cfg.c (free_edge): Add function argument and use it instead of cfun.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "backend.h"
49 #include "cfghooks.h"
50 #include "tree.h"
51 #include "rtl.h"
52 #include "df.h"
53 #include "alias.h"
54 #include "varasm.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "output.h"
63 #include "except.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "cfgrtl.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expmed.h"
73 #include "dojump.h"
74 #include "explow.h"
75 #include "calls.h"
76 #include "emit-rtl.h"
77 #include "stmt.h"
78 #include "expr.h"
79 #include "tree-pass.h"
80 #include "cgraph.h"
81 #include "tree-ssa.h"
82 #include "coverage.h"
83 #include "cfgloop.h"
84 #include "params.h"
85 #include "tree-pretty-print.h" /* for dump_function_header */
86 #include "asan.h"
87 #include "wide-int-print.h"
88 #include "rtl-iter.h"
89 #include "print-rtl.h"
90
91 #ifdef XCOFF_DEBUGGING_INFO
92 #include "xcoffout.h" /* Needed for external data
93 declarations for e.g. AIX 4.x. */
94 #endif
95
96 #include "dwarf2out.h"
97
98 #ifdef DBX_DEBUGGING_INFO
99 #include "dbxout.h"
100 #endif
101
102 #ifdef SDB_DEBUGGING_INFO
103 #include "sdbout.h"
104 #endif
105
106 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
107 So define a null default for it to save conditionalization later. */
108 #ifndef CC_STATUS_INIT
109 #define CC_STATUS_INIT
110 #endif
111
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
116
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
120
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_NOTE 1
123 #define SEEN_EMITTED 2
124
125 /* Last insn processed by final_scan_insn. */
126 static rtx_insn *debug_insn;
127 rtx_insn *current_output_insn;
128
129 /* Line number of last NOTE. */
130 static int last_linenum;
131
132 /* Last discriminator written to assembly. */
133 static int last_discriminator;
134
135 /* Discriminator of current block. */
136 static int discriminator;
137
138 /* Highest line number in current block. */
139 static int high_block_linenum;
140
141 /* Likewise for function. */
142 static int high_function_linenum;
143
144 /* Filename of last NOTE. */
145 static const char *last_filename;
146
147 /* Override filename and line number. */
148 static const char *override_filename;
149 static int override_linenum;
150
151 /* Whether to force emission of a line note before the next insn. */
152 static bool force_source_line = false;
153
154 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
155
156 /* Nonzero while outputting an `asm' with operands.
157 This means that inconsistencies are the user's fault, so don't die.
158 The precise value is the insn being output, to pass to error_for_asm. */
159 const rtx_insn *this_is_asm_operands;
160
161 /* Number of operands of this insn, for an `asm' with operands. */
162 static unsigned int insn_noperands;
163
164 /* Compare optimization flag. */
165
166 static rtx last_ignored_compare = 0;
167
168 /* Assign a unique number to each insn that is output.
169 This can be used to generate unique local labels. */
170
171 static int insn_counter = 0;
172
173 /* This variable contains machine-dependent flags (defined in tm.h)
174 set and examined by output routines
175 that describe how to interpret the condition codes properly. */
176
177 CC_STATUS cc_status;
178
179 /* During output of an insn, this contains a copy of cc_status
180 from before the insn. */
181
182 CC_STATUS cc_prev_status;
183
184 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
185
186 static int block_depth;
187
188 /* Nonzero if have enabled APP processing of our assembler output. */
189
190 static int app_on;
191
192 /* If we are outputting an insn sequence, this contains the sequence rtx.
193 Zero otherwise. */
194
195 rtx_sequence *final_sequence;
196
197 #ifdef ASSEMBLER_DIALECT
198
199 /* Number of the assembler dialect to use, starting at 0. */
200 static int dialect_number;
201 #endif
202
203 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
204 rtx current_insn_predicate;
205
206 /* True if printing into -fdump-final-insns= dump. */
207 bool final_insns_dump_p;
208
209 /* True if profile_function should be called, but hasn't been called yet. */
210 static bool need_profile_function;
211
212 static int asm_insn_count (rtx);
213 static void profile_function (FILE *);
214 static void profile_after_prologue (FILE *);
215 static bool notice_source_line (rtx_insn *, bool *);
216 static rtx walk_alter_subreg (rtx *, bool *);
217 static void output_asm_name (void);
218 static void output_alternate_entry_point (FILE *, rtx_insn *);
219 static tree get_mem_expr_from_op (rtx, int *);
220 static void output_asm_operand_names (rtx *, int *, int);
221 #ifdef LEAF_REGISTERS
222 static void leaf_renumber_regs (rtx_insn *);
223 #endif
224 #if HAVE_cc0
225 static int alter_cond (rtx);
226 #endif
227 #ifndef ADDR_VEC_ALIGN
228 static int final_addr_vec_align (rtx);
229 #endif
230 static int align_fuzz (rtx, rtx, int, unsigned);
231 static void collect_fn_hard_reg_usage (void);
232 static tree get_call_fndecl (rtx_insn *);
233 \f
234 /* Initialize data in final at the beginning of a compilation. */
235
236 void
237 init_final (const char *filename ATTRIBUTE_UNUSED)
238 {
239 app_on = 0;
240 final_sequence = 0;
241
242 #ifdef ASSEMBLER_DIALECT
243 dialect_number = ASSEMBLER_DIALECT;
244 #endif
245 }
246
247 /* Default target function prologue and epilogue assembler output.
248
249 If not overridden for epilogue code, then the function body itself
250 contains return instructions wherever needed. */
251 void
252 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
253 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
254 {
255 }
256
257 void
258 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
259 tree decl ATTRIBUTE_UNUSED,
260 bool new_is_cold ATTRIBUTE_UNUSED)
261 {
262 }
263
264 /* Default target hook that outputs nothing to a stream. */
265 void
266 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
267 {
268 }
269
270 /* Enable APP processing of subsequent output.
271 Used before the output from an `asm' statement. */
272
273 void
274 app_enable (void)
275 {
276 if (! app_on)
277 {
278 fputs (ASM_APP_ON, asm_out_file);
279 app_on = 1;
280 }
281 }
282
283 /* Disable APP processing of subsequent output.
284 Called from varasm.c before most kinds of output. */
285
286 void
287 app_disable (void)
288 {
289 if (app_on)
290 {
291 fputs (ASM_APP_OFF, asm_out_file);
292 app_on = 0;
293 }
294 }
295 \f
296 /* Return the number of slots filled in the current
297 delayed branch sequence (we don't count the insn needing the
298 delay slot). Zero if not in a delayed branch sequence. */
299
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 vec<int> insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 if (HAVE_ATTR_length)
367 INSN_ADDRESSES_FREE ();
368 if (uid_align)
369 {
370 free (uid_align);
371 uid_align = 0;
372 }
373 }
374
375 /* Obtain the current length of an insn. If branch shortening has been done,
376 get its actual length. Otherwise, use FALLBACK_FN to calculate the
377 length. */
378 static int
379 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
380 {
381 rtx body;
382 int i;
383 int length = 0;
384
385 if (!HAVE_ATTR_length)
386 return 0;
387
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
392 {
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 case DEBUG_INSN:
397 return 0;
398
399 case CALL_INSN:
400 case JUMP_INSN:
401 length = fallback_fn (insn);
402 break;
403
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
408
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
412 for (i = 0; i < seq->len (); i++)
413 length += get_attr_length_1 (seq->insn (i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
417
418 default:
419 break;
420 }
421
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 }
427
428 /* Obtain the current length of an insn. If branch shortening has been done,
429 get its actual length. Otherwise, get its maximum length. */
430 int
431 get_attr_length (rtx_insn *insn)
432 {
433 return get_attr_length_1 (insn, insn_default_length);
434 }
435
436 /* Obtain the current length of an insn. If branch shortening has been done,
437 get its actual length. Otherwise, get its minimum length. */
438 int
439 get_attr_min_length (rtx_insn *insn)
440 {
441 return get_attr_length_1 (insn, insn_min_length);
442 }
443 \f
444 /* Code to handle alignment inside shorten_branches. */
445
446 /* Here is an explanation how the algorithm in align_fuzz can give
447 proper results:
448
449 Call a sequence of instructions beginning with alignment point X
450 and continuing until the next alignment point `block X'. When `X'
451 is used in an expression, it means the alignment value of the
452 alignment point.
453
454 Call the distance between the start of the first insn of block X, and
455 the end of the last insn of block X `IX', for the `inner size of X'.
456 This is clearly the sum of the instruction lengths.
457
458 Likewise with the next alignment-delimited block following X, which we
459 shall call block Y.
460
461 Call the distance between the start of the first insn of block X, and
462 the start of the first insn of block Y `OX', for the `outer size of X'.
463
464 The estimated padding is then OX - IX.
465
466 OX can be safely estimated as
467
468 if (X >= Y)
469 OX = round_up(IX, Y)
470 else
471 OX = round_up(IX, X) + Y - X
472
473 Clearly est(IX) >= real(IX), because that only depends on the
474 instruction lengths, and those being overestimated is a given.
475
476 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
477 we needn't worry about that when thinking about OX.
478
479 When X >= Y, the alignment provided by Y adds no uncertainty factor
480 for branch ranges starting before X, so we can just round what we have.
481 But when X < Y, we don't know anything about the, so to speak,
482 `middle bits', so we have to assume the worst when aligning up from an
483 address mod X to one mod Y, which is Y - X. */
484
485 #ifndef LABEL_ALIGN
486 #define LABEL_ALIGN(LABEL) align_labels_log
487 #endif
488
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
492
493 #ifndef LABEL_ALIGN_AFTER_BARRIER
494 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
495 #endif
496
497 #ifndef JUMP_ALIGN
498 #define JUMP_ALIGN(LABEL) align_jumps_log
499 #endif
500
501 int
502 default_label_align_after_barrier_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
503 {
504 return 0;
505 }
506
507 int
508 default_loop_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
509 {
510 return align_loops_max_skip;
511 }
512
513 int
514 default_label_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
515 {
516 return align_labels_max_skip;
517 }
518
519 int
520 default_jump_align_max_skip (rtx_insn *insn ATTRIBUTE_UNUSED)
521 {
522 return align_jumps_max_skip;
523 }
524
525 #ifndef ADDR_VEC_ALIGN
526 static int
527 final_addr_vec_align (rtx addr_vec)
528 {
529 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
530
531 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
532 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
533 return exact_log2 (align);
534
535 }
536
537 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
538 #endif
539
540 #ifndef INSN_LENGTH_ALIGNMENT
541 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
542 #endif
543
544 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
545
546 static int min_labelno, max_labelno;
547
548 #define LABEL_TO_ALIGNMENT(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
550
551 #define LABEL_TO_MAX_SKIP(LABEL) \
552 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
553
554 /* For the benefit of port specific code do this also as a function. */
555
556 int
557 label_to_alignment (rtx label)
558 {
559 if (CODE_LABEL_NUMBER (label) <= max_labelno)
560 return LABEL_TO_ALIGNMENT (label);
561 return 0;
562 }
563
564 int
565 label_to_max_skip (rtx label)
566 {
567 if (CODE_LABEL_NUMBER (label) <= max_labelno)
568 return LABEL_TO_MAX_SKIP (label);
569 return 0;
570 }
571
572 /* The differences in addresses
573 between a branch and its target might grow or shrink depending on
574 the alignment the start insn of the range (the branch for a forward
575 branch or the label for a backward branch) starts out on; if these
576 differences are used naively, they can even oscillate infinitely.
577 We therefore want to compute a 'worst case' address difference that
578 is independent of the alignment the start insn of the range end
579 up on, and that is at least as large as the actual difference.
580 The function align_fuzz calculates the amount we have to add to the
581 naively computed difference, by traversing the part of the alignment
582 chain of the start insn of the range that is in front of the end insn
583 of the range, and considering for each alignment the maximum amount
584 that it might contribute to a size increase.
585
586 For casesi tables, we also want to know worst case minimum amounts of
587 address difference, in case a machine description wants to introduce
588 some common offset that is added to all offsets in a table.
589 For this purpose, align_fuzz with a growth argument of 0 computes the
590 appropriate adjustment. */
591
592 /* Compute the maximum delta by which the difference of the addresses of
593 START and END might grow / shrink due to a different address for start
594 which changes the size of alignment insns between START and END.
595 KNOWN_ALIGN_LOG is the alignment known for START.
596 GROWTH should be ~0 if the objective is to compute potential code size
597 increase, and 0 if the objective is to compute potential shrink.
598 The return value is undefined for any other value of GROWTH. */
599
600 static int
601 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
602 {
603 int uid = INSN_UID (start);
604 rtx align_label;
605 int known_align = 1 << known_align_log;
606 int end_shuid = INSN_SHUID (end);
607 int fuzz = 0;
608
609 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
610 {
611 int align_addr, new_align;
612
613 uid = INSN_UID (align_label);
614 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
615 if (uid_shuid[uid] > end_shuid)
616 break;
617 known_align_log = LABEL_TO_ALIGNMENT (align_label);
618 new_align = 1 << known_align_log;
619 if (new_align < known_align)
620 continue;
621 fuzz += (-align_addr ^ growth) & (new_align - known_align);
622 known_align = new_align;
623 }
624 return fuzz;
625 }
626
627 /* Compute a worst-case reference address of a branch so that it
628 can be safely used in the presence of aligned labels. Since the
629 size of the branch itself is unknown, the size of the branch is
630 not included in the range. I.e. for a forward branch, the reference
631 address is the end address of the branch as known from the previous
632 branch shortening pass, minus a value to account for possible size
633 increase due to alignment. For a backward branch, it is the start
634 address of the branch as known from the current pass, plus a value
635 to account for possible size increase due to alignment.
636 NB.: Therefore, the maximum offset allowed for backward branches needs
637 to exclude the branch size. */
638
639 int
640 insn_current_reference_address (rtx_insn *branch)
641 {
642 rtx dest;
643 int seq_uid;
644
645 if (! INSN_ADDRESSES_SET_P ())
646 return 0;
647
648 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
649 seq_uid = INSN_UID (seq);
650 if (!JUMP_P (branch))
651 /* This can happen for example on the PA; the objective is to know the
652 offset to address something in front of the start of the function.
653 Thus, we can treat it like a backward branch.
654 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
655 any alignment we'd encounter, so we skip the call to align_fuzz. */
656 return insn_current_address;
657 dest = JUMP_LABEL (branch);
658
659 /* BRANCH has no proper alignment chain set, so use SEQ.
660 BRANCH also has no INSN_SHUID. */
661 if (INSN_SHUID (seq) < INSN_SHUID (dest))
662 {
663 /* Forward branch. */
664 return (insn_last_address + insn_lengths[seq_uid]
665 - align_fuzz (seq, dest, length_unit_log, ~0));
666 }
667 else
668 {
669 /* Backward branch. */
670 return (insn_current_address
671 + align_fuzz (dest, seq, length_unit_log, ~0));
672 }
673 }
674 \f
675 /* Compute branch alignments based on frequency information in the
676 CFG. */
677
678 unsigned int
679 compute_alignments (void)
680 {
681 int log, max_skip, max_log;
682 basic_block bb;
683 int freq_max = 0;
684 int freq_threshold = 0;
685
686 if (label_align)
687 {
688 free (label_align);
689 label_align = 0;
690 }
691
692 max_labelno = max_label_num ();
693 min_labelno = get_first_label_num ();
694 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
695
696 /* If not optimizing or optimizing for size, don't assign any alignments. */
697 if (! optimize || optimize_function_for_size_p (cfun))
698 return 0;
699
700 if (dump_file)
701 {
702 dump_reg_info (dump_file);
703 dump_flow_info (dump_file, TDF_DETAILS);
704 flow_loops_dump (dump_file, NULL, 1);
705 }
706 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
707 FOR_EACH_BB_FN (bb, cfun)
708 if (bb->frequency > freq_max)
709 freq_max = bb->frequency;
710 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
711
712 if (dump_file)
713 fprintf (dump_file, "freq_max: %i\n",freq_max);
714 FOR_EACH_BB_FN (bb, cfun)
715 {
716 rtx_insn *label = BB_HEAD (bb);
717 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
718 edge e;
719 edge_iterator ei;
720
721 if (!LABEL_P (label)
722 || optimize_bb_for_size_p (bb))
723 {
724 if (dump_file)
725 fprintf (dump_file,
726 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
727 bb->index, bb->frequency, bb->loop_father->num,
728 bb_loop_depth (bb));
729 continue;
730 }
731 max_log = LABEL_ALIGN (label);
732 max_skip = targetm.asm_out.label_align_max_skip (label);
733
734 FOR_EACH_EDGE (e, ei, bb->preds)
735 {
736 if (e->flags & EDGE_FALLTHRU)
737 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
738 else
739 branch_frequency += EDGE_FREQUENCY (e);
740 }
741 if (dump_file)
742 {
743 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
744 " %2i fall %4i branch %4i",
745 bb->index, bb->frequency, bb->loop_father->num,
746 bb_loop_depth (bb),
747 fallthru_frequency, branch_frequency);
748 if (!bb->loop_father->inner && bb->loop_father->num)
749 fprintf (dump_file, " inner_loop");
750 if (bb->loop_father->header == bb)
751 fprintf (dump_file, " loop_header");
752 fprintf (dump_file, "\n");
753 }
754
755 /* There are two purposes to align block with no fallthru incoming edge:
756 1) to avoid fetch stalls when branch destination is near cache boundary
757 2) to improve cache efficiency in case the previous block is not executed
758 (so it does not need to be in the cache).
