cfgexpand.c (tree_expand_cfg): Fix comment.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (LABEL_P (insn))
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (BARRIER_P (insn))
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (LABEL_P (insn))
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (LABEL_P (insn))
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1573 }
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1577
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1579 }
1580 }
1581 \f
1582 const char *
1583 get_insn_template (int code, rtx insn)
1584 {
1585 switch (insn_data[code].output_format)
1586 {
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1595
1596 default:
1597 abort ();
1598 }
1599 }
1600
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1604
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1608 {
1609 const char *name = LABEL_NAME (insn);
1610
1611 switch (LABEL_KIND (insn))
1612 {
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1625
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1629 }
1630 }
1631
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1635
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1638 {
1639 rtx temp;
1640 int bb_note_count = 0;
1641
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1643 {
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1649 {
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1653 }
1654 if (INSN_P (temp))
1655 return false;
1656 }
1657
1658 return false;
1659 }
1660
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1665
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1668
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1674
1675 rtx
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1679 {
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1683
1684 insn_counter++;
1685
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1690
1691 switch (GET_CODE (insn))
1692 {
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1696
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_CONT:
1703 case NOTE_INSN_LOOP_VTOP:
1704 case NOTE_INSN_FUNCTION_END:
1705 case NOTE_INSN_REPEATED_LINE_NUMBER:
1706 case NOTE_INSN_EXPECTED_VALUE:
1707 break;
1708
1709 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1710
1711 /* The presence of this note indicates that this basic block
1712 belongs in the "cold" section of the .o file. If we are
1713 not already writing to the cold section we need to change
1714 to it. */
1715
1716 unlikely_text_section ();
1717 break;
1718
1719 case NOTE_INSN_BASIC_BLOCK:
1720
1721 /* If we are performing the optimization that partitions
1722 basic blocks into hot & cold sections of the .o file,
1723 then at the start of each new basic block, before
1724 beginning to write code for the basic block, we need to
1725 check to see whether the basic block belongs in the hot
1726 or cold section of the .o file, and change the section we
1727 are writing to appropriately. */
1728
1729 if (flag_reorder_blocks_and_partition
1730 && in_unlikely_text_section()
1731 && !scan_ahead_for_unlikely_executed_note (insn))
1732 text_section ();
1733
1734 #ifdef TARGET_UNWIND_INFO
1735 targetm.asm_out.unwind_emit (asm_out_file, insn);
1736 #endif
1737
1738 if (flag_debug_asm)
1739 fprintf (asm_out_file, "\t%s basic block %d\n",
1740 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 last_filename = NULL;
1746 }
1747 else
1748 *seen |= SEEN_BB;
1749
1750 break;
1751
1752 case NOTE_INSN_EH_REGION_BEG:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1754 NOTE_EH_HANDLER (insn));
1755 break;
1756
1757 case NOTE_INSN_EH_REGION_END:
1758 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1759 NOTE_EH_HANDLER (insn));
1760 break;
1761
1762 case NOTE_INSN_PROLOGUE_END:
1763 targetm.asm_out.function_end_prologue (file);
1764 profile_after_prologue (file);
1765
1766 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1767 {
1768 *seen |= SEEN_EMITTED;
1769 last_filename = NULL;
1770 }
1771 else
1772 *seen |= SEEN_NOTE;
1773
1774 break;
1775
1776 case NOTE_INSN_EPILOGUE_BEG:
1777 targetm.asm_out.function_begin_epilogue (file);
1778 break;
1779
1780 case NOTE_INSN_FUNCTION_BEG:
1781 app_disable ();
1782 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1783
1784 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1785 {
1786 *seen |= SEEN_EMITTED;
1787 last_filename = NULL;
1788 }
1789 else
1790 *seen |= SEEN_NOTE;
1791
1792 break;
1793
1794 case NOTE_INSN_BLOCK_BEG:
1795 if (debug_info_level == DINFO_LEVEL_NORMAL
1796 || debug_info_level == DINFO_LEVEL_VERBOSE
1797 || write_symbols == DWARF_DEBUG
1798 || write_symbols == DWARF2_DEBUG
1799 || write_symbols == VMS_AND_DWARF2_DEBUG
1800 || write_symbols == VMS_DEBUG)
1801 {
1802 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1803
1804 app_disable ();
1805 ++block_depth;
1806 high_block_linenum = last_linenum;
1807
1808 /* Output debugging info about the symbol-block beginning. */
1809 (*debug_hooks->begin_block) (last_linenum, n);
1810
1811 /* Mark this block as output. */
1812 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1813 }
1814 break;
1815
1816 case NOTE_INSN_BLOCK_END:
1817 if (debug_info_level == DINFO_LEVEL_NORMAL
1818 || debug_info_level == DINFO_LEVEL_VERBOSE
1819 || write_symbols == DWARF_DEBUG
1820 || write_symbols == DWARF2_DEBUG
1821 || write_symbols == VMS_AND_DWARF2_DEBUG
1822 || write_symbols == VMS_DEBUG)
1823 {
1824 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1825
1826 app_disable ();
1827
1828 /* End of a symbol-block. */
1829 --block_depth;
1830 if (block_depth < 0)
1831 abort ();
1832
1833 (*debug_hooks->end_block) (high_block_linenum, n);
1834 }
1835 break;
1836
1837 case NOTE_INSN_DELETED_LABEL:
1838 /* Emit the label. We may have deleted the CODE_LABEL because
1839 the label could be proved to be unreachable, though still
1840 referenced (in the form of having its address taken. */
1841 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1842 break;
1843
1844 case NOTE_INSN_VAR_LOCATION:
1845 (*debug_hooks->var_location) (insn);
1846 break;
1847
1848 case 0:
1849 break;
1850
1851 default:
1852 if (NOTE_LINE_NUMBER (insn) <= 0)
1853 abort ();
1854 break;
1855 }
1856 break;
1857
1858 case BARRIER:
1859 #if defined (DWARF2_UNWIND_INFO)
1860 if (dwarf2out_do_frame ())
1861 dwarf2out_frame_debug (insn);
1862 #endif
1863 break;
1864
1865 case CODE_LABEL:
1866 /* The target port might emit labels in the output function for
1867 some insn, e.g. sh.c output_branchy_insn. */
1868 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1869 {
1870 int align = LABEL_TO_ALIGNMENT (insn);
1871 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1872 int max_skip = LABEL_TO_MAX_SKIP (insn);
1873 #endif
1874
1875 if (align && NEXT_INSN (insn))
1876 {
1877 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1878 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1879 #else
1880 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1881 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1882 #else
1883 ASM_OUTPUT_ALIGN (file, align);
1884 #endif
1885 #endif
1886 }
1887 }
1888 #ifdef HAVE_cc0
1889 CC_STATUS_INIT;
1890 /* If this label is reached from only one place, set the condition
1891 codes from the instruction just before the branch. */
1892
1893 /* Disabled because some insns set cc_status in the C output code
1894 and NOTICE_UPDATE_CC alone can set incorrect status. */
1895 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1896 {
1897 rtx jump = LABEL_REFS (insn);
1898 rtx barrier = prev_nonnote_insn (insn);
1899 rtx prev;
1900 /* If the LABEL_REFS field of this label has been set to point
1901 at a branch, the predecessor of the branch is a regular
1902 insn, and that branch is the only way to reach this label,
1903 set the condition codes based on the branch and its
1904 predecessor. */
1905 if (barrier && BARRIER_P (barrier)
1906 && jump && JUMP_P (jump)
1907 && (prev = prev_nonnote_insn (jump))
1908 && NONJUMP_INSN_P (prev))
1909 {
1910 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1911 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1912 }
1913 }
1914 #endif
1915 if (prescan > 0)
1916 break;
1917
1918 if (LABEL_NAME (insn))
1919 (*debug_hooks->label) (insn);
1920
1921 /* If we are doing the optimization that partitions hot & cold
1922 basic blocks into separate sections of the .o file, we need
1923 to ensure the jump table ends up in the correct section... */
1924
1925 if (flag_reorder_blocks_and_partition)
1926 {
1927 rtx tmp_table, tmp_label;
1928 if (LABEL_P (insn)
1929 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1930 {
1931 /* Do nothing; Do NOT change the current section. */
1932 }
1933 else if (scan_ahead_for_unlikely_executed_note (insn))
1934 unlikely_text_section ();
1935 else
1936 {
1937 if (in_unlikely_text_section ())
1938 text_section ();
1939 }
1940 }
1941
1942 if (app_on)
1943 {
1944 fputs (ASM_APP_OFF, file);
1945 app_on = 0;
1946 }
1947 if (NEXT_INSN (insn) != 0
1948 && JUMP_P (NEXT_INSN (insn)))
1949 {
1950 rtx nextbody = PATTERN (NEXT_INSN (insn));
1951
1952 /* If this label is followed by a jump-table,
1953 make sure we put the label in the read-only section. Also
1954 possibly write the label and jump table together. */
1955
1956 if (GET_CODE (nextbody) == ADDR_VEC
1957 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1958 {
1959 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1960 /* In this case, the case vector is being moved by the
1961 target, so don't output the label at all. Leave that
1962 to the back end macros. */
1963 #else
1964 if (! JUMP_TABLES_IN_TEXT_SECTION)
1965 {
1966 int log_align;
1967
1968 readonly_data_section ();
1969
1970 #ifdef ADDR_VEC_ALIGN
1971 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1972 #else
1973 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1974 #endif
1975 ASM_OUTPUT_ALIGN (file, log_align);
1976 }
1977 else
1978 function_section (current_function_decl);
1979
1980 #ifdef ASM_OUTPUT_CASE_LABEL
1981 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1982 NEXT_INSN (insn));
1983 #else
1984 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1985 #endif
1986 #endif
1987 break;
1988 }
1989 }
1990 if (LABEL_ALT_ENTRY_P (insn))
1991 output_alternate_entry_point (file, insn);
1992 else
1993 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1994 break;
1995
1996 default:
1997 {
1998 rtx body = PATTERN (insn);
1999 int insn_code_number;
2000 const char *template;
2001
2002 /* An INSN, JUMP_INSN or CALL_INSN.
