final.c (final_scan_insn): Alter the condition of a conditional trap if we have nonst...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79 #include "vecprim.h"
80
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h" /* Needed for external data
83 declarations for e.g. AIX 4.x. */
84 #endif
85
86 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
87 #include "dwarf2out.h"
88 #endif
89
90 #ifdef DBX_DEBUGGING_INFO
91 #include "dbxout.h"
92 #endif
93
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
97
98 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
99 null default for it to save conditionalization later. */
100 #ifndef CC_STATUS_INIT
101 #define CC_STATUS_INIT
102 #endif
103
104 /* How to start an assembler comment. */
105 #ifndef ASM_COMMENT_START
106 #define ASM_COMMENT_START ";#"
107 #endif
108
109 /* Is the given character a logical line separator for the assembler? */
110 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
111 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
112 #endif
113
114 #ifndef JUMP_TABLES_IN_TEXT_SECTION
115 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 #endif
117
118 /* Bitflags used by final_scan_insn. */
119 #define SEEN_BB 1
120 #define SEEN_NOTE 2
121 #define SEEN_EMITTED 4
122
123 /* Last insn processed by final_scan_insn. */
124 static rtx debug_insn;
125 rtx current_output_insn;
126
127 /* Line number of last NOTE. */
128 static int last_linenum;
129
130 /* Highest line number in current block. */
131 static int high_block_linenum;
132
133 /* Likewise for function. */
134 static int high_function_linenum;
135
136 /* Filename of last NOTE. */
137 static const char *last_filename;
138
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
141
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 rtx this_is_asm_operands;
148
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
151
152 /* Compare optimization flag. */
153
154 static rtx last_ignored_compare = 0;
155
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
158
159 static int insn_counter = 0;
160
161 #ifdef HAVE_cc0
162 /* This variable contains machine-dependent flags (defined in tm.h)
163 set and examined by output routines
164 that describe how to interpret the condition codes properly. */
165
166 CC_STATUS cc_status;
167
168 /* During output of an insn, this contains a copy of cc_status
169 from before the insn. */
170
171 CC_STATUS cc_prev_status;
172 #endif
173
174 /* Indexed by hardware reg number, is 1 if that register is ever
175 used in the current function.
176
177 In life_analysis, or in stupid_life_analysis, this is set
178 up to record the hard regs used explicitly. Reload adds
179 in the hard regs used for holding pseudo regs. Final uses
180 it to generate the code in the function prologue and epilogue
181 to save and restore registers as needed. */
182
183 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184
185 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
186 Unlike regs_ever_live, elements of this array corresponding to
187 eliminable regs like the frame pointer are set if an asm sets them. */
188
189 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190
191 /* Nonzero means current function must be given a frame pointer.
192 Initialized in function.c to 0. Set only in reload1.c as per
193 the needs of the function. */
194
195 int frame_pointer_needed;
196
197 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198
199 static int block_depth;
200
201 /* Nonzero if have enabled APP processing of our assembler output. */
202
203 static int app_on;
204
205 /* If we are outputting an insn sequence, this contains the sequence rtx.
206 Zero otherwise. */
207
208 rtx final_sequence;
209
210 #ifdef ASSEMBLER_DIALECT
211
212 /* Number of the assembler dialect to use, starting at 0. */
213 static int dialect_number;
214 #endif
215
216 #ifdef HAVE_conditional_execution
217 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
218 rtx current_insn_predicate;
219 #endif
220
221 #ifdef HAVE_ATTR_length
222 static int asm_insn_count (rtx);
223 #endif
224 static void profile_function (FILE *);
225 static void profile_after_prologue (FILE *);
226 static bool notice_source_line (rtx);
227 static rtx walk_alter_subreg (rtx *);
228 static void output_asm_name (void);
229 static void output_alternate_entry_point (FILE *, rtx);
230 static tree get_mem_expr_from_op (rtx, int *);
231 static void output_asm_operand_names (rtx *, int *, int);
232 static void output_operand (rtx, int);
233 #ifdef LEAF_REGISTERS
234 static void leaf_renumber_regs (rtx);
235 #endif
236 #ifdef HAVE_cc0
237 static int alter_cond (rtx);
238 #endif
239 #ifndef ADDR_VEC_ALIGN
240 static int final_addr_vec_align (rtx);
241 #endif
242 #ifdef HAVE_ATTR_length
243 static int align_fuzz (rtx, rtx, int, unsigned);
244 #endif
245 \f
246 /* Initialize data in final at the beginning of a compilation. */
247
248 void
249 init_final (const char *filename ATTRIBUTE_UNUSED)
250 {
251 app_on = 0;
252 final_sequence = 0;
253
254 #ifdef ASSEMBLER_DIALECT
255 dialect_number = ASSEMBLER_DIALECT;
256 #endif
257 }
258
259 /* Default target function prologue and epilogue assembler output.
260
261 If not overridden for epilogue code, then the function body itself
262 contains return instructions wherever needed. */
263 void
264 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
265 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Default target hook that outputs nothing to a stream. */
270 void
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
272 {
273 }
274
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
277
278 void
279 app_enable (void)
280 {
281 if (! app_on)
282 {
283 fputs (ASM_APP_ON, asm_out_file);
284 app_on = 1;
285 }
286 }
287
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
290
291 void
292 app_disable (void)
293 {
294 if (app_on)
295 {
296 fputs (ASM_APP_OFF, asm_out_file);
297 app_on = 0;
298 }
299 }
300 \f
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
304
305 #ifdef DELAY_SLOTS
306 int
307 dbr_sequence_length (void)
308 {
309 if (final_sequence != 0)
310 return XVECLEN (final_sequence, 0) - 1;
311 else
312 return 0;
313 }
314 #endif
315 \f
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
318
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
321
322 static int *insn_lengths;
323
324 VEC(int,heap) *insn_addresses_;
325
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid;
328
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address;
331
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address;
334
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align;
337
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
345 comments. */
346
347 struct label_alignment
348 {
349 short alignment;
350 short max_skip;
351 };
352
353 static rtx *uid_align;
354 static int *uid_shuid;
355 static struct label_alignment *label_align;
356
357 /* Indicate that branch shortening hasn't yet been done. */
358
359 void
360 init_insn_lengths (void)
361 {
362 if (uid_shuid)
363 {
364 free (uid_shuid);
365 uid_shuid = 0;
366 }
367 if (insn_lengths)
368 {
369 free (insn_lengths);
370 insn_lengths = 0;
371 insn_lengths_max_uid = 0;
372 }
373 #ifdef HAVE_ATTR_length
374 INSN_ADDRESSES_FREE ();
375 #endif
376 if (uid_align)
377 {
378 free (uid_align);
379 uid_align = 0;
380 }
381 }
382
383 /* Obtain the current length of an insn. If branch shortening has been done,
384 get its actual length. Otherwise, use FALLBACK_FN to calculate the
385 length. */
386 static inline int
387 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
388 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 {
390 #ifdef HAVE_ATTR_length
391 rtx body;
392 int i;
393 int length = 0;
394
395 if (insn_lengths_max_uid > INSN_UID (insn))
396 return insn_lengths[INSN_UID (insn)];
397 else
398 switch (GET_CODE (insn))
399 {
400 case NOTE:
401 case BARRIER:
402 case CODE_LABEL:
403 return 0;
404
405 case CALL_INSN:
406 length = fallback_fn (insn);
407 break;
408
409 case JUMP_INSN:
410 body = PATTERN (insn);
411 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 {
413 /* Alignment is machine-dependent and should be handled by
414 ADDR_VEC_ALIGN. */
415 }
416 else
417 length = fallback_fn (insn);
418 break;
419
420 case INSN:
421 body = PATTERN (insn);
422 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
423 return 0;
424
425 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
426 length = asm_insn_count (body) * fallback_fn (insn);
427 else if (GET_CODE (body) == SEQUENCE)
428 for (i = 0; i < XVECLEN (body, 0); i++)
429 length += get_attr_length (XVECEXP (body, 0, i));
430 else
431 length = fallback_fn (insn);
432 break;
433
434 default:
435 break;
436 }
437
438 #ifdef ADJUST_INSN_LENGTH
439 ADJUST_INSN_LENGTH (insn, length);
440 #endif
441 return length;
442 #else /* not HAVE_ATTR_length */
443 return 0;
444 #define insn_default_length 0
445 #define insn_min_length 0
446 #endif /* not HAVE_ATTR_length */
447 }
448
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its maximum length. */
451 int
452 get_attr_length (rtx insn)
453 {
454 return get_attr_length_1 (insn, insn_default_length);
455 }
456
457 /* Obtain the current length of an insn. If branch shortening has been done,
458 get its actual length. Otherwise, get its minimum length. */
459 int
460 get_attr_min_length (rtx insn)
461 {
462 return get_attr_length_1 (insn, insn_min_length);
463 }
464 \f
465 /* Code to handle alignment inside shorten_branches. */
466
467 /* Here is an explanation how the algorithm in align_fuzz can give
468 proper results:
469
470 Call a sequence of instructions beginning with alignment point X
471 and continuing until the next alignment point `block X'. When `X'
472 is used in an expression, it means the alignment value of the
473 alignment point.
474
475 Call the distance between the start of the first insn of block X, and
476 the end of the last insn of block X `IX', for the `inner size of X'.
477 This is clearly the sum of the instruction lengths.
478
479 Likewise with the next alignment-delimited block following X, which we
480 shall call block Y.
481
482 Call the distance between the start of the first insn of block X, and
483 the start of the first insn of block Y `OX', for the `outer size of X'.
484
485 The estimated padding is then OX - IX.
486
487 OX can be safely estimated as
488
489 if (X >= Y)
490 OX = round_up(IX, Y)
491 else
492 OX = round_up(IX, X) + Y - X
493
494 Clearly est(IX) >= real(IX), because that only depends on the
495 instruction lengths, and those being overestimated is a given.
496
497 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
498 we needn't worry about that when thinking about OX.
499
500 When X >= Y, the alignment provided by Y adds no uncertainty factor
501 for branch ranges starting before X, so we can just round what we have.
502 But when X < Y, we don't know anything about the, so to speak,
503 `middle bits', so we have to assume the worst when aligning up from an
504 address mod X to one mod Y, which is Y - X. */
505
506 #ifndef LABEL_ALIGN
507 #define LABEL_ALIGN(LABEL) align_labels_log
508 #endif
509
510 #ifndef LABEL_ALIGN_MAX_SKIP
511 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
512 #endif
513
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517
518 #ifndef LOOP_ALIGN_MAX_SKIP
519 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
520 #endif
521
522 #ifndef LABEL_ALIGN_AFTER_BARRIER
523 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
524 #endif
525
526 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
527 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
528 #endif
529
530 #ifndef JUMP_ALIGN
531 #define JUMP_ALIGN(LABEL) align_jumps_log
532 #endif
533
534 #ifndef JUMP_ALIGN_MAX_SKIP
535 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
536 #endif
537
538 #ifndef ADDR_VEC_ALIGN
539 static int
540 final_addr_vec_align (rtx addr_vec)
541 {
542 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543
544 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
545 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
546 return exact_log2 (align);
547
548 }
549
550 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #endif
552
553 #ifndef INSN_LENGTH_ALIGNMENT
554 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #endif
556
557 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558
559 static int min_labelno, max_labelno;
560
561 #define LABEL_TO_ALIGNMENT(LABEL) \
562 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563
564 #define LABEL_TO_MAX_SKIP(LABEL) \
565 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566
567 /* For the benefit of port specific code do this also as a function. */
568
569 int
570 label_to_alignment (rtx label)
571 {
572 return LABEL_TO_ALIGNMENT (label);
573 }
574
575 #ifdef HAVE_ATTR_length
576 /* The differences in addresses
577 between a branch and its target might grow or shrink depending on
578 the alignment the start insn of the range (the branch for a forward
579 branch or the label for a backward branch) starts out on; if these
580 differences are used naively, they can even oscillate infinitely.
581 We therefore want to compute a 'worst case' address difference that
582 is independent of the alignment the start insn of the range end
583 up on, and that is at least as large as the actual difference.
584 The function align_fuzz calculates the amount we have to add to the
585 naively computed difference, by traversing the part of the alignment
586 chain of the start insn of the range that is in front of the end insn
587 of the range, and considering for each alignment the maximum amount
588 that it might contribute to a size increase.
589
590 For casesi tables, we also want to know worst case minimum amounts of
591 address difference, in case a machine description wants to introduce
592 some common offset that is added to all offsets in a table.
593 For this purpose, align_fuzz with a growth argument of 0 computes the
594 appropriate adjustment. */
595
596 /* Compute the maximum delta by which the difference of the addresses of
597 START and END might grow / shrink due to a different address for start
598 which changes the size of alignment insns between START and END.
599 KNOWN_ALIGN_LOG is the alignment known for START.
600 GROWTH should be ~0 if the objective is to compute potential code size
601 increase, and 0 if the objective is to compute potential shrink.
602 The return value is undefined for any other value of GROWTH. */
603
604 static int
605 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 {
607 int uid = INSN_UID (start);
608 rtx align_label;
609 int known_align = 1 << known_align_log;
610 int end_shuid = INSN_SHUID (end);
611 int fuzz = 0;
612
613 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 {
615 int align_addr, new_align;
616
617 uid = INSN_UID (align_label);
618 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
619 if (uid_shuid[uid] > end_shuid)
620 break;
621 known_align_log = LABEL_TO_ALIGNMENT (align_label);
622 new_align = 1 << known_align_log;
623 if (new_align < known_align)
624 continue;
625 fuzz += (-align_addr ^ growth) & (new_align - known_align);
626 known_align = new_align;
627 }
628 return fuzz;
629 }
630
631 /* Compute a worst-case reference address of a branch so that it
632 can be safely used in the presence of aligned labels. Since the
633 size of the branch itself is unknown, the size of the branch is
634 not included in the range. I.e. for a forward branch, the reference
635 address is the end address of the branch as known from the previous
636 branch shortening pass, minus a value to account for possible size
637 increase due to alignment. For a backward branch, it is the start
638 address of the branch as known from the current pass, plus a value
639 to account for possible size increase due to alignment.
640 NB.: Therefore, the maximum offset allowed for backward branches needs
641 to exclude the branch size. */
642
643 int
644 insn_current_reference_address (rtx branch)
645 {
646 rtx dest, seq;
647 int seq_uid;
648
649 if (! INSN_ADDRESSES_SET_P ())
650 return 0;
651
652 seq = NEXT_INSN (PREV_INSN (branch));
653 seq_uid = INSN_UID (seq);
654 if (!JUMP_P (branch))
655 /* This can happen for example on the PA; the objective is to know the
656 offset to address something in front of the start of the function.