759
760 We to catch first case, we align frequently executed blocks.
761 To catch the second, we align blocks that are executed more frequently
762 than the predecessor and the predecessor is likely to not be executed
763 when function is called. */
764
765 if (!has_fallthru
766 && (branch_frequency > freq_threshold
767 || (bb->frequency > bb->prev_bb->frequency * 10
768 && (bb->prev_bb->frequency
769 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
770 {
771 log = JUMP_ALIGN (label);
772 if (dump_file)
773 fprintf (dump_file, " jump alignment added.\n");
774 if (max_log < log)
775 {
776 max_log = log;
777 max_skip = targetm.asm_out.jump_align_max_skip (label);
778 }
779 }
780 /* In case block is frequent and reached mostly by non-fallthru edge,
781 align it. It is most likely a first block of loop. */
782 if (has_fallthru
783 && !(single_succ_p (bb)
784 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
785 && optimize_bb_for_speed_p (bb)
786 && branch_frequency + fallthru_frequency > freq_threshold
787 && (branch_frequency
788 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
789 {
790 log = LOOP_ALIGN (label);
791 if (dump_file)
792 fprintf (dump_file, " internal loop alignment added.\n");
793 if (max_log < log)
794 {
795 max_log = log;
796 max_skip = targetm.asm_out.loop_align_max_skip (label);
797 }
798 }
799 LABEL_TO_ALIGNMENT (label) = max_log;
800 LABEL_TO_MAX_SKIP (label) = max_skip;
801 }
802
803 loop_optimizer_finalize ();
804 free_dominance_info (CDI_DOMINATORS);
805 return 0;
806 }
807
808 /* Grow the LABEL_ALIGN array after new labels are created. */
809
810 static void
811 grow_label_align (void)
812 {
813 int old = max_labelno;
814 int n_labels;
815 int n_old_labels;
816
817 max_labelno = max_label_num ();
818
819 n_labels = max_labelno - min_labelno + 1;
820 n_old_labels = old - min_labelno + 1;
821
822 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
823
824 /* Range of labels grows monotonically in the function. Failing here
825 means that the initialization of array got lost. */
826 gcc_assert (n_old_labels <= n_labels);
827
828 memset (label_align + n_old_labels, 0,
829 (n_labels - n_old_labels) * sizeof (struct label_alignment));
830 }
831
832 /* Update the already computed alignment information. LABEL_PAIRS is a vector
833 made up of pairs of labels for which the alignment information of the first
834 element will be copied from that of the second element. */
835
836 void
837 update_alignments (vec<rtx> &label_pairs)
838 {
839 unsigned int i = 0;
840 rtx iter, label = NULL_RTX;
841
842 if (max_labelno != max_label_num ())
843 grow_label_align ();
844
845 FOR_EACH_VEC_ELT (label_pairs, i, iter)
846 if (i & 1)
847 {
848 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
849 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
850 }
851 else
852 label = iter;
853 }
854
855 namespace {
856
857 const pass_data pass_data_compute_alignments =
858 {
859 RTL_PASS, /* type */
860 "alignments", /* name */
861 OPTGROUP_NONE, /* optinfo_flags */
862 TV_NONE, /* tv_id */
863 0, /* properties_required */
864 0, /* properties_provided */
865 0, /* properties_destroyed */
866 0, /* todo_flags_start */
867 0, /* todo_flags_finish */
868 };
869
870 class pass_compute_alignments : public rtl_opt_pass
871 {
872 public:
873 pass_compute_alignments (gcc::context *ctxt)
874 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
875 {}
876
877 /* opt_pass methods: */
878 virtual unsigned int execute (function *) { return compute_alignments (); }
879
880 }; // class pass_compute_alignments
881
882 } // anon namespace
883
884 rtl_opt_pass *
885 make_pass_compute_alignments (gcc::context *ctxt)
886 {
887 return new pass_compute_alignments (ctxt);
888 }
889
890 \f
891 /* Make a pass over all insns and compute their actual lengths by shortening
892 any branches of variable length if possible. */
893
894 /* shorten_branches might be called multiple times: for example, the SH
895 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
896 In order to do this, it needs proper length information, which it obtains
897 by calling shorten_branches. This cannot be collapsed with
898 shorten_branches itself into a single pass unless we also want to integrate
899 reorg.c, since the branch splitting exposes new instructions with delay
900 slots. */
901
902 void
903 shorten_branches (rtx_insn *first)
904 {
905 rtx_insn *insn;
906 int max_uid;
907 int i;
908 int max_log;
909 int max_skip;
910 #define MAX_CODE_ALIGN 16
911 rtx_insn *seq;
912 int something_changed = 1;
913 char *varying_length;
914 rtx body;
915 int uid;
916 rtx align_tab[MAX_CODE_ALIGN];
917
918 /* Compute maximum UID and allocate label_align / uid_shuid. */
919 max_uid = get_max_uid ();
920
921 /* Free uid_shuid before reallocating it. */
922 free (uid_shuid);
923
924 uid_shuid = XNEWVEC (int, max_uid);
925
926 if (max_labelno != max_label_num ())
927 grow_label_align ();
928
929 /* Initialize label_align and set up uid_shuid to be strictly
930 monotonically rising with insn order. */
931 /* We use max_log here to keep track of the maximum alignment we want to
932 impose on the next CODE_LABEL (or the current one if we are processing
933 the CODE_LABEL itself). */
934
935 max_log = 0;
936 max_skip = 0;
937
938 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
939 {
940 int log;
941
942 INSN_SHUID (insn) = i++;
943 if (INSN_P (insn))
944 continue;
945
946 if (LABEL_P (insn))
947 {
948 rtx_insn *next;
949 bool next_is_jumptable;
950
951 /* Merge in alignments computed by compute_alignments. */
952 log = LABEL_TO_ALIGNMENT (insn);
953 if (max_log < log)
954 {
955 max_log = log;
956 max_skip = LABEL_TO_MAX_SKIP (insn);
957 }
958
959 next = next_nonnote_insn (insn);
960 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
961 if (!next_is_jumptable)
962 {
963 log = LABEL_ALIGN (insn);
964 if (max_log < log)
965 {
966 max_log = log;
967 max_skip = targetm.asm_out.label_align_max_skip (insn);
968 }
969 }
970 /* ADDR_VECs only take room if read-only data goes into the text
971 section. */
972 if ((JUMP_TABLES_IN_TEXT_SECTION
973 || readonly_data_section == text_section)
974 && next_is_jumptable)
975 {
976 log = ADDR_VEC_ALIGN (next);
977 if (max_log < log)
978 {
979 max_log = log;
980 max_skip = targetm.asm_out.label_align_max_skip (insn);
981 }
982 }
983 LABEL_TO_ALIGNMENT (insn) = max_log;
984 LABEL_TO_MAX_SKIP (insn) = max_skip;
985 max_log = 0;
986 max_skip = 0;
987 }
988 else if (BARRIER_P (insn))
989 {
990 rtx_insn *label;
991
992 for (label = insn; label && ! INSN_P (label);
993 label = NEXT_INSN (label))
994 if (LABEL_P (label))
995 {
996 log = LABEL_ALIGN_AFTER_BARRIER (insn);
997 if (max_log < log)
998 {
999 max_log = log;
1000 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
1001 }
1002 break;
1003 }
1004 }
1005 }
1006 if (!HAVE_ATTR_length)
1007 return;
1008
1009 /* Allocate the rest of the arrays. */
1010 insn_lengths = XNEWVEC (int, max_uid);
1011 insn_lengths_max_uid = max_uid;
1012 /* Syntax errors can lead to labels being outside of the main insn stream.
1013 Initialize insn_addresses, so that we get reproducible results. */
1014 INSN_ADDRESSES_ALLOC (max_uid);
1015
1016 varying_length = XCNEWVEC (char, max_uid);
1017
1018 /* Initialize uid_align. We scan instructions
1019 from end to start, and keep in align_tab[n] the last seen insn
1020 that does an alignment of at least n+1, i.e. the successor
1021 in the alignment chain for an insn that does / has a known
1022 alignment of n. */
1023 uid_align = XCNEWVEC (rtx, max_uid);
1024
1025 for (i = MAX_CODE_ALIGN; --i >= 0;)
1026 align_tab[i] = NULL_RTX;
1027 seq = get_last_insn ();
1028 for (; seq; seq = PREV_INSN (seq))
1029 {
1030 int uid = INSN_UID (seq);
1031 int log;
1032 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1033 uid_align[uid] = align_tab[0];
1034 if (log)
1035 {
1036 /* Found an alignment label. */
1037 uid_align[uid] = align_tab[log];
1038 for (i = log - 1; i >= 0; i--)
1039 align_tab[i] = seq;
1040 }
1041 }
1042
1043 /* When optimizing, we start assuming minimum length, and keep increasing
1044 lengths as we find the need for this, till nothing changes.
1045 When not optimizing, we start assuming maximum lengths, and
1046 do a single pass to update the lengths. */
1047 bool increasing = optimize != 0;
1048
1049 #ifdef CASE_VECTOR_SHORTEN_MODE
1050 if (optimize)
1051 {
1052 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1053 label fields. */
1054
1055 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1056 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1057 int rel;
1058
1059 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1060 {
1061 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1062 int len, i, min, max, insn_shuid;
1063 int min_align;
1064 addr_diff_vec_flags flags;
1065
1066 if (! JUMP_TABLE_DATA_P (insn)
1067 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1068 continue;
1069 pat = PATTERN (insn);
1070 len = XVECLEN (pat, 1);
1071 gcc_assert (len > 0);
1072 min_align = MAX_CODE_ALIGN;
1073 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1074 {
1075 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1076 int shuid = INSN_SHUID (lab);
1077 if (shuid < min)
1078 {
1079 min = shuid;
1080 min_lab = lab;
1081 }
1082 if (shuid > max)
1083 {
1084 max = shuid;
1085 max_lab = lab;
1086 }
1087 if (min_align > LABEL_TO_ALIGNMENT (lab))
1088 min_align = LABEL_TO_ALIGNMENT (lab);
1089 }
1090 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1091 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1092 insn_shuid = INSN_SHUID (insn);
1093 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1094 memset (&flags, 0, sizeof (flags));
1095 flags.min_align = min_align;
1096 flags.base_after_vec = rel > insn_shuid;
1097 flags.min_after_vec = min > insn_shuid;
1098 flags.max_after_vec = max > insn_shuid;
1099 flags.min_after_base = min > rel;
1100 flags.max_after_base = max > rel;
1101 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1102
1103 if (increasing)
1104 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1105 }
1106 }
1107 #endif /* CASE_VECTOR_SHORTEN_MODE */
1108
1109 /* Compute initial lengths, addresses, and varying flags for each insn. */
1110 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1111
1112 for (insn_current_address = 0, insn = first;
1113 insn != 0;
1114 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1115 {
1116 uid = INSN_UID (insn);
1117
1118 insn_lengths[uid] = 0;
1119
1120 if (LABEL_P (insn))
1121 {
1122 int log = LABEL_TO_ALIGNMENT (insn);
1123 if (log)
1124 {
1125 int align = 1 << log;
1126 int new_address = (insn_current_address + align - 1) & -align;
1127 insn_lengths[uid] = new_address - insn_current_address;
1128 }
1129 }
1130
1131 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1132
1133 if (NOTE_P (insn) || BARRIER_P (insn)
1134 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1135 continue;
1136 if (insn->deleted ())
1137 continue;
1138
1139 body = PATTERN (insn);
1140 if (JUMP_TABLE_DATA_P (insn))
1141 {
1142 /* This only takes room if read-only data goes into the text
1143 section. */
1144 if (JUMP_TABLES_IN_TEXT_SECTION
1145 || readonly_data_section == text_section)
1146 insn_lengths[uid] = (XVECLEN (body,
1147 GET_CODE (body) == ADDR_DIFF_VEC)
1148 * GET_MODE_SIZE (GET_MODE (body)));
1149 /* Alignment is handled by ADDR_VEC_ALIGN. */
1150 }
1151 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1152 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1153 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1154 {
1155 int i;
1156 int const_delay_slots;
1157 if (DELAY_SLOTS)
1158 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1159 else
1160 const_delay_slots = 0;
1161
1162 int (*inner_length_fun) (rtx_insn *)
1163 = const_delay_slots ? length_fun : insn_default_length;
1164 /* Inside a delay slot sequence, we do not do any branch shortening
1165 if the shortening could change the number of delay slots
1166 of the branch. */
1167 for (i = 0; i < body_seq->len (); i++)
1168 {
1169 rtx_insn *inner_insn = body_seq->insn (i);
1170 int inner_uid = INSN_UID (inner_insn);
1171 int inner_length;
1172
1173 if (GET_CODE (body) == ASM_INPUT
1174 || asm_noperands (PATTERN (inner_insn)) >= 0)
1175 inner_length = (asm_insn_count (PATTERN (inner_insn))
1176 * insn_default_length (inner_insn));
1177 else
1178 inner_length = inner_length_fun (inner_insn);
1179
1180 insn_lengths[inner_uid] = inner_length;
1181 if (const_delay_slots)
1182 {
1183 if ((varying_length[inner_uid]
1184 = insn_variable_length_p (inner_insn)) != 0)
1185 varying_length[uid] = 1;
1186 INSN_ADDRESSES (inner_uid) = (insn_current_address
1187 + insn_lengths[uid]);
1188 }
1189 else
1190 varying_length[inner_uid] = 0;
1191 insn_lengths[uid] += inner_length;
1192 }
1193 }
1194 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1195 {
1196 insn_lengths[uid] = length_fun (insn);
1197 varying_length[uid] = insn_variable_length_p (insn);
1198 }
1199
1200 /* If needed, do any adjustment. */
1201 #ifdef ADJUST_INSN_LENGTH
1202 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1203 if (insn_lengths[uid] < 0)
1204 fatal_insn ("negative insn length", insn);
1205 #endif
1206 }
1207
1208 /* Now loop over all the insns finding varying length insns. For each,
1209 get the current insn length. If it has changed, reflect the change.