2003 First check for special kinds that recog doesn't recognize. */
2004
2005 if (GET_CODE (body) == USE /* These are just declarations. */
2006 || GET_CODE (body) == CLOBBER)
2007 break;
2008
2009 #ifdef HAVE_cc0
2010 {
2011 /* If there is a REG_CC_SETTER note on this insn, it means that
2012 the setting of the condition code was done in the delay slot
2013 of the insn that branched here. So recover the cc status
2014 from the insn that set it. */
2015
2016 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2017 if (note)
2018 {
2019 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2020 cc_prev_status = cc_status;
2021 }
2022 }
2023 #endif
2024
2025 /* Detect insns that are really jump-tables
2026 and output them as such. */
2027
2028 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2029 {
2030 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2031 int vlen, idx;
2032 #endif
2033
2034 if (prescan > 0)
2035 break;
2036
2037 if (app_on)
2038 {
2039 fputs (ASM_APP_OFF, file);
2040 app_on = 0;
2041 }
2042
2043 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2044 if (GET_CODE (body) == ADDR_VEC)
2045 {
2046 #ifdef ASM_OUTPUT_ADDR_VEC
2047 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2048 #else
2049 abort ();
2050 #endif
2051 }
2052 else
2053 {
2054 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2055 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2056 #else
2057 abort ();
2058 #endif
2059 }
2060 #else
2061 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2062 for (idx = 0; idx < vlen; idx++)
2063 {
2064 if (GET_CODE (body) == ADDR_VEC)
2065 {
2066 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2067 ASM_OUTPUT_ADDR_VEC_ELT
2068 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2069 #else
2070 abort ();
2071 #endif
2072 }
2073 else
2074 {
2075 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2076 ASM_OUTPUT_ADDR_DIFF_ELT
2077 (file,
2078 body,
2079 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2080 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2081 #else
2082 abort ();
2083 #endif
2084 }
2085 }
2086 #ifdef ASM_OUTPUT_CASE_END
2087 ASM_OUTPUT_CASE_END (file,
2088 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2089 insn);
2090 #endif
2091 #endif
2092
2093 function_section (current_function_decl);
2094
2095 break;
2096 }
2097 /* Output this line note if it is the first or the last line
2098 note in a row. */
2099 if (notice_source_line (insn))
2100 {
2101 (*debug_hooks->source_line) (last_linenum, last_filename);
2102 }
2103
2104 if (GET_CODE (body) == ASM_INPUT)
2105 {
2106 const char *string = XSTR (body, 0);
2107
2108 /* There's no telling what that did to the condition codes. */
2109 CC_STATUS_INIT;
2110 if (prescan > 0)
2111 break;
2112
2113 if (string[0])
2114 {
2115 if (! app_on)
2116 {
2117 fputs (ASM_APP_ON, file);
2118 app_on = 1;
2119 }
2120 fprintf (asm_out_file, "\t%s\n", string);
2121 }
2122 break;
2123 }
2124
2125 /* Detect `asm' construct with operands. */
2126 if (asm_noperands (body) >= 0)
2127 {
2128 unsigned int noperands = asm_noperands (body);
2129 rtx *ops = alloca (noperands * sizeof (rtx));
2130 const char *string;
2131
2132 /* There's no telling what that did to the condition codes. */
2133 CC_STATUS_INIT;
2134 if (prescan > 0)
2135 break;
2136
2137 /* Get out the operand values. */
2138 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2139 /* Inhibit aborts on what would otherwise be compiler bugs. */
2140 insn_noperands = noperands;
2141 this_is_asm_operands = insn;
2142
2143 #ifdef FINAL_PRESCAN_INSN
2144 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2145 #endif
2146
2147 /* Output the insn using them. */
2148 if (string[0])
2149 {
2150 if (! app_on)
2151 {
2152 fputs (ASM_APP_ON, file);
2153 app_on = 1;
2154 }
2155 output_asm_insn (string, ops);
2156 }
2157
2158 this_is_asm_operands = 0;
2159 break;
2160 }
2161
2162 if (prescan <= 0 && app_on)
2163 {
2164 fputs (ASM_APP_OFF, file);
2165 app_on = 0;
2166 }
2167
2168 if (GET_CODE (body) == SEQUENCE)
2169 {
2170 /* A delayed-branch sequence */
2171 int i;
2172 rtx next;
2173
2174 if (prescan > 0)
2175 break;
2176 final_sequence = body;
2177
2178 /* Record the delay slots' frame information before the branch.
2179 This is needed for delayed calls: see execute_cfa_program(). */
2180 #if defined (DWARF2_UNWIND_INFO)
2181 if (dwarf2out_do_frame ())
2182 for (i = 1; i < XVECLEN (body, 0); i++)
2183 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2184 #endif
2185
2186 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2187 force the restoration of a comparison that was previously
2188 thought unnecessary. If that happens, cancel this sequence
2189 and cause that insn to be restored. */
2190
2191 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2192 if (next != XVECEXP (body, 0, 1))
2193 {
2194 final_sequence = 0;
2195 return next;
2196 }
2197
2198 for (i = 1; i < XVECLEN (body, 0); i++)
2199 {
2200 rtx insn = XVECEXP (body, 0, i);
2201 rtx next = NEXT_INSN (insn);
2202 /* We loop in case any instruction in a delay slot gets
2203 split. */
2204 do
2205 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2206 while (insn != next);
2207 }
2208 #ifdef DBR_OUTPUT_SEQEND
2209 DBR_OUTPUT_SEQEND (file);
2210 #endif
2211 final_sequence = 0;
2212
2213 /* If the insn requiring the delay slot was a CALL_INSN, the
2214 insns in the delay slot are actually executed before the
2215 called function. Hence we don't preserve any CC-setting
2216 actions in these insns and the CC must be marked as being
2217 clobbered by the function. */
2218 if (CALL_P (XVECEXP (body, 0, 0)))
2219 {
2220 CC_STATUS_INIT;
2221 }
2222 break;
2223 }
2224
2225 /* We have a real machine instruction as rtl. */
2226
2227 body = PATTERN (insn);
2228
2229 #ifdef HAVE_cc0
2230 set = single_set (insn);
2231
2232 /* Check for redundant test and compare instructions
2233 (when the condition codes are already set up as desired).
