting exposes new instructions with delay
925 slots. */
926
927 void
928 shorten_branches (rtx_insn *first)
929 {
930 rtx_insn *insn;
931 int max_uid;
932 int i;
933 int max_log;
934 int max_skip;
935 #define MAX_CODE_ALIGN 16
936 rtx_insn *seq;
937 int something_changed = 1;
938 char *varying_length;
939 rtx body;
940 int uid;
941 rtx align_tab[MAX_CODE_ALIGN];
942
943 /* Compute maximum UID and allocate label_align / uid_shuid. */
944 max_uid = get_max_uid ();
945
946 /* Free uid_shuid before reallocating it. */
947 free (uid_shuid);
948
949 uid_shuid = XNEWVEC (int, max_uid);
950
951 if (max_labelno != max_label_num ())
952 grow_label_align ();
953
954 /* Initialize label_align and set up uid_shuid to be strictly
955 monotonically rising with insn order. */
956 /* We use max_log here to keep track of the maximum alignment we want to
957 impose on the next CODE_LABEL (or the current one if we are processing
958 the CODE_LABEL itself). */
959
960 max_log = 0;
961 max_skip = 0;
962
963 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
964 {
965 int log;
966
967 INSN_SHUID (insn) = i++;
968 if (INSN_P (insn))
969 continue;
970
971 if (LABEL_P (insn))
972 {
973 rtx_insn *next;
974 bool next_is_jumptable;
975
976 /* Merge in alignments computed by compute_alignments. */
977 log = LABEL_TO_ALIGNMENT (insn);
978 if (max_log < log)
979 {
980 max_log = log;
981 max_skip = LABEL_TO_MAX_SKIP (insn);
982 }
983
984 next = next_nonnote_insn (insn);
985 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
986 if (!next_is_jumptable)
987 {
988 log = LABEL_ALIGN (insn);
989 if (max_log < log)
990 {
991 max_log = log;
992 max_skip = targetm.asm_out.label_align_max_skip (insn);
993 }
994 }
995 /* ADDR_VECs only take room if read-only data goes into the text
996 section. */
997 if ((JUMP_TABLES_IN_TEXT_SECTION
998 || readonly_data_section == text_section)
999 && next_is_jumptable)
1000 {
1001 log = ADDR_VEC_ALIGN (next);
1002 if (max_log < log)
1003 {
1004 max_log = log;
1005 max_skip = targetm.asm_out.label_align_max_skip (insn);
1006 }
1007 }
1008 LABEL_TO_ALIGNMENT (insn) = max_log;
1009 LABEL_TO_MAX_SKIP (insn) = max_skip;
1010 max_log = 0;
1011 max_skip = 0;
1012 }
1013 else if (BARRIER_P (insn))
1014 {
1015 rtx_insn *label;
1016
1017 for (label = insn; label && ! INSN_P (label);
1018 label = NEXT_INSN (label))
1019 if (LABEL_P (label))
1020 {
1021 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1022 if (max_log < log)
1023 {
1024 max_log = log;
1025 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1026 }
1027 break;
1028 }
1029 }
1030 }
1031 if (!HAVE_ATTR_length)
1032 return;
1033
1034 /* Allocate the rest of the arrays. */
1035 insn_lengths = XNEWVEC (int, max_uid);
1036 insn_lengths_max_uid = max_uid;
1037 /* Syntax errors can lead to labels being outside of the main insn stream.
1038 Initialize insn_addresses, so that we get reproducible results. */
1039 INSN_ADDRESSES_ALLOC (max_uid);
1040
1041 varying_length = XCNEWVEC (char, max_uid);
1042
1043 /* Initialize uid_align. We scan instructions
1044 from end to start, and keep in align_tab[n] the last seen insn
1045 that does an alignment of at least n+1, i.e. the successor
1046 in the alignment chain for an insn that does / has a known
1047 alignment of n. */
1048 uid_align = XCNEWVEC (rtx, max_uid);
1049
1050 for (i = MAX_CODE_ALIGN; --i >= 0;)
1051 align_tab[i] = NULL_RTX;
1052 seq = get_last_insn ();
1053 for (; seq; seq = PREV_INSN (seq))
1054 {
1055 int uid = INSN_UID (seq);
1056 int log;
1057 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1058 uid_align[uid] = align_tab[0];
1059 if (log)
1060 {
1061 /* Found an alignment label. */
1062 uid_align[uid] = align_tab[log];
1063 for (i = log - 1; i >= 0; i--)
1064 align_tab[i] = seq;
1065 }
1066 }
1067
1068 /* When optimizing, we start assuming minimum length, and keep increasing
1069 lengths as we find the need for this, till nothing changes.
1070 When not optimizing, we start assuming maximum lengths, and
1071 do a single pass to update the lengths. */
1072 bool increasing = optimize != 0;
1073
1074 #ifdef CASE_VECTOR_SHORTEN_MODE
1075 if (optimize)
1076 {
1077 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1078 label fields. */
1079
1080 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1081 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1082 int rel;
1083
1084 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1085 {
1086 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1087 int len, i, min, max, insn_shuid;
1088 int min_align;
1089 addr_diff_vec_flags flags;
1090
1091 if (! JUMP_TABLE_DATA_P (insn)
1092 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1093 continue;
1094 pat = PATTERN (insn);
1095 len = XVECLEN (pat, 1);
1096 gcc_assert (len > 0);
1097 min_align = MAX_CODE_ALIGN;
1098 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1099 {
1100 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1101 int shuid = INSN_SHUID (lab);
1102 if (shuid < min)
1103 {
1104 min = shuid;
1105 min_lab = lab;
1106 }
1107 if (shuid > max)
1108 {
1109 max = shuid;
1110 max_lab = lab;
1111 }
1112 if (min_align > LABEL_TO_ALIGNMENT (lab))
1113 min_align = LABEL_TO_ALIGNMENT (lab);
1114 }
1115 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1116 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1117 insn_shuid = INSN_SHUID (insn);
1118 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1119 memset (&flags, 0, sizeof (flags));
1120 flags.min_align = min_align;
1121 flags.base_after_vec = rel > insn_shuid;
1122 flags.min_after_vec = min > insn_shuid;
1123 flags.max_after_vec = max > insn_shuid;
1124 flags.min_after_base = min > rel;
1125 flags.max_after_base = max > rel;
1126 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1127
1128 if (increasing)
1129 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1130 }
1131 }
1132 #endif /* CASE_VECTOR_SHORTEN_MODE */
1133
1134 /* Compute initial lengths, addresses, and varying flags for each insn. */
1135 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1136
1137 for (insn_current_address = 0, insn = first;
1138 insn != 0;
1139 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1140 {
1141 uid = INSN_UID (insn);
1142
1143 insn_lengths[uid] = 0;
1144
1145 if (LABEL_P (insn))
1146 {
1147 int log = LABEL_TO_ALIGNMENT (insn);
1148 if (log)
1149 {
1150 int align = 1 << log;
1151 int new_address = (insn_current_address + align - 1) & -align;
1152 insn_lengths[uid] = new_address - insn_current_address;
1153 }
1154 }
1155
1156 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1157
1158 if (NOTE_P (insn) || BARRIER_P (insn)
1159 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1160 continue;
1161 if (insn->deleted ())
1162 continue;
1163
1164 body = PATTERN (insn);
1165 if (JUMP_TABLE_DATA_P (insn))
1166 {
1167 /* This only takes room if read-only data goes into the text
1168 section. */
1169 if (JUMP_TABLES_IN_TEXT_SECTION
1170 || readonly_data_section == text_section)
1171 insn_lengths[uid] = (XVECLEN (body,
1172 GET_CODE (body) == ADDR_DIFF_VEC)
1173 * GET_MODE_SIZE (GET_MODE (body)));
1174 /* Alignment is handled by ADDR_VEC_ALIGN. */
1175 }
1176 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1177 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1178 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1179 {
1180 int i;
1181 int const_delay_slots;
1182 #ifdef DELAY_SLOTS
1183 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1184 #else
1185 const_delay_slots = 0;
1186 #endif
1187 int (*inner_length_fun) (rtx_insn *)
1188 = const_delay_slots ? length_fun : insn_default_length;
1189 /* Inside a delay slot sequence, we do not do any branch shortening
1190 if the shortening could change the number of delay slots
1191 of the branch. */
1192 for (i = 0; i < body_seq->len (); i++)
1193 {
1194 rtx_insn *inner_insn = body_seq->insn (i);
1195 int inner_uid = INSN_UID (inner_insn);
1196 int inner_length;
1197
1198 if (GET_CODE (body) == ASM_INPUT
1199 || asm_noperands (PATTERN (inner_insn)) >= 0)
1200 inner_length = (asm_insn_count (PATTERN (inner_insn))
1201 * insn_default_length (inner_insn));
1202 else
1203 inner_length = inner_length_fun (inner_insn);
1204
1205 insn_lengths[inner_uid] = inner_length;
1206 if (const_delay_slots)
1207 {
1208 if ((varying_length[inner_uid]
1209 = insn_variable_length_p (inner_insn)) != 0)
1210 varying_length[uid] = 1;
1211 INSN_ADDRESSES (inner_uid) = (insn_current_address
1212 + insn_lengths[uid]);
1213 }
1214 else
1215 varying_length[inner_uid] = 0;
1216 insn_lengths[uid] += inner_length;
1217 }
1218 }
1219 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1220 {
1221 insn_lengths[uid] = length_fun (insn);
1222 varying_length[uid] = insn_variable_length_p (insn);
1223 }
1224
1225 /* If needed, do any adjustment. */
1226 #ifdef ADJUST_INSN_LENGTH
1227 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1228 if (insn_lengths[uid] < 0)
1229 fatal_insn ("negative insn length", insn);
1230 #endif
1231 }
1232
1233 /* Now loop over all the insns finding varying length insns. For each,
1234 get the current insn length. If it has changed, reflect the change.
1235 When nothing changes for a full pass, we are done. */
1236
1237 while (something_changed)
1238 {
1239 something_changed = 0;
1240 insn_current_align = MAX_CODE_ALIGN - 1;
1241 for (insn_current_address = 0, insn = first;
1242 insn != 0;
1243 insn = NEXT_INSN (insn))
1244 {
1245 int new_length;
1246 #ifdef ADJUST_INSN_LENGTH
1247 int tmp_length;
1248 #endif
1249 int length_align;
1250
1251 uid = INSN_UID (insn);
1252
1253 if (LABEL_P (insn))
1254 {
1255 int log = LABEL_TO_ALIGNMENT (insn);
1256
1257 #ifdef CASE_VECTOR_SHORTEN_MODE
1258 /* If the mode of a following jump table was changed, we
1259 may need to update the alignment of this label. */
1260 rtx_insn *next;
1261 bool next_is_jumptable;
1262
1263 next = next_nonnote_insn (insn);
1264 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1265 if ((JUMP_TABLES_IN_TEXT_SECTION
1266 || readonly_data_section == text_section)
1267 && next_is_jumptable)
1268 {
1269 int newlog = ADDR_VEC_ALIGN (next);
1270 if (newlog != log)
1271 {
1272 log = newlog;
1273 LABEL_TO_ALIGNMENT (insn) = log;
1274 something_changed = 1;
1275 }
1276 }
1277 #endif
1278
1279 if (log > insn_current_align)
1280 {
1281 int align = 1 << log;
1282 int new_address= (insn_current_address + align - 1) & -align;
1283 insn_lengths[uid] = new_address - insn_current_address;
1284 insn_current_align = log;
1285 insn_current_address = new_address;
1286 }
1287 else
1288 insn_lengths[uid] = 0;
1289 INSN_ADDRESSES (uid) = insn_current_address;
1290 continue;
1291 }
1292
1293 length_align = INSN_LENGTH_ALIGNMENT (insn);
1294 if (length_align < insn_current_align)
1295 insn_current_align = length_align;
1296
1297 insn_last_address = INSN_ADDRESSES (uid);
1298 INSN_ADDRESSES (uid) = insn_current_address;
1299
1300 #ifdef CASE_VECTOR_SHORTEN_MODE
1301 if (optimize
1302 && JUMP_TABLE_DATA_P (insn)
1303 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1304 {
1305 rtx body = PATTERN (insn);
1306 int old_length = insn_lengths[uid];
1307 rtx_insn *rel_lab =
1308 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1309 rtx min_lab = XEXP (XEXP (body, 2), 0);
1310 rtx max_lab = XEXP (XEXP (body, 3), 0);
1311 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1312 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1313 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1314 rtx_insn *prev;
1315 int rel_align = 0;
1316 addr_diff_vec_flags flags;
1317 machine_mode vec_mode;
1318
1319 /* Avoid automatic aggregate initialization. */
1320 flags = ADDR_DIFF_VEC_FLAGS (body);
1321
1322 /* Try to find a known alignment for rel_lab. */
1323 for (prev = rel_lab;
1324 prev
1325 && ! insn_lengths[INSN_UID (prev)]
1326 && ! (varying_length[INSN_UID (prev)] & 1);
1327 prev = PREV_INSN (prev))
1328 if (varying_length[INSN_UID (prev)] & 2)
1329 {
1330 rel_align = LABEL_TO_ALIGNMENT (prev);
1331 break;
1332 }
1333
1334 /* See the comment on addr_diff_vec_flags in rtl.h for the
1335 meaning of the flags values. base: REL_LAB vec: INSN */
1336 /* Anything after INSN has still addresses from the last
1337 pass; adjust these so that they reflect our current
1338 estimate for this pass. */
1339 if (flags.base_after_vec)
1340 rel_addr += insn_current_address - insn_last_address;
1341 if (flags.min_after_vec)
1342 min_addr += insn_current_address - insn_last_address;
1343 if (flags.max_after_vec)
1344 max_addr += insn_current_address - insn_last_address;
1345 /* We want to know the worst case, i.e. lowest possible value
1346 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1347 its offset is positive, and we have to be wary of code shrink;
1348 otherwise, it is negative, and we have to be vary of code
1349 size increase. */
1350 if (flags.min_after_base)
1351 {
1352 /* If INSN is between REL_LAB and MIN_LAB, the size
1353 changes we are about to make can change the alignment
1354 within the observed offset, therefore we have to break
1355 it up into two parts that are independent. */
1356 if (! flags.base_after_vec && flags.min_after_vec)
1357 {
1358 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1359 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1360 }
1361 else
1362 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1363 }
1364 else
1365 {
1366 if (flags.base_after_vec && ! flags.min_after_vec)
1367 {
1368 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1369 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1370 }
1371 else
1372 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1373 }
1374 /* Likewise, determine the highest lowest possible value
1375 for the offset of MAX_LAB. */
1376 if (flags.max_after_base)
1377 {
1378 if (! flags.base_after_vec && flags.max_after_vec)
1379 {
1380 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1381 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1382 }
1383 else
1384 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1385 }
1386 else
1387 {
1388 if (flags.base_after_vec && ! flags.max_after_vec)
1389 {
1390 max_addr += align_fuzz (max_lab, insn, 0, 0);
1391 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1392 }
1393 else
1394 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1395 }
1396 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1397 max_addr - rel_addr, body);
1398 if (!increasing
1399 || (GET_MODE_SIZE (vec_mode)
1400 >= GET_MODE_SIZE (GET_MODE (body))))
1401 PUT_MODE (body, vec_mode);
1402 if (JUMP_TABLES_IN_TEXT_SECTION
1403 || readonly_data_section == text_section)
1404 {
1405 insn_lengths[uid]
1406 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1407 insn_current_address += insn_lengths[uid];
1408 if (insn_lengths[uid] != old_length)
1409 something_changed = 1;
1410 }
1411
1412 continue;
1413 }
1414 #endif /* CASE_VECTOR_SHORTEN_MODE */
1415
1416 if (! (varying_length[uid]))
1417 {
1418 if (NONJUMP_INSN_P (insn)
1419 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1420 {
1421 int i;
1422
1423 body = PATTERN (insn);
1424 for (i = 0; i < XVECLEN (body, 0); i++)
1425 {
1426 rtx inner_insn = XVECEXP (body, 0, i);
1427 int inner_uid = INSN_UID (inner_insn);
1428
1429 INSN_ADDRESSES (inner_uid) = insn_current_address;
1430
1431 insn_current_address += insn_lengths[inner_uid];
1432 }
1433 }
1434 else
1435 insn_current_address += insn_lengths[uid];
1436
1437 continue;
1438 }
1439
1440 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1441 {
1442 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1443 int i;
1444
1445 body = PATTERN (insn);
1446 new_length = 0;
1447 for (i = 0; i < seqn->len (); i++)
1448 {
1449 rtx_insn *inner_insn = seqn->insn (i);
1450 int inner_uid = INSN_UID (inner_insn);
1451 int inner_length;
1452
1453 INSN_ADDRESSES (inner_uid) = insn_current_address;
1454
1455 /* insn_current_length returns 0 for insns with a
1456 non-varying length. */
1457 if (! varying_length[inner_uid])
1458 inner_length = insn_lengths[inner_uid];
1459 else
1460 inner_length = insn_current_length (inner_insn);
1461
1462 if (inner_length != insn_lengths[inner_uid])
1463 {
1464 if (!increasing || inner_length > insn_lengths[inner_uid])
1465 {
1466 insn_lengths[inner_uid] = inner_length;
1467 something_changed = 1;
1468 }
1469 else
1470 inner_length = insn_lengths[inner_uid];
1471 }
1472 insn_current_address += inner_length;
1473 new_length += inner_length;
1474 }
1475 }
1476 else
1477 {
1478 new_length = insn_current_length (insn);
1479 insn_current_address += new_length;
1480 }
1481
1482 #ifdef ADJUST_INSN_LENGTH
1483 /* If needed, do any adjustment. */
1484 tmp_length = new_length;
1485 ADJUST_INSN_LENGTH (insn, new_length);
1486 insn_current_address += (new_length - tmp_length);
1487 #endif
1488
1489 if (new_length != insn_lengths[uid]
1490 && (!increasing || new_length > insn_lengths[uid]))
1491 {
1492 insn_lengths[uid] = new_length;
1493 something_changed = 1;
1494 }
1495 else
1496 insn_current_address += insn_lengths[uid] - new_length;
1497 }
1498 /* For a non-optimizing compile, do only a single pass. */
1499 if (!increasing)
1500 break;
1501 }
1502
1503 free (varying_length);
1504 }
1505
1506 /* Given the body of an INSN known to be generated by an ASM statement, return
1507 the number of machine instructions likely to be generated for this insn.