1210 When nothing changes for a full pass, we are done. */
1211
1212 while (something_changed)
1213 {
1214 something_changed = 0;
1215 insn_current_align = MAX_CODE_ALIGN - 1;
1216 for (insn_current_address = 0, insn = first;
1217 insn != 0;
1218 insn = NEXT_INSN (insn))
1219 {
1220 int new_length;
1221 #ifdef ADJUST_INSN_LENGTH
1222 int tmp_length;
1223 #endif
1224 int length_align;
1225
1226 uid = INSN_UID (insn);
1227
1228 if (LABEL_P (insn))
1229 {
1230 int log = LABEL_TO_ALIGNMENT (insn);
1231
1232 #ifdef CASE_VECTOR_SHORTEN_MODE
1233 /* If the mode of a following jump table was changed, we
1234 may need to update the alignment of this label. */
1235 rtx_insn *next;
1236 bool next_is_jumptable;
1237
1238 next = next_nonnote_insn (insn);
1239 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1240 if ((JUMP_TABLES_IN_TEXT_SECTION
1241 || readonly_data_section == text_section)
1242 && next_is_jumptable)
1243 {
1244 int newlog = ADDR_VEC_ALIGN (next);
1245 if (newlog != log)
1246 {
1247 log = newlog;
1248 LABEL_TO_ALIGNMENT (insn) = log;
1249 something_changed = 1;
1250 }
1251 }
1252 #endif
1253
1254 if (log > insn_current_align)
1255 {
1256 int align = 1 << log;
1257 int new_address= (insn_current_address + align - 1) & -align;
1258 insn_lengths[uid] = new_address - insn_current_address;
1259 insn_current_align = log;
1260 insn_current_address = new_address;
1261 }
1262 else
1263 insn_lengths[uid] = 0;
1264 INSN_ADDRESSES (uid) = insn_current_address;
1265 continue;
1266 }
1267
1268 length_align = INSN_LENGTH_ALIGNMENT (insn);
1269 if (length_align < insn_current_align)
1270 insn_current_align = length_align;
1271
1272 insn_last_address = INSN_ADDRESSES (uid);
1273 INSN_ADDRESSES (uid) = insn_current_address;
1274
1275 #ifdef CASE_VECTOR_SHORTEN_MODE
1276 if (optimize
1277 && JUMP_TABLE_DATA_P (insn)
1278 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1279 {
1280 rtx body = PATTERN (insn);
1281 int old_length = insn_lengths[uid];
1282 rtx_insn *rel_lab =
1283 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1284 rtx min_lab = XEXP (XEXP (body, 2), 0);
1285 rtx max_lab = XEXP (XEXP (body, 3), 0);
1286 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1287 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1288 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1289 rtx_insn *prev;
1290 int rel_align = 0;
1291 addr_diff_vec_flags flags;
1292 machine_mode vec_mode;
1293
1294 /* Avoid automatic aggregate initialization. */
1295 flags = ADDR_DIFF_VEC_FLAGS (body);
1296
1297 /* Try to find a known alignment for rel_lab. */
1298 for (prev = rel_lab;
1299 prev
1300 && ! insn_lengths[INSN_UID (prev)]
1301 && ! (varying_length[INSN_UID (prev)] & 1);
1302 prev = PREV_INSN (prev))
1303 if (varying_length[INSN_UID (prev)] & 2)
1304 {
1305 rel_align = LABEL_TO_ALIGNMENT (prev);
1306 break;
1307 }
1308
1309 /* See the comment on addr_diff_vec_flags in rtl.h for the
1310 meaning of the flags values. base: REL_LAB vec: INSN */
1311 /* Anything after INSN has still addresses from the last
1312 pass; adjust these so that they reflect our current
1313 estimate for this pass. */
1314 if (flags.base_after_vec)
1315 rel_addr += insn_current_address - insn_last_address;
1316 if (flags.min_after_vec)
1317 min_addr += insn_current_address - insn_last_address;
1318 if (flags.max_after_vec)
1319 max_addr += insn_current_address - insn_last_address;
1320 /* We want to know the worst case, i.e. lowest possible value
1321 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1322 its offset is positive, and we have to be wary of code shrink;
1323 otherwise, it is negative, and we have to be vary of code
1324 size increase. */
1325 if (flags.min_after_base)
1326 {
1327 /* If INSN is between REL_LAB and MIN_LAB, the size
1328 changes we are about to make can change the alignment
1329 within the observed offset, therefore we have to break
1330 it up into two parts that are independent. */
1331 if (! flags.base_after_vec && flags.min_after_vec)
1332 {
1333 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1334 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1335 }
1336 else
1337 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1338 }
1339 else
1340 {
1341 if (flags.base_after_vec && ! flags.min_after_vec)
1342 {
1343 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1344 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1345 }
1346 else
1347 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1348 }
1349 /* Likewise, determine the highest lowest possible value
1350 for the offset of MAX_LAB. */
1351 if (flags.max_after_base)
1352 {
1353 if (! flags.base_after_vec && flags.max_after_vec)
1354 {
1355 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1356 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1357 }
1358 else
1359 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1360 }
1361 else
1362 {
1363 if (flags.base_after_vec && ! flags.max_after_vec)
1364 {
1365 max_addr += align_fuzz (max_lab, insn, 0, 0);
1366 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1367 }
1368 else
1369 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1370 }
1371 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1372 max_addr - rel_addr, body);
1373 if (!increasing
1374 || (GET_MODE_SIZE (vec_mode)
1375 >= GET_MODE_SIZE (GET_MODE (body))))
1376 PUT_MODE (body, vec_mode);
1377 if (JUMP_TABLES_IN_TEXT_SECTION
1378 || readonly_data_section == text_section)
1379 {
1380 insn_lengths[uid]
1381 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1382 insn_current_address += insn_lengths[uid];
1383 if (insn_lengths[uid] != old_length)
1384 something_changed = 1;
1385 }
1386
1387 continue;
1388 }
1389 #endif /* CASE_VECTOR_SHORTEN_MODE */
1390
1391 if (! (varying_length[uid]))
1392 {
1393 if (NONJUMP_INSN_P (insn)
1394 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1395 {
1396 int i;
1397
1398 body = PATTERN (insn);
1399 for (i = 0; i < XVECLEN (body, 0); i++)
1400 {
1401 rtx inner_insn = XVECEXP (body, 0, i);
1402 int inner_uid = INSN_UID (inner_insn);
1403
1404 INSN_ADDRESSES (inner_uid) = insn_current_address;
1405
1406 insn_current_address += insn_lengths[inner_uid];
1407 }
1408 }
1409 else
1410 insn_current_address += insn_lengths[uid];
1411
1412 continue;
1413 }
1414
1415 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1416 {
1417 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1418 int i;
1419
1420 body = PATTERN (insn);
1421 new_length = 0;
1422 for (i = 0; i < seqn->len (); i++)
1423 {
1424 rtx_insn *inner_insn = seqn->insn (i);
1425 int inner_uid = INSN_UID (inner_insn);
1426 int inner_length;
1427
1428 INSN_ADDRESSES (inner_uid) = insn_current_address;
1429
1430 /* insn_current_length returns 0 for insns with a
1431 non-varying length. */
1432 if (! varying_length[inner_uid])
1433 inner_length = insn_lengths[inner_uid];
1434 else
1435 inner_length = insn_current_length (inner_insn);
1436
1437 if (inner_length != insn_lengths[inner_uid])
1438 {
1439 if (!increasing || inner_length > insn_lengths[inner_uid])
1440 {
1441 insn_lengths[inner_uid] = inner_length;
1442 something_changed = 1;
1443 }
1444 else
1445 inner_length = insn_lengths[inner_uid];
1446 }
1447 insn_current_address += inner_length;
1448 new_length += inner_length;
1449 }
1450 }
1451 else
1452 {
1453 new_length = insn_current_length (insn);
1454 insn_current_address += new_length;
1455 }
1456
1457 #ifdef ADJUST_INSN_LENGTH
1458 /* If needed, do any adjustment. */
1459 tmp_length = new_length;
1460 ADJUST_INSN_LENGTH (insn, new_length);
1461 insn_current_address += (new_length - tmp_length);
1462 #endif
1463
1464 if (new_length != insn_lengths[uid]
1465 && (!increasing || new_length > insn_lengths[uid]))
1466 {
1467 insn_lengths[uid] = new_length;
1468 something_changed = 1;
1469 }
1470 else
1471 insn_current_address += insn_lengths[uid] - new_length;
1472 }
1473 /* For a non-optimizing compile, do only a single pass. */
1474 if (!increasing)
1475 break;
1476 }
1477
1478 free (varying_length);
1479 }
1480
1481 /* Given the body of an INSN known to be generated by an ASM statement, return
1482 the number of machine instructions likely to be generated for this insn.
1483 This is used to compute its length. */
1484
1485 static int
1486 asm_insn_count (rtx body)
1487 {
1488 const char *templ;
1489
1490 if (GET_CODE (body) == ASM_INPUT)
1491 templ = XSTR (body, 0);
1492 else
1493 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1494
1495 return asm_str_count (templ);
1496 }
1497
1498 /* Return the number of machine instructions likely to be generated for the
1499 inline-asm template. */
1500 int
1501 asm_str_count (const char *templ)
1502 {
1503 int count = 1;
1504
1505 if (!*templ)
1506 return 0;
1507
1508 for (; *templ; templ++)
1509 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1510 || *templ == '\n')
1511 count++;
1512
1513 return count;
1514 }
1515 \f
1516 /* ??? This is probably the wrong place for these. */
1517 /* Structure recording the mapping from source file and directory
1518 names at compile time to those to be embedded in debug
1519 information. */
1520 struct debug_prefix_map
1521 {
1522 const char *old_prefix;
1523 const char *new_prefix;
1524 size_t old_len;
1525 size_t new_len;
1526 struct debug_prefix_map *next;
1527 };
1528
1529 /* Linked list of such structures. */
1530 static debug_prefix_map *debug_prefix_maps;
1531
1532
1533 /* Record a debug file prefix mapping. ARG is the argument to
1534 -fdebug-prefix-map and must be of the form OLD=NEW. */
1535
1536 void
1537 add_debug_prefix_map (const char *arg)
1538 {
1539 debug_prefix_map *map;
1540 const char *p;
1541
1542 p = strchr (arg, '=');
1543 if (!p)
1544 {
1545 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1546 return;
1547 }
1548 map = XNEW (debug_prefix_map);
1549 map->old_prefix = xstrndup (arg, p - arg);
1550 map->old_len = p - arg;
1551 p++;
1552 map->new_prefix = xstrdup (p);
1553 map->new_len = strlen (p);
1554 map->next = debug_prefix_maps;
1555 debug_prefix_maps = map;
1556 }
1557
1558 /* Perform user-specified mapping of debug filename prefixes. Return
1559 the new name corresponding to FILENAME. */
1560
1561 const char *
1562 remap_debug_filename (const char *filename)
1563 {
1564 debug_prefix_map *map;
1565 char *s;
1566 const char *name;
1567 size_t name_len;
1568
1569 for (map = debug_prefix_maps; map; map = map->next)
1570 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1571 break;
1572 if (!map)
1573 return filename;
1574 name = filename + map->old_len;
1575 name_len = strlen (name) + 1;
1576 s = (char *) alloca (name_len + map->new_len);
1577 memcpy (s, map->new_prefix, map->new_len);
1578 memcpy (s + map->new_len, name, name_len);
1579 return ggc_strdup (s);
1580 }
1581 \f
1582 /* Return true if DWARF2 debug info can be emitted for DECL. */
1583
1584 static bool
1585 dwarf2_debug_info_emitted_p (tree decl)
1586 {
1587 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1588 return false;
1589
1590 if (DECL_IGNORED_P (decl))
1591 return false;
1592
1593 return true;
1594 }
1595
1596 /* Return scope resulting from combination of S1 and S2. */
1597 static tree
1598 choose_inner_scope (tree s1, tree s2)
1599 {
1600 if (!s1)
1601 return s2;
1602 if (!s2)
1603 return s1;
1604 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1605 return s1;
1606 return s2;
1607 }
1608
1609 /* Emit lexical block notes needed to change scope from S1 to S2. */
1610
1611 static void
1612 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1613 {
1614 rtx_insn *insn = orig_insn;
1615 tree com = NULL_TREE;
1616 tree ts1 = s1, ts2 = s2;
1617 tree s;
1618
1619 while (ts1 != ts2)
1620 {
1621 gcc_assert (ts1 && ts2);
1622 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1623 ts1 = BLOCK_SUPERCONTEXT (ts1);
1624 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1625 ts2 = BLOCK_SUPERCONTEXT (ts2);
1626 else
1627 {
1628 ts1 = BLOCK_SUPERCONTEXT (ts1);
1629 ts2 = BLOCK_SUPERCONTEXT (ts2);
1630 }
1631 }
1632 com = ts1;
1633
1634 /* Close scopes. */
1635 s = s1;
1636 while (s != com)
1637 {
1638 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1639 NOTE_BLOCK (note) = s;
1640 s = BLOCK_SUPERCONTEXT (s);
1641 }
1642
1643 /* Open scopes. */
1644 s = s2;
1645 while (s != com)
1646 {
1647 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1648 NOTE_BLOCK (insn) = s;
1649 s = BLOCK_SUPERCONTEXT (s);
1650 }
1651 }
1652
1653 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1654 on the scope tree and the newly reordered instructions. */
1655
1656 static void
1657 reemit_insn_block_notes (void)
1658 {
1659 tree cur_block = DECL_INITIAL (cfun->decl);
1660 rtx_insn *insn;
1661 rtx_note *note;
1662
1663 insn = get_insns ();
1664 for (; insn; insn = NEXT_INSN (insn))
1665 {
1666 tree this_block;
1667
1668 /* Prevent lexical blocks from straddling section boundaries. */
1669 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1670 {
1671 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1672 s = BLOCK_SUPERCONTEXT (s))
1673 {
1674 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1675 NOTE_BLOCK (note) = s;
1676 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1677 NOTE_BLOCK (note) = s;
1678 }
1679 }
1680
1681 if (!active_insn_p (insn))
1682 continue;
1683
1684 /* Avoid putting scope notes between jump table and its label. */
1685 if (JUMP_TABLE_DATA_P (insn))
1686 continue;
1687
1688 this_block = insn_scope (insn);
1689 /* For sequences compute scope resulting from merging all scopes
1690 of instructions nested inside. */
1691 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1692 {
1693 int i;
1694
1695 this_block = NULL;
1696 for (i = 0; i < body->len (); i++)
1697 this_block = choose_inner_scope (this_block,
1698 insn_scope (body->insn (i)));
1699 }
1700 if (! this_block)
1701 {
1702 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1703 continue;
1704 else
1705 this_block = DECL_INITIAL (cfun->decl);
1706 }
1707
1708 if (this_block != cur_block)
1709 {
1710 change_scope (insn, cur_block, this_block);
1711 cur_block = this_block;
1712 }
1713 }
1714
1715 /* change_scope emits before the insn, not after. */
1716 note = emit_note (NOTE_INSN_DELETED);
1717 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1718 delete_insn (note);
1719
1720 reorder_blocks ();
1721 }
1722
1723 static const char *some_local_dynamic_name;
1724
1725 /* Locate some local-dynamic symbol still in use by this function
1726 so that we can print its name in local-dynamic base patterns.
1727 Return null if there are no local-dynamic references. */
1728
1729 const char *
1730 get_some_local_dynamic_name ()
1731 {
1732 subrtx_iterator::array_type array;
1733 rtx_insn *insn;
1734
1735 if (some_local_dynamic_name)
1736 return some_local_dynamic_name;
1737
1738 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1739 if (NONDEBUG_INSN_P (insn))
1740 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1741 {
1742 const_rtx x = *iter;
1743 if (GET_CODE (x) == SYMBOL_REF)
1744 {
1745 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1746 return some_local_dynamic_name = XSTR (x, 0);
1747 if (CONSTANT_POOL_ADDRESS_P (x))
1748 iter.substitute (get_pool_constant (x));
1749 }
1750 }
1751
1752 return 0;
1753 }
1754
1755 /* Output assembler code for the start of a function,
1756 and initialize some of the variables in this file
1757 for the new function. The label for the function and associated
1758 assembler pseudo-ops have already been output in `assemble_start_function'.
1759
1760 FIRST is the first insn of the rtl for the function being compiled.
1761 FILE is the file to write assembler code to.
1762 OPTIMIZE_P is nonzero if we should eliminate redundant
1763 test and compare insns. */
1764
1765 void
1766 final_start_function (rtx_insn *first, FILE *file,
1767 int optimize_p ATTRIBUTE_UNUSED)
1768 {
1769 block_depth = 0;
1770
1771 this_is_asm_operands = 0;
1772
1773 need_profile_function = false;
1774
1775 last_filename = LOCATION_FILE (prologue_location);
1776 last_linenum = LOCATION_LINE (prologue_location);
1777 last_discriminator = discriminator = 0;
1778
1779 high_block_linenum = high_function_linenum = last_linenum;
1780
1781 if (flag_sanitize & SANITIZE_ADDRESS)
1782 asan_function_start ();
1783
1784 if (!DECL_IGNORED_P (current_function_decl))
1785 debug_hooks->begin_prologue (last_linenum, last_filename);
1786
1787 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1788 dwarf2out_begin_prologue (0, NULL);
1789
1790 #ifdef LEAF_REG_REMAP
1791 if (crtl->uses_only_leaf_regs)
1792 leaf_renumber_regs (first);
1793 #endif
1794
1795 /* The Sun386i and perhaps other machines don't work right
1796 if the profiling code comes after the prologue. */
1797 if (targetm.profile_before_prologue () && crtl->profile)
1798 {
1799 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1800 && targetm.have_prologue ())
1801 {
1802 rtx_insn *insn;
1803 for (insn = first; insn; insn = NEXT_INSN (insn))
1804 if (!NOTE_P (insn))
1805 {
1806 insn = NULL;
1807 break;
1808 }
1809 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1810 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1811 break;
1812 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1813 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1814 continue;
1815 else
1816 {
1817 insn = NULL;
1818 break;
1819 }
1820
1821 if (insn)
1822 need_profile_function = true;
1823 else
1824 profile_function (file);
1825 }
1826 else
1827 profile_function (file);
1828 }
1829
1830 /* If debugging, assign block numbers to all of the blocks in this
1831 function. */
1832 if (write_symbols)
1833 {
1834 reemit_insn_block_notes ();
1835 number_blocks (current_function_decl);
1836 /* We never actually put out begin/end notes for the top-level
1837 block in the function. But, conceptually, that block is
1838 always needed. */
1839 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1840 }
1841
1842 if (warn_frame_larger_than
1843 && get_frame_size () > frame_larger_than_size)
1844 {
1845 /* Issue a warning */
1846 warning (OPT_Wframe_larger_than_,
1847 "the frame size of %wd bytes is larger than %wd bytes",
1848 get_frame_size (), frame_larger_than_size);
1849 }
1850
1851 /* First output the function prologue: code to set up the stack frame. */
1852 targetm.asm_out.function_prologue (file, get_frame_size ());
1853
1854 /* If the machine represents the prologue as RTL, the profiling code must
1855 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1856 if (! targetm.have_prologue ())
1857 profile_after_prologue (file);
1858 }
1859
1860 static void
1861 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1862 {
1863 if (!targetm.profile_before_prologue () && crtl->profile)
1864 profile_function (file);
1865 }
1866
1867 static void
1868 profile_function (FILE *file ATTRIBUTE_UNUSED)
1869 {
1870 #ifndef NO_PROFILE_COUNTERS
1871 # define NO_PROFILE_COUNTERS 0
1872 #endif
1873 #ifdef ASM_OUTPUT_REG_PUSH
1874 rtx sval = NULL, chain = NULL;
1875
1876 if (cfun->returns_struct)
1877 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1878 true);
1879 if (cfun->static_chain_decl)
1880 chain = targetm.calls.static_chain (current_function_decl, true);
1881 #endif /* ASM_OUTPUT_REG_PUSH */
1882
1883 if (! NO_PROFILE_COUNTERS)
1884 {
1885 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1886 switch_to_section (data_section);
1887 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1888 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1889 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1890 }
1891
1892 switch_to_section (current_function_section ());
1893
1894 #ifdef ASM_OUTPUT_REG_PUSH
1895 if (sval && REG_P (sval))
1896 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1897 if (chain && REG_P (chain))
1898 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1899 #endif
1900
1901 FUNCTION_PROFILER (file, current_function_funcdef_no);
1902
1903 #ifdef ASM_OUTPUT_REG_PUSH
1904 if (chain && REG_P (chain))
1905 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1906 if (sval && REG_P (sval))
1907 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1908 #endif
1909 }
1910
1911 /* Output assembler code for the end of a function.
