* final.c (shorten_branches): Initialize flags structure.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680 edge_iterator ei;
681
682 if (!LABEL_P (label)
683 || probably_never_executed_bb_p (bb))
684 continue;
685 max_log = LABEL_ALIGN (label);
686 max_skip = LABEL_ALIGN_MAX_SKIP;
687
688 FOR_EACH_EDGE (e, ei, bb->preds)
689 {
690 if (e->flags & EDGE_FALLTHRU)
691 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
692 else
693 branch_frequency += EDGE_FREQUENCY (e);
694 }
695
696 /* There are two purposes to align block with no fallthru incoming edge:
697 1) to avoid fetch stalls when branch destination is near cache boundary
698 2) to improve cache efficiency in case the previous block is not executed
699 (so it does not need to be in the cache).
700
701 We to catch first case, we align frequently executed blocks.
702 To catch the second, we align blocks that are executed more frequently
703 than the predecessor and the predecessor is likely to not be executed
704 when function is called. */
705
706 if (!has_fallthru
707 && (branch_frequency > BB_FREQ_MAX / 10
708 || (bb->frequency > bb->prev_bb->frequency * 10
709 && (bb->prev_bb->frequency
710 <= ENTRY_BLOCK_PTR->frequency / 2))))
711 {
712 log = JUMP_ALIGN (label);
713 if (max_log < log)
714 {
715 max_log = log;
716 max_skip = JUMP_ALIGN_MAX_SKIP;
717 }
718 }
719 /* In case block is frequent and reached mostly by non-fallthru edge,
720 align it. It is most likely a first block of loop. */
721 if (has_fallthru
722 && maybe_hot_bb_p (bb)
723 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
724 && branch_frequency > fallthru_frequency * 2)
725 {
726 log = LOOP_ALIGN (label);
727 if (max_log < log)
728 {
729 max_log = log;
730 max_skip = LOOP_ALIGN_MAX_SKIP;
731 }
732 }
733 LABEL_TO_ALIGNMENT (label) = max_log;
734 LABEL_TO_MAX_SKIP (label) = max_skip;
735 }
736 }
737 \f
738 /* Make a pass over all insns and compute their actual lengths by shortening
739 any branches of variable length if possible. */
740
741 /* shorten_branches might be called multiple times: for example, the SH
742 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
743 In order to do this, it needs proper length information, which it obtains
744 by calling shorten_branches. This cannot be collapsed with
745 shorten_branches itself into a single pass unless we also want to integrate
746 reorg.c, since the branch splitting exposes new instructions with delay
747 slots. */
748
749 void
750 shorten_branches (rtx first ATTRIBUTE_UNUSED)
751 {
752 rtx insn;
753 int max_uid;
754 int i;
755 int max_log;
756 int max_skip;
757 #ifdef HAVE_ATTR_length
758 #define MAX_CODE_ALIGN 16
759 rtx seq;
760 int something_changed = 1;
761 char *varying_length;
762 rtx body;
763 int uid;
764 rtx align_tab[MAX_CODE_ALIGN];
765
766 #endif
767
768 /* Compute maximum UID and allocate label_align / uid_shuid. */
769 max_uid = get_max_uid ();
770
771 /* Free uid_shuid before reallocating it. */
772 free (uid_shuid);
773
774 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
775
776 if (max_labelno != max_label_num ())
777 {
778 int old = max_labelno;
779 int n_labels;
780 int n_old_labels;
781
782 max_labelno = max_label_num ();
783
784 n_labels = max_labelno - min_labelno + 1;
785 n_old_labels = old - min_labelno + 1;
786
787 label_align = xrealloc (label_align,
788 n_labels * sizeof (struct label_alignment));
789
790 /* Range of labels grows monotonically in the function. Abort here
791 means that the initialization of array got lost. */
792 gcc_assert (n_old_labels <= n_labels);
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (LABEL_P (insn))
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (BARRIER_P (insn))
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 gcc_assert (len > 0);
937 min_align = MAX_CODE_ALIGN;
938 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
939 {
940 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
941 int shuid = INSN_SHUID (lab);
942 if (shuid < min)
943 {
944 min = shuid;
945 min_lab = lab;
946 }
947 if (shuid > max)
948 {
949 max = shuid;
950 max_lab = lab;
951 }
952 if (min_align > LABEL_TO_ALIGNMENT (lab))
953 min_align = LABEL_TO_ALIGNMENT (lab);
954 }
955 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
956 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
957 insn_shuid = INSN_SHUID (insn);
958 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
959 memset (&flags, 0, sizeof (flags));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (LABEL_P (insn))
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (LABEL_P (insn))
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 gcc_assert (NOTE_P (insn));
1570 insn_current_address = -1;
1571 }
1572 else
1573 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1574 #endif /* HAVE_ATTR_length */
1575
1576 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1577 }
1578 }
1579 \f
1580 const char *
1581 get_insn_template (int code, rtx insn)
1582 {
1583 switch (insn_data[code].output_format)
1584 {
1585 case INSN_OUTPUT_FORMAT_SINGLE:
1586 return insn_data[code].output.single;
1587 case INSN_OUTPUT_FORMAT_MULTI:
1588 return insn_data[code].output.multi[which_alternative];
1589 case INSN_OUTPUT_FORMAT_FUNCTION:
1590 gcc_assert (insn);
1591 return (*insn_data[code].output.function) (recog_data.operand, insn);
1592
1593 default:
1594 gcc_unreachable ();
1595 }
1596 }
1597
1598 /* Emit the appropriate declaration for an alternate-entry-point
1599 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1600 LABEL_KIND != LABEL_NORMAL.
1601
1602 The case fall-through in this function is intentional. */
1603 static void
1604 output_alternate_entry_point (FILE *file, rtx insn)
1605 {
1606 const char *name = LABEL_NAME (insn);
1607
1608 switch (LABEL_KIND (insn))
1609 {
1610 case LABEL_WEAK_ENTRY:
1611 #ifdef ASM_WEAKEN_LABEL
1612 ASM_WEAKEN_LABEL (file, name);
1613 #endif
1614 case LABEL_GLOBAL_ENTRY:
1615 targetm.asm_out.globalize_label (file, name);
1616 case LABEL_STATIC_ENTRY:
1617 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1618 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1619 #endif
1620 ASM_OUTPUT_LABEL (file, name);
1621 break;
1622
1623 case LABEL_NORMAL:
1624 default:
1625 gcc_unreachable ();
1626 }
1627 }
1628
1629 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1630 note in the instruction chain (going forward) between the current
1631 instruction, and the next 'executable' instruction. */
1632
1633 bool
1634 scan_ahead_for_unlikely_executed_note (rtx insn)
1635 {
1636 rtx temp;
1637 int bb_note_count = 0;
1638
1639 for (temp = insn; temp; temp = NEXT_INSN (temp))
1640 {
1641 if (NOTE_P (temp)
1642 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1643 return true;
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1646 {
1647 bb_note_count++;
1648 if (bb_note_count > 1)
1649 return false;
1650 }
1651 if (INSN_P (temp))
1652 return false;
1653 }
1654
1655 return false;
1656 }
1657
1658 /* The final scan for one insn, INSN.
1659 Args are same as in `final', except that INSN
1660 is the insn being scanned.
1661 Value returned is the next insn to be scanned.
1662
1663 NOPEEPHOLES is the flag to disallow peephole processing (currently
1664 used for within delayed branch sequence output).