1508 This is used to compute its length. */
1509
1510 static int
1511 asm_insn_count (rtx body)
1512 {
1513 const char *templ;
1514
1515 if (GET_CODE (body) == ASM_INPUT)
1516 templ = XSTR (body, 0);
1517 else
1518 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1519
1520 return asm_str_count (templ);
1521 }
1522
1523 /* Return the number of machine instructions likely to be generated for the
1524 inline-asm template. */
1525 int
1526 asm_str_count (const char *templ)
1527 {
1528 int count = 1;
1529
1530 if (!*templ)
1531 return 0;
1532
1533 for (; *templ; templ++)
1534 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1535 || *templ == '\n')
1536 count++;
1537
1538 return count;
1539 }
1540 \f
1541 /* ??? This is probably the wrong place for these. */
1542 /* Structure recording the mapping from source file and directory
1543 names at compile time to those to be embedded in debug
1544 information. */
1545 typedef struct debug_prefix_map
1546 {
1547 const char *old_prefix;
1548 const char *new_prefix;
1549 size_t old_len;
1550 size_t new_len;
1551 struct debug_prefix_map *next;
1552 } debug_prefix_map;
1553
1554 /* Linked list of such structures. */
1555 static debug_prefix_map *debug_prefix_maps;
1556
1557
1558 /* Record a debug file prefix mapping. ARG is the argument to
1559 -fdebug-prefix-map and must be of the form OLD=NEW. */
1560
1561 void
1562 add_debug_prefix_map (const char *arg)
1563 {
1564 debug_prefix_map *map;
1565 const char *p;
1566
1567 p = strchr (arg, '=');
1568 if (!p)
1569 {
1570 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1571 return;
1572 }
1573 map = XNEW (debug_prefix_map);
1574 map->old_prefix = xstrndup (arg, p - arg);
1575 map->old_len = p - arg;
1576 p++;
1577 map->new_prefix = xstrdup (p);
1578 map->new_len = strlen (p);
1579 map->next = debug_prefix_maps;
1580 debug_prefix_maps = map;
1581 }
1582
1583 /* Perform user-specified mapping of debug filename prefixes. Return
1584 the new name corresponding to FILENAME. */
1585
1586 const char *
1587 remap_debug_filename (const char *filename)
1588 {
1589 debug_prefix_map *map;
1590 char *s;
1591 const char *name;
1592 size_t name_len;
1593
1594 for (map = debug_prefix_maps; map; map = map->next)
1595 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1596 break;
1597 if (!map)
1598 return filename;
1599 name = filename + map->old_len;
1600 name_len = strlen (name) + 1;
1601 s = (char *) alloca (name_len + map->new_len);
1602 memcpy (s, map->new_prefix, map->new_len);
1603 memcpy (s + map->new_len, name, name_len);
1604 return ggc_strdup (s);
1605 }
1606 \f
1607 /* Return true if DWARF2 debug info can be emitted for DECL. */
1608
1609 static bool
1610 dwarf2_debug_info_emitted_p (tree decl)
1611 {
1612 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1613 return false;
1614
1615 if (DECL_IGNORED_P (decl))
1616 return false;
1617
1618 return true;
1619 }
1620
1621 /* Return scope resulting from combination of S1 and S2. */
1622 static tree
1623 choose_inner_scope (tree s1, tree s2)
1624 {
1625 if (!s1)
1626 return s2;
1627 if (!s2)
1628 return s1;
1629 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1630 return s1;
1631 return s2;
1632 }
1633
1634 /* Emit lexical block notes needed to change scope from S1 to S2. */
1635
1636 static void
1637 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1638 {
1639 rtx_insn *insn = orig_insn;
1640 tree com = NULL_TREE;
1641 tree ts1 = s1, ts2 = s2;
1642 tree s;
1643
1644 while (ts1 != ts2)
1645 {
1646 gcc_assert (ts1 && ts2);
1647 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1648 ts1 = BLOCK_SUPERCONTEXT (ts1);
1649 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1650 ts2 = BLOCK_SUPERCONTEXT (ts2);
1651 else
1652 {
1653 ts1 = BLOCK_SUPERCONTEXT (ts1);
1654 ts2 = BLOCK_SUPERCONTEXT (ts2);
1655 }
1656 }
1657 com = ts1;
1658
1659 /* Close scopes. */
1660 s = s1;
1661 while (s != com)
1662 {
1663 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1664 NOTE_BLOCK (note) = s;
1665 s = BLOCK_SUPERCONTEXT (s);
1666 }
1667
1668 /* Open scopes. */
1669 s = s2;
1670 while (s != com)
1671 {
1672 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1673 NOTE_BLOCK (insn) = s;
1674 s = BLOCK_SUPERCONTEXT (s);
1675 }
1676 }
1677
1678 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1679 on the scope tree and the newly reordered instructions. */
1680
1681 static void
1682 reemit_insn_block_notes (void)
1683 {
1684 tree cur_block = DECL_INITIAL (cfun->decl);
1685 rtx_insn *insn;
1686 rtx_note *note;
1687
1688 insn = get_insns ();
1689 for (; insn; insn = NEXT_INSN (insn))
1690 {
1691 tree this_block;
1692
1693 /* Prevent lexical blocks from straddling section boundaries. */
1694 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1695 {
1696 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1697 s = BLOCK_SUPERCONTEXT (s))
1698 {
1699 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1700 NOTE_BLOCK (note) = s;
1701 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1702 NOTE_BLOCK (note) = s;
1703 }
1704 }
1705
1706 if (!active_insn_p (insn))
1707 continue;
1708
1709 /* Avoid putting scope notes between jump table and its label. */
1710 if (JUMP_TABLE_DATA_P (insn))
1711 continue;
1712
1713 this_block = insn_scope (insn);
1714 /* For sequences compute scope resulting from merging all scopes
1715 of instructions nested inside. */
1716 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1717 {
1718 int i;
1719
1720 this_block = NULL;
1721 for (i = 0; i < body->len (); i++)
1722 this_block = choose_inner_scope (this_block,
1723 insn_scope (body->insn (i)));
1724 }
1725 if (! this_block)
1726 {
1727 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1728 continue;
1729 else
1730 this_block = DECL_INITIAL (cfun->decl);
1731 }
1732
1733 if (this_block != cur_block)
1734 {
1735 change_scope (insn, cur_block, this_block);
1736 cur_block = this_block;
1737 }
1738 }
1739
1740 /* change_scope emits before the insn, not after. */
1741 note = emit_note (NOTE_INSN_DELETED);
1742 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1743 delete_insn (note);
1744
1745 reorder_blocks ();
1746 }
1747
1748 static const char *some_local_dynamic_name;
1749
1750 /* Locate some local-dynamic symbol still in use by this function
1751 so that we can print its name in local-dynamic base patterns.
1752 Return null if there are no local-dynamic references. */
1753
1754 const char *
1755 get_some_local_dynamic_name ()
1756 {
1757 subrtx_iterator::array_type array;
1758 rtx_insn *insn;
1759
1760 if (some_local_dynamic_name)
1761 return some_local_dynamic_name;
1762
1763 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1764 if (NONDEBUG_INSN_P (insn))
1765 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1766 {
1767 const_rtx x = *iter;
1768 if (GET_CODE (x) == SYMBOL_REF)
1769 {
1770 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1771 return some_local_dynamic_name = XSTR (x, 0);
1772 if (CONSTANT_POOL_ADDRESS_P (x))
1773 iter.substitute (get_pool_constant (x));
1774 }
1775 }
1776
1777 return 0;
1778 }
1779
1780 /* Output assembler code for the start of a function,
1781 and initialize some of the variables in this file
1782 for the new function. The label for the function and associated
1783 assembler pseudo-ops have already been output in `assemble_start_function'.
1784
1785 FIRST is the first insn of the rtl for the function being compiled.
1786 FILE is the file to write assembler code to.
1787 OPTIMIZE_P is nonzero if we should eliminate redundant
1788 test and compare insns. */
1789
1790 void
1791 final_start_function (rtx_insn *first, FILE *file,
1792 int optimize_p ATTRIBUTE_UNUSED)
1793 {
1794 block_depth = 0;
1795
1796 this_is_asm_operands = 0;
1797
1798 need_profile_function = false;
1799
1800 last_filename = LOCATION_FILE (prologue_location);
1801 last_linenum = LOCATION_LINE (prologue_location);
1802 last_discriminator = discriminator = 0;
1803
1804 high_block_linenum = high_function_linenum = last_linenum;
1805
1806 if (flag_sanitize & SANITIZE_ADDRESS)
1807 asan_function_start ();
1808
1809 if (!DECL_IGNORED_P (current_function_decl))
1810 debug_hooks->begin_prologue (last_linenum, last_filename);
1811
1812 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1813 dwarf2out_begin_prologue (0, NULL);
1814
1815 #ifdef LEAF_REG_REMAP
1816 if (crtl->uses_only_leaf_regs)
1817 leaf_renumber_regs (first);
1818 #endif
1819
1820 /* The Sun386i and perhaps other machines don't work right
1821 if the profiling code comes after the prologue. */
1822 if (targetm.profile_before_prologue () && crtl->profile)
1823 {
1824 if (targetm.asm_out.function_prologue
1825 == default_function_pro_epilogue
1826 #ifdef HAVE_prologue
1827 && HAVE_prologue
1828 #endif
1829 )
1830 {
1831 rtx_insn *insn;
1832 for (insn = first; insn; insn = NEXT_INSN (insn))
1833 if (!NOTE_P (insn))
1834 {
1835 insn = NULL;
1836 break;
1837 }
1838 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1839 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1840 break;
1841 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1842 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1843 continue;
1844 else
1845 {
1846 insn = NULL;
1847 break;
1848 }
1849
1850 if (insn)
1851 need_profile_function = true;
1852 else
1853 profile_function (file);
1854 }
1855 else
1856 profile_function (file);
1857 }
1858
1859 /* If debugging, assign block numbers to all of the blocks in this
1860 function. */
1861 if (write_symbols)
1862 {
1863 reemit_insn_block_notes ();
1864 number_blocks (current_function_decl);
1865 /* We never actually put out begin/end notes for the top-level
1866 block in the function. But, conceptually, that block is
1867 always needed. */
1868 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1869 }
1870
1871 if (warn_frame_larger_than
1872 && get_frame_size () > frame_larger_than_size)
1873 {
1874 /* Issue a warning */
1875 warning (OPT_Wframe_larger_than_,
1876 "the frame size of %wd bytes is larger than %wd bytes",
1877 get_frame_size (), frame_larger_than_size);
1878 }
1879
1880 /* First output the function prologue: code to set up the stack frame. */
1881 targetm.asm_out.function_prologue (file, get_frame_size ());
1882
1883 /* If the machine represents the prologue as RTL, the profiling code must
1884 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1885 #ifdef HAVE_prologue
1886 if (! HAVE_prologue)
1887 #endif
1888 profile_after_prologue (file);
1889 }
1890
1891 static void
1892 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1893 {
1894 if (!targetm.profile_before_prologue () && crtl->profile)
1895 profile_function (file);
1896 }
1897
1898 static void
1899 profile_function (FILE *file ATTRIBUTE_UNUSED)
1900 {
1901 #ifndef NO_PROFILE_COUNTERS
1902 # define NO_PROFILE_COUNTERS 0
1903 #endif
1904 #ifdef ASM_OUTPUT_REG_PUSH
1905 rtx sval = NULL, chain = NULL;
1906
1907 if (cfun->returns_struct)
1908 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1909 true);
1910 if (cfun->static_chain_decl)
1911 chain = targetm.calls.static_chain (current_function_decl, true);
1912 #endif /* ASM_OUTPUT_REG_PUSH */
1913
1914 if (! NO_PROFILE_COUNTERS)
1915 {
1916 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1917 switch_to_section (data_section);
1918 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1919 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1920 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1921 }
1922
1923 switch_to_section (current_function_section ());
1924
1925 #ifdef ASM_OUTPUT_REG_PUSH
1926 if (sval && REG_P (sval))
1927 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1928 if (chain && REG_P (chain))
1929 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1930 #endif
1931
1932 FUNCTION_PROFILER (file, current_function_funcdef_no);
1933
1934 #ifdef ASM_OUTPUT_REG_PUSH
1935 if (chain && REG_P (chain))
1936 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1937 if (sval && REG_P (sval))
1938 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1939 #endif
1940 }
1941
1942 /* Output assembler code for the end of a function.