1912 For clarity, args are same as those of `final_start_function'
1913 even though not all of them are needed. */
1914
1915 void
1916 final_end_function (void)
1917 {
1918 app_disable ();
1919
1920 if (!DECL_IGNORED_P (current_function_decl))
1921 debug_hooks->end_function (high_function_linenum);
1922
1923 /* Finally, output the function epilogue:
1924 code to restore the stack frame and return to the caller. */
1925 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1926
1927 /* And debug output. */
1928 if (!DECL_IGNORED_P (current_function_decl))
1929 debug_hooks->end_epilogue (last_linenum, last_filename);
1930
1931 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1932 && dwarf2out_do_frame ())
1933 dwarf2out_end_epilogue (last_linenum, last_filename);
1934
1935 some_local_dynamic_name = 0;
1936 }
1937 \f
1938
1939 /* Dumper helper for basic block information. FILE is the assembly
1940 output file, and INSN is the instruction being emitted. */
1941
1942 static void
1943 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1944 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1945 {
1946 basic_block bb;
1947
1948 if (!flag_debug_asm)
1949 return;
1950
1951 if (INSN_UID (insn) < bb_map_size
1952 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1953 {
1954 edge e;
1955 edge_iterator ei;
1956
1957 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1958 if (bb->frequency)
1959 fprintf (file, " freq:%d", bb->frequency);
1960 if (bb->count)
1961 fprintf (file, " count:%" PRId64,
1962 bb->count);
1963 fprintf (file, " seq:%d", (*bb_seqn)++);
1964 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1965 FOR_EACH_EDGE (e, ei, bb->preds)
1966 {
1967 dump_edge_info (file, e, TDF_DETAILS, 0);
1968 }
1969 fprintf (file, "\n");
1970 }
1971 if (INSN_UID (insn) < bb_map_size
1972 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1973 {
1974 edge e;
1975 edge_iterator ei;
1976
1977 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1978 FOR_EACH_EDGE (e, ei, bb->succs)
1979 {
1980 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1981 }
1982 fprintf (file, "\n");
1983 }
1984 }
1985
1986 /* Output assembler code for some insns: all or part of a function.
1987 For description of args, see `final_start_function', above. */
1988
1989 void
1990 final (rtx_insn *first, FILE *file, int optimize_p)
1991 {
1992 rtx_insn *insn, *next;
1993 int seen = 0;
1994
1995 /* Used for -dA dump. */
1996 basic_block *start_to_bb = NULL;
1997 basic_block *end_to_bb = NULL;
1998 int bb_map_size = 0;
1999 int bb_seqn = 0;
2000
2001 last_ignored_compare = 0;
2002
2003 if (HAVE_cc0)
2004 for (insn = first; insn; insn = NEXT_INSN (insn))
2005 {
2006 /* If CC tracking across branches is enabled, record the insn which
2007 jumps to each branch only reached from one place. */
2008 if (optimize_p && JUMP_P (insn))
2009 {
2010 rtx lab = JUMP_LABEL (insn);
2011 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
2012 {
2013 LABEL_REFS (lab) = insn;
2014 }
2015 }
2016 }
2017
2018 init_recog ();
2019
2020 CC_STATUS_INIT;
2021
2022 if (flag_debug_asm)
2023 {
2024 basic_block bb;
2025
2026 bb_map_size = get_max_uid () + 1;
2027 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
2028 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
2029
2030 /* There is no cfg for a thunk. */
2031 if (!cfun->is_thunk)
2032 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2033 {
2034 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2035 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2036 }
2037 }
2038
2039 /* Output the insns. */
2040 for (insn = first; insn;)
2041 {
2042 if (HAVE_ATTR_length)
2043 {
2044 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2045 {
2046 /* This can be triggered by bugs elsewhere in the compiler if
2047 new insns are created after init_insn_lengths is called. */
2048 gcc_assert (NOTE_P (insn));
2049 insn_current_address = -1;
2050 }
2051 else
2052 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2053 }
2054
2055 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2056 bb_map_size, &bb_seqn);
2057 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2058 }
2059
2060 if (flag_debug_asm)
2061 {
2062 free (start_to_bb);
2063 free (end_to_bb);
2064 }
2065
2066 /* Remove CFI notes, to avoid compare-debug failures. */
2067 for (insn = first; insn; insn = next)
2068 {
2069 next = NEXT_INSN (insn);
2070 if (NOTE_P (insn)
2071 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2072 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2073 delete_insn (insn);
2074 }
2075 }
2076 \f
2077 const char *
2078 get_insn_template (int code, rtx insn)
2079 {
2080 switch (insn_data[code].output_format)
2081 {
2082 case INSN_OUTPUT_FORMAT_SINGLE:
2083 return insn_data[code].output.single;
2084 case INSN_OUTPUT_FORMAT_MULTI:
2085 return insn_data[code].output.multi[which_alternative];
2086 case INSN_OUTPUT_FORMAT_FUNCTION:
2087 gcc_assert (insn);
2088 return (*insn_data[code].output.function) (recog_data.operand,
2089 as_a <rtx_insn *> (insn));
2090
2091 default:
2092 gcc_unreachable ();
2093 }
2094 }
2095
2096 /* Emit the appropriate declaration for an alternate-entry-point
2097 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2098 LABEL_KIND != LABEL_NORMAL.
2099
2100 The case fall-through in this function is intentional. */
2101 static void
2102 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2103 {
2104 const char *name = LABEL_NAME (insn);
2105
2106 switch (LABEL_KIND (insn))
2107 {
2108 case LABEL_WEAK_ENTRY:
2109 #ifdef ASM_WEAKEN_LABEL
2110 ASM_WEAKEN_LABEL (file, name);
2111 #endif
2112 case LABEL_GLOBAL_ENTRY:
2113 targetm.asm_out.globalize_label (file, name);
2114 case LABEL_STATIC_ENTRY:
2115 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2116 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2117 #endif
2118 ASM_OUTPUT_LABEL (file, name);
2119 break;
2120
2121 case LABEL_NORMAL:
2122 default:
2123 gcc_unreachable ();
2124 }
2125 }
2126
2127 /* Given a CALL_INSN, find and return the nested CALL. */
2128 static rtx
2129 call_from_call_insn (rtx_call_insn *insn)
2130 {
2131 rtx x;
2132 gcc_assert (CALL_P (insn));
2133 x = PATTERN (insn);
2134
2135 while (GET_CODE (x) != CALL)
2136 {
2137 switch (GET_CODE (x))
2138 {
2139 default:
2140 gcc_unreachable ();
2141 case COND_EXEC:
2142 x = COND_EXEC_CODE (x);
2143 break;
2144 case PARALLEL:
2145 x = XVECEXP (x, 0, 0);
2146 break;
2147 case SET:
2148 x = XEXP (x, 1);
2149 break;
2150 }
2151 }
2152 return x;
2153 }
2154
2155 /* The final scan for one insn, INSN.
2156 Args are same as in `final', except that INSN
2157 is the insn being scanned.
2158 Value returned is the next insn to be scanned.
2159
2160 NOPEEPHOLES is the flag to disallow peephole processing (currently
2161 used for within delayed branch sequence output).
2162
2163 SEEN is used to track the end of the prologue, for emitting
2164 debug information. We force the emission of a line note after
2165 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2166
2167 rtx_insn *
2168 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2169 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2170 {
2171 #if HAVE_cc0
2172 rtx set;
2173 #endif
2174 rtx_insn *next;
2175
2176 insn_counter++;
2177
2178 /* Ignore deleted insns. These can occur when we split insns (due to a
2179 template of "#") while not optimizing. */
2180 if (insn->deleted ())
2181 return NEXT_INSN (insn);
2182
2183 switch (GET_CODE (insn))
2184 {
2185 case NOTE:
2186 switch (NOTE_KIND (insn))
2187 {
2188 case NOTE_INSN_DELETED:
2189 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2190 break;
2191
2192 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2193 in_cold_section_p = !in_cold_section_p;
2194
2195 if (dwarf2out_do_frame ())
2196 dwarf2out_switch_text_section ();
2197 else if (!DECL_IGNORED_P (current_function_decl))
2198 debug_hooks->switch_text_section ();
2199
2200 switch_to_section (current_function_section ());
2201 targetm.asm_out.function_switched_text_sections (asm_out_file,
2202 current_function_decl,
2203 in_cold_section_p);
2204 /* Emit a label for the split cold section. Form label name by
2205 suffixing "cold" to the original function's name. */
2206 if (in_cold_section_p)
2207 {
2208 cold_function_name
2209 = clone_function_name (current_function_decl, "cold");
2210 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2211 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2212 IDENTIFIER_POINTER
2213 (cold_function_name),
2214 current_function_decl);
2215 #else
2216 ASM_OUTPUT_LABEL (asm_out_file,
2217 IDENTIFIER_POINTER (cold_function_name));
2218 #endif
2219 }
2220 break;
2221
2222 case NOTE_INSN_BASIC_BLOCK:
2223 if (need_profile_function)
2224 {
2225 profile_function (asm_out_file);
2226 need_profile_function = false;
2227 }
2228
2229 if (targetm.asm_out.unwind_emit)
2230 targetm.asm_out.unwind_emit (asm_out_file, insn);
2231
2232 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2233
2234 break;
2235
2236 case NOTE_INSN_EH_REGION_BEG:
2237 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2238 NOTE_EH_HANDLER (insn));
2239 break;
2240
2241 case NOTE_INSN_EH_REGION_END:
2242 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2243 NOTE_EH_HANDLER (insn));
2244 break;
2245
2246 case NOTE_INSN_PROLOGUE_END:
2247 targetm.asm_out.function_end_prologue (file);
2248 profile_after_prologue (file);
2249
2250 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2251 {
2252 *seen |= SEEN_EMITTED;
2253 force_source_line = true;
2254 }
2255 else
2256 *seen |= SEEN_NOTE;
2257
2258 break;
2259
2260 case NOTE_INSN_EPILOGUE_BEG:
2261 if (!DECL_IGNORED_P (current_function_decl))
2262 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2263 targetm.asm_out.function_begin_epilogue (file);
2264 break;
2265
2266 case NOTE_INSN_CFI:
2267 dwarf2out_emit_cfi (NOTE_CFI (insn));
2268 break;
2269
2270 case NOTE_INSN_CFI_LABEL:
2271 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2272 NOTE_LABEL_NUMBER (insn));
2273 break;
2274
2275 case NOTE_INSN_FUNCTION_BEG:
2276 if (need_profile_function)
2277 {
2278 profile_function (asm_out_file);
2279 need_profile_function = false;
2280 }
2281
2282 app_disable ();
2283 if (!DECL_IGNORED_P (current_function_decl))
2284 debug_hooks->end_prologue (last_linenum, last_filename);
2285
2286 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2287 {
2288 *seen |= SEEN_EMITTED;
2289 force_source_line = true;
2290 }
2291 else
2292 *seen |= SEEN_NOTE;
2293
2294 break;
2295
2296 case NOTE_INSN_BLOCK_BEG:
2297 if (debug_info_level == DINFO_LEVEL_NORMAL
2298 || debug_info_level == DINFO_LEVEL_VERBOSE
2299 || write_symbols == DWARF2_DEBUG
2300 || write_symbols == VMS_AND_DWARF2_DEBUG
2301 || write_symbols == VMS_DEBUG)
2302 {
2303 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2304
2305 app_disable ();
2306 ++block_depth;
2307 high_block_linenum = last_linenum;
2308
2309 /* Output debugging info about the symbol-block beginning. */
2310 if (!DECL_IGNORED_P (current_function_decl))
2311 debug_hooks->begin_block (last_linenum, n);
2312
2313 /* Mark this block as output. */
2314 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2315 }
2316 if (write_symbols == DBX_DEBUG
2317 || write_symbols == SDB_DEBUG)
2318 {
2319 location_t *locus_ptr
2320 = block_nonartificial_location (NOTE_BLOCK (insn));
2321
2322 if (locus_ptr != NULL)
2323 {
2324 override_filename = LOCATION_FILE (*locus_ptr);
2325 override_linenum = LOCATION_LINE (*locus_ptr);
2326 }
2327 }
2328 break;
2329
2330 case NOTE_INSN_BLOCK_END:
2331 if (debug_info_level == DINFO_LEVEL_NORMAL
2332 || debug_info_level == DINFO_LEVEL_VERBOSE
2333 || write_symbols == DWARF2_DEBUG
2334 || write_symbols == VMS_AND_DWARF2_DEBUG
2335 || write_symbols == VMS_DEBUG)
2336 {
2337 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2338
2339 app_disable ();
2340
2341 /* End of a symbol-block. */
2342 --block_depth;
2343 gcc_assert (block_depth >= 0);
2344
2345 if (!DECL_IGNORED_P (current_function_decl))
2346 debug_hooks->end_block (high_block_linenum, n);
2347 }
2348 if (write_symbols == DBX_DEBUG
2349 || write_symbols == SDB_DEBUG)
2350 {
2351 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2352 location_t *locus_ptr
2353 = block_nonartificial_location (outer_block);
2354
2355 if (locus_ptr != NULL)
2356 {
2357 override_filename = LOCATION_FILE (*locus_ptr);
2358 override_linenum = LOCATION_LINE (*locus_ptr);
2359 }
2360 else
2361 {
2362 override_filename = NULL;
2363 override_linenum = 0;
2364 }
2365 }
2366 break;
2367
2368 case NOTE_INSN_DELETED_LABEL:
2369 /* Emit the label. We may have deleted the CODE_LABEL because
2370 the label could be proved to be unreachable, though still
2371 referenced (in the form of having its address taken. */
2372 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2373 break;
2374
2375 case NOTE_INSN_DELETED_DEBUG_LABEL:
2376 /* Similarly, but need to use different namespace for it. */
2377 if (CODE_LABEL_NUMBER (insn) != -1)
2378 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2379 break;
2380
2381 case NOTE_INSN_VAR_LOCATION:
2382 case NOTE_INSN_CALL_ARG_LOCATION:
2383 if (!DECL_IGNORED_P (current_function_decl))
2384 debug_hooks->var_location (insn);
2385 break;
2386
2387 default:
2388 gcc_unreachable ();
2389 break;
2390 }
2391 break;
2392
2393 case BARRIER:
2394 break;
2395
2396 case CODE_LABEL:
2397 /* The target port might emit labels in the output function for
2398 some insn, e.g. sh.c output_branchy_insn. */
2399 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2400 {
2401 int align = LABEL_TO_ALIGNMENT (insn);
2402 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2403 int max_skip = LABEL_TO_MAX_SKIP (insn);
2404 #endif
2405
2406 if (align && NEXT_INSN (insn))
2407 {
2408 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2409 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2410 #else
2411 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2412 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2413 #else
2414 ASM_OUTPUT_ALIGN (file, align);
2415 #endif
2416 #endif
2417 }
2418 }
2419 CC_STATUS_INIT;
2420
2421 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2422 debug_hooks->label (as_a <rtx_code_label *> (insn));
2423
2424 app_disable ();
2425
2426 next = next_nonnote_insn (insn);
2427 /* If this label is followed by a jump-table, make sure we put
2428 the label in the read-only section. Also possibly write the
2429 label and jump table together. */
2430 if (next != 0 && JUMP_TABLE_DATA_P (next))
2431 {
2432 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2433 /* In this case, the case vector is being moved by the
2434 target, so don't output the label at all. Leave that
2435 to the back end macros. */
2436 #else
2437 if (! JUMP_TABLES_IN_TEXT_SECTION)
2438 {
2439 int log_align;
2440
2441 switch_to_section (targetm.asm_out.function_rodata_section
2442 (current_function_decl));
2443
2444 #ifdef ADDR_VEC_ALIGN
2445 log_align = ADDR_VEC_ALIGN (next);
2446 #else
2447 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2448 #endif
2449 ASM_OUTPUT_ALIGN (file, log_align);
2450 }
2451 else
2452 switch_to_section (current_function_section ());
2453
2454 #ifdef ASM_OUTPUT_CASE_LABEL
2455 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2456 next);
2457 #else
2458 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2459 #endif
2460 #endif
2461 break;
2462 }
2463 if (LABEL_ALT_ENTRY_P (insn))
2464 output_alternate_entry_point (file, insn);
2465 else
2466 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2467 break;
2468
2469 default:
2470 {
2471 rtx body = PATTERN (insn);
2472 int insn_code_number;
2473 const char *templ;
2474 bool is_stmt;
2475
2476 /* Reset this early so it is correct for ASM statements. */
2477 current_insn_predicate = NULL_RTX;
2478
2479 /* An INSN, JUMP_INSN or CALL_INSN.