1665
1666 SEEN is used to track the end of the prologue, for emitting
1667 debug information. We force the emission of a line note after
1668 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1669 at the beginning of the second basic block, whichever comes
1670 first. */
1671
1672 rtx
1673 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1674 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1675 int *seen)
1676 {
1677 #ifdef HAVE_cc0
1678 rtx set;
1679 #endif
1680
1681 insn_counter++;
1682
1683 /* Ignore deleted insns. These can occur when we split insns (due to a
1684 template of "#") while not optimizing. */
1685 if (INSN_DELETED_P (insn))
1686 return NEXT_INSN (insn);
1687
1688 switch (GET_CODE (insn))
1689 {
1690 case NOTE:
1691 if (prescan > 0)
1692 break;
1693
1694 switch (NOTE_LINE_NUMBER (insn))
1695 {
1696 case NOTE_INSN_DELETED:
1697 case NOTE_INSN_LOOP_BEG:
1698 case NOTE_INSN_LOOP_END:
1699 case NOTE_INSN_FUNCTION_END:
1700 case NOTE_INSN_REPEATED_LINE_NUMBER:
1701 case NOTE_INSN_EXPECTED_VALUE:
1702 break;
1703
1704 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1705
1706 /* The presence of this note indicates that this basic block
1707 belongs in the "cold" section of the .o file. If we are
1708 not already writing to the cold section we need to change
1709 to it. */
1710
1711 unlikely_text_section ();
1712 break;
1713
1714 case NOTE_INSN_BASIC_BLOCK:
1715
1716 /* If we are performing the optimization that partitions
1717 basic blocks into hot & cold sections of the .o file,
1718 then at the start of each new basic block, before
1719 beginning to write code for the basic block, we need to
1720 check to see whether the basic block belongs in the hot
1721 or cold section of the .o file, and change the section we
1722 are writing to appropriately. */
1723
1724 if (flag_reorder_blocks_and_partition
1725 && !scan_ahead_for_unlikely_executed_note (insn))
1726 function_section (current_function_decl);
1727
1728 #ifdef TARGET_UNWIND_INFO
1729 targetm.asm_out.unwind_emit (asm_out_file, insn);
1730 #endif
1731
1732 if (flag_debug_asm)
1733 fprintf (asm_out_file, "\t%s basic block %d\n",
1734 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1735
1736 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1737 {
1738 *seen |= SEEN_EMITTED;
1739 last_filename = NULL;
1740 }
1741 else
1742 *seen |= SEEN_BB;
1743
1744 break;
1745
1746 case NOTE_INSN_EH_REGION_BEG:
1747 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1748 NOTE_EH_HANDLER (insn));
1749 break;
1750
1751 case NOTE_INSN_EH_REGION_END:
1752 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1753 NOTE_EH_HANDLER (insn));
1754 break;
1755
1756 case NOTE_INSN_PROLOGUE_END:
1757 targetm.asm_out.function_end_prologue (file);
1758 profile_after_prologue (file);
1759
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1761 {
1762 *seen |= SEEN_EMITTED;
1763 last_filename = NULL;
1764 }
1765 else
1766 *seen |= SEEN_NOTE;
1767
1768 break;
1769
1770 case NOTE_INSN_EPILOGUE_BEG:
1771 targetm.asm_out.function_begin_epilogue (file);
1772 break;
1773
1774 case NOTE_INSN_FUNCTION_BEG:
1775 app_disable ();
1776 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1777
1778 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1779 {
1780 *seen |= SEEN_EMITTED;
1781 last_filename = NULL;
1782 }
1783 else
1784 *seen |= SEEN_NOTE;
1785
1786 break;
1787
1788 case NOTE_INSN_BLOCK_BEG:
1789 if (debug_info_level == DINFO_LEVEL_NORMAL
1790 || debug_info_level == DINFO_LEVEL_VERBOSE
1791 || write_symbols == DWARF2_DEBUG
1792 || write_symbols == VMS_AND_DWARF2_DEBUG
1793 || write_symbols == VMS_DEBUG)
1794 {
1795 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1796
1797 app_disable ();
1798 ++block_depth;
1799 high_block_linenum = last_linenum;
1800
1801 /* Output debugging info about the symbol-block beginning. */
1802 (*debug_hooks->begin_block) (last_linenum, n);
1803
1804 /* Mark this block as output. */
1805 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1806 }
1807 break;
1808
1809 case NOTE_INSN_BLOCK_END:
1810 if (debug_info_level == DINFO_LEVEL_NORMAL
1811 || debug_info_level == DINFO_LEVEL_VERBOSE
1812 || write_symbols == DWARF2_DEBUG
1813 || write_symbols == VMS_AND_DWARF2_DEBUG
1814 || write_symbols == VMS_DEBUG)
1815 {
1816 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1817
1818 app_disable ();
1819
1820 /* End of a symbol-block. */
1821 --block_depth;
1822 gcc_assert (block_depth >= 0);
1823
1824 (*debug_hooks->end_block) (high_block_linenum, n);
1825 }
1826 break;
1827
1828 case NOTE_INSN_DELETED_LABEL:
1829 /* Emit the label. We may have deleted the CODE_LABEL because
1830 the label could be proved to be unreachable, though still
1831 referenced (in the form of having its address taken. */
1832 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1833 break;
1834
1835 case NOTE_INSN_VAR_LOCATION:
1836 (*debug_hooks->var_location) (insn);
1837 break;
1838
1839 case 0:
1840 break;
1841
1842 default:
1843 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1844 break;
1845 }
1846 break;
1847
1848 case BARRIER:
1849 #if defined (DWARF2_UNWIND_INFO)
1850 if (dwarf2out_do_frame ())
1851 dwarf2out_frame_debug (insn);
1852 #endif
1853 break;
1854
1855 case CODE_LABEL:
1856 /* The target port might emit labels in the output function for
1857 some insn, e.g. sh.c output_branchy_insn. */
1858 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1859 {
1860 int align = LABEL_TO_ALIGNMENT (insn);
1861 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1862 int max_skip = LABEL_TO_MAX_SKIP (insn);
1863 #endif
1864
1865 if (align && NEXT_INSN (insn))
1866 {
1867 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1868 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1869 #else
1870 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1871 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1872 #else
1873 ASM_OUTPUT_ALIGN (file, align);
1874 #endif
1875 #endif
1876 }
1877 }
1878 #ifdef HAVE_cc0
1879 CC_STATUS_INIT;
1880 /* If this label is reached from only one place, set the condition
1881 codes from the instruction just before the branch. */
1882
1883 /* Disabled because some insns set cc_status in the C output code
1884 and NOTICE_UPDATE_CC alone can set incorrect status. */
1885 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1886 {
1887 rtx jump = LABEL_REFS (insn);
1888 rtx barrier = prev_nonnote_insn (insn);
1889 rtx prev;
1890 /* If the LABEL_REFS field of this label has been set to point
1891 at a branch, the predecessor of the branch is a regular
1892 insn, and that branch is the only way to reach this label,
1893 set the condition codes based on the branch and its
1894 predecessor. */
1895 if (barrier && BARRIER_P (barrier)
1896 && jump && JUMP_P (jump)
1897 && (prev = prev_nonnote_insn (jump))
1898 && NONJUMP_INSN_P (prev))
1899 {
1900 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1901 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1902 }
1903 }
1904 #endif
1905 if (prescan > 0)
1906 break;
1907
1908 if (LABEL_NAME (insn))
1909 (*debug_hooks->label) (insn);
1910
1911 /* If we are doing the optimization that partitions hot & cold
1912 basic blocks into separate sections of the .o file, we need
1913 to ensure the jump table ends up in the correct section... */
1914
1915 if (flag_reorder_blocks_and_partition
1916 && targetm.have_named_sections)
1917 {
1918 rtx tmp_table, tmp_label;
1919 if (LABEL_P (insn)
1920 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1921 {
1922 /* Do nothing; Do NOT change the current section. */
1923 }
1924 else if (scan_ahead_for_unlikely_executed_note (insn))
1925 unlikely_text_section ();
1926 else if (in_unlikely_text_section ())
1927 function_section (current_function_decl);
1928 }
1929
1930 if (app_on)
1931 {
1932 fputs (ASM_APP_OFF, file);
1933 app_on = 0;
1934 }
1935 if (NEXT_INSN (insn) != 0
1936 && JUMP_P (NEXT_INSN (insn)))
1937 {
1938 rtx nextbody = PATTERN (NEXT_INSN (insn));
1939
1940 /* If this label is followed by a jump-table,
1941 make sure we put the label in the read-only section. Also
1942 possibly write the label and jump table together. */
1943
1944 if (GET_CODE (nextbody) == ADDR_VEC
1945 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1946 {
1947 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1948 /* In this case, the case vector is being moved by the
1949 target, so don't output the label at all. Leave that
1950 to the back end macros. */
1951 #else
1952 if (! JUMP_TABLES_IN_TEXT_SECTION)
1953 {
1954 int log_align;
1955
1956 targetm.asm_out.function_rodata_section (current_function_decl);
1957
1958 #ifdef ADDR_VEC_ALIGN
1959 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1960 #else
1961 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1962 #endif
1963 ASM_OUTPUT_ALIGN (file, log_align);
1964 }
1965 else
1966 function_section (current_function_decl);
1967
1968 #ifdef ASM_OUTPUT_CASE_LABEL
1969 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1970 NEXT_INSN (insn));
1971 #else
1972 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1973 #endif
1974 #endif
1975 break;
1976 }
1977 }
1978 if (LABEL_ALT_ENTRY_P (insn))
1979 output_alternate_entry_point (file, insn);
1980 else
1981 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1982 break;
1983
1984 default:
1985 {
1986 rtx body = PATTERN (insn);
1987 int insn_code_number;
1988 const char *template;
1989
1990 /* An INSN, JUMP_INSN or CALL_INSN.