1943 For clarity, args are same as those of `final_start_function'
1944 even though not all of them are needed. */
1945
1946 void
1947 final_end_function (void)
1948 {
1949 app_disable ();
1950
1951 if (!DECL_IGNORED_P (current_function_decl))
1952 debug_hooks->end_function (high_function_linenum);
1953
1954 /* Finally, output the function epilogue:
1955 code to restore the stack frame and return to the caller. */
1956 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1957
1958 /* And debug output. */
1959 if (!DECL_IGNORED_P (current_function_decl))
1960 debug_hooks->end_epilogue (last_linenum, last_filename);
1961
1962 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1963 && dwarf2out_do_frame ())
1964 dwarf2out_end_epilogue (last_linenum, last_filename);
1965
1966 some_local_dynamic_name = 0;
1967 }
1968 \f
1969
1970 /* Dumper helper for basic block information. FILE is the assembly
1971 output file, and INSN is the instruction being emitted. */
1972
1973 static void
1974 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1975 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1976 {
1977 basic_block bb;
1978
1979 if (!flag_debug_asm)
1980 return;
1981
1982 if (INSN_UID (insn) < bb_map_size
1983 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1984 {
1985 edge e;
1986 edge_iterator ei;
1987
1988 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1989 if (bb->frequency)
1990 fprintf (file, " freq:%d", bb->frequency);
1991 if (bb->count)
1992 fprintf (file, " count:%"PRId64,
1993 bb->count);
1994 fprintf (file, " seq:%d", (*bb_seqn)++);
1995 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1996 FOR_EACH_EDGE (e, ei, bb->preds)
1997 {
1998 dump_edge_info (file, e, TDF_DETAILS, 0);
1999 }
2000 fprintf (file, "\n");
2001 }
2002 if (INSN_UID (insn) < bb_map_size
2003 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
2004 {
2005 edge e;
2006 edge_iterator ei;
2007
2008 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
2009 FOR_EACH_EDGE (e, ei, bb->succs)
2010 {
2011 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
2012 }
2013 fprintf (file, "\n");
2014 }
2015 }
2016
2017 /* Output assembler code for some insns: all or part of a function.
2018 For description of args, see `final_start_function', above. */
2019
2020 void
2021 final (rtx_insn *first, FILE *file, int optimize_p)
2022 {
2023 rtx_insn *insn, *next;
2024 int seen = 0;
2025
2026 /* Used for -dA dump. */
2027 basic_block *start_to_bb = NULL;
2028 basic_block *end_to_bb = NULL;
2029 int bb_map_size = 0;
2030 int bb_seqn = 0;
2031
2032 last_ignored_compare = 0;
2033
2034 #ifdef HAVE_cc0
2035 for (insn = first; insn; insn = NEXT_INSN (insn))
2036 {
2037 /* If CC tracking across branches is enabled, record the insn which
2038 jumps to each branch only reached from one place. */
2039 if (optimize_p && JUMP_P (insn))
2040 {
2041 rtx lab = JUMP_LABEL (insn);
2042 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2043 {
2044 LABEL_REFS (lab) = insn;
2045 }
2046 }
2047 }
2048 #endif
2049
2050 init_recog ();
2051
2052 CC_STATUS_INIT;
2053
2054 if (flag_debug_asm)
2055 {
2056 basic_block bb;
2057
2058 bb_map_size = get_max_uid () + 1;
2059 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2060 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2061
2062 /* There is no cfg for a thunk. */
2063 if (!cfun->is_thunk)
2064 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2065 {
2066 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2067 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2068 }
2069 }
2070
2071 /* Output the insns. */
2072 for (insn = first; insn;)
2073 {
2074 if (HAVE_ATTR_length)
2075 {
2076 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2077 {
2078 /* This can be triggered by bugs elsewhere in the compiler if
2079 new insns are created after init_insn_lengths is called. */
2080 gcc_assert (NOTE_P (insn));
2081 insn_current_address = -1;
2082 }
2083 else
2084 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2085 }
2086
2087 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2088 bb_map_size, &bb_seqn);
2089 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2090 }
2091
2092 if (flag_debug_asm)
2093 {
2094 free (start_to_bb);
2095 free (end_to_bb);
2096 }
2097
2098 /* Remove CFI notes, to avoid compare-debug failures. */
2099 for (insn = first; insn; insn = next)
2100 {
2101 next = NEXT_INSN (insn);
2102 if (NOTE_P (insn)
2103 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2104 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2105 delete_insn (insn);
2106 }
2107 }
2108 \f
2109 const char *
2110 get_insn_template (int code, rtx insn)
2111 {
2112 switch (insn_data[code].output_format)
2113 {
2114 case INSN_OUTPUT_FORMAT_SINGLE:
2115 return insn_data[code].output.single;
2116 case INSN_OUTPUT_FORMAT_MULTI:
2117 return insn_data[code].output.multi[which_alternative];
2118 case INSN_OUTPUT_FORMAT_FUNCTION:
2119 gcc_assert (insn);
2120 return (*insn_data[code].output.function) (recog_data.operand,
2121 as_a <rtx_insn *> (insn));
2122
2123 default:
2124 gcc_unreachable ();
2125 }
2126 }
2127
2128 /* Emit the appropriate declaration for an alternate-entry-point
2129 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2130 LABEL_KIND != LABEL_NORMAL.
2131
2132 The case fall-through in this function is intentional. */
2133 static void
2134 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2135 {
2136 const char *name = LABEL_NAME (insn);
2137
2138 switch (LABEL_KIND (insn))
2139 {
2140 case LABEL_WEAK_ENTRY:
2141 #ifdef ASM_WEAKEN_LABEL
2142 ASM_WEAKEN_LABEL (file, name);
2143 #endif
2144 case LABEL_GLOBAL_ENTRY:
2145 targetm.asm_out.globalize_label (file, name);
2146 case LABEL_STATIC_ENTRY:
2147 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2148 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2149 #endif
2150 ASM_OUTPUT_LABEL (file, name);
2151 break;
2152
2153 case LABEL_NORMAL:
2154 default:
2155 gcc_unreachable ();
2156 }
2157 }
2158
2159 /* Given a CALL_INSN, find and return the nested CALL. */
2160 static rtx
2161 call_from_call_insn (rtx_call_insn *insn)
2162 {
2163 rtx x;
2164 gcc_assert (CALL_P (insn));
2165 x = PATTERN (insn);
2166
2167 while (GET_CODE (x) != CALL)
2168 {
2169 switch (GET_CODE (x))
2170 {
2171 default:
2172 gcc_unreachable ();
2173 case COND_EXEC:
2174 x = COND_EXEC_CODE (x);
2175 break;
2176 case PARALLEL:
2177 x = XVECEXP (x, 0, 0);
2178 break;
2179 case SET:
2180 x = XEXP (x, 1);
2181 break;
2182 }
2183 }
2184 return x;
2185 }
2186
2187 /* The final scan for one insn, INSN.
2188 Args are same as in `final', except that INSN
2189 is the insn being scanned.
2190 Value returned is the next insn to be scanned.
2191
2192 NOPEEPHOLES is the flag to disallow peephole processing (currently
2193 used for within delayed branch sequence output).
2194
2195 SEEN is used to track the end of the prologue, for emitting
2196 debug information. We force the emission of a line note after
2197 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2198
2199 rtx_insn *
2200 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2201 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2202 {
2203 #ifdef HAVE_cc0
2204 rtx set;
2205 #endif
2206 rtx_insn *next;
2207
2208 insn_counter++;
2209
2210 /* Ignore deleted insns. These can occur when we split insns (due to a
2211 template of "#") while not optimizing. */
2212 if (insn->deleted ())
2213 return NEXT_INSN (insn);
2214
2215 switch (GET_CODE (insn))
2216 {
2217 case NOTE:
2218 switch (NOTE_KIND (insn))
2219 {
2220 case NOTE_INSN_DELETED:
2221 break;
2222
2223 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2224 in_cold_section_p = !in_cold_section_p;
2225
2226 if (dwarf2out_do_frame ())
2227 dwarf2out_switch_text_section ();
2228 else if (!DECL_IGNORED_P (current_function_decl))
2229 debug_hooks->switch_text_section ();
2230
2231 switch_to_section (current_function_section ());
2232 targetm.asm_out.function_switched_text_sections (asm_out_file,
2233 current_function_decl,
2234 in_cold_section_p);
2235 /* Emit a label for the split cold section. Form label name by
2236 suffixing "cold" to the original function's name. */
2237 if (in_cold_section_p)
2238 {
2239 tree cold_function_name
2240 = clone_function_name (current_function_decl, "cold");
2241 ASM_OUTPUT_LABEL (asm_out_file,
2242 IDENTIFIER_POINTER (cold_function_name));
2243 }
2244 break;
2245
2246 case NOTE_INSN_BASIC_BLOCK:
2247 if (need_profile_function)
2248 {
2249 profile_function (asm_out_file);
2250 need_profile_function = false;
2251 }
2252
2253 if (targetm.asm_out.unwind_emit)
2254 targetm.asm_out.unwind_emit (asm_out_file, insn);
2255
2256 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2257
2258 break;
2259
2260 case NOTE_INSN_EH_REGION_BEG:
2261 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2262 NOTE_EH_HANDLER (insn));
2263 break;
2264
2265 case NOTE_INSN_EH_REGION_END:
2266 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2267 NOTE_EH_HANDLER (insn));
2268 break;
2269
2270 case NOTE_INSN_PROLOGUE_END:
2271 targetm.asm_out.function_end_prologue (file);
2272 profile_after_prologue (file);
2273
2274 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2275 {
2276 *seen |= SEEN_EMITTED;
2277 force_source_line = true;
2278 }
2279 else
2280 *seen |= SEEN_NOTE;
2281
2282 break;
2283
2284 case NOTE_INSN_EPILOGUE_BEG:
2285 if (!DECL_IGNORED_P (current_function_decl))
2286 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2287 targetm.asm_out.function_begin_epilogue (file);
2288 break;
2289
2290 case NOTE_INSN_CFI:
2291 dwarf2out_emit_cfi (NOTE_CFI (insn));
2292 break;
2293
2294 case NOTE_INSN_CFI_LABEL:
2295 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2296 NOTE_LABEL_NUMBER (insn));
2297 break;
2298
2299 case NOTE_INSN_FUNCTION_BEG:
2300 if (need_profile_function)
2301 {
2302 profile_function (asm_out_file);
2303 need_profile_function = false;
2304 }
2305
2306 app_disable ();
2307 if (!DECL_IGNORED_P (current_function_decl))
2308 debug_hooks->end_prologue (last_linenum, last_filename);
2309
2310 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2311 {
2312 *seen |= SEEN_EMITTED;
2313 force_source_line = true;
2314 }
2315 else
2316 *seen |= SEEN_NOTE;
2317
2318 break;
2319
2320 case NOTE_INSN_BLOCK_BEG:
2321 if (debug_info_level == DINFO_LEVEL_NORMAL
2322 || debug_info_level == DINFO_LEVEL_VERBOSE
2323 || write_symbols == DWARF2_DEBUG
2324 || write_symbols == VMS_AND_DWARF2_DEBUG
2325 || write_symbols == VMS_DEBUG)
2326 {
2327 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2328
2329 app_disable ();
2330 ++block_depth;
2331 high_block_linenum = last_linenum;
2332
2333 /* Output debugging info about the symbol-block beginning. */
2334 if (!DECL_IGNORED_P (current_function_decl))
2335 debug_hooks->begin_block (last_linenum, n);
2336
2337 /* Mark this block as output. */
2338 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2339 }
2340 if (write_symbols == DBX_DEBUG
2341 || write_symbols == SDB_DEBUG)
2342 {
2343 location_t *locus_ptr
2344 = block_nonartificial_location (NOTE_BLOCK (insn));
2345
2346 if (locus_ptr != NULL)
2347 {
2348 override_filename = LOCATION_FILE (*locus_ptr);
2349 override_linenum = LOCATION_LINE (*locus_ptr);
2350 }
2351 }
2352 break;
2353
2354 case NOTE_INSN_BLOCK_END:
2355 if (debug_info_level == DINFO_LEVEL_NORMAL
2356 || debug_info_level == DINFO_LEVEL_VERBOSE
2357 || write_symbols == DWARF2_DEBUG
2358 || write_symbols == VMS_AND_DWARF2_DEBUG
2359 || write_symbols == VMS_DEBUG)
2360 {
2361 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2362
2363 app_disable ();
2364
2365 /* End of a symbol-block. */
2366 --block_depth;
2367 gcc_assert (block_depth >= 0);
2368
2369 if (!DECL_IGNORED_P (current_function_decl))
2370 debug_hooks->end_block (high_block_linenum, n);
2371 }
2372 if (write_symbols == DBX_DEBUG
2373 || write_symbols == SDB_DEBUG)
2374 {
2375 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2376 location_t *locus_ptr
2377 = block_nonartificial_location (outer_block);
2378
2379 if (locus_ptr != NULL)
2380 {
2381 override_filename = LOCATION_FILE (*locus_ptr);
2382 override_linenum = LOCATION_LINE (*locus_ptr);
2383 }
2384 else
2385 {
2386 override_filename = NULL;
2387 override_linenum = 0;
2388 }
2389 }
2390 break;
2391
2392 case NOTE_INSN_DELETED_LABEL:
2393 /* Emit the label. We may have deleted the CODE_LABEL because
2394 the label could be proved to be unreachable, though still
2395 referenced (in the form of having its address taken. */
2396 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2397 break;
2398
2399 case NOTE_INSN_DELETED_DEBUG_LABEL:
2400 /* Similarly, but need to use different namespace for it. */
2401 if (CODE_LABEL_NUMBER (insn) != -1)
2402 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2403 break;
2404
2405 case NOTE_INSN_VAR_LOCATION:
2406 case NOTE_INSN_CALL_ARG_LOCATION:
2407 if (!DECL_IGNORED_P (current_function_decl))
2408 debug_hooks->var_location (insn);
2409 break;
2410
2411 default:
2412 gcc_unreachable ();
2413 break;
2414 }
2415 break;
2416
2417 case BARRIER:
2418 break;
2419
2420 case CODE_LABEL:
2421 /* The target port might emit labels in the output function for
2422 some insn, e.g. sh.c output_branchy_insn. */
2423 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2424 {
2425 int align = LABEL_TO_ALIGNMENT (insn);
2426 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2427 int max_skip = LABEL_TO_MAX_SKIP (insn);
2428 #endif
2429
2430 if (align && NEXT_INSN (insn))
2431 {
2432 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2433 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2434 #else
2435 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2436 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2437 #else
2438 ASM_OUTPUT_ALIGN (file, align);
2439 #endif
2440 #endif
2441 }
2442 }
2443 CC_STATUS_INIT;
2444
2445 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2446 debug_hooks->label (as_a <rtx_code_label *> (insn));
2447
2448 app_disable ();
2449
2450 next = next_nonnote_insn (insn);
2451 /* If this label is followed by a jump-table, make sure we put
2452 the label in the read-only section. Also possibly write the
2453 label and jump table together. */
2454 if (next != 0 && JUMP_TABLE_DATA_P (next))
2455 {
2456 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2457 /* In this case, the case vector is being moved by the
2458 target, so don't output the label at all. Leave that
2459 to the back end macros. */
2460 #else
2461 if (! JUMP_TABLES_IN_TEXT_SECTION)
2462 {
2463 int log_align;
2464
2465 switch_to_section (targetm.asm_out.function_rodata_section
2466 (current_function_decl));
2467
2468 #ifdef ADDR_VEC_ALIGN
2469 log_align = ADDR_VEC_ALIGN (next);
2470 #else
2471 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2472 #endif
2473 ASM_OUTPUT_ALIGN (file, log_align);
2474 }
2475 else
2476 switch_to_section (current_function_section ());
2477
2478 #ifdef ASM_OUTPUT_CASE_LABEL
2479 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2480 next);
2481 #else
2482 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2483 #endif
2484 #endif
2485 break;
2486 }
2487 if (LABEL_ALT_ENTRY_P (insn))
2488 output_alternate_entry_point (file, insn);
2489 else
2490 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2491 break;
2492
2493 default:
2494 {
2495 rtx body = PATTERN (insn);
2496 int insn_code_number;
2497 const char *templ;
2498 bool is_stmt;
2499
2500 /* Reset this early so it is correct for ASM statements. */
2501 current_insn_predicate = NULL_RTX;
2502
2503 /* An INSN, JUMP_INSN or CALL_INSN.