657 Thus, we can treat it like a backward branch.
658 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
659 any alignment we'd encounter, so we skip the call to align_fuzz. */
660 return insn_current_address;
661 dest = JUMP_LABEL (branch);
662
663 /* BRANCH has no proper alignment chain set, so use SEQ.
664 BRANCH also has no INSN_SHUID. */
665 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 {
667 /* Forward branch. */
668 return (insn_last_address + insn_lengths[seq_uid]
669 - align_fuzz (seq, dest, length_unit_log, ~0));
670 }
671 else
672 {
673 /* Backward branch. */
674 return (insn_current_address
675 + align_fuzz (dest, seq, length_unit_log, ~0));
676 }
677 }
678 #endif /* HAVE_ATTR_length */
679 \f
680 /* Compute branch alignments based on frequency information in the
681 CFG. */
682
683 static unsigned int
684 compute_alignments (void)
685 {
686 int log, max_skip, max_log;
687 basic_block bb;
688
689 if (label_align)
690 {
691 free (label_align);
692 label_align = 0;
693 }
694
695 max_labelno = max_label_num ();
696 min_labelno = get_first_label_num ();
697 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return 0;
702
703 FOR_EACH_BB (bb)
704 {
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
715
716 FOR_EACH_EDGE (e, ei, bb->preds)
717 {
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
722 }
723
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
728
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
733
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 {
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
742 {
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
745 }
746 }
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
753 {
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
756 {
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
759 }
760 }
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
763 }
764 return 0;
765 }
766
767 struct tree_opt_pass pass_compute_alignments =
768 {
769 NULL, /* name */
770 NULL, /* gate */
771 compute_alignments, /* execute */
772 NULL, /* sub */
773 NULL, /* next */
774 0, /* static_pass_number */
775 0, /* tv_id */
776 0, /* properties_required */
777 0, /* properties_provided */
778 0, /* properties_destroyed */
779 0, /* todo_flags_start */
780 0, /* todo_flags_finish */
781 0 /* letter */
782 };
783
784 \f
785 /* Make a pass over all insns and compute their actual lengths by shortening
786 any branches of variable length if possible. */
787
788 /* shorten_branches might be called multiple times: for example, the SH
789 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
790 In order to do this, it needs proper length information, which it obtains
791 by calling shorten_branches. This cannot be collapsed with
792 shorten_branches itself into a single pass unless we also want to integrate
793 reorg.c, since the branch splitting exposes new instructions with delay
794 slots. */
795
796 void
797 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 {
799 rtx insn;
800 int max_uid;
801 int i;
802 int max_log;
803 int max_skip;
804 #ifdef HAVE_ATTR_length
805 #define MAX_CODE_ALIGN 16
806 rtx seq;
807 int something_changed = 1;
808 char *varying_length;
809 rtx body;
810 int uid;
811 rtx align_tab[MAX_CODE_ALIGN];
812
813 #endif
814
815 /* Compute maximum UID and allocate label_align / uid_shuid. */
816 max_uid = get_max_uid ();
817
818 /* Free uid_shuid before reallocating it. */
819 free (uid_shuid);
820
821 uid_shuid = XNEWVEC (int, max_uid);
822
823 if (max_labelno != max_label_num ())
824 {
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
828
829 max_labelno = max_label_num ();
830
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
833
834 label_align = xrealloc (label_align,
835 n_labels * sizeof (struct label_alignment));
836
837 /* Range of labels grows monotonically in the function. Failing here
838 means that the initialization of array got lost. */
839 gcc_assert (n_old_labels <= n_labels);
840
841 memset (label_align + n_old_labels, 0,
842 (n_labels - n_old_labels) * sizeof (struct label_alignment));
843 }
844
845 /* Initialize label_align and set up uid_shuid to be strictly
846 monotonically rising with insn order. */
847 /* We use max_log here to keep track of the maximum alignment we want to
848 impose on the next CODE_LABEL (or the current one if we are processing
849 the CODE_LABEL itself). */
850
851 max_log = 0;
852 max_skip = 0;
853
854 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 {
856 int log;
857
858 INSN_SHUID (insn) = i++;
859 if (INSN_P (insn))
860 continue;
861
862 if (LABEL_P (insn))
863 {
864 rtx next;
865
866 /* Merge in alignments computed by compute_alignments. */
867 log = LABEL_TO_ALIGNMENT (insn);
868 if (max_log < log)
869 {
870 max_log = log;
871 max_skip = LABEL_TO_MAX_SKIP (insn);
872 }
873
874 log = LABEL_ALIGN (insn);
875 if (max_log < log)
876 {
877 max_log = log;
878 max_skip = LABEL_ALIGN_MAX_SKIP;
879 }
880 next = next_nonnote_insn (insn);
881 /* ADDR_VECs only take room if read-only data goes into the text
882 section. */
883 if (JUMP_TABLES_IN_TEXT_SECTION
884 || readonly_data_section == text_section)
885 if (next && JUMP_P (next))
886 {
887 rtx nextbody = PATTERN (next);
888 if (GET_CODE (nextbody) == ADDR_VEC
889 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 {
891 log = ADDR_VEC_ALIGN (next);
892 if (max_log < log)
893 {
894 max_log = log;
895 max_skip = LABEL_ALIGN_MAX_SKIP;
896 }
897 }
898 }
899 LABEL_TO_ALIGNMENT (insn) = max_log;
900 LABEL_TO_MAX_SKIP (insn) = max_skip;
901 max_log = 0;
902 max_skip = 0;
903 }
904 else if (BARRIER_P (insn))
905 {
906 rtx label;
907
908 for (label = insn; label && ! INSN_P (label);
909 label = NEXT_INSN (label))
910 if (LABEL_P (label))
911 {
912 log = LABEL_ALIGN_AFTER_BARRIER (insn);
913 if (max_log < log)
914 {
915 max_log = log;
916 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 }
918 break;
919 }
920 }
921 }
922 #ifdef HAVE_ATTR_length
923
924 /* Allocate the rest of the arrays. */
925 insn_lengths = XNEWVEC (int, max_uid);
926 insn_lengths_max_uid = max_uid;
927 /* Syntax errors can lead to labels being outside of the main insn stream.
928 Initialize insn_addresses, so that we get reproducible results. */
929 INSN_ADDRESSES_ALLOC (max_uid);
930
931 varying_length = XCNEWVEC (char, max_uid);
932
933 /* Initialize uid_align. We scan instructions
934 from end to start, and keep in align_tab[n] the last seen insn
935 that does an alignment of at least n+1, i.e. the successor
936 in the alignment chain for an insn that does / has a known
937 alignment of n. */
938 uid_align = XCNEWVEC (rtx, max_uid);
939
940 for (i = MAX_CODE_ALIGN; --i >= 0;)
941 align_tab[i] = NULL_RTX;
942 seq = get_last_insn ();
943 for (; seq; seq = PREV_INSN (seq))
944 {
945 int uid = INSN_UID (seq);
946 int log;
947 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
948 uid_align[uid] = align_tab[0];
949 if (log)
950 {
951 /* Found an alignment label. */
952 uid_align[uid] = align_tab[log];
953 for (i = log - 1; i >= 0; i--)
954 align_tab[i] = seq;
955 }
956 }
957 #ifdef CASE_VECTOR_SHORTEN_MODE
958 if (optimize)
959 {
960 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
961 label fields. */
962
963 int min_shuid = INSN_SHUID (get_insns ()) - 1;
964 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
965 int rel;
966
967 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 {
969 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
970 int len, i, min, max, insn_shuid;
971 int min_align;
972 addr_diff_vec_flags flags;
973
974 if (!JUMP_P (insn)
975 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
976 continue;
977 pat = PATTERN (insn);
978 len = XVECLEN (pat, 1);
979 gcc_assert (len > 0);
980 min_align = MAX_CODE_ALIGN;
981 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 {
983 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
984 int shuid = INSN_SHUID (lab);
985 if (shuid < min)
986 {
987 min = shuid;
988 min_lab = lab;
989 }
990 if (shuid > max)
991 {
992 max = shuid;
993 max_lab = lab;
994 }
995 if (min_align > LABEL_TO_ALIGNMENT (lab))
996 min_align = LABEL_TO_ALIGNMENT (lab);
997 }
998 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
999 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1000 insn_shuid = INSN_SHUID (insn);
1001 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1002 memset (&flags, 0, sizeof (flags));
1003 flags.min_align = min_align;
1004 flags.base_after_vec = rel > insn_shuid;
1005 flags.min_after_vec = min > insn_shuid;
1006 flags.max_after_vec = max > insn_shuid;
1007 flags.min_after_base = min > rel;
1008 flags.max_after_base = max > rel;
1009 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1010 }
1011 }
1012 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013
1014 /* Compute initial lengths, addresses, and varying flags for each insn. */
1015 for (insn_current_address = 0, insn = first;
1016 insn != 0;
1017 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 {
1019 uid = INSN_UID (insn);
1020
1021 insn_lengths[uid] = 0;
1022
1023 if (LABEL_P (insn))
1024 {
1025 int log = LABEL_TO_ALIGNMENT (insn);
1026 if (log)
1027 {
1028 int align = 1 << log;
1029 int new_address = (insn_current_address + align - 1) & -align;
1030 insn_lengths[uid] = new_address - insn_current_address;
1031 }
1032 }
1033
1034 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035
1036 if (NOTE_P (insn) || BARRIER_P (insn)
1037 || LABEL_P (insn))
1038 continue;
1039 if (INSN_DELETED_P (insn))
1040 continue;
1041
1042 body = PATTERN (insn);
1043 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 {
1045 /* This only takes room if read-only data goes into the text
1046 section. */
1047 if (JUMP_TABLES_IN_TEXT_SECTION
1048 || readonly_data_section == text_section)
1049 insn_lengths[uid] = (XVECLEN (body,
1050 GET_CODE (body) == ADDR_DIFF_VEC)
1051 * GET_MODE_SIZE (GET_MODE (body)));
1052 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 }
1054 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1055 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1056 else if (GET_CODE (body) == SEQUENCE)
1057 {
1058 int i;
1059 int const_delay_slots;
1060 #ifdef DELAY_SLOTS
1061 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1062 #else
1063 const_delay_slots = 0;
1064 #endif
1065 /* Inside a delay slot sequence, we do not do any branch shortening
1066 if the shortening could change the number of delay slots
1067 of the branch. */
1068 for (i = 0; i < XVECLEN (body, 0); i++)
1069 {
1070 rtx inner_insn = XVECEXP (body, 0, i);
1071 int inner_uid = INSN_UID (inner_insn);
1072 int inner_length;
1073
1074 if (GET_CODE (body) == ASM_INPUT
1075 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1076 inner_length = (asm_insn_count (PATTERN (inner_insn))
1077 * insn_default_length (inner_insn));
1078 else
1079 inner_length = insn_default_length (inner_insn);
1080
1081 insn_lengths[inner_uid] = inner_length;
1082 if (const_delay_slots)
1083 {
1084 if ((varying_length[inner_uid]
1085 = insn_variable_length_p (inner_insn)) != 0)
1086 varying_length[uid] = 1;
1087 INSN_ADDRESSES (inner_uid) = (insn_current_address
1088 + insn_lengths[uid]);
1089 }
1090 else
1091 varying_length[inner_uid] = 0;
1092 insn_lengths[uid] += inner_length;
1093 }
1094 }
1095 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 {
1097 insn_lengths[uid] = insn_default_length (insn);
1098 varying_length[uid] = insn_variable_length_p (insn);
1099 }
1100
1101 /* If needed, do any adjustment. */
1102 #ifdef ADJUST_INSN_LENGTH
1103 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1104 if (insn_lengths[uid] < 0)
1105 fatal_insn ("negative insn length", insn);
1106 #endif
1107 }
1108
1109 /* Now loop over all the insns finding varying length insns. For each,
1110 get the current insn length. If it has changed, reflect the change.