2234 This is done only when optimizing; if not optimizing,
2235 it should be possible for the user to alter a variable
2236 with the debugger in between statements
2237 and the next statement should reexamine the variable
2238 to compute the condition codes. */
2239
2240 if (optimize)
2241 {
2242 if (set
2243 && GET_CODE (SET_DEST (set)) == CC0
2244 && insn != last_ignored_compare)
2245 {
2246 if (GET_CODE (SET_SRC (set)) == SUBREG)
2247 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2248 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2249 {
2250 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2251 XEXP (SET_SRC (set), 0)
2252 = alter_subreg (&XEXP (SET_SRC (set), 0));
2253 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2254 XEXP (SET_SRC (set), 1)
2255 = alter_subreg (&XEXP (SET_SRC (set), 1));
2256 }
2257 if ((cc_status.value1 != 0
2258 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2259 || (cc_status.value2 != 0
2260 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2261 {
2262 /* Don't delete insn if it has an addressing side-effect. */
2263 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2264 /* or if anything in it is volatile. */
2265 && ! volatile_refs_p (PATTERN (insn)))
2266 {
2267 /* We don't really delete the insn; just ignore it. */
2268 last_ignored_compare = insn;
2269 break;
2270 }
2271 }
2272 }
2273 }
2274 #endif
2275
2276 #ifndef STACK_REGS
2277 /* Don't bother outputting obvious no-ops, even without -O.
2278 This optimization is fast and doesn't interfere with debugging.
2279 Don't do this if the insn is in a delay slot, since this
2280 will cause an improper number of delay insns to be written. */
2281 if (final_sequence == 0
2282 && prescan >= 0
2283 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2284 && REG_P (SET_SRC (body))
2285 && REG_P (SET_DEST (body))
2286 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2287 break;
2288 #endif
2289
2290 #ifdef HAVE_cc0
2291 /* If this is a conditional branch, maybe modify it
2292 if the cc's are in a nonstandard state
2293 so that it accomplishes the same thing that it would
2294 do straightforwardly if the cc's were set up normally. */
2295
2296 if (cc_status.flags != 0
2297 && JUMP_P (insn)
2298 && GET_CODE (body) == SET
2299 && SET_DEST (body) == pc_rtx
2300 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2301 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2302 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2303 /* This is done during prescan; it is not done again
2304 in final scan when prescan has been done. */
2305 && prescan >= 0)
2306 {
2307 /* This function may alter the contents of its argument
2308 and clear some of the cc_status.flags bits.
2309 It may also return 1 meaning condition now always true
2310 or -1 meaning condition now always false
2311 or 2 meaning condition nontrivial but altered. */
2312 int result = alter_cond (XEXP (SET_SRC (body), 0));
2313 /* If condition now has fixed value, replace the IF_THEN_ELSE
2314 with its then-operand or its else-operand. */
2315 if (result == 1)
2316 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2317 if (result == -1)
2318 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2319
2320 /* The jump is now either unconditional or a no-op.
2321 If it has become a no-op, don't try to output it.
2322 (It would not be recognized.) */
2323 if (SET_SRC (body) == pc_rtx)
2324 {
2325 delete_insn (insn);
2326 break;
2327 }
2328 else if (GET_CODE (SET_SRC (body)) == RETURN)
2329 /* Replace (set (pc) (return)) with (return). */
2330 PATTERN (insn) = body = SET_SRC (body);
2331
2332 /* Rerecognize the instruction if it has changed. */
2333 if (result != 0)
2334 INSN_CODE (insn) = -1;
2335 }
2336
2337 /* Make same adjustments to instructions that examine the
2338 condition codes without jumping and instructions that
2339 handle conditional moves (if this machine has either one). */
2340
2341 if (cc_status.flags != 0
2342 && set != 0)
2343 {
2344 rtx cond_rtx, then_rtx, else_rtx;
2345
2346 if (!JUMP_P (insn)
2347 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2348 {
2349 cond_rtx = XEXP (SET_SRC (set), 0);
2350 then_rtx = XEXP (SET_SRC (set), 1);
2351 else_rtx = XEXP (SET_SRC (set), 2);
2352 }
2353 else
2354 {
2355 cond_rtx = SET_SRC (set);
2356 then_rtx = const_true_rtx;
2357 else_rtx = const0_rtx;
2358 }
2359
2360 switch (GET_CODE (cond_rtx))
2361 {
2362 case GTU:
2363 case GT:
2364 case LTU:
2365 case LT:
2366 case GEU:
2367 case GE:
2368 case LEU:
2369 case LE:
2370 case EQ:
2371 case NE:
2372 {
2373 int result;
2374 if (XEXP (cond_rtx, 0) != cc0_rtx)
2375 break;
2376 result = alter_cond (cond_rtx);
2377 if (result == 1)
2378 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2379 else if (result == -1)
2380 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2381 else if (result == 2)
2382 INSN_CODE (insn) = -1;
2383 if (SET_DEST (set) == SET_SRC (set))
2384 delete_insn (insn);
2385 }
2386 break;
2387
2388 default:
2389 break;
2390 }
2391 }
2392
2393 #endif
2394
2395 #ifdef HAVE_peephole
2396 /* Do machine-specific peephole optimizations if desired. */
2397
2398 if (optimize && !flag_no_peephole && !nopeepholes)
2399 {
2400 rtx next = peephole (insn);
2401 /* When peepholing, if there were notes within the peephole,
2402 emit them before the peephole. */
2403 if (next != 0 && next != NEXT_INSN (insn))
2404 {
2405 rtx note, prev = PREV_INSN (insn);
2406
2407 for (note = NEXT_INSN (insn); note != next;
2408 note = NEXT_INSN (note))
2409 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2410
2411 /* In case this is prescan, put the notes
2412 in proper position for later rescan. */
2413 note = NEXT_INSN (insn);
2414 PREV_INSN (note) = prev;
2415 NEXT_INSN (prev) = note;
2416 NEXT_INSN (PREV_INSN (next)) = insn;
2417 PREV_INSN (insn) = PREV_INSN (next);
2418 NEXT_INSN (insn) = next;
2419 PREV_INSN (next) = insn;
2420 }
2421
2422 /* PEEPHOLE might have changed this. */
2423 body = PATTERN (insn);
2424 }
2425 #endif
2426
2427 /* Try to recognize the instruction.
2428 If successful, verify that the operands satisfy the
2429 constraints for the instruction. Crash if they don't,
2430 since `reload' should have changed them so that they do. */
2431
2432 insn_code_number = recog_memoized (insn);
2433 cleanup_subreg_operands (insn);
2434
2435 /* Dump the insn in the assembly for debugging. */
2436 if (flag_dump_rtl_in_asm)
2437 {
2438 print_rtx_head = ASM_COMMENT_START;
2439 print_rtl_single (asm_out_file, insn);
2440 print_rtx_head = "";
2441 }
2442
2443 if (! constrain_operands_cached (1))
2444 fatal_insn_not_found (insn);
2445
2446 /* Some target machines need to prescan each insn before
2447 it is output. */
2448
2449 #ifdef FINAL_PRESCAN_INSN
2450 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2451 #endif
2452
2453 #ifdef HAVE_conditional_execution
2454 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2455 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2456 else
2457 current_insn_predicate = NULL_RTX;
2458 #endif
2459
2460 #ifdef HAVE_cc0
2461 cc_prev_status = cc_status;
2462
2463 /* Update `cc_status' for this instruction.