2504 First check for special kinds that recog doesn't recognize. */
2505
2506 if (GET_CODE (body) == USE /* These are just declarations. */
2507 || GET_CODE (body) == CLOBBER)
2508 break;
2509
2510 #ifdef HAVE_cc0
2511 {
2512 /* If there is a REG_CC_SETTER note on this insn, it means that
2513 the setting of the condition code was done in the delay slot
2514 of the insn that branched here. So recover the cc status
2515 from the insn that set it. */
2516
2517 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2518 if (note)
2519 {
2520 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2521 NOTICE_UPDATE_CC (PATTERN (other), other);
2522 cc_prev_status = cc_status;
2523 }
2524 }
2525 #endif
2526
2527 /* Detect insns that are really jump-tables
2528 and output them as such. */
2529
2530 if (JUMP_TABLE_DATA_P (insn))
2531 {
2532 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2533 int vlen, idx;
2534 #endif
2535
2536 if (! JUMP_TABLES_IN_TEXT_SECTION)
2537 switch_to_section (targetm.asm_out.function_rodata_section
2538 (current_function_decl));
2539 else
2540 switch_to_section (current_function_section ());
2541
2542 app_disable ();
2543
2544 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2545 if (GET_CODE (body) == ADDR_VEC)
2546 {
2547 #ifdef ASM_OUTPUT_ADDR_VEC
2548 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2549 #else
2550 gcc_unreachable ();
2551 #endif
2552 }
2553 else
2554 {
2555 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2556 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2557 #else
2558 gcc_unreachable ();
2559 #endif
2560 }
2561 #else
2562 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2563 for (idx = 0; idx < vlen; idx++)
2564 {
2565 if (GET_CODE (body) == ADDR_VEC)
2566 {
2567 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2568 ASM_OUTPUT_ADDR_VEC_ELT
2569 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2570 #else
2571 gcc_unreachable ();
2572 #endif
2573 }
2574 else
2575 {
2576 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2577 ASM_OUTPUT_ADDR_DIFF_ELT
2578 (file,
2579 body,
2580 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2581 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2582 #else
2583 gcc_unreachable ();
2584 #endif
2585 }
2586 }
2587 #ifdef ASM_OUTPUT_CASE_END
2588 ASM_OUTPUT_CASE_END (file,
2589 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2590 insn);
2591 #endif
2592 #endif
2593
2594 switch_to_section (current_function_section ());
2595
2596 break;
2597 }
2598 /* Output this line note if it is the first or the last line
2599 note in a row. */
2600 if (!DECL_IGNORED_P (current_function_decl)
2601 && notice_source_line (insn, &is_stmt))
2602 (*debug_hooks->source_line) (last_linenum, last_filename,
2603 last_discriminator, is_stmt);
2604
2605 if (GET_CODE (body) == ASM_INPUT)
2606 {
2607 const char *string = XSTR (body, 0);
2608
2609 /* There's no telling what that did to the condition codes. */
2610 CC_STATUS_INIT;
2611
2612 if (string[0])
2613 {
2614 expanded_location loc;
2615
2616 app_enable ();
2617 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2618 if (*loc.file && loc.line)
2619 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2620 ASM_COMMENT_START, loc.line, loc.file);
2621 fprintf (asm_out_file, "\t%s\n", string);
2622 #if HAVE_AS_LINE_ZERO
2623 if (*loc.file && loc.line)
2624 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2625 #endif
2626 }
2627 break;
2628 }
2629
2630 /* Detect `asm' construct with operands. */
2631 if (asm_noperands (body) >= 0)
2632 {
2633 unsigned int noperands = asm_noperands (body);
2634 rtx *ops = XALLOCAVEC (rtx, noperands);
2635 const char *string;
2636 location_t loc;
2637 expanded_location expanded;
2638
2639 /* There's no telling what that did to the condition codes. */
2640 CC_STATUS_INIT;
2641
2642 /* Get out the operand values. */
2643 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2644 /* Inhibit dying on what would otherwise be compiler bugs. */
2645 insn_noperands = noperands;
2646 this_is_asm_operands = insn;
2647 expanded = expand_location (loc);
2648
2649 #ifdef FINAL_PRESCAN_INSN
2650 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2651 #endif
2652
2653 /* Output the insn using them. */
2654 if (string[0])
2655 {
2656 app_enable ();
2657 if (expanded.file && expanded.line)
2658 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2659 ASM_COMMENT_START, expanded.line, expanded.file);
2660 output_asm_insn (string, ops);
2661 #if HAVE_AS_LINE_ZERO
2662 if (expanded.file && expanded.line)
2663 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2664 #endif
2665 }
2666
2667 if (targetm.asm_out.final_postscan_insn)
2668 targetm.asm_out.final_postscan_insn (file, insn, ops,
2669 insn_noperands);
2670
2671 this_is_asm_operands = 0;
2672 break;
2673 }
2674
2675 app_disable ();
2676
2677 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2678 {
2679 /* A delayed-branch sequence */
2680 int i;
2681
2682 final_sequence = seq;
2683
2684 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2685 force the restoration of a comparison that was previously
2686 thought unnecessary. If that happens, cancel this sequence
2687 and cause that insn to be restored. */
2688
2689 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2690 if (next != seq->insn (1))
2691 {
2692 final_sequence = 0;
2693 return next;
2694 }
2695
2696 for (i = 1; i < seq->len (); i++)
2697 {
2698 rtx_insn *insn = seq->insn (i);
2699 rtx_insn *next = NEXT_INSN (insn);
2700 /* We loop in case any instruction in a delay slot gets
2701 split. */
2702 do
2703 insn = final_scan_insn (insn, file, 0, 1, seen);
2704 while (insn != next);
2705 }
2706 #ifdef DBR_OUTPUT_SEQEND
2707 DBR_OUTPUT_SEQEND (file);
2708 #endif
2709 final_sequence = 0;
2710
2711 /* If the insn requiring the delay slot was a CALL_INSN, the
2712 insns in the delay slot are actually executed before the
2713 called function. Hence we don't preserve any CC-setting
2714 actions in these insns and the CC must be marked as being
2715 clobbered by the function. */
2716 if (CALL_P (seq->insn (0)))
2717 {
2718 CC_STATUS_INIT;
2719 }
2720 break;
2721 }
2722
2723 /* We have a real machine instruction as rtl. */
2724
2725 body = PATTERN (insn);
2726
2727 #ifdef HAVE_cc0
2728 set = single_set (insn);
2729
2730 /* Check for redundant test and compare instructions
2731 (when the condition codes are already set up as desired).
2732 This is done only when optimizing; if not optimizing,
2733 it should be possible for the user to alter a variable
2734 with the debugger in between statements
2735 and the next statement should reexamine the variable
2736 to compute the condition codes. */
2737
2738 if (optimize_p)
2739 {
2740 if (set
2741 && GET_CODE (SET_DEST (set)) == CC0
2742 && insn != last_ignored_compare)
2743 {
2744 rtx src1, src2;
2745 if (GET_CODE (SET_SRC (set)) == SUBREG)
2746 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2747
2748 src1 = SET_SRC (set);
2749 src2 = NULL_RTX;
2750 if (GET_CODE (SET_SRC (set)) == COMPARE)
2751 {
2752 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2753 XEXP (SET_SRC (set), 0)
2754 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2755 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2756 XEXP (SET_SRC (set), 1)
2757 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2758 if (XEXP (SET_SRC (set), 1)
2759 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2760 src2 = XEXP (SET_SRC (set), 0);
2761 }
2762 if ((cc_status.value1 != 0
2763 && rtx_equal_p (src1, cc_status.value1))
2764 || (cc_status.value2 != 0
2765 && rtx_equal_p (src1, cc_status.value2))
2766 || (src2 != 0 && cc_status.value1 != 0
2767 && rtx_equal_p (src2, cc_status.value1))
2768 || (src2 != 0 && cc_status.value2 != 0
2769 && rtx_equal_p (src2, cc_status.value2)))
2770 {
2771 /* Don't delete insn if it has an addressing side-effect. */
2772 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2773 /* or if anything in it is volatile. */
2774 && ! volatile_refs_p (PATTERN (insn)))
2775 {
2776 /* We don't really delete the insn; just ignore it. */
2777 last_ignored_compare = insn;
2778 break;
2779 }
2780 }
2781 }
2782 }
2783
2784 /* If this is a conditional branch, maybe modify it
2785 if the cc's are in a nonstandard state
2786 so that it accomplishes the same thing that it would
2787 do straightforwardly if the cc's were set up normally. */
2788
2789 if (cc_status.flags != 0
2790 && JUMP_P (insn)
2791 && GET_CODE (body) == SET
2792 && SET_DEST (body) == pc_rtx
2793 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2794 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2795 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2796 {
2797 /* This function may alter the contents of its argument
2798 and clear some of the cc_status.flags bits.
2799 It may also return 1 meaning condition now always true
2800 or -1 meaning condition now always false
2801 or 2 meaning condition nontrivial but altered. */
2802 int result = alter_cond (XEXP (SET_SRC (body), 0));
2803 /* If condition now has fixed value, replace the IF_THEN_ELSE
2804 with its then-operand or its else-operand. */
2805 if (result == 1)
2806 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2807 if (result == -1)
2808 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2809
2810 /* The jump is now either unconditional or a no-op.
2811 If it has become a no-op, don't try to output it.
2812 (It would not be recognized.) */
2813 if (SET_SRC (body) == pc_rtx)
2814 {
2815 delete_insn (insn);
2816 break;
2817 }
2818 else if (ANY_RETURN_P (SET_SRC (body)))
2819 /* Replace (set (pc) (return)) with (return). */
2820 PATTERN (insn) = body = SET_SRC (body);
2821
2822 /* Rerecognize the instruction if it has changed. */
2823 if (result != 0)
2824 INSN_CODE (insn) = -1;
2825 }
2826
2827 /* If this is a conditional trap, maybe modify it if the cc's
2828 are in a nonstandard state so that it accomplishes the same
2829 thing that it would do straightforwardly if the cc's were
2830 set up normally. */
2831 if (cc_status.flags != 0
2832 && NONJUMP_INSN_P (insn)
2833 && GET_CODE (body) == TRAP_IF
2834 && COMPARISON_P (TRAP_CONDITION (body))
2835 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2836 {
2837 /* This function may alter the contents of its argument
2838 and clear some of the cc_status.flags bits.