1991 First check for special kinds that recog doesn't recognize. */
1992
1993 if (GET_CODE (body) == USE /* These are just declarations. */
1994 || GET_CODE (body) == CLOBBER)
1995 break;
1996
1997 #ifdef HAVE_cc0
1998 {
1999 /* If there is a REG_CC_SETTER note on this insn, it means that
2000 the setting of the condition code was done in the delay slot
2001 of the insn that branched here. So recover the cc status
2002 from the insn that set it. */
2003
2004 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2005 if (note)
2006 {
2007 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2008 cc_prev_status = cc_status;
2009 }
2010 }
2011 #endif
2012
2013 /* Detect insns that are really jump-tables
2014 and output them as such. */
2015
2016 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2017 {
2018 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2019 int vlen, idx;
2020 #endif
2021
2022 if (prescan > 0)
2023 break;
2024
2025 if (app_on)
2026 {
2027 fputs (ASM_APP_OFF, file);
2028 app_on = 0;
2029 }
2030
2031 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2032 if (GET_CODE (body) == ADDR_VEC)
2033 {
2034 #ifdef ASM_OUTPUT_ADDR_VEC
2035 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2036 #else
2037 gcc_unreachable ();
2038 #endif
2039 }
2040 else
2041 {
2042 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2043 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2044 #else
2045 gcc_unreachable ();
2046 #endif
2047 }
2048 #else
2049 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2050 for (idx = 0; idx < vlen; idx++)
2051 {
2052 if (GET_CODE (body) == ADDR_VEC)
2053 {
2054 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2055 ASM_OUTPUT_ADDR_VEC_ELT
2056 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2057 #else
2058 gcc_unreachable ();
2059 #endif
2060 }
2061 else
2062 {
2063 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2064 ASM_OUTPUT_ADDR_DIFF_ELT
2065 (file,
2066 body,
2067 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2068 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2069 #else
2070 gcc_unreachable ();
2071 #endif
2072 }
2073 }
2074 #ifdef ASM_OUTPUT_CASE_END
2075 ASM_OUTPUT_CASE_END (file,
2076 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2077 insn);
2078 #endif
2079 #endif
2080
2081 function_section (current_function_decl);
2082
2083 break;
2084 }
2085 /* Output this line note if it is the first or the last line
2086 note in a row. */
2087 if (notice_source_line (insn))
2088 {
2089 (*debug_hooks->source_line) (last_linenum, last_filename);
2090 }
2091
2092 if (GET_CODE (body) == ASM_INPUT)
2093 {
2094 const char *string = XSTR (body, 0);
2095
2096 /* There's no telling what that did to the condition codes. */
2097 CC_STATUS_INIT;
2098 if (prescan > 0)
2099 break;
2100
2101 if (string[0])
2102 {
2103 if (! app_on)
2104 {
2105 fputs (ASM_APP_ON, file);
2106 app_on = 1;
2107 }
2108 fprintf (asm_out_file, "\t%s\n", string);
2109 }
2110 break;
2111 }
2112
2113 /* Detect `asm' construct with operands. */
2114 if (asm_noperands (body) >= 0)
2115 {
2116 unsigned int noperands = asm_noperands (body);
2117 rtx *ops = alloca (noperands * sizeof (rtx));
2118 const char *string;
2119
2120 /* There's no telling what that did to the condition codes. */
2121 CC_STATUS_INIT;
2122 if (prescan > 0)
2123 break;
2124
2125 /* Get out the operand values. */
2126 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2127 /* Inhibit aborts on what would otherwise be compiler bugs. */
2128 insn_noperands = noperands;
2129 this_is_asm_operands = insn;
2130
2131 #ifdef FINAL_PRESCAN_INSN
2132 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2133 #endif
2134
2135 /* Output the insn using them. */
2136 if (string[0])
2137 {
2138 if (! app_on)
2139 {
2140 fputs (ASM_APP_ON, file);
2141 app_on = 1;
2142 }
2143 output_asm_insn (string, ops);
2144 }
2145
2146 this_is_asm_operands = 0;
2147 break;
2148 }
2149
2150 if (prescan <= 0 && app_on)
2151 {
2152 fputs (ASM_APP_OFF, file);
2153 app_on = 0;
2154 }
2155
2156 if (GET_CODE (body) == SEQUENCE)
2157 {
2158 /* A delayed-branch sequence */
2159 int i;
2160 rtx next;
2161
2162 if (prescan > 0)
2163 break;
2164 final_sequence = body;
2165
2166 /* Record the delay slots' frame information before the branch.
2167 This is needed for delayed calls: see execute_cfa_program(). */
2168 #if defined (DWARF2_UNWIND_INFO)
2169 if (dwarf2out_do_frame ())
2170 for (i = 1; i < XVECLEN (body, 0); i++)
2171 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2172 #endif
2173
2174 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2175 force the restoration of a comparison that was previously
2176 thought unnecessary. If that happens, cancel this sequence
2177 and cause that insn to be restored. */
2178
2179 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2180 if (next != XVECEXP (body, 0, 1))
2181 {
2182 final_sequence = 0;
2183 return next;
2184 }
2185
2186 for (i = 1; i < XVECLEN (body, 0); i++)
2187 {
2188 rtx insn = XVECEXP (body, 0, i);
2189 rtx next = NEXT_INSN (insn);
2190 /* We loop in case any instruction in a delay slot gets
2191 split. */
2192 do
2193 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2194 while (insn != next);
2195 }
2196 #ifdef DBR_OUTPUT_SEQEND
2197 DBR_OUTPUT_SEQEND (file);
2198 #endif
2199 final_sequence = 0;
2200
2201 /* If the insn requiring the delay slot was a CALL_INSN, the
2202 insns in the delay slot are actually executed before the
2203 called function. Hence we don't preserve any CC-setting
2204 actions in these insns and the CC must be marked as being
2205 clobbered by the function. */
2206 if (CALL_P (XVECEXP (body, 0, 0)))
2207 {
2208 CC_STATUS_INIT;
2209 }
2210 break;
2211 }
2212
2213 /* We have a real machine instruction as rtl. */
2214
2215 body = PATTERN (insn);
2216
2217 #ifdef HAVE_cc0
2218 set = single_set (insn);
2219
2220 /* Check for redundant test and compare instructions
2221 (when the condition codes are already set up as desired).
2222 This is done only when optimizing; if not optimizing,
2223 it should be possible for the user to alter a variable
2224 with the debugger in between statements
2225 and the next statement should reexamine the variable
2226 to compute the condition codes. */
2227
2228 if (optimize)
2229 {
2230 if (set
2231 && GET_CODE (SET_DEST (set)) == CC0
2232 && insn != last_ignored_compare)
2233 {
2234 if (GET_CODE (SET_SRC (set)) == SUBREG)
2235 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2236 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2237 {
2238 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2239 XEXP (SET_SRC (set), 0)
2240 = alter_subreg (&XEXP (SET_SRC (set), 0));
2241 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2242 XEXP (SET_SRC (set), 1)
2243 = alter_subreg (&XEXP (SET_SRC (set), 1));
2244 }
2245 if ((cc_status.value1 != 0
2246 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2247 || (cc_status.value2 != 0
2248 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2249 {
2250 /* Don't delete insn if it has an addressing side-effect. */
2251 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2252 /* or if anything in it is volatile. */
2253 && ! volatile_refs_p (PATTERN (insn)))
2254 {
2255 /* We don't really delete the insn; just ignore it. */
2256 last_ignored_compare = insn;
2257 break;
2258 }
2259 }
2260 }
2261 }
2262 #endif
2263
2264 #ifndef STACK_REGS
2265 /* Don't bother outputting obvious no-ops, even without -O.
2266 This optimization is fast and doesn't interfere with debugging.
2267 Don't do this if the insn is in a delay slot, since this
2268 will cause an improper number of delay insns to be written. */
2269 if (final_sequence == 0
2270 && prescan >= 0
2271 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2272 && REG_P (SET_SRC (body))
2273 && REG_P (SET_DEST (body))
2274 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2275 break;
2276 #endif
2277
2278 #ifdef HAVE_cc0
2279 /* If this is a conditional branch, maybe modify it
2280 if the cc's are in a nonstandard state
2281 so that it accomplishes the same thing that it would
2282 do straightforwardly if the cc's were set up normally. */
2283
2284 if (cc_status.flags != 0
2285 && JUMP_P (insn)
2286 && GET_CODE (body) == SET
2287 && SET_DEST (body) == pc_rtx
2288 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2289 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2290 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2291 /* This is done during prescan; it is not done again
2292 in final scan when prescan has been done. */
2293 && prescan >= 0)
2294 {
2295 /* This function may alter the contents of its argument
2296 and clear some of the cc_status.flags bits.
2297 It may also return 1 meaning condition now always true
2298 or -1 meaning condition now always false
2299 or 2 meaning condition nontrivial but altered. */
2300 int result = alter_cond (XEXP (SET_SRC (body), 0));
2301 /* If condition now has fixed value, replace the IF_THEN_ELSE
2302 with its then-operand or its else-operand. */
2303 if (result == 1)
2304 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2305 if (result == -1)
2306 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2307
2308 /* The jump is now either unconditional or a no-op.