2464 The instruction's output routine may change it further.
2465 If the output routine for a jump insn needs to depend
2466 on the cc status, it should look at cc_prev_status. */
2467
2468 NOTICE_UPDATE_CC (body, insn);
2469 #endif
2470
2471 current_output_insn = debug_insn = insn;
2472
2473 #if defined (DWARF2_UNWIND_INFO)
2474 if (CALL_P (insn) && dwarf2out_do_frame ())
2475 dwarf2out_frame_debug (insn);
2476 #endif
2477
2478 /* Find the proper template for this insn. */
2479 template = get_insn_template (insn_code_number, insn);
2480
2481 /* If the C code returns 0, it means that it is a jump insn
2482 which follows a deleted test insn, and that test insn
2483 needs to be reinserted. */
2484 if (template == 0)
2485 {
2486 rtx prev;
2487
2488 if (prev_nonnote_insn (insn) != last_ignored_compare)
2489 abort ();
2490
2491 /* We have already processed the notes between the setter and
2492 the user. Make sure we don't process them again, this is
2493 particularly important if one of the notes is a block
2494 scope note or an EH note. */
2495 for (prev = insn;
2496 prev != last_ignored_compare;
2497 prev = PREV_INSN (prev))
2498 {
2499 if (NOTE_P (prev))
2500 delete_insn (prev); /* Use delete_note. */
2501 }
2502
2503 return prev;
2504 }
2505
2506 /* If the template is the string "#", it means that this insn must
2507 be split. */
2508 if (template[0] == '#' && template[1] == '\0')
2509 {
2510 rtx new = try_split (body, insn, 0);
2511
2512 /* If we didn't split the insn, go away. */
2513 if (new == insn && PATTERN (new) == body)
2514 fatal_insn ("could not split insn", insn);
2515
2516 #ifdef HAVE_ATTR_length
2517 /* This instruction should have been split in shorten_branches,
2518 to ensure that we would have valid length info for the
2519 splitees. */
2520 abort ();
2521 #endif
2522
2523 return new;
2524 }
2525
2526 if (prescan > 0)
2527 break;
2528
2529 #ifdef TARGET_UNWIND_INFO
2530 /* ??? This will put the directives in the wrong place if
2531 get_insn_template outputs assembly directly. However calling it
2532 before get_insn_template breaks if the insns is split. */
2533 targetm.asm_out.unwind_emit (asm_out_file, insn);
2534 #endif
2535
2536 /* Output assembler code from the template. */
2537 output_asm_insn (template, recog_data.operand);
2538
2539 /* If necessary, report the effect that the instruction has on
2540 the unwind info. We've already done this for delay slots
2541 and call instructions. */
2542 #if defined (DWARF2_UNWIND_INFO)
2543 if (NONJUMP_INSN_P (insn)
2544 #if !defined (HAVE_prologue)
2545 && !ACCUMULATE_OUTGOING_ARGS
2546 #endif
2547 && final_sequence == 0
2548 && dwarf2out_do_frame ())
2549 dwarf2out_frame_debug (insn);
2550 #endif
2551
2552 current_output_insn = debug_insn = 0;
2553 }
2554 }
2555 return NEXT_INSN (insn);
2556 }
2557 \f
2558 /* Output debugging info to the assembler file FILE
2559 based on the NOTE-insn INSN, assumed to be a line number. */
2560
2561 static bool
2562 notice_source_line (rtx insn)
2563 {
2564 const char *filename = insn_file (insn);
2565 int linenum = insn_line (insn);
2566
2567 if (filename && (filename != last_filename || last_linenum != linenum))
2568 {
2569 last_filename = filename;
2570 last_linenum = linenum;
2571 high_block_linenum = MAX (last_linenum, high_block_linenum);
2572 high_function_linenum = MAX (last_linenum, high_function_linenum);
2573 return true;
2574 }
2575 return false;
2576 }
2577 \f
2578 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2579 directly to the desired hard register. */
2580
2581 void
2582 cleanup_subreg_operands (rtx insn)
2583 {
2584 int i;
2585 extract_insn_cached (insn);
2586 for (i = 0; i < recog_data.n_operands; i++)
2587 {
2588 /* The following test cannot use recog_data.operand when testing
2589 for a SUBREG: the underlying object might have been changed
2590 already if we are inside a match_operator expression that
2591 matches the else clause. Instead we test the underlying
2592 expression directly. */
2593 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2594 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2595 else if (GET_CODE (recog_data.operand[i]) == PLUS
2596 || GET_CODE (recog_data.operand[i]) == MULT
2597 || MEM_P (recog_data.operand[i]))
2598 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2599 }
2600
2601 for (i = 0; i < recog_data.n_dups; i++)
2602 {
2603 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2604 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2605 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2606 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2607 || MEM_P (*recog_data.dup_loc[i]))
2608 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2609 }
2610 }
2611
2612 /* If X is a SUBREG, replace it with a REG or a MEM,
2613 based on the thing it is a subreg of. */
2614
2615 rtx
2616 alter_subreg (rtx *xp)
2617 {
2618 rtx x = *xp;
2619 rtx y = SUBREG_REG (x);
2620
2621 /* simplify_subreg does not remove subreg from volatile references.
2622 We are required to. */
2623 if (MEM_P (y))
2624 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2625 else
2626 {
2627 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2628 SUBREG_BYTE (x));
2629
2630 if (new != 0)
2631 *xp = new;
2632 /* Simplify_subreg can't handle some REG cases, but we have to. */
2633 else if (REG_P (y))
2634 {
2635 unsigned int regno = subreg_hard_regno (x, 1);
2636 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2637 }
2638 else
2639 abort ();
2640 }
2641
2642 return *xp;
2643 }
2644
2645 /* Do alter_subreg on all the SUBREGs contained in X. */
2646
2647 static rtx
2648 walk_alter_subreg (rtx *xp)
2649 {
2650 rtx x = *xp;
2651 switch (GET_CODE (x))
2652 {
2653 case PLUS:
2654 case MULT:
2655 case AND:
2656 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2657 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2658 break;
2659
2660 case MEM:
2661 case ZERO_EXTEND:
2662 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2663 break;
2664
2665 case SUBREG:
2666 return alter_subreg (xp);
2667
2668 default:
2669 break;
2670 }
2671
2672 return *xp;
2673 }
2674 \f
2675 #ifdef HAVE_cc0
2676
2677 /* Given BODY, the body of a jump instruction, alter the jump condition
2678 as required by the bits that are set in cc_status.flags.
2679 Not all of the bits there can be handled at this level in all cases.
2680
2681 The value is normally 0.
2682 1 means that the condition has become always true.
2683 -1 means that the condition has become always false.
2684 2 means that COND has been altered. */
2685
2686 static int
2687 alter_cond (rtx cond)
2688 {
2689 int value = 0;
2690
2691 if (cc_status.flags & CC_REVERSED)
2692 {
2693 value = 2;
2694 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2695 }
2696
2697 if (cc_status.flags & CC_INVERTED)
2698 {
2699 value = 2;
2700 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2701 }
2702
2703 if (cc_status.flags & CC_NOT_POSITIVE)
2704 switch (GET_CODE (cond))
2705 {
2706 case LE:
2707 case LEU:
2708 case GEU:
2709 /* Jump becomes unconditional. */
2710 return 1;
2711
2712 case GT:
2713 case GTU:
2714 case LTU:
2715 /* Jump becomes no-op. */
2716 return -1;
2717
2718 case GE:
2719 PUT_CODE (cond, EQ);
2720 value = 2;
2721 break;
2722
2723 case LT:
2724 PUT_CODE (cond, NE);
2725 value = 2;
2726 break;
2727
2728 default:
2729 break;
2730 }
2731
2732 if (cc_status.flags & CC_NOT_NEGATIVE)
2733 switch (GET_CODE (cond))
2734 {
2735 case GE:
2736 case GEU:
2737 /* Jump becomes unconditional. */
2738 return 1;
2739
2740 case LT:
2741 case LTU:
2742 /* Jump becomes no-op. */
2743 return -1;
2744
2745 case LE:
2746 case LEU:
2747 PUT_CODE (cond, EQ);
2748 value = 2;
2749 break;
2750
2751 case GT:
2752 case GTU:
2753 PUT_CODE (cond, NE);
2754 value = 2;
2755 break;
2756
2757 default:
2758 break;
2759 }
2760
2761 if (cc_status.flags & CC_NO_OVERFLOW)
2762 switch (GET_CODE (cond))
2763 {
2764 case GEU:
2765 /* Jump becomes unconditional. */
2766 return 1;
2767
2768 case LEU:
2769 PUT_CODE (cond, EQ);
2770 value = 2;
2771 break;
2772
2773 case GTU:
2774 PUT_CODE (cond, NE);
2775 value = 2;
2776 break;
2777
2778 case LTU:
2779 /* Jump becomes no-op. */
2780 return -1;
2781
2782 default:
2783 break;
2784 }
2785
2786 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2787 switch (GET_CODE (cond))
2788 {
2789 default:
2790 abort ();
2791
2792 case NE:
2793 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2794 value = 2;
2795 break;
2796
2797 case EQ:
2798 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2799 value = 2;
2800 break;
2801 }
2802
2803 if (cc_status.flags & CC_NOT_SIGNED)
2804 /* The flags are valid if signed condition operators are converted
2805 to unsigned. */
2806 switch (GET_CODE (cond))
2807 {
2808 case LE:
2809 PUT_CODE (cond, LEU);
2810 value = 2;
2811 break;
2812
2813 case LT:
2814 PUT_CODE (cond, LTU);
2815 value = 2;
2816 break;
2817
2818 case GT:
2819 PUT_CODE (cond, GTU);
2820 value = 2;
2821 break;
2822
2823 case GE:
2824 PUT_CODE (cond, GEU);
2825 value = 2;
2826 break;
2827
2828 default:
2829 break;
2830 }
2831
2832 return value;
2833 }
2834 #endif
2835 \f
2836 /* Report inconsistency between the assembler template and the operands.