2839 It may also return 1 meaning condition now always true
2840 or -1 meaning condition now always false
2841 or 2 meaning condition nontrivial but altered. */
2842 int result = alter_cond (TRAP_CONDITION (body));
2843
2844 /* If TRAP_CONDITION has become always false, delete the
2845 instruction. */
2846 if (result == -1)
2847 {
2848 delete_insn (insn);
2849 break;
2850 }
2851
2852 /* If TRAP_CONDITION has become always true, replace
2853 TRAP_CONDITION with const_true_rtx. */
2854 if (result == 1)
2855 TRAP_CONDITION (body) = const_true_rtx;
2856
2857 /* Rerecognize the instruction if it has changed. */
2858 if (result != 0)
2859 INSN_CODE (insn) = -1;
2860 }
2861
2862 /* Make same adjustments to instructions that examine the
2863 condition codes without jumping and instructions that
2864 handle conditional moves (if this machine has either one). */
2865
2866 if (cc_status.flags != 0
2867 && set != 0)
2868 {
2869 rtx cond_rtx, then_rtx, else_rtx;
2870
2871 if (!JUMP_P (insn)
2872 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2873 {
2874 cond_rtx = XEXP (SET_SRC (set), 0);
2875 then_rtx = XEXP (SET_SRC (set), 1);
2876 else_rtx = XEXP (SET_SRC (set), 2);
2877 }
2878 else
2879 {
2880 cond_rtx = SET_SRC (set);
2881 then_rtx = const_true_rtx;
2882 else_rtx = const0_rtx;
2883 }
2884
2885 if (COMPARISON_P (cond_rtx)
2886 && XEXP (cond_rtx, 0) == cc0_rtx)
2887 {
2888 int result;
2889 result = alter_cond (cond_rtx);
2890 if (result == 1)
2891 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2892 else if (result == -1)
2893 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2894 else if (result == 2)
2895 INSN_CODE (insn) = -1;
2896 if (SET_DEST (set) == SET_SRC (set))
2897 delete_insn (insn);
2898 }
2899 }
2900
2901 #endif
2902
2903 #ifdef HAVE_peephole
2904 /* Do machine-specific peephole optimizations if desired. */
2905
2906 if (optimize_p && !flag_no_peephole && !nopeepholes)
2907 {
2908 rtx_insn *next = peephole (insn);
2909 /* When peepholing, if there were notes within the peephole,
2910 emit them before the peephole. */
2911 if (next != 0 && next != NEXT_INSN (insn))
2912 {
2913 rtx_insn *note, *prev = PREV_INSN (insn);
2914
2915 for (note = NEXT_INSN (insn); note != next;
2916 note = NEXT_INSN (note))
2917 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2918
2919 /* Put the notes in the proper position for a later
2920 rescan. For example, the SH target can do this
2921 when generating a far jump in a delayed branch
2922 sequence. */
2923 note = NEXT_INSN (insn);
2924 SET_PREV_INSN (note) = prev;
2925 SET_NEXT_INSN (prev) = note;
2926 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2927 SET_PREV_INSN (insn) = PREV_INSN (next);
2928 SET_NEXT_INSN (insn) = next;
2929 SET_PREV_INSN (next) = insn;
2930 }
2931
2932 /* PEEPHOLE might have changed this. */
2933 body = PATTERN (insn);
2934 }
2935 #endif
2936
2937 /* Try to recognize the instruction.
2938 If successful, verify that the operands satisfy the
2939 constraints for the instruction. Crash if they don't,
2940 since `reload' should have changed them so that they do. */
2941
2942 insn_code_number = recog_memoized (insn);
2943 cleanup_subreg_operands (insn);
2944
2945 /* Dump the insn in the assembly for debugging (-dAP).
2946 If the final dump is requested as slim RTL, dump slim
2947 RTL to the assembly file also. */
2948 if (flag_dump_rtl_in_asm)
2949 {
2950 print_rtx_head = ASM_COMMENT_START;
2951 if (! (dump_flags & TDF_SLIM))
2952 print_rtl_single (asm_out_file, insn);
2953 else
2954 dump_insn_slim (asm_out_file, insn);
2955 print_rtx_head = "";
2956 }
2957
2958 if (! constrain_operands_cached (insn, 1))
2959 fatal_insn_not_found (insn);
2960
2961 /* Some target machines need to prescan each insn before
2962 it is output. */
2963
2964 #ifdef FINAL_PRESCAN_INSN
2965 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2966 #endif
2967
2968 if (targetm.have_conditional_execution ()
2969 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2970 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2971
2972 #ifdef HAVE_cc0
2973 cc_prev_status = cc_status;
2974
2975 /* Update `cc_status' for this instruction.
2976 The instruction's output routine may change it further.
2977 If the output routine for a jump insn needs to depend
2978 on the cc status, it should look at cc_prev_status. */
2979
2980 NOTICE_UPDATE_CC (body, insn);
2981 #endif
2982
2983 current_output_insn = debug_insn = insn;
2984
2985 /* Find the proper template for this insn. */
2986 templ = get_insn_template (insn_code_number, insn);
2987
2988 /* If the C code returns 0, it means that it is a jump insn
2989 which follows a deleted test insn, and that test insn
2990 needs to be reinserted. */
2991 if (templ == 0)
2992 {
2993 rtx_insn *prev;
2994
2995 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2996
2997 /* We have already processed the notes between the setter and
2998 the user. Make sure we don't process them again, this is
2999 particularly important if one of the notes is a block
3000 scope note or an EH note. */
3001 for (prev = insn;
3002 prev != last_ignored_compare;
3003 prev = PREV_INSN (prev))
3004 {
3005 if (NOTE_P (prev))
3006 delete_insn (prev); /* Use delete_note. */
3007 }
3008
3009 return prev;
3010 }
3011
3012 /* If the template is the string "#", it means that this insn must
3013 be split. */
3014 if (templ[0] == '#' && templ[1] == '\0')
3015 {
3016 rtx_insn *new_rtx = try_split (body, insn, 0);
3017
3018 /* If we didn't split the insn, go away. */
3019 if (new_rtx == insn && PATTERN (new_rtx) == body)
3020 fatal_insn ("could not split insn", insn);
3021
3022 /* If we have a length attribute, this instruction should have
3023 been split in shorten_branches, to ensure that we would have
3024 valid length info for the splitees. */
3025 gcc_assert (!HAVE_ATTR_length);
3026
3027 return new_rtx;
3028 }
3029
3030 /* ??? This will put the directives in the wrong place if
3031 get_insn_template outputs assembly directly. However calling it
3032 before get_insn_template breaks if the insns is split. */
3033 if (targetm.asm_out.unwind_emit_before_insn
3034 && targetm.asm_out.unwind_emit)
3035 targetm.asm_out.unwind_emit (asm_out_file, insn);
3036
3037 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
3038 {
3039 rtx x = call_from_call_insn (call_insn);
3040 x = XEXP (x, 0);
3041 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3042 {
3043 tree t;
3044 x = XEXP (x, 0);
3045 t = SYMBOL_REF_DECL (x);
3046 if (t)
3047 assemble_external (t);
3048 }
3049 if (!DECL_IGNORED_P (current_function_decl))
3050 debug_hooks->var_location (insn);
3051 }
3052
3053 /* Output assembler code from the template. */
3054 output_asm_insn (templ, recog_data.operand);
3055
3056 /* Some target machines need to postscan each insn after
3057 it is output. */
3058 if (targetm.asm_out.final_postscan_insn)
3059 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3060 recog_data.n_operands);
3061
3062 if (!targetm.asm_out.unwind_emit_before_insn
3063 && targetm.asm_out.unwind_emit)
3064 targetm.asm_out.unwind_emit (asm_out_file, insn);
3065
3066 current_output_insn = debug_insn = 0;
3067 }
3068 }
3069 return NEXT_INSN (insn);
3070 }
3071 \f
3072 /* Return whether a source line note needs to be emitted before INSN.
3073 Sets IS_STMT to TRUE if the line should be marked as a possible
3074 breakpoint location. */
3075
3076 static bool
3077 notice_source_line (rtx_insn *insn, bool *is_stmt)
3078 {
3079 const char *filename;
3080 int linenum;
3081
3082 if (override_filename)
3083 {
3084 filename = override_filename;
3085 linenum = override_linenum;
3086 }
3087 else if (INSN_HAS_LOCATION (insn))
3088 {
3089 expanded_location xloc = insn_location (insn);
3090 filename = xloc.file;
3091 linenum = xloc.line;
3092 }
3093 else
3094 {
3095 filename = NULL;
3096 linenum = 0;
3097 }
3098
3099 if (filename == NULL)
3100 return false;
3101
3102 if (force_source_line
3103 || filename != last_filename
3104 || last_linenum != linenum)
3105 {
3106 force_source_line = false;
3107 last_filename = filename;
3108 last_linenum = linenum;
3109 last_discriminator = discriminator;
3110 *is_stmt = true;
3111 high_block_linenum = MAX (last_linenum, high_block_linenum);
3112 high_function_linenum = MAX (last_linenum, high_function_linenum);
3113 return true;
3114 }
3115
3116 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3117 {
3118 /* If the discriminator changed, but the line number did not,
3119 output the line table entry with is_stmt false so the
3120 debugger does not treat this as a breakpoint location. */
3121 last_discriminator = discriminator;
3122 *is_stmt = false;
3123 return true;
3124 }
3125
3126 return false;
3127 }
3128 \f
3129 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3130 directly to the desired hard register. */
3131
3132 void
3133 cleanup_subreg_operands (rtx_insn *insn)
3134 {
3135 int i;
3136 bool changed = false;
3137 extract_insn_cached (insn);
3138 for (i = 0; i < recog_data.n_operands; i++)
3139 {
3140 /* The following test cannot use recog_data.operand when testing
3141 for a SUBREG: the underlying object might have been changed
3142 already if we are inside a match_operator expression that
3143 matches the else clause. Instead we test the underlying
3144 expression directly. */
3145 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3146 {
3147 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3148 changed = true;
3149 }
3150 else if (GET_CODE (recog_data.operand[i]) == PLUS
3151 || GET_CODE (recog_data.operand[i]) == MULT
3152 || MEM_P (recog_data.operand[i]))
3153 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3154 }
3155
3156 for (i = 0; i < recog_data.n_dups; i++)
3157 {
3158 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3159 {
3160 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3161 changed = true;
3162 }
3163 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3164 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3165 || MEM_P (*recog_data.dup_loc[i]))
3166 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3167 }
3168 if (changed)
3169 df_insn_rescan (insn);
3170 }
3171
3172 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3173 the thing it is a subreg of. Do it anyway if FINAL_P. */
3174
3175 rtx
3176 alter_subreg (rtx *xp, bool final_p)
3177 {
3178 rtx x = *xp;
3179 rtx y = SUBREG_REG (x);
3180
3181 /* simplify_subreg does not remove subreg from volatile references.
3182 We are required to. */
3183 if (MEM_P (y))
3184 {
3185 int offset = SUBREG_BYTE (x);
3186
3187 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3188 contains 0 instead of the proper offset. See simplify_subreg. */
3189 if (offset == 0
3190 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3191 {
3192 int difference = GET_MODE_SIZE (GET_MODE (y))
3193 - GET_MODE_SIZE (GET_MODE (x));
3194 if (WORDS_BIG_ENDIAN)
3195 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3196 if (BYTES_BIG_ENDIAN)
3197 offset += difference % UNITS_PER_WORD;
3198 }
3199
3200 if (final_p)
3201 *xp = adjust_address (y, GET_MODE (x), offset);
3202 else
3203 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3204 }
3205 else if (REG_P (y) && HARD_REGISTER_P (y))
3206 {
3207 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3208 SUBREG_BYTE (x));
3209
3210 if (new_rtx != 0)
3211 *xp = new_rtx;
3212 else if (final_p && REG_P (y))
3213 {
3214 /* Simplify_subreg can't handle some REG cases, but we have to. */
3215 unsigned int regno;
3216 HOST_WIDE_INT offset;
3217
3218 regno = subreg_regno (x);
3219 if (subreg_lowpart_p (x))
3220 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3221 else
3222 offset = SUBREG_BYTE (x);
3223 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3224 }
3225 }
3226
3227 return *xp;
3228 }
3229
3230 /* Do alter_subreg on all the SUBREGs contained in X. */
3231
3232 static rtx
3233 walk_alter_subreg (rtx *xp, bool *changed)
3234 {
3235 rtx x = *xp;
3236 switch (GET_CODE (x))
3237 {
3238 case PLUS:
3239 case MULT:
3240 case AND:
3241 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3242 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3243 break;
3244
3245 case MEM:
3246 case ZERO_EXTEND:
3247 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3248 break;
3249
3250 case SUBREG:
3251 *changed = true;
3252 return alter_subreg (xp, true);
3253
3254 default:
3255 break;
3256 }
3257
3258 return *xp;
3259 }
3260 \f
3261 #ifdef HAVE_cc0
3262
3263 /* Given BODY, the body of a jump instruction, alter the jump condition
3264 as required by the bits that are set in cc_status.flags.
3265 Not all of the bits there can be handled at this level in all cases.
3266
3267 The value is normally 0.
3268 1 means that the condition has become always true.
3269 -1 means that the condition has become always false.
3270 2 means that COND has been altered. */
3271
3272 static int
3273 alter_cond (rtx cond)
3274 {
3275 int value = 0;
3276
3277 if (cc_status.flags & CC_REVERSED)
3278 {
3279 value = 2;
3280 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3281 }
3282
3283 if (cc_status.flags & CC_INVERTED)
3284 {
3285 value = 2;
3286 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3287 }
3288
3289 if (cc_status.flags & CC_NOT_POSITIVE)
3290 switch (GET_CODE (cond))
3291 {
3292 case LE:
3293 case LEU:
3294 case GEU:
3295 /* Jump becomes unconditional. */
3296 return 1;
3297
3298 case GT:
3299 case GTU:
3300 case LTU:
3301 /* Jump becomes no-op. */
3302 return -1;
3303
3304 case GE:
3305 PUT_CODE (cond, EQ);
3306 value = 2;
3307 break;
3308
3309 case LT:
3310 PUT_CODE (cond, NE);
3311 value = 2;
3312 break;
3313
3314 default:
3315 break;
3316 }
3317
3318 if (cc_status.flags & CC_NOT_NEGATIVE)
3319 switch (GET_CODE (cond))
3320 {
3321 case GE:
3322 case GEU:
3323 /* Jump becomes unconditional. */
3324 return 1;
3325
3326 case LT:
3327 case LTU:
3328 /* Jump becomes no-op. */
3329 return -1;
3330
3331 case LE:
3332 case LEU:
3333 PUT_CODE (cond, EQ);
3334 value = 2;
3335 break;
3336
3337 case GT:
3338 case GTU:
3339 PUT_CODE (cond, NE);
3340 value = 2;
3341 break;
3342
3343 default:
3344 break;
3345 }
3346
3347 if (cc_status.flags & CC_NO_OVERFLOW)
3348 switch (GET_CODE (cond))
3349 {
3350 case GEU:
3351 /* Jump becomes unconditional. */
3352 return 1;
3353
3354 case LEU:
3355 PUT_CODE (cond, EQ);
3356 value = 2;
3357 break;
3358
3359 case GTU:
3360 PUT_CODE (cond, NE);
3361 value = 2;
3362 break;
3363
3364 case LTU:
3365 /* Jump becomes no-op. */
3366 return -1;
3367
3368 default:
3369 break;
3370 }
3371
3372 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3373 switch (GET_CODE (cond))
3374 {
3375 default:
3376 gcc_unreachable ();
3377
3378 case NE:
3379 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3380 value = 2;
3381 break;
3382
3383 case EQ:
3384 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3385 value = 2;
3386 break;
3387 }
3388
3389 if (cc_status.flags & CC_NOT_SIGNED)
3390 /* The flags are valid if signed condition operators are converted
3391 to unsigned. */
3392 switch (GET_CODE (cond))
3393 {
3394 case LE:
3395 PUT_CODE (cond, LEU);
3396 value = 2;
3397 break;
3398
3399 case LT:
3400 PUT_CODE (cond, LTU);
3401 value = 2;
3402 break;
3403
3404 case GT:
3405 PUT_CODE (cond, GTU);
3406 value = 2;
3407 break;
3408
3409 case GE:
3410 PUT_CODE (cond, GEU);
3411 value = 2;
3412 break;
3413
3414 default:
3415 break;
3416 }
3417
3418 return value;
3419 }
3420 #endif
3421 \f
3422 /* Report inconsistency between the assembler template and the operands.
