alpha.c (TARGET_ASM_GLOBALIZE_LABEL): Define for unicosmk.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
226 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
227 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
228 static void output_operand PARAMS ((rtx, int));
229 #ifdef LEAF_REGISTERS
230 static void leaf_renumber_regs PARAMS ((rtx));
231 #endif
232 #ifdef HAVE_cc0
233 static int alter_cond PARAMS ((rtx));
234 #endif
235 #ifndef ADDR_VEC_ALIGN
236 static int final_addr_vec_align PARAMS ((rtx));
237 #endif
238 #ifdef HAVE_ATTR_length
239 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
240 #endif
241 \f
242 /* Initialize data in final at the beginning of a compilation. */
243
244 void
245 init_final (filename)
246 const char *filename ATTRIBUTE_UNUSED;
247 {
248 app_on = 0;
249 final_sequence = 0;
250
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number = ASSEMBLER_DIALECT;
253 #endif
254 }
255
256 /* Called at end of source file,
257 to output the arc-profiling table for this entire compilation. */
258
259 void
260 end_final (filename)
261 const char *filename;
262 {
263 if (profile_arc_flag && profile_info.count_instrumented_edges)
264 {
265 char name[20];
266 tree string_type, string_cst;
267 tree structure_decl, structure_value, structure_pointer_type;
268 tree field_decl, decl_chain, value_chain;
269 tree sizeof_field_value, domain_type;
270
271 /* Build types. */
272 string_type = build_pointer_type (char_type_node);
273
274 /* Libgcc2 bb structure. */
275 structure_decl = make_node (RECORD_TYPE);
276 structure_pointer_type = build_pointer_type (structure_decl);
277
278 /* Output the main header, of 7 words:
279 0: 1 if this file is initialized, else 0.
280 1: address of file name (LPBX1).
281 2: address of table of counts (LPBX2).
282 3: number of counts in the table.
283 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
284
285 The following are GNU extensions:
286
287 5: Number of bytes in this header.
288 6: address of table of function checksums (LPBX7). */
289
290 /* The zero word. */
291 decl_chain =
292 build_decl (FIELD_DECL, get_identifier ("zero_word"),
293 long_integer_type_node);
294 value_chain = build_tree_list (decl_chain,
295 convert (long_integer_type_node,
296 integer_zero_node));
297
298 /* Address of filename. */
299 {
300 char *cwd, *da_filename;
301 int da_filename_len;
302
303 field_decl =
304 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
305 TREE_CHAIN (field_decl) = decl_chain;
306 decl_chain = field_decl;
307
308 cwd = getpwd ();
309 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
310 da_filename = (char *) alloca (da_filename_len);
311 strcpy (da_filename, cwd);
312 strcat (da_filename, "/");
313 strcat (da_filename, filename);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
323 }
324
325 /* Table of counts. */
326 {
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
337
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
343
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
351
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
356 }
357
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
364
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
376
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
378
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
386
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
389
390 /* struct bb_function []. */
391 {
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
402
403 bb_fn_struct_type = make_node (RECORD_TYPE);
404
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
407
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
412
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
416
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
418
419 num_nodes = 0;
420
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
423
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
426
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
432
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
437
438 for (item = functions_head; item != 0; item = item->next)
439 {
440 size_t name_len;
441
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
452
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
462
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
469 }
470
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
475
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
480
481
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
497 }
498
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
502
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
511
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
516
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
519 }
520 }
521
522 /* Default target function prologue and epilogue assembler output.
523
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
530 {
531 }
532
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
537 {
538 }
539
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
542
543 void
544 app_enable ()
545 {
546 if (! app_on)
547 {
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
550 }
551 }
552
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
555
556 void
557 app_disable ()
558 {
559 if (app_on)
560 {
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
563 }
564 }
565 \f
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
569
570 #ifdef DELAY_SLOTS
571 int
572 dbr_sequence_length ()
573 {
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
578 }
579 #endif
580 \f
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
583
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
586
587 static int *insn_lengths;
588
589 varray_type insn_addresses_;
590
591 /* Max uid for which the above arrays are valid. */
592 static int insn_lengths_max_uid;
593
594 /* Address of insn being processed. Used by `insn_current_length'. */
595 int insn_current_address;
596
597 /* Address of insn being processed in previous iteration. */
598 int insn_last_address;
599
600 /* known invariant alignment of insn being processed. */
601 int insn_current_align;
602
603 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
604 gives the next following alignment insn that increases the known
605 alignment, or NULL_RTX if there is no such insn.
606 For any alignment obtained this way, we can again index uid_align with
607 its uid to obtain the next following align that in turn increases the
608 alignment, till we reach NULL_RTX; the sequence obtained this way
609 for each insn we'll call the alignment chain of this insn in the following
610 comments. */
611
612 struct label_alignment
613 {
614 short alignment;
615 short max_skip;
616 };
617
618 static rtx *uid_align;
619 static int *uid_shuid;
620 static struct label_alignment *label_align;
621
622 /* Indicate that branch shortening hasn't yet been done. */
623
624 void
625 init_insn_lengths ()
626 {
627 if (uid_shuid)
628 {
629 free (uid_shuid);
630 uid_shuid = 0;
631 }
632 if (insn_lengths)
633 {
634 free (insn_lengths);
635 insn_lengths = 0;
636 insn_lengths_max_uid = 0;
637 }
638 #ifdef HAVE_ATTR_length
639 INSN_ADDRESSES_FREE ();
640 #endif
641 if (uid_align)
642 {
643 free (uid_align);
644 uid_align = 0;
645 }
646 }
647
648 /* Obtain the current length of an insn. If branch shortening has been done,
649 get its actual length. Otherwise, get its maximum length. */
650
651 int
652 get_attr_length (insn)
653 rtx insn ATTRIBUTE_UNUSED;
654 {
655 #ifdef HAVE_ATTR_length
656 rtx body;
657 int i;
658 int length = 0;
659
660 if (insn_lengths_max_uid > INSN_UID (insn))
661 return insn_lengths[INSN_UID (insn)];
662 else
663 switch (GET_CODE (insn))
664 {
665 case NOTE:
666 case BARRIER:
667 case CODE_LABEL:
668 return 0;
669
670 case CALL_INSN:
671 length = insn_default_length (insn);
672 break;
673
674 case JUMP_INSN:
675 body = PATTERN (insn);
676 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
677 {
678 /* Alignment is machine-dependent and should be handled by
679 ADDR_VEC_ALIGN. */
680 }
681 else
682 length = insn_default_length (insn);
683 break;
684
685 case INSN:
686 body = PATTERN (insn);
687 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
688 return 0;
689
690 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
691 length = asm_insn_count (body) * insn_default_length (insn);
692 else if (GET_CODE (body) == SEQUENCE)
693 for (i = 0; i < XVECLEN (body, 0); i++)
694 length += get_attr_length (XVECEXP (body, 0, i));
695 else
696 length = insn_default_length (insn);
697 break;
698
699 default:
700 break;
701 }
702
703 #ifdef ADJUST_INSN_LENGTH
704 ADJUST_INSN_LENGTH (insn, length);
705 #endif
706 return length;
707 #else /* not HAVE_ATTR_length */
708 return 0;
709 #endif /* not HAVE_ATTR_length */
710 }
711 \f
712 /* Code to handle alignment inside shorten_branches. */
713
714 /* Here is an explanation how the algorithm in align_fuzz can give
715 proper results:
716
717 Call a sequence of instructions beginning with alignment point X
718 and continuing until the next alignment point `block X'. When `X'
719 is used in an expression, it means the alignment value of the
720 alignment point.
721
722 Call the distance between the start of the first insn of block X, and
723 the end of the last insn of block X `IX', for the `inner size of X'.
724 This is clearly the sum of the instruction lengths.
725
726 Likewise with the next alignment-delimited block following X, which we
727 shall call block Y.
728
729 Call the distance between the start of the first insn of block X, and
730 the start of the first insn of block Y `OX', for the `outer size of X'.
731
732 The estimated padding is then OX - IX.
733
734 OX can be safely estimated as
735
736 if (X >= Y)
737 OX = round_up(IX, Y)
738 else
739 OX = round_up(IX, X) + Y - X
740
741 Clearly est(IX) >= real(IX), because that only depends on the
742 instruction lengths, and those being overestimated is a given.
743
744 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
745 we needn't worry about that when thinking about OX.
746
747 When X >= Y, the alignment provided by Y adds no uncertainty factor
748 for branch ranges starting before X, so we can just round what we have.
749 But when X < Y, we don't know anything about the, so to speak,
750 `middle bits', so we have to assume the worst when aligning up from an
751 address mod X to one mod Y, which is Y - X. */
752
753 #ifndef LABEL_ALIGN
754 #define LABEL_ALIGN(LABEL) align_labels_log
755 #endif
756
757 #ifndef LABEL_ALIGN_MAX_SKIP
758 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
759 #endif
760
761 #ifndef LOOP_ALIGN
762 #define LOOP_ALIGN(LABEL) align_loops_log
763 #endif
764
765 #ifndef LOOP_ALIGN_MAX_SKIP
766 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
767 #endif
768
769 #ifndef LABEL_ALIGN_AFTER_BARRIER
770 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
771 #endif
772
773 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
774 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
775 #endif
776
777 #ifndef JUMP_ALIGN
778 #define JUMP_ALIGN(LABEL) align_jumps_log
779 #endif
780
781 #ifndef JUMP_ALIGN_MAX_SKIP
782 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
783 #endif
784
785 #ifndef ADDR_VEC_ALIGN
786 static int
787 final_addr_vec_align (addr_vec)
788 rtx addr_vec;
789 {
790 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
791
792 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
793 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
794 return exact_log2 (align);
795
796 }
797
798 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
799 #endif
800
801 #ifndef INSN_LENGTH_ALIGNMENT
802 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
803 #endif
804
805 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
806
807 static int min_labelno, max_labelno;
808
809 #define LABEL_TO_ALIGNMENT(LABEL) \
810 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
811
812 #define LABEL_TO_MAX_SKIP(LABEL) \
813 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
814
815 /* For the benefit of port specific code do this also as a function. */
816
817 int
818 label_to_alignment (label)
819 rtx label;
820 {
821 return LABEL_TO_ALIGNMENT (label);
822 }
823
824 #ifdef HAVE_ATTR_length
825 /* The differences in addresses
826 between a branch and its target might grow or shrink depending on
827 the alignment the start insn of the range (the branch for a forward
828 branch or the label for a backward branch) starts out on; if these
829 differences are used naively, they can even oscillate infinitely.
830 We therefore want to compute a 'worst case' address difference that
831 is independent of the alignment the start insn of the range end
832 up on, and that is at least as large as the actual difference.
833 The function align_fuzz calculates the amount we have to add to the
834 naively computed difference, by traversing the part of the alignment
835 chain of the start insn of the range that is in front of the end insn
836 of the range, and considering for each alignment the maximum amount
837 that it might contribute to a size increase.
838
839 For casesi tables, we also want to know worst case minimum amounts of
840 address difference, in case a machine description wants to introduce
841 some common offset that is added to all offsets in a table.
842 For this purpose, align_fuzz with a growth argument of 0 computes the
843 appropriate adjustment. */
844
845 /* Compute the maximum delta by which the difference of the addresses of
846 START and END might grow / shrink due to a different address for start
847 which changes the size of alignment insns between START and END.
848 KNOWN_ALIGN_LOG is the alignment known for START.
849 GROWTH should be ~0 if the objective is to compute potential code size
850 increase, and 0 if the objective is to compute potential shrink.
851 The return value is undefined for any other value of GROWTH. */
852
853 static int
854 align_fuzz (start, end, known_align_log, growth)
855 rtx start, end;
856 int known_align_log;
857 unsigned growth;
858 {
859 int uid = INSN_UID (start);
860 rtx align_label;
861 int known_align = 1 << known_align_log;
862 int end_shuid = INSN_SHUID (end);
863 int fuzz = 0;
864
865 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
866 {
867 int align_addr, new_align;
868
869 uid = INSN_UID (align_label);
870 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
871 if (uid_shuid[uid] > end_shuid)
872 break;
873 known_align_log = LABEL_TO_ALIGNMENT (align_label);
874 new_align = 1 << known_align_log;
875 if (new_align < known_align)
876 continue;
877 fuzz += (-align_addr ^ growth) & (new_align - known_align);
878 known_align = new_align;
879 }
880 return fuzz;
881 }
882
883 /* Compute a worst-case reference address of a branch so that it
884 can be safely used in the presence of aligned labels. Since the
885 size of the branch itself is unknown, the size of the branch is
886 not included in the range. I.e. for a forward branch, the reference
887 address is the end address of the branch as known from the previous
888 branch shortening pass, minus a value to account for possible size
889 increase due to alignment. For a backward branch, it is the start
890 address of the branch as known from the current pass, plus a value
891 to account for possible size increase due to alignment.
892 NB.: Therefore, the maximum offset allowed for backward branches needs
893 to exclude the branch size. */
894
895 int
896 insn_current_reference_address (branch)
897 rtx branch;
898 {
899 rtx dest, seq;
900 int seq_uid;
901
902 if (! INSN_ADDRESSES_SET_P ())
903 return 0;
904
905 seq = NEXT_INSN (PREV_INSN (branch));
906 seq_uid = INSN_UID (seq);
907 if (GET_CODE (branch) != JUMP_INSN)
908 /* This can happen for example on the PA; the objective is to know the
909 offset to address something in front of the start of the function.