1111 When nothing changes for a full pass, we are done. */
1112
1113 while (something_changed)
1114 {
1115 something_changed = 0;
1116 insn_current_align = MAX_CODE_ALIGN - 1;
1117 for (insn_current_address = 0, insn = first;
1118 insn != 0;
1119 insn = NEXT_INSN (insn))
1120 {
1121 int new_length;
1122 #ifdef ADJUST_INSN_LENGTH
1123 int tmp_length;
1124 #endif
1125 int length_align;
1126
1127 uid = INSN_UID (insn);
1128
1129 if (LABEL_P (insn))
1130 {
1131 int log = LABEL_TO_ALIGNMENT (insn);
1132 if (log > insn_current_align)
1133 {
1134 int align = 1 << log;
1135 int new_address= (insn_current_address + align - 1) & -align;
1136 insn_lengths[uid] = new_address - insn_current_address;
1137 insn_current_align = log;
1138 insn_current_address = new_address;
1139 }
1140 else
1141 insn_lengths[uid] = 0;
1142 INSN_ADDRESSES (uid) = insn_current_address;
1143 continue;
1144 }
1145
1146 length_align = INSN_LENGTH_ALIGNMENT (insn);
1147 if (length_align < insn_current_align)
1148 insn_current_align = length_align;
1149
1150 insn_last_address = INSN_ADDRESSES (uid);
1151 INSN_ADDRESSES (uid) = insn_current_address;
1152
1153 #ifdef CASE_VECTOR_SHORTEN_MODE
1154 if (optimize && JUMP_P (insn)
1155 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 {
1157 rtx body = PATTERN (insn);
1158 int old_length = insn_lengths[uid];
1159 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1160 rtx min_lab = XEXP (XEXP (body, 2), 0);
1161 rtx max_lab = XEXP (XEXP (body, 3), 0);
1162 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1163 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1164 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1165 rtx prev;
1166 int rel_align = 0;
1167 addr_diff_vec_flags flags;
1168
1169 /* Avoid automatic aggregate initialization. */
1170 flags = ADDR_DIFF_VEC_FLAGS (body);
1171
1172 /* Try to find a known alignment for rel_lab. */
1173 for (prev = rel_lab;
1174 prev
1175 && ! insn_lengths[INSN_UID (prev)]
1176 && ! (varying_length[INSN_UID (prev)] & 1);
1177 prev = PREV_INSN (prev))
1178 if (varying_length[INSN_UID (prev)] & 2)
1179 {
1180 rel_align = LABEL_TO_ALIGNMENT (prev);
1181 break;
1182 }
1183
1184 /* See the comment on addr_diff_vec_flags in rtl.h for the
1185 meaning of the flags values. base: REL_LAB vec: INSN */
1186 /* Anything after INSN has still addresses from the last
1187 pass; adjust these so that they reflect our current
1188 estimate for this pass. */
1189 if (flags.base_after_vec)
1190 rel_addr += insn_current_address - insn_last_address;
1191 if (flags.min_after_vec)
1192 min_addr += insn_current_address - insn_last_address;
1193 if (flags.max_after_vec)
1194 max_addr += insn_current_address - insn_last_address;
1195 /* We want to know the worst case, i.e. lowest possible value
1196 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1197 its offset is positive, and we have to be wary of code shrink;
1198 otherwise, it is negative, and we have to be vary of code
1199 size increase. */
1200 if (flags.min_after_base)
1201 {
1202 /* If INSN is between REL_LAB and MIN_LAB, the size
1203 changes we are about to make can change the alignment
1204 within the observed offset, therefore we have to break
1205 it up into two parts that are independent. */
1206 if (! flags.base_after_vec && flags.min_after_vec)
1207 {
1208 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1209 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 }
1211 else
1212 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 }
1214 else
1215 {
1216 if (flags.base_after_vec && ! flags.min_after_vec)
1217 {
1218 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1219 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 }
1221 else
1222 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 }
1224 /* Likewise, determine the highest lowest possible value
1225 for the offset of MAX_LAB. */
1226 if (flags.max_after_base)
1227 {
1228 if (! flags.base_after_vec && flags.max_after_vec)
1229 {
1230 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1231 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 }
1233 else
1234 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 }
1236 else
1237 {
1238 if (flags.base_after_vec && ! flags.max_after_vec)
1239 {
1240 max_addr += align_fuzz (max_lab, insn, 0, 0);
1241 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 }
1243 else
1244 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 }
1246 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1247 max_addr - rel_addr,
1248 body));
1249 if (JUMP_TABLES_IN_TEXT_SECTION
1250 || readonly_data_section == text_section)
1251 {
1252 insn_lengths[uid]
1253 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1254 insn_current_address += insn_lengths[uid];
1255 if (insn_lengths[uid] != old_length)
1256 something_changed = 1;
1257 }
1258
1259 continue;
1260 }
1261 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262
1263 if (! (varying_length[uid]))
1264 {
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 {
1268 int i;
1269
1270 body = PATTERN (insn);
1271 for (i = 0; i < XVECLEN (body, 0); i++)
1272 {
1273 rtx inner_insn = XVECEXP (body, 0, i);
1274 int inner_uid = INSN_UID (inner_insn);
1275
1276 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277
1278 insn_current_address += insn_lengths[inner_uid];
1279 }
1280 }
1281 else
1282 insn_current_address += insn_lengths[uid];
1283
1284 continue;
1285 }
1286
1287 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 {
1289 int i;
1290
1291 body = PATTERN (insn);
1292 new_length = 0;
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1294 {
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (inner_insn);
1297 int inner_length;
1298
1299 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300
1301 /* insn_current_length returns 0 for insns with a
1302 non-varying length. */
1303 if (! varying_length[inner_uid])
1304 inner_length = insn_lengths[inner_uid];
1305 else
1306 inner_length = insn_current_length (inner_insn);
1307
1308 if (inner_length != insn_lengths[inner_uid])
1309 {
1310 insn_lengths[inner_uid] = inner_length;
1311 something_changed = 1;
1312 }
1313 insn_current_address += insn_lengths[inner_uid];
1314 new_length += inner_length;
1315 }
1316 }
1317 else
1318 {
1319 new_length = insn_current_length (insn);
1320 insn_current_address += new_length;
1321 }
1322
1323 #ifdef ADJUST_INSN_LENGTH
1324 /* If needed, do any adjustment. */
1325 tmp_length = new_length;
1326 ADJUST_INSN_LENGTH (insn, new_length);
1327 insn_current_address += (new_length - tmp_length);
1328 #endif
1329
1330 if (new_length != insn_lengths[uid])
1331 {
1332 insn_lengths[uid] = new_length;
1333 something_changed = 1;
1334 }
1335 }
1336 /* For a non-optimizing compile, do only a single pass. */
1337 if (!optimize)
1338 break;
1339 }
1340
1341 free (varying_length);
1342
1343 #endif /* HAVE_ATTR_length */
1344 }
1345
1346 #ifdef HAVE_ATTR_length
1347 /* Given the body of an INSN known to be generated by an ASM statement, return
1348 the number of machine instructions likely to be generated for this insn.
1349 This is used to compute its length. */
1350
1351 static int
1352 asm_insn_count (rtx body)
1353 {
1354 const char *template;
1355 int count = 1;
1356
1357 if (GET_CODE (body) == ASM_INPUT)
1358 template = XSTR (body, 0);
1359 else
1360 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1361
1362 for (; *template; template++)
1363 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1364 count++;
1365
1366 return count;
1367 }
1368 #endif
1369 \f
1370 /* Output assembler code for the start of a function,
1371 and initialize some of the variables in this file
1372 for the new function. The label for the function and associated
1373 assembler pseudo-ops have already been output in `assemble_start_function'.
1374
1375 FIRST is the first insn of the rtl for the function being compiled.
1376 FILE is the file to write assembler code to.
1377 OPTIMIZE is nonzero if we should eliminate redundant
1378 test and compare insns. */
1379
1380 void
1381 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1382 int optimize ATTRIBUTE_UNUSED)
1383 {
1384 block_depth = 0;
1385
1386 this_is_asm_operands = 0;
1387
1388 last_filename = locator_file (prologue_locator);
1389 last_linenum = locator_line (prologue_locator);
1390
1391 high_block_linenum = high_function_linenum = last_linenum;
1392
1393 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394
1395 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1396 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1397 dwarf2out_begin_prologue (0, NULL);
1398 #endif
1399
1400 #ifdef LEAF_REG_REMAP
1401 if (current_function_uses_only_leaf_regs)
1402 leaf_renumber_regs (first);
1403 #endif
1404
1405 /* The Sun386i and perhaps other machines don't work right
1406 if the profiling code comes after the prologue. */
1407 #ifdef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* PROFILE_BEFORE_PROLOGUE */
1411
1412 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1413 if (dwarf2out_do_frame ())
1414 dwarf2out_frame_debug (NULL_RTX, false);
1415 #endif
1416
1417 /* If debugging, assign block numbers to all of the blocks in this
1418 function. */
1419 if (write_symbols)
1420 {
1421 reemit_insn_block_notes ();
1422 number_blocks (current_function_decl);
1423 /* We never actually put out begin/end notes for the top-level
1424 block in the function. But, conceptually, that block is
1425 always needed. */
1426 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1427 }
1428
1429 /* First output the function prologue: code to set up the stack frame. */
1430 targetm.asm_out.function_prologue (file, get_frame_size ());
1431
1432 /* If the machine represents the prologue as RTL, the profiling code must
1433 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1434 #ifdef HAVE_prologue
1435 if (! HAVE_prologue)
1436 #endif
1437 profile_after_prologue (file);
1438 }
1439
1440 static void
1441 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 {
1443 #ifndef PROFILE_BEFORE_PROLOGUE
1444 if (current_function_profile)
1445 profile_function (file);
1446 #endif /* not PROFILE_BEFORE_PROLOGUE */
1447 }
1448
1449 static void
1450 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 {
1452 #ifndef NO_PROFILE_COUNTERS
1453 # define NO_PROFILE_COUNTERS 0
1454 #endif
1455 #if defined(ASM_OUTPUT_REG_PUSH)
1456 int sval = current_function_returns_struct;
1457 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1459 int cxt = cfun->static_chain_decl != NULL;
1460 #endif
1461 #endif /* ASM_OUTPUT_REG_PUSH */
1462
1463 if (! NO_PROFILE_COUNTERS)
1464 {
1465 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1466 switch_to_section (data_section);
1467 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1468 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1469 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1470 }
1471
1472 switch_to_section (current_function_section ());
1473
1474 #if defined(ASM_OUTPUT_REG_PUSH)
1475 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1476 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1477 #endif
1478
1479 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1482 #else
1483 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 if (cxt)
1485 {
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 }
1488 #endif
1489 #endif
1490
1491 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492
1493 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (cxt)
1495 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1496 #else
1497 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1498 if (cxt)
1499 {
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 }
1502 #endif
1503 #endif
1504
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1507 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1508 #endif
1509 }
1510
1511 /* Output assembler code for the end of a function.
1512 For clarity, args are same as those of `final_start_function'
1513 even though not all of them are needed. */
1514
1515 void
1516 final_end_function (void)
1517 {
1518 app_disable ();
1519
1520 (*debug_hooks->end_function) (high_function_linenum);
1521
1522 /* Finally, output the function epilogue:
1523 code to restore the stack frame and return to the caller. */
1524 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525
1526 /* And debug output. */
1527 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528
1529 #if defined (DWARF2_UNWIND_INFO)
1530 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1531 && dwarf2out_do_frame ())
1532 dwarf2out_end_epilogue (last_linenum, last_filename);
1533 #endif
1534 }
1535 \f
1536 /* Output assembler code for some insns: all or part of a function.
1537 For description of args, see `final_start_function', above. */
1538
1539 void
1540 final (rtx first, FILE *file, int optimize)
1541 {
1542 rtx insn;
1543 int max_uid = 0;
1544 int seen = 0;
1545
1546 last_ignored_compare = 0;
1547
1548 #ifdef SDB_DEBUGGING_INFO
1549 /* When producing SDB debugging info, delete troublesome line number
1550 notes from inlined functions in other files as well as duplicate
1551 line number notes. */
1552 if (write_symbols == SDB_DEBUG)
1553 {
1554 rtx last = 0;
1555 for (insn = first; insn; insn = NEXT_INSN (insn))
1556 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1557 {
1558 if (last != 0
1559 #ifdef USE_MAPPED_LOCATION
1560 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1561 #else
1562 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1563 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1564 #endif
1565 )
1566 {
1567 delete_insn (insn); /* Use delete_note. */
1568 continue;
1569 }
1570 last = insn;
1571 }
1572 }
1573 #endif
1574
1575 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1578 max_uid = INSN_UID (insn);
1579 #ifdef HAVE_cc0
1580 /* If CC tracking across branches is enabled, record the insn which
1581 jumps to each branch only reached from one place. */
1582 if (optimize && JUMP_P (insn))
1583 {
1584 rtx lab = JUMP_LABEL (insn);
1585 if (lab && LABEL_NUSES (lab) == 1)
1586 {
1587 LABEL_REFS (lab) = insn;
1588 }
1589 }
1590 #endif
1591 }
1592
1593 init_recog ();
1594
1595 CC_STATUS_INIT;
1596
1597 /* Output the insns. */
1598 for (insn = first; insn;)
1599 {
1600 #ifdef HAVE_ATTR_length
1601 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1602 {
1603 /* This can be triggered by bugs elsewhere in the compiler if
1604 new insns are created after init_insn_lengths is called. */
1605 gcc_assert (NOTE_P (insn));
1606 insn_current_address = -1;
1607 }
1608 else
1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1610 #endif /* HAVE_ATTR_length */
1611
1612 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1613 }
1614 }
1615 \f
1616 const char *
1617 get_insn_template (int code, rtx insn)
1618 {
1619 switch (insn_data[code].output_format)
1620 {
1621 case INSN_OUTPUT_FORMAT_SINGLE:
1622 return insn_data[code].output.single;
1623 case INSN_OUTPUT_FORMAT_MULTI:
1624 return insn_data[code].output.multi[which_alternative];
1625 case INSN_OUTPUT_FORMAT_FUNCTION:
1626 gcc_assert (insn);
1627 return (*insn_data[code].output.function) (recog_data.operand, insn);
1628
1629 default:
1630 gcc_unreachable ();
1631 }
1632 }
1633
1634 /* Emit the appropriate declaration for an alternate-entry-point
1635 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1636 LABEL_KIND != LABEL_NORMAL.
1637
1638 The case fall-through in this function is intentional. */
1639 static void
1640 output_alternate_entry_point (FILE *file, rtx insn)
1641 {
1642 const char *name = LABEL_NAME (insn);
1643
1644 switch (LABEL_KIND (insn))
1645 {
1646 case LABEL_WEAK_ENTRY:
1647 #ifdef ASM_WEAKEN_LABEL
1648 ASM_WEAKEN_LABEL (file, name);
1649 #endif
1650 case LABEL_GLOBAL_ENTRY:
1651 targetm.asm_out.globalize_label (file, name);
1652 case LABEL_STATIC_ENTRY:
1653 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1654 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1655 #endif
1656 ASM_OUTPUT_LABEL (file, name);
1657 break;
1658
1659 case LABEL_NORMAL:
1660 default:
1661 gcc_unreachable ();
1662 }
1663 }
1664
1665 /* The final scan for one insn, INSN.
1666 Args are same as in `final', except that INSN
1667 is the insn being scanned.
1668 Value returned is the next insn to be scanned.
1669
1670 NOPEEPHOLES is the flag to disallow peephole processing (currently
1671 used for within delayed branch sequence output).