2837 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2838
2839 void
2840 output_operand_lossage (const char *msgid, ...)
2841 {
2842 char *fmt_string;
2843 char *new_message;
2844 const char *pfx_str;
2845 va_list ap;
2846
2847 va_start (ap, msgid);
2848
2849 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2850 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2851 vasprintf (&new_message, fmt_string, ap);
2852
2853 if (this_is_asm_operands)
2854 error_for_asm (this_is_asm_operands, "%s", new_message);
2855 else
2856 internal_error ("%s", new_message);
2857
2858 free (fmt_string);
2859 free (new_message);
2860 va_end (ap);
2861 }
2862 \f
2863 /* Output of assembler code from a template, and its subroutines. */
2864
2865 /* Annotate the assembly with a comment describing the pattern and
2866 alternative used. */
2867
2868 static void
2869 output_asm_name (void)
2870 {
2871 if (debug_insn)
2872 {
2873 int num = INSN_CODE (debug_insn);
2874 fprintf (asm_out_file, "\t%s %d\t%s",
2875 ASM_COMMENT_START, INSN_UID (debug_insn),
2876 insn_data[num].name);
2877 if (insn_data[num].n_alternatives > 1)
2878 fprintf (asm_out_file, "/%d", which_alternative + 1);
2879 #ifdef HAVE_ATTR_length
2880 fprintf (asm_out_file, "\t[length = %d]",
2881 get_attr_length (debug_insn));
2882 #endif
2883 /* Clear this so only the first assembler insn
2884 of any rtl insn will get the special comment for -dp. */
2885 debug_insn = 0;
2886 }
2887 }
2888
2889 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2890 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2891 corresponds to the address of the object and 0 if to the object. */
2892
2893 static tree
2894 get_mem_expr_from_op (rtx op, int *paddressp)
2895 {
2896 tree expr;
2897 int inner_addressp;
2898
2899 *paddressp = 0;
2900
2901 if (REG_P (op))
2902 return REG_EXPR (op);
2903 else if (!MEM_P (op))
2904 return 0;
2905
2906 if (MEM_EXPR (op) != 0)
2907 return MEM_EXPR (op);
2908
2909 /* Otherwise we have an address, so indicate it and look at the address. */
2910 *paddressp = 1;
2911 op = XEXP (op, 0);
2912
2913 /* First check if we have a decl for the address, then look at the right side
2914 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2915 But don't allow the address to itself be indirect. */
2916 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2917 return expr;
2918 else if (GET_CODE (op) == PLUS
2919 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2920 return expr;
2921
2922 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2923 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2924 op = XEXP (op, 0);
2925
2926 expr = get_mem_expr_from_op (op, &inner_addressp);
2927 return inner_addressp ? 0 : expr;
2928 }
2929
2930 /* Output operand names for assembler instructions. OPERANDS is the
2931 operand vector, OPORDER is the order to write the operands, and NOPS
2932 is the number of operands to write. */
2933
2934 static void
2935 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2936 {
2937 int wrote = 0;
2938 int i;
2939
2940 for (i = 0; i < nops; i++)
2941 {
2942 int addressp;
2943 rtx op = operands[oporder[i]];
2944 tree expr = get_mem_expr_from_op (op, &addressp);
2945
2946 fprintf (asm_out_file, "%c%s",
2947 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2948 wrote = 1;
2949 if (expr)
2950 {
2951 fprintf (asm_out_file, "%s",
2952 addressp ? "*" : "");
2953 print_mem_expr (asm_out_file, expr);
2954 wrote = 1;
2955 }
2956 else if (REG_P (op) && ORIGINAL_REGNO (op)
2957 && ORIGINAL_REGNO (op) != REGNO (op))
2958 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2959 }
2960 }
2961
2962 /* Output text from TEMPLATE to the assembler output file,
2963 obeying %-directions to substitute operands taken from
2964 the vector OPERANDS.
2965
2966 %N (for N a digit) means print operand N in usual manner.
2967 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2968 and print the label name with no punctuation.
2969 %cN means require operand N to be a constant
2970 and print the constant expression with no punctuation.
2971 %aN means expect operand N to be a memory address
2972 (not a memory reference!) and print a reference
2973 to that address.
2974 %nN means expect operand N to be a constant
2975 and print a constant expression for minus the value
2976 of the operand, with no other punctuation. */
2977
2978 void
2979 output_asm_insn (const char *template, rtx *operands)
2980 {
2981 const char *p;
2982 int c;
2983 #ifdef ASSEMBLER_DIALECT
2984 int dialect = 0;
2985 #endif
2986 int oporder[MAX_RECOG_OPERANDS];
2987 char opoutput[MAX_RECOG_OPERANDS];
2988 int ops = 0;
2989
2990 /* An insn may return a null string template
2991 in a case where no assembler code is needed. */
2992 if (*template == 0)
2993 return;
2994
2995 memset (opoutput, 0, sizeof opoutput);
2996 p = template;
2997 putc ('\t', asm_out_file);
2998
2999 #ifdef ASM_OUTPUT_OPCODE
3000 ASM_OUTPUT_OPCODE (asm_out_file, p);
3001 #endif
3002
3003 while ((c = *p++))
3004 switch (c)
3005 {
3006 case '\n':
3007 if (flag_verbose_asm)
3008 output_asm_operand_names (operands, oporder, ops);
3009 if (flag_print_asm_name)
3010 output_asm_name ();
3011
3012 ops = 0;
3013 memset (opoutput, 0, sizeof opoutput);
3014
3015 putc (c, asm_out_file);
3016 #ifdef ASM_OUTPUT_OPCODE
3017 while ((c = *p) == '\t')
3018 {
3019 putc (c, asm_out_file);
3020 p++;
3021 }
3022 ASM_OUTPUT_OPCODE (asm_out_file, p);
3023 #endif
3024 break;
3025
3026 #ifdef ASSEMBLER_DIALECT
3027 case '{':
3028 {
3029 int i;
3030
3031 if (dialect)
3032 output_operand_lossage ("nested assembly dialect alternatives");
3033 else
3034 dialect = 1;
3035
3036 /* If we want the first dialect, do nothing. Otherwise, skip
3037 DIALECT_NUMBER of strings ending with '|'. */
3038 for (i = 0; i < dialect_number; i++)
3039 {
3040 while (*p && *p != '}' && *p++ != '|')
3041 ;
3042 if (*p == '}')
3043 break;
3044 if (*p == '|')
3045 p++;
3046 }
3047
3048 if (*p == '\0')
3049 output_operand_lossage ("unterminated assembly dialect alternative");
3050 }
3051 break;
3052
3053 case '|':
3054 if (dialect)
3055 {
3056 /* Skip to close brace. */
3057 do
3058 {
3059 if (*p == '\0')
3060 {
3061 output_operand_lossage ("unterminated assembly dialect alternative");
3062 break;
3063 }
3064 }
3065 while (*p++ != '}');
3066 dialect = 0;
3067 }
3068 else
3069 putc (c, asm_out_file);
3070 break;
3071
3072 case '}':
3073 if (! dialect)
3074 putc (c, asm_out_file);
3075 dialect = 0;
3076 break;
3077 #endif
3078
3079 case '%':
3080 /* %% outputs a single %. */
3081 if (*p == '%')
3082 {
3083 p++;
3084 putc (c, asm_out_file);
3085 }
3086 /* %= outputs a number which is unique to each insn in the entire
3087 compilation. This is useful for making local labels that are
3088 referred to more than once in a given insn. */
3089 else if (*p == '=')
3090 {
3091 p++;
3092 fprintf (asm_out_file, "%d", insn_counter);
3093 }
3094 /* % followed by a letter and some digits
3095 outputs an operand in a special way depending on the letter.
