Fix problems with hot/cold partitioning optimization.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
21 02111-1307, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75
76 #ifdef XCOFF_DEBUGGING_INFO
77 #include "xcoffout.h" /* Needed for external data
78 declarations for e.g. AIX 4.x. */
79 #endif
80
81 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
82 #include "dwarf2out.h"
83 #endif
84
85 #ifdef DBX_DEBUGGING_INFO
86 #include "dbxout.h"
87 #endif
88
89 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
90 null default for it to save conditionalization later. */
91 #ifndef CC_STATUS_INIT
92 #define CC_STATUS_INIT
93 #endif
94
95 /* How to start an assembler comment. */
96 #ifndef ASM_COMMENT_START
97 #define ASM_COMMENT_START ";#"
98 #endif
99
100 /* Is the given character a logical line separator for the assembler? */
101 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
102 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
103 #endif
104
105 #ifndef JUMP_TABLES_IN_TEXT_SECTION
106 #define JUMP_TABLES_IN_TEXT_SECTION 0
107 #endif
108
109 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
110 #define HAVE_READONLY_DATA_SECTION 1
111 #else
112 #define HAVE_READONLY_DATA_SECTION 0
113 #endif
114
115 /* Bitflags used by final_scan_insn. */
116 #define SEEN_BB 1
117 #define SEEN_NOTE 2
118 #define SEEN_EMITTED 4
119
120 /* Last insn processed by final_scan_insn. */
121 static rtx debug_insn;
122 rtx current_output_insn;
123
124 /* Line number of last NOTE. */
125 static int last_linenum;
126
127 /* Highest line number in current block. */
128 static int high_block_linenum;
129
130 /* Likewise for function. */
131 static int high_function_linenum;
132
133 /* Filename of last NOTE. */
134 static const char *last_filename;
135
136 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
137
138 /* Nonzero while outputting an `asm' with operands.
139 This means that inconsistencies are the user's fault, so don't abort.
140 The precise value is the insn being output, to pass to error_for_asm. */
141 rtx this_is_asm_operands;
142
143 /* Number of operands of this insn, for an `asm' with operands. */
144 static unsigned int insn_noperands;
145
146 /* Compare optimization flag. */
147
148 static rtx last_ignored_compare = 0;
149
150 /* Assign a unique number to each insn that is output.
151 This can be used to generate unique local labels. */
152
153 static int insn_counter = 0;
154
155 #ifdef HAVE_cc0
156 /* This variable contains machine-dependent flags (defined in tm.h)
157 set and examined by output routines
158 that describe how to interpret the condition codes properly. */
159
160 CC_STATUS cc_status;
161
162 /* During output of an insn, this contains a copy of cc_status
163 from before the insn. */
164
165 CC_STATUS cc_prev_status;
166 #endif
167
168 /* Indexed by hardware reg number, is 1 if that register is ever
169 used in the current function.
170
171 In life_analysis, or in stupid_life_analysis, this is set
172 up to record the hard regs used explicitly. Reload adds
173 in the hard regs used for holding pseudo regs. Final uses
174 it to generate the code in the function prologue and epilogue
175 to save and restore registers as needed. */
176
177 char regs_ever_live[FIRST_PSEUDO_REGISTER];
178
179 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
180 Unlike regs_ever_live, elements of this array corresponding to
181 eliminable regs like the frame pointer are set if an asm sets them. */
182
183 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
184
185 /* Nonzero means current function must be given a frame pointer.
186 Initialized in function.c to 0. Set only in reload1.c as per
187 the needs of the function. */
188
189 int frame_pointer_needed;
190
191 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
192
193 static int block_depth;
194
195 /* Nonzero if have enabled APP processing of our assembler output. */
196
197 static int app_on;
198
199 /* If we are outputting an insn sequence, this contains the sequence rtx.