1672
1673 SEEN is used to track the end of the prologue, for emitting
1674 debug information. We force the emission of a line note after
1675 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1676 at the beginning of the second basic block, whichever comes
1677 first. */
1678
1679 rtx
1680 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1681 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1682 {
1683 #ifdef HAVE_cc0
1684 rtx set;
1685 #endif
1686 rtx next;
1687
1688 insn_counter++;
1689
1690 /* Ignore deleted insns. These can occur when we split insns (due to a
1691 template of "#") while not optimizing. */
1692 if (INSN_DELETED_P (insn))
1693 return NEXT_INSN (insn);
1694
1695 switch (GET_CODE (insn))
1696 {
1697 case NOTE:
1698 switch (NOTE_LINE_NUMBER (insn))
1699 {
1700 case NOTE_INSN_DELETED:
1701 break;
1702
1703 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1704 in_cold_section_p = !in_cold_section_p;
1705 (*debug_hooks->switch_text_section) ();
1706 switch_to_section (current_function_section ());
1707 break;
1708
1709 case NOTE_INSN_BASIC_BLOCK:
1710 #ifdef TARGET_UNWIND_INFO
1711 targetm.asm_out.unwind_emit (asm_out_file, insn);
1712 #endif
1713
1714 if (flag_debug_asm)
1715 fprintf (asm_out_file, "\t%s basic block %d\n",
1716 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1717
1718 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1719 {
1720 *seen |= SEEN_EMITTED;
1721 force_source_line = true;
1722 }
1723 else
1724 *seen |= SEEN_BB;
1725
1726 break;
1727
1728 case NOTE_INSN_EH_REGION_BEG:
1729 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1730 NOTE_EH_HANDLER (insn));
1731 break;
1732
1733 case NOTE_INSN_EH_REGION_END:
1734 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1735 NOTE_EH_HANDLER (insn));
1736 break;
1737
1738 case NOTE_INSN_PROLOGUE_END:
1739 targetm.asm_out.function_end_prologue (file);
1740 profile_after_prologue (file);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 force_source_line = true;
1746 }
1747 else
1748 *seen |= SEEN_NOTE;
1749
1750 break;
1751
1752 case NOTE_INSN_EPILOGUE_BEG:
1753 targetm.asm_out.function_begin_epilogue (file);
1754 break;
1755
1756 case NOTE_INSN_FUNCTION_BEG:
1757 app_disable ();
1758 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1759
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1761 {
1762 *seen |= SEEN_EMITTED;
1763 force_source_line = true;
1764 }
1765 else
1766 *seen |= SEEN_NOTE;
1767
1768 break;
1769
1770 case NOTE_INSN_BLOCK_BEG:
1771 if (debug_info_level == DINFO_LEVEL_NORMAL
1772 || debug_info_level == DINFO_LEVEL_VERBOSE
1773 || write_symbols == DWARF2_DEBUG
1774 || write_symbols == VMS_AND_DWARF2_DEBUG
1775 || write_symbols == VMS_DEBUG)
1776 {
1777 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1778
1779 app_disable ();
1780 ++block_depth;
1781 high_block_linenum = last_linenum;
1782
1783 /* Output debugging info about the symbol-block beginning. */
1784 (*debug_hooks->begin_block) (last_linenum, n);
1785
1786 /* Mark this block as output. */
1787 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1788 }
1789 break;
1790
1791 case NOTE_INSN_BLOCK_END:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1797 {
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1799
1800 app_disable ();
1801
1802 /* End of a symbol-block. */
1803 --block_depth;
1804 gcc_assert (block_depth >= 0);
1805
1806 (*debug_hooks->end_block) (high_block_linenum, n);
1807 }
1808 break;
1809
1810 case NOTE_INSN_DELETED_LABEL:
1811 /* Emit the label. We may have deleted the CODE_LABEL because
1812 the label could be proved to be unreachable, though still
1813 referenced (in the form of having its address taken. */
1814 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1815 break;
1816
1817 case NOTE_INSN_VAR_LOCATION:
1818 (*debug_hooks->var_location) (insn);
1819 break;
1820
1821 case 0:
1822 break;
1823
1824 default:
1825 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1826 break;
1827 }
1828 break;
1829
1830 case BARRIER:
1831 #if defined (DWARF2_UNWIND_INFO)
1832 if (dwarf2out_do_frame ())
1833 dwarf2out_frame_debug (insn, false);
1834 #endif
1835 break;
1836
1837 case CODE_LABEL:
1838 /* The target port might emit labels in the output function for
1839 some insn, e.g. sh.c output_branchy_insn. */
1840 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1841 {
1842 int align = LABEL_TO_ALIGNMENT (insn);
1843 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1844 int max_skip = LABEL_TO_MAX_SKIP (insn);
1845 #endif
1846
1847 if (align && NEXT_INSN (insn))
1848 {
1849 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1850 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1851 #else
1852 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1853 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1854 #else
1855 ASM_OUTPUT_ALIGN (file, align);
1856 #endif
1857 #endif
1858 }
1859 }
1860 #ifdef HAVE_cc0
1861 CC_STATUS_INIT;
1862 /* If this label is reached from only one place, set the condition
1863 codes from the instruction just before the branch. */
1864
1865 /* Disabled because some insns set cc_status in the C output code
1866 and NOTICE_UPDATE_CC alone can set incorrect status. */
1867 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1868 {
1869 rtx jump = LABEL_REFS (insn);
1870 rtx barrier = prev_nonnote_insn (insn);
1871 rtx prev;
1872 /* If the LABEL_REFS field of this label has been set to point
1873 at a branch, the predecessor of the branch is a regular
1874 insn, and that branch is the only way to reach this label,
1875 set the condition codes based on the branch and its
1876 predecessor. */
1877 if (barrier && BARRIER_P (barrier)
1878 && jump && JUMP_P (jump)
1879 && (prev = prev_nonnote_insn (jump))
1880 && NONJUMP_INSN_P (prev))
1881 {
1882 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1883 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1884 }
1885 }
1886 #endif
1887
1888 if (LABEL_NAME (insn))
1889 (*debug_hooks->label) (insn);
1890
1891 if (app_on)
1892 {
1893 fputs (ASM_APP_OFF, file);
1894 app_on = 0;
1895 }
1896
1897 next = next_nonnote_insn (insn);
1898 if (next != 0 && JUMP_P (next))
1899 {
1900 rtx nextbody = PATTERN (next);
1901
1902 /* If this label is followed by a jump-table,
1903 make sure we put the label in the read-only section. Also
1904 possibly write the label and jump table together. */
1905
1906 if (GET_CODE (nextbody) == ADDR_VEC
1907 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1908 {
1909 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1910 /* In this case, the case vector is being moved by the
1911 target, so don't output the label at all. Leave that
1912 to the back end macros. */
1913 #else
1914 if (! JUMP_TABLES_IN_TEXT_SECTION)
1915 {
1916 int log_align;
1917
1918 switch_to_section (targetm.asm_out.function_rodata_section
1919 (current_function_decl));
1920
1921 #ifdef ADDR_VEC_ALIGN
1922 log_align = ADDR_VEC_ALIGN (next);
1923 #else
1924 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1925 #endif
1926 ASM_OUTPUT_ALIGN (file, log_align);
1927 }
1928 else
1929 switch_to_section (current_function_section ());
1930
1931 #ifdef ASM_OUTPUT_CASE_LABEL
1932 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1933 next);
1934 #else
1935 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1936 #endif
1937 #endif
1938 break;
1939 }
1940 }
1941 if (LABEL_ALT_ENTRY_P (insn))
1942 output_alternate_entry_point (file, insn);
1943 else
1944 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1945 break;
1946
1947 default:
1948 {
1949 rtx body = PATTERN (insn);
1950 int insn_code_number;
1951 const char *template;
1952
1953 #ifdef HAVE_conditional_execution
1954 /* Reset this early so it is correct for ASM statements. */
1955 current_insn_predicate = NULL_RTX;
1956 #endif
1957 /* An INSN, JUMP_INSN or CALL_INSN.
1958 First check for special kinds that recog doesn't recognize. */
1959
1960 if (GET_CODE (body) == USE /* These are just declarations. */
1961 || GET_CODE (body) == CLOBBER)
1962 break;
1963
1964 #ifdef HAVE_cc0
1965 {
1966 /* If there is a REG_CC_SETTER note on this insn, it means that
1967 the setting of the condition code was done in the delay slot
1968 of the insn that branched here. So recover the cc status
1969 from the insn that set it. */
1970
1971 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1972 if (note)
1973 {
1974 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1975 cc_prev_status = cc_status;
1976 }
1977 }
1978 #endif
1979
1980 /* Detect insns that are really jump-tables
1981 and output them as such. */
1982
1983 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1984 {
1985 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1986 int vlen, idx;
1987 #endif
1988
1989 if (! JUMP_TABLES_IN_TEXT_SECTION)
1990 switch_to_section (targetm.asm_out.function_rodata_section
1991 (current_function_decl));
1992 else
1993 switch_to_section (current_function_section ());
1994
1995 if (app_on)
1996 {
1997 fputs (ASM_APP_OFF, file);
1998 app_on = 0;
1999 }
2000
2001 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2002 if (GET_CODE (body) == ADDR_VEC)
2003 {
2004 #ifdef ASM_OUTPUT_ADDR_VEC
2005 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2006 #else
2007 gcc_unreachable ();
2008 #endif
2009 }
2010 else
2011 {
2012 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2013 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2014 #else
2015 gcc_unreachable ();
2016 #endif
2017 }
2018 #else
2019 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2020 for (idx = 0; idx < vlen; idx++)
2021 {
2022 if (GET_CODE (body) == ADDR_VEC)
2023 {
2024 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2025 ASM_OUTPUT_ADDR_VEC_ELT
2026 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2027 #else
2028 gcc_unreachable ();
2029 #endif
2030 }
2031 else
2032 {
2033 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2034 ASM_OUTPUT_ADDR_DIFF_ELT
2035 (file,
2036 body,
2037 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2038 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2039 #else
2040 gcc_unreachable ();
2041 #endif
2042 }
2043 }
2044 #ifdef ASM_OUTPUT_CASE_END
2045 ASM_OUTPUT_CASE_END (file,
2046 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2047 insn);
2048 #endif
2049 #endif
2050
2051 switch_to_section (current_function_section ());
2052
2053 break;
2054 }
2055 /* Output this line note if it is the first or the last line
2056 note in a row. */
2057 if (notice_source_line (insn))
2058 {
2059 (*debug_hooks->source_line) (last_linenum, last_filename);
2060 }
2061
2062 if (GET_CODE (body) == ASM_INPUT)
2063 {
2064 const char *string = XSTR (body, 0);
2065
2066 /* There's no telling what that did to the condition codes. */
2067 CC_STATUS_INIT;
2068
2069 if (string[0])
2070 {
2071 location_t loc;
2072
2073 if (! app_on)
2074 {
2075 fputs (ASM_APP_ON, file);
2076 app_on = 1;
2077 }
2078 #ifdef USE_MAPPED_LOCATION
2079 loc = ASM_INPUT_SOURCE_LOCATION (body);
2080 #else
2081 loc.file = ASM_INPUT_SOURCE_FILE (body);
2082 loc.line = ASM_INPUT_SOURCE_LINE (body);
2083 #endif
2084 if (*loc.file && loc.line)
2085 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2086 ASM_COMMENT_START, loc.line, loc.file);
2087 fprintf (asm_out_file, "\t%s\n", string);
2088 #if HAVE_AS_LINE_ZERO
2089 if (*loc.file && loc.line)
2090 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2091 #endif
2092 }
2093 break;
2094 }
2095
2096 /* Detect `asm' construct with operands. */
2097 if (asm_noperands (body) >= 0)
2098 {
2099 unsigned int noperands = asm_noperands (body);
2100 rtx *ops = alloca (noperands * sizeof (rtx));
2101 const char *string;
2102 location_t loc;
2103
2104 /* There's no telling what that did to the condition codes. */
2105 CC_STATUS_INIT;
2106
2107 /* Get out the operand values. */
2108 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2109 /* Inhibit dieing on what would otherwise be compiler bugs. */
2110 insn_noperands = noperands;
2111 this_is_asm_operands = insn;
2112
2113 #ifdef FINAL_PRESCAN_INSN
2114 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2115 #endif
2116
2117 /* Output the insn using them. */
2118 if (string[0])
2119 {
2120 if (! app_on)
2121 {
2122 fputs (ASM_APP_ON, file);
2123 app_on = 1;
2124 }
2125 if (loc.file && loc.line)
2126 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2127 ASM_COMMENT_START, loc.line, loc.file);
2128 output_asm_insn (string, ops);
2129 #if HAVE_AS_LINE_ZERO
2130 if (loc.file && loc.line)
2131 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2132 #endif
2133 }
2134
2135 this_is_asm_operands = 0;
2136 break;
2137 }
2138
2139 if (app_on)
2140 {
2141 fputs (ASM_APP_OFF, file);
2142 app_on = 0;
2143 }
2144
2145 if (GET_CODE (body) == SEQUENCE)
2146 {
2147 /* A delayed-branch sequence */
2148 int i;
2149
2150 final_sequence = body;
2151
2152 /* Record the delay slots' frame information before the branch.
2153 This is needed for delayed calls: see execute_cfa_program(). */
2154 #if defined (DWARF2_UNWIND_INFO)
2155 if (dwarf2out_do_frame ())
2156 for (i = 1; i < XVECLEN (body, 0); i++)
2157 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2158 #endif
2159
2160 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2161 force the restoration of a comparison that was previously
2162 thought unnecessary. If that happens, cancel this sequence
2163 and cause that insn to be restored. */
2164
2165 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2166 if (next != XVECEXP (body, 0, 1))
2167 {
2168 final_sequence = 0;
2169 return next;
2170 }
2171
2172 for (i = 1; i < XVECLEN (body, 0); i++)
2173 {
2174 rtx insn = XVECEXP (body, 0, i);
2175 rtx next = NEXT_INSN (insn);
2176 /* We loop in case any instruction in a delay slot gets
2177 split. */
2178 do
2179 insn = final_scan_insn (insn, file, 0, 1, seen);
2180 while (insn != next);
2181 }
2182 #ifdef DBR_OUTPUT_SEQEND
2183 DBR_OUTPUT_SEQEND (file);
2184 #endif
2185 final_sequence = 0;
2186
2187 /* If the insn requiring the delay slot was a CALL_INSN, the
2188 insns in the delay slot are actually executed before the
2189 called function. Hence we don't preserve any CC-setting
2190 actions in these insns and the CC must be marked as being
2191 clobbered by the function. */
2192 if (CALL_P (XVECEXP (body, 0, 0)))
2193 {
2194 CC_STATUS_INIT;
2195 }
2196 break;
2197 }
2198
2199 /* We have a real machine instruction as rtl. */
2200
2201 body = PATTERN (insn);
2202
2203 #ifdef HAVE_cc0
2204 set = single_set (insn);
2205
2206 /* Check for redundant test and compare instructions
2207 (when the condition codes are already set up as desired).