910 Thus, we can treat it like a backward branch.
911 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
912 any alignment we'd encounter, so we skip the call to align_fuzz. */
913 return insn_current_address;
914 dest = JUMP_LABEL (branch);
915
916 /* BRANCH has no proper alignment chain set, so use SEQ.
917 BRANCH also has no INSN_SHUID. */
918 if (INSN_SHUID (seq) < INSN_SHUID (dest))
919 {
920 /* Forward branch. */
921 return (insn_last_address + insn_lengths[seq_uid]
922 - align_fuzz (seq, dest, length_unit_log, ~0));
923 }
924 else
925 {
926 /* Backward branch. */
927 return (insn_current_address
928 + align_fuzz (dest, seq, length_unit_log, ~0));
929 }
930 }
931 #endif /* HAVE_ATTR_length */
932 \f
933 void
934 compute_alignments ()
935 {
936 int log, max_skip, max_log;
937 basic_block bb;
938
939 if (label_align)
940 {
941 free (label_align);
942 label_align = 0;
943 }
944
945 max_labelno = max_label_num ();
946 min_labelno = get_first_label_num ();
947 label_align = (struct label_alignment *)
948 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
949
950 /* If not optimizing or optimizing for size, don't assign any alignments. */
951 if (! optimize || optimize_size)
952 return;
953
954 FOR_EACH_BB (bb)
955 {
956 rtx label = bb->head;
957 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
958 edge e;
959
960 if (GET_CODE (label) != CODE_LABEL)
961 continue;
962 max_log = LABEL_ALIGN (label);
963 max_skip = LABEL_ALIGN_MAX_SKIP;
964
965 for (e = bb->pred; e; e = e->pred_next)
966 {
967 if (e->flags & EDGE_FALLTHRU)
968 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
969 else
970 branch_frequency += EDGE_FREQUENCY (e);
971 }
972
973 /* There are two purposes to align block with no fallthru incoming edge:
974 1) to avoid fetch stalls when branch destination is near cache boundary
975 2) to improve cache efficiency in case the previous block is not executed
976 (so it does not need to be in the cache).
977
978 We to catch first case, we align frequently executed blocks.
979 To catch the second, we align blocks that are executed more frequently
980 than the predecessor and the predecessor is likely to not be executed
981 when function is called. */
982
983 if (!has_fallthru
984 && (branch_frequency > BB_FREQ_MAX / 10
985 || (bb->frequency > bb->prev_bb->frequency * 10
986 && (bb->prev_bb->frequency
987 <= ENTRY_BLOCK_PTR->frequency / 2))))
988 {
989 log = JUMP_ALIGN (label);
990 if (max_log < log)
991 {
992 max_log = log;
993 max_skip = JUMP_ALIGN_MAX_SKIP;
994 }
995 }
996 /* In case block is frequent and reached mostly by non-fallthru edge,
997 align it. It is most likely an first block of loop. */
998 if (has_fallthru
999 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1000 && branch_frequency > fallthru_frequency * 5)
1001 {
1002 log = LOOP_ALIGN (label);
1003 if (max_log < log)
1004 {
1005 max_log = log;
1006 max_skip = LOOP_ALIGN_MAX_SKIP;
1007 }
1008 }
1009 LABEL_TO_ALIGNMENT (label) = max_log;
1010 LABEL_TO_MAX_SKIP (label) = max_skip;
1011 }
1012 }
1013 \f
1014 /* Make a pass over all insns and compute their actual lengths by shortening
1015 any branches of variable length if possible. */
1016
1017 /* Give a default value for the lowest address in a function. */
1018
1019 #ifndef FIRST_INSN_ADDRESS
1020 #define FIRST_INSN_ADDRESS 0
1021 #endif
1022
1023 /* shorten_branches might be called multiple times: for example, the SH
1024 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1025 In order to do this, it needs proper length information, which it obtains
1026 by calling shorten_branches. This cannot be collapsed with
1027 shorten_branches itself into a single pass unless we also want to integrate
1028 reorg.c, since the branch splitting exposes new instructions with delay
1029 slots. */
1030
1031 void
1032 shorten_branches (first)
1033 rtx first ATTRIBUTE_UNUSED;
1034 {
1035 rtx insn;
1036 int max_uid;
1037 int i;
1038 int max_log;
1039 int max_skip;
1040 #ifdef HAVE_ATTR_length
1041 #define MAX_CODE_ALIGN 16
1042 rtx seq;
1043 int something_changed = 1;
1044 char *varying_length;
1045 rtx body;
1046 int uid;
1047 rtx align_tab[MAX_CODE_ALIGN];
1048
1049 #endif
1050
1051 /* Compute maximum UID and allocate label_align / uid_shuid. */
1052 max_uid = get_max_uid ();
1053
1054 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1055
1056 if (max_labelno != max_label_num ())
1057 {
1058 int old = max_labelno;
1059 int n_labels;
1060 int n_old_labels;
1061
1062 max_labelno = max_label_num ();
1063
1064 n_labels = max_labelno - min_labelno + 1;
1065 n_old_labels = old - min_labelno + 1;
1066
1067 label_align = (struct label_alignment *) xrealloc
1068 (label_align, n_labels * sizeof (struct label_alignment));
1069
1070 /* Range of labels grows monotonically in the function. Abort here
1071 means that the initialization of array got lost. */
1072 if (n_old_labels > n_labels)
1073 abort ();
1074
1075 memset (label_align + n_old_labels, 0,
1076 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1077 }
1078
1079 /* Initialize label_align and set up uid_shuid to be strictly
1080 monotonically rising with insn order. */
1081 /* We use max_log here to keep track of the maximum alignment we want to
1082 impose on the next CODE_LABEL (or the current one if we are processing
1083 the CODE_LABEL itself). */
1084
1085 max_log = 0;
1086 max_skip = 0;
1087
1088 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1089 {
1090 int log;
1091
1092 INSN_SHUID (insn) = i++;
1093 if (INSN_P (insn))
1094 {
1095 /* reorg might make the first insn of a loop being run once only,
1096 and delete the label in front of it. Then we want to apply
1097 the loop alignment to the new label created by reorg, which
1098 is separated by the former loop start insn from the
1099 NOTE_INSN_LOOP_BEG. */
1100 }
1101 else if (GET_CODE (insn) == CODE_LABEL)
1102 {
1103 rtx next;
1104
1105 /* Merge in alignments computed by compute_alignments. */
1106 log = LABEL_TO_ALIGNMENT (insn);
1107 if (max_log < log)
1108 {
1109 max_log = log;
1110 max_skip = LABEL_TO_MAX_SKIP (insn);
1111 }
1112
1113 log = LABEL_ALIGN (insn);
1114 if (max_log < log)
1115 {
1116 max_log = log;
1117 max_skip = LABEL_ALIGN_MAX_SKIP;
1118 }
1119 next = NEXT_INSN (insn);
1120 /* ADDR_VECs only take room if read-only data goes into the text
1121 section. */
1122 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1123 if (next && GET_CODE (next) == JUMP_INSN)
1124 {
1125 rtx nextbody = PATTERN (next);
1126 if (GET_CODE (nextbody) == ADDR_VEC
1127 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1128 {
1129 log = ADDR_VEC_ALIGN (next);
1130 if (max_log < log)
1131 {
1132 max_log = log;
1133 max_skip = LABEL_ALIGN_MAX_SKIP;
1134 }
1135 }
1136 }
1137 LABEL_TO_ALIGNMENT (insn) = max_log;
1138 LABEL_TO_MAX_SKIP (insn) = max_skip;
1139 max_log = 0;
1140 max_skip = 0;
1141 }
1142 else if (GET_CODE (insn) == BARRIER)
1143 {
1144 rtx label;
1145
1146 for (label = insn; label && ! INSN_P (label);
1147 label = NEXT_INSN (label))
1148 if (GET_CODE (label) == CODE_LABEL)
1149 {
1150 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1151 if (max_log < log)
1152 {
1153 max_log = log;
1154 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1155 }
1156 break;
1157 }
1158 }
1159 }
1160 #ifdef HAVE_ATTR_length
1161
1162 /* Allocate the rest of the arrays. */
1163 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1164 insn_lengths_max_uid = max_uid;
1165 /* Syntax errors can lead to labels being outside of the main insn stream.
1166 Initialize insn_addresses, so that we get reproducible results. */
1167 INSN_ADDRESSES_ALLOC (max_uid);
1168
1169 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1170
1171 /* Initialize uid_align. We scan instructions
1172 from end to start, and keep in align_tab[n] the last seen insn
1173 that does an alignment of at least n+1, i.e. the successor
1174 in the alignment chain for an insn that does / has a known
1175 alignment of n. */
1176 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1177
1178 for (i = MAX_CODE_ALIGN; --i >= 0;)
1179 align_tab[i] = NULL_RTX;
1180 seq = get_last_insn ();
1181 for (; seq; seq = PREV_INSN (seq))
1182 {
1183 int uid = INSN_UID (seq);
1184 int log;
1185 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1186 uid_align[uid] = align_tab[0];
1187 if (log)
1188 {
1189 /* Found an alignment label. */
1190 uid_align[uid] = align_tab[log];
1191 for (i = log - 1; i >= 0; i--)
1192 align_tab[i] = seq;
1193 }
1194 }
1195 #ifdef CASE_VECTOR_SHORTEN_MODE
1196 if (optimize)
1197 {
1198 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1199 label fields. */
1200
1201 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1202 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1203 int rel;
1204
1205 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1206 {
1207 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1208 int len, i, min, max, insn_shuid;
1209 int min_align;
1210 addr_diff_vec_flags flags;
1211
1212 if (GET_CODE (insn) != JUMP_INSN
1213 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1214 continue;
1215 pat = PATTERN (insn);
1216 len = XVECLEN (pat, 1);
1217 if (len <= 0)
1218 abort ();
1219 min_align = MAX_CODE_ALIGN;
1220 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1221 {
1222 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1223 int shuid = INSN_SHUID (lab);
1224 if (shuid < min)
1225 {
1226 min = shuid;
1227 min_lab = lab;
1228 }
1229 if (shuid > max)
1230 {
1231 max = shuid;
1232 max_lab = lab;
1233 }
1234 if (min_align > LABEL_TO_ALIGNMENT (lab))
1235 min_align = LABEL_TO_ALIGNMENT (lab);
1236 }
1237 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1238 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1239 insn_shuid = INSN_SHUID (insn);
1240 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1241 flags.min_align = min_align;
1242 flags.base_after_vec = rel > insn_shuid;
1243 flags.min_after_vec = min > insn_shuid;
1244 flags.max_after_vec = max > insn_shuid;
1245 flags.min_after_base = min > rel;
1246 flags.max_after_base = max > rel;
1247 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1248 }
1249 }
1250 #endif /* CASE_VECTOR_SHORTEN_MODE */
1251
1252 /* Compute initial lengths, addresses, and varying flags for each insn. */
1253 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1254 insn != 0;
1255 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1256 {
1257 uid = INSN_UID (insn);
1258
1259 insn_lengths[uid] = 0;
1260
1261 if (GET_CODE (insn) == CODE_LABEL)
1262 {
1263 int log = LABEL_TO_ALIGNMENT (insn);
1264 if (log)
1265 {
1266 int align = 1 << log;
1267 int new_address = (insn_current_address + align - 1) & -align;
1268 insn_lengths[uid] = new_address - insn_current_address;
1269 }
1270 }
1271
1272 INSN_ADDRESSES (uid) = insn_current_address;
1273
1274 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1275 || GET_CODE (insn) == CODE_LABEL)
1276 continue;
1277 if (INSN_DELETED_P (insn))
1278 continue;
1279
1280 body = PATTERN (insn);
1281 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1282 {
1283 /* This only takes room if read-only data goes into the text
1284 section. */
1285 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1286 insn_lengths[uid] = (XVECLEN (body,
1287 GET_CODE (body) == ADDR_DIFF_VEC)
1288 * GET_MODE_SIZE (GET_MODE (body)));
1289 /* Alignment is handled by ADDR_VEC_ALIGN. */
1290 }
1291 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1292 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1293 else if (GET_CODE (body) == SEQUENCE)
1294 {
1295 int i;
1296 int const_delay_slots;
1297 #ifdef DELAY_SLOTS
1298 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1299 #else
1300 const_delay_slots = 0;
1301 #endif
1302 /* Inside a delay slot sequence, we do not do any branch shortening
1303 if the shortening could change the number of delay slots
1304 of the branch. */
1305 for (i = 0; i < XVECLEN (body, 0); i++)
1306 {
1307 rtx inner_insn = XVECEXP (body, 0, i);
1308 int inner_uid = INSN_UID (inner_insn);
1309 int inner_length;
1310
1311 if (GET_CODE (body) == ASM_INPUT
1312 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1313 inner_length = (asm_insn_count (PATTERN (inner_insn))
1314 * insn_default_length (inner_insn));
1315 else
1316 inner_length = insn_default_length (inner_insn);
1317
1318 insn_lengths[inner_uid] = inner_length;
1319 if (const_delay_slots)
1320 {
1321 if ((varying_length[inner_uid]
1322 = insn_variable_length_p (inner_insn)) != 0)
1323 varying_length[uid] = 1;
1324 INSN_ADDRESSES (inner_uid) = (insn_current_address
1325 + insn_lengths[uid]);
1326 }
1327 else
1328 varying_length[inner_uid] = 0;
1329 insn_lengths[uid] += inner_length;
1330 }
1331 }
1332 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1333 {
1334 insn_lengths[uid] = insn_default_length (insn);
1335 varying_length[uid] = insn_variable_length_p (insn);
1336 }
1337
1338 /* If needed, do any adjustment. */
1339 #ifdef ADJUST_INSN_LENGTH
1340 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1341 if (insn_lengths[uid] < 0)
1342 fatal_insn ("negative insn length", insn);
1343 #endif
1344 }
1345
1346 /* Now loop over all the insns finding varying length insns. For each,
1347 get the current insn length. If it has changed, reflect the change.