3423 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3424
3425 void
3426 output_operand_lossage (const char *cmsgid, ...)
3427 {
3428 char *fmt_string;
3429 char *new_message;
3430 const char *pfx_str;
3431 va_list ap;
3432
3433 va_start (ap, cmsgid);
3434
3435 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3436 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3437 new_message = xvasprintf (fmt_string, ap);
3438
3439 if (this_is_asm_operands)
3440 error_for_asm (this_is_asm_operands, "%s", new_message);
3441 else
3442 internal_error ("%s", new_message);
3443
3444 free (fmt_string);
3445 free (new_message);
3446 va_end (ap);
3447 }
3448 \f
3449 /* Output of assembler code from a template, and its subroutines. */
3450
3451 /* Annotate the assembly with a comment describing the pattern and
3452 alternative used. */
3453
3454 static void
3455 output_asm_name (void)
3456 {
3457 if (debug_insn)
3458 {
3459 int num = INSN_CODE (debug_insn);
3460 fprintf (asm_out_file, "\t%s %d\t%s",
3461 ASM_COMMENT_START, INSN_UID (debug_insn),
3462 insn_data[num].name);
3463 if (insn_data[num].n_alternatives > 1)
3464 fprintf (asm_out_file, "/%d", which_alternative + 1);
3465
3466 if (HAVE_ATTR_length)
3467 fprintf (asm_out_file, "\t[length = %d]",
3468 get_attr_length (debug_insn));
3469
3470 /* Clear this so only the first assembler insn
3471 of any rtl insn will get the special comment for -dp. */
3472 debug_insn = 0;
3473 }
3474 }
3475
3476 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3477 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3478 corresponds to the address of the object and 0 if to the object. */
3479
3480 static tree
3481 get_mem_expr_from_op (rtx op, int *paddressp)
3482 {
3483 tree expr;
3484 int inner_addressp;
3485
3486 *paddressp = 0;
3487
3488 if (REG_P (op))
3489 return REG_EXPR (op);
3490 else if (!MEM_P (op))
3491 return 0;
3492
3493 if (MEM_EXPR (op) != 0)
3494 return MEM_EXPR (op);
3495
3496 /* Otherwise we have an address, so indicate it and look at the address. */
3497 *paddressp = 1;
3498 op = XEXP (op, 0);
3499
3500 /* First check if we have a decl for the address, then look at the right side
3501 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3502 But don't allow the address to itself be indirect. */
3503 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3504 return expr;
3505 else if (GET_CODE (op) == PLUS
3506 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3507 return expr;
3508
3509 while (UNARY_P (op)
3510 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3511 op = XEXP (op, 0);
3512
3513 expr = get_mem_expr_from_op (op, &inner_addressp);
3514 return inner_addressp ? 0 : expr;
3515 }
3516
3517 /* Output operand names for assembler instructions. OPERANDS is the
3518 operand vector, OPORDER is the order to write the operands, and NOPS
3519 is the number of operands to write. */
3520
3521 static void
3522 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3523 {
3524 int wrote = 0;
3525 int i;
3526
3527 for (i = 0; i < nops; i++)
3528 {
3529 int addressp;
3530 rtx op = operands[oporder[i]];
3531 tree expr = get_mem_expr_from_op (op, &addressp);
3532
3533 fprintf (asm_out_file, "%c%s",
3534 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3535 wrote = 1;
3536 if (expr)
3537 {
3538 fprintf (asm_out_file, "%s",
3539 addressp ? "*" : "");
3540 print_mem_expr (asm_out_file, expr);
3541 wrote = 1;
3542 }
3543 else if (REG_P (op) && ORIGINAL_REGNO (op)
3544 && ORIGINAL_REGNO (op) != REGNO (op))
3545 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3546 }
3547 }
3548
3549 #ifdef ASSEMBLER_DIALECT
3550 /* Helper function to parse assembler dialects in the asm string.
3551 This is called from output_asm_insn and asm_fprintf. */
3552 static const char *
3553 do_assembler_dialects (const char *p, int *dialect)
3554 {
3555 char c = *(p - 1);
3556
3557 switch (c)
3558 {
3559 case '{':
3560 {
3561 int i;
3562
3563 if (*dialect)
3564 output_operand_lossage ("nested assembly dialect alternatives");
3565 else
3566 *dialect = 1;
3567
3568 /* If we want the first dialect, do nothing. Otherwise, skip
3569 DIALECT_NUMBER of strings ending with '|'. */
3570 for (i = 0; i < dialect_number; i++)
3571 {
3572 while (*p && *p != '}')
3573 {
3574 if (*p == '|')
3575 {
3576 p++;
3577 break;
3578 }
3579
3580 /* Skip over any character after a percent sign. */
3581 if (*p == '%')
3582 p++;
3583 if (*p)
3584 p++;
3585 }
3586
3587 if (*p == '}')
3588 break;
3589 }
3590
3591 if (*p == '\0')
3592 output_operand_lossage ("unterminated assembly dialect alternative");
3593 }
3594 break;
3595
3596 case '|':
3597 if (*dialect)
3598 {
3599 /* Skip to close brace. */
3600 do
3601 {
3602 if (*p == '\0')
3603 {
3604 output_operand_lossage ("unterminated assembly dialect alternative");
3605 break;
3606 }
3607
3608 /* Skip over any character after a percent sign. */
3609 if (*p == '%' && p[1])
3610 {
3611 p += 2;
3612 continue;
3613 }
3614
3615 if (*p++ == '}')
3616 break;
3617 }
3618 while (1);
3619
3620 *dialect = 0;
3621 }
3622 else
3623 putc (c, asm_out_file);
3624 break;
3625
3626 case '}':
3627 if (! *dialect)
3628 putc (c, asm_out_file);
3629 *dialect = 0;
3630 break;
3631 default:
3632 gcc_unreachable ();
3633 }
3634
3635 return p;
3636 }
3637 #endif
3638
3639 /* Output text from TEMPLATE to the assembler output file,
3640 obeying %-directions to substitute operands taken from
3641 the vector OPERANDS.
3642
3643 %N (for N a digit) means print operand N in usual manner.
3644 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3645 and print the label name with no punctuation.
3646 %cN means require operand N to be a constant
3647 and print the constant expression with no punctuation.
3648 %aN means expect operand N to be a memory address
3649 (not a memory reference!) and print a reference
3650 to that address.
3651 %nN means expect operand N to be a constant
3652 and print a constant expression for minus the value
3653 of the operand, with no other punctuation. */
3654
3655 void
3656 output_asm_insn (const char *templ, rtx *operands)
3657 {
3658 const char *p;
3659 int c;
3660 #ifdef ASSEMBLER_DIALECT
3661 int dialect = 0;
3662 #endif
3663 int oporder[MAX_RECOG_OPERANDS];
3664 char opoutput[MAX_RECOG_OPERANDS];
3665 int ops = 0;
3666
3667 /* An insn may return a null string template
3668 in a case where no assembler code is needed. */
3669 if (*templ == 0)
3670 return;
3671
3672 memset (opoutput, 0, sizeof opoutput);
3673 p = templ;
3674 putc ('\t', asm_out_file);
3675
3676 #ifdef ASM_OUTPUT_OPCODE
3677 ASM_OUTPUT_OPCODE (asm_out_file, p);
3678 #endif
3679
3680 while ((c = *p++))
3681 switch (c)
3682 {
3683 case '\n':
3684 if (flag_verbose_asm)
3685 output_asm_operand_names (operands, oporder, ops);
3686 if (flag_print_asm_name)
3687 output_asm_name ();
3688
3689 ops = 0;
3690 memset (opoutput, 0, sizeof opoutput);
3691
3692 putc (c, asm_out_file);
3693 #ifdef ASM_OUTPUT_OPCODE
3694 while ((c = *p) == '\t')
3695 {
3696 putc (c, asm_out_file);
3697 p++;
3698 }
3699 ASM_OUTPUT_OPCODE (asm_out_file, p);
3700 #endif
3701 break;
3702
3703 #ifdef ASSEMBLER_DIALECT
3704 case '{':
3705 case '}':
3706 case '|':
3707 p = do_assembler_dialects (p, &dialect);
3708 break;
3709 #endif
3710
3711 case '%':
3712 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3713 if ASSEMBLER_DIALECT defined and these characters have a special
3714 meaning as dialect delimiters.*/
3715 if (*p == '%'
3716 #ifdef ASSEMBLER_DIALECT
3717 || *p == '{' || *p == '}' || *p == '|'
3718 #endif
3719 )
3720 {
3721 putc (*p, asm_out_file);
3722 p++;
3723 }
3724 /* %= outputs a number which is unique to each insn in the entire
3725 compilation. This is useful for making local labels that are
3726 referred to more than once in a given insn. */
3727 else if (*p == '=')
3728 {
3729 p++;
3730 fprintf (asm_out_file, "%d", insn_counter);
3731 }
3732 /* % followed by a letter and some digits
3733 outputs an operand in a special way depending on the letter.
3734 Letters `acln' are implemented directly.
3735 Other letters are passed to `output_operand' so that
3736 the TARGET_PRINT_OPERAND hook can define them. */
3737 else if (ISALPHA (*p))
3738 {
3739 int letter = *p++;
3740 unsigned long opnum;
3741 char *endptr;
3742
3743 opnum = strtoul (p, &endptr, 10);
3744
3745 if (endptr == p)
3746 output_operand_lossage ("operand number missing "
3747 "after %%-letter");
3748 else if (this_is_asm_operands && opnum >= insn_noperands)
3749 output_operand_lossage ("operand number out of range");
3750 else if (letter == 'l')
3751 output_asm_label (operands[opnum]);
3752 else if (letter == 'a')
3753 output_address (operands[opnum]);
3754 else if (letter == 'c')
3755 {
3756 if (CONSTANT_ADDRESS_P (operands[opnum]))
3757 output_addr_const (asm_out_file, operands[opnum]);
3758 else
3759 output_operand (operands[opnum], 'c');
3760 }
3761 else if (letter == 'n')
3762 {
3763 if (CONST_INT_P (operands[opnum]))
3764 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3765 - INTVAL (operands[opnum]));
3766 else
3767 {
3768 putc ('-', asm_out_file);
3769 output_addr_const (asm_out_file, operands[opnum]);
3770 }
3771 }
3772 else
3773 output_operand (operands[opnum], letter);
3774
3775 if (!opoutput[opnum])
3776 oporder[ops++] = opnum;
3777 opoutput[opnum] = 1;
3778
3779 p = endptr;
3780 c = *p;
3781 }
3782 /* % followed by a digit outputs an operand the default way. */
3783 else if (ISDIGIT (*p))
3784 {
3785 unsigned long opnum;
3786 char *endptr;
3787
3788 opnum = strtoul (p, &endptr, 10);
3789 if (this_is_asm_operands && opnum >= insn_noperands)
3790 output_operand_lossage ("operand number out of range");
3791 else
3792 output_operand (operands[opnum], 0);
3793
3794 if (!opoutput[opnum])
3795 oporder[ops++] = opnum;
3796 opoutput[opnum] = 1;
3797
3798 p = endptr;
3799 c = *p;
3800 }
3801 /* % followed by punctuation: output something for that
3802 punctuation character alone, with no operand. The
3803 TARGET_PRINT_OPERAND hook decides what is actually done. */
3804 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3805 output_operand (NULL_RTX, *p++);
3806 else
3807 output_operand_lossage ("invalid %%-code");
3808 break;
3809
3810 default:
3811 putc (c, asm_out_file);
3812 }
3813
3814 /* Write out the variable names for operands, if we know them. */
3815 if (flag_verbose_asm)
3816 output_asm_operand_names (operands, oporder, ops);
3817 if (flag_print_asm_name)
3818 output_asm_name ();
3819
3820 putc ('\n', asm_out_file);
3821 }
3822 \f
3823 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3824
3825 void
3826 output_asm_label (rtx x)
3827 {
3828 char buf[256];
3829
3830 if (GET_CODE (x) == LABEL_REF)
3831 x = LABEL_REF_LABEL (x);
3832 if (LABEL_P (x)
3833 || (NOTE_P (x)
3834 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3835 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3836 else
3837 output_operand_lossage ("'%%l' operand isn't a label");
3838
3839 assemble_name (asm_out_file, buf);
3840 }
3841
3842 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3843
3844 void
3845 mark_symbol_refs_as_used (rtx x)
3846 {
3847 subrtx_iterator::array_type array;
3848 FOR_EACH_SUBRTX (iter, array, x, ALL)
3849 {
3850 const_rtx x = *iter;
3851 if (GET_CODE (x) == SYMBOL_REF)
3852 if (tree t = SYMBOL_REF_DECL (x))
3853 assemble_external (t);
3854 }
3855 }
3856
3857 /* Print operand X using machine-dependent assembler syntax.
3858 CODE is a non-digit that preceded the operand-number in the % spec,
3859 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3860 between the % and the digits.
3861 When CODE is a non-letter, X is 0.
3862
3863 The meanings of the letters are machine-dependent and controlled
3864 by TARGET_PRINT_OPERAND. */
3865
3866 void
3867 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3868 {
3869 if (x && GET_CODE (x) == SUBREG)
3870 x = alter_subreg (&x, true);
3871
3872 /* X must not be a pseudo reg. */
3873 if (!targetm.no_register_allocation)
3874 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3875
3876 targetm.asm_out.print_operand (asm_out_file, x, code);
3877
3878 if (x == NULL_RTX)
3879 return;
3880
3881 mark_symbol_refs_as_used (x);
3882 }
3883
3884 /* Print a memory reference operand for address X using
3885 machine-dependent assembler syntax. */
3886
3887 void
3888 output_address (rtx x)
3889 {
3890 bool changed = false;
3891 walk_alter_subreg (&x, &changed);
3892 targetm.asm_out.print_operand_address (asm_out_file, x);
3893 }
3894 \f
3895 /* Print an integer constant expression in assembler syntax.