200 Zero otherwise. */
201
202 rtx final_sequence;
203
204 #ifdef ASSEMBLER_DIALECT
205
206 /* Number of the assembler dialect to use, starting at 0. */
207 static int dialect_number;
208 #endif
209
210 #ifdef HAVE_conditional_execution
211 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
212 rtx current_insn_predicate;
213 #endif
214
215 #ifdef HAVE_ATTR_length
216 static int asm_insn_count (rtx);
217 #endif
218 static void profile_function (FILE *);
219 static void profile_after_prologue (FILE *);
220 static bool notice_source_line (rtx);
221 static rtx walk_alter_subreg (rtx *);
222 static void output_asm_name (void);
223 static void output_alternate_entry_point (FILE *, rtx);
224 static tree get_mem_expr_from_op (rtx, int *);
225 static void output_asm_operand_names (rtx *, int *, int);
226 static void output_operand (rtx, int);
227 #ifdef LEAF_REGISTERS
228 static void leaf_renumber_regs (rtx);
229 #endif
230 #ifdef HAVE_cc0
231 static int alter_cond (rtx);
232 #endif
233 #ifndef ADDR_VEC_ALIGN
234 static int final_addr_vec_align (rtx);
235 #endif
236 #ifdef HAVE_ATTR_length
237 static int align_fuzz (rtx, rtx, int, unsigned);
238 #endif
239 \f
240 /* Initialize data in final at the beginning of a compilation. */
241
242 void
243 init_final (const char *filename ATTRIBUTE_UNUSED)
244 {
245 app_on = 0;
246 final_sequence = 0;
247
248 #ifdef ASSEMBLER_DIALECT
249 dialect_number = ASSEMBLER_DIALECT;
250 #endif
251 }
252
253 /* Default target function prologue and epilogue assembler output.
254
255 If not overridden for epilogue code, then the function body itself
256 contains return instructions wherever needed. */
257 void
258 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
259 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
260 {
261 }
262
263 /* Default target hook that outputs nothing to a stream. */
264 void
265 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Enable APP processing of subsequent output.
270 Used before the output from an `asm' statement. */
271
272 void
273 app_enable (void)
274 {
275 if (! app_on)
276 {
277 fputs (ASM_APP_ON, asm_out_file);
278 app_on = 1;
279 }
280 }
281
282 /* Disable APP processing of subsequent output.
283 Called from varasm.c before most kinds of output. */
284
285 void
286 app_disable (void)
287 {
288 if (app_on)
289 {
290 fputs (ASM_APP_OFF, asm_out_file);
291 app_on = 0;
292 }
293 }
294 \f
295 /* Return the number of slots filled in the current
296 delayed branch sequence (we don't count the insn needing the
297 delay slot). Zero if not in a delayed branch sequence. */
298
299 #ifdef DELAY_SLOTS
300 int
301 dbr_sequence_length (void)
302 {
303 if (final_sequence != 0)
304 return XVECLEN (final_sequence, 0) - 1;
305 else
306 return 0;
307 }
308 #endif
309 \f
310 /* The next two pages contain routines used to compute the length of an insn
311 and to shorten branches. */
312
313 /* Arrays for insn lengths, and addresses. The latter is referenced by
314 `insn_current_length'. */
315
316 static int *insn_lengths;
317
318 varray_type insn_addresses_;
319
320 /* Max uid for which the above arrays are valid. */
321 static int insn_lengths_max_uid;
322
323 /* Address of insn being processed. Used by `insn_current_length'. */
324 int insn_current_address;
325
326 /* Address of insn being processed in previous iteration. */
327 int insn_last_address;
328
329 /* known invariant alignment of insn being processed. */
330 int insn_current_align;
331
332 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
333 gives the next following alignment insn that increases the known
334 alignment, or NULL_RTX if there is no such insn.