3096 Letters `acln' are implemented directly.
3097 Other letters are passed to `output_operand' so that
3098 the PRINT_OPERAND macro can define them. */
3099 else if (ISALPHA (*p))
3100 {
3101 int letter = *p++;
3102 c = atoi (p);
3103
3104 if (! ISDIGIT (*p))
3105 output_operand_lossage ("operand number missing after %%-letter");
3106 else if (this_is_asm_operands
3107 && (c < 0 || (unsigned int) c >= insn_noperands))
3108 output_operand_lossage ("operand number out of range");
3109 else if (letter == 'l')
3110 output_asm_label (operands[c]);
3111 else if (letter == 'a')
3112 output_address (operands[c]);
3113 else if (letter == 'c')
3114 {
3115 if (CONSTANT_ADDRESS_P (operands[c]))
3116 output_addr_const (asm_out_file, operands[c]);
3117 else
3118 output_operand (operands[c], 'c');
3119 }
3120 else if (letter == 'n')
3121 {
3122 if (GET_CODE (operands[c]) == CONST_INT)
3123 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3124 - INTVAL (operands[c]));
3125 else
3126 {
3127 putc ('-', asm_out_file);
3128 output_addr_const (asm_out_file, operands[c]);
3129 }
3130 }
3131 else
3132 output_operand (operands[c], letter);
3133
3134 if (!opoutput[c])
3135 oporder[ops++] = c;
3136 opoutput[c] = 1;
3137
3138 while (ISDIGIT (c = *p))
3139 p++;
3140 }
3141 /* % followed by a digit outputs an operand the default way. */
3142 else if (ISDIGIT (*p))
3143 {
3144 c = atoi (p);
3145 if (this_is_asm_operands
3146 && (c < 0 || (unsigned int) c >= insn_noperands))
3147 output_operand_lossage ("operand number out of range");
3148 else
3149 output_operand (operands[c], 0);
3150
3151 if (!opoutput[c])
3152 oporder[ops++] = c;
3153 opoutput[c] = 1;
3154
3155 while (ISDIGIT (c = *p))
3156 p++;
3157 }
3158 /* % followed by punctuation: output something for that
3159 punctuation character alone, with no operand.
3160 The PRINT_OPERAND macro decides what is actually done. */
3161 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3162 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3163 output_operand (NULL_RTX, *p++);
3164 #endif
3165 else
3166 output_operand_lossage ("invalid %%-code");
3167 break;
3168
3169 default:
3170 putc (c, asm_out_file);
3171 }
3172
3173 /* Write out the variable names for operands, if we know them. */
3174 if (flag_verbose_asm)
3175 output_asm_operand_names (operands, oporder, ops);
3176 if (flag_print_asm_name)
3177 output_asm_name ();
3178
3179 putc ('\n', asm_out_file);
3180 }
3181 \f
3182 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3183
3184 void
3185 output_asm_label (rtx x)
3186 {
3187 char buf[256];
3188
3189 if (GET_CODE (x) == LABEL_REF)
3190 x = XEXP (x, 0);
3191 if (LABEL_P (x)
3192 || (NOTE_P (x)
3193 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3194 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3195 else
3196 output_operand_lossage ("`%%l' operand isn't a label");
3197
3198 assemble_name (asm_out_file, buf);
3199 }
3200
3201 /* Print operand X using machine-dependent assembler syntax.
3202 The macro PRINT_OPERAND is defined just to control this function.
3203 CODE is a non-digit that preceded the operand-number in the % spec,
3204 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3205 between the % and the digits.
3206 When CODE is a non-letter, X is 0.
3207
3208 The meanings of the letters are machine-dependent and controlled
3209 by PRINT_OPERAND. */
3210
3211 static void
3212 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3213 {
3214 if (x && GET_CODE (x) == SUBREG)
3215 x = alter_subreg (&x);
3216
3217 /* If X is a pseudo-register, abort now rather than writing trash to the
3218 assembler file. */
3219
3220 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3221 abort ();
3222
3223 PRINT_OPERAND (asm_out_file, x, code);
3224 }
3225
3226 /* Print a memory reference operand for address X
3227 using machine-dependent assembler syntax.
3228 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3229
3230 void
3231 output_address (rtx x)
3232 {
3233 walk_alter_subreg (&x);
3234 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3235 }
3236 \f
3237 /* Print an integer constant expression in assembler syntax.
3238 Addition and subtraction are the only arithmetic
3239 that may appear in these expressions. */
3240
3241 void
3242 output_addr_const (FILE *file, rtx x)
3243 {
3244 char buf[256];
3245
3246 restart:
3247 switch (GET_CODE (x))
3248 {
3249 case PC:
3250 putc ('.', file);
3251 break;
3252
3253 case SYMBOL_REF:
3254 if (SYMBOL_REF_DECL (x))
3255 mark_decl_referenced (SYMBOL_REF_DECL (x));
3256 #ifdef ASM_OUTPUT_SYMBOL_REF
3257 ASM_OUTPUT_SYMBOL_REF (file, x);
3258 #else
3259 assemble_name (file, XSTR (x, 0));
3260 #endif
3261 break;
3262
3263 case LABEL_REF:
3264 x = XEXP (x, 0);
3265 /* Fall through. */
3266 case CODE_LABEL:
3267 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3268 #ifdef ASM_OUTPUT_LABEL_REF
3269 ASM_OUTPUT_LABEL_REF (file, buf);
3270 #else
3271 assemble_name (file, buf);
3272 #endif
3273 break;
3274
3275 case CONST_INT:
3276 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3277 break;
3278
3279 case CONST:
3280 /* This used to output parentheses around the expression,
3281 but that does not work on the 386 (either ATT or BSD assembler). */
3282 output_addr_const (file, XEXP (x, 0));
3283 break;
3284
3285 case CONST_DOUBLE:
3286 if (GET_MODE (x) == VOIDmode)
3287 {
3288 /* We can use %d if the number is one word and positive. */
3289 if (CONST_DOUBLE_HIGH (x))
3290 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3291 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3292 else if (CONST_DOUBLE_LOW (x) < 0)
3293 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3294 else
3295 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3296 }
3297 else
3298 /* We can't handle floating point constants;
3299 PRINT_OPERAND must handle them. */
3300 output_operand_lossage ("floating constant misused");
3301 break;
3302
3303 case PLUS:
3304 /* Some assemblers need integer constants to appear last (eg masm). */
3305 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3306 {
3307 output_addr_const (file, XEXP (x, 1));
3308 if (INTVAL (XEXP (x, 0)) >= 0)
3309 fprintf (file, "+");
3310 output_addr_const (file, XEXP (x, 0));
3311 }
3312 else
3313 {
3314 output_addr_const (file, XEXP (x, 0));
3315 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3316 || INTVAL (XEXP (x, 1)) >= 0)
3317 fprintf (file, "+");
3318 output_addr_const (file, XEXP (x, 1));
3319 }
3320 break;
3321
3322 case MINUS:
3323 /* Avoid outputting things like x-x or x+5-x,
3324 since some assemblers can't handle that. */
3325 x = simplify_subtraction (x);
3326 if (GET_CODE (x) != MINUS)
3327 goto restart;
3328
3329 output_addr_const (file, XEXP (x, 0));
3330 fprintf (file, "-");
3331 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3332 || GET_CODE (XEXP (x, 1)) == PC
3333 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3334 output_addr_const (file, XEXP (x, 1));
3335 else
3336 {
3337 fputs (targetm.asm_out.open_paren, file);
3338 output_addr_const (file, XEXP (x, 1));
3339 fputs (targetm.asm_out.close_paren, file);
3340 }
3341 break;
3342
3343 case ZERO_EXTEND:
3344 case SIGN_EXTEND:
3345 case SUBREG:
3346 output_addr_const (file, XEXP (x, 0));
3347 break;
3348
3349 default:
3350 #ifdef OUTPUT_ADDR_CONST_EXTRA
3351 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3352 break;
3353
3354 fail:
3355 #endif
3356 output_operand_lossage ("invalid expression as operand");
3357 }
3358 }
3359 \f
3360 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3361 %R prints the value of REGISTER_PREFIX.
3362 %L prints the value of LOCAL_LABEL_PREFIX.
3363 %U prints the value of USER_LABEL_PREFIX.
3364 %I prints the value of IMMEDIATE_PREFIX.
3365 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3366 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3367
3368 We handle alternate assembler dialects here, just like output_asm_insn. */
3369
3370 void
3371 asm_fprintf (FILE *file, const char *p, ...)