2480 First check for special kinds that recog doesn't recognize. */
2481
2482 if (GET_CODE (body) == USE /* These are just declarations. */
2483 || GET_CODE (body) == CLOBBER)
2484 break;
2485
2486 #if HAVE_cc0
2487 {
2488 /* If there is a REG_CC_SETTER note on this insn, it means that
2489 the setting of the condition code was done in the delay slot
2490 of the insn that branched here. So recover the cc status
2491 from the insn that set it. */
2492
2493 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2494 if (note)
2495 {
2496 rtx_insn *other = as_a <rtx_insn *> (XEXP (note, 0));
2497 NOTICE_UPDATE_CC (PATTERN (other), other);
2498 cc_prev_status = cc_status;
2499 }
2500 }
2501 #endif
2502
2503 /* Detect insns that are really jump-tables
2504 and output them as such. */
2505
2506 if (JUMP_TABLE_DATA_P (insn))
2507 {
2508 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2509 int vlen, idx;
2510 #endif
2511
2512 if (! JUMP_TABLES_IN_TEXT_SECTION)
2513 switch_to_section (targetm.asm_out.function_rodata_section
2514 (current_function_decl));
2515 else
2516 switch_to_section (current_function_section ());
2517
2518 app_disable ();
2519
2520 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2521 if (GET_CODE (body) == ADDR_VEC)
2522 {
2523 #ifdef ASM_OUTPUT_ADDR_VEC
2524 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2525 #else
2526 gcc_unreachable ();
2527 #endif
2528 }
2529 else
2530 {
2531 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2532 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2533 #else
2534 gcc_unreachable ();
2535 #endif
2536 }
2537 #else
2538 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2539 for (idx = 0; idx < vlen; idx++)
2540 {
2541 if (GET_CODE (body) == ADDR_VEC)
2542 {
2543 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2544 ASM_OUTPUT_ADDR_VEC_ELT
2545 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2546 #else
2547 gcc_unreachable ();
2548 #endif
2549 }
2550 else
2551 {
2552 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2553 ASM_OUTPUT_ADDR_DIFF_ELT
2554 (file,
2555 body,
2556 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2557 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2558 #else
2559 gcc_unreachable ();
2560 #endif
2561 }
2562 }
2563 #ifdef ASM_OUTPUT_CASE_END
2564 ASM_OUTPUT_CASE_END (file,
2565 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2566 insn);
2567 #endif
2568 #endif
2569
2570 switch_to_section (current_function_section ());
2571
2572 break;
2573 }
2574 /* Output this line note if it is the first or the last line
2575 note in a row. */
2576 if (!DECL_IGNORED_P (current_function_decl)
2577 && notice_source_line (insn, &is_stmt))
2578 (*debug_hooks->source_line) (last_linenum, last_filename,
2579 last_discriminator, is_stmt);
2580
2581 if (GET_CODE (body) == ASM_INPUT)
2582 {
2583 const char *string = XSTR (body, 0);
2584
2585 /* There's no telling what that did to the condition codes. */
2586 CC_STATUS_INIT;
2587
2588 if (string[0])
2589 {
2590 expanded_location loc;
2591
2592 app_enable ();
2593 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2594 if (*loc.file && loc.line)
2595 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2596 ASM_COMMENT_START, loc.line, loc.file);
2597 fprintf (asm_out_file, "\t%s\n", string);
2598 #if HAVE_AS_LINE_ZERO
2599 if (*loc.file && loc.line)
2600 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2601 #endif
2602 }
2603 break;
2604 }
2605
2606 /* Detect `asm' construct with operands. */
2607 if (asm_noperands (body) >= 0)
2608 {
2609 unsigned int noperands = asm_noperands (body);
2610 rtx *ops = XALLOCAVEC (rtx, noperands);
2611 const char *string;
2612 location_t loc;
2613 expanded_location expanded;
2614
2615 /* There's no telling what that did to the condition codes. */
2616 CC_STATUS_INIT;
2617
2618 /* Get out the operand values. */
2619 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2620 /* Inhibit dying on what would otherwise be compiler bugs. */
2621 insn_noperands = noperands;
2622 this_is_asm_operands = insn;
2623 expanded = expand_location (loc);
2624
2625 #ifdef FINAL_PRESCAN_INSN
2626 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2627 #endif
2628
2629 /* Output the insn using them. */
2630 if (string[0])
2631 {
2632 app_enable ();
2633 if (expanded.file && expanded.line)
2634 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2635 ASM_COMMENT_START, expanded.line, expanded.file);
2636 output_asm_insn (string, ops);
2637 #if HAVE_AS_LINE_ZERO
2638 if (expanded.file && expanded.line)
2639 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2640 #endif
2641 }
2642
2643 if (targetm.asm_out.final_postscan_insn)
2644 targetm.asm_out.final_postscan_insn (file, insn, ops,
2645 insn_noperands);
2646
2647 this_is_asm_operands = 0;
2648 break;
2649 }
2650
2651 app_disable ();
2652
2653 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2654 {
2655 /* A delayed-branch sequence */
2656 int i;
2657
2658 final_sequence = seq;
2659
2660 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2661 force the restoration of a comparison that was previously
2662 thought unnecessary. If that happens, cancel this sequence
2663 and cause that insn to be restored. */
2664
2665 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2666 if (next != seq->insn (1))
2667 {
2668 final_sequence = 0;
2669 return next;
2670 }
2671
2672 for (i = 1; i < seq->len (); i++)
2673 {
2674 rtx_insn *insn = seq->insn (i);
2675 rtx_insn *next = NEXT_INSN (insn);
2676 /* We loop in case any instruction in a delay slot gets
2677 split. */
2678 do
2679 insn = final_scan_insn (insn, file, 0, 1, seen);
2680 while (insn != next);
2681 }
2682 #ifdef DBR_OUTPUT_SEQEND
2683 DBR_OUTPUT_SEQEND (file);
2684 #endif
2685 final_sequence = 0;
2686
2687 /* If the insn requiring the delay slot was a CALL_INSN, the
2688 insns in the delay slot are actually executed before the
2689 called function. Hence we don't preserve any CC-setting
2690 actions in these insns and the CC must be marked as being
2691 clobbered by the function. */
2692 if (CALL_P (seq->insn (0)))
2693 {
2694 CC_STATUS_INIT;
2695 }
2696 break;
2697 }
2698
2699 /* We have a real machine instruction as rtl. */
2700
2701 body = PATTERN (insn);
2702
2703 #if HAVE_cc0
2704 set = single_set (insn);
2705
2706 /* Check for redundant test and compare instructions
2707 (when the condition codes are already set up as desired).
2708 This is done only when optimizing; if not optimizing,
2709 it should be possible for the user to alter a variable
2710 with the debugger in between statements
2711 and the next statement should reexamine the variable
2712 to compute the condition codes. */
2713
2714 if (optimize_p)
2715 {
2716 if (set
2717 && GET_CODE (SET_DEST (set)) == CC0
2718 && insn != last_ignored_compare)
2719 {
2720 rtx src1, src2;
2721 if (GET_CODE (SET_SRC (set)) == SUBREG)
2722 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2723
2724 src1 = SET_SRC (set);
2725 src2 = NULL_RTX;
2726 if (GET_CODE (SET_SRC (set)) == COMPARE)
2727 {
2728 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2729 XEXP (SET_SRC (set), 0)
2730 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2731 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2732 XEXP (SET_SRC (set), 1)
2733 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2734 if (XEXP (SET_SRC (set), 1)
2735 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2736 src2 = XEXP (SET_SRC (set), 0);
2737 }
2738 if ((cc_status.value1 != 0
2739 && rtx_equal_p (src1, cc_status.value1))
2740 || (cc_status.value2 != 0
2741 && rtx_equal_p (src1, cc_status.value2))
2742 || (src2 != 0 && cc_status.value1 != 0
2743 && rtx_equal_p (src2, cc_status.value1))
2744 || (src2 != 0 && cc_status.value2 != 0
2745 && rtx_equal_p (src2, cc_status.value2)))
2746 {
2747 /* Don't delete insn if it has an addressing side-effect. */
2748 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2749 /* or if anything in it is volatile. */
2750 && ! volatile_refs_p (PATTERN (insn)))
2751 {
2752 /* We don't really delete the insn; just ignore it. */
2753 last_ignored_compare = insn;
2754 break;
2755 }
2756 }
2757 }
2758 }
2759
2760 /* If this is a conditional branch, maybe modify it
2761 if the cc's are in a nonstandard state
2762 so that it accomplishes the same thing that it would
2763 do straightforwardly if the cc's were set up normally. */
2764
2765 if (cc_status.flags != 0
2766 && JUMP_P (insn)
2767 && GET_CODE (body) == SET
2768 && SET_DEST (body) == pc_rtx
2769 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2770 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2771 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2772 {
2773 /* This function may alter the contents of its argument
2774 and clear some of the cc_status.flags bits.
2775 It may also return 1 meaning condition now always true
2776 or -1 meaning condition now always false
2777 or 2 meaning condition nontrivial but altered. */
2778 int result = alter_cond (XEXP (SET_SRC (body), 0));
2779 /* If condition now has fixed value, replace the IF_THEN_ELSE
2780 with its then-operand or its else-operand. */
2781 if (result == 1)
2782 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2783 if (result == -1)
2784 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2785
2786 /* The jump is now either unconditional or a no-op.
2787 If it has become a no-op, don't try to output it.
2788 (It would not be recognized.) */
2789 if (SET_SRC (body) == pc_rtx)
2790 {
2791 delete_insn (insn);
2792 break;
2793 }
2794 else if (ANY_RETURN_P (SET_SRC (body)))
2795 /* Replace (set (pc) (return)) with (return). */
2796 PATTERN (insn) = body = SET_SRC (body);
2797
2798 /* Rerecognize the instruction if it has changed. */
2799 if (result != 0)
2800 INSN_CODE (insn) = -1;
2801 }
2802
2803 /* If this is a conditional trap, maybe modify it if the cc's
2804 are in a nonstandard state so that it accomplishes the same
2805 thing that it would do straightforwardly if the cc's were
2806 set up normally. */
2807 if (cc_status.flags != 0
2808 && NONJUMP_INSN_P (insn)
2809 && GET_CODE (body) == TRAP_IF
2810 && COMPARISON_P (TRAP_CONDITION (body))
2811 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2812 {
2813 /* This function may alter the contents of its argument
2814 and clear some of the cc_status.flags bits.
2815 It may also return 1 meaning condition now always true
2816 or -1 meaning condition now always false
2817 or 2 meaning condition nontrivial but altered. */
2818 int result = alter_cond (TRAP_CONDITION (body));
2819
2820 /* If TRAP_CONDITION has become always false, delete the
2821 instruction. */
2822 if (result == -1)
2823 {
2824 delete_insn (insn);
2825 break;
2826 }
2827
2828 /* If TRAP_CONDITION has become always true, replace
2829 TRAP_CONDITION with const_true_rtx. */
2830 if (result == 1)
2831 TRAP_CONDITION (body) = const_true_rtx;
2832
2833 /* Rerecognize the instruction if it has changed. */
2834 if (result != 0)
2835 INSN_CODE (insn) = -1;
2836 }
2837
2838 /* Make same adjustments to instructions that examine the
2839 condition codes without jumping and instructions that
2840 handle conditional moves (if this machine has either one). */
2841
2842 if (cc_status.flags != 0
2843 && set != 0)
2844 {
2845 rtx cond_rtx, then_rtx, else_rtx;
2846
2847 if (!JUMP_P (insn)
2848 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2849 {
2850 cond_rtx = XEXP (SET_SRC (set), 0);
2851 then_rtx = XEXP (SET_SRC (set), 1);
2852 else_rtx = XEXP (SET_SRC (set), 2);
2853 }
2854 else
2855 {
2856 cond_rtx = SET_SRC (set);
2857 then_rtx = const_true_rtx;
2858 else_rtx = const0_rtx;
2859 }
2860
2861 if (COMPARISON_P (cond_rtx)
2862 && XEXP (cond_rtx, 0) == cc0_rtx)
2863 {
2864 int result;
2865 result = alter_cond (cond_rtx);
2866 if (result == 1)
2867 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2868 else if (result == -1)
2869 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2870 else if (result == 2)
2871 INSN_CODE (insn) = -1;
2872 if (SET_DEST (set) == SET_SRC (set))
2873 delete_insn (insn);
2874 }
2875 }
2876
2877 #endif
2878
2879 /* Do machine-specific peephole optimizations if desired. */
2880
2881 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2882 {
2883 rtx_insn *next = peephole (insn);
2884 /* When peepholing, if there were notes within the peephole,
2885 emit them before the peephole. */
2886 if (next != 0 && next != NEXT_INSN (insn))
2887 {
2888 rtx_insn *note, *prev = PREV_INSN (insn);
2889
2890 for (note = NEXT_INSN (insn); note != next;
2891 note = NEXT_INSN (note))
2892 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2893
2894 /* Put the notes in the proper position for a later
2895 rescan. For example, the SH target can do this
2896 when generating a far jump in a delayed branch
2897 sequence. */
2898 note = NEXT_INSN (insn);
2899 SET_PREV_INSN (note) = prev;
2900 SET_NEXT_INSN (prev) = note;
2901 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2902 SET_PREV_INSN (insn) = PREV_INSN (next);
2903 SET_NEXT_INSN (insn) = next;
2904 SET_PREV_INSN (next) = insn;
2905 }
2906
2907 /* PEEPHOLE might have changed this. */
2908 body = PATTERN (insn);
2909 }
2910
2911 /* Try to recognize the instruction.
2912 If successful, verify that the operands satisfy the
2913 constraints for the instruction. Crash if they don't,
2914 since `reload' should have changed them so that they do. */
2915
2916 insn_code_number = recog_memoized (insn);
2917 cleanup_subreg_operands (insn);
2918
2919 /* Dump the insn in the assembly for debugging (-dAP).
2920 If the final dump is requested as slim RTL, dump slim
2921 RTL to the assembly file also. */
2922 if (flag_dump_rtl_in_asm)
2923 {
2924 print_rtx_head = ASM_COMMENT_START;
2925 if (! (dump_flags & TDF_SLIM))
2926 print_rtl_single (asm_out_file, insn);
2927 else
2928 dump_insn_slim (asm_out_file, insn);
2929 print_rtx_head = "";
2930 }
2931
2932 if (! constrain_operands_cached (insn, 1))
2933 fatal_insn_not_found (insn);
2934
2935 /* Some target machines need to prescan each insn before
2936 it is output. */
2937
2938 #ifdef FINAL_PRESCAN_INSN
2939 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2940 #endif
2941
2942 if (targetm.have_conditional_execution ()
2943 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2944 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2945
2946 #if HAVE_cc0
2947 cc_prev_status = cc_status;
2948
2949 /* Update `cc_status' for this instruction.
2950 The instruction's output routine may change it further.
2951 If the output routine for a jump insn needs to depend
2952 on the cc status, it should look at cc_prev_status. */
2953
2954 NOTICE_UPDATE_CC (body, insn);
2955 #endif
2956
2957 current_output_insn = debug_insn = insn;
2958
2959 /* Find the proper template for this insn. */
2960 templ = get_insn_template (insn_code_number, insn);
2961
2962 /* If the C code returns 0, it means that it is a jump insn
2963 which follows a deleted test insn, and that test insn
2964 needs to be reinserted. */
2965 if (templ == 0)
2966 {
2967 rtx_insn *prev;
2968
2969 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2970
2971 /* We have already processed the notes between the setter and
2972 the user. Make sure we don't process them again, this is
2973 particularly important if one of the notes is a block
2974 scope note or an EH note. */
2975 for (prev = insn;
2976 prev != last_ignored_compare;
2977 prev = PREV_INSN (prev))
2978 {
2979 if (NOTE_P (prev))
2980 delete_insn (prev); /* Use delete_note. */
2981 }
2982
2983 return prev;
2984 }
2985
2986 /* If the template is the string "#", it means that this insn must
2987 be split. */
2988 if (templ[0] == '#' && templ[1] == '\0')
2989 {
2990 rtx_insn *new_rtx = try_split (body, insn, 0);
2991
2992 /* If we didn't split the insn, go away. */
2993 if (new_rtx == insn && PATTERN (new_rtx) == body)
2994 fatal_insn ("could not split insn", insn);
2995
2996 /* If we have a length attribute, this instruction should have
2997 been split in shorten_branches, to ensure that we would have
2998 valid length info for the splitees. */
2999 gcc_assert (!HAVE_ATTR_length);
3000
3001 return new_rtx;
3002 }
3003
3004 /* ??? This will put the directives in the wrong place if
3005 get_insn_template outputs assembly directly. However calling it
3006 before get_insn_template breaks if the insns is split. */
3007 if (targetm.asm_out.unwind_emit_before_insn
3008 && targetm.asm_out.unwind_emit)
3009 targetm.asm_out.unwind_emit (asm_out_file, insn);
3010
3011 if (rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn))
3012 {
3013 rtx x = call_from_call_insn (call_insn);
3014 x = XEXP (x, 0);
3015 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3016 {
3017 tree t;
3018 x = XEXP (x, 0);
3019 t = SYMBOL_REF_DECL (x);
3020 if (t)
3021 assemble_external (t);
3022 }
3023 if (!DECL_IGNORED_P (current_function_decl))
3024 debug_hooks->var_location (insn);
3025 }
3026
3027 /* Output assembler code from the template. */
3028 output_asm_insn (templ, recog_data.operand);
3029
3030 /* Some target machines need to postscan each insn after
3031 it is output. */
3032 if (targetm.asm_out.final_postscan_insn)
3033 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
3034 recog_data.n_operands);
3035
3036 if (!targetm.asm_out.unwind_emit_before_insn
3037 && targetm.asm_out.unwind_emit)
3038 targetm.asm_out.unwind_emit (asm_out_file, insn);
3039
3040 current_output_insn = debug_insn = 0;
3041 }
3042 }
3043 return NEXT_INSN (insn);
3044 }
3045 \f
3046 /* Return whether a source line note needs to be emitted before INSN.