1348 When nothing changes for a full pass, we are done. */
1349
1350 while (something_changed)
1351 {
1352 something_changed = 0;
1353 insn_current_align = MAX_CODE_ALIGN - 1;
1354 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1355 insn != 0;
1356 insn = NEXT_INSN (insn))
1357 {
1358 int new_length;
1359 #ifdef ADJUST_INSN_LENGTH
1360 int tmp_length;
1361 #endif
1362 int length_align;
1363
1364 uid = INSN_UID (insn);
1365
1366 if (GET_CODE (insn) == CODE_LABEL)
1367 {
1368 int log = LABEL_TO_ALIGNMENT (insn);
1369 if (log > insn_current_align)
1370 {
1371 int align = 1 << log;
1372 int new_address= (insn_current_address + align - 1) & -align;
1373 insn_lengths[uid] = new_address - insn_current_address;
1374 insn_current_align = log;
1375 insn_current_address = new_address;
1376 }
1377 else
1378 insn_lengths[uid] = 0;
1379 INSN_ADDRESSES (uid) = insn_current_address;
1380 continue;
1381 }
1382
1383 length_align = INSN_LENGTH_ALIGNMENT (insn);
1384 if (length_align < insn_current_align)
1385 insn_current_align = length_align;
1386
1387 insn_last_address = INSN_ADDRESSES (uid);
1388 INSN_ADDRESSES (uid) = insn_current_address;
1389
1390 #ifdef CASE_VECTOR_SHORTEN_MODE
1391 if (optimize && GET_CODE (insn) == JUMP_INSN
1392 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1393 {
1394 rtx body = PATTERN (insn);
1395 int old_length = insn_lengths[uid];
1396 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1397 rtx min_lab = XEXP (XEXP (body, 2), 0);
1398 rtx max_lab = XEXP (XEXP (body, 3), 0);
1399 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1400 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1401 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1402 rtx prev;
1403 int rel_align = 0;
1404 addr_diff_vec_flags flags;
1405
1406 /* Avoid automatic aggregate initialization. */
1407 flags = ADDR_DIFF_VEC_FLAGS (body);
1408
1409 /* Try to find a known alignment for rel_lab. */
1410 for (prev = rel_lab;
1411 prev
1412 && ! insn_lengths[INSN_UID (prev)]
1413 && ! (varying_length[INSN_UID (prev)] & 1);
1414 prev = PREV_INSN (prev))
1415 if (varying_length[INSN_UID (prev)] & 2)
1416 {
1417 rel_align = LABEL_TO_ALIGNMENT (prev);
1418 break;
1419 }
1420
1421 /* See the comment on addr_diff_vec_flags in rtl.h for the
1422 meaning of the flags values. base: REL_LAB vec: INSN */
1423 /* Anything after INSN has still addresses from the last
1424 pass; adjust these so that they reflect our current
1425 estimate for this pass. */
1426 if (flags.base_after_vec)
1427 rel_addr += insn_current_address - insn_last_address;
1428 if (flags.min_after_vec)
1429 min_addr += insn_current_address - insn_last_address;
1430 if (flags.max_after_vec)
1431 max_addr += insn_current_address - insn_last_address;
1432 /* We want to know the worst case, i.e. lowest possible value
1433 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1434 its offset is positive, and we have to be wary of code shrink;
1435 otherwise, it is negative, and we have to be vary of code
1436 size increase. */
1437 if (flags.min_after_base)
1438 {
1439 /* If INSN is between REL_LAB and MIN_LAB, the size
1440 changes we are about to make can change the alignment
1441 within the observed offset, therefore we have to break
1442 it up into two parts that are independent. */
1443 if (! flags.base_after_vec && flags.min_after_vec)
1444 {
1445 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1446 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1447 }
1448 else
1449 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1450 }
1451 else
1452 {
1453 if (flags.base_after_vec && ! flags.min_after_vec)
1454 {
1455 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1456 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1457 }
1458 else
1459 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1460 }
1461 /* Likewise, determine the highest lowest possible value
1462 for the offset of MAX_LAB. */
1463 if (flags.max_after_base)
1464 {
1465 if (! flags.base_after_vec && flags.max_after_vec)
1466 {
1467 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1468 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1469 }
1470 else
1471 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1472 }
1473 else
1474 {
1475 if (flags.base_after_vec && ! flags.max_after_vec)
1476 {
1477 max_addr += align_fuzz (max_lab, insn, 0, 0);
1478 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1479 }
1480 else
1481 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1482 }
1483 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1484 max_addr - rel_addr,
1485 body));
1486 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1487 {
1488 insn_lengths[uid]
1489 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1490 insn_current_address += insn_lengths[uid];
1491 if (insn_lengths[uid] != old_length)
1492 something_changed = 1;
1493 }
1494
1495 continue;
1496 }
1497 #endif /* CASE_VECTOR_SHORTEN_MODE */
1498
1499 if (! (varying_length[uid]))
1500 {
1501 if (GET_CODE (insn) == INSN
1502 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1503 {
1504 int i;
1505
1506 body = PATTERN (insn);
1507 for (i = 0; i < XVECLEN (body, 0); i++)
1508 {
1509 rtx inner_insn = XVECEXP (body, 0, i);
1510 int inner_uid = INSN_UID (inner_insn);
1511
1512 INSN_ADDRESSES (inner_uid) = insn_current_address;
1513
1514 insn_current_address += insn_lengths[inner_uid];
1515 }
1516 }
1517 else
1518 insn_current_address += insn_lengths[uid];
1519
1520 continue;
1521 }
1522
1523 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1524 {
1525 int i;
1526
1527 body = PATTERN (insn);
1528 new_length = 0;
1529 for (i = 0; i < XVECLEN (body, 0); i++)
1530 {
1531 rtx inner_insn = XVECEXP (body, 0, i);
1532 int inner_uid = INSN_UID (inner_insn);
1533 int inner_length;
1534
1535 INSN_ADDRESSES (inner_uid) = insn_current_address;
1536
1537 /* insn_current_length returns 0 for insns with a
1538 non-varying length. */
1539 if (! varying_length[inner_uid])
1540 inner_length = insn_lengths[inner_uid];
1541 else
1542 inner_length = insn_current_length (inner_insn);
1543
1544 if (inner_length != insn_lengths[inner_uid])
1545 {
1546 insn_lengths[inner_uid] = inner_length;
1547 something_changed = 1;
1548 }
1549 insn_current_address += insn_lengths[inner_uid];
1550 new_length += inner_length;
1551 }
1552 }
1553 else
1554 {
1555 new_length = insn_current_length (insn);
1556 insn_current_address += new_length;
1557 }
1558
1559 #ifdef ADJUST_INSN_LENGTH
1560 /* If needed, do any adjustment. */
1561 tmp_length = new_length;
1562 ADJUST_INSN_LENGTH (insn, new_length);
1563 insn_current_address += (new_length - tmp_length);
1564 #endif
1565
1566 if (new_length != insn_lengths[uid])
1567 {
1568 insn_lengths[uid] = new_length;
1569 something_changed = 1;
1570 }
1571 }
1572 /* For a non-optimizing compile, do only a single pass. */
1573 if (!optimize)
1574 break;
1575 }
1576
1577 free (varying_length);
1578
1579 #endif /* HAVE_ATTR_length */
1580 }
1581
1582 #ifdef HAVE_ATTR_length
1583 /* Given the body of an INSN known to be generated by an ASM statement, return
1584 the number of machine instructions likely to be generated for this insn.
1585 This is used to compute its length. */
1586
1587 static int
1588 asm_insn_count (body)
1589 rtx body;
1590 {
1591 const char *template;
1592 int count = 1;
1593
1594 if (GET_CODE (body) == ASM_INPUT)
1595 template = XSTR (body, 0);
1596 else
1597 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1598
1599 for (; *template; template++)
1600 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1601 count++;
1602
1603 return count;
1604 }
1605 #endif
1606 \f
1607 /* Output assembler code for the start of a function,
1608 and initialize some of the variables in this file
1609 for the new function. The label for the function and associated
1610 assembler pseudo-ops have already been output in `assemble_start_function'.
1611
1612 FIRST is the first insn of the rtl for the function being compiled.
1613 FILE is the file to write assembler code to.
1614 OPTIMIZE is nonzero if we should eliminate redundant
1615 test and compare insns. */
1616
1617 void
1618 final_start_function (first, file, optimize)
1619 rtx first;
1620 FILE *file;
1621 int optimize ATTRIBUTE_UNUSED;
1622 {
1623 block_depth = 0;
1624
1625 this_is_asm_operands = 0;
1626
1627 #ifdef NON_SAVING_SETJMP
1628 /* A function that calls setjmp should save and restore all the
1629 call-saved registers on a system where longjmp clobbers them. */
1630 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1631 {
1632 int i;
1633
1634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1635 if (!call_used_regs[i])
1636 regs_ever_live[i] = 1;
1637 }
1638 #endif
1639
1640 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1641 notice_source_line (first);
1642 high_block_linenum = high_function_linenum = last_linenum;
1643
1644 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1645
1646 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1647 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1648 dwarf2out_begin_prologue (0, NULL);
1649 #endif
1650
1651 #ifdef LEAF_REG_REMAP
1652 if (current_function_uses_only_leaf_regs)
1653 leaf_renumber_regs (first);
1654 #endif
1655
1656 /* The Sun386i and perhaps other machines don't work right
1657 if the profiling code comes after the prologue. */
1658 #ifdef PROFILE_BEFORE_PROLOGUE
1659 if (current_function_profile)
1660 profile_function (file);
1661 #endif /* PROFILE_BEFORE_PROLOGUE */
1662
1663 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1664 if (dwarf2out_do_frame ())
1665 dwarf2out_frame_debug (NULL_RTX);
1666 #endif
1667
1668 /* If debugging, assign block numbers to all of the blocks in this
1669 function. */
1670 if (write_symbols)
1671 {
1672 remove_unnecessary_notes ();
1673 scope_to_insns_finalize ();
1674 number_blocks (current_function_decl);
1675 /* We never actually put out begin/end notes for the top-level
1676 block in the function. But, conceptually, that block is
1677 always needed. */
1678 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1679 }
1680
1681 /* First output the function prologue: code to set up the stack frame. */
1682 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1683
1684 /* If the machine represents the prologue as RTL, the profiling code must
1685 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1686 #ifdef HAVE_prologue
1687 if (! HAVE_prologue)
1688 #endif
1689 profile_after_prologue (file);
1690 }
1691
1692 static void
1693 profile_after_prologue (file)
1694 FILE *file ATTRIBUTE_UNUSED;
1695 {
1696 #ifndef PROFILE_BEFORE_PROLOGUE
1697 if (current_function_profile)
1698 profile_function (file);
1699 #endif /* not PROFILE_BEFORE_PROLOGUE */
1700 }
1701
1702 static void
1703 profile_function (file)
1704 FILE *file ATTRIBUTE_UNUSED;
1705 {
1706 #ifndef NO_PROFILE_COUNTERS
1707 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1708 #endif
1709 #if defined(ASM_OUTPUT_REG_PUSH)
1710 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1711 int sval = current_function_returns_struct;
1712 #endif
1713 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1714 int cxt = current_function_needs_context;
1715 #endif
1716 #endif /* ASM_OUTPUT_REG_PUSH */
1717
1718 #ifndef NO_PROFILE_COUNTERS
1719 data_section ();
1720 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1721 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1722 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1723 #endif
1724
1725 function_section (current_function_decl);
1726
1727 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1728 if (sval)
1729 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1730 #else
1731 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1732 if (sval)
1733 {
1734 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1735 }
1736 #endif
1737 #endif
1738
1739 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740 if (cxt)
1741 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1742 #else
1743 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1744 if (cxt)
1745 {
1746 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1747 }
1748 #endif
1749 #endif
1750
1751 FUNCTION_PROFILER (file, current_function_funcdef_no);
1752
1753 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1754 if (cxt)
1755 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1756 #else
1757 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1758 if (cxt)
1759 {
1760 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1761 }
1762 #endif
1763 #endif
1764
1765 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766 if (sval)
1767 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1768 #else
1769 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1770 if (sval)
1771 {
1772 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1773 }
1774 #endif
1775 #endif
1776 }
1777
1778 /* Output assembler code for the end of a function.
1779 For clarity, args are same as those of `final_start_function'
1780 even though not all of them are needed. */
1781
1782 void
1783 final_end_function ()
1784 {
1785 app_disable ();
1786
1787 (*debug_hooks->end_function) (high_function_linenum);
1788
1789 /* Finally, output the function epilogue:
1790 code to restore the stack frame and return to the caller. */
1791 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1792
1793 /* And debug output. */
1794 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1795
1796 #if defined (DWARF2_UNWIND_INFO)
1797 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1798 && dwarf2out_do_frame ())
1799 dwarf2out_end_epilogue (last_linenum, last_filename);
1800 #endif
1801 }
1802 \f
1803 /* Output assembler code for some insns: all or part of a function.
1804 For description of args, see `final_start_function', above.
1805
1806 PRESCAN is 1 if we are not really outputting,
1807 just scanning as if we were outputting.
1808 Prescanning deletes and rearranges insns just like ordinary output.
1809 PRESCAN is -2 if we are outputting after having prescanned.
1810 In this case, don't try to delete or rearrange insns
1811 because that has already been done.