2309 If it has become a no-op, don't try to output it.
2310 (It would not be recognized.) */
2311 if (SET_SRC (body) == pc_rtx)
2312 {
2313 delete_insn (insn);
2314 break;
2315 }
2316 else if (GET_CODE (SET_SRC (body)) == RETURN)
2317 /* Replace (set (pc) (return)) with (return). */
2318 PATTERN (insn) = body = SET_SRC (body);
2319
2320 /* Rerecognize the instruction if it has changed. */
2321 if (result != 0)
2322 INSN_CODE (insn) = -1;
2323 }
2324
2325 /* Make same adjustments to instructions that examine the
2326 condition codes without jumping and instructions that
2327 handle conditional moves (if this machine has either one). */
2328
2329 if (cc_status.flags != 0
2330 && set != 0)
2331 {
2332 rtx cond_rtx, then_rtx, else_rtx;
2333
2334 if (!JUMP_P (insn)
2335 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2336 {
2337 cond_rtx = XEXP (SET_SRC (set), 0);
2338 then_rtx = XEXP (SET_SRC (set), 1);
2339 else_rtx = XEXP (SET_SRC (set), 2);
2340 }
2341 else
2342 {
2343 cond_rtx = SET_SRC (set);
2344 then_rtx = const_true_rtx;
2345 else_rtx = const0_rtx;
2346 }
2347
2348 switch (GET_CODE (cond_rtx))
2349 {
2350 case GTU:
2351 case GT:
2352 case LTU:
2353 case LT:
2354 case GEU:
2355 case GE:
2356 case LEU:
2357 case LE:
2358 case EQ:
2359 case NE:
2360 {
2361 int result;
2362 if (XEXP (cond_rtx, 0) != cc0_rtx)
2363 break;
2364 result = alter_cond (cond_rtx);
2365 if (result == 1)
2366 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2367 else if (result == -1)
2368 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2369 else if (result == 2)
2370 INSN_CODE (insn) = -1;
2371 if (SET_DEST (set) == SET_SRC (set))
2372 delete_insn (insn);
2373 }
2374 break;
2375
2376 default:
2377 break;
2378 }
2379 }
2380
2381 #endif
2382
2383 #ifdef HAVE_peephole
2384 /* Do machine-specific peephole optimizations if desired. */
2385
2386 if (optimize && !flag_no_peephole && !nopeepholes)
2387 {
2388 rtx next = peephole (insn);
2389 /* When peepholing, if there were notes within the peephole,
2390 emit them before the peephole. */
2391 if (next != 0 && next != NEXT_INSN (insn))
2392 {
2393 rtx note, prev = PREV_INSN (insn);
2394
2395 for (note = NEXT_INSN (insn); note != next;
2396 note = NEXT_INSN (note))
2397 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2398
2399 /* In case this is prescan, put the notes
2400 in proper position for later rescan. */
2401 note = NEXT_INSN (insn);
2402 PREV_INSN (note) = prev;
2403 NEXT_INSN (prev) = note;
2404 NEXT_INSN (PREV_INSN (next)) = insn;
2405 PREV_INSN (insn) = PREV_INSN (next);
2406 NEXT_INSN (insn) = next;
2407 PREV_INSN (next) = insn;
2408 }
2409
2410 /* PEEPHOLE might have changed this. */
2411 body = PATTERN (insn);
2412 }
2413 #endif
2414
2415 /* Try to recognize the instruction.
2416 If successful, verify that the operands satisfy the
2417 constraints for the instruction. Crash if they don't,
2418 since `reload' should have changed them so that they do. */
2419
2420 insn_code_number = recog_memoized (insn);
2421 cleanup_subreg_operands (insn);
2422
2423 /* Dump the insn in the assembly for debugging. */
2424 if (flag_dump_rtl_in_asm)
2425 {
2426 print_rtx_head = ASM_COMMENT_START;
2427 print_rtl_single (asm_out_file, insn);
2428 print_rtx_head = "";
2429 }
2430
2431 if (! constrain_operands_cached (1))
2432 fatal_insn_not_found (insn);
2433
2434 /* Some target machines need to prescan each insn before
2435 it is output. */
2436
2437 #ifdef FINAL_PRESCAN_INSN
2438 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2439 #endif
2440
2441 #ifdef HAVE_conditional_execution
2442 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2443 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2444 else
2445 current_insn_predicate = NULL_RTX;
2446 #endif
2447
2448 #ifdef HAVE_cc0
2449 cc_prev_status = cc_status;
2450
2451 /* Update `cc_status' for this instruction.
2452 The instruction's output routine may change it further.
2453 If the output routine for a jump insn needs to depend
2454 on the cc status, it should look at cc_prev_status. */
2455
2456 NOTICE_UPDATE_CC (body, insn);
2457 #endif
2458
2459 current_output_insn = debug_insn = insn;
2460
2461 #if defined (DWARF2_UNWIND_INFO)
2462 if (CALL_P (insn) && dwarf2out_do_frame ())
2463 dwarf2out_frame_debug (insn);
2464 #endif
2465
2466 /* Find the proper template for this insn. */
2467 template = get_insn_template (insn_code_number, insn);
2468
2469 /* If the C code returns 0, it means that it is a jump insn
2470 which follows a deleted test insn, and that test insn
2471 needs to be reinserted. */
2472 if (template == 0)
2473 {
2474 rtx prev;
2475
2476 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2477
2478 /* We have already processed the notes between the setter and
2479 the user. Make sure we don't process them again, this is
2480 particularly important if one of the notes is a block
2481 scope note or an EH note. */
2482 for (prev = insn;
2483 prev != last_ignored_compare;
2484 prev = PREV_INSN (prev))
2485 {
2486 if (NOTE_P (prev))
2487 delete_insn (prev); /* Use delete_note. */
2488 }
2489
2490 return prev;
2491 }
2492
2493 /* If the template is the string "#", it means that this insn must
2494 be split. */
2495 if (template[0] == '#' && template[1] == '\0')
2496 {
2497 rtx new = try_split (body, insn, 0);
2498
2499 /* If we didn't split the insn, go away. */
2500 if (new == insn && PATTERN (new) == body)
2501 fatal_insn ("could not split insn", insn);
2502
2503 #ifdef HAVE_ATTR_length
2504 /* This instruction should have been split in shorten_branches,
2505 to ensure that we would have valid length info for the
2506 splitees. */
2507 gcc_unreachable ();
2508 #endif
2509
2510 return new;
2511 }
2512
2513 if (prescan > 0)
2514 break;
2515
2516 #ifdef TARGET_UNWIND_INFO
2517 /* ??? This will put the directives in the wrong place if
2518 get_insn_template outputs assembly directly. However calling it
2519 before get_insn_template breaks if the insns is split. */
2520 targetm.asm_out.unwind_emit (asm_out_file, insn);
2521 #endif
2522
2523 /* Output assembler code from the template. */
2524 output_asm_insn (template, recog_data.operand);
2525
2526 /* If necessary, report the effect that the instruction has on
2527 the unwind info. We've already done this for delay slots
2528 and call instructions. */
2529 #if defined (DWARF2_UNWIND_INFO)
2530 if (NONJUMP_INSN_P (insn)
2531 #if !defined (HAVE_prologue)
2532 && !ACCUMULATE_OUTGOING_ARGS
2533 #endif
2534 && final_sequence == 0
2535 && dwarf2out_do_frame ())
2536 dwarf2out_frame_debug (insn);
2537 #endif
2538
2539 current_output_insn = debug_insn = 0;
2540 }
2541 }
2542 return NEXT_INSN (insn);
2543 }
2544 \f
2545 /* Output debugging info to the assembler file FILE
2546 based on the NOTE-insn INSN, assumed to be a line number. */
2547
2548 static bool
2549 notice_source_line (rtx insn)
2550 {
2551 const char *filename = insn_file (insn);
2552 int linenum = insn_line (insn);
2553
2554 if (filename && (filename != last_filename || last_linenum != linenum))
2555 {
2556 last_filename = filename;
2557 last_linenum = linenum;
2558 high_block_linenum = MAX (last_linenum, high_block_linenum);
2559 high_function_linenum = MAX (last_linenum, high_function_linenum);
2560 return true;
2561 }
2562 return false;
2563 }
2564 \f
2565 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2566 directly to the desired hard register. */
2567
2568 void
2569 cleanup_subreg_operands (rtx insn)
2570 {
2571 int i;
2572 extract_insn_cached (insn);
2573 for (i = 0; i < recog_data.n_operands; i++)
2574 {
2575 /* The following test cannot use recog_data.operand when testing
2576 for a SUBREG: the underlying object might have been changed
2577 already if we are inside a match_operator expression that
2578 matches the else clause. Instead we test the underlying
2579 expression directly. */
2580 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2581 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2582 else if (GET_CODE (recog_data.operand[i]) == PLUS
2583 || GET_CODE (recog_data.operand[i]) == MULT
2584 || MEM_P (recog_data.operand[i]))
2585 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2586 }
2587
2588 for (i = 0; i < recog_data.n_dups; i++)
2589 {
2590 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2591 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2592 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2593 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2594 || MEM_P (*recog_data.dup_loc[i]))
2595 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2596 }
2597 }
2598
2599 /* If X is a SUBREG, replace it with a REG or a MEM,
2600 based on the thing it is a subreg of. */
2601
2602 rtx
2603 alter_subreg (rtx *xp)
2604 {
2605 rtx x = *xp;
2606 rtx y = SUBREG_REG (x);
2607
2608 /* simplify_subreg does not remove subreg from volatile references.
2609 We are required to. */
2610 if (MEM_P (y))
2611 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2612 else
2613 {
2614 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2615 SUBREG_BYTE (x));
2616
2617 if (new != 0)
2618 *xp = new;
2619 else
2620 {
2621 /* Simplify_subreg can't handle some REG cases, but we have to. */
2622 unsigned int regno = subreg_hard_regno (x, 1);
2623
2624 gcc_assert (REG_P (y));
2625 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2626 }
2627 }
2628
2629 return *xp;
2630 }
2631
2632 /* Do alter_subreg on all the SUBREGs contained in X. */
2633
2634 static rtx
2635 walk_alter_subreg (rtx *xp)
2636 {
2637 rtx x = *xp;
2638 switch (GET_CODE (x))
2639 {
2640 case PLUS:
2641 case MULT:
2642 case AND:
2643 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2644 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2645 break;
2646
2647 case MEM:
2648 case ZERO_EXTEND:
2649 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2650 break;
2651
2652 case SUBREG:
2653 return alter_subreg (xp);
2654
2655 default:
2656 break;
2657 }
2658
2659 return *xp;
2660 }
2661 \f
2662 #ifdef HAVE_cc0
2663
2664 /* Given BODY, the body of a jump instruction, alter the jump condition
2665 as required by the bits that are set in cc_status.flags.