3047 Sets IS_STMT to TRUE if the line should be marked as a possible
3048 breakpoint location. */
3049
3050 static bool
3051 notice_source_line (rtx_insn *insn, bool *is_stmt)
3052 {
3053 const char *filename;
3054 int linenum;
3055
3056 if (override_filename)
3057 {
3058 filename = override_filename;
3059 linenum = override_linenum;
3060 }
3061 else if (INSN_HAS_LOCATION (insn))
3062 {
3063 expanded_location xloc = insn_location (insn);
3064 filename = xloc.file;
3065 linenum = xloc.line;
3066 }
3067 else
3068 {
3069 filename = NULL;
3070 linenum = 0;
3071 }
3072
3073 if (filename == NULL)
3074 return false;
3075
3076 if (force_source_line
3077 || filename != last_filename
3078 || last_linenum != linenum)
3079 {
3080 force_source_line = false;
3081 last_filename = filename;
3082 last_linenum = linenum;
3083 last_discriminator = discriminator;
3084 *is_stmt = true;
3085 high_block_linenum = MAX (last_linenum, high_block_linenum);
3086 high_function_linenum = MAX (last_linenum, high_function_linenum);
3087 return true;
3088 }
3089
3090 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3091 {
3092 /* If the discriminator changed, but the line number did not,
3093 output the line table entry with is_stmt false so the
3094 debugger does not treat this as a breakpoint location. */
3095 last_discriminator = discriminator;
3096 *is_stmt = false;
3097 return true;
3098 }
3099
3100 return false;
3101 }
3102 \f
3103 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3104 directly to the desired hard register. */
3105
3106 void
3107 cleanup_subreg_operands (rtx_insn *insn)
3108 {
3109 int i;
3110 bool changed = false;
3111 extract_insn_cached (insn);
3112 for (i = 0; i < recog_data.n_operands; i++)
3113 {
3114 /* The following test cannot use recog_data.operand when testing
3115 for a SUBREG: the underlying object might have been changed
3116 already if we are inside a match_operator expression that
3117 matches the else clause. Instead we test the underlying
3118 expression directly. */
3119 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3120 {
3121 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3122 changed = true;
3123 }
3124 else if (GET_CODE (recog_data.operand[i]) == PLUS
3125 || GET_CODE (recog_data.operand[i]) == MULT
3126 || MEM_P (recog_data.operand[i]))
3127 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3128 }
3129
3130 for (i = 0; i < recog_data.n_dups; i++)
3131 {
3132 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3133 {
3134 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3135 changed = true;
3136 }
3137 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3138 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3139 || MEM_P (*recog_data.dup_loc[i]))
3140 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3141 }
3142 if (changed)
3143 df_insn_rescan (insn);
3144 }
3145
3146 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3147 the thing it is a subreg of. Do it anyway if FINAL_P. */
3148
3149 rtx
3150 alter_subreg (rtx *xp, bool final_p)
3151 {
3152 rtx x = *xp;
3153 rtx y = SUBREG_REG (x);
3154
3155 /* simplify_subreg does not remove subreg from volatile references.
3156 We are required to. */
3157 if (MEM_P (y))
3158 {
3159 int offset = SUBREG_BYTE (x);
3160
3161 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3162 contains 0 instead of the proper offset. See simplify_subreg. */
3163 if (offset == 0
3164 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3165 {
3166 int difference = GET_MODE_SIZE (GET_MODE (y))
3167 - GET_MODE_SIZE (GET_MODE (x));
3168 if (WORDS_BIG_ENDIAN)
3169 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3170 if (BYTES_BIG_ENDIAN)
3171 offset += difference % UNITS_PER_WORD;
3172 }
3173
3174 if (final_p)
3175 *xp = adjust_address (y, GET_MODE (x), offset);
3176 else
3177 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3178 }
3179 else if (REG_P (y) && HARD_REGISTER_P (y))
3180 {
3181 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3182 SUBREG_BYTE (x));
3183
3184 if (new_rtx != 0)
3185 *xp = new_rtx;
3186 else if (final_p && REG_P (y))
3187 {
3188 /* Simplify_subreg can't handle some REG cases, but we have to. */
3189 unsigned int regno;
3190 HOST_WIDE_INT offset;
3191
3192 regno = subreg_regno (x);
3193 if (subreg_lowpart_p (x))
3194 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3195 else
3196 offset = SUBREG_BYTE (x);
3197 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3198 }
3199 }
3200
3201 return *xp;
3202 }
3203
3204 /* Do alter_subreg on all the SUBREGs contained in X. */
3205
3206 static rtx
3207 walk_alter_subreg (rtx *xp, bool *changed)
3208 {
3209 rtx x = *xp;
3210 switch (GET_CODE (x))
3211 {
3212 case PLUS:
3213 case MULT:
3214 case AND:
3215 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3216 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3217 break;
3218
3219 case MEM:
3220 case ZERO_EXTEND:
3221 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3222 break;
3223
3224 case SUBREG:
3225 *changed = true;
3226 return alter_subreg (xp, true);
3227
3228 default:
3229 break;
3230 }
3231
3232 return *xp;
3233 }
3234 \f
3235 #if HAVE_cc0
3236
3237 /* Given BODY, the body of a jump instruction, alter the jump condition
3238 as required by the bits that are set in cc_status.flags.
3239 Not all of the bits there can be handled at this level in all cases.
3240
3241 The value is normally 0.
3242 1 means that the condition has become always true.
3243 -1 means that the condition has become always false.
3244 2 means that COND has been altered. */
3245
3246 static int
3247 alter_cond (rtx cond)
3248 {
3249 int value = 0;
3250
3251 if (cc_status.flags & CC_REVERSED)
3252 {
3253 value = 2;
3254 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3255 }
3256
3257 if (cc_status.flags & CC_INVERTED)
3258 {
3259 value = 2;
3260 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3261 }
3262
3263 if (cc_status.flags & CC_NOT_POSITIVE)
3264 switch (GET_CODE (cond))
3265 {
3266 case LE:
3267 case LEU:
3268 case GEU:
3269 /* Jump becomes unconditional. */
3270 return 1;
3271
3272 case GT:
3273 case GTU:
3274 case LTU:
3275 /* Jump becomes no-op. */
3276 return -1;
3277
3278 case GE:
3279 PUT_CODE (cond, EQ);
3280 value = 2;
3281 break;
3282
3283 case LT:
3284 PUT_CODE (cond, NE);
3285 value = 2;
3286 break;
3287
3288 default:
3289 break;
3290 }
3291
3292 if (cc_status.flags & CC_NOT_NEGATIVE)
3293 switch (GET_CODE (cond))
3294 {
3295 case GE:
3296 case GEU:
3297 /* Jump becomes unconditional. */
3298 return 1;
3299
3300 case LT:
3301 case LTU:
3302 /* Jump becomes no-op. */
3303 return -1;
3304
3305 case LE:
3306 case LEU:
3307 PUT_CODE (cond, EQ);
3308 value = 2;
3309 break;
3310
3311 case GT:
3312 case GTU:
3313 PUT_CODE (cond, NE);
3314 value = 2;
3315 break;
3316
3317 default:
3318 break;
3319 }
3320
3321 if (cc_status.flags & CC_NO_OVERFLOW)
3322 switch (GET_CODE (cond))
3323 {
3324 case GEU:
3325 /* Jump becomes unconditional. */
3326 return 1;
3327
3328 case LEU:
3329 PUT_CODE (cond, EQ);
3330 value = 2;
3331 break;
3332
3333 case GTU:
3334 PUT_CODE (cond, NE);
3335 value = 2;
3336 break;
3337
3338 case LTU:
3339 /* Jump becomes no-op. */
3340 return -1;
3341
3342 default:
3343 break;
3344 }
3345
3346 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3347 switch (GET_CODE (cond))
3348 {
3349 default:
3350 gcc_unreachable ();
3351
3352 case NE:
3353 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3354 value = 2;
3355 break;
3356
3357 case EQ:
3358 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3359 value = 2;
3360 break;
3361 }
3362
3363 if (cc_status.flags & CC_NOT_SIGNED)
3364 /* The flags are valid if signed condition operators are converted
3365 to unsigned. */
3366 switch (GET_CODE (cond))
3367 {
3368 case LE:
3369 PUT_CODE (cond, LEU);
3370 value = 2;
3371 break;
3372
3373 case LT:
3374 PUT_CODE (cond, LTU);
3375 value = 2;
3376 break;
3377
3378 case GT:
3379 PUT_CODE (cond, GTU);
3380 value = 2;
3381 break;
3382
3383 case GE:
3384 PUT_CODE (cond, GEU);
3385 value = 2;
3386 break;
3387
3388 default:
3389 break;
3390 }
3391
3392 return value;
3393 }
3394 #endif
3395 \f
3396 /* Report inconsistency between the assembler template and the operands.
3397 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3398
3399 void
3400 output_operand_lossage (const char *cmsgid, ...)
3401 {
3402 char *fmt_string;
3403 char *new_message;
3404 const char *pfx_str;
3405 va_list ap;
3406
3407 va_start (ap, cmsgid);
3408
3409 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3410 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3411 new_message = xvasprintf (fmt_string, ap);
3412
3413 if (this_is_asm_operands)
3414 error_for_asm (this_is_asm_operands, "%s", new_message);
3415 else
3416 internal_error ("%s", new_message);
3417
3418 free (fmt_string);
3419 free (new_message);
3420 va_end (ap);
3421 }
3422 \f
3423 /* Output of assembler code from a template, and its subroutines. */
3424
3425 /* Annotate the assembly with a comment describing the pattern and
3426 alternative used. */
3427
3428 static void
3429 output_asm_name (void)
3430 {
3431 if (debug_insn)
3432 {
3433 int num = INSN_CODE (debug_insn);
3434 fprintf (asm_out_file, "\t%s %d\t%s",
3435 ASM_COMMENT_START, INSN_UID (debug_insn),
3436 insn_data[num].name);
3437 if (insn_data[num].n_alternatives > 1)
3438 fprintf (asm_out_file, "/%d", which_alternative + 1);
3439
3440 if (HAVE_ATTR_length)
3441 fprintf (asm_out_file, "\t[length = %d]",
3442 get_attr_length (debug_insn));
3443
3444 /* Clear this so only the first assembler insn
3445 of any rtl insn will get the special comment for -dp. */
3446 debug_insn = 0;
3447 }
3448 }
3449
3450 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3451 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3452 corresponds to the address of the object and 0 if to the object. */
3453
3454 static tree
3455 get_mem_expr_from_op (rtx op, int *paddressp)
3456 {
3457 tree expr;
3458 int inner_addressp;
3459
3460 *paddressp = 0;
3461
3462 if (REG_P (op))
3463 return REG_EXPR (op);
3464 else if (!MEM_P (op))
3465 return 0;
3466
3467 if (MEM_EXPR (op) != 0)
3468 return MEM_EXPR (op);
3469
3470 /* Otherwise we have an address, so indicate it and look at the address. */
3471 *paddressp = 1;
3472 op = XEXP (op, 0);
3473
3474 /* First check if we have a decl for the address, then look at the right side
3475 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3476 But don't allow the address to itself be indirect. */
3477 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3478 return expr;
3479 else if (GET_CODE (op) == PLUS
3480 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3481 return expr;
3482
3483 while (UNARY_P (op)
3484 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3485 op = XEXP (op, 0);
3486
3487 expr = get_mem_expr_from_op (op, &inner_addressp);
3488 return inner_addressp ? 0 : expr;
3489 }
3490
3491 /* Output operand names for assembler instructions. OPERANDS is the
3492 operand vector, OPORDER is the order to write the operands, and NOPS
3493 is the number of operands to write. */
3494
3495 static void
3496 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3497 {
3498 int wrote = 0;
3499 int i;
3500
3501 for (i = 0; i < nops; i++)
3502 {
3503 int addressp;
3504 rtx op = operands[oporder[i]];
3505 tree expr = get_mem_expr_from_op (op, &addressp);
3506
3507 fprintf (asm_out_file, "%c%s",
3508 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3509 wrote = 1;
3510 if (expr)
3511 {
3512 fprintf (asm_out_file, "%s",
3513 addressp ? "*" : "");
3514 print_mem_expr (asm_out_file, expr);
3515 wrote = 1;
3516 }
3517 else if (REG_P (op) && ORIGINAL_REGNO (op)
3518 && ORIGINAL_REGNO (op) != REGNO (op))
3519 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3520 }
3521 }
3522
3523 #ifdef ASSEMBLER_DIALECT
3524 /* Helper function to parse assembler dialects in the asm string.
3525 This is called from output_asm_insn and asm_fprintf. */
3526 static const char *
3527 do_assembler_dialects (const char *p, int *dialect)
3528 {
3529 char c = *(p - 1);
3530
3531 switch (c)
3532 {
3533 case '{':
3534 {
3535 int i;
3536
3537 if (*dialect)
3538 output_operand_lossage ("nested assembly dialect alternatives");
3539 else
3540 *dialect = 1;
3541
3542 /* If we want the first dialect, do nothing. Otherwise, skip
3543 DIALECT_NUMBER of strings ending with '|'. */
3544 for (i = 0; i < dialect_number; i++)
3545 {
3546 while (*p && *p != '}')
3547 {
3548 if (*p == '|')
3549 {
3550 p++;
3551 break;
3552 }
3553
3554 /* Skip over any character after a percent sign. */
3555 if (*p == '%')
3556 p++;
3557 if (*p)
3558 p++;
3559 }
3560
3561 if (*p == '}')
3562 break;
3563 }
3564
3565 if (*p == '\0')
3566 output_operand_lossage ("unterminated assembly dialect alternative");
3567 }
3568 break;
3569
3570 case '|':
3571 if (*dialect)
3572 {
3573 /* Skip to close brace. */
3574 do
3575 {
3576 if (*p == '\0')
3577 {
3578 output_operand_lossage ("unterminated assembly dialect alternative");
3579 break;
3580 }
3581
3582 /* Skip over any character after a percent sign. */
3583 if (*p == '%' && p[1])
3584 {
3585 p += 2;
3586 continue;
3587 }
3588
3589 if (*p++ == '}')
3590 break;
3591 }
3592 while (1);
3593
3594 *dialect = 0;
3595 }
3596 else
3597 putc (c, asm_out_file);
3598 break;
3599
3600 case '}':
3601 if (! *dialect)
3602 putc (c, asm_out_file);
3603 *dialect = 0;
3604 break;
3605 default:
3606 gcc_unreachable ();
3607 }
3608
3609 return p;
3610 }
3611 #endif
3612
3613 /* Output text from TEMPLATE to the assembler output file,
3614 obeying %-directions to substitute operands taken from
3615 the vector OPERANDS.
3616
3617 %N (for N a digit) means print operand N in usual manner.
3618 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3619 and print the label name with no punctuation.
3620 %cN means require operand N to be a constant
3621 and print the constant expression with no punctuation.
3622 %aN means expect operand N to be a memory address
3623 (not a memory reference!) and print a reference
3624 to that address.
3625 %nN means expect operand N to be a constant
3626 and print a constant expression for minus the value
3627 of the operand, with no other punctuation. */
3628
3629 void
3630 output_asm_insn (const char *templ, rtx *operands)
3631 {
3632 const char *p;
3633 int c;
3634 #ifdef ASSEMBLER_DIALECT
3635 int dialect = 0;
3636 #endif
3637 int oporder[MAX_RECOG_OPERANDS];
3638 char opoutput[MAX_RECOG_OPERANDS];
3639 int ops = 0;
3640
3641 /* An insn may return a null string template
3642 in a case where no assembler code is needed. */
3643 if (*templ == 0)
3644 return;
3645
3646 memset (opoutput, 0, sizeof opoutput);
3647 p = templ;
3648 putc ('\t', asm_out_file);
3649
3650 #ifdef ASM_OUTPUT_OPCODE
3651 ASM_OUTPUT_OPCODE (asm_out_file, p);
3652 #endif
3653
3654 while ((c = *p++))
3655 switch (c)
3656 {
3657 case '\n':
3658 if (flag_verbose_asm)
3659 output_asm_operand_names (operands, oporder, ops);
3660 if (flag_print_asm_name)
3661 output_asm_name ();
3662
3663 ops = 0;
3664 memset (opoutput, 0, sizeof opoutput);
3665
3666 putc (c, asm_out_file);
3667 #ifdef ASM_OUTPUT_OPCODE
3668 while ((c = *p) == '\t')
3669 {
3670 putc (c, asm_out_file);
3671 p++;
3672 }
3673 ASM_OUTPUT_OPCODE (asm_out_file, p);
3674 #endif
3675 break;
3676
3677 #ifdef ASSEMBLER_DIALECT
3678 case '{':
3679 case '}':
3680 case '|':
3681 p = do_assembler_dialects (p, &dialect);
3682 break;
3683 #endif
3684
3685 case '%':
3686 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3687 if ASSEMBLER_DIALECT defined and these characters have a special
3688 meaning as dialect delimiters.*/
3689 if (*p == '%'
3690 #ifdef ASSEMBLER_DIALECT
3691 || *p == '{' || *p == '}' || *p == '|'
3692 #endif
3693 )
3694 {
3695 putc (*p, asm_out_file);
3696 p++;
3697 }
3698 /* %= outputs a number which is unique to each insn in the entire
3699 compilation. This is useful for making local labels that are
3700 referred to more than once in a given insn. */
3701 else if (*p == '=')
3702 {
3703 p++;
3704 fprintf (asm_out_file, "%d", insn_counter);
3705 }
3706 /* % followed by a letter and some digits
3707 outputs an operand in a special way depending on the letter.