3372 {
3373 char buf[10];
3374 char *q, c;
3375 va_list argptr;
3376
3377 va_start (argptr, p);
3378
3379 buf[0] = '%';
3380
3381 while ((c = *p++))
3382 switch (c)
3383 {
3384 #ifdef ASSEMBLER_DIALECT
3385 case '{':
3386 {
3387 int i;
3388
3389 /* If we want the first dialect, do nothing. Otherwise, skip
3390 DIALECT_NUMBER of strings ending with '|'. */
3391 for (i = 0; i < dialect_number; i++)
3392 {
3393 while (*p && *p++ != '|')
3394 ;
3395
3396 if (*p == '|')
3397 p++;
3398 }
3399 }
3400 break;
3401
3402 case '|':
3403 /* Skip to close brace. */
3404 while (*p && *p++ != '}')
3405 ;
3406 break;
3407
3408 case '}':
3409 break;
3410 #endif
3411
3412 case '%':
3413 c = *p++;
3414 q = &buf[1];
3415 while (strchr ("-+ #0", c))
3416 {
3417 *q++ = c;
3418 c = *p++;
3419 }
3420 while (ISDIGIT (c) || c == '.')
3421 {
3422 *q++ = c;
3423 c = *p++;
3424 }
3425 switch (c)
3426 {
3427 case '%':
3428 putc ('%', file);
3429 break;
3430
3431 case 'd': case 'i': case 'u':
3432 case 'x': case 'X': case 'o':
3433 case 'c':
3434 *q++ = c;
3435 *q = 0;
3436 fprintf (file, buf, va_arg (argptr, int));
3437 break;
3438
3439 case 'w':
3440 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3441 'o' cases, but we do not check for those cases. It
3442 means that the value is a HOST_WIDE_INT, which may be
3443 either `long' or `long long'. */
3444 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3445 q += strlen (HOST_WIDE_INT_PRINT);
3446 *q++ = *p++;
3447 *q = 0;
3448 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3449 break;
3450
3451 case 'l':
3452 *q++ = c;
3453 #ifdef HAVE_LONG_LONG
3454 if (*p == 'l')
3455 {
3456 *q++ = *p++;
3457 *q++ = *p++;
3458 *q = 0;
3459 fprintf (file, buf, va_arg (argptr, long long));
3460 }
3461 else
3462 #endif
3463 {
3464 *q++ = *p++;
3465 *q = 0;
3466 fprintf (file, buf, va_arg (argptr, long));
3467 }
3468
3469 break;
3470
3471 case 's':
3472 *q++ = c;
3473 *q = 0;
3474 fprintf (file, buf, va_arg (argptr, char *));
3475 break;
3476
3477 case 'O':
3478 #ifdef ASM_OUTPUT_OPCODE
3479 ASM_OUTPUT_OPCODE (asm_out_file, p);
3480 #endif
3481 break;
3482
3483 case 'R':
3484 #ifdef REGISTER_PREFIX
3485 fprintf (file, "%s", REGISTER_PREFIX);
3486 #endif
3487 break;
3488
3489 case 'I':
3490 #ifdef IMMEDIATE_PREFIX
3491 fprintf (file, "%s", IMMEDIATE_PREFIX);
3492 #endif
3493 break;
3494
3495 case 'L':
3496 #ifdef LOCAL_LABEL_PREFIX
3497 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3498 #endif
3499 break;
3500
3501 case 'U':
3502 fputs (user_label_prefix, file);
3503 break;
3504
3505 #ifdef ASM_FPRINTF_EXTENSIONS
3506 /* Uppercase letters are reserved for general use by asm_fprintf
3507 and so are not available to target specific code. In order to
3508 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3509 they are defined here. As they get turned into real extensions
3510 to asm_fprintf they should be removed from this list. */
3511 case 'A': case 'B': case 'C': case 'D': case 'E':
3512 case 'F': case 'G': case 'H': case 'J': case 'K':
3513 case 'M': case 'N': case 'P': case 'Q': case 'S':
3514 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3515 break;
3516
3517 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3518 #endif
3519 default:
3520 abort ();
3521 }
3522 break;
3523
3524 default:
3525 putc (c, file);
3526 }
3527 va_end (argptr);
3528 }
3529 \f
3530 /* Split up a CONST_DOUBLE or integer constant rtx
3531 into two rtx's for single words,
3532 storing in *FIRST the word that comes first in memory in the target
3533 and in *SECOND the other. */
3534
3535 void
3536 split_double (rtx value, rtx *first, rtx *second)
3537 {
3538 if (GET_CODE (value) == CONST_INT)
3539 {
3540 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3541 {
3542 /* In this case the CONST_INT holds both target words.
3543 Extract the bits from it into two word-sized pieces.
3544 Sign extend each half to HOST_WIDE_INT. */
3545 unsigned HOST_WIDE_INT low, high;
3546 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3547
3548 /* Set sign_bit to the most significant bit of a word. */
3549 sign_bit = 1;
3550 sign_bit <<= BITS_PER_WORD - 1;
3551
3552 /* Set mask so that all bits of the word are set. We could
3553 have used 1 << BITS_PER_WORD instead of basing the
3554 calculation on sign_bit. However, on machines where
3555 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3556 compiler warning, even though the code would never be
3557 executed. */
3558 mask = sign_bit << 1;
3559 mask--;
3560
3561 /* Set sign_extend as any remaining bits. */
3562 sign_extend = ~mask;
3563
3564 /* Pick the lower word and sign-extend it. */
3565 low = INTVAL (value);
3566 low &= mask;
3567 if (low & sign_bit)
3568 low |= sign_extend;
3569
3570 /* Pick the higher word, shifted to the least significant
3571 bits, and sign-extend it. */
3572 high = INTVAL (value);
3573 high >>= BITS_PER_WORD - 1;
3574 high >>= 1;
3575 high &= mask;
3576 if (high & sign_bit)
3577 high |= sign_extend;
3578
3579 /* Store the words in the target machine order. */
3580 if (WORDS_BIG_ENDIAN)
3581 {
3582 *first = GEN_INT (high);
3583 *second = GEN_INT (low);
3584 }
3585 else
3586 {
3587 *first = GEN_INT (low);
3588 *second = GEN_INT (high);
3589 }
3590 }
3591 else
3592 {
3593 /* The rule for using CONST_INT for a wider mode
3594 is that we regard the value as signed.
3595 So sign-extend it. */
3596 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3597 if (WORDS_BIG_ENDIAN)
3598 {
3599 *first = high;
3600 *second = value;
3601 }
3602 else
3603 {
3604 *first = value;
3605 *second = high;
3606 }
3607 }
3608 }
3609 else if (GET_CODE (value) != CONST_DOUBLE)
3610 {
3611 if (WORDS_BIG_ENDIAN)
3612 {
3613 *first = const0_rtx;
3614 *second = value;
3615 }
3616 else
3617 {
3618 *first = value;
3619 *second = const0_rtx;
3620 }
3621 }
3622 else if (GET_MODE (value) == VOIDmode
3623 /* This is the old way we did CONST_DOUBLE integers. */
3624 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3625 {
3626 /* In an integer, the words are defined as most and least significant.