335 For any alignment obtained this way, we can again index uid_align with
336 its uid to obtain the next following align that in turn increases the
337 alignment, till we reach NULL_RTX; the sequence obtained this way
338 for each insn we'll call the alignment chain of this insn in the following
339 comments. */
340
341 struct label_alignment
342 {
343 short alignment;
344 short max_skip;
345 };
346
347 static rtx *uid_align;
348 static int *uid_shuid;
349 static struct label_alignment *label_align;
350
351 /* Indicate that branch shortening hasn't yet been done. */
352
353 void
354 init_insn_lengths (void)
355 {
356 if (uid_shuid)
357 {
358 free (uid_shuid);
359 uid_shuid = 0;
360 }
361 if (insn_lengths)
362 {
363 free (insn_lengths);
364 insn_lengths = 0;
365 insn_lengths_max_uid = 0;
366 }
367 #ifdef HAVE_ATTR_length
368 INSN_ADDRESSES_FREE ();
369 #endif
370 if (uid_align)
371 {
372 free (uid_align);
373 uid_align = 0;
374 }
375 }
376
377 /* Obtain the current length of an insn. If branch shortening has been done,
378 get its actual length. Otherwise, get its maximum length. */
379
380 int
381 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
382 {
383 #ifdef HAVE_ATTR_length
384 rtx body;
385 int i;
386 int length = 0;
387
388 if (insn_lengths_max_uid > INSN_UID (insn))
389 return insn_lengths[INSN_UID (insn)];
390 else
391 switch (GET_CODE (insn))
392 {
393 case NOTE:
394 case BARRIER:
395 case CODE_LABEL:
396 return 0;
397
398 case CALL_INSN:
399 length = insn_default_length (insn);
400 break;
401
402 case JUMP_INSN:
403 body = PATTERN (insn);
404 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
405 {
406 /* Alignment is machine-dependent and should be handled by
407 ADDR_VEC_ALIGN. */
408 }
409 else
410 length = insn_default_length (insn);
411 break;
412
413 case INSN:
414 body = PATTERN (insn);
415 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
416 return 0;
417
418 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
419 length = asm_insn_count (body) * insn_default_length (insn);
420 else if (GET_CODE (body) == SEQUENCE)
421 for (i = 0; i < XVECLEN (body, 0); i++)
422 length += get_attr_length (XVECEXP (body, 0, i));
423 else
424 length = insn_default_length (insn);
425 break;
426
427 default:
428 break;
429 }
430
431 #ifdef ADJUST_INSN_LENGTH
432 ADJUST_INSN_LENGTH (insn, length);
433 #endif
434 return length;
435 #else /* not HAVE_ATTR_length */
436 return 0;
437 #endif /* not HAVE_ATTR_length */
438 }
439 \f
440 /* Code to handle alignment inside shorten_branches. */
441
442 /* Here is an explanation how the algorithm in align_fuzz can give
443 proper results:
444
445 Call a sequence of instructions beginning with alignment point X
446 and continuing until the next alignment point `block X'. When `X'
447 is used in an expression, it means the alignment value of the
448 alignment point.
449
450 Call the distance between the start of the first insn of block X, and
451 the end of the last insn of block X `IX', for the `inner size of X'.
452 This is clearly the sum of the instruction lengths.
453
454 Likewise with the next alignment-delimited block following X, which we
455 shall call block Y.
456
457 Call the distance between the start of the first insn of block X, and
458 the start of the first insn of block Y `OX', for the `outer size of X'.
459
460 The estimated padding is then OX - IX.
461
462 OX can be safely estimated as
463
464 if (X >= Y)
465 OX = round_up(IX, Y)
466 else
467 OX = round_up(IX, X) + Y - X
468
469 Clearly est(IX) >= real(IX), because that only depends on the
470 instruction lengths, and those being overestimated is a given.
471
472 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
473 we needn't worry about that when thinking about OX.
474
475 When X >= Y, the alignment provided by Y adds no uncertainty factor
476 for branch ranges starting before X, so we can just round what we have.
477 But when X < Y, we don't know anything about the, so to speak,
478 `middle bits', so we have to assume the worst when aligning up from an
479 address mod X to one mod Y, which is Y - X. */
480
481 #ifndef LABEL_ALIGN
482 #define LABEL_ALIGN(LABEL) align_labels_log
483 #endif
484
485 #ifndef LABEL_ALIGN_MAX_SKIP
486 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
487 #endif
488
489 #ifndef LOOP_ALIGN
490 #define LOOP_ALIGN(LABEL) align_loops_log
491 #endif
492
493 #ifndef LOOP_ALIGN_MAX_SKIP
494 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
495 #endif
496
497 #ifndef LABEL_ALIGN_AFTER_BARRIER
498 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
499 #endif
500
501 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
502 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
503 #endif
504
505 #ifndef JUMP_ALIGN
506 #define JUMP_ALIGN(LABEL) align_jumps_log
507 #endif
508
509 #ifndef JUMP_ALIGN_MAX_SKIP
510 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
511 #endif
512
513 #ifndef ADDR_VEC_ALIGN
514 static int
515 final_addr_vec_align (rtx addr_vec)
516 {
517 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
518
519 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
520 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
521 return exact_log2 (align);
522
523 }
524
525 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
526 #endif
527
528 #ifndef INSN_LENGTH_ALIGNMENT
529 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
530 #endif
531
532 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
533
534 static int min_labelno, max_labelno;
535
536 #define LABEL_TO_ALIGNMENT(LABEL) \
537 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
538
539 #define LABEL_TO_MAX_SKIP(LABEL) \
540 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
541
542 /* For the benefit of port specific code do this also as a function. */
543
544 int
545 label_to_alignment (rtx label)
546 {
547 return LABEL_TO_ALIGNMENT (label);
548 }
549
550 #ifdef HAVE_ATTR_length
551 /* The differences in addresses
552 between a branch and its target might grow or shrink depending on
553 the alignment the start insn of the range (the branch for a forward
554 branch or the label for a backward branch) starts out on; if these
555 differences are used naively, they can even oscillate infinitely.