1812 Prescanning is done only on certain machines. */
1813
1814 void
1815 final (first, file, optimize, prescan)
1816 rtx first;
1817 FILE *file;
1818 int optimize;
1819 int prescan;
1820 {
1821 rtx insn;
1822 int max_line = 0;
1823 int max_uid = 0;
1824
1825 last_ignored_compare = 0;
1826 new_block = 1;
1827
1828 /* Make a map indicating which line numbers appear in this function.
1829 When producing SDB debugging info, delete troublesome line number
1830 notes from inlined functions in other files as well as duplicate
1831 line number notes. */
1832 #ifdef SDB_DEBUGGING_INFO
1833 if (write_symbols == SDB_DEBUG)
1834 {
1835 rtx last = 0;
1836 for (insn = first; insn; insn = NEXT_INSN (insn))
1837 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1838 {
1839 if ((RTX_INTEGRATED_P (insn)
1840 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1841 || (last != 0
1842 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1843 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1844 {
1845 delete_insn (insn); /* Use delete_note. */
1846 continue;
1847 }
1848 last = insn;
1849 if (NOTE_LINE_NUMBER (insn) > max_line)
1850 max_line = NOTE_LINE_NUMBER (insn);
1851 }
1852 }
1853 else
1854 #endif
1855 {
1856 for (insn = first; insn; insn = NEXT_INSN (insn))
1857 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1858 max_line = NOTE_LINE_NUMBER (insn);
1859 }
1860
1861 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1862
1863 for (insn = first; insn; insn = NEXT_INSN (insn))
1864 {
1865 if (INSN_UID (insn) > max_uid) /* find largest UID */
1866 max_uid = INSN_UID (insn);
1867 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1868 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1869 #ifdef HAVE_cc0
1870 /* If CC tracking across branches is enabled, record the insn which
1871 jumps to each branch only reached from one place. */
1872 if (optimize && GET_CODE (insn) == JUMP_INSN)
1873 {
1874 rtx lab = JUMP_LABEL (insn);
1875 if (lab && LABEL_NUSES (lab) == 1)
1876 {
1877 LABEL_REFS (lab) = insn;
1878 }
1879 }
1880 #endif
1881 }
1882
1883 init_recog ();
1884
1885 CC_STATUS_INIT;
1886
1887 /* Output the insns. */
1888 for (insn = NEXT_INSN (first); insn;)
1889 {
1890 #ifdef HAVE_ATTR_length
1891 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1892 {
1893 /* This can be triggered by bugs elsewhere in the compiler if
1894 new insns are created after init_insn_lengths is called. */
1895 if (GET_CODE (insn) == NOTE)
1896 insn_current_address = -1;
1897 else
1898 abort ();
1899 }
1900 else
1901 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1902 #endif /* HAVE_ATTR_length */
1903
1904 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1905 }
1906
1907 /* Store function names for edge-profiling. */
1908 /* ??? Probably should re-use the existing struct function. */
1909
1910 if (cfun->arc_profile)
1911 {
1912 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1913
1914 *functions_tail = new_item;
1915 functions_tail = &new_item->next;
1916
1917 new_item->next = 0;
1918 new_item->name = xstrdup (current_function_name);
1919 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1920 new_item->count_edges = profile_info.count_edges_instrumented_now;
1921 }
1922
1923 free (line_note_exists);
1924 line_note_exists = NULL;
1925 }
1926 \f
1927 const char *
1928 get_insn_template (code, insn)
1929 int code;
1930 rtx insn;
1931 {
1932 const void *output = insn_data[code].output;
1933 switch (insn_data[code].output_format)
1934 {
1935 case INSN_OUTPUT_FORMAT_SINGLE:
1936 return (const char *) output;
1937 case INSN_OUTPUT_FORMAT_MULTI:
1938 return ((const char *const *) output)[which_alternative];
1939 case INSN_OUTPUT_FORMAT_FUNCTION:
1940 if (insn == NULL)
1941 abort ();
1942 return (*(insn_output_fn) output) (recog_data.operand, insn);
1943
1944 default:
1945 abort ();
1946 }
1947 }
1948
1949 /* Emit the appropriate declaration for an alternate-entry-point
1950 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1951 LABEL_KIND != LABEL_NORMAL.
1952
1953 The case fall-through in this function is intentional. */
1954 static void
1955 output_alternate_entry_point (file, insn)
1956 FILE *file;
1957 rtx insn;
1958 {
1959 const char *name = LABEL_NAME (insn);
1960
1961 switch (LABEL_KIND (insn))
1962 {
1963 case LABEL_WEAK_ENTRY:
1964 #ifdef ASM_WEAKEN_LABEL
1965 ASM_WEAKEN_LABEL (file, name);
1966 #endif
1967 case LABEL_GLOBAL_ENTRY:
1968 (*targetm.asm_out.globalize_label) (file, name);
1969 case LABEL_STATIC_ENTRY:
1970 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1971 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1972 #endif
1973 ASM_OUTPUT_LABEL (file, name);
1974 break;
1975
1976 case LABEL_NORMAL:
1977 default:
1978 abort ();
1979 }
1980 }
1981
1982 /* The final scan for one insn, INSN.
1983 Args are same as in `final', except that INSN
1984 is the insn being scanned.
1985 Value returned is the next insn to be scanned.
1986
1987 NOPEEPHOLES is the flag to disallow peephole processing (currently
1988 used for within delayed branch sequence output). */
1989
1990 rtx
1991 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1992 rtx insn;
1993 FILE *file;
1994 int optimize ATTRIBUTE_UNUSED;
1995 int prescan;
1996 int nopeepholes ATTRIBUTE_UNUSED;
1997 {
1998 #ifdef HAVE_cc0
1999 rtx set;
2000 #endif
2001
2002 insn_counter++;
2003
2004 /* Ignore deleted insns. These can occur when we split insns (due to a
2005 template of "#") while not optimizing. */
2006 if (INSN_DELETED_P (insn))
2007 return NEXT_INSN (insn);
2008
2009 switch (GET_CODE (insn))
2010 {
2011 case NOTE:
2012 if (prescan > 0)
2013 break;
2014
2015 switch (NOTE_LINE_NUMBER (insn))
2016 {
2017 case NOTE_INSN_DELETED:
2018 case NOTE_INSN_LOOP_BEG:
2019 case NOTE_INSN_LOOP_END:
2020 case NOTE_INSN_LOOP_END_TOP_COND:
2021 case NOTE_INSN_LOOP_CONT:
2022 case NOTE_INSN_LOOP_VTOP:
2023 case NOTE_INSN_FUNCTION_END:
2024 case NOTE_INSN_REPEATED_LINE_NUMBER:
2025 case NOTE_INSN_EXPECTED_VALUE:
2026 break;
2027
2028 case NOTE_INSN_BASIC_BLOCK:
2029 #ifdef IA64_UNWIND_INFO
2030 IA64_UNWIND_EMIT (asm_out_file, insn);
2031 #endif
2032 if (flag_debug_asm)
2033 fprintf (asm_out_file, "\t%s basic block %d\n",
2034 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2035 break;
2036
2037 case NOTE_INSN_EH_REGION_BEG:
2038 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2039 NOTE_EH_HANDLER (insn));
2040 break;
2041
2042 case NOTE_INSN_EH_REGION_END:
2043 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2044 NOTE_EH_HANDLER (insn));
2045 break;
2046
2047 case NOTE_INSN_PROLOGUE_END:
2048 (*targetm.asm_out.function_end_prologue) (file);
2049 profile_after_prologue (file);
2050 break;
2051
2052 case NOTE_INSN_EPILOGUE_BEG:
2053 (*targetm.asm_out.function_begin_epilogue) (file);
2054 break;
2055
2056 case NOTE_INSN_FUNCTION_BEG:
2057 app_disable ();
2058 (*debug_hooks->end_prologue) (last_linenum, last_filename);
2059 break;
2060
2061 case NOTE_INSN_BLOCK_BEG:
2062 if (debug_info_level == DINFO_LEVEL_NORMAL
2063 || debug_info_level == DINFO_LEVEL_VERBOSE
2064 || write_symbols == DWARF_DEBUG
2065 || write_symbols == DWARF2_DEBUG
2066 || write_symbols == VMS_AND_DWARF2_DEBUG
2067 || write_symbols == VMS_DEBUG)
2068 {
2069 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2070
2071 app_disable ();
2072 ++block_depth;
2073 high_block_linenum = last_linenum;
2074
2075 /* Output debugging info about the symbol-block beginning. */
2076 (*debug_hooks->begin_block) (last_linenum, n);
2077
2078 /* Mark this block as output. */
2079 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2080 }
2081 break;
2082
2083 case NOTE_INSN_BLOCK_END:
2084 if (debug_info_level == DINFO_LEVEL_NORMAL
2085 || debug_info_level == DINFO_LEVEL_VERBOSE
2086 || write_symbols == DWARF_DEBUG
2087 || write_symbols == DWARF2_DEBUG
2088 || write_symbols == VMS_AND_DWARF2_DEBUG
2089 || write_symbols == VMS_DEBUG)
2090 {
2091 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2092
2093 app_disable ();
2094
2095 /* End of a symbol-block. */
2096 --block_depth;
2097 if (block_depth < 0)
2098 abort ();
2099
2100 (*debug_hooks->end_block) (high_block_linenum, n);
2101 }
2102 break;
2103
2104 case NOTE_INSN_DELETED_LABEL:
2105 /* Emit the label. We may have deleted the CODE_LABEL because
2106 the label could be proved to be unreachable, though still
2107 referenced (in the form of having its address taken. */
2108 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2109 break;
2110
2111 case 0:
2112 break;
2113
2114 default:
2115 if (NOTE_LINE_NUMBER (insn) <= 0)
2116 abort ();
2117
2118 /* This note is a line-number. */
2119 {
2120 rtx note;
2121 int note_after = 0;
2122
2123 /* If there is anything real after this note, output it.
2124 If another line note follows, omit this one. */
2125 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2126 {
2127 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2128 break;
2129
2130 /* These types of notes can be significant
2131 so make sure the preceding line number stays. */
2132 else if (GET_CODE (note) == NOTE
2133 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2134 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2135 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2136 break;
2137 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2138 {
2139 /* Another line note follows; we can delete this note
2140 if no intervening line numbers have notes elsewhere. */
2141 int num;
2142 for (num = NOTE_LINE_NUMBER (insn) + 1;
2143 num < NOTE_LINE_NUMBER (note);
2144 num++)
2145 if (line_note_exists[num])
2146 break;
2147
2148 if (num >= NOTE_LINE_NUMBER (note))
2149 note_after = 1;
2150 break;
2151 }
2152 }
2153
2154 /* Output this line note if it is the first or the last line
2155 note in a row. */
2156 if (!note_after)
2157 {
2158 notice_source_line (insn);
2159 (*debug_hooks->source_line) (last_linenum, last_filename);
2160 }
2161 }
2162 break;
2163 }
2164 break;
2165
2166 case BARRIER:
2167 #if defined (DWARF2_UNWIND_INFO)
2168 if (dwarf2out_do_frame ())
2169 dwarf2out_frame_debug (insn);
2170 #endif
2171 break;
2172
2173 case CODE_LABEL:
2174 /* The target port might emit labels in the output function for
2175 some insn, e.g. sh.c output_branchy_insn. */
2176 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2177 {
2178 int align = LABEL_TO_ALIGNMENT (insn);
2179 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2180 int max_skip = LABEL_TO_MAX_SKIP (insn);
2181 #endif
2182
2183 if (align && NEXT_INSN (insn))
2184 {
2185 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2186 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2187 #else
2188 ASM_OUTPUT_ALIGN (file, align);
2189 #endif
2190 }
2191 }
2192 #ifdef HAVE_cc0
2193 CC_STATUS_INIT;
2194 /* If this label is reached from only one place, set the condition
2195 codes from the instruction just before the branch. */
2196
2197 /* Disabled because some insns set cc_status in the C output code
2198 and NOTICE_UPDATE_CC alone can set incorrect status. */
2199 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2200 {
2201 rtx jump = LABEL_REFS (insn);
2202 rtx barrier = prev_nonnote_insn (insn);
2203 rtx prev;
2204 /* If the LABEL_REFS field of this label has been set to point
2205 at a branch, the predecessor of the branch is a regular
2206 insn, and that branch is the only way to reach this label,
2207 set the condition codes based on the branch and its
2208 predecessor. */
2209 if (barrier && GET_CODE (barrier) == BARRIER
2210 && jump && GET_CODE (jump) == JUMP_INSN
2211 && (prev = prev_nonnote_insn (jump))
2212 && GET_CODE (prev) == INSN)
2213 {
2214 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2215 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2216 }
2217 }
2218 #endif
2219 if (prescan > 0)
2220 break;
2221 new_block = 1;
2222
2223 #ifdef FINAL_PRESCAN_LABEL
2224 FINAL_PRESCAN_INSN (insn, NULL, 0);
2225 #endif
2226
2227 if (LABEL_NAME (insn))
2228 (*debug_hooks->label) (insn);
2229
2230 if (app_on)
2231 {
2232 fputs (ASM_APP_OFF, file);
2233 app_on = 0;
2234 }
2235 if (NEXT_INSN (insn) != 0
2236 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2237 {
2238 rtx nextbody = PATTERN (NEXT_INSN (insn));
2239
2240 /* If this label is followed by a jump-table,
2241 make sure we put the label in the read-only section. Also
2242 possibly write the label and jump table together. */
2243
2244 if (GET_CODE (nextbody) == ADDR_VEC
2245 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2246 {
2247 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2248 /* In this case, the case vector is being moved by the
2249 target, so don't output the label at all. Leave that
2250 to the back end macros. */
2251 #else
2252 if (! JUMP_TABLES_IN_TEXT_SECTION)
2253 {
2254 int log_align;
2255
2256 readonly_data_section ();
2257
2258 #ifdef ADDR_VEC_ALIGN
2259 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2260 #else
2261 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2262 #endif
2263 ASM_OUTPUT_ALIGN (file, log_align);
2264 }
2265 else
2266 function_section (current_function_decl);
2267
2268 #ifdef ASM_OUTPUT_CASE_LABEL
2269 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2270 NEXT_INSN (insn));
2271 #else
2272 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2273 #endif
2274 #endif
2275 break;
2276 }
2277 }
2278 if (LABEL_ALT_ENTRY_P (insn))
2279 output_alternate_entry_point (file, insn);
2280 else
2281 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2282 break;
2283
2284 default:
2285 {
2286 rtx body = PATTERN (insn);
2287 int insn_code_number;
2288 const char *template;
2289 rtx note;
2290
2291 /* An INSN, JUMP_INSN or CALL_INSN.