2208 This is done only when optimizing; if not optimizing,
2209 it should be possible for the user to alter a variable
2210 with the debugger in between statements
2211 and the next statement should reexamine the variable
2212 to compute the condition codes. */
2213
2214 if (optimize)
2215 {
2216 if (set
2217 && GET_CODE (SET_DEST (set)) == CC0
2218 && insn != last_ignored_compare)
2219 {
2220 if (GET_CODE (SET_SRC (set)) == SUBREG)
2221 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2222 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2223 {
2224 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2225 XEXP (SET_SRC (set), 0)
2226 = alter_subreg (&XEXP (SET_SRC (set), 0));
2227 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2228 XEXP (SET_SRC (set), 1)
2229 = alter_subreg (&XEXP (SET_SRC (set), 1));
2230 }
2231 if ((cc_status.value1 != 0
2232 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2233 || (cc_status.value2 != 0
2234 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2235 {
2236 /* Don't delete insn if it has an addressing side-effect. */
2237 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2238 /* or if anything in it is volatile. */
2239 && ! volatile_refs_p (PATTERN (insn)))
2240 {
2241 /* We don't really delete the insn; just ignore it. */
2242 last_ignored_compare = insn;
2243 break;
2244 }
2245 }
2246 }
2247 }
2248 #endif
2249
2250 #ifdef HAVE_cc0
2251 /* If this is a conditional branch, maybe modify it
2252 if the cc's are in a nonstandard state
2253 so that it accomplishes the same thing that it would
2254 do straightforwardly if the cc's were set up normally. */
2255
2256 if (cc_status.flags != 0
2257 && JUMP_P (insn)
2258 && GET_CODE (body) == SET
2259 && SET_DEST (body) == pc_rtx
2260 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2261 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2262 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2263 {
2264 /* This function may alter the contents of its argument
2265 and clear some of the cc_status.flags bits.
2266 It may also return 1 meaning condition now always true
2267 or -1 meaning condition now always false
2268 or 2 meaning condition nontrivial but altered. */
2269 int result = alter_cond (XEXP (SET_SRC (body), 0));
2270 /* If condition now has fixed value, replace the IF_THEN_ELSE
2271 with its then-operand or its else-operand. */
2272 if (result == 1)
2273 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2274 if (result == -1)
2275 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2276
2277 /* The jump is now either unconditional or a no-op.
2278 If it has become a no-op, don't try to output it.
2279 (It would not be recognized.) */
2280 if (SET_SRC (body) == pc_rtx)
2281 {
2282 delete_insn (insn);
2283 break;
2284 }
2285 else if (GET_CODE (SET_SRC (body)) == RETURN)
2286 /* Replace (set (pc) (return)) with (return). */
2287 PATTERN (insn) = body = SET_SRC (body);
2288
2289 /* Rerecognize the instruction if it has changed. */
2290 if (result != 0)
2291 INSN_CODE (insn) = -1;
2292 }
2293
2294 /* If this is a conditional trap, maybe modify it if the cc's
2295 are in a nonstandard state so that it accomplishes the same
2296 thing that it would do straightforwardly if the cc's were
2297 set up normally. */
2298 if (cc_status.flags != 0
2299 && NONJUMP_INSN_P (insn)
2300 && GET_CODE (body) == TRAP_IF
2301 && COMPARISON_P (TRAP_CONDITION (body))
2302 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2303 {
2304 /* This function may alter the contents of its argument
2305 and clear some of the cc_status.flags bits.
2306 It may also return 1 meaning condition now always true
2307 or -1 meaning condition now always false
2308 or 2 meaning condition nontrivial but altered. */
2309 int result = alter_cond (TRAP_CONDITION (body));
2310
2311 /* If TRAP_CONDITION has become always false, delete the
2312 instruction. */
2313 if (result == -1)
2314 {
2315 delete_insn (insn);
2316 break;
2317 }
2318
2319 /* If TRAP_CONDITION has become always true, replace
2320 TRAP_CONDITION with const_true_rtx. */
2321 if (result == 1)
2322 TRAP_CONDITION (body) = const_true_rtx;
2323
2324 /* Rerecognize the instruction if it has changed. */
2325 if (result != 0)
2326 INSN_CODE (insn) = -1;
2327 }
2328
2329 /* If this is a conditional trap, maybe modify it if the cc's
2330 are in a nonstandard state so that it accomplishes the same
2331 thing that it would do straightforwardly if the cc's were
2332 set up normally. */
2333 if (cc_status.flags != 0
2334 && NONJUMP_INSN_P (insn)
2335 && GET_CODE (body) == TRAP_IF
2336 && COMPARISON_P (TRAP_CONDITION (body))
2337 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2338 {
2339 /* This function may alter the contents of its argument
2340 and clear some of the cc_status.flags bits.
2341 It may also return 1 meaning condition now always true
2342 or -1 meaning condition now always false
2343 or 2 meaning condition nontrivial but altered. */
2344 int result = alter_cond (TRAP_CONDITION (body));
2345
2346 /* If TRAP_CONDITION has become always false, delete the
2347 instruction. */
2348 if (result == -1)
2349 {
2350 delete_insn (insn);
2351 break;
2352 }
2353
2354 /* If TRAP_CONDITION has become always true, replace
2355 TRAP_CONDITION with const_true_rtx. */
2356 if (result == 1)
2357 TRAP_CONDITION (body) = const_true_rtx;
2358
2359 /* Rerecognize the instruction if it has changed. */
2360 if (result != 0)
2361 INSN_CODE (insn) = -1;
2362 }
2363
2364 /* Make same adjustments to instructions that examine the
2365 condition codes without jumping and instructions that
2366 handle conditional moves (if this machine has either one). */
2367
2368 if (cc_status.flags != 0
2369 && set != 0)
2370 {
2371 rtx cond_rtx, then_rtx, else_rtx;
2372
2373 if (!JUMP_P (insn)
2374 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2375 {
2376 cond_rtx = XEXP (SET_SRC (set), 0);
2377 then_rtx = XEXP (SET_SRC (set), 1);
2378 else_rtx = XEXP (SET_SRC (set), 2);
2379 }
2380 else
2381 {
2382 cond_rtx = SET_SRC (set);
2383 then_rtx = const_true_rtx;
2384 else_rtx = const0_rtx;
2385 }
2386
2387 switch (GET_CODE (cond_rtx))
2388 {
2389 case GTU:
2390 case GT:
2391 case LTU:
2392 case LT:
2393 case GEU:
2394 case GE:
2395 case LEU:
2396 case LE:
2397 case EQ:
2398 case NE:
2399 {
2400 int result;
2401 if (XEXP (cond_rtx, 0) != cc0_rtx)
2402 break;
2403 result = alter_cond (cond_rtx);
2404 if (result == 1)
2405 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2406 else if (result == -1)
2407 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2408 else if (result == 2)
2409 INSN_CODE (insn) = -1;
2410 if (SET_DEST (set) == SET_SRC (set))
2411 delete_insn (insn);
2412 }
2413 break;
2414
2415 default:
2416 break;
2417 }
2418 }
2419
2420 #endif
2421
2422 #ifdef HAVE_peephole
2423 /* Do machine-specific peephole optimizations if desired. */
2424
2425 if (optimize && !flag_no_peephole && !nopeepholes)
2426 {
2427 rtx next = peephole (insn);
2428 /* When peepholing, if there were notes within the peephole,
2429 emit them before the peephole. */
2430 if (next != 0 && next != NEXT_INSN (insn))
2431 {
2432 rtx note, prev = PREV_INSN (insn);
2433
2434 for (note = NEXT_INSN (insn); note != next;
2435 note = NEXT_INSN (note))
2436 final_scan_insn (note, file, optimize, nopeepholes, seen);
2437
2438 /* Put the notes in the proper position for a later
2439 rescan. For example, the SH target can do this
2440 when generating a far jump in a delayed branch
2441 sequence. */
2442 note = NEXT_INSN (insn);
2443 PREV_INSN (note) = prev;
2444 NEXT_INSN (prev) = note;
2445 NEXT_INSN (PREV_INSN (next)) = insn;
2446 PREV_INSN (insn) = PREV_INSN (next);
2447 NEXT_INSN (insn) = next;
2448 PREV_INSN (next) = insn;
2449 }
2450
2451 /* PEEPHOLE might have changed this. */
2452 body = PATTERN (insn);
2453 }
2454 #endif
2455
2456 /* Try to recognize the instruction.
2457 If successful, verify that the operands satisfy the
2458 constraints for the instruction. Crash if they don't,
2459 since `reload' should have changed them so that they do. */
2460
2461 insn_code_number = recog_memoized (insn);
2462 cleanup_subreg_operands (insn);
2463
2464 /* Dump the insn in the assembly for debugging. */
2465 if (flag_dump_rtl_in_asm)
2466 {
2467 print_rtx_head = ASM_COMMENT_START;
2468 print_rtl_single (asm_out_file, insn);
2469 print_rtx_head = "";
2470 }
2471
2472 if (! constrain_operands_cached (1))
2473 fatal_insn_not_found (insn);
2474
2475 /* Some target machines need to prescan each insn before
2476 it is output. */
2477
2478 #ifdef FINAL_PRESCAN_INSN
2479 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2480 #endif
2481
2482 #ifdef HAVE_conditional_execution
2483 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2484 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2485 #endif
2486
2487 #ifdef HAVE_cc0
2488 cc_prev_status = cc_status;
2489
2490 /* Update `cc_status' for this instruction.
2491 The instruction's output routine may change it further.
2492 If the output routine for a jump insn needs to depend
2493 on the cc status, it should look at cc_prev_status. */
2494
2495 NOTICE_UPDATE_CC (body, insn);
2496 #endif
2497
2498 current_output_insn = debug_insn = insn;
2499
2500 #if defined (DWARF2_UNWIND_INFO)
2501 if (CALL_P (insn) && dwarf2out_do_frame ())
2502 dwarf2out_frame_debug (insn, false);
2503 #endif
2504
2505 /* Find the proper template for this insn. */
2506 template = get_insn_template (insn_code_number, insn);
2507
2508 /* If the C code returns 0, it means that it is a jump insn
2509 which follows a deleted test insn, and that test insn
2510 needs to be reinserted. */
2511 if (template == 0)
2512 {
2513 rtx prev;
2514
2515 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2516
2517 /* We have already processed the notes between the setter and
2518 the user. Make sure we don't process them again, this is
2519 particularly important if one of the notes is a block
2520 scope note or an EH note. */
2521 for (prev = insn;
2522 prev != last_ignored_compare;
2523 prev = PREV_INSN (prev))
2524 {
2525 if (NOTE_P (prev))
2526 delete_insn (prev); /* Use delete_note. */
2527 }
2528
2529 return prev;
2530 }
2531
2532 /* If the template is the string "#", it means that this insn must
2533 be split. */
2534 if (template[0] == '#' && template[1] == '\0')
2535 {
2536 rtx new = try_split (body, insn, 0);
2537
2538 /* If we didn't split the insn, go away. */
2539 if (new == insn && PATTERN (new) == body)
2540 fatal_insn ("could not split insn", insn);
2541
2542 #ifdef HAVE_ATTR_length
2543 /* This instruction should have been split in shorten_branches,
2544 to ensure that we would have valid length info for the
2545 splitees. */
2546 gcc_unreachable ();
2547 #endif
2548
2549 return new;
2550 }
2551
2552 #ifdef TARGET_UNWIND_INFO
2553 /* ??? This will put the directives in the wrong place if
2554 get_insn_template outputs assembly directly. However calling it
2555 before get_insn_template breaks if the insns is split. */
2556 targetm.asm_out.unwind_emit (asm_out_file, insn);
2557 #endif
2558
2559 /* Output assembler code from the template. */
2560 output_asm_insn (template, recog_data.operand);
2561
2562 /* If necessary, report the effect that the instruction has on
2563 the unwind info. We've already done this for delay slots
2564 and call instructions. */
2565 #if defined (DWARF2_UNWIND_INFO)
2566 if (final_sequence == 0
2567 #if !defined (HAVE_prologue)
2568 && !ACCUMULATE_OUTGOING_ARGS
2569 #endif
2570 && dwarf2out_do_frame ())
2571 dwarf2out_frame_debug (insn, true);
2572 #endif
2573
2574 current_output_insn = debug_insn = 0;
2575 }
2576 }
2577 return NEXT_INSN (insn);
2578 }
2579 \f
2580 /* Return whether a source line note needs to be emitted before INSN. */
2581
2582 static bool
2583 notice_source_line (rtx insn)
2584 {
2585 const char *filename = insn_file (insn);
2586 int linenum = insn_line (insn);
2587
2588 if (filename
2589 && (force_source_line
2590 || filename != last_filename
2591 || last_linenum != linenum))
2592 {
2593 force_source_line = false;
2594 last_filename = filename;
2595 last_linenum = linenum;
2596 high_block_linenum = MAX (last_linenum, high_block_linenum);
2597 high_function_linenum = MAX (last_linenum, high_function_linenum);
2598 return true;
2599 }
2600 return false;
2601 }
2602 \f
2603 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2604 directly to the desired hard register. */
2605
2606 void
2607 cleanup_subreg_operands (rtx insn)
2608 {
2609 int i;
2610 extract_insn_cached (insn);
2611 for (i = 0; i < recog_data.n_operands; i++)
2612 {
2613 /* The following test cannot use recog_data.operand when testing
2614 for a SUBREG: the underlying object might have been changed
2615 already if we are inside a match_operator expression that
2616 matches the else clause. Instead we test the underlying
2617 expression directly. */
2618 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2619 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2620 else if (GET_CODE (recog_data.operand[i]) == PLUS
2621 || GET_CODE (recog_data.operand[i]) == MULT
2622 || MEM_P (recog_data.operand[i]))
2623 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2624 }
2625
2626 for (i = 0; i < recog_data.n_dups; i++)
2627 {
2628 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2629 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2630 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2631 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2632 || MEM_P (*recog_data.dup_loc[i]))
2633 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2634 }
2635 }
2636
2637 /* If X is a SUBREG, replace it with a REG or a MEM,
2638 based on the thing it is a subreg of. */
2639
2640 rtx
2641 alter_subreg (rtx *xp)
2642 {
2643 rtx x = *xp;
2644 rtx y = SUBREG_REG (x);
2645
2646 /* simplify_subreg does not remove subreg from volatile references.