3627 So order them by the target's convention. */
3628 if (WORDS_BIG_ENDIAN)
3629 {
3630 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3631 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3632 }
3633 else
3634 {
3635 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3636 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3637 }
3638 }
3639 else
3640 {
3641 REAL_VALUE_TYPE r;
3642 long l[2];
3643 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3644
3645 /* Note, this converts the REAL_VALUE_TYPE to the target's
3646 format, splits up the floating point double and outputs
3647 exactly 32 bits of it into each of l[0] and l[1] --
3648 not necessarily BITS_PER_WORD bits. */
3649 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3650
3651 /* If 32 bits is an entire word for the target, but not for the host,
3652 then sign-extend on the host so that the number will look the same
3653 way on the host that it would on the target. See for instance
3654 simplify_unary_operation. The #if is needed to avoid compiler
3655 warnings. */
3656
3657 #if HOST_BITS_PER_LONG > 32
3658 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3659 {
3660 if (l[0] & ((long) 1 << 31))
3661 l[0] |= ((long) (-1) << 32);
3662 if (l[1] & ((long) 1 << 31))
3663 l[1] |= ((long) (-1) << 32);
3664 }
3665 #endif
3666
3667 *first = GEN_INT (l[0]);
3668 *second = GEN_INT (l[1]);
3669 }
3670 }
3671 \f
3672 /* Return nonzero if this function has no function calls. */
3673
3674 int
3675 leaf_function_p (void)
3676 {
3677 rtx insn;
3678 rtx link;
3679
3680 if (current_function_profile || profile_arc_flag)
3681 return 0;
3682
3683 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3684 {
3685 if (CALL_P (insn)
3686 && ! SIBLING_CALL_P (insn))
3687 return 0;
3688 if (NONJUMP_INSN_P (insn)
3689 && GET_CODE (PATTERN (insn)) == SEQUENCE
3690 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3691 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3692 return 0;
3693 }
3694 for (link = current_function_epilogue_delay_list;
3695 link;
3696 link = XEXP (link, 1))
3697 {
3698 insn = XEXP (link, 0);
3699
3700 if (CALL_P (insn)
3701 && ! SIBLING_CALL_P (insn))
3702 return 0;
3703 if (NONJUMP_INSN_P (insn)
3704 && GET_CODE (PATTERN (insn)) == SEQUENCE
3705 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3706 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3707 return 0;
3708 }
3709
3710 return 1;
3711 }
3712
3713 /* Return 1 if branch is a forward branch.
3714 Uses insn_shuid array, so it works only in the final pass. May be used by
3715 output templates to customary add branch prediction hints.
3716 */
3717 int
3718 final_forward_branch_p (rtx insn)
3719 {
3720 int insn_id, label_id;
3721 if (!uid_shuid)
3722 abort ();
3723 insn_id = INSN_SHUID (insn);
3724 label_id = INSN_SHUID (JUMP_LABEL (insn));
3725 /* We've hit some insns that does not have id information available. */
3726 if (!insn_id || !label_id)
3727 abort ();
3728 return insn_id < label_id;
3729 }
3730
3731 /* On some machines, a function with no call insns
3732 can run faster if it doesn't create its own register window.
3733 When output, the leaf function should use only the "output"
3734 registers. Ordinarily, the function would be compiled to use
3735 the "input" registers to find its arguments; it is a candidate
3736 for leaf treatment if it uses only the "input" registers.
3737 Leaf function treatment means renumbering so the function
3738 uses the "output" registers instead. */
3739
3740 #ifdef LEAF_REGISTERS
3741
3742 /* Return 1 if this function uses only the registers that can be
3743 safely renumbered. */
3744
3745 int
3746 only_leaf_regs_used (void)
3747 {
3748 int i;
3749 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3750
3751 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3752 if ((regs_ever_live[i] || global_regs[i])
3753 && ! permitted_reg_in_leaf_functions[i])
3754 return 0;
3755
3756 if (current_function_uses_pic_offset_table
3757 && pic_offset_table_rtx != 0
3758 && REG_P (pic_offset_table_rtx)
3759 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3760 return 0;
3761
3762 return 1;
3763 }
3764
3765 /* Scan all instructions and renumber all registers into those
3766 available in leaf functions. */
3767
3768 static void
3769 leaf_renumber_regs (rtx first)
3770 {
3771 rtx insn;
3772
3773 /* Renumber only the actual patterns.
3774 The reg-notes can contain frame pointer refs,
3775 and renumbering them could crash, and should not be needed. */
3776 for (insn = first; insn; insn = NEXT_INSN (insn))
3777 if (INSN_P (insn))
3778 leaf_renumber_regs_insn (PATTERN (insn));
3779 for (insn = current_function_epilogue_delay_list;
3780 insn;
3781 insn = XEXP (insn, 1))
3782 if (INSN_P (XEXP (insn, 0)))
3783 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3784 }
3785
3786 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3787 available in leaf functions. */
3788
3789 void
3790 leaf_renumber_regs_insn (rtx in_rtx)
3791 {
3792 int i, j;
3793 const char *format_ptr;
3794
3795 if (in_rtx == 0)
3796 return;
3797
3798 /* Renumber all input-registers into output-registers.
3799 renumbered_regs would be 1 for an output-register;
3800 they */
3801
3802 if (REG_P (in_rtx))
3803 {
3804 int newreg;
3805
3806 /* Don't renumber the same reg twice. */
3807 if (in_rtx->used)
3808 return;
3809
3810 newreg = REGNO (in_rtx);
3811 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3812 to reach here as part of a REG_NOTE. */
3813 if (newreg >= FIRST_PSEUDO_REGISTER)
3814 {
3815 in_rtx->used = 1;
3816 return;
3817 }
3818 newreg = LEAF_REG_REMAP (newreg);
3819 if (newreg < 0)
3820 abort ();
3821 regs_ever_live[REGNO (in_rtx)] = 0;
3822 regs_ever_live[newreg] = 1;
3823 REGNO (in_rtx) = newreg;
3824 in_rtx->used = 1;
3825 }
3826
3827 if (INSN_P (in_rtx))
3828 {
3829 /* Inside a SEQUENCE, we find insns.
3830 Renumber just the patterns of these insns,
3831 just as we do for the top-level insns. */
3832 leaf_renumber_regs_insn (PATTERN (in_rtx));
3833 return;
3834 }
3835
3836 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3837
3838 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3839 switch (*format_ptr++)
3840 {
3841 case 'e':
3842 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3843 break;
3844
3845 case 'E':
3846 if (NULL != XVEC (in_rtx, i))
3847 {
3848 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3849 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3850 }
3851 break;
3852
3853 case 'S':
3854 case 's':
3855 case '0':
3856 case 'i':
3857 case 'w':
3858 case 'n':
3859 case 'u':
3860 break;
3861
3862 default:
3863 abort ();
3864 }
3865 }
3866 #endif
3867
3868
3869 /* When -gused is used, emit debug info for only used symbols. But in
3870 addition to the standard intercepted debug_hooks there are some direct
3871 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3872 Those routines may also be called from a higher level intercepted routine. So
3873 to prevent recording data for an inner call to one of these for an intercept,
3874 we maintain an intercept nesting counter (debug_nesting). We only save the
3875 intercepted arguments if the nesting is 1. */
3876 int debug_nesting = 0;
3877
3878 static tree *symbol_queue;
3879 int symbol_queue_index = 0;
3880 static int symbol_queue_size = 0;
3881
3882 /* Generate the symbols for any queued up type symbols we encountered
3883 while generating the type info for some originally used symbol.
3884 This might generate additional entries in the queue. Only when
3885 the nesting depth goes to 0 is this routine called. */
3886
3887 void
3888 debug_flush_symbol_queue (void)
3889 {
3890 int i;
3891
3892 /* Make sure that additionally queued items are not flushed
3893 prematurely. */
3894
3895 ++debug_nesting;
3896
3897 for (i = 0; i < symbol_queue_index; ++i)
3898 {
3899 /* If we pushed queued symbols then such symbols are must be
3900 output no matter what anyone else says. Specifically,
3901 we need to make sure dbxout_symbol() thinks the symbol was
3902 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3903 which may be set for outside reasons. */
3904 int saved_tree_used = TREE_USED (symbol_queue[i]);
3905 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3906 TREE_USED (symbol_queue[i]) = 1;
3907 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3908
3909 #ifdef DBX_DEBUGGING_INFO
3910 dbxout_symbol (symbol_queue[i], 0);
3911 #endif
3912
3913 TREE_USED (symbol_queue[i]) = saved_tree_used;
3914 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3915 }
3916
3917 symbol_queue_index = 0;
3918 --debug_nesting;
3919 }
3920
3921 /* Queue a type symbol needed as part of the definition of a decl
3922 symbol. These symbols are generated when debug_flush_symbol_queue()
3923 is called. */
3924
3925 void
3926 debug_queue_symbol (tree decl)
3927 {
3928 if (symbol_queue_index >= symbol_queue_size)
3929 {
3930 symbol_queue_size += 10;
3931 symbol_queue = xrealloc (symbol_queue,
3932 symbol_queue_size * sizeof (tree));
3933 }
3934
3935 symbol_queue[symbol_queue_index++] = decl;
3936 }
3937
3938 /* Free symbol queue. */
3939 void
3940 debug_free_queue (void)
3941 {
3942 if (symbol_queue)
3943 {
3944 free (symbol_queue);
3945 symbol_queue = NULL;
3946 symbol_queue_size = 0;
3947 }
3948 }