2292 First check for special kinds that recog doesn't recognize. */
2293
2294 if (GET_CODE (body) == USE /* These are just declarations */
2295 || GET_CODE (body) == CLOBBER)
2296 break;
2297
2298 #ifdef HAVE_cc0
2299 /* If there is a REG_CC_SETTER note on this insn, it means that
2300 the setting of the condition code was done in the delay slot
2301 of the insn that branched here. So recover the cc status
2302 from the insn that set it. */
2303
2304 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2305 if (note)
2306 {
2307 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2308 cc_prev_status = cc_status;
2309 }
2310 #endif
2311
2312 /* Detect insns that are really jump-tables
2313 and output them as such. */
2314
2315 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2316 {
2317 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2318 int vlen, idx;
2319 #endif
2320
2321 if (prescan > 0)
2322 break;
2323
2324 if (app_on)
2325 {
2326 fputs (ASM_APP_OFF, file);
2327 app_on = 0;
2328 }
2329
2330 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2331 if (GET_CODE (body) == ADDR_VEC)
2332 {
2333 #ifdef ASM_OUTPUT_ADDR_VEC
2334 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2335 #else
2336 abort ();
2337 #endif
2338 }
2339 else
2340 {
2341 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2342 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2343 #else
2344 abort ();
2345 #endif
2346 }
2347 #else
2348 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2349 for (idx = 0; idx < vlen; idx++)
2350 {
2351 if (GET_CODE (body) == ADDR_VEC)
2352 {
2353 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2354 ASM_OUTPUT_ADDR_VEC_ELT
2355 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2356 #else
2357 abort ();
2358 #endif
2359 }
2360 else
2361 {
2362 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2363 ASM_OUTPUT_ADDR_DIFF_ELT
2364 (file,
2365 body,
2366 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2367 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2368 #else
2369 abort ();
2370 #endif
2371 }
2372 }
2373 #ifdef ASM_OUTPUT_CASE_END
2374 ASM_OUTPUT_CASE_END (file,
2375 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2376 insn);
2377 #endif
2378 #endif
2379
2380 function_section (current_function_decl);
2381
2382 break;
2383 }
2384
2385 if (GET_CODE (body) == ASM_INPUT)
2386 {
2387 const char *string = XSTR (body, 0);
2388
2389 /* There's no telling what that did to the condition codes. */
2390 CC_STATUS_INIT;
2391 if (prescan > 0)
2392 break;
2393
2394 if (string[0])
2395 {
2396 if (! app_on)
2397 {
2398 fputs (ASM_APP_ON, file);
2399 app_on = 1;
2400 }
2401 fprintf (asm_out_file, "\t%s\n", string);
2402 }
2403 break;
2404 }
2405
2406 /* Detect `asm' construct with operands. */
2407 if (asm_noperands (body) >= 0)
2408 {
2409 unsigned int noperands = asm_noperands (body);
2410 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2411 const char *string;
2412
2413 /* There's no telling what that did to the condition codes. */
2414 CC_STATUS_INIT;
2415 if (prescan > 0)
2416 break;
2417
2418 /* Get out the operand values. */
2419 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2420 /* Inhibit aborts on what would otherwise be compiler bugs. */
2421 insn_noperands = noperands;
2422 this_is_asm_operands = insn;
2423
2424 /* Output the insn using them. */
2425 if (string[0])
2426 {
2427 if (! app_on)
2428 {
2429 fputs (ASM_APP_ON, file);
2430 app_on = 1;
2431 }
2432 output_asm_insn (string, ops);
2433 }
2434
2435 this_is_asm_operands = 0;
2436 break;
2437 }
2438
2439 if (prescan <= 0 && app_on)
2440 {
2441 fputs (ASM_APP_OFF, file);
2442 app_on = 0;
2443 }
2444
2445 if (GET_CODE (body) == SEQUENCE)
2446 {
2447 /* A delayed-branch sequence */
2448 int i;
2449 rtx next;
2450
2451 if (prescan > 0)
2452 break;
2453 final_sequence = body;
2454
2455 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2456 force the restoration of a comparison that was previously
2457 thought unnecessary. If that happens, cancel this sequence
2458 and cause that insn to be restored. */
2459
2460 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2461 if (next != XVECEXP (body, 0, 1))
2462 {
2463 final_sequence = 0;
2464 return next;
2465 }
2466
2467 for (i = 1; i < XVECLEN (body, 0); i++)
2468 {
2469 rtx insn = XVECEXP (body, 0, i);
2470 rtx next = NEXT_INSN (insn);
2471 /* We loop in case any instruction in a delay slot gets
2472 split. */
2473 do
2474 insn = final_scan_insn (insn, file, 0, prescan, 1);
2475 while (insn != next);
2476 }
2477 #ifdef DBR_OUTPUT_SEQEND
2478 DBR_OUTPUT_SEQEND (file);
2479 #endif
2480 final_sequence = 0;
2481
2482 /* If the insn requiring the delay slot was a CALL_INSN, the
2483 insns in the delay slot are actually executed before the
2484 called function. Hence we don't preserve any CC-setting
2485 actions in these insns and the CC must be marked as being
2486 clobbered by the function. */
2487 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2488 {
2489 CC_STATUS_INIT;
2490 }
2491 break;
2492 }
2493
2494 /* We have a real machine instruction as rtl. */
2495
2496 body = PATTERN (insn);
2497
2498 #ifdef HAVE_cc0
2499 set = single_set (insn);
2500
2501 /* Check for redundant test and compare instructions
2502 (when the condition codes are already set up as desired).
2503 This is done only when optimizing; if not optimizing,
2504 it should be possible for the user to alter a variable
2505 with the debugger in between statements
2506 and the next statement should reexamine the variable
2507 to compute the condition codes. */
2508
2509 if (optimize)
2510 {
2511 #if 0
2512 rtx set = single_set (insn);
2513 #endif
2514
2515 if (set
2516 && GET_CODE (SET_DEST (set)) == CC0
2517 && insn != last_ignored_compare)
2518 {
2519 if (GET_CODE (SET_SRC (set)) == SUBREG)
2520 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2521 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2522 {
2523 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2524 XEXP (SET_SRC (set), 0)
2525 = alter_subreg (&XEXP (SET_SRC (set), 0));
2526 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2527 XEXP (SET_SRC (set), 1)
2528 = alter_subreg (&XEXP (SET_SRC (set), 1));
2529 }
2530 if ((cc_status.value1 != 0
2531 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2532 || (cc_status.value2 != 0
2533 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2534 {
2535 /* Don't delete insn if it has an addressing side-effect. */
2536 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2537 /* or if anything in it is volatile. */
2538 && ! volatile_refs_p (PATTERN (insn)))
2539 {
2540 /* We don't really delete the insn; just ignore it. */
2541 last_ignored_compare = insn;
2542 break;
2543 }
2544 }
2545 }
2546 }
2547 #endif
2548
2549 #ifndef STACK_REGS
2550 /* Don't bother outputting obvious no-ops, even without -O.
2551 This optimization is fast and doesn't interfere with debugging.
2552 Don't do this if the insn is in a delay slot, since this
2553 will cause an improper number of delay insns to be written. */
2554 if (final_sequence == 0
2555 && prescan >= 0
2556 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2557 && GET_CODE (SET_SRC (body)) == REG
2558 && GET_CODE (SET_DEST (body)) == REG
2559 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2560 break;
2561 #endif
2562
2563 #ifdef HAVE_cc0
2564 /* If this is a conditional branch, maybe modify it
2565 if the cc's are in a nonstandard state
2566 so that it accomplishes the same thing that it would
2567 do straightforwardly if the cc's were set up normally. */
2568
2569 if (cc_status.flags != 0
2570 && GET_CODE (insn) == JUMP_INSN
2571 && GET_CODE (body) == SET
2572 && SET_DEST (body) == pc_rtx
2573 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2574 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2575 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2576 /* This is done during prescan; it is not done again
2577 in final scan when prescan has been done. */
2578 && prescan >= 0)
2579 {
2580 /* This function may alter the contents of its argument
2581 and clear some of the cc_status.flags bits.
2582 It may also return 1 meaning condition now always true
2583 or -1 meaning condition now always false
2584 or 2 meaning condition nontrivial but altered. */
2585 int result = alter_cond (XEXP (SET_SRC (body), 0));
2586 /* If condition now has fixed value, replace the IF_THEN_ELSE
2587 with its then-operand or its else-operand. */
2588 if (result == 1)
2589 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2590 if (result == -1)
2591 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2592
2593 /* The jump is now either unconditional or a no-op.
2594 If it has become a no-op, don't try to output it.
2595 (It would not be recognized.) */
2596 if (SET_SRC (body) == pc_rtx)
2597 {
2598 delete_insn (insn);
2599 break;
2600 }
2601 else if (GET_CODE (SET_SRC (body)) == RETURN)
2602 /* Replace (set (pc) (return)) with (return). */
2603 PATTERN (insn) = body = SET_SRC (body);
2604
2605 /* Rerecognize the instruction if it has changed. */
2606 if (result != 0)
2607 INSN_CODE (insn) = -1;
2608 }
2609
2610 /* Make same adjustments to instructions that examine the
2611 condition codes without jumping and instructions that
2612 handle conditional moves (if this machine has either one). */
2613
2614 if (cc_status.flags != 0
2615 && set != 0)
2616 {
2617 rtx cond_rtx, then_rtx, else_rtx;
2618
2619 if (GET_CODE (insn) != JUMP_INSN
2620 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2621 {
2622 cond_rtx = XEXP (SET_SRC (set), 0);
2623 then_rtx = XEXP (SET_SRC (set), 1);
2624 else_rtx = XEXP (SET_SRC (set), 2);
2625 }
2626 else
2627 {
2628 cond_rtx = SET_SRC (set);
2629 then_rtx = const_true_rtx;
2630 else_rtx = const0_rtx;
2631 }
2632
2633 switch (GET_CODE (cond_rtx))
2634 {
2635 case GTU:
2636 case GT:
2637 case LTU:
2638 case LT:
2639 case GEU:
2640 case GE:
2641 case LEU:
2642 case LE:
2643 case EQ:
2644 case NE:
2645 {
2646 int result;
2647 if (XEXP (cond_rtx, 0) != cc0_rtx)
2648 break;
2649 result = alter_cond (cond_rtx);
2650 if (result == 1)
2651 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2652 else if (result == -1)
2653 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2654 else if (result == 2)
2655 INSN_CODE (insn) = -1;
2656 if (SET_DEST (set) == SET_SRC (set))
2657 delete_insn (insn);
2658 }
2659 break;
2660
2661 default:
2662 break;
2663 }
2664 }
2665
2666 #endif
2667
2668 #ifdef HAVE_peephole
2669 /* Do machine-specific peephole optimizations if desired. */
2670
2671 if (optimize && !flag_no_peephole && !nopeepholes)
2672 {
2673 rtx next = peephole (insn);
2674 /* When peepholing, if there were notes within the peephole,
2675 emit them before the peephole. */
2676 if (next != 0 && next != NEXT_INSN (insn))
2677 {
2678 rtx prev = PREV_INSN (insn);
2679
2680 for (note = NEXT_INSN (insn); note != next;
2681 note = NEXT_INSN (note))
2682 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2683
2684 /* In case this is prescan, put the notes
2685 in proper position for later rescan. */
2686 note = NEXT_INSN (insn);
2687 PREV_INSN (note) = prev;
2688 NEXT_INSN (prev) = note;
2689 NEXT_INSN (PREV_INSN (next)) = insn;
2690 PREV_INSN (insn) = PREV_INSN (next);
2691 NEXT_INSN (insn) = next;
2692 PREV_INSN (next) = insn;
2693 }
2694
2695 /* PEEPHOLE might have changed this. */
2696 body = PATTERN (insn);
2697 }
2698 #endif
2699
2700 /* Try to recognize the instruction.
2701 If successful, verify that the operands satisfy the
2702 constraints for the instruction. Crash if they don't,
2703 since `reload' should have changed them so that they do. */
2704
2705 insn_code_number = recog_memoized (insn);
2706 cleanup_subreg_operands (insn);
2707
2708 /* Dump the insn in the assembly for debugging. */
2709 if (flag_dump_rtl_in_asm)
2710 {
2711 print_rtx_head = ASM_COMMENT_START;
2712 print_rtl_single (asm_out_file, insn);
2713 print_rtx_head = "";
2714 }
2715
2716 if (! constrain_operands_cached (1))
2717 fatal_insn_not_found (insn);
2718
2719 /* Some target machines need to prescan each insn before
2720 it is output. */
2721
2722 #ifdef FINAL_PRESCAN_INSN
2723 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2724 #endif
2725
2726 #ifdef HAVE_conditional_execution
2727 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2728 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2729 else
2730 current_insn_predicate = NULL_RTX;
2731 #endif
2732
2733 #ifdef HAVE_cc0
2734 cc_prev_status = cc_status;
2735
2736 /* Update `cc_status' for this instruction.