2647 We are required to. */
2648 if (MEM_P (y))
2649 {
2650 int offset = SUBREG_BYTE (x);
2651
2652 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2653 contains 0 instead of the proper offset. See simplify_subreg. */
2654 if (offset == 0
2655 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2656 {
2657 int difference = GET_MODE_SIZE (GET_MODE (y))
2658 - GET_MODE_SIZE (GET_MODE (x));
2659 if (WORDS_BIG_ENDIAN)
2660 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2661 if (BYTES_BIG_ENDIAN)
2662 offset += difference % UNITS_PER_WORD;
2663 }
2664
2665 *xp = adjust_address (y, GET_MODE (x), offset);
2666 }
2667 else
2668 {
2669 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2670 SUBREG_BYTE (x));
2671
2672 if (new != 0)
2673 *xp = new;
2674 else if (REG_P (y))
2675 {
2676 /* Simplify_subreg can't handle some REG cases, but we have to. */
2677 unsigned int regno = subreg_regno (x);
2678 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2679 }
2680 }
2681
2682 return *xp;
2683 }
2684
2685 /* Do alter_subreg on all the SUBREGs contained in X. */
2686
2687 static rtx
2688 walk_alter_subreg (rtx *xp)
2689 {
2690 rtx x = *xp;
2691 switch (GET_CODE (x))
2692 {
2693 case PLUS:
2694 case MULT:
2695 case AND:
2696 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2697 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2698 break;
2699
2700 case MEM:
2701 case ZERO_EXTEND:
2702 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2703 break;
2704
2705 case SUBREG:
2706 return alter_subreg (xp);
2707
2708 default:
2709 break;
2710 }
2711
2712 return *xp;
2713 }
2714 \f
2715 #ifdef HAVE_cc0
2716
2717 /* Given BODY, the body of a jump instruction, alter the jump condition
2718 as required by the bits that are set in cc_status.flags.
2719 Not all of the bits there can be handled at this level in all cases.
2720
2721 The value is normally 0.
2722 1 means that the condition has become always true.
2723 -1 means that the condition has become always false.
2724 2 means that COND has been altered. */
2725
2726 static int
2727 alter_cond (rtx cond)
2728 {
2729 int value = 0;
2730
2731 if (cc_status.flags & CC_REVERSED)
2732 {
2733 value = 2;
2734 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2735 }
2736
2737 if (cc_status.flags & CC_INVERTED)
2738 {
2739 value = 2;
2740 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2741 }
2742
2743 if (cc_status.flags & CC_NOT_POSITIVE)
2744 switch (GET_CODE (cond))
2745 {
2746 case LE:
2747 case LEU:
2748 case GEU:
2749 /* Jump becomes unconditional. */
2750 return 1;
2751
2752 case GT:
2753 case GTU:
2754 case LTU:
2755 /* Jump becomes no-op. */
2756 return -1;
2757
2758 case GE:
2759 PUT_CODE (cond, EQ);
2760 value = 2;
2761 break;
2762
2763 case LT:
2764 PUT_CODE (cond, NE);
2765 value = 2;
2766 break;
2767
2768 default:
2769 break;
2770 }
2771
2772 if (cc_status.flags & CC_NOT_NEGATIVE)
2773 switch (GET_CODE (cond))
2774 {
2775 case GE:
2776 case GEU:
2777 /* Jump becomes unconditional. */
2778 return 1;
2779
2780 case LT:
2781 case LTU:
2782 /* Jump becomes no-op. */
2783 return -1;
2784
2785 case LE:
2786 case LEU:
2787 PUT_CODE (cond, EQ);
2788 value = 2;
2789 break;
2790
2791 case GT:
2792 case GTU:
2793 PUT_CODE (cond, NE);
2794 value = 2;
2795 break;
2796
2797 default:
2798 break;
2799 }
2800
2801 if (cc_status.flags & CC_NO_OVERFLOW)
2802 switch (GET_CODE (cond))
2803 {
2804 case GEU:
2805 /* Jump becomes unconditional. */
2806 return 1;
2807
2808 case LEU:
2809 PUT_CODE (cond, EQ);
2810 value = 2;
2811 break;
2812
2813 case GTU:
2814 PUT_CODE (cond, NE);
2815 value = 2;
2816 break;
2817
2818 case LTU:
2819 /* Jump becomes no-op. */
2820 return -1;
2821
2822 default:
2823 break;
2824 }
2825
2826 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2827 switch (GET_CODE (cond))
2828 {
2829 default:
2830 gcc_unreachable ();
2831
2832 case NE:
2833 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2834 value = 2;
2835 break;
2836
2837 case EQ:
2838 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2839 value = 2;
2840 break;
2841 }
2842
2843 if (cc_status.flags & CC_NOT_SIGNED)
2844 /* The flags are valid if signed condition operators are converted
2845 to unsigned. */
2846 switch (GET_CODE (cond))
2847 {
2848 case LE:
2849 PUT_CODE (cond, LEU);
2850 value = 2;
2851 break;
2852
2853 case LT:
2854 PUT_CODE (cond, LTU);
2855 value = 2;
2856 break;
2857
2858 case GT:
2859 PUT_CODE (cond, GTU);
2860 value = 2;
2861 break;
2862
2863 case GE:
2864 PUT_CODE (cond, GEU);
2865 value = 2;
2866 break;
2867
2868 default:
2869 break;
2870 }
2871
2872 return value;
2873 }
2874 #endif
2875 \f
2876 /* Report inconsistency between the assembler template and the operands.
2877 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2878
2879 void
2880 output_operand_lossage (const char *cmsgid, ...)
2881 {
2882 char *fmt_string;
2883 char *new_message;
2884 const char *pfx_str;
2885 va_list ap;
2886
2887 va_start (ap, cmsgid);
2888
2889 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2890 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2891 vasprintf (&new_message, fmt_string, ap);
2892
2893 if (this_is_asm_operands)
2894 error_for_asm (this_is_asm_operands, "%s", new_message);
2895 else
2896 internal_error ("%s", new_message);
2897
2898 free (fmt_string);
2899 free (new_message);
2900 va_end (ap);
2901 }
2902 \f
2903 /* Output of assembler code from a template, and its subroutines. */
2904
2905 /* Annotate the assembly with a comment describing the pattern and
2906 alternative used. */
2907
2908 static void
2909 output_asm_name (void)
2910 {
2911 if (debug_insn)
2912 {
2913 int num = INSN_CODE (debug_insn);
2914 fprintf (asm_out_file, "\t%s %d\t%s",
2915 ASM_COMMENT_START, INSN_UID (debug_insn),
2916 insn_data[num].name);
2917 if (insn_data[num].n_alternatives > 1)
2918 fprintf (asm_out_file, "/%d", which_alternative + 1);
2919 #ifdef HAVE_ATTR_length
2920 fprintf (asm_out_file, "\t[length = %d]",
2921 get_attr_length (debug_insn));
2922 #endif
2923 /* Clear this so only the first assembler insn
2924 of any rtl insn will get the special comment for -dp. */
2925 debug_insn = 0;
2926 }
2927 }
2928
2929 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2930 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2931 corresponds to the address of the object and 0 if to the object. */
2932
2933 static tree
2934 get_mem_expr_from_op (rtx op, int *paddressp)
2935 {
2936 tree expr;
2937 int inner_addressp;
2938
2939 *paddressp = 0;
2940
2941 if (REG_P (op))
2942 return REG_EXPR (op);
2943 else if (!MEM_P (op))
2944 return 0;
2945
2946 if (MEM_EXPR (op) != 0)
2947 return MEM_EXPR (op);
2948
2949 /* Otherwise we have an address, so indicate it and look at the address. */
2950 *paddressp = 1;
2951 op = XEXP (op, 0);
2952
2953 /* First check if we have a decl for the address, then look at the right side
2954 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2955 But don't allow the address to itself be indirect. */
2956 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2957 return expr;
2958 else if (GET_CODE (op) == PLUS
2959 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2960 return expr;
2961
2962 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2963 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2964 op = XEXP (op, 0);
2965
2966 expr = get_mem_expr_from_op (op, &inner_addressp);
2967 return inner_addressp ? 0 : expr;
2968 }
2969
2970 /* Output operand names for assembler instructions. OPERANDS is the
2971 operand vector, OPORDER is the order to write the operands, and NOPS
2972 is the number of operands to write. */
2973
2974 static void
2975 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2976 {
2977 int wrote = 0;
2978 int i;
2979
2980 for (i = 0; i < nops; i++)
2981 {
2982 int addressp;
2983 rtx op = operands[oporder[i]];
2984 tree expr = get_mem_expr_from_op (op, &addressp);
2985
2986 fprintf (asm_out_file, "%c%s",
2987 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2988 wrote = 1;
2989 if (expr)
2990 {
2991 fprintf (asm_out_file, "%s",
2992 addressp ? "*" : "");
2993 print_mem_expr (asm_out_file, expr);
2994 wrote = 1;
2995 }
2996 else if (REG_P (op) && ORIGINAL_REGNO (op)
2997 && ORIGINAL_REGNO (op) != REGNO (op))
2998 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2999 }
3000 }
3001
3002 /* Output text from TEMPLATE to the assembler output file,
3003 obeying %-directions to substitute operands taken from
3004 the vector OPERANDS.
3005
3006 %N (for N a digit) means print operand N in usual manner.
3007 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3008 and print the label name with no punctuation.
3009 %cN means require operand N to be a constant
3010 and print the constant expression with no punctuation.
3011 %aN means expect operand N to be a memory address
3012 (not a memory reference!) and print a reference
3013 to that address.
3014 %nN means expect operand N to be a constant
3015 and print a constant expression for minus the value
3016 of the operand, with no other punctuation. */
3017
3018 void
3019 output_asm_insn (const char *template, rtx *operands)
3020 {
3021 const char *p;
3022 int c;
3023 #ifdef ASSEMBLER_DIALECT
3024 int dialect = 0;
3025 #endif
3026 int oporder[MAX_RECOG_OPERANDS];
3027 char opoutput[MAX_RECOG_OPERANDS];
3028 int ops = 0;
3029
3030 /* An insn may return a null string template
3031 in a case where no assembler code is needed. */
3032 if (*template == 0)
3033 return;
3034
3035 memset (opoutput, 0, sizeof opoutput);
3036 p = template;
3037 putc ('\t', asm_out_file);
3038
3039 #ifdef ASM_OUTPUT_OPCODE
3040 ASM_OUTPUT_OPCODE (asm_out_file, p);
3041 #endif
3042
3043 while ((c = *p++))
3044 switch (c)
3045 {
3046 case '\n':
3047 if (flag_verbose_asm)
3048 output_asm_operand_names (operands, oporder, ops);
3049 if (flag_print_asm_name)
3050 output_asm_name ();
3051
3052 ops = 0;
3053 memset (opoutput, 0, sizeof opoutput);
3054
3055 putc (c, asm_out_file);
3056 #ifdef ASM_OUTPUT_OPCODE
3057 while ((c = *p) == '\t')
3058 {
3059 putc (c, asm_out_file);
3060 p++;
3061 }
3062 ASM_OUTPUT_OPCODE (asm_out_file, p);
3063 #endif
3064 break;
3065
3066 #ifdef ASSEMBLER_DIALECT
3067 case '{':
3068 {
3069 int i;
3070
3071 if (dialect)
3072 output_operand_lossage ("nested assembly dialect alternatives");
3073 else
3074 dialect = 1;
3075
3076 /* If we want the first dialect, do nothing. Otherwise, skip
3077 DIALECT_NUMBER of strings ending with '|'. */
3078 for (i = 0; i < dialect_number; i++)
3079 {
3080 while (*p && *p != '}' && *p++ != '|')
3081 ;
3082 if (*p == '}')
3083 break;
3084 if (*p == '|')
3085 p++;
3086 }
3087
3088 if (*p == '\0')
3089 output_operand_lossage ("unterminated assembly dialect alternative");
3090 }
3091 break;
3092
3093 case '|':
3094 if (dialect)
3095 {
3096 /* Skip to close brace. */
3097 do
3098 {
3099 if (*p == '\0')
3100 {
3101 output_operand_lossage ("unterminated assembly dialect alternative");
3102 break;
3103 }
3104 }
3105 while (*p++ != '}');
3106 dialect = 0;
3107 }
3108 else
3109 putc (c, asm_out_file);
3110 break;
3111
3112 case '}':
3113 if (! dialect)
3114 putc (c, asm_out_file);
3115 dialect = 0;
3116 break;
3117 #endif
3118
3119 case '%':
3120 /* %% outputs a single %. */
3121 if (*p == '%')
3122 {
3123 p++;
3124 putc (c, asm_out_file);
3125 }
3126 /* %= outputs a number which is unique to each insn in the entire
3127 compilation. This is useful for making local labels that are
3128 referred to more than once in a given insn. */
3129 else if (*p == '=')
3130 {
3131 p++;
3132 fprintf (asm_out_file, "%d", insn_counter);
3133 }
3134 /* % followed by a letter and some digits
3135 outputs an operand in a special way depending on the letter.
3136 Letters `acln' are implemented directly.
3137 Other letters are passed to `output_operand' so that
3138 the PRINT_OPERAND macro can define them. */
3139 else if (ISALPHA (*p))
3140 {
3141 int letter = *p++;
3142 unsigned long opnum;
3143 char *endptr;
3144
3145 opnum = strtoul (p, &endptr, 10);
3146
3147 if (endptr == p)
3148 output_operand_lossage ("operand number missing "
3149 "after %%-letter");
3150 else if (this_is_asm_operands && opnum >= insn_noperands)
3151 output_operand_lossage ("operand number out of range");
3152 else if (letter == 'l')
3153 output_asm_label (operands[opnum]);
3154 else if (letter == 'a')
3155 output_address (operands[opnum]);
3156 else if (letter == 'c')
3157 {
3158 if (CONSTANT_ADDRESS_P (operands[opnum]))
3159 output_addr_const (asm_out_file, operands[opnum]);
3160 else
3161 output_operand (operands[opnum], 'c');
3162 }
3163 else if (letter == 'n')
3164 {
3165 if (GET_CODE (operands[opnum]) == CONST_INT)
3166 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3167 - INTVAL (operands[opnum]));
3168 else
3169 {
3170 putc ('-', asm_out_file);
3171 output_addr_const (asm_out_file, operands[opnum]);
3172 }
3173 }
3174 else
3175 output_operand (operands[opnum], letter);
3176
3177 if (!opoutput[opnum])
3178 oporder[ops++] = opnum;
3179 opoutput[opnum] = 1;
3180
3181 p = endptr;
3182 c = *p;
3183 }
3184 /* % followed by a digit outputs an operand the default way. */
3185 else if (ISDIGIT (*p))
3186 {
3187 unsigned long opnum;
3188 char *endptr;
3189
3190 opnum = strtoul (p, &endptr, 10);
3191 if (this_is_asm_operands && opnum >= insn_noperands)
3192 output_operand_lossage ("operand number out of range");
3193 else
3194 output_operand (operands[opnum], 0);
3195
3196 if (!opoutput[opnum])
3197 oporder[ops++] = opnum;
3198 opoutput[opnum] = 1;
3199
3200 p = endptr;
3201 c = *p;
3202 }
3203 /* % followed by punctuation: output something for that
3204 punctuation character alone, with no operand.