3896 Addition and subtraction are the only arithmetic
3897 that may appear in these expressions. */
3898
3899 void
3900 output_addr_const (FILE *file, rtx x)
3901 {
3902 char buf[256];
3903
3904 restart:
3905 switch (GET_CODE (x))
3906 {
3907 case PC:
3908 putc ('.', file);
3909 break;
3910
3911 case SYMBOL_REF:
3912 if (SYMBOL_REF_DECL (x))
3913 assemble_external (SYMBOL_REF_DECL (x));
3914 #ifdef ASM_OUTPUT_SYMBOL_REF
3915 ASM_OUTPUT_SYMBOL_REF (file, x);
3916 #else
3917 assemble_name (file, XSTR (x, 0));
3918 #endif
3919 break;
3920
3921 case LABEL_REF:
3922 x = LABEL_REF_LABEL (x);
3923 /* Fall through. */
3924 case CODE_LABEL:
3925 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3926 #ifdef ASM_OUTPUT_LABEL_REF
3927 ASM_OUTPUT_LABEL_REF (file, buf);
3928 #else
3929 assemble_name (file, buf);
3930 #endif
3931 break;
3932
3933 case CONST_INT:
3934 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3935 break;
3936
3937 case CONST:
3938 /* This used to output parentheses around the expression,
3939 but that does not work on the 386 (either ATT or BSD assembler). */
3940 output_addr_const (file, XEXP (x, 0));
3941 break;
3942
3943 case CONST_WIDE_INT:
3944 /* We do not know the mode here so we have to use a round about
3945 way to build a wide-int to get it printed properly. */
3946 {
3947 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3948 CONST_WIDE_INT_NUNITS (x),
3949 CONST_WIDE_INT_NUNITS (x)
3950 * HOST_BITS_PER_WIDE_INT,
3951 false);
3952 print_decs (w, file);
3953 }
3954 break;
3955
3956 case CONST_DOUBLE:
3957 if (CONST_DOUBLE_AS_INT_P (x))
3958 {
3959 /* We can use %d if the number is one word and positive. */
3960 if (CONST_DOUBLE_HIGH (x))
3961 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3962 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3963 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3964 else if (CONST_DOUBLE_LOW (x) < 0)
3965 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3966 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3967 else
3968 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3969 }
3970 else
3971 /* We can't handle floating point constants;
3972 PRINT_OPERAND must handle them. */
3973 output_operand_lossage ("floating constant misused");
3974 break;
3975
3976 case CONST_FIXED:
3977 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3978 break;
3979
3980 case PLUS:
3981 /* Some assemblers need integer constants to appear last (eg masm). */
3982 if (CONST_INT_P (XEXP (x, 0)))
3983 {
3984 output_addr_const (file, XEXP (x, 1));
3985 if (INTVAL (XEXP (x, 0)) >= 0)
3986 fprintf (file, "+");
3987 output_addr_const (file, XEXP (x, 0));
3988 }
3989 else
3990 {
3991 output_addr_const (file, XEXP (x, 0));
3992 if (!CONST_INT_P (XEXP (x, 1))
3993 || INTVAL (XEXP (x, 1)) >= 0)
3994 fprintf (file, "+");
3995 output_addr_const (file, XEXP (x, 1));
3996 }
3997 break;
3998
3999 case MINUS:
4000 /* Avoid outputting things like x-x or x+5-x,
4001 since some assemblers can't handle that. */
4002 x = simplify_subtraction (x);
4003 if (GET_CODE (x) != MINUS)
4004 goto restart;
4005
4006 output_addr_const (file, XEXP (x, 0));
4007 fprintf (file, "-");
4008 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
4009 || GET_CODE (XEXP (x, 1)) == PC
4010 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
4011 output_addr_const (file, XEXP (x, 1));
4012 else
4013 {
4014 fputs (targetm.asm_out.open_paren, file);
4015 output_addr_const (file, XEXP (x, 1));
4016 fputs (targetm.asm_out.close_paren, file);
4017 }
4018 break;
4019
4020 case ZERO_EXTEND:
4021 case SIGN_EXTEND:
4022 case SUBREG:
4023 case TRUNCATE:
4024 output_addr_const (file, XEXP (x, 0));
4025 break;
4026
4027 default:
4028 if (targetm.asm_out.output_addr_const_extra (file, x))
4029 break;
4030
4031 output_operand_lossage ("invalid expression as operand");
4032 }
4033 }
4034 \f
4035 /* Output a quoted string. */
4036
4037 void
4038 output_quoted_string (FILE *asm_file, const char *string)
4039 {
4040 #ifdef OUTPUT_QUOTED_STRING
4041 OUTPUT_QUOTED_STRING (asm_file, string);
4042 #else
4043 char c;
4044
4045 putc ('\"', asm_file);
4046 while ((c = *string++) != 0)
4047 {
4048 if (ISPRINT (c))
4049 {
4050 if (c == '\"' || c == '\\')
4051 putc ('\\', asm_file);
4052 putc (c, asm_file);
4053 }
4054 else
4055 fprintf (asm_file, "\\%03o", (unsigned char) c);
4056 }
4057 putc ('\"', asm_file);
4058 #endif
4059 }
4060 \f
4061 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4062
4063 void
4064 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4065 {
4066 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4067 if (value == 0)
4068 putc ('0', f);
4069 else
4070 {
4071 char *p = buf + sizeof (buf);
4072 do
4073 *--p = "0123456789abcdef"[value % 16];
4074 while ((value /= 16) != 0);
4075 *--p = 'x';
4076 *--p = '0';
4077 fwrite (p, 1, buf + sizeof (buf) - p, f);
4078 }
4079 }
4080
4081 /* Internal function that prints an unsigned long in decimal in reverse.
4082 The output string IS NOT null-terminated. */
4083
4084 static int
4085 sprint_ul_rev (char *s, unsigned long value)
4086 {
4087 int i = 0;
4088 do
4089 {
4090 s[i] = "0123456789"[value % 10];
4091 value /= 10;
4092 i++;
4093 /* alternate version, without modulo */
4094 /* oldval = value; */
4095 /* value /= 10; */
4096 /* s[i] = "0123456789" [oldval - 10*value]; */
4097 /* i++ */
4098 }
4099 while (value != 0);
4100 return i;
4101 }
4102
4103 /* Write an unsigned long as decimal to a file, fast. */
4104
4105 void
4106 fprint_ul (FILE *f, unsigned long value)
4107 {
4108 /* python says: len(str(2**64)) == 20 */
4109 char s[20];
4110 int i;
4111
4112 i = sprint_ul_rev (s, value);
4113
4114 /* It's probably too small to bother with string reversal and fputs. */
4115 do
4116 {
4117 i--;
4118 putc (s[i], f);
4119 }
4120 while (i != 0);
4121 }
4122
4123 /* Write an unsigned long as decimal to a string, fast.
4124 s must be wide enough to not overflow, at least 21 chars.
4125 Returns the length of the string (without terminating '\0'). */
4126
4127 int
4128 sprint_ul (char *s, unsigned long value)
4129 {
4130 int len;
4131 char tmp_c;
4132 int i;
4133 int j;
4134
4135 len = sprint_ul_rev (s, value);
4136 s[len] = '\0';
4137
4138 /* Reverse the string. */
4139 i = 0;
4140 j = len - 1;
4141 while (i < j)
4142 {
4143 tmp_c = s[i];
4144 s[i] = s[j];
4145 s[j] = tmp_c;
4146 i++; j--;
4147 }
4148
4149 return len;
4150 }
4151
4152 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4153 %R prints the value of REGISTER_PREFIX.
4154 %L prints the value of LOCAL_LABEL_PREFIX.
4155 %U prints the value of USER_LABEL_PREFIX.
4156 %I prints the value of IMMEDIATE_PREFIX.
4157 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4158 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4159
4160 We handle alternate assembler dialects here, just like output_asm_insn. */
4161
4162 void
4163 asm_fprintf (FILE *file, const char *p, ...)
4164 {
4165 char buf[10];
4166 char *q, c;
4167 #ifdef ASSEMBLER_DIALECT
4168 int dialect = 0;
4169 #endif
4170 va_list argptr;
4171
4172 va_start (argptr, p);
4173
4174 buf[0] = '%';
4175
4176 while ((c = *p++))
4177 switch (c)
4178 {
4179 #ifdef ASSEMBLER_DIALECT
4180 case '{':
4181 case '}':
4182 case '|':
4183 p = do_assembler_dialects (p, &dialect);
4184 break;
4185 #endif
4186
4187 case '%':
4188 c = *p++;
4189 q = &buf[1];
4190 while (strchr ("-+ #0", c))
4191 {
4192 *q++ = c;
4193 c = *p++;
4194 }
4195 while (ISDIGIT (c) || c == '.')
4196 {
4197 *q++ = c;
4198 c = *p++;
4199 }
4200 switch (c)
4201 {
4202 case '%':
4203 putc ('%', file);
4204 break;
4205
4206 case 'd': case 'i': case 'u':
4207 case 'x': case 'X': case 'o':
4208 case 'c':
4209 *q++ = c;
4210 *q = 0;
4211 fprintf (file, buf, va_arg (argptr, int));
4212 break;
4213
4214 case 'w':
4215 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4216 'o' cases, but we do not check for those cases. It
4217 means that the value is a HOST_WIDE_INT, which may be
4218 either `long' or `long long'. */
4219 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4220 q += strlen (HOST_WIDE_INT_PRINT);
4221 *q++ = *p++;
4222 *q = 0;
4223 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4224 break;
4225
4226 case 'l':
4227 *q++ = c;
4228 #ifdef HAVE_LONG_LONG
4229 if (*p == 'l')
4230 {
4231 *q++ = *p++;
4232 *q++ = *p++;
4233 *q = 0;
4234 fprintf (file, buf, va_arg (argptr, long long));
4235 }
4236 else
4237 #endif
4238 {
4239 *q++ = *p++;
4240 *q = 0;
4241 fprintf (file, buf, va_arg (argptr, long));
4242 }
4243
4244 break;
4245
4246 case 's':
4247 *q++ = c;
4248 *q = 0;
4249 fprintf (file, buf, va_arg (argptr, char *));
4250 break;
4251
4252 case 'O':
4253 #ifdef ASM_OUTPUT_OPCODE
4254 ASM_OUTPUT_OPCODE (asm_out_file, p);
4255 #endif
4256 break;
4257
4258 case 'R':
4259 #ifdef REGISTER_PREFIX
4260 fprintf (file, "%s", REGISTER_PREFIX);
4261 #endif
4262 break;
4263
4264 case 'I':
4265 #ifdef IMMEDIATE_PREFIX
4266 fprintf (file, "%s", IMMEDIATE_PREFIX);
4267 #endif
4268 break;
4269
4270 case 'L':
4271 #ifdef LOCAL_LABEL_PREFIX
4272 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4273 #endif
4274 break;
4275
4276 case 'U':
4277 fputs (user_label_prefix, file);
4278 break;
4279
4280 #ifdef ASM_FPRINTF_EXTENSIONS
4281 /* Uppercase letters are reserved for general use by asm_fprintf
4282 and so are not available to target specific code. In order to
4283 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4284 they are defined here. As they get turned into real extensions
4285 to asm_fprintf they should be removed from this list. */
4286 case 'A': case 'B': case 'C': case 'D': case 'E':
4287 case 'F': case 'G': case 'H': case 'J': case 'K':
4288 case 'M': case 'N': case 'P': case 'Q': case 'S':
4289 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4290 break;
4291
4292 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4293 #endif
4294 default:
4295 gcc_unreachable ();
4296 }
4297 break;
4298
4299 default:
4300 putc (c, file);
4301 }
4302 va_end (argptr);
4303 }
4304 \f
4305 /* Return nonzero if this function has no function calls. */
4306
4307 int
4308 leaf_function_p (void)
4309 {
4310 rtx_insn *insn;
4311
4312 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4313 functions even if they call mcount. */
4314 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4315 return 0;
4316
4317 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4318 {
4319 if (CALL_P (insn)
4320 && ! SIBLING_CALL_P (insn))
4321 return 0;
4322 if (NONJUMP_INSN_P (insn)
4323 && GET_CODE (PATTERN (insn)) == SEQUENCE
4324 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4325 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4326 return 0;
4327 }
4328
4329 return 1;
4330 }
4331
4332 /* Return 1 if branch is a forward branch.
4333 Uses insn_shuid array, so it works only in the final pass. May be used by
4334 output templates to customary add branch prediction hints.
4335 */
4336 int
4337 final_forward_branch_p (rtx_insn *insn)
4338 {
4339 int insn_id, label_id;
4340
4341 gcc_assert (uid_shuid);
4342 insn_id = INSN_SHUID (insn);
4343 label_id = INSN_SHUID (JUMP_LABEL (insn));
4344 /* We've hit some insns that does not have id information available. */
4345 gcc_assert (insn_id && label_id);
4346 return insn_id < label_id;
4347 }
4348
4349 /* On some machines, a function with no call insns
4350 can run faster if it doesn't create its own register window.
4351 When output, the leaf function should use only the "output"
4352 registers. Ordinarily, the function would be compiled to use
4353 the "input" registers to find its arguments; it is a candidate
4354 for leaf treatment if it uses only the "input" registers.
4355 Leaf function treatment means renumbering so the function
4356 uses the "output" registers instead. */
4357
4358 #ifdef LEAF_REGISTERS
4359
4360 /* Return 1 if this function uses only the registers that can be
4361 safely renumbered. */
4362
4363 int
4364 only_leaf_regs_used (void)
4365 {
4366 int i;
4367 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4368
4369 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4370 if ((df_regs_ever_live_p (i) || global_regs[i])
4371 && ! permitted_reg_in_leaf_functions[i])
4372 return 0;
4373
4374 if (crtl->uses_pic_offset_table
4375 && pic_offset_table_rtx != 0
4376 && REG_P (pic_offset_table_rtx)
4377 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4378 return 0;
4379
4380 return 1;
4381 }
4382
4383 /* Scan all instructions and renumber all registers into those
4384 available in leaf functions. */
4385
4386 static void
4387 leaf_renumber_regs (rtx_insn *first)
4388 {
4389 rtx_insn *insn;
4390
4391 /* Renumber only the actual patterns.
4392 The reg-notes can contain frame pointer refs,
4393 and renumbering them could crash, and should not be needed. */
4394 for (insn = first; insn; insn = NEXT_INSN (insn))
4395 if (INSN_P (insn))
4396 leaf_renumber_regs_insn (PATTERN (insn));
4397 }
4398
4399 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4400 available in leaf functions. */
4401
4402 void
4403 leaf_renumber_regs_insn (rtx in_rtx)
4404 {
4405 int i, j;
4406 const char *format_ptr;
4407
4408 if (in_rtx == 0)
4409 return;
4410
4411 /* Renumber all input-registers into output-registers.