2666 Not all of the bits there can be handled at this level in all cases.
2667
2668 The value is normally 0.
2669 1 means that the condition has become always true.
2670 -1 means that the condition has become always false.
2671 2 means that COND has been altered. */
2672
2673 static int
2674 alter_cond (rtx cond)
2675 {
2676 int value = 0;
2677
2678 if (cc_status.flags & CC_REVERSED)
2679 {
2680 value = 2;
2681 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2682 }
2683
2684 if (cc_status.flags & CC_INVERTED)
2685 {
2686 value = 2;
2687 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2688 }
2689
2690 if (cc_status.flags & CC_NOT_POSITIVE)
2691 switch (GET_CODE (cond))
2692 {
2693 case LE:
2694 case LEU:
2695 case GEU:
2696 /* Jump becomes unconditional. */
2697 return 1;
2698
2699 case GT:
2700 case GTU:
2701 case LTU:
2702 /* Jump becomes no-op. */
2703 return -1;
2704
2705 case GE:
2706 PUT_CODE (cond, EQ);
2707 value = 2;
2708 break;
2709
2710 case LT:
2711 PUT_CODE (cond, NE);
2712 value = 2;
2713 break;
2714
2715 default:
2716 break;
2717 }
2718
2719 if (cc_status.flags & CC_NOT_NEGATIVE)
2720 switch (GET_CODE (cond))
2721 {
2722 case GE:
2723 case GEU:
2724 /* Jump becomes unconditional. */
2725 return 1;
2726
2727 case LT:
2728 case LTU:
2729 /* Jump becomes no-op. */
2730 return -1;
2731
2732 case LE:
2733 case LEU:
2734 PUT_CODE (cond, EQ);
2735 value = 2;
2736 break;
2737
2738 case GT:
2739 case GTU:
2740 PUT_CODE (cond, NE);
2741 value = 2;
2742 break;
2743
2744 default:
2745 break;
2746 }
2747
2748 if (cc_status.flags & CC_NO_OVERFLOW)
2749 switch (GET_CODE (cond))
2750 {
2751 case GEU:
2752 /* Jump becomes unconditional. */
2753 return 1;
2754
2755 case LEU:
2756 PUT_CODE (cond, EQ);
2757 value = 2;
2758 break;
2759
2760 case GTU:
2761 PUT_CODE (cond, NE);
2762 value = 2;
2763 break;
2764
2765 case LTU:
2766 /* Jump becomes no-op. */
2767 return -1;
2768
2769 default:
2770 break;
2771 }
2772
2773 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2774 switch (GET_CODE (cond))
2775 {
2776 default:
2777 gcc_unreachable ();
2778
2779 case NE:
2780 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2781 value = 2;
2782 break;
2783
2784 case EQ:
2785 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2786 value = 2;
2787 break;
2788 }
2789
2790 if (cc_status.flags & CC_NOT_SIGNED)
2791 /* The flags are valid if signed condition operators are converted
2792 to unsigned. */
2793 switch (GET_CODE (cond))
2794 {
2795 case LE:
2796 PUT_CODE (cond, LEU);
2797 value = 2;
2798 break;
2799
2800 case LT:
2801 PUT_CODE (cond, LTU);
2802 value = 2;
2803 break;
2804
2805 case GT:
2806 PUT_CODE (cond, GTU);
2807 value = 2;
2808 break;
2809
2810 case GE:
2811 PUT_CODE (cond, GEU);
2812 value = 2;
2813 break;
2814
2815 default:
2816 break;
2817 }
2818
2819 return value;
2820 }
2821 #endif
2822 \f
2823 /* Report inconsistency between the assembler template and the operands.
2824 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2825
2826 void
2827 output_operand_lossage (const char *msgid, ...)
2828 {
2829 char *fmt_string;
2830 char *new_message;
2831 const char *pfx_str;
2832 va_list ap;
2833
2834 va_start (ap, msgid);
2835
2836 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2837 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2838 vasprintf (&new_message, fmt_string, ap);
2839
2840 if (this_is_asm_operands)
2841 error_for_asm (this_is_asm_operands, "%s", new_message);
2842 else
2843 internal_error ("%s", new_message);
2844
2845 free (fmt_string);
2846 free (new_message);
2847 va_end (ap);
2848 }
2849 \f
2850 /* Output of assembler code from a template, and its subroutines. */
2851
2852 /* Annotate the assembly with a comment describing the pattern and
2853 alternative used. */
2854
2855 static void
2856 output_asm_name (void)
2857 {
2858 if (debug_insn)
2859 {
2860 int num = INSN_CODE (debug_insn);
2861 fprintf (asm_out_file, "\t%s %d\t%s",
2862 ASM_COMMENT_START, INSN_UID (debug_insn),
2863 insn_data[num].name);
2864 if (insn_data[num].n_alternatives > 1)
2865 fprintf (asm_out_file, "/%d", which_alternative + 1);
2866 #ifdef HAVE_ATTR_length
2867 fprintf (asm_out_file, "\t[length = %d]",
2868 get_attr_length (debug_insn));
2869 #endif
2870 /* Clear this so only the first assembler insn
2871 of any rtl insn will get the special comment for -dp. */
2872 debug_insn = 0;
2873 }
2874 }
2875
2876 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2877 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2878 corresponds to the address of the object and 0 if to the object. */
2879
2880 static tree
2881 get_mem_expr_from_op (rtx op, int *paddressp)
2882 {
2883 tree expr;
2884 int inner_addressp;
2885
2886 *paddressp = 0;
2887
2888 if (REG_P (op))
2889 return REG_EXPR (op);
2890 else if (!MEM_P (op))
2891 return 0;
2892
2893 if (MEM_EXPR (op) != 0)
2894 return MEM_EXPR (op);
2895
2896 /* Otherwise we have an address, so indicate it and look at the address. */
2897 *paddressp = 1;
2898 op = XEXP (op, 0);
2899
2900 /* First check if we have a decl for the address, then look at the right side
2901 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2902 But don't allow the address to itself be indirect. */
2903 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2904 return expr;
2905 else if (GET_CODE (op) == PLUS
2906 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2907 return expr;
2908
2909 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2910 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2911 op = XEXP (op, 0);
2912
2913 expr = get_mem_expr_from_op (op, &inner_addressp);
2914 return inner_addressp ? 0 : expr;
2915 }
2916
2917 /* Output operand names for assembler instructions. OPERANDS is the
2918 operand vector, OPORDER is the order to write the operands, and NOPS
2919 is the number of operands to write. */
2920
2921 static void
2922 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2923 {
2924 int wrote = 0;
2925 int i;
2926
2927 for (i = 0; i < nops; i++)
2928 {
2929 int addressp;
2930 rtx op = operands[oporder[i]];
2931 tree expr = get_mem_expr_from_op (op, &addressp);
2932
2933 fprintf (asm_out_file, "%c%s",
2934 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2935 wrote = 1;
2936 if (expr)
2937 {
2938 fprintf (asm_out_file, "%s",
2939 addressp ? "*" : "");
2940 print_mem_expr (asm_out_file, expr);
2941 wrote = 1;
2942 }
2943 else if (REG_P (op) && ORIGINAL_REGNO (op)
2944 && ORIGINAL_REGNO (op) != REGNO (op))
2945 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2946 }
2947 }
2948
2949 /* Output text from TEMPLATE to the assembler output file,
2950 obeying %-directions to substitute operands taken from
2951 the vector OPERANDS.
2952
2953 %N (for N a digit) means print operand N in usual manner.
2954 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2955 and print the label name with no punctuation.
2956 %cN means require operand N to be a constant
2957 and print the constant expression with no punctuation.
2958 %aN means expect operand N to be a memory address
2959 (not a memory reference!) and print a reference
2960 to that address.