3205 The PRINT_OPERAND macro decides what is actually done. */
3206 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3207 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3208 output_operand (NULL_RTX, *p++);
3209 #endif
3210 else
3211 output_operand_lossage ("invalid %%-code");
3212 break;
3213
3214 default:
3215 putc (c, asm_out_file);
3216 }
3217
3218 /* Write out the variable names for operands, if we know them. */
3219 if (flag_verbose_asm)
3220 output_asm_operand_names (operands, oporder, ops);
3221 if (flag_print_asm_name)
3222 output_asm_name ();
3223
3224 putc ('\n', asm_out_file);
3225 }
3226 \f
3227 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3228
3229 void
3230 output_asm_label (rtx x)
3231 {
3232 char buf[256];
3233
3234 if (GET_CODE (x) == LABEL_REF)
3235 x = XEXP (x, 0);
3236 if (LABEL_P (x)
3237 || (NOTE_P (x)
3238 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3239 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3240 else
3241 output_operand_lossage ("'%%l' operand isn't a label");
3242
3243 assemble_name (asm_out_file, buf);
3244 }
3245
3246 /* Print operand X using machine-dependent assembler syntax.
3247 The macro PRINT_OPERAND is defined just to control this function.
3248 CODE is a non-digit that preceded the operand-number in the % spec,
3249 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3250 between the % and the digits.
3251 When CODE is a non-letter, X is 0.
3252
3253 The meanings of the letters are machine-dependent and controlled
3254 by PRINT_OPERAND. */
3255
3256 static void
3257 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3258 {
3259 if (x && GET_CODE (x) == SUBREG)
3260 x = alter_subreg (&x);
3261
3262 /* X must not be a pseudo reg. */
3263 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3264
3265 PRINT_OPERAND (asm_out_file, x, code);
3266 }
3267
3268 /* Print a memory reference operand for address X
3269 using machine-dependent assembler syntax.
3270 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3271
3272 void
3273 output_address (rtx x)
3274 {
3275 walk_alter_subreg (&x);
3276 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3277 }
3278 \f
3279 /* Print an integer constant expression in assembler syntax.
3280 Addition and subtraction are the only arithmetic
3281 that may appear in these expressions. */
3282
3283 void
3284 output_addr_const (FILE *file, rtx x)
3285 {
3286 char buf[256];
3287
3288 restart:
3289 switch (GET_CODE (x))
3290 {
3291 case PC:
3292 putc ('.', file);
3293 break;
3294
3295 case SYMBOL_REF:
3296 if (SYMBOL_REF_DECL (x))
3297 mark_decl_referenced (SYMBOL_REF_DECL (x));
3298 #ifdef ASM_OUTPUT_SYMBOL_REF
3299 ASM_OUTPUT_SYMBOL_REF (file, x);
3300 #else
3301 assemble_name (file, XSTR (x, 0));
3302 #endif
3303 break;
3304
3305 case LABEL_REF:
3306 x = XEXP (x, 0);
3307 /* Fall through. */
3308 case CODE_LABEL:
3309 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3310 #ifdef ASM_OUTPUT_LABEL_REF
3311 ASM_OUTPUT_LABEL_REF (file, buf);
3312 #else
3313 assemble_name (file, buf);
3314 #endif
3315 break;
3316
3317 case CONST_INT:
3318 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3319 break;
3320
3321 case CONST:
3322 /* This used to output parentheses around the expression,
3323 but that does not work on the 386 (either ATT or BSD assembler). */
3324 output_addr_const (file, XEXP (x, 0));
3325 break;
3326
3327 case CONST_DOUBLE:
3328 if (GET_MODE (x) == VOIDmode)
3329 {
3330 /* We can use %d if the number is one word and positive. */
3331 if (CONST_DOUBLE_HIGH (x))
3332 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3333 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3334 else if (CONST_DOUBLE_LOW (x) < 0)
3335 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3336 else
3337 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3338 }
3339 else
3340 /* We can't handle floating point constants;
3341 PRINT_OPERAND must handle them. */
3342 output_operand_lossage ("floating constant misused");
3343 break;
3344
3345 case PLUS:
3346 /* Some assemblers need integer constants to appear last (eg masm). */
3347 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3348 {
3349 output_addr_const (file, XEXP (x, 1));
3350 if (INTVAL (XEXP (x, 0)) >= 0)
3351 fprintf (file, "+");
3352 output_addr_const (file, XEXP (x, 0));
3353 }
3354 else
3355 {
3356 output_addr_const (file, XEXP (x, 0));
3357 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3358 || INTVAL (XEXP (x, 1)) >= 0)
3359 fprintf (file, "+");
3360 output_addr_const (file, XEXP (x, 1));
3361 }
3362 break;
3363
3364 case MINUS:
3365 /* Avoid outputting things like x-x or x+5-x,
3366 since some assemblers can't handle that. */
3367 x = simplify_subtraction (x);
3368 if (GET_CODE (x) != MINUS)
3369 goto restart;
3370
3371 output_addr_const (file, XEXP (x, 0));
3372 fprintf (file, "-");
3373 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3374 || GET_CODE (XEXP (x, 1)) == PC
3375 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3376 output_addr_const (file, XEXP (x, 1));
3377 else
3378 {
3379 fputs (targetm.asm_out.open_paren, file);
3380 output_addr_const (file, XEXP (x, 1));
3381 fputs (targetm.asm_out.close_paren, file);
3382 }
3383 break;
3384
3385 case ZERO_EXTEND:
3386 case SIGN_EXTEND:
3387 case SUBREG:
3388 output_addr_const (file, XEXP (x, 0));
3389 break;
3390
3391 default:
3392 #ifdef OUTPUT_ADDR_CONST_EXTRA
3393 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3394 break;
3395
3396 fail:
3397 #endif
3398 output_operand_lossage ("invalid expression as operand");
3399 }
3400 }
3401 \f
3402 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3403 %R prints the value of REGISTER_PREFIX.
3404 %L prints the value of LOCAL_LABEL_PREFIX.
3405 %U prints the value of USER_LABEL_PREFIX.
3406 %I prints the value of IMMEDIATE_PREFIX.
3407 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3408 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3409
3410 We handle alternate assembler dialects here, just like output_asm_insn. */
3411
3412 void
3413 asm_fprintf (FILE *file, const char *p, ...)
3414 {
3415 char buf[10];
3416 char *q, c;
3417 va_list argptr;
3418
3419 va_start (argptr, p);
3420
3421 buf[0] = '%';
3422
3423 while ((c = *p++))
3424 switch (c)
3425 {
3426 #ifdef ASSEMBLER_DIALECT
3427 case '{':
3428 {
3429 int i;
3430
3431 /* If we want the first dialect, do nothing. Otherwise, skip
3432 DIALECT_NUMBER of strings ending with '|'. */
3433 for (i = 0; i < dialect_number; i++)
3434 {
3435 while (*p && *p++ != '|')
3436 ;
3437
3438 if (*p == '|')
3439 p++;
3440 }
3441 }
3442 break;
3443
3444 case '|':
3445 /* Skip to close brace. */
3446 while (*p && *p++ != '}')
3447 ;
3448 break;
3449
3450 case '}':
3451 break;
3452 #endif
3453
3454 case '%':
3455 c = *p++;
3456 q = &buf[1];
3457 while (strchr ("-+ #0", c))
3458 {
3459 *q++ = c;
3460 c = *p++;
3461 }
3462 while (ISDIGIT (c) || c == '.')
3463 {
3464 *q++ = c;
3465 c = *p++;
3466 }
3467 switch (c)
3468 {
3469 case '%':
3470 putc ('%', file);
3471 break;
3472
3473 case 'd': case 'i': case 'u':
3474 case 'x': case 'X': case 'o':
3475 case 'c':
3476 *q++ = c;
3477 *q = 0;
3478 fprintf (file, buf, va_arg (argptr, int));
3479 break;
3480
3481 case 'w':
3482 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3483 'o' cases, but we do not check for those cases. It
3484 means that the value is a HOST_WIDE_INT, which may be
3485 either `long' or `long long'. */
3486 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3487 q += strlen (HOST_WIDE_INT_PRINT);
3488 *q++ = *p++;
3489 *q = 0;
3490 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3491 break;
3492
3493 case 'l':
3494 *q++ = c;
3495 #ifdef HAVE_LONG_LONG
3496 if (*p == 'l')
3497 {
3498 *q++ = *p++;
3499 *q++ = *p++;
3500 *q = 0;
3501 fprintf (file, buf, va_arg (argptr, long long));
3502 }
3503 else
3504 #endif
3505 {
3506 *q++ = *p++;
3507 *q = 0;
3508 fprintf (file, buf, va_arg (argptr, long));
3509 }
3510
3511 break;
3512
3513 case 's':
3514 *q++ = c;
3515 *q = 0;
3516 fprintf (file, buf, va_arg (argptr, char *));
3517 break;
3518
3519 case 'O':
3520 #ifdef ASM_OUTPUT_OPCODE
3521 ASM_OUTPUT_OPCODE (asm_out_file, p);
3522 #endif
3523 break;
3524
3525 case 'R':
3526 #ifdef REGISTER_PREFIX
3527 fprintf (file, "%s", REGISTER_PREFIX);
3528 #endif
3529 break;
3530
3531 case 'I':
3532 #ifdef IMMEDIATE_PREFIX
3533 fprintf (file, "%s", IMMEDIATE_PREFIX);
3534 #endif
3535 break;
3536
3537 case 'L':
3538 #ifdef LOCAL_LABEL_PREFIX
3539 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3540 #endif
3541 break;
3542
3543 case 'U':
3544 fputs (user_label_prefix, file);
3545 break;
3546
3547 #ifdef ASM_FPRINTF_EXTENSIONS
3548 /* Uppercase letters are reserved for general use by asm_fprintf
3549 and so are not available to target specific code. In order to
3550 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3551 they are defined here. As they get turned into real extensions
3552 to asm_fprintf they should be removed from this list. */
3553 case 'A': case 'B': case 'C': case 'D': case 'E':
3554 case 'F': case 'G': case 'H': case 'J': case 'K':
3555 case 'M': case 'N': case 'P': case 'Q': case 'S':
3556 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3557 break;
3558
3559 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3560 #endif
3561 default:
3562 gcc_unreachable ();
3563 }
3564 break;
3565
3566 default:
3567 putc (c, file);
3568 }
3569 va_end (argptr);
3570 }
3571 \f
3572 /* Split up a CONST_DOUBLE or integer constant rtx
3573 into two rtx's for single words,
3574 storing in *FIRST the word that comes first in memory in the target
3575 and in *SECOND the other. */
3576
3577 void
3578 split_double (rtx value, rtx *first, rtx *second)
3579 {
3580 if (GET_CODE (value) == CONST_INT)
3581 {
3582 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3583 {
3584 /* In this case the CONST_INT holds both target words.
3585 Extract the bits from it into two word-sized pieces.
3586 Sign extend each half to HOST_WIDE_INT. */
3587 unsigned HOST_WIDE_INT low, high;
3588 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3589
3590 /* Set sign_bit to the most significant bit of a word. */
3591 sign_bit = 1;
3592 sign_bit <<= BITS_PER_WORD - 1;
3593
3594 /* Set mask so that all bits of the word are set. We could
3595 have used 1 << BITS_PER_WORD instead of basing the
3596 calculation on sign_bit. However, on machines where
3597 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3598 compiler warning, even though the code would never be
3599 executed. */
3600 mask = sign_bit << 1;
3601 mask--;
3602
3603 /* Set sign_extend as any remaining bits. */
3604 sign_extend = ~mask;
3605
3606 /* Pick the lower word and sign-extend it. */
3607 low = INTVAL (value);
3608 low &= mask;
3609 if (low & sign_bit)
3610 low |= sign_extend;
3611
3612 /* Pick the higher word, shifted to the least significant
3613 bits, and sign-extend it. */
3614 high = INTVAL (value);
3615 high >>= BITS_PER_WORD - 1;
3616 high >>= 1;
3617 high &= mask;
3618 if (high & sign_bit)
3619 high |= sign_extend;
3620
3621 /* Store the words in the target machine order. */
3622 if (WORDS_BIG_ENDIAN)
3623 {
3624 *first = GEN_INT (high);
3625 *second = GEN_INT (low);
3626 }
3627 else
3628 {
3629 *first = GEN_INT (low);
3630 *second = GEN_INT (high);
3631 }
3632 }
3633 else
3634 {
3635 /* The rule for using CONST_INT for a wider mode
3636 is that we regard the value as signed.
3637 So sign-extend it. */
3638 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3639 if (WORDS_BIG_ENDIAN)
3640 {
3641 *first = high;
3642 *second = value;
3643 }
3644 else
3645 {
3646 *first = value;
3647 *second = high;
3648 }
3649 }
3650 }
3651 else if (GET_CODE (value) != CONST_DOUBLE)
3652 {
3653 if (WORDS_BIG_ENDIAN)
3654 {
3655 *first = const0_rtx;
3656 *second = value;
3657 }
3658 else
3659 {
3660 *first = value;
3661 *second = const0_rtx;
3662 }
3663 }
3664 else if (GET_MODE (value) == VOIDmode
3665 /* This is the old way we did CONST_DOUBLE integers. */
3666 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3667 {
3668 /* In an integer, the words are defined as most and least significant.