556 We therefore want to compute a 'worst case' address difference that
557 is independent of the alignment the start insn of the range end
558 up on, and that is at least as large as the actual difference.
559 The function align_fuzz calculates the amount we have to add to the
560 naively computed difference, by traversing the part of the alignment
561 chain of the start insn of the range that is in front of the end insn
562 of the range, and considering for each alignment the maximum amount
563 that it might contribute to a size increase.
564
565 For casesi tables, we also want to know worst case minimum amounts of
566 address difference, in case a machine description wants to introduce
567 some common offset that is added to all offsets in a table.
568 For this purpose, align_fuzz with a growth argument of 0 computes the
569 appropriate adjustment. */
570
571 /* Compute the maximum delta by which the difference of the addresses of
572 START and END might grow / shrink due to a different address for start
573 which changes the size of alignment insns between START and END.
574 KNOWN_ALIGN_LOG is the alignment known for START.
575 GROWTH should be ~0 if the objective is to compute potential code size
576 increase, and 0 if the objective is to compute potential shrink.
577 The return value is undefined for any other value of GROWTH. */
578
579 static int
580 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
581 {
582 int uid = INSN_UID (start);
583 rtx align_label;
584 int known_align = 1 << known_align_log;
585 int end_shuid = INSN_SHUID (end);
586 int fuzz = 0;
587
588 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
589 {
590 int align_addr, new_align;
591
592 uid = INSN_UID (align_label);
593 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
594 if (uid_shuid[uid] > end_shuid)
595 break;
596 known_align_log = LABEL_TO_ALIGNMENT (align_label);
597 new_align = 1 << known_align_log;
598 if (new_align < known_align)
599 continue;
600 fuzz += (-align_addr ^ growth) & (new_align - known_align);
601 known_align = new_align;
602 }
603 return fuzz;
604 }
605
606 /* Compute a worst-case reference address of a branch so that it
607 can be safely used in the presence of aligned labels. Since the
608 size of the branch itself is unknown, the size of the branch is
609 not included in the range. I.e. for a forward branch, the reference
610 address is the end address of the branch as known from the previous
611 branch shortening pass, minus a value to account for possible size
612 increase due to alignment. For a backward branch, it is the start
613 address of the branch as known from the current pass, plus a value
614 to account for possible size increase due to alignment.
615 NB.: Therefore, the maximum offset allowed for backward branches needs
616 to exclude the branch size. */
617
618 int
619 insn_current_reference_address (rtx branch)
620 {
621 rtx dest, seq;
622 int seq_uid;
623
624 if (! INSN_ADDRESSES_SET_P ())
625 return 0;
626
627 seq = NEXT_INSN (PREV_INSN (branch));
628 seq_uid = INSN_UID (seq);
629 if (!JUMP_P (branch))
630 /* This can happen for example on the PA; the objective is to know the
631 offset to address something in front of the start of the function.
632 Thus, we can treat it like a backward branch.
633 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
634 any alignment we'd encounter, so we skip the call to align_fuzz. */
635 return insn_current_address;
636 dest = JUMP_LABEL (branch);
637
638 /* BRANCH has no proper alignment chain set, so use SEQ.