4412 renumbered_regs would be 1 for an output-register;
4413 they */
4414
4415 if (REG_P (in_rtx))
4416 {
4417 int newreg;
4418
4419 /* Don't renumber the same reg twice. */
4420 if (in_rtx->used)
4421 return;
4422
4423 newreg = REGNO (in_rtx);
4424 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4425 to reach here as part of a REG_NOTE. */
4426 if (newreg >= FIRST_PSEUDO_REGISTER)
4427 {
4428 in_rtx->used = 1;
4429 return;
4430 }
4431 newreg = LEAF_REG_REMAP (newreg);
4432 gcc_assert (newreg >= 0);
4433 df_set_regs_ever_live (REGNO (in_rtx), false);
4434 df_set_regs_ever_live (newreg, true);
4435 SET_REGNO (in_rtx, newreg);
4436 in_rtx->used = 1;
4437 }
4438
4439 if (INSN_P (in_rtx))
4440 {
4441 /* Inside a SEQUENCE, we find insns.
4442 Renumber just the patterns of these insns,
4443 just as we do for the top-level insns. */
4444 leaf_renumber_regs_insn (PATTERN (in_rtx));
4445 return;
4446 }
4447
4448 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4449
4450 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4451 switch (*format_ptr++)
4452 {
4453 case 'e':
4454 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4455 break;
4456
4457 case 'E':
4458 if (NULL != XVEC (in_rtx, i))
4459 {
4460 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4461 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4462 }
4463 break;
4464
4465 case 'S':
4466 case 's':
4467 case '0':
4468 case 'i':
4469 case 'w':
4470 case 'n':
4471 case 'u':
4472 break;
4473
4474 default:
4475 gcc_unreachable ();
4476 }
4477 }
4478 #endif
4479 \f
4480 /* Turn the RTL into assembly. */
4481 static unsigned int
4482 rest_of_handle_final (void)
4483 {
4484 const char *fnname = get_fnname_from_decl (current_function_decl);
4485
4486 assemble_start_function (current_function_decl, fnname);
4487 final_start_function (get_insns (), asm_out_file, optimize);
4488 final (get_insns (), asm_out_file, optimize);
4489 if (flag_ipa_ra)
4490 collect_fn_hard_reg_usage ();
4491 final_end_function ();
4492
4493 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4494 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4495 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4496 output_function_exception_table (fnname);
4497
4498 assemble_end_function (current_function_decl, fnname);
4499
4500 user_defined_section_attribute = false;
4501
4502 /* Free up reg info memory. */
4503 free_reg_info ();
4504
4505 if (! quiet_flag)
4506 fflush (asm_out_file);
4507
4508 /* Write DBX symbols if requested. */
4509
4510 /* Note that for those inline functions where we don't initially
4511 know for certain that we will be generating an out-of-line copy,
4512 the first invocation of this routine (rest_of_compilation) will
4513 skip over this code by doing a `goto exit_rest_of_compilation;'.
4514 Later on, wrapup_global_declarations will (indirectly) call
4515 rest_of_compilation again for those inline functions that need
4516 to have out-of-line copies generated. During that call, we
4517 *will* be routed past here. */
4518
4519 timevar_push (TV_SYMOUT);
4520 if (!DECL_IGNORED_P (current_function_decl))
4521 debug_hooks->function_decl (current_function_decl);
4522 timevar_pop (TV_SYMOUT);
4523
4524 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4525 DECL_INITIAL (current_function_decl) = error_mark_node;
4526
4527 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4528 && targetm.have_ctors_dtors)
4529 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4530 decl_init_priority_lookup
4531 (current_function_decl));
4532 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4533 && targetm.have_ctors_dtors)
4534 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4535 decl_fini_priority_lookup
4536 (current_function_decl));
4537 return 0;
4538 }
4539
4540 namespace {
4541
4542 const pass_data pass_data_final =
4543 {
4544 RTL_PASS, /* type */
4545 "final", /* name */
4546 OPTGROUP_NONE, /* optinfo_flags */
4547 TV_FINAL, /* tv_id */
4548 0, /* properties_required */
4549 0, /* properties_provided */
4550 0, /* properties_destroyed */
4551 0, /* todo_flags_start */
4552 0, /* todo_flags_finish */
4553 };
4554
4555 class pass_final : public rtl_opt_pass
4556 {
4557 public:
4558 pass_final (gcc::context *ctxt)
4559 : rtl_opt_pass (pass_data_final, ctxt)
4560 {}
4561
4562 /* opt_pass methods: */
4563 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4564
4565 }; // class pass_final
4566
4567 } // anon namespace
4568
4569 rtl_opt_pass *
4570 make_pass_final (gcc::context *ctxt)
4571 {
4572 return new pass_final (ctxt);
4573 }
4574
4575
4576 static unsigned int
4577 rest_of_handle_shorten_branches (void)
4578 {
4579 /* Shorten branches. */
4580 shorten_branches (get_insns ());
4581 return 0;
4582 }
4583
4584 namespace {
4585
4586 const pass_data pass_data_shorten_branches =
4587 {
4588 RTL_PASS, /* type */
4589 "shorten", /* name */
4590 OPTGROUP_NONE, /* optinfo_flags */
4591 TV_SHORTEN_BRANCH, /* tv_id */
4592 0, /* properties_required */
4593 0, /* properties_provided */
4594 0, /* properties_destroyed */
4595 0, /* todo_flags_start */
4596 0, /* todo_flags_finish */
4597 };
4598
4599 class pass_shorten_branches : public rtl_opt_pass
4600 {
4601 public:
4602 pass_shorten_branches (gcc::context *ctxt)
4603 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4604 {}
4605
4606 /* opt_pass methods: */
4607 virtual unsigned int execute (function *)
4608 {
4609 return rest_of_handle_shorten_branches ();
4610 }
4611
4612 }; // class pass_shorten_branches
4613
4614 } // anon namespace
4615
4616 rtl_opt_pass *
4617 make_pass_shorten_branches (gcc::context *ctxt)
4618 {
4619 return new pass_shorten_branches (ctxt);
4620 }
4621
4622
4623 static unsigned int
4624 rest_of_clean_state (void)
4625 {
4626 rtx_insn *insn, *next;
4627 FILE *final_output = NULL;
4628 int save_unnumbered = flag_dump_unnumbered;
4629 int save_noaddr = flag_dump_noaddr;
4630
4631 if (flag_dump_final_insns)
4632 {
4633 final_output = fopen (flag_dump_final_insns, "a");
4634 if (!final_output)
4635 {
4636 error ("could not open final insn dump file %qs: %m",
4637 flag_dump_final_insns);
4638 flag_dump_final_insns = NULL;
4639 }
4640 else
4641 {
4642 flag_dump_noaddr = flag_dump_unnumbered = 1;
4643 if (flag_compare_debug_opt || flag_compare_debug)
4644 dump_flags |= TDF_NOUID;
4645 dump_function_header (final_output, current_function_decl,
4646 dump_flags);
4647 final_insns_dump_p = true;
4648
4649 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4650 if (LABEL_P (insn))
4651 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4652 else
4653 {
4654 if (NOTE_P (insn))
4655 set_block_for_insn (insn, NULL);
4656 INSN_UID (insn) = 0;
4657 }
4658 }
4659 }
4660
4661 /* It is very important to decompose the RTL instruction chain here:
4662 debug information keeps pointing into CODE_LABEL insns inside the function
4663 body. If these remain pointing to the other insns, we end up preserving
4664 whole RTL chain and attached detailed debug info in memory. */
4665 for (insn = get_insns (); insn; insn = next)
4666 {
4667 next = NEXT_INSN (insn);
4668 SET_NEXT_INSN (insn) = NULL;
4669 SET_PREV_INSN (insn) = NULL;
4670
4671 if (final_output
4672 && (!NOTE_P (insn) ||
4673 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4674 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4675 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4676 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4677 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4678 print_rtl_single (final_output, insn);
4679 }
4680
4681 if (final_output)
4682 {
4683 flag_dump_noaddr = save_noaddr;
4684 flag_dump_unnumbered = save_unnumbered;
4685 final_insns_dump_p = false;
4686
4687 if (fclose (final_output))
4688 {
4689 error ("could not close final insn dump file %qs: %m",
4690 flag_dump_final_insns);
4691 flag_dump_final_insns = NULL;
4692 }
4693 }
4694
4695 /* In case the function was not output,
4696 don't leave any temporary anonymous types
4697 queued up for sdb output. */
4698 #ifdef SDB_DEBUGGING_INFO
4699 if (write_symbols == SDB_DEBUG)
4700 sdbout_types (NULL_TREE);
4701 #endif
4702
4703 flag_rerun_cse_after_global_opts = 0;
4704 reload_completed = 0;
4705 epilogue_completed = 0;
4706 #ifdef STACK_REGS
4707 regstack_completed = 0;
4708 #endif
4709
4710 /* Clear out the insn_length contents now that they are no
4711 longer valid. */
4712 init_insn_lengths ();
4713
4714 /* Show no temporary slots allocated. */
4715 init_temp_slots ();
4716
4717 free_bb_for_insn ();
4718
4719 delete_tree_ssa ();
4720
4721 /* We can reduce stack alignment on call site only when we are sure that
4722 the function body just produced will be actually used in the final
4723 executable. */
4724 if (decl_binds_to_current_def_p (current_function_decl))
4725 {
4726 unsigned int pref = crtl->preferred_stack_boundary;
4727 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4728 pref = crtl->stack_alignment_needed;
4729 cgraph_node::rtl_info (current_function_decl)
4730 ->preferred_incoming_stack_boundary = pref;
4731 }
4732
4733 /* Make sure volatile mem refs aren't considered valid operands for
4734 arithmetic insns. We must call this here if this is a nested inline
4735 function, since the above code leaves us in the init_recog state,
4736 and the function context push/pop code does not save/restore volatile_ok.
4737
4738 ??? Maybe it isn't necessary for expand_start_function to call this
4739 anymore if we do it here? */
4740
4741 init_recog_no_volatile ();
4742
4743 /* We're done with this function. Free up memory if we can. */
4744 free_after_parsing (cfun);
4745 free_after_compilation (cfun);
4746 return 0;
4747 }
4748
4749 namespace {
4750
4751 const pass_data pass_data_clean_state =
4752 {
4753 RTL_PASS, /* type */
4754 "*clean_state", /* name */
4755 OPTGROUP_NONE, /* optinfo_flags */
4756 TV_FINAL, /* tv_id */
4757 0, /* properties_required */
4758 0, /* properties_provided */
4759 PROP_rtl, /* properties_destroyed */
4760 0, /* todo_flags_start */
4761 0, /* todo_flags_finish */
4762 };
4763
4764 class pass_clean_state : public rtl_opt_pass
4765 {
4766 public:
4767 pass_clean_state (gcc::context *ctxt)
4768 : rtl_opt_pass (pass_data_clean_state, ctxt)
4769 {}
4770
4771 /* opt_pass methods: */
4772 virtual unsigned int execute (function *)
4773 {
4774 return rest_of_clean_state ();
4775 }
4776
4777 }; // class pass_clean_state
4778
4779 } // anon namespace
4780
4781 rtl_opt_pass *
4782 make_pass_clean_state (gcc::context *ctxt)
4783 {
4784 return new pass_clean_state (ctxt);
4785 }
4786
4787 /* Return true if INSN is a call to the the current function. */
4788
4789 static bool
4790 self_recursive_call_p (rtx_insn *insn)
4791 {
4792 tree fndecl = get_call_fndecl (insn);
4793 return (fndecl == current_function_decl
4794 && decl_binds_to_current_def_p (fndecl));
4795 }
4796
4797 /* Collect hard register usage for the current function. */
4798
4799 static void
4800 collect_fn_hard_reg_usage (void)
4801 {
4802 rtx_insn *insn;
4803 #ifdef STACK_REGS
4804 int i;
4805 #endif
4806 struct cgraph_rtl_info *node;
4807 HARD_REG_SET function_used_regs;
4808
4809 /* ??? To be removed when all the ports have been fixed. */
4810 if (!targetm.call_fusage_contains_non_callee_clobbers)
4811 return;
4812
4813 CLEAR_HARD_REG_SET (function_used_regs);
4814
4815 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4816 {
4817 HARD_REG_SET insn_used_regs;
4818
4819 if (!NONDEBUG_INSN_P (insn))
4820 continue;
4821
4822 if (CALL_P (insn)
4823 && !self_recursive_call_p (insn))
4824 {
4825 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4826 call_used_reg_set))
4827 return;
4828
4829 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4830 }
4831
4832 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4833 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4834 }
4835
4836 /* Be conservative - mark fixed and global registers as used. */
4837 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4838
4839 #ifdef STACK_REGS
4840 /* Handle STACK_REGS conservatively, since the df-framework does not
4841 provide accurate information for them. */
4842
4843 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4844 SET_HARD_REG_BIT (function_used_regs, i);
4845 #endif
4846
4847 /* The information we have gathered is only interesting if it exposes a
4848 register from the call_used_regs that is not used in this function. */
4849 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4850 return;
4851
4852 node = cgraph_node::rtl_info (current_function_decl);
4853 gcc_assert (node != NULL);
4854
4855 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4856 node->function_used_regs_valid = 1;
4857 }
4858
4859 /* Get the declaration of the function called by INSN. */
4860
4861 static tree
4862 get_call_fndecl (rtx_insn *insn)
4863 {
4864 rtx note, datum;
4865
4866 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4867 if (note == NULL_RTX)
4868 return NULL_TREE;
4869
4870 datum = XEXP (note, 0);
4871 if (datum != NULL_RTX)
4872 return SYMBOL_REF_DECL (datum);
4873
4874 return NULL_TREE;
4875 }
4876
4877 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4878 call targets that can be overwritten. */
4879
4880 static struct cgraph_rtl_info *
4881 get_call_cgraph_rtl_info (rtx_insn *insn)
4882 {
4883 tree fndecl;
4884
4885 if (insn == NULL_RTX)
4886 return NULL;
4887
4888 fndecl = get_call_fndecl (insn);
4889 if (fndecl == NULL_TREE
4890 || !decl_binds_to_current_def_p (fndecl))
4891 return NULL;
4892
4893 return cgraph_node::rtl_info (fndecl);
4894 }
4895
4896 /* Find hard registers used by function call instruction INSN, and return them
4897 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4898
4899 bool
4900 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4901 HARD_REG_SET default_set)
4902 {
4903 if (flag_ipa_ra)
4904 {
4905 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4906 if (node != NULL
4907 && node->function_used_regs_valid)
4908 {
4909 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4910 AND_HARD_REG_SET (*reg_set, default_set);
4911 return true;
4912 }
4913 }
4914
4915 COPY_HARD_REG_SET (*reg_set, default_set);
4916 return false;
4917 }