2961 %nN means expect operand N to be a constant
2962 and print a constant expression for minus the value
2963 of the operand, with no other punctuation. */
2964
2965 void
2966 output_asm_insn (const char *template, rtx *operands)
2967 {
2968 const char *p;
2969 int c;
2970 #ifdef ASSEMBLER_DIALECT
2971 int dialect = 0;
2972 #endif
2973 int oporder[MAX_RECOG_OPERANDS];
2974 char opoutput[MAX_RECOG_OPERANDS];
2975 int ops = 0;
2976
2977 /* An insn may return a null string template
2978 in a case where no assembler code is needed. */
2979 if (*template == 0)
2980 return;
2981
2982 memset (opoutput, 0, sizeof opoutput);
2983 p = template;
2984 putc ('\t', asm_out_file);
2985
2986 #ifdef ASM_OUTPUT_OPCODE
2987 ASM_OUTPUT_OPCODE (asm_out_file, p);
2988 #endif
2989
2990 while ((c = *p++))
2991 switch (c)
2992 {
2993 case '\n':
2994 if (flag_verbose_asm)
2995 output_asm_operand_names (operands, oporder, ops);
2996 if (flag_print_asm_name)
2997 output_asm_name ();
2998
2999 ops = 0;
3000 memset (opoutput, 0, sizeof opoutput);
3001
3002 putc (c, asm_out_file);
3003 #ifdef ASM_OUTPUT_OPCODE
3004 while ((c = *p) == '\t')
3005 {
3006 putc (c, asm_out_file);
3007 p++;
3008 }
3009 ASM_OUTPUT_OPCODE (asm_out_file, p);
3010 #endif
3011 break;
3012
3013 #ifdef ASSEMBLER_DIALECT
3014 case '{':
3015 {
3016 int i;
3017
3018 if (dialect)
3019 output_operand_lossage ("nested assembly dialect alternatives");
3020 else
3021 dialect = 1;
3022
3023 /* If we want the first dialect, do nothing. Otherwise, skip
3024 DIALECT_NUMBER of strings ending with '|'. */
3025 for (i = 0; i < dialect_number; i++)
3026 {
3027 while (*p && *p != '}' && *p++ != '|')
3028 ;
3029 if (*p == '}')
3030 break;
3031 if (*p == '|')
3032 p++;
3033 }
3034
3035 if (*p == '\0')
3036 output_operand_lossage ("unterminated assembly dialect alternative");
3037 }
3038 break;
3039
3040 case '|':
3041 if (dialect)
3042 {
3043 /* Skip to close brace. */
3044 do
3045 {
3046 if (*p == '\0')
3047 {
3048 output_operand_lossage ("unterminated assembly dialect alternative");
3049 break;
3050 }
3051 }
3052 while (*p++ != '}');
3053 dialect = 0;
3054 }
3055 else
3056 putc (c, asm_out_file);
3057 break;
3058
3059 case '}':
3060 if (! dialect)
3061 putc (c, asm_out_file);
3062 dialect = 0;
3063 break;
3064 #endif
3065
3066 case '%':
3067 /* %% outputs a single %. */
3068 if (*p == '%')
3069 {
3070 p++;
3071 putc (c, asm_out_file);
3072 }
3073 /* %= outputs a number which is unique to each insn in the entire
3074 compilation. This is useful for making local labels that are
3075 referred to more than once in a given insn. */
3076 else if (*p == '=')
3077 {
3078 p++;
3079 fprintf (asm_out_file, "%d", insn_counter);
3080 }
3081 /* % followed by a letter and some digits
3082 outputs an operand in a special way depending on the letter.
3083 Letters `acln' are implemented directly.
3084 Other letters are passed to `output_operand' so that
3085 the PRINT_OPERAND macro can define them. */
3086 else if (ISALPHA (*p))
3087 {
3088 int letter = *p++;
3089 unsigned long opnum;
3090 char *endptr;
3091
3092 opnum = strtoul (p, &endptr, 10);
3093
3094 if (endptr == p)
3095 output_operand_lossage ("operand number missing "
3096 "after %%-letter");
3097 else if (this_is_asm_operands && opnum >= insn_noperands)
3098 output_operand_lossage ("operand number out of range");
3099 else if (letter == 'l')
3100 output_asm_label (operands[opnum]);
3101 else if (letter == 'a')
3102 output_address (operands[opnum]);
3103 else if (letter == 'c')
3104 {
3105 if (CONSTANT_ADDRESS_P (operands[opnum]))
3106 output_addr_const (asm_out_file, operands[opnum]);
3107 else
3108 output_operand (operands[opnum], 'c');
3109 }
3110 else if (letter == 'n')
3111 {
3112 if (GET_CODE (operands[opnum]) == CONST_INT)
3113 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3114 - INTVAL (operands[opnum]));
3115 else
3116 {
3117 putc ('-', asm_out_file);
3118 output_addr_const (asm_out_file, operands[opnum]);
3119 }
3120 }
3121 else
3122 output_operand (operands[opnum], letter);
3123
3124 if (!opoutput[opnum])
3125 oporder[ops++] = opnum;
3126 opoutput[opnum] = 1;
3127
3128 p = endptr;
3129 c = *p;
3130 }
3131 /* % followed by a digit outputs an operand the default way. */
3132 else if (ISDIGIT (*p))
3133 {
3134 unsigned long opnum;
3135 char *endptr;
3136
3137 opnum = strtoul (p, &endptr, 10);
3138 if (this_is_asm_operands && opnum >= insn_noperands)
3139 output_operand_lossage ("operand number out of range");
3140 else
3141 output_operand (operands[opnum], 0);
3142
3143 if (!opoutput[opnum])
3144 oporder[ops++] = opnum;
3145 opoutput[opnum] = 1;
3146
3147 p = endptr;
3148 c = *p;
3149 }
3150 /* % followed by punctuation: output something for that
3151 punctuation character alone, with no operand.
3152 The PRINT_OPERAND macro decides what is actually done. */
3153 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3154 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3155 output_operand (NULL_RTX, *p++);
3156 #endif
3157 else
3158 output_operand_lossage ("invalid %%-code");
3159 break;
3160
3161 default:
3162 putc (c, asm_out_file);
3163 }
3164
3165 /* Write out the variable names for operands, if we know them. */
3166 if (flag_verbose_asm)
3167 output_asm_operand_names (operands, oporder, ops);
3168 if (flag_print_asm_name)
3169 output_asm_name ();
3170
3171 putc ('\n', asm_out_file);
3172 }
3173 \f
3174 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3175
3176 void
3177 output_asm_label (rtx x)
3178 {
3179 char buf[256];
3180
3181 if (GET_CODE (x) == LABEL_REF)
3182 x = XEXP (x, 0);
3183 if (LABEL_P (x)
3184 || (NOTE_P (x)
3185 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3186 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3187 else
3188 output_operand_lossage ("`%%l' operand isn't a label");
3189
3190 assemble_name (asm_out_file, buf);
3191 }
3192
3193 /* Print operand X using machine-dependent assembler syntax.
3194 The macro PRINT_OPERAND is defined just to control this function.
3195 CODE is a non-digit that preceded the operand-number in the % spec,
3196 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3197 between the % and the digits.
3198 When CODE is a non-letter, X is 0.
3199
3200 The meanings of the letters are machine-dependent and controlled
3201 by PRINT_OPERAND. */
3202
3203 static void
3204 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3205 {
3206 if (x && GET_CODE (x) == SUBREG)
3207 x = alter_subreg (&x);
3208
3209 /* If X is a pseudo-register, abort now rather than writing trash to the
3210 assembler file. */
3211 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3212
3213 PRINT_OPERAND (asm_out_file, x, code);
3214 }
3215
3216 /* Print a memory reference operand for address X
3217 using machine-dependent assembler syntax.
3218 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3219
3220 void
3221 output_address (rtx x)
3222 {
3223 walk_alter_subreg (&x);
3224 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3225 }
3226 \f
3227 /* Print an integer constant expression in assembler syntax.
3228 Addition and subtraction are the only arithmetic
3229 that may appear in these expressions. */
3230
3231 void
3232 output_addr_const (FILE *file, rtx x)
3233 {
3234 char buf[256];
3235
3236 restart:
3237 switch (GET_CODE (x))
3238 {
3239 case PC:
3240 putc ('.', file);
3241 break;
3242
3243 case SYMBOL_REF:
3244 if (SYMBOL_REF_DECL (x))
3245 mark_decl_referenced (SYMBOL_REF_DECL (x));
3246 #ifdef ASM_OUTPUT_SYMBOL_REF
3247 ASM_OUTPUT_SYMBOL_REF (file, x);
3248 #else
3249 assemble_name (file, XSTR (x, 0));
3250 #endif
3251 break;
3252
3253 case LABEL_REF:
3254 x = XEXP (x, 0);
3255 /* Fall through. */
3256 case CODE_LABEL:
3257 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3258 #ifdef ASM_OUTPUT_LABEL_REF
3259 ASM_OUTPUT_LABEL_REF (file, buf);
3260 #else
3261 assemble_name (file, buf);
3262 #endif
3263 break;
3264
3265 case CONST_INT:
3266 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3267 break;
3268
3269 case CONST:
3270 /* This used to output parentheses around the expression,
3271 but that does not work on the 386 (either ATT or BSD assembler). */
3272 output_addr_const (file, XEXP (x, 0));
3273 break;
3274
3275 case CONST_DOUBLE:
3276 if (GET_MODE (x) == VOIDmode)
3277 {
3278 /* We can use %d if the number is one word and positive. */
3279 if (CONST_DOUBLE_HIGH (x))
3280 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3281 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3282 else if (CONST_DOUBLE_LOW (x) < 0)
3283 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3284 else
3285 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3286 }
3287 else
3288 /* We can't handle floating point constants;
3289 PRINT_OPERAND must handle them. */
3290 output_operand_lossage ("floating constant misused");
3291 break;
3292
3293 case PLUS:
3294 /* Some assemblers need integer constants to appear last (eg masm). */
3295 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3296 {
3297 output_addr_const (file, XEXP (x, 1));
3298 if (INTVAL (XEXP (x, 0)) >= 0)
3299 fprintf (file, "+");
3300 output_addr_const (file, XEXP (x, 0));
3301 }
3302 else
3303 {
3304 output_addr_const (file, XEXP (x, 0));
3305 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3306 || INTVAL (XEXP (x, 1)) >= 0)
3307 fprintf (file, "+");
3308 output_addr_const (file, XEXP (x, 1));
3309 }
3310 break;
3311
3312 case MINUS:
3313 /* Avoid outputting things like x-x or x+5-x,
3314 since some assemblers can't handle that. */
3315 x = simplify_subtraction (x);
3316 if (GET_CODE (x) != MINUS)
3317 goto restart;
3318
3319 output_addr_const (file, XEXP (x, 0));
3320 fprintf (file, "-");
3321 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3322 || GET_CODE (XEXP (x, 1)) == PC
3323 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3324 output_addr_const (file, XEXP (x, 1));
3325 else
3326 {
3327 fputs (targetm.asm_out.open_paren, file);
3328 output_addr_const (file, XEXP (x, 1));
3329 fputs (targetm.asm_out.close_paren, file);
3330 }
3331 break;
3332
3333 case ZERO_EXTEND:
3334 case SIGN_EXTEND:
3335 case SUBREG:
3336 output_addr_const (file, XEXP (x, 0));
3337 break;
3338
3339 default:
3340 #ifdef OUTPUT_ADDR_CONST_EXTRA
3341 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3342 break;
3343
3344 fail:
3345 #endif
3346 output_operand_lossage ("invalid expression as operand");
3347 }
3348 }
3349 \f
3350 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3351 %R prints the value of REGISTER_PREFIX.