2737 The instruction's output routine may change it further.
2738 If the output routine for a jump insn needs to depend
2739 on the cc status, it should look at cc_prev_status. */
2740
2741 NOTICE_UPDATE_CC (body, insn);
2742 #endif
2743
2744 current_output_insn = debug_insn = insn;
2745
2746 #if defined (DWARF2_UNWIND_INFO)
2747 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2748 dwarf2out_frame_debug (insn);
2749 #endif
2750
2751 /* Find the proper template for this insn. */
2752 template = get_insn_template (insn_code_number, insn);
2753
2754 /* If the C code returns 0, it means that it is a jump insn
2755 which follows a deleted test insn, and that test insn
2756 needs to be reinserted. */
2757 if (template == 0)
2758 {
2759 rtx prev;
2760
2761 if (prev_nonnote_insn (insn) != last_ignored_compare)
2762 abort ();
2763 new_block = 0;
2764
2765 /* We have already processed the notes between the setter and
2766 the user. Make sure we don't process them again, this is
2767 particularly important if one of the notes is a block
2768 scope note or an EH note. */
2769 for (prev = insn;
2770 prev != last_ignored_compare;
2771 prev = PREV_INSN (prev))
2772 {
2773 if (GET_CODE (prev) == NOTE)
2774 delete_insn (prev); /* Use delete_note. */
2775 }
2776
2777 return prev;
2778 }
2779
2780 /* If the template is the string "#", it means that this insn must
2781 be split. */
2782 if (template[0] == '#' && template[1] == '\0')
2783 {
2784 rtx new = try_split (body, insn, 0);
2785
2786 /* If we didn't split the insn, go away. */
2787 if (new == insn && PATTERN (new) == body)
2788 fatal_insn ("could not split insn", insn);
2789
2790 #ifdef HAVE_ATTR_length
2791 /* This instruction should have been split in shorten_branches,
2792 to ensure that we would have valid length info for the
2793 splitees. */
2794 abort ();
2795 #endif
2796
2797 new_block = 0;
2798 return new;
2799 }
2800
2801 if (prescan > 0)
2802 break;
2803
2804 #ifdef IA64_UNWIND_INFO
2805 IA64_UNWIND_EMIT (asm_out_file, insn);
2806 #endif
2807 /* Output assembler code from the template. */
2808
2809 output_asm_insn (template, recog_data.operand);
2810
2811 #if defined (DWARF2_UNWIND_INFO)
2812 #if defined (HAVE_prologue)
2813 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2814 dwarf2out_frame_debug (insn);
2815 #else
2816 if (!ACCUMULATE_OUTGOING_ARGS
2817 && GET_CODE (insn) == INSN
2818 && dwarf2out_do_frame ())
2819 dwarf2out_frame_debug (insn);
2820 #endif
2821 #endif
2822
2823 #if 0
2824 /* It's not at all clear why we did this and doing so interferes
2825 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2826 with this out. */
2827
2828 /* Mark this insn as having been output. */
2829 INSN_DELETED_P (insn) = 1;
2830 #endif
2831
2832 /* Emit information for vtable gc. */
2833 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2834 if (note)
2835 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2836 INTVAL (XEXP (XEXP (note, 0), 1)));
2837
2838 current_output_insn = debug_insn = 0;
2839 }
2840 }
2841 return NEXT_INSN (insn);
2842 }
2843 \f
2844 /* Output debugging info to the assembler file FILE
2845 based on the NOTE-insn INSN, assumed to be a line number. */
2846
2847 static void
2848 notice_source_line (insn)
2849 rtx insn;
2850 {
2851 const char *filename = NOTE_SOURCE_FILE (insn);
2852
2853 last_filename = filename;
2854 last_linenum = NOTE_LINE_NUMBER (insn);
2855 high_block_linenum = MAX (last_linenum, high_block_linenum);
2856 high_function_linenum = MAX (last_linenum, high_function_linenum);
2857 }
2858 \f
2859 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2860 directly to the desired hard register. */
2861
2862 void
2863 cleanup_subreg_operands (insn)
2864 rtx insn;
2865 {
2866 int i;
2867 extract_insn_cached (insn);
2868 for (i = 0; i < recog_data.n_operands; i++)
2869 {
2870 /* The following test cannot use recog_data.operand when tesing
2871 for a SUBREG: the underlying object might have been changed
2872 already if we are inside a match_operator expression that
2873 matches the else clause. Instead we test the underlying
2874 expression directly. */
2875 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2876 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2877 else if (GET_CODE (recog_data.operand[i]) == PLUS
2878 || GET_CODE (recog_data.operand[i]) == MULT
2879 || GET_CODE (recog_data.operand[i]) == MEM)
2880 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2881 }
2882
2883 for (i = 0; i < recog_data.n_dups; i++)
2884 {
2885 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2886 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2887 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2888 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2889 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2890 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2891 }
2892 }
2893
2894 /* If X is a SUBREG, replace it with a REG or a MEM,
2895 based on the thing it is a subreg of. */
2896
2897 rtx
2898 alter_subreg (xp)
2899 rtx *xp;
2900 {
2901 rtx x = *xp;
2902 rtx y = SUBREG_REG (x);
2903
2904 /* simplify_subreg does not remove subreg from volatile references.
2905 We are required to. */
2906 if (GET_CODE (y) == MEM)
2907 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2908 else
2909 {
2910 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2911 SUBREG_BYTE (x));
2912
2913 if (new != 0)
2914 *xp = new;
2915 /* Simplify_subreg can't handle some REG cases, but we have to. */
2916 else if (GET_CODE (y) == REG)
2917 {
2918 unsigned int regno = subreg_hard_regno (x, 1);
2919 PUT_CODE (x, REG);
2920 REGNO (x) = regno;
2921 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2922 /* This field has a different meaning for REGs and SUBREGs. Make
2923 sure to clear it! */
2924 RTX_FLAG (x, used) = 0;
2925 }
2926 else
2927 abort ();
2928 }
2929
2930 return *xp;
2931 }
2932
2933 /* Do alter_subreg on all the SUBREGs contained in X. */
2934
2935 static rtx
2936 walk_alter_subreg (xp)
2937 rtx *xp;
2938 {
2939 rtx x = *xp;
2940 switch (GET_CODE (x))
2941 {
2942 case PLUS:
2943 case MULT:
2944 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2945 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2946 break;
2947
2948 case MEM:
2949 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2950 break;
2951
2952 case SUBREG:
2953 return alter_subreg (xp);
2954
2955 default:
2956 break;
2957 }
2958
2959 return *xp;
2960 }
2961 \f
2962 #ifdef HAVE_cc0
2963
2964 /* Given BODY, the body of a jump instruction, alter the jump condition
2965 as required by the bits that are set in cc_status.flags.
2966 Not all of the bits there can be handled at this level in all cases.
2967
2968 The value is normally 0.
2969 1 means that the condition has become always true.
2970 -1 means that the condition has become always false.
2971 2 means that COND has been altered. */
2972
2973 static int
2974 alter_cond (cond)
2975 rtx cond;
2976 {
2977 int value = 0;
2978
2979 if (cc_status.flags & CC_REVERSED)
2980 {
2981 value = 2;
2982 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2983 }
2984
2985 if (cc_status.flags & CC_INVERTED)
2986 {
2987 value = 2;
2988 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2989 }
2990
2991 if (cc_status.flags & CC_NOT_POSITIVE)
2992 switch (GET_CODE (cond))
2993 {
2994 case LE:
2995 case LEU:
2996 case GEU:
2997 /* Jump becomes unconditional. */
2998 return 1;
2999
3000 case GT:
3001 case GTU:
3002 case LTU:
3003 /* Jump becomes no-op. */
3004 return -1;
3005
3006 case GE:
3007 PUT_CODE (cond, EQ);
3008 value = 2;
3009 break;
3010
3011 case LT:
3012 PUT_CODE (cond, NE);
3013 value = 2;
3014 break;
3015
3016 default:
3017 break;
3018 }
3019
3020 if (cc_status.flags & CC_NOT_NEGATIVE)
3021 switch (GET_CODE (cond))
3022 {
3023 case GE:
3024 case GEU:
3025 /* Jump becomes unconditional. */
3026 return 1;
3027
3028 case LT:
3029 case LTU:
3030 /* Jump becomes no-op. */
3031 return -1;
3032
3033 case LE:
3034 case LEU:
3035 PUT_CODE (cond, EQ);
3036 value = 2;
3037 break;
3038
3039 case GT:
3040 case GTU:
3041 PUT_CODE (cond, NE);
3042 value = 2;
3043 break;
3044
3045 default:
3046 break;
3047 }
3048
3049 if (cc_status.flags & CC_NO_OVERFLOW)
3050 switch (GET_CODE (cond))
3051 {
3052 case GEU:
3053 /* Jump becomes unconditional. */
3054 return 1;
3055
3056 case LEU:
3057 PUT_CODE (cond, EQ);
3058 value = 2;
3059 break;
3060
3061 case GTU:
3062 PUT_CODE (cond, NE);
3063 value = 2;
3064 break;
3065
3066 case LTU:
3067 /* Jump becomes no-op. */
3068 return -1;
3069
3070 default:
3071 break;
3072 }
3073
3074 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3075 switch (GET_CODE (cond))
3076 {
3077 default:
3078 abort ();
3079
3080 case NE:
3081 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3082 value = 2;
3083 break;
3084
3085 case EQ:
3086 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3087 value = 2;
3088 break;
3089 }
3090
3091 if (cc_status.flags & CC_NOT_SIGNED)
3092 /* The flags are valid if signed condition operators are converted
3093 to unsigned. */
3094 switch (GET_CODE (cond))
3095 {
3096 case LE:
3097 PUT_CODE (cond, LEU);
3098 value = 2;
3099 break;
3100
3101 case LT:
3102 PUT_CODE (cond, LTU);
3103 value = 2;
3104 break;
3105
3106 case GT:
3107 PUT_CODE (cond, GTU);
3108 value = 2;
3109 break;
3110
3111 case GE:
3112 PUT_CODE (cond, GEU);
3113 value = 2;
3114 break;
3115
3116 default:
3117 break;
3118 }
3119
3120 return value;
3121 }
3122 #endif
3123 \f
3124 /* Report inconsistency between the assembler template and the operands.
3125 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3126
3127 void
3128 output_operand_lossage VPARAMS ((const char *msgid, ...))
3129 {
3130 char *fmt_string;
3131 char *new_message;
3132 const char *pfx_str;
3133 VA_OPEN (ap, msgid);
3134 VA_FIXEDARG (ap, const char *, msgid);
3135
3136 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3137 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3138 vasprintf (&new_message, fmt_string, ap);
3139
3140 if (this_is_asm_operands)
3141 error_for_asm (this_is_asm_operands, "%s", new_message);
3142 else
3143 internal_error ("%s", new_message);
3144
3145 free (fmt_string);
3146 free (new_message);
3147 VA_CLOSE (ap);
3148 }
3149 \f
3150 /* Output of assembler code from a template, and its subroutines. */
3151
3152 /* Annotate the assembly with a comment describing the pattern and
3153 alternative used. */
3154
3155 static void
3156 output_asm_name ()
3157 {
3158 if (debug_insn)
3159 {
3160 int num = INSN_CODE (debug_insn);
3161 fprintf (asm_out_file, "\t%s %d\t%s",
3162 ASM_COMMENT_START, INSN_UID (debug_insn),
3163 insn_data[num].name);
3164 if (insn_data[num].n_alternatives > 1)
3165 fprintf (asm_out_file, "/%d", which_alternative + 1);
3166 #ifdef HAVE_ATTR_length
3167 fprintf (asm_out_file, "\t[length = %d]",
3168 get_attr_length (debug_insn));
3169 #endif
3170 /* Clear this so only the first assembler insn
3171 of any rtl insn will get the special comment for -dp. */
3172 debug_insn = 0;
3173 }
3174 }
3175
3176 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3177 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3178 corresponds to the address of the object and 0 if to the object. */
3179
3180 static tree
3181 get_mem_expr_from_op (op, paddressp)
3182 rtx op;
3183 int *paddressp;
3184 {
3185 tree expr;
3186 int inner_addressp;
3187
3188 *paddressp = 0;
3189
3190 if (op == NULL)
3191 return 0;
3192
3193 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3194 return REGNO_DECL (ORIGINAL_REGNO (op));
3195 else if (GET_CODE (op) != MEM)
3196 return 0;
3197
3198 if (MEM_EXPR (op) != 0)
3199 return MEM_EXPR (op);
3200
3201 /* Otherwise we have an address, so indicate it and look at the address. */
3202 *paddressp = 1;
3203 op = XEXP (op, 0);
3204
3205 /* First check if we have a decl for the address, then look at the right side
3206 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3207 But don't allow the address to itself be indirect. */
3208 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3209 return expr;
3210 else if (GET_CODE (op) == PLUS
3211 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3212 return expr;
3213
3214 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3215 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3216 op = XEXP (op, 0);
3217
3218 expr = get_mem_expr_from_op (op, &inner_addressp);
3219 return inner_addressp ? 0 : expr;
3220 }
3221
3222 /* Output operand names for assembler instructions. OPERANDS is the
3223 operand vector, OPORDER is the order to write the operands, and NOPS
3224 is the number of operands to write. */
3225
3226 static void
3227 output_asm_operand_names (operands, oporder, nops)
3228 rtx *operands;
3229 int *oporder;
3230 int nops;
3231 {
3232 int wrote = 0;
3233 int i;
3234
3235 for (i = 0; i < nops; i++)
3236 {
3237 int addressp;
3238 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3239
3240 if (expr)
3241 {
3242 fprintf (asm_out_file, "%c%s %s",
3243 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3244 addressp ? "*" : "");
3245 print_mem_expr (asm_out_file, expr);
3246 wrote = 1;
3247 }
3248 }
3249 }
3250
3251 /* Output text from TEMPLATE to the assembler output file,
3252 obeying %-directions to substitute operands taken from
3253 the vector OPERANDS.