3708 Letters `acln' are implemented directly.
3709 Other letters are passed to `output_operand' so that
3710 the TARGET_PRINT_OPERAND hook can define them. */
3711 else if (ISALPHA (*p))
3712 {
3713 int letter = *p++;
3714 unsigned long opnum;
3715 char *endptr;
3716
3717 opnum = strtoul (p, &endptr, 10);
3718
3719 if (endptr == p)
3720 output_operand_lossage ("operand number missing "
3721 "after %%-letter");
3722 else if (this_is_asm_operands && opnum >= insn_noperands)
3723 output_operand_lossage ("operand number out of range");
3724 else if (letter == 'l')
3725 output_asm_label (operands[opnum]);
3726 else if (letter == 'a')
3727 output_address (operands[opnum]);
3728 else if (letter == 'c')
3729 {
3730 if (CONSTANT_ADDRESS_P (operands[opnum]))
3731 output_addr_const (asm_out_file, operands[opnum]);
3732 else
3733 output_operand (operands[opnum], 'c');
3734 }
3735 else if (letter == 'n')
3736 {
3737 if (CONST_INT_P (operands[opnum]))
3738 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3739 - INTVAL (operands[opnum]));
3740 else
3741 {
3742 putc ('-', asm_out_file);
3743 output_addr_const (asm_out_file, operands[opnum]);
3744 }
3745 }
3746 else
3747 output_operand (operands[opnum], letter);
3748
3749 if (!opoutput[opnum])
3750 oporder[ops++] = opnum;
3751 opoutput[opnum] = 1;
3752
3753 p = endptr;
3754 c = *p;
3755 }
3756 /* % followed by a digit outputs an operand the default way. */
3757 else if (ISDIGIT (*p))
3758 {
3759 unsigned long opnum;
3760 char *endptr;
3761
3762 opnum = strtoul (p, &endptr, 10);
3763 if (this_is_asm_operands && opnum >= insn_noperands)
3764 output_operand_lossage ("operand number out of range");
3765 else
3766 output_operand (operands[opnum], 0);
3767
3768 if (!opoutput[opnum])
3769 oporder[ops++] = opnum;
3770 opoutput[opnum] = 1;
3771
3772 p = endptr;
3773 c = *p;
3774 }
3775 /* % followed by punctuation: output something for that
3776 punctuation character alone, with no operand. The
3777 TARGET_PRINT_OPERAND hook decides what is actually done. */
3778 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3779 output_operand (NULL_RTX, *p++);
3780 else
3781 output_operand_lossage ("invalid %%-code");
3782 break;
3783
3784 default:
3785 putc (c, asm_out_file);
3786 }
3787
3788 /* Write out the variable names for operands, if we know them. */
3789 if (flag_verbose_asm)
3790 output_asm_operand_names (operands, oporder, ops);
3791 if (flag_print_asm_name)
3792 output_asm_name ();
3793
3794 putc ('\n', asm_out_file);
3795 }
3796 \f
3797 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3798
3799 void
3800 output_asm_label (rtx x)
3801 {
3802 char buf[256];
3803
3804 if (GET_CODE (x) == LABEL_REF)
3805 x = LABEL_REF_LABEL (x);
3806 if (LABEL_P (x)
3807 || (NOTE_P (x)
3808 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3809 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3810 else
3811 output_operand_lossage ("'%%l' operand isn't a label");
3812
3813 assemble_name (asm_out_file, buf);
3814 }
3815
3816 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3817
3818 void
3819 mark_symbol_refs_as_used (rtx x)
3820 {
3821 subrtx_iterator::array_type array;
3822 FOR_EACH_SUBRTX (iter, array, x, ALL)
3823 {
3824 const_rtx x = *iter;
3825 if (GET_CODE (x) == SYMBOL_REF)
3826 if (tree t = SYMBOL_REF_DECL (x))
3827 assemble_external (t);
3828 }
3829 }
3830
3831 /* Print operand X using machine-dependent assembler syntax.
3832 CODE is a non-digit that preceded the operand-number in the % spec,
3833 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3834 between the % and the digits.
3835 When CODE is a non-letter, X is 0.
3836
3837 The meanings of the letters are machine-dependent and controlled
3838 by TARGET_PRINT_OPERAND. */
3839
3840 void
3841 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3842 {
3843 if (x && GET_CODE (x) == SUBREG)
3844 x = alter_subreg (&x, true);
3845
3846 /* X must not be a pseudo reg. */
3847 if (!targetm.no_register_allocation)
3848 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3849
3850 targetm.asm_out.print_operand (asm_out_file, x, code);
3851
3852 if (x == NULL_RTX)
3853 return;
3854
3855 mark_symbol_refs_as_used (x);
3856 }
3857
3858 /* Print a memory reference operand for address X using
3859 machine-dependent assembler syntax. */
3860
3861 void
3862 output_address (rtx x)
3863 {
3864 bool changed = false;
3865 walk_alter_subreg (&x, &changed);
3866 targetm.asm_out.print_operand_address (asm_out_file, x);
3867 }
3868 \f
3869 /* Print an integer constant expression in assembler syntax.
3870 Addition and subtraction are the only arithmetic
3871 that may appear in these expressions. */
3872
3873 void
3874 output_addr_const (FILE *file, rtx x)
3875 {
3876 char buf[256];
3877
3878 restart:
3879 switch (GET_CODE (x))
3880 {
3881 case PC:
3882 putc ('.', file);
3883 break;
3884
3885 case SYMBOL_REF:
3886 if (SYMBOL_REF_DECL (x))
3887 assemble_external (SYMBOL_REF_DECL (x));
3888 #ifdef ASM_OUTPUT_SYMBOL_REF
3889 ASM_OUTPUT_SYMBOL_REF (file, x);
3890 #else
3891 assemble_name (file, XSTR (x, 0));
3892 #endif
3893 break;
3894
3895 case LABEL_REF:
3896 x = LABEL_REF_LABEL (x);
3897 /* Fall through. */
3898 case CODE_LABEL:
3899 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3900 #ifdef ASM_OUTPUT_LABEL_REF
3901 ASM_OUTPUT_LABEL_REF (file, buf);
3902 #else
3903 assemble_name (file, buf);
3904 #endif
3905 break;
3906
3907 case CONST_INT:
3908 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3909 break;
3910
3911 case CONST:
3912 /* This used to output parentheses around the expression,
3913 but that does not work on the 386 (either ATT or BSD assembler). */
3914 output_addr_const (file, XEXP (x, 0));
3915 break;
3916
3917 case CONST_WIDE_INT:
3918 /* We do not know the mode here so we have to use a round about
3919 way to build a wide-int to get it printed properly. */
3920 {
3921 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3922 CONST_WIDE_INT_NUNITS (x),
3923 CONST_WIDE_INT_NUNITS (x)
3924 * HOST_BITS_PER_WIDE_INT,
3925 false);
3926 print_decs (w, file);
3927 }
3928 break;
3929
3930 case CONST_DOUBLE:
3931 if (CONST_DOUBLE_AS_INT_P (x))
3932 {
3933 /* We can use %d if the number is one word and positive. */
3934 if (CONST_DOUBLE_HIGH (x))
3935 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3936 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3937 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3938 else if (CONST_DOUBLE_LOW (x) < 0)
3939 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3940 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3941 else
3942 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3943 }
3944 else
3945 /* We can't handle floating point constants;
3946 PRINT_OPERAND must handle them. */
3947 output_operand_lossage ("floating constant misused");
3948 break;
3949
3950 case CONST_FIXED:
3951 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3952 break;
3953
3954 case PLUS:
3955 /* Some assemblers need integer constants to appear last (eg masm). */
3956 if (CONST_INT_P (XEXP (x, 0)))
3957 {
3958 output_addr_const (file, XEXP (x, 1));
3959 if (INTVAL (XEXP (x, 0)) >= 0)
3960 fprintf (file, "+");
3961 output_addr_const (file, XEXP (x, 0));
3962 }
3963 else
3964 {
3965 output_addr_const (file, XEXP (x, 0));
3966 if (!CONST_INT_P (XEXP (x, 1))
3967 || INTVAL (XEXP (x, 1)) >= 0)
3968 fprintf (file, "+");
3969 output_addr_const (file, XEXP (x, 1));
3970 }
3971 break;
3972
3973 case MINUS:
3974 /* Avoid outputting things like x-x or x+5-x,
3975 since some assemblers can't handle that. */
3976 x = simplify_subtraction (x);
3977 if (GET_CODE (x) != MINUS)
3978 goto restart;
3979
3980 output_addr_const (file, XEXP (x, 0));
3981 fprintf (file, "-");
3982 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3983 || GET_CODE (XEXP (x, 1)) == PC
3984 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3985 output_addr_const (file, XEXP (x, 1));
3986 else
3987 {
3988 fputs (targetm.asm_out.open_paren, file);
3989 output_addr_const (file, XEXP (x, 1));
3990 fputs (targetm.asm_out.close_paren, file);
3991 }
3992 break;
3993
3994 case ZERO_EXTEND:
3995 case SIGN_EXTEND:
3996 case SUBREG:
3997 case TRUNCATE:
3998 output_addr_const (file, XEXP (x, 0));
3999 break;
4000
4001 default:
4002 if (targetm.asm_out.output_addr_const_extra (file, x))
4003 break;
4004
4005 output_operand_lossage ("invalid expression as operand");
4006 }
4007 }
4008 \f
4009 /* Output a quoted string. */
4010
4011 void
4012 output_quoted_string (FILE *asm_file, const char *string)
4013 {
4014 #ifdef OUTPUT_QUOTED_STRING
4015 OUTPUT_QUOTED_STRING (asm_file, string);
4016 #else
4017 char c;
4018
4019 putc ('\"', asm_file);
4020 while ((c = *string++) != 0)
4021 {
4022 if (ISPRINT (c))
4023 {
4024 if (c == '\"' || c == '\\')
4025 putc ('\\', asm_file);
4026 putc (c, asm_file);
4027 }
4028 else
4029 fprintf (asm_file, "\\%03o", (unsigned char) c);
4030 }
4031 putc ('\"', asm_file);
4032 #endif
4033 }
4034 \f
4035 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
4036
4037 void
4038 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
4039 {
4040 char buf[2 + CHAR_BIT * sizeof (value) / 4];
4041 if (value == 0)
4042 putc ('0', f);
4043 else
4044 {
4045 char *p = buf + sizeof (buf);
4046 do
4047 *--p = "0123456789abcdef"[value % 16];
4048 while ((value /= 16) != 0);
4049 *--p = 'x';
4050 *--p = '0';
4051 fwrite (p, 1, buf + sizeof (buf) - p, f);
4052 }
4053 }
4054
4055 /* Internal function that prints an unsigned long in decimal in reverse.
4056 The output string IS NOT null-terminated. */
4057
4058 static int
4059 sprint_ul_rev (char *s, unsigned long value)
4060 {
4061 int i = 0;
4062 do
4063 {
4064 s[i] = "0123456789"[value % 10];
4065 value /= 10;
4066 i++;
4067 /* alternate version, without modulo */
4068 /* oldval = value; */
4069 /* value /= 10; */
4070 /* s[i] = "0123456789" [oldval - 10*value]; */
4071 /* i++ */
4072 }
4073 while (value != 0);
4074 return i;
4075 }
4076
4077 /* Write an unsigned long as decimal to a file, fast. */
4078
4079 void
4080 fprint_ul (FILE *f, unsigned long value)
4081 {
4082 /* python says: len(str(2**64)) == 20 */
4083 char s[20];
4084 int i;
4085
4086 i = sprint_ul_rev (s, value);
4087
4088 /* It's probably too small to bother with string reversal and fputs. */
4089 do
4090 {
4091 i--;
4092 putc (s[i], f);
4093 }
4094 while (i != 0);
4095 }
4096
4097 /* Write an unsigned long as decimal to a string, fast.
4098 s must be wide enough to not overflow, at least 21 chars.
4099 Returns the length of the string (without terminating '\0'). */
4100
4101 int
4102 sprint_ul (char *s, unsigned long value)
4103 {
4104 int len = sprint_ul_rev (s, value);
4105 s[len] = '\0';
4106
4107 std::reverse (s, s + len);
4108 return len;
4109 }
4110
4111 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4112 %R prints the value of REGISTER_PREFIX.
4113 %L prints the value of LOCAL_LABEL_PREFIX.
4114 %U prints the value of USER_LABEL_PREFIX.
4115 %I prints the value of IMMEDIATE_PREFIX.
4116 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4117 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4118
4119 We handle alternate assembler dialects here, just like output_asm_insn. */
4120
4121 void
4122 asm_fprintf (FILE *file, const char *p, ...)
4123 {
4124 char buf[10];
4125 char *q, c;
4126 #ifdef ASSEMBLER_DIALECT
4127 int dialect = 0;
4128 #endif
4129 va_list argptr;
4130
4131 va_start (argptr, p);
4132
4133 buf[0] = '%';
4134
4135 while ((c = *p++))
4136 switch (c)
4137 {
4138 #ifdef ASSEMBLER_DIALECT
4139 case '{':
4140 case '}':
4141 case '|':
4142 p = do_assembler_dialects (p, &dialect);
4143 break;
4144 #endif
4145
4146 case '%':
4147 c = *p++;
4148 q = &buf[1];
4149 while (strchr ("-+ #0", c))
4150 {
4151 *q++ = c;
4152 c = *p++;
4153 }
4154 while (ISDIGIT (c) || c == '.')
4155 {
4156 *q++ = c;
4157 c = *p++;
4158 }
4159 switch (c)
4160 {
4161 case '%':
4162 putc ('%', file);
4163 break;
4164
4165 case 'd': case 'i': case 'u':
4166 case 'x': case 'X': case 'o':
4167 case 'c':
4168 *q++ = c;
4169 *q = 0;
4170 fprintf (file, buf, va_arg (argptr, int));
4171 break;
4172
4173 case 'w':
4174 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4175 'o' cases, but we do not check for those cases. It
4176 means that the value is a HOST_WIDE_INT, which may be
4177 either `long' or `long long'. */
4178 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4179 q += strlen (HOST_WIDE_INT_PRINT);
4180 *q++ = *p++;
4181 *q = 0;
4182 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4183 break;
4184
4185 case 'l':
4186 *q++ = c;
4187 #ifdef HAVE_LONG_LONG
4188 if (*p == 'l')
4189 {
4190 *q++ = *p++;
4191 *q++ = *p++;
4192 *q = 0;
4193 fprintf (file, buf, va_arg (argptr, long long));
4194 }
4195 else
4196 #endif
4197 {
4198 *q++ = *p++;
4199 *q = 0;
4200 fprintf (file, buf, va_arg (argptr, long));
4201 }
4202
4203 break;
4204
4205 case 's':
4206 *q++ = c;
4207 *q = 0;
4208 fprintf (file, buf, va_arg (argptr, char *));
4209 break;
4210
4211 case 'O':
4212 #ifdef ASM_OUTPUT_OPCODE
4213 ASM_OUTPUT_OPCODE (asm_out_file, p);
4214 #endif
4215 break;
4216
4217 case 'R':
4218 #ifdef REGISTER_PREFIX
4219 fprintf (file, "%s", REGISTER_PREFIX);
4220 #endif
4221 break;
4222
4223 case 'I':
4224 #ifdef IMMEDIATE_PREFIX
4225 fprintf (file, "%s", IMMEDIATE_PREFIX);
4226 #endif
4227 break;
4228
4229 case 'L':
4230 #ifdef LOCAL_LABEL_PREFIX
4231 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4232 #endif
4233 break;
4234
4235 case 'U':
4236 fputs (user_label_prefix, file);
4237 break;
4238
4239 #ifdef ASM_FPRINTF_EXTENSIONS
4240 /* Uppercase letters are reserved for general use by asm_fprintf
4241 and so are not available to target specific code. In order to
4242 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4243 they are defined here. As they get turned into real extensions
4244 to asm_fprintf they should be removed from this list. */
4245 case 'A': case 'B': case 'C': case 'D': case 'E':
4246 case 'F': case 'G': case 'H': case 'J': case 'K':
4247 case 'M': case 'N': case 'P': case 'Q': case 'S':
4248 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4249 break;
4250
4251 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4252 #endif
4253 default:
4254 gcc_unreachable ();
4255 }
4256 break;
4257
4258 default:
4259 putc (c, file);
4260 }
4261 va_end (argptr);
4262 }
4263 \f
4264 /* Return nonzero if this function has no function calls. */
4265
4266 int
4267 leaf_function_p (void)
4268 {
4269 rtx_insn *insn;
4270
4271 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4272 functions even if they call mcount. */
4273 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4274 return 0;
4275
4276 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4277 {
4278 if (CALL_P (insn)
4279 && ! SIBLING_CALL_P (insn))
4280 return 0;
4281 if (NONJUMP_INSN_P (insn)
4282 && GET_CODE (PATTERN (insn)) == SEQUENCE
4283 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4284 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4285 return 0;
4286 }
4287
4288 return 1;
4289 }
4290
4291 /* Return 1 if branch is a forward branch.
4292 Uses insn_shuid array, so it works only in the final pass. May be used by
4293 output templates to customary add branch prediction hints.
4294 */
4295 int
4296 final_forward_branch_p (rtx_insn *insn)
4297 {
4298 int insn_id, label_id;
4299
4300 gcc_assert (uid_shuid);
4301 insn_id = INSN_SHUID (insn);
4302 label_id = INSN_SHUID (JUMP_LABEL (insn));
4303 /* We've hit some insns that does not have id information available. */
4304 gcc_assert (insn_id && label_id);
4305 return insn_id < label_id;
4306 }
4307
4308 /* On some machines, a function with no call insns
4309 can run faster if it doesn't create its own register window.