3352 %L prints the value of LOCAL_LABEL_PREFIX.
3353 %U prints the value of USER_LABEL_PREFIX.
3354 %I prints the value of IMMEDIATE_PREFIX.
3355 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3356 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3357
3358 We handle alternate assembler dialects here, just like output_asm_insn. */
3359
3360 void
3361 asm_fprintf (FILE *file, const char *p, ...)
3362 {
3363 char buf[10];
3364 char *q, c;
3365 va_list argptr;
3366
3367 va_start (argptr, p);
3368
3369 buf[0] = '%';
3370
3371 while ((c = *p++))
3372 switch (c)
3373 {
3374 #ifdef ASSEMBLER_DIALECT
3375 case '{':
3376 {
3377 int i;
3378
3379 /* If we want the first dialect, do nothing. Otherwise, skip
3380 DIALECT_NUMBER of strings ending with '|'. */
3381 for (i = 0; i < dialect_number; i++)
3382 {
3383 while (*p && *p++ != '|')
3384 ;
3385
3386 if (*p == '|')
3387 p++;
3388 }
3389 }
3390 break;
3391
3392 case '|':
3393 /* Skip to close brace. */
3394 while (*p && *p++ != '}')
3395 ;
3396 break;
3397
3398 case '}':
3399 break;
3400 #endif
3401
3402 case '%':
3403 c = *p++;
3404 q = &buf[1];
3405 while (strchr ("-+ #0", c))
3406 {
3407 *q++ = c;
3408 c = *p++;
3409 }
3410 while (ISDIGIT (c) || c == '.')
3411 {
3412 *q++ = c;
3413 c = *p++;
3414 }
3415 switch (c)
3416 {
3417 case '%':
3418 putc ('%', file);
3419 break;
3420
3421 case 'd': case 'i': case 'u':
3422 case 'x': case 'X': case 'o':
3423 case 'c':
3424 *q++ = c;
3425 *q = 0;
3426 fprintf (file, buf, va_arg (argptr, int));
3427 break;
3428
3429 case 'w':
3430 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3431 'o' cases, but we do not check for those cases. It
3432 means that the value is a HOST_WIDE_INT, which may be
3433 either `long' or `long long'. */
3434 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3435 q += strlen (HOST_WIDE_INT_PRINT);
3436 *q++ = *p++;
3437 *q = 0;
3438 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3439 break;
3440
3441 case 'l':
3442 *q++ = c;
3443 #ifdef HAVE_LONG_LONG
3444 if (*p == 'l')
3445 {
3446 *q++ = *p++;
3447 *q++ = *p++;
3448 *q = 0;
3449 fprintf (file, buf, va_arg (argptr, long long));
3450 }
3451 else
3452 #endif
3453 {
3454 *q++ = *p++;
3455 *q = 0;
3456 fprintf (file, buf, va_arg (argptr, long));
3457 }
3458
3459 break;
3460
3461 case 's':
3462 *q++ = c;
3463 *q = 0;
3464 fprintf (file, buf, va_arg (argptr, char *));
3465 break;
3466
3467 case 'O':
3468 #ifdef ASM_OUTPUT_OPCODE
3469 ASM_OUTPUT_OPCODE (asm_out_file, p);
3470 #endif
3471 break;
3472
3473 case 'R':
3474 #ifdef REGISTER_PREFIX
3475 fprintf (file, "%s", REGISTER_PREFIX);
3476 #endif
3477 break;
3478
3479 case 'I':
3480 #ifdef IMMEDIATE_PREFIX
3481 fprintf (file, "%s", IMMEDIATE_PREFIX);
3482 #endif
3483 break;
3484
3485 case 'L':
3486 #ifdef LOCAL_LABEL_PREFIX
3487 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3488 #endif
3489 break;
3490
3491 case 'U':
3492 fputs (user_label_prefix, file);
3493 break;
3494
3495 #ifdef ASM_FPRINTF_EXTENSIONS
3496 /* Uppercase letters are reserved for general use by asm_fprintf
3497 and so are not available to target specific code. In order to
3498 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3499 they are defined here. As they get turned into real extensions
3500 to asm_fprintf they should be removed from this list. */
3501 case 'A': case 'B': case 'C': case 'D': case 'E':
3502 case 'F': case 'G': case 'H': case 'J': case 'K':
3503 case 'M': case 'N': case 'P': case 'Q': case 'S':
3504 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3505 break;
3506
3507 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3508 #endif
3509 default:
3510 gcc_unreachable ();
3511 }
3512 break;
3513
3514 default:
3515 putc (c, file);
3516 }
3517 va_end (argptr);
3518 }
3519 \f
3520 /* Split up a CONST_DOUBLE or integer constant rtx
3521 into two rtx's for single words,
3522 storing in *FIRST the word that comes first in memory in the target
3523 and in *SECOND the other. */
3524
3525 void
3526 split_double (rtx value, rtx *first, rtx *second)
3527 {
3528 if (GET_CODE (value) == CONST_INT)
3529 {
3530 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3531 {
3532 /* In this case the CONST_INT holds both target words.
3533 Extract the bits from it into two word-sized pieces.
3534 Sign extend each half to HOST_WIDE_INT. */
3535 unsigned HOST_WIDE_INT low, high;
3536 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3537
3538 /* Set sign_bit to the most significant bit of a word. */
3539 sign_bit = 1;
3540 sign_bit <<= BITS_PER_WORD - 1;
3541
3542 /* Set mask so that all bits of the word are set. We could
3543 have used 1 << BITS_PER_WORD instead of basing the
3544 calculation on sign_bit. However, on machines where
3545 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3546 compiler warning, even though the code would never be
3547 executed. */
3548 mask = sign_bit << 1;
3549 mask--;
3550
3551 /* Set sign_extend as any remaining bits. */
3552 sign_extend = ~mask;
3553
3554 /* Pick the lower word and sign-extend it. */
3555 low = INTVAL (value);
3556 low &= mask;
3557 if (low & sign_bit)
3558 low |= sign_extend;
3559
3560 /* Pick the higher word, shifted to the least significant
3561 bits, and sign-extend it. */
3562 high = INTVAL (value);
3563 high >>= BITS_PER_WORD - 1;
3564 high >>= 1;
3565 high &= mask;
3566 if (high & sign_bit)
3567 high |= sign_extend;
3568
3569 /* Store the words in the target machine order. */
3570 if (WORDS_BIG_ENDIAN)
3571 {
3572 *first = GEN_INT (high);
3573 *second = GEN_INT (low);
3574 }
3575 else
3576 {
3577 *first = GEN_INT (low);
3578 *second = GEN_INT (high);
3579 }
3580 }
3581 else
3582 {
3583 /* The rule for using CONST_INT for a wider mode
3584 is that we regard the value as signed.
3585 So sign-extend it. */
3586 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3587 if (WORDS_BIG_ENDIAN)
3588 {
3589 *first = high;
3590 *second = value;
3591 }
3592 else
3593 {
3594 *first = value;
3595 *second = high;
3596 }
3597 }
3598 }
3599 else if (GET_CODE (value) != CONST_DOUBLE)
3600 {
3601 if (WORDS_BIG_ENDIAN)
3602 {
3603 *first = const0_rtx;
3604 *second = value;
3605 }
3606 else
3607 {
3608 *first = value;
3609 *second = const0_rtx;
3610 }
3611 }
3612 else if (GET_MODE (value) == VOIDmode
3613 /* This is the old way we did CONST_DOUBLE integers. */
3614 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3615 {
3616 /* In an integer, the words are defined as most and least significant.