3669 So order them by the target's convention. */
3670 if (WORDS_BIG_ENDIAN)
3671 {
3672 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3673 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3674 }
3675 else
3676 {
3677 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3678 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3679 }
3680 }
3681 else
3682 {
3683 REAL_VALUE_TYPE r;
3684 long l[2];
3685 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3686
3687 /* Note, this converts the REAL_VALUE_TYPE to the target's
3688 format, splits up the floating point double and outputs
3689 exactly 32 bits of it into each of l[0] and l[1] --
3690 not necessarily BITS_PER_WORD bits. */
3691 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3692
3693 /* If 32 bits is an entire word for the target, but not for the host,
3694 then sign-extend on the host so that the number will look the same
3695 way on the host that it would on the target. See for instance
3696 simplify_unary_operation. The #if is needed to avoid compiler
3697 warnings. */
3698
3699 #if HOST_BITS_PER_LONG > 32
3700 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3701 {
3702 if (l[0] & ((long) 1 << 31))
3703 l[0] |= ((long) (-1) << 32);
3704 if (l[1] & ((long) 1 << 31))
3705 l[1] |= ((long) (-1) << 32);
3706 }
3707 #endif
3708
3709 *first = GEN_INT (l[0]);
3710 *second = GEN_INT (l[1]);
3711 }
3712 }
3713 \f
3714 /* Return nonzero if this function has no function calls. */
3715
3716 int
3717 leaf_function_p (void)
3718 {
3719 rtx insn;
3720 rtx link;
3721
3722 if (current_function_profile || profile_arc_flag)
3723 return 0;
3724
3725 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3726 {
3727 if (CALL_P (insn)
3728 && ! SIBLING_CALL_P (insn))
3729 return 0;
3730 if (NONJUMP_INSN_P (insn)
3731 && GET_CODE (PATTERN (insn)) == SEQUENCE
3732 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3733 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3734 return 0;
3735 }
3736 for (link = current_function_epilogue_delay_list;
3737 link;
3738 link = XEXP (link, 1))
3739 {
3740 insn = XEXP (link, 0);
3741
3742 if (CALL_P (insn)
3743 && ! SIBLING_CALL_P (insn))
3744 return 0;
3745 if (NONJUMP_INSN_P (insn)
3746 && GET_CODE (PATTERN (insn)) == SEQUENCE
3747 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3748 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3749 return 0;
3750 }
3751
3752 return 1;
3753 }
3754
3755 /* Return 1 if branch is a forward branch.
3756 Uses insn_shuid array, so it works only in the final pass. May be used by
3757 output templates to customary add branch prediction hints.
3758 */
3759 int
3760 final_forward_branch_p (rtx insn)
3761 {
3762 int insn_id, label_id;
3763
3764 gcc_assert (uid_shuid);
3765 insn_id = INSN_SHUID (insn);
3766 label_id = INSN_SHUID (JUMP_LABEL (insn));
3767 /* We've hit some insns that does not have id information available. */
3768 gcc_assert (insn_id && label_id);
3769 return insn_id < label_id;
3770 }
3771
3772 /* On some machines, a function with no call insns
3773 can run faster if it doesn't create its own register window.
3774 When output, the leaf function should use only the "output"
3775 registers. Ordinarily, the function would be compiled to use
3776 the "input" registers to find its arguments; it is a candidate
3777 for leaf treatment if it uses only the "input" registers.
3778 Leaf function treatment means renumbering so the function
3779 uses the "output" registers instead. */
3780
3781 #ifdef LEAF_REGISTERS
3782
3783 /* Return 1 if this function uses only the registers that can be
3784 safely renumbered. */
3785
3786 int
3787 only_leaf_regs_used (void)
3788 {
3789 int i;
3790 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3791
3792 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3793 if ((regs_ever_live[i] || global_regs[i])
3794 && ! permitted_reg_in_leaf_functions[i])
3795 return 0;
3796
3797 if (current_function_uses_pic_offset_table
3798 && pic_offset_table_rtx != 0
3799 && REG_P (pic_offset_table_rtx)
3800 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3801 return 0;
3802
3803 return 1;
3804 }
3805
3806 /* Scan all instructions and renumber all registers into those
3807 available in leaf functions. */
3808
3809 static void
3810 leaf_renumber_regs (rtx first)
3811 {
3812 rtx insn;
3813
3814 /* Renumber only the actual patterns.
3815 The reg-notes can contain frame pointer refs,
3816 and renumbering them could crash, and should not be needed. */
3817 for (insn = first; insn; insn = NEXT_INSN (insn))
3818 if (INSN_P (insn))
3819 leaf_renumber_regs_insn (PATTERN (insn));
3820 for (insn = current_function_epilogue_delay_list;
3821 insn;
3822 insn = XEXP (insn, 1))
3823 if (INSN_P (XEXP (insn, 0)))
3824 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3825 }
3826
3827 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3828 available in leaf functions. */
3829
3830 void
3831 leaf_renumber_regs_insn (rtx in_rtx)
3832 {
3833 int i, j;
3834 const char *format_ptr;
3835
3836 if (in_rtx == 0)
3837 return;
3838
3839 /* Renumber all input-registers into output-registers.
3840 renumbered_regs would be 1 for an output-register;
3841 they */
3842
3843 if (REG_P (in_rtx))
3844 {
3845 int newreg;
3846
3847 /* Don't renumber the same reg twice. */
3848 if (in_rtx->used)
3849 return;
3850
3851 newreg = REGNO (in_rtx);
3852 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3853 to reach here as part of a REG_NOTE. */
3854 if (newreg >= FIRST_PSEUDO_REGISTER)
3855 {
3856 in_rtx->used = 1;
3857 return;
3858 }
3859 newreg = LEAF_REG_REMAP (newreg);
3860 gcc_assert (newreg >= 0);
3861 regs_ever_live[REGNO (in_rtx)] = 0;
3862 regs_ever_live[newreg] = 1;
3863 REGNO (in_rtx) = newreg;
3864 in_rtx->used = 1;
3865 }
3866
3867 if (INSN_P (in_rtx))
3868 {
3869 /* Inside a SEQUENCE, we find insns.
3870 Renumber just the patterns of these insns,
3871 just as we do for the top-level insns. */
3872 leaf_renumber_regs_insn (PATTERN (in_rtx));
3873 return;
3874 }
3875
3876 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3877
3878 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3879 switch (*format_ptr++)
3880 {
3881 case 'e':
3882 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3883 break;
3884
3885 case 'E':
3886 if (NULL != XVEC (in_rtx, i))
3887 {
3888 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3889 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3890 }
3891 break;
3892
3893 case 'S':
3894 case 's':
3895 case '0':
3896 case 'i':
3897 case 'w':
3898 case 'n':
3899 case 'u':
3900 break;
3901
3902 default:
3903 gcc_unreachable ();
3904 }
3905 }
3906 #endif
3907
3908
3909 /* When -gused is used, emit debug info for only used symbols. But in
3910 addition to the standard intercepted debug_hooks there are some direct
3911 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3912 Those routines may also be called from a higher level intercepted routine. So
3913 to prevent recording data for an inner call to one of these for an intercept,
3914 we maintain an intercept nesting counter (debug_nesting). We only save the
3915 intercepted arguments if the nesting is 1. */
3916 int debug_nesting = 0;
3917
3918 static tree *symbol_queue;
3919 int symbol_queue_index = 0;
3920 static int symbol_queue_size = 0;
3921
3922 /* Generate the symbols for any queued up type symbols we encountered
3923 while generating the type info for some originally used symbol.
3924 This might generate additional entries in the queue. Only when
3925 the nesting depth goes to 0 is this routine called. */
3926
3927 void
3928 debug_flush_symbol_queue (void)
3929 {
3930 int i;
3931
3932 /* Make sure that additionally queued items are not flushed
3933 prematurely. */
3934
3935 ++debug_nesting;
3936
3937 for (i = 0; i < symbol_queue_index; ++i)
3938 {
3939 /* If we pushed queued symbols then such symbols must be
3940 output no matter what anyone else says. Specifically,
3941 we need to make sure dbxout_symbol() thinks the symbol was
3942 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3943 which may be set for outside reasons. */
3944 int saved_tree_used = TREE_USED (symbol_queue[i]);
3945 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3946 TREE_USED (symbol_queue[i]) = 1;
3947 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3948
3949 #ifdef DBX_DEBUGGING_INFO
3950 dbxout_symbol (symbol_queue[i], 0);
3951 #endif
3952
3953 TREE_USED (symbol_queue[i]) = saved_tree_used;
3954 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3955 }
3956
3957 symbol_queue_index = 0;
3958 --debug_nesting;
3959 }
3960
3961 /* Queue a type symbol needed as part of the definition of a decl
3962 symbol. These symbols are generated when debug_flush_symbol_queue()
3963 is called. */
3964
3965 void
3966 debug_queue_symbol (tree decl)
3967 {
3968 if (symbol_queue_index >= symbol_queue_size)
3969 {
3970 symbol_queue_size += 10;
3971 symbol_queue = xrealloc (symbol_queue,
3972 symbol_queue_size * sizeof (tree));
3973 }
3974
3975 symbol_queue[symbol_queue_index++] = decl;
3976 }
3977
3978 /* Free symbol queue. */
3979 void
3980 debug_free_queue (void)
3981 {
3982 if (symbol_queue)
3983 {
3984 free (symbol_queue);
3985 symbol_queue = NULL;
3986 symbol_queue_size = 0;
3987 }
3988 }
3989 \f
3990 /* Turn the RTL into assembly. */
3991 static unsigned int
3992 rest_of_handle_final (void)
3993 {
3994 rtx x;
3995 const char *fnname;
3996
3997 /* Get the function's name, as described by its RTL. This may be
3998 different from the DECL_NAME name used in the source file. */
3999
4000 x = DECL_RTL (current_function_decl);
4001 gcc_assert (MEM_P (x));
4002 x = XEXP (x, 0);
4003 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4004 fnname = XSTR (x, 0);
4005
4006 assemble_start_function (current_function_decl, fnname);
4007 final_start_function (get_insns (), asm_out_file, optimize);
4008 final (get_insns (), asm_out_file, optimize);
4009 final_end_function ();
4010
4011 #ifdef TARGET_UNWIND_INFO
4012 /* ??? The IA-64 ".handlerdata" directive must be issued before
4013 the ".endp" directive that closes the procedure descriptor. */
4014 output_function_exception_table (fnname);
4015 #endif
4016
4017 assemble_end_function (current_function_decl, fnname);
4018
4019 #ifndef TARGET_UNWIND_INFO
4020 /* Otherwise, it feels unclean to switch sections in the middle. */
4021 output_function_exception_table (fnname);
4022 #endif
4023
4024 user_defined_section_attribute = false;
4025
4026 if (! quiet_flag)
4027 fflush (asm_out_file);
4028
4029 /* Release all memory allocated by flow. */
4030 free_basic_block_vars ();
4031
4032 /* Write DBX symbols if requested. */
4033
4034 /* Note that for those inline functions where we don't initially
4035 know for certain that we will be generating an out-of-line copy,
4036 the first invocation of this routine (rest_of_compilation) will
4037 skip over this code by doing a `goto exit_rest_of_compilation;'.
4038 Later on, wrapup_global_declarations will (indirectly) call
4039 rest_of_compilation again for those inline functions that need
4040 to have out-of-line copies generated. During that call, we
4041 *will* be routed past here. */
4042
4043 timevar_push (TV_SYMOUT);
4044 (*debug_hooks->function_decl) (current_function_decl);
4045 timevar_pop (TV_SYMOUT);
4046 return 0;
4047 }
4048
4049 struct tree_opt_pass pass_final =
4050 {
4051 NULL, /* name */
4052 NULL, /* gate */
4053 rest_of_handle_final, /* execute */
4054 NULL, /* sub */
4055 NULL, /* next */
4056 0, /* static_pass_number */
4057 TV_FINAL, /* tv_id */
4058 0, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 TODO_ggc_collect, /* todo_flags_finish */
4063 0 /* letter */
4064 };
4065
4066
4067 static unsigned int
4068 rest_of_handle_shorten_branches (void)
4069 {
4070 /* Shorten branches. */
4071 shorten_branches (get_insns ());
4072 return 0;
4073 }
4074
4075 struct tree_opt_pass pass_shorten_branches =
4076 {
4077 "shorten", /* name */
4078 NULL, /* gate */
4079 rest_of_handle_shorten_branches, /* execute */
4080 NULL, /* sub */
4081 NULL, /* next */
4082 0, /* static_pass_number */
4083 TV_FINAL, /* tv_id */
4084 0, /* properties_required */
4085 0, /* properties_provided */
4086 0, /* properties_destroyed */
4087 0, /* todo_flags_start */
4088 TODO_dump_func, /* todo_flags_finish */
4089 0 /* letter */
4090 };
4091
4092
4093 static unsigned int
4094 rest_of_clean_state (void)
4095 {
4096 rtx insn, next;
4097
4098 /* It is very important to decompose the RTL instruction chain here:
4099 debug information keeps pointing into CODE_LABEL insns inside the function
4100 body. If these remain pointing to the other insns, we end up preserving
4101 whole RTL chain and attached detailed debug info in memory. */
4102 for (insn = get_insns (); insn; insn = next)
4103 {
4104 next = NEXT_INSN (insn);
4105 NEXT_INSN (insn) = NULL;
4106 PREV_INSN (insn) = NULL;
4107 }
4108
4109 /* In case the function was not output,
4110 don't leave any temporary anonymous types
4111 queued up for sdb output. */
4112 #ifdef SDB_DEBUGGING_INFO
4113 if (write_symbols == SDB_DEBUG)
4114 sdbout_types (NULL_TREE);
4115 #endif
4116
4117 reload_completed = 0;
4118 epilogue_completed = 0;
4119 flow2_completed = 0;
4120 no_new_pseudos = 0;
4121 #ifdef STACK_REGS
4122 regstack_completed = 0;
4123 #endif
4124
4125 /* Clear out the insn_length contents now that they are no
4126 longer valid. */
4127 init_insn_lengths ();
4128
4129 /* Show no temporary slots allocated. */
4130 init_temp_slots ();
4131
4132 free_basic_block_vars ();
4133 free_bb_for_insn ();
4134
4135
4136 if (targetm.binds_local_p (current_function_decl))
4137 {
4138 int pref = cfun->preferred_stack_boundary;
4139 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4140 pref = cfun->stack_alignment_needed;
4141 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4142 = pref;
4143 }
4144
4145 /* Make sure volatile mem refs aren't considered valid operands for
4146 arithmetic insns. We must call this here if this is a nested inline
4147 function, since the above code leaves us in the init_recog state,
4148 and the function context push/pop code does not save/restore volatile_ok.
4149
4150 ??? Maybe it isn't necessary for expand_start_function to call this
4151 anymore if we do it here? */
4152
4153 init_recog_no_volatile ();
4154
4155 /* We're done with this function. Free up memory if we can. */
4156 free_after_parsing (cfun);
4157 free_after_compilation (cfun);
4158 return 0;
4159 }
4160
4161 struct tree_opt_pass pass_clean_state =
4162 {
4163 NULL, /* name */
4164 NULL, /* gate */
4165 rest_of_clean_state, /* execute */
4166 NULL, /* sub */
4167 NULL, /* next */
4168 0, /* static_pass_number */
4169 TV_FINAL, /* tv_id */
4170 0, /* properties_required */
4171 0, /* properties_provided */
4172 PROP_rtl, /* properties_destroyed */
4173 0, /* todo_flags_start */
4174 0, /* todo_flags_finish */
4175 0 /* letter */
4176 };
4177