4310 When output, the leaf function should use only the "output"
4311 registers. Ordinarily, the function would be compiled to use
4312 the "input" registers to find its arguments; it is a candidate
4313 for leaf treatment if it uses only the "input" registers.
4314 Leaf function treatment means renumbering so the function
4315 uses the "output" registers instead. */
4316
4317 #ifdef LEAF_REGISTERS
4318
4319 /* Return 1 if this function uses only the registers that can be
4320 safely renumbered. */
4321
4322 int
4323 only_leaf_regs_used (void)
4324 {
4325 int i;
4326 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4327
4328 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4329 if ((df_regs_ever_live_p (i) || global_regs[i])
4330 && ! permitted_reg_in_leaf_functions[i])
4331 return 0;
4332
4333 if (crtl->uses_pic_offset_table
4334 && pic_offset_table_rtx != 0
4335 && REG_P (pic_offset_table_rtx)
4336 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4337 return 0;
4338
4339 return 1;
4340 }
4341
4342 /* Scan all instructions and renumber all registers into those
4343 available in leaf functions. */
4344
4345 static void
4346 leaf_renumber_regs (rtx_insn *first)
4347 {
4348 rtx_insn *insn;
4349
4350 /* Renumber only the actual patterns.
4351 The reg-notes can contain frame pointer refs,
4352 and renumbering them could crash, and should not be needed. */
4353 for (insn = first; insn; insn = NEXT_INSN (insn))
4354 if (INSN_P (insn))
4355 leaf_renumber_regs_insn (PATTERN (insn));
4356 }
4357
4358 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4359 available in leaf functions. */
4360
4361 void
4362 leaf_renumber_regs_insn (rtx in_rtx)
4363 {
4364 int i, j;
4365 const char *format_ptr;
4366
4367 if (in_rtx == 0)
4368 return;
4369
4370 /* Renumber all input-registers into output-registers.
4371 renumbered_regs would be 1 for an output-register;
4372 they */
4373
4374 if (REG_P (in_rtx))
4375 {
4376 int newreg;
4377
4378 /* Don't renumber the same reg twice. */
4379 if (in_rtx->used)
4380 return;
4381
4382 newreg = REGNO (in_rtx);
4383 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4384 to reach here as part of a REG_NOTE. */
4385 if (newreg >= FIRST_PSEUDO_REGISTER)
4386 {
4387 in_rtx->used = 1;
4388 return;
4389 }
4390 newreg = LEAF_REG_REMAP (newreg);
4391 gcc_assert (newreg >= 0);
4392 df_set_regs_ever_live (REGNO (in_rtx), false);
4393 df_set_regs_ever_live (newreg, true);
4394 SET_REGNO (in_rtx, newreg);
4395 in_rtx->used = 1;
4396 return;
4397 }
4398
4399 if (INSN_P (in_rtx))
4400 {
4401 /* Inside a SEQUENCE, we find insns.
4402 Renumber just the patterns of these insns,
4403 just as we do for the top-level insns. */
4404 leaf_renumber_regs_insn (PATTERN (in_rtx));
4405 return;
4406 }
4407
4408 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4409
4410 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4411 switch (*format_ptr++)
4412 {
4413 case 'e':
4414 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4415 break;
4416
4417 case 'E':
4418 if (NULL != XVEC (in_rtx, i))
4419 {
4420 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4421 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4422 }
4423 break;
4424
4425 case 'S':
4426 case 's':
4427 case '0':
4428 case 'i':
4429 case 'w':
4430 case 'n':
4431 case 'u':
4432 break;
4433
4434 default:
4435 gcc_unreachable ();
4436 }
4437 }
4438 #endif
4439 \f
4440 /* Turn the RTL into assembly. */
4441 static unsigned int
4442 rest_of_handle_final (void)
4443 {
4444 const char *fnname = get_fnname_from_decl (current_function_decl);
4445
4446 assemble_start_function (current_function_decl, fnname);
4447 final_start_function (get_insns (), asm_out_file, optimize);
4448 final (get_insns (), asm_out_file, optimize);
4449 if (flag_ipa_ra)
4450 collect_fn_hard_reg_usage ();
4451 final_end_function ();
4452
4453 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4454 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4455 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4456 output_function_exception_table (fnname);
4457
4458 assemble_end_function (current_function_decl, fnname);
4459
4460 user_defined_section_attribute = false;
4461
4462 /* Free up reg info memory. */
4463 free_reg_info ();
4464
4465 if (! quiet_flag)
4466 fflush (asm_out_file);
4467
4468 /* Write DBX symbols if requested. */
4469
4470 /* Note that for those inline functions where we don't initially
4471 know for certain that we will be generating an out-of-line copy,
4472 the first invocation of this routine (rest_of_compilation) will
4473 skip over this code by doing a `goto exit_rest_of_compilation;'.
4474 Later on, wrapup_global_declarations will (indirectly) call
4475 rest_of_compilation again for those inline functions that need
4476 to have out-of-line copies generated. During that call, we
4477 *will* be routed past here. */
4478
4479 timevar_push (TV_SYMOUT);
4480 if (!DECL_IGNORED_P (current_function_decl))
4481 debug_hooks->function_decl (current_function_decl);
4482 timevar_pop (TV_SYMOUT);
4483
4484 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4485 DECL_INITIAL (current_function_decl) = error_mark_node;
4486
4487 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4488 && targetm.have_ctors_dtors)
4489 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4490 decl_init_priority_lookup
4491 (current_function_decl));
4492 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4493 && targetm.have_ctors_dtors)
4494 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4495 decl_fini_priority_lookup
4496 (current_function_decl));
4497 return 0;
4498 }
4499
4500 namespace {
4501
4502 const pass_data pass_data_final =
4503 {
4504 RTL_PASS, /* type */
4505 "final", /* name */
4506 OPTGROUP_NONE, /* optinfo_flags */
4507 TV_FINAL, /* tv_id */
4508 0, /* properties_required */
4509 0, /* properties_provided */
4510 0, /* properties_destroyed */
4511 0, /* todo_flags_start */
4512 0, /* todo_flags_finish */
4513 };
4514
4515 class pass_final : public rtl_opt_pass
4516 {
4517 public:
4518 pass_final (gcc::context *ctxt)
4519 : rtl_opt_pass (pass_data_final, ctxt)
4520 {}
4521
4522 /* opt_pass methods: */
4523 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4524
4525 }; // class pass_final
4526
4527 } // anon namespace
4528
4529 rtl_opt_pass *
4530 make_pass_final (gcc::context *ctxt)
4531 {
4532 return new pass_final (ctxt);
4533 }
4534
4535
4536 static unsigned int
4537 rest_of_handle_shorten_branches (void)
4538 {
4539 /* Shorten branches. */
4540 shorten_branches (get_insns ());
4541 return 0;
4542 }
4543
4544 namespace {
4545
4546 const pass_data pass_data_shorten_branches =
4547 {
4548 RTL_PASS, /* type */
4549 "shorten", /* name */
4550 OPTGROUP_NONE, /* optinfo_flags */
4551 TV_SHORTEN_BRANCH, /* tv_id */
4552 0, /* properties_required */
4553 0, /* properties_provided */
4554 0, /* properties_destroyed */
4555 0, /* todo_flags_start */
4556 0, /* todo_flags_finish */
4557 };
4558
4559 class pass_shorten_branches : public rtl_opt_pass
4560 {
4561 public:
4562 pass_shorten_branches (gcc::context *ctxt)
4563 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4564 {}
4565
4566 /* opt_pass methods: */
4567 virtual unsigned int execute (function *)
4568 {
4569 return rest_of_handle_shorten_branches ();
4570 }
4571
4572 }; // class pass_shorten_branches
4573
4574 } // anon namespace
4575
4576 rtl_opt_pass *
4577 make_pass_shorten_branches (gcc::context *ctxt)
4578 {
4579 return new pass_shorten_branches (ctxt);
4580 }
4581
4582
4583 static unsigned int
4584 rest_of_clean_state (void)
4585 {
4586 rtx_insn *insn, *next;
4587 FILE *final_output = NULL;
4588 int save_unnumbered = flag_dump_unnumbered;
4589 int save_noaddr = flag_dump_noaddr;
4590
4591 if (flag_dump_final_insns)
4592 {
4593 final_output = fopen (flag_dump_final_insns, "a");
4594 if (!final_output)
4595 {
4596 error ("could not open final insn dump file %qs: %m",
4597 flag_dump_final_insns);
4598 flag_dump_final_insns = NULL;
4599 }
4600 else
4601 {
4602 flag_dump_noaddr = flag_dump_unnumbered = 1;
4603 if (flag_compare_debug_opt || flag_compare_debug)
4604 dump_flags |= TDF_NOUID;
4605 dump_function_header (final_output, current_function_decl,
4606 dump_flags);
4607 final_insns_dump_p = true;
4608
4609 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4610 if (LABEL_P (insn))
4611 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4612 else
4613 {
4614 if (NOTE_P (insn))
4615 set_block_for_insn (insn, NULL);
4616 INSN_UID (insn) = 0;
4617 }
4618 }
4619 }
4620
4621 /* It is very important to decompose the RTL instruction chain here:
4622 debug information keeps pointing into CODE_LABEL insns inside the function
4623 body. If these remain pointing to the other insns, we end up preserving
4624 whole RTL chain and attached detailed debug info in memory. */
4625 for (insn = get_insns (); insn; insn = next)
4626 {
4627 next = NEXT_INSN (insn);
4628 SET_NEXT_INSN (insn) = NULL;
4629 SET_PREV_INSN (insn) = NULL;
4630
4631 if (final_output
4632 && (!NOTE_P (insn) ||
4633 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4634 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4635 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4636 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4637 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4638 print_rtl_single (final_output, insn);
4639 }
4640
4641 if (final_output)
4642 {
4643 flag_dump_noaddr = save_noaddr;
4644 flag_dump_unnumbered = save_unnumbered;
4645 final_insns_dump_p = false;
4646
4647 if (fclose (final_output))
4648 {
4649 error ("could not close final insn dump file %qs: %m",
4650 flag_dump_final_insns);
4651 flag_dump_final_insns = NULL;
4652 }
4653 }
4654
4655 /* In case the function was not output,
4656 don't leave any temporary anonymous types
4657 queued up for sdb output. */
4658 #ifdef SDB_DEBUGGING_INFO
4659 if (write_symbols == SDB_DEBUG)
4660 sdbout_types (NULL_TREE);
4661 #endif
4662
4663 flag_rerun_cse_after_global_opts = 0;
4664 reload_completed = 0;
4665 epilogue_completed = 0;
4666 #ifdef STACK_REGS
4667 regstack_completed = 0;
4668 #endif
4669
4670 /* Clear out the insn_length contents now that they are no
4671 longer valid. */
4672 init_insn_lengths ();
4673
4674 /* Show no temporary slots allocated. */
4675 init_temp_slots ();
4676
4677 free_bb_for_insn ();
4678
4679 delete_tree_ssa (cfun);
4680
4681 /* We can reduce stack alignment on call site only when we are sure that
4682 the function body just produced will be actually used in the final
4683 executable. */
4684 if (decl_binds_to_current_def_p (current_function_decl))
4685 {
4686 unsigned int pref = crtl->preferred_stack_boundary;
4687 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4688 pref = crtl->stack_alignment_needed;
4689 cgraph_node::rtl_info (current_function_decl)
4690 ->preferred_incoming_stack_boundary = pref;
4691 }
4692
4693 /* Make sure volatile mem refs aren't considered valid operands for
4694 arithmetic insns. We must call this here if this is a nested inline
4695 function, since the above code leaves us in the init_recog state,
4696 and the function context push/pop code does not save/restore volatile_ok.
4697
4698 ??? Maybe it isn't necessary for expand_start_function to call this
4699 anymore if we do it here? */
4700
4701 init_recog_no_volatile ();
4702
4703 /* We're done with this function. Free up memory if we can. */
4704 free_after_parsing (cfun);
4705 free_after_compilation (cfun);
4706 return 0;
4707 }
4708
4709 namespace {
4710
4711 const pass_data pass_data_clean_state =
4712 {
4713 RTL_PASS, /* type */
4714 "*clean_state", /* name */
4715 OPTGROUP_NONE, /* optinfo_flags */
4716 TV_FINAL, /* tv_id */
4717 0, /* properties_required */
4718 0, /* properties_provided */
4719 PROP_rtl, /* properties_destroyed */
4720 0, /* todo_flags_start */
4721 0, /* todo_flags_finish */
4722 };
4723
4724 class pass_clean_state : public rtl_opt_pass
4725 {
4726 public:
4727 pass_clean_state (gcc::context *ctxt)
4728 : rtl_opt_pass (pass_data_clean_state, ctxt)
4729 {}
4730
4731 /* opt_pass methods: */
4732 virtual unsigned int execute (function *)
4733 {
4734 return rest_of_clean_state ();
4735 }
4736
4737 }; // class pass_clean_state
4738
4739 } // anon namespace
4740
4741 rtl_opt_pass *
4742 make_pass_clean_state (gcc::context *ctxt)
4743 {
4744 return new pass_clean_state (ctxt);
4745 }
4746
4747 /* Return true if INSN is a call to the current function. */
4748
4749 static bool
4750 self_recursive_call_p (rtx_insn *insn)
4751 {
4752 tree fndecl = get_call_fndecl (insn);
4753 return (fndecl == current_function_decl
4754 && decl_binds_to_current_def_p (fndecl));
4755 }
4756
4757 /* Collect hard register usage for the current function. */
4758
4759 static void
4760 collect_fn_hard_reg_usage (void)
4761 {
4762 rtx_insn *insn;
4763 #ifdef STACK_REGS
4764 int i;
4765 #endif
4766 struct cgraph_rtl_info *node;
4767 HARD_REG_SET function_used_regs;
4768
4769 /* ??? To be removed when all the ports have been fixed. */
4770 if (!targetm.call_fusage_contains_non_callee_clobbers)
4771 return;
4772
4773 CLEAR_HARD_REG_SET (function_used_regs);
4774
4775 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4776 {
4777 HARD_REG_SET insn_used_regs;
4778
4779 if (!NONDEBUG_INSN_P (insn))
4780 continue;
4781
4782 if (CALL_P (insn)
4783 && !self_recursive_call_p (insn))
4784 {
4785 if (!get_call_reg_set_usage (insn, &insn_used_regs,
4786 call_used_reg_set))
4787 return;
4788
4789 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4790 }
4791
4792 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4793 IOR_HARD_REG_SET (function_used_regs, insn_used_regs);
4794 }
4795
4796 /* Be conservative - mark fixed and global registers as used. */
4797 IOR_HARD_REG_SET (function_used_regs, fixed_reg_set);
4798
4799 #ifdef STACK_REGS
4800 /* Handle STACK_REGS conservatively, since the df-framework does not
4801 provide accurate information for them. */
4802
4803 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4804 SET_HARD_REG_BIT (function_used_regs, i);
4805 #endif
4806
4807 /* The information we have gathered is only interesting if it exposes a
4808 register from the call_used_regs that is not used in this function. */
4809 if (hard_reg_set_subset_p (call_used_reg_set, function_used_regs))
4810 return;
4811
4812 node = cgraph_node::rtl_info (current_function_decl);
4813 gcc_assert (node != NULL);
4814
4815 COPY_HARD_REG_SET (node->function_used_regs, function_used_regs);
4816 node->function_used_regs_valid = 1;
4817 }
4818
4819 /* Get the declaration of the function called by INSN. */
4820
4821 static tree
4822 get_call_fndecl (rtx_insn *insn)
4823 {
4824 rtx note, datum;
4825
4826 note = find_reg_note (insn, REG_CALL_DECL, NULL_RTX);
4827 if (note == NULL_RTX)
4828 return NULL_TREE;
4829
4830 datum = XEXP (note, 0);
4831 if (datum != NULL_RTX)
4832 return SYMBOL_REF_DECL (datum);
4833
4834 return NULL_TREE;
4835 }
4836
4837 /* Return the cgraph_rtl_info of the function called by INSN. Returns NULL for
4838 call targets that can be overwritten. */
4839
4840 static struct cgraph_rtl_info *
4841 get_call_cgraph_rtl_info (rtx_insn *insn)
4842 {
4843 tree fndecl;
4844
4845 if (insn == NULL_RTX)
4846 return NULL;
4847
4848 fndecl = get_call_fndecl (insn);
4849 if (fndecl == NULL_TREE
4850 || !decl_binds_to_current_def_p (fndecl))
4851 return NULL;
4852
4853 return cgraph_node::rtl_info (fndecl);
4854 }
4855
4856 /* Find hard registers used by function call instruction INSN, and return them
4857 in REG_SET. Return DEFAULT_SET in REG_SET if not found. */
4858
4859 bool
4860 get_call_reg_set_usage (rtx_insn *insn, HARD_REG_SET *reg_set,
4861 HARD_REG_SET default_set)
4862 {
4863 if (flag_ipa_ra)
4864 {
4865 struct cgraph_rtl_info *node = get_call_cgraph_rtl_info (insn);
4866 if (node != NULL
4867 && node->function_used_regs_valid)
4868 {
4869 COPY_HARD_REG_SET (*reg_set, node->function_used_regs);
4870 AND_HARD_REG_SET (*reg_set, default_set);
4871 return true;
4872 }
4873 }
4874
4875 COPY_HARD_REG_SET (*reg_set, default_set);
4876 return false;
4877 }