3254
3255 %N (for N a digit) means print operand N in usual manner.
3256 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3257 and print the label name with no punctuation.
3258 %cN means require operand N to be a constant
3259 and print the constant expression with no punctuation.
3260 %aN means expect operand N to be a memory address
3261 (not a memory reference!) and print a reference
3262 to that address.
3263 %nN means expect operand N to be a constant
3264 and print a constant expression for minus the value
3265 of the operand, with no other punctuation. */
3266
3267 void
3268 output_asm_insn (template, operands)
3269 const char *template;
3270 rtx *operands;
3271 {
3272 const char *p;
3273 int c;
3274 #ifdef ASSEMBLER_DIALECT
3275 int dialect = 0;
3276 #endif
3277 int oporder[MAX_RECOG_OPERANDS];
3278 char opoutput[MAX_RECOG_OPERANDS];
3279 int ops = 0;
3280
3281 /* An insn may return a null string template
3282 in a case where no assembler code is needed. */
3283 if (*template == 0)
3284 return;
3285
3286 memset (opoutput, 0, sizeof opoutput);
3287 p = template;
3288 putc ('\t', asm_out_file);
3289
3290 #ifdef ASM_OUTPUT_OPCODE
3291 ASM_OUTPUT_OPCODE (asm_out_file, p);
3292 #endif
3293
3294 while ((c = *p++))
3295 switch (c)
3296 {
3297 case '\n':
3298 if (flag_verbose_asm)
3299 output_asm_operand_names (operands, oporder, ops);
3300 if (flag_print_asm_name)
3301 output_asm_name ();
3302
3303 ops = 0;
3304 memset (opoutput, 0, sizeof opoutput);
3305
3306 putc (c, asm_out_file);
3307 #ifdef ASM_OUTPUT_OPCODE
3308 while ((c = *p) == '\t')
3309 {
3310 putc (c, asm_out_file);
3311 p++;
3312 }
3313 ASM_OUTPUT_OPCODE (asm_out_file, p);
3314 #endif
3315 break;
3316
3317 #ifdef ASSEMBLER_DIALECT
3318 case '{':
3319 {
3320 int i;
3321
3322 if (dialect)
3323 output_operand_lossage ("nested assembly dialect alternatives");
3324 else
3325 dialect = 1;
3326
3327 /* If we want the first dialect, do nothing. Otherwise, skip
3328 DIALECT_NUMBER of strings ending with '|'. */
3329 for (i = 0; i < dialect_number; i++)
3330 {
3331 while (*p && *p != '}' && *p++ != '|')
3332 ;
3333 if (*p == '}')
3334 break;
3335 if (*p == '|')
3336 p++;
3337 }
3338
3339 if (*p == '\0')
3340 output_operand_lossage ("unterminated assembly dialect alternative");
3341 }
3342 break;
3343
3344 case '|':
3345 if (dialect)
3346 {
3347 /* Skip to close brace. */
3348 do
3349 {
3350 if (*p == '\0')
3351 {
3352 output_operand_lossage ("unterminated assembly dialect alternative");
3353 break;
3354 }
3355 }
3356 while (*p++ != '}');
3357 dialect = 0;
3358 }
3359 else
3360 putc (c, asm_out_file);
3361 break;
3362
3363 case '}':
3364 if (! dialect)
3365 putc (c, asm_out_file);
3366 dialect = 0;
3367 break;
3368 #endif
3369
3370 case '%':
3371 /* %% outputs a single %. */
3372 if (*p == '%')
3373 {
3374 p++;
3375 putc (c, asm_out_file);
3376 }
3377 /* %= outputs a number which is unique to each insn in the entire
3378 compilation. This is useful for making local labels that are
3379 referred to more than once in a given insn. */
3380 else if (*p == '=')
3381 {
3382 p++;
3383 fprintf (asm_out_file, "%d", insn_counter);
3384 }
3385 /* % followed by a letter and some digits
3386 outputs an operand in a special way depending on the letter.
3387 Letters `acln' are implemented directly.
3388 Other letters are passed to `output_operand' so that
3389 the PRINT_OPERAND macro can define them. */
3390 else if (ISALPHA (*p))
3391 {
3392 int letter = *p++;
3393 c = atoi (p);
3394
3395 if (! ISDIGIT (*p))
3396 output_operand_lossage ("operand number missing after %%-letter");
3397 else if (this_is_asm_operands
3398 && (c < 0 || (unsigned int) c >= insn_noperands))
3399 output_operand_lossage ("operand number out of range");
3400 else if (letter == 'l')
3401 output_asm_label (operands[c]);
3402 else if (letter == 'a')
3403 output_address (operands[c]);
3404 else if (letter == 'c')
3405 {
3406 if (CONSTANT_ADDRESS_P (operands[c]))
3407 output_addr_const (asm_out_file, operands[c]);
3408 else
3409 output_operand (operands[c], 'c');
3410 }
3411 else if (letter == 'n')
3412 {
3413 if (GET_CODE (operands[c]) == CONST_INT)
3414 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3415 - INTVAL (operands[c]));
3416 else
3417 {
3418 putc ('-', asm_out_file);
3419 output_addr_const (asm_out_file, operands[c]);
3420 }
3421 }
3422 else
3423 output_operand (operands[c], letter);
3424
3425 if (!opoutput[c])
3426 oporder[ops++] = c;
3427 opoutput[c] = 1;
3428
3429 while (ISDIGIT (c = *p))
3430 p++;
3431 }
3432 /* % followed by a digit outputs an operand the default way. */
3433 else if (ISDIGIT (*p))
3434 {
3435 c = atoi (p);
3436 if (this_is_asm_operands
3437 && (c < 0 || (unsigned int) c >= insn_noperands))
3438 output_operand_lossage ("operand number out of range");
3439 else
3440 output_operand (operands[c], 0);
3441
3442 if (!opoutput[c])
3443 oporder[ops++] = c;
3444 opoutput[c] = 1;
3445
3446 while (ISDIGIT (c = *p))
3447 p++;
3448 }
3449 /* % followed by punctuation: output something for that
3450 punctuation character alone, with no operand.
3451 The PRINT_OPERAND macro decides what is actually done. */
3452 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3453 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3454 output_operand (NULL_RTX, *p++);
3455 #endif
3456 else
3457 output_operand_lossage ("invalid %%-code");
3458 break;
3459
3460 default:
3461 putc (c, asm_out_file);
3462 }
3463
3464 /* Write out the variable names for operands, if we know them. */
3465 if (flag_verbose_asm)
3466 output_asm_operand_names (operands, oporder, ops);
3467 if (flag_print_asm_name)
3468 output_asm_name ();
3469
3470 putc ('\n', asm_out_file);
3471 }
3472 \f
3473 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3474
3475 void
3476 output_asm_label (x)
3477 rtx x;
3478 {
3479 char buf[256];
3480
3481 if (GET_CODE (x) == LABEL_REF)
3482 x = XEXP (x, 0);
3483 if (GET_CODE (x) == CODE_LABEL
3484 || (GET_CODE (x) == NOTE
3485 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3486 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3487 else
3488 output_operand_lossage ("`%%l' operand isn't a label");
3489
3490 assemble_name (asm_out_file, buf);
3491 }
3492
3493 /* Print operand X using machine-dependent assembler syntax.
3494 The macro PRINT_OPERAND is defined just to control this function.
3495 CODE is a non-digit that preceded the operand-number in the % spec,
3496 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3497 between the % and the digits.
3498 When CODE is a non-letter, X is 0.
3499
3500 The meanings of the letters are machine-dependent and controlled
3501 by PRINT_OPERAND. */
3502
3503 static void
3504 output_operand (x, code)
3505 rtx x;
3506 int code ATTRIBUTE_UNUSED;
3507 {
3508 if (x && GET_CODE (x) == SUBREG)
3509 x = alter_subreg (&x);
3510
3511 /* If X is a pseudo-register, abort now rather than writing trash to the
3512 assembler file. */
3513
3514 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3515 abort ();
3516
3517 PRINT_OPERAND (asm_out_file, x, code);
3518 }
3519
3520 /* Print a memory reference operand for address X
3521 using machine-dependent assembler syntax.
3522 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3523
3524 void
3525 output_address (x)
3526 rtx x;
3527 {
3528 walk_alter_subreg (&x);
3529 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3530 }
3531 \f
3532 /* Print an integer constant expression in assembler syntax.
3533 Addition and subtraction are the only arithmetic
3534 that may appear in these expressions. */
3535
3536 void
3537 output_addr_const (file, x)
3538 FILE *file;
3539 rtx x;
3540 {
3541 char buf[256];
3542
3543 restart:
3544 switch (GET_CODE (x))
3545 {
3546 case PC:
3547 putc ('.', file);
3548 break;
3549
3550 case SYMBOL_REF:
3551 #ifdef ASM_OUTPUT_SYMBOL_REF
3552 ASM_OUTPUT_SYMBOL_REF (file, x);
3553 #else
3554 assemble_name (file, XSTR (x, 0));
3555 #endif
3556 break;
3557
3558 case LABEL_REF:
3559 x = XEXP (x, 0);
3560 /* Fall through. */
3561 case CODE_LABEL:
3562 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3563 #ifdef ASM_OUTPUT_LABEL_REF
3564 ASM_OUTPUT_LABEL_REF (file, buf);
3565 #else
3566 assemble_name (file, buf);
3567 #endif
3568 break;
3569
3570 case CONST_INT:
3571 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3572 break;
3573
3574 case CONST:
3575 /* This used to output parentheses around the expression,
3576 but that does not work on the 386 (either ATT or BSD assembler). */
3577 output_addr_const (file, XEXP (x, 0));
3578 break;
3579
3580 case CONST_DOUBLE:
3581 if (GET_MODE (x) == VOIDmode)
3582 {
3583 /* We can use %d if the number is one word and positive. */
3584 if (CONST_DOUBLE_HIGH (x))
3585 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3586 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3587 else if (CONST_DOUBLE_LOW (x) < 0)
3588 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3589 else
3590 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3591 }
3592 else
3593 /* We can't handle floating point constants;
3594 PRINT_OPERAND must handle them. */
3595 output_operand_lossage ("floating constant misused");
3596 break;
3597
3598 case PLUS:
3599 /* Some assemblers need integer constants to appear last (eg masm). */
3600 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3601 {
3602 output_addr_const (file, XEXP (x, 1));
3603 if (INTVAL (XEXP (x, 0)) >= 0)
3604 fprintf (file, "+");
3605 output_addr_const (file, XEXP (x, 0));
3606 }
3607 else
3608 {
3609 output_addr_const (file, XEXP (x, 0));
3610 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3611 || INTVAL (XEXP (x, 1)) >= 0)
3612 fprintf (file, "+");
3613 output_addr_const (file, XEXP (x, 1));
3614 }
3615 break;
3616
3617 case MINUS:
3618 /* Avoid outputting things like x-x or x+5-x,
3619 since some assemblers can't handle that. */
3620 x = simplify_subtraction (x);
3621 if (GET_CODE (x) != MINUS)
3622 goto restart;
3623
3624 output_addr_const (file, XEXP (x, 0));
3625 fprintf (file, "-");
3626 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3627 || GET_CODE (XEXP (x, 1)) == PC
3628 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3629 output_addr_const (file, XEXP (x, 1));
3630 else
3631 {
3632 fputs (targetm.asm_out.open_paren, file);
3633 output_addr_const (file, XEXP (x, 1));
3634 fputs (targetm.asm_out.close_paren, file);
3635 }
3636 break;
3637
3638 case ZERO_EXTEND:
3639 case SIGN_EXTEND:
3640 case SUBREG:
3641 output_addr_const (file, XEXP (x, 0));
3642 break;
3643
3644 default:
3645 #ifdef OUTPUT_ADDR_CONST_EXTRA
3646 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3647 break;
3648
3649 fail:
3650 #endif
3651 output_operand_lossage ("invalid expression as operand");
3652 }
3653 }
3654 \f
3655 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3656 %R prints the value of REGISTER_PREFIX.
3657 %L prints the value of LOCAL_LABEL_PREFIX.
3658 %U prints the value of USER_LABEL_PREFIX.
3659 %I prints the value of IMMEDIATE_PREFIX.
3660 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3661 Also supported are %d, %x, %s, %e, %f, %g and %%.