3617 So order them by the target's convention. */
3618 if (WORDS_BIG_ENDIAN)
3619 {
3620 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3621 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3622 }
3623 else
3624 {
3625 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3626 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3627 }
3628 }
3629 else
3630 {
3631 REAL_VALUE_TYPE r;
3632 long l[2];
3633 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3634
3635 /* Note, this converts the REAL_VALUE_TYPE to the target's
3636 format, splits up the floating point double and outputs
3637 exactly 32 bits of it into each of l[0] and l[1] --
3638 not necessarily BITS_PER_WORD bits. */
3639 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3640
3641 /* If 32 bits is an entire word for the target, but not for the host,
3642 then sign-extend on the host so that the number will look the same
3643 way on the host that it would on the target. See for instance
3644 simplify_unary_operation. The #if is needed to avoid compiler
3645 warnings. */
3646
3647 #if HOST_BITS_PER_LONG > 32
3648 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3649 {
3650 if (l[0] & ((long) 1 << 31))
3651 l[0] |= ((long) (-1) << 32);
3652 if (l[1] & ((long) 1 << 31))
3653 l[1] |= ((long) (-1) << 32);
3654 }
3655 #endif
3656
3657 *first = GEN_INT (l[0]);
3658 *second = GEN_INT (l[1]);
3659 }
3660 }
3661 \f
3662 /* Return nonzero if this function has no function calls. */
3663
3664 int
3665 leaf_function_p (void)
3666 {
3667 rtx insn;
3668 rtx link;
3669
3670 if (current_function_profile || profile_arc_flag)
3671 return 0;
3672
3673 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3674 {
3675 if (CALL_P (insn)
3676 && ! SIBLING_CALL_P (insn))
3677 return 0;
3678 if (NONJUMP_INSN_P (insn)
3679 && GET_CODE (PATTERN (insn)) == SEQUENCE
3680 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3681 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3682 return 0;
3683 }
3684 for (link = current_function_epilogue_delay_list;
3685 link;
3686 link = XEXP (link, 1))
3687 {
3688 insn = XEXP (link, 0);
3689
3690 if (CALL_P (insn)
3691 && ! SIBLING_CALL_P (insn))
3692 return 0;
3693 if (NONJUMP_INSN_P (insn)
3694 && GET_CODE (PATTERN (insn)) == SEQUENCE
3695 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3696 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3697 return 0;
3698 }
3699
3700 return 1;
3701 }
3702
3703 /* Return 1 if branch is a forward branch.
3704 Uses insn_shuid array, so it works only in the final pass. May be used by
3705 output templates to customary add branch prediction hints.
3706 */
3707 int
3708 final_forward_branch_p (rtx insn)
3709 {
3710 int insn_id, label_id;
3711
3712 gcc_assert (uid_shuid);
3713 insn_id = INSN_SHUID (insn);
3714 label_id = INSN_SHUID (JUMP_LABEL (insn));
3715 /* We've hit some insns that does not have id information available. */
3716 gcc_assert (insn_id && label_id);
3717 return insn_id < label_id;
3718 }
3719
3720 /* On some machines, a function with no call insns
3721 can run faster if it doesn't create its own register window.
3722 When output, the leaf function should use only the "output"
3723 registers. Ordinarily, the function would be compiled to use
3724 the "input" registers to find its arguments; it is a candidate
3725 for leaf treatment if it uses only the "input" registers.
3726 Leaf function treatment means renumbering so the function
3727 uses the "output" registers instead. */
3728
3729 #ifdef LEAF_REGISTERS
3730
3731 /* Return 1 if this function uses only the registers that can be
3732 safely renumbered. */
3733
3734 int
3735 only_leaf_regs_used (void)
3736 {
3737 int i;
3738 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3739
3740 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3741 if ((regs_ever_live[i] || global_regs[i])
3742 && ! permitted_reg_in_leaf_functions[i])
3743 return 0;
3744
3745 if (current_function_uses_pic_offset_table
3746 && pic_offset_table_rtx != 0
3747 && REG_P (pic_offset_table_rtx)
3748 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3749 return 0;
3750
3751 return 1;
3752 }
3753
3754 /* Scan all instructions and renumber all registers into those
3755 available in leaf functions. */
3756
3757 static void
3758 leaf_renumber_regs (rtx first)
3759 {
3760 rtx insn;
3761
3762 /* Renumber only the actual patterns.
3763 The reg-notes can contain frame pointer refs,
3764 and renumbering them could crash, and should not be needed. */
3765 for (insn = first; insn; insn = NEXT_INSN (insn))
3766 if (INSN_P (insn))
3767 leaf_renumber_regs_insn (PATTERN (insn));
3768 for (insn = current_function_epilogue_delay_list;
3769 insn;
3770 insn = XEXP (insn, 1))
3771 if (INSN_P (XEXP (insn, 0)))
3772 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3773 }
3774
3775 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3776 available in leaf functions. */
3777
3778 void
3779 leaf_renumber_regs_insn (rtx in_rtx)
3780 {
3781 int i, j;
3782 const char *format_ptr;
3783
3784 if (in_rtx == 0)
3785 return;
3786
3787 /* Renumber all input-registers into output-registers.
3788 renumbered_regs would be 1 for an output-register;
3789 they */
3790
3791 if (REG_P (in_rtx))
3792 {
3793 int newreg;
3794
3795 /* Don't renumber the same reg twice. */
3796 if (in_rtx->used)
3797 return;
3798
3799 newreg = REGNO (in_rtx);
3800 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3801 to reach here as part of a REG_NOTE. */
3802 if (newreg >= FIRST_PSEUDO_REGISTER)
3803 {
3804 in_rtx->used = 1;
3805 return;
3806 }
3807 newreg = LEAF_REG_REMAP (newreg);
3808 gcc_assert (newreg >= 0);
3809 regs_ever_live[REGNO (in_rtx)] = 0;
3810 regs_ever_live[newreg] = 1;
3811 REGNO (in_rtx) = newreg;
3812 in_rtx->used = 1;
3813 }
3814
3815 if (INSN_P (in_rtx))
3816 {
3817 /* Inside a SEQUENCE, we find insns.
3818 Renumber just the patterns of these insns,
3819 just as we do for the top-level insns. */
3820 leaf_renumber_regs_insn (PATTERN (in_rtx));
3821 return;
3822 }
3823
3824 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3825
3826 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3827 switch (*format_ptr++)
3828 {
3829 case 'e':
3830 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3831 break;
3832
3833 case 'E':
3834 if (NULL != XVEC (in_rtx, i))
3835 {
3836 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3837 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3838 }
3839 break;
3840
3841 case 'S':
3842 case 's':
3843 case '0':
3844 case 'i':
3845 case 'w':
3846 case 'n':
3847 case 'u':
3848 break;
3849
3850 default:
3851 gcc_unreachable ();
3852 }
3853 }
3854 #endif
3855
3856
3857 /* When -gused is used, emit debug info for only used symbols. But in
3858 addition to the standard intercepted debug_hooks there are some direct
3859 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3860 Those routines may also be called from a higher level intercepted routine. So
3861 to prevent recording data for an inner call to one of these for an intercept,
3862 we maintain an intercept nesting counter (debug_nesting). We only save the
3863 intercepted arguments if the nesting is 1. */
3864 int debug_nesting = 0;
3865
3866 static tree *symbol_queue;
3867 int symbol_queue_index = 0;
3868 static int symbol_queue_size = 0;
3869
3870 /* Generate the symbols for any queued up type symbols we encountered
3871 while generating the type info for some originally used symbol.
3872 This might generate additional entries in the queue. Only when
3873 the nesting depth goes to 0 is this routine called. */
3874
3875 void
3876 debug_flush_symbol_queue (void)
3877 {
3878 int i;
3879
3880 /* Make sure that additionally queued items are not flushed
3881 prematurely. */
3882
3883 ++debug_nesting;
3884
3885 for (i = 0; i < symbol_queue_index; ++i)
3886 {
3887 /* If we pushed queued symbols then such symbols are must be
3888 output no matter what anyone else says. Specifically,
3889 we need to make sure dbxout_symbol() thinks the symbol was
3890 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3891 which may be set for outside reasons. */
3892 int saved_tree_used = TREE_USED (symbol_queue[i]);
3893 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3894 TREE_USED (symbol_queue[i]) = 1;
3895 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3896
3897 #ifdef DBX_DEBUGGING_INFO
3898 dbxout_symbol (symbol_queue[i], 0);
3899 #endif
3900
3901 TREE_USED (symbol_queue[i]) = saved_tree_used;
3902 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3903 }
3904
3905 symbol_queue_index = 0;
3906 --debug_nesting;
3907 }
3908
3909 /* Queue a type symbol needed as part of the definition of a decl
3910 symbol. These symbols are generated when debug_flush_symbol_queue()
3911 is called. */
3912
3913 void
3914 debug_queue_symbol (tree decl)
3915 {
3916 if (symbol_queue_index >= symbol_queue_size)
3917 {
3918 symbol_queue_size += 10;
3919 symbol_queue = xrealloc (symbol_queue,
3920 symbol_queue_size * sizeof (tree));
3921 }
3922
3923 symbol_queue[symbol_queue_index++] = decl;
3924 }
3925
3926 /* Free symbol queue. */
3927 void
3928 debug_free_queue (void)
3929 {
3930 if (symbol_queue)
3931 {
3932 free (symbol_queue);
3933 symbol_queue = NULL;
3934 symbol_queue_size = 0;
3935 }
3936 }