3662
3663 We handle alternate assembler dialects here, just like output_asm_insn. */
3664
3665 void
3666 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3667 {
3668 char buf[10];
3669 char *q, c;
3670
3671 VA_OPEN (argptr, p);
3672 VA_FIXEDARG (argptr, FILE *, file);
3673 VA_FIXEDARG (argptr, const char *, p);
3674
3675 buf[0] = '%';
3676
3677 while ((c = *p++))
3678 switch (c)
3679 {
3680 #ifdef ASSEMBLER_DIALECT
3681 case '{':
3682 {
3683 int i;
3684
3685 /* If we want the first dialect, do nothing. Otherwise, skip
3686 DIALECT_NUMBER of strings ending with '|'. */
3687 for (i = 0; i < dialect_number; i++)
3688 {
3689 while (*p && *p++ != '|')
3690 ;
3691
3692 if (*p == '|')
3693 p++;
3694 }
3695 }
3696 break;
3697
3698 case '|':
3699 /* Skip to close brace. */
3700 while (*p && *p++ != '}')
3701 ;
3702 break;
3703
3704 case '}':
3705 break;
3706 #endif
3707
3708 case '%':
3709 c = *p++;
3710 q = &buf[1];
3711 while (ISDIGIT (c) || c == '.')
3712 {
3713 *q++ = c;
3714 c = *p++;
3715 }
3716 switch (c)
3717 {
3718 case '%':
3719 fprintf (file, "%%");
3720 break;
3721
3722 case 'd': case 'i': case 'u':
3723 case 'x': case 'p': case 'X':
3724 case 'o':
3725 *q++ = c;
3726 *q = 0;
3727 fprintf (file, buf, va_arg (argptr, int));
3728 break;
3729
3730 case 'w':
3731 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3732 but we do not check for those cases. It means that the value
3733 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3734
3735 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3736 #else
3737 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3738 *q++ = 'l';
3739 #else
3740 *q++ = 'l';
3741 *q++ = 'l';
3742 #endif
3743 #endif
3744
3745 *q++ = *p++;
3746 *q = 0;
3747 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3748 break;
3749
3750 case 'l':
3751 *q++ = c;
3752 *q++ = *p++;
3753 *q = 0;
3754 fprintf (file, buf, va_arg (argptr, long));
3755 break;
3756
3757 case 'e':
3758 case 'f':
3759 case 'g':
3760 *q++ = c;
3761 *q = 0;
3762 fprintf (file, buf, va_arg (argptr, double));
3763 break;
3764
3765 case 's':
3766 *q++ = c;
3767 *q = 0;
3768 fprintf (file, buf, va_arg (argptr, char *));
3769 break;
3770
3771 case 'O':
3772 #ifdef ASM_OUTPUT_OPCODE
3773 ASM_OUTPUT_OPCODE (asm_out_file, p);
3774 #endif
3775 break;
3776
3777 case 'R':
3778 #ifdef REGISTER_PREFIX
3779 fprintf (file, "%s", REGISTER_PREFIX);
3780 #endif
3781 break;
3782
3783 case 'I':
3784 #ifdef IMMEDIATE_PREFIX
3785 fprintf (file, "%s", IMMEDIATE_PREFIX);
3786 #endif
3787 break;
3788
3789 case 'L':
3790 #ifdef LOCAL_LABEL_PREFIX
3791 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3792 #endif
3793 break;
3794
3795 case 'U':
3796 fputs (user_label_prefix, file);
3797 break;
3798
3799 #ifdef ASM_FPRINTF_EXTENSIONS
3800 /* Upper case letters are reserved for general use by asm_fprintf
3801 and so are not available to target specific code. In order to
3802 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3803 they are defined here. As they get turned into real extensions
3804 to asm_fprintf they should be removed from this list. */
3805 case 'A': case 'B': case 'C': case 'D': case 'E':
3806 case 'F': case 'G': case 'H': case 'J': case 'K':
3807 case 'M': case 'N': case 'P': case 'Q': case 'S':
3808 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3809 break;
3810
3811 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3812 #endif
3813 default:
3814 abort ();
3815 }
3816 break;
3817
3818 default:
3819 fputc (c, file);
3820 }
3821 VA_CLOSE (argptr);
3822 }
3823 \f
3824 /* Split up a CONST_DOUBLE or integer constant rtx
3825 into two rtx's for single words,
3826 storing in *FIRST the word that comes first in memory in the target
3827 and in *SECOND the other. */
3828
3829 void
3830 split_double (value, first, second)
3831 rtx value;
3832 rtx *first, *second;
3833 {
3834 if (GET_CODE (value) == CONST_INT)
3835 {
3836 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3837 {
3838 /* In this case the CONST_INT holds both target words.
3839 Extract the bits from it into two word-sized pieces.
3840 Sign extend each half to HOST_WIDE_INT. */
3841 unsigned HOST_WIDE_INT low, high;
3842 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3843
3844 /* Set sign_bit to the most significant bit of a word. */
3845 sign_bit = 1;
3846 sign_bit <<= BITS_PER_WORD - 1;
3847
3848 /* Set mask so that all bits of the word are set. We could
3849 have used 1 << BITS_PER_WORD instead of basing the
3850 calculation on sign_bit. However, on machines where
3851 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3852 compiler warning, even though the code would never be
3853 executed. */
3854 mask = sign_bit << 1;
3855 mask--;
3856
3857 /* Set sign_extend as any remaining bits. */
3858 sign_extend = ~mask;
3859
3860 /* Pick the lower word and sign-extend it. */
3861 low = INTVAL (value);
3862 low &= mask;
3863 if (low & sign_bit)
3864 low |= sign_extend;
3865
3866 /* Pick the higher word, shifted to the least significant
3867 bits, and sign-extend it. */
3868 high = INTVAL (value);
3869 high >>= BITS_PER_WORD - 1;
3870 high >>= 1;
3871 high &= mask;
3872 if (high & sign_bit)
3873 high |= sign_extend;
3874
3875 /* Store the words in the target machine order. */
3876 if (WORDS_BIG_ENDIAN)
3877 {
3878 *first = GEN_INT (high);
3879 *second = GEN_INT (low);
3880 }
3881 else
3882 {
3883 *first = GEN_INT (low);
3884 *second = GEN_INT (high);
3885 }
3886 }
3887 else
3888 {
3889 /* The rule for using CONST_INT for a wider mode
3890 is that we regard the value as signed.
3891 So sign-extend it. */
3892 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3893 if (WORDS_BIG_ENDIAN)
3894 {
3895 *first = high;
3896 *second = value;
3897 }
3898 else
3899 {
3900 *first = value;
3901 *second = high;
3902 }
3903 }
3904 }
3905 else if (GET_CODE (value) != CONST_DOUBLE)
3906 {
3907 if (WORDS_BIG_ENDIAN)
3908 {
3909 *first = const0_rtx;
3910 *second = value;
3911 }
3912 else
3913 {
3914 *first = value;
3915 *second = const0_rtx;
3916 }
3917 }
3918 else if (GET_MODE (value) == VOIDmode
3919 /* This is the old way we did CONST_DOUBLE integers. */
3920 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3921 {
3922 /* In an integer, the words are defined as most and least significant.
3923 So order them by the target's convention. */
3924 if (WORDS_BIG_ENDIAN)
3925 {
3926 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3927 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3928 }
3929 else
3930 {
3931 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3932 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3933 }
3934 }
3935 else
3936 {
3937 REAL_VALUE_TYPE r;
3938 long l[2];
3939 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3940
3941 /* Note, this converts the REAL_VALUE_TYPE to the target's
3942 format, splits up the floating point double and outputs
3943 exactly 32 bits of it into each of l[0] and l[1] --
3944 not necessarily BITS_PER_WORD bits. */
3945 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3946
3947 /* If 32 bits is an entire word for the target, but not for the host,
3948 then sign-extend on the host so that the number will look the same
3949 way on the host that it would on the target. See for instance
3950 simplify_unary_operation. The #if is needed to avoid compiler
3951 warnings. */
3952
3953 #if HOST_BITS_PER_LONG > 32
3954 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3955 {
3956 if (l[0] & ((long) 1 << 31))
3957 l[0] |= ((long) (-1) << 32);
3958 if (l[1] & ((long) 1 << 31))
3959 l[1] |= ((long) (-1) << 32);
3960 }
3961 #endif
3962
3963 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3964 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3965 }
3966 }
3967 \f
3968 /* Return nonzero if this function has no function calls. */
3969
3970 int
3971 leaf_function_p ()
3972 {
3973 rtx insn;
3974 rtx link;
3975
3976 if (current_function_profile || profile_arc_flag)
3977 return 0;
3978
3979 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3980 {
3981 if (GET_CODE (insn) == CALL_INSN
3982 && ! SIBLING_CALL_P (insn))
3983 return 0;
3984 if (GET_CODE (insn) == INSN
3985 && GET_CODE (PATTERN (insn)) == SEQUENCE
3986 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3987 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3988 return 0;
3989 }
3990 for (link = current_function_epilogue_delay_list;
3991 link;
3992 link = XEXP (link, 1))
3993 {
3994 insn = XEXP (link, 0);
3995
3996 if (GET_CODE (insn) == CALL_INSN
3997 && ! SIBLING_CALL_P (insn))
3998 return 0;
3999 if (GET_CODE (insn) == INSN
4000 && GET_CODE (PATTERN (insn)) == SEQUENCE
4001 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4002 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4003 return 0;
4004 }
4005
4006 return 1;
4007 }
4008
4009 /* Return 1 if branch is an forward branch.
4010 Uses insn_shuid array, so it works only in the final pass. May be used by
4011 output templates to customary add branch prediction hints.
4012 */
4013 int
4014 final_forward_branch_p (insn)
4015 rtx insn;
4016 {
4017 int insn_id, label_id;
4018 if (!uid_shuid)
4019 abort ();
4020 insn_id = INSN_SHUID (insn);
4021 label_id = INSN_SHUID (JUMP_LABEL (insn));
4022 /* We've hit some insns that does not have id information available. */
4023 if (!insn_id || !label_id)
4024 abort ();
4025 return insn_id < label_id;
4026 }
4027
4028 /* On some machines, a function with no call insns
4029 can run faster if it doesn't create its own register window.
4030 When output, the leaf function should use only the "output"
4031 registers. Ordinarily, the function would be compiled to use
4032 the "input" registers to find its arguments; it is a candidate
4033 for leaf treatment if it uses only the "input" registers.
4034 Leaf function treatment means renumbering so the function
4035 uses the "output" registers instead. */
4036
4037 #ifdef LEAF_REGISTERS
4038
4039 /* Return 1 if this function uses only the registers that can be
4040 safely renumbered. */
4041
4042 int
4043 only_leaf_regs_used ()
4044 {
4045 int i;
4046 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4047
4048 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4049 if ((regs_ever_live[i] || global_regs[i])
4050 && ! permitted_reg_in_leaf_functions[i])
4051 return 0;
4052
4053 if (current_function_uses_pic_offset_table
4054 && pic_offset_table_rtx != 0
4055 && GET_CODE (pic_offset_table_rtx) == REG
4056 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4057 return 0;
4058
4059 return 1;
4060 }
4061
4062 /* Scan all instructions and renumber all registers into those
4063 available in leaf functions. */
4064
4065 static void
4066 leaf_renumber_regs (first)
4067 rtx first;
4068 {
4069 rtx insn;
4070
4071 /* Renumber only the actual patterns.
4072 The reg-notes can contain frame pointer refs,
4073 and renumbering them could crash, and should not be needed. */
4074 for (insn = first; insn; insn = NEXT_INSN (insn))
4075 if (INSN_P (insn))
4076 leaf_renumber_regs_insn (PATTERN (insn));
4077 for (insn = current_function_epilogue_delay_list;
4078 insn;
4079 insn = XEXP (insn, 1))
4080 if (INSN_P (XEXP (insn, 0)))
4081 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4082 }
4083
4084 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4085 available in leaf functions. */
4086
4087 void
4088 leaf_renumber_regs_insn (in_rtx)
4089 rtx in_rtx;
4090 {
4091 int i, j;
4092 const char *format_ptr;
4093
4094 if (in_rtx == 0)
4095 return;
4096
4097 /* Renumber all input-registers into output-registers.
4098 renumbered_regs would be 1 for an output-register;
4099 they */
4100
4101 if (GET_CODE (in_rtx) == REG)
4102 {
4103 int newreg;
4104
4105 /* Don't renumber the same reg twice. */
4106 if (in_rtx->used)
4107 return;
4108
4109 newreg = REGNO (in_rtx);
4110 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4111 to reach here as part of a REG_NOTE. */
4112 if (newreg >= FIRST_PSEUDO_REGISTER)
4113 {
4114 in_rtx->used = 1;
4115 return;
4116 }
4117 newreg = LEAF_REG_REMAP (newreg);
4118 if (newreg < 0)
4119 abort ();
4120 regs_ever_live[REGNO (in_rtx)] = 0;
4121 regs_ever_live[newreg] = 1;
4122 REGNO (in_rtx) = newreg;
4123 in_rtx->used = 1;
4124 }
4125
4126 if (INSN_P (in_rtx))
4127 {
4128 /* Inside a SEQUENCE, we find insns.
4129 Renumber just the patterns of these insns,
4130 just as we do for the top-level insns. */
4131 leaf_renumber_regs_insn (PATTERN (in_rtx));
4132 return;
4133 }
4134
4135 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4136
4137 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4138 switch (*format_ptr++)
4139 {
4140 case 'e':
4141 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4142 break;
4143
4144 case 'E':
4145 if (NULL != XVEC (in_rtx, i))
4146 {
4147 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4148 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4149 }
4150 break;
4151
4152 case 'S':
4153 case 's':
4154 case '0':
4155 case 'i':
4156 case 'w':
4157 case 'n':
4158 case 'u':
4159 break;
4160
4161 default:
4162 abort ();
4163 }
4164 }
4165 #endif