639 BRANCH also has no INSN_SHUID. */
640 if (INSN_SHUID (seq) < INSN_SHUID (dest))
641 {
642 /* Forward branch. */
643 return (insn_last_address + insn_lengths[seq_uid]
644 - align_fuzz (seq, dest, length_unit_log, ~0));
645 }
646 else
647 {
648 /* Backward branch. */
649 return (insn_current_address
650 + align_fuzz (dest, seq, length_unit_log, ~0));
651 }
652 }
653 #endif /* HAVE_ATTR_length */
654 \f
655 void
656 compute_alignments (void)
657 {
658 int log, max_skip, max_log;
659 basic_block bb;
660
661 if (label_align)
662 {
663 free (label_align);
664 label_align = 0;
665 }
666
667 max_labelno = max_label_num ();
668 min_labelno = get_first_label_num ();
669 label_align = xcalloc (max_labelno - min_labelno + 1,
670 sizeof (struct label_alignment));
671
672 /* If not optimizing or optimizing for size, don't assign any alignments. */
673 if (! optimize || optimize_size)
674 return;
675
676 FOR_EACH_BB (bb)
677 {
678 rtx label = BB_HEAD (bb);
679 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
680 edge e;
681 edge_iterator ei;
682
683 if (!LABEL_P (label)
684 || probably_never_executed_bb_p (bb))
685 continue;
686 max_log = LABEL_ALIGN (label);
687 max_skip = LABEL_ALIGN_MAX_SKIP;
688
689 FOR_EACH_EDGE (e, ei, bb->preds)
690 {
691 if (e->flags & EDGE_FALLTHRU)
692 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
693 else
694 branch_frequency += EDGE_FREQUENCY (e);
695 }
696
697 /* There are two purposes to align block with no fallthru incoming edge:
698 1) to avoid fetch stalls when branch destination is near cache boundary
699 2) to improve cache efficiency in case the previous block is not executed
700 (so it does not need to be in the cache).
701
702 We to catch first case, we align frequently executed blocks.
703 To catch the second, we align blocks that are executed more frequently
704 than the predecessor and the predecessor is likely to not be executed
705 when function is called. */
706
707 if (!has_fallthru
708 && (branch_frequency > BB_FREQ_MAX / 10
709 || (bb->frequency > bb->prev_bb->frequency * 10
710 && (bb->prev_bb->frequency
711 <= ENTRY_BLOCK_PTR->frequency / 2))))
712 {
713 log = JUMP_ALIGN (label);
714 if (max_log < log)
715 {
716 max_log = log;
717 max_skip = JUMP_ALIGN_MAX_SKIP;
718 }
719 }
720 /* In case block is frequent and reached mostly by non-fallthru edge,
721 align it. It is most likely a first block of loop. */
722 if (has_fallthru
723 && maybe_hot_bb_p (bb)
724 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
725 && branch_frequency > fallthru_frequency * 2)
726 {
727 log = LOOP_ALIGN (label);
728 if (max_log < log)
729 {
730 max_log = log;
731 max_skip = LOOP_ALIGN_MAX_SKIP;
732 }
733 }
734 LABEL_TO_ALIGNMENT (label) = max_log;
735 LABEL_TO_MAX_SKIP (label) = max_skip;
736 }
737 }
738 \f
739 /* Make a pass over all insns and compute their actual lengths by shortening
740 any branches of variable length if possible. */
741
742 /* shorten_branches might be called multiple times: for example, the SH
743 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
744 In order to do this, it needs proper length information, which it obtains
745 by calling shorten_branches. This cannot be collapsed with
746 shorten_branches itself into a single pass unless we also want to integrate
747 reorg.c, since the branch splitting exposes new instructions with delay
748 slots. */
749
750 void
751 shorten_branches (rtx first ATTRIBUTE_UNUSED)
752 {
753 rtx insn;
754 int max_uid;
755 int i;
756 int max_log;
757 int max_skip;
758 #ifdef HAVE_ATTR_length
759 #define MAX_CODE_ALIGN 16
760 rtx seq;
761 int something_changed = 1;
762 char *varying_length;
763 rtx body;
764 int uid;
765 rtx align_tab[MAX_CODE_ALIGN];
766
767 #endif
768
769 /* Compute maximum UID and allocate label_align / uid_shuid. */
770 max_uid = get_max_uid ();
771
772 /* Free uid_shuid before reallocating it. */
773 free (uid_shuid);
774
775 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
776
777 if (max_labelno != max_label_num ())
778 {
779 int old = max_labelno;
780 int n_labels;
781 int n_old_labels;
782
783 max_labelno = max_label_num ();
784
785 n_labels = max_labelno - min_labelno + 1;
786 n_old_labels = old - min_labelno + 1;
787
788 label_align = xrealloc (label_align,
789 n_labels * sizeof (struct label_alignment));
790
791 /* Range of labels grows monotonically in the function. Abort here
792 means that the initialization of array got lost. */
793 gcc_assert (n_old_labels <= n_labels);
794
795 memset (label_align + n_old_labels, 0,
796 (n_labels - n_old_labels) * sizeof (struct label_alignment));
797 }
798
799 /* Initialize label_align and set up uid_shuid to be strictly
800 monotonically rising with insn order. */
801 /* We use max_log here to keep track of the maximum alignment we want to
802 impose on the next CODE_LABEL (or the current one if we are processing
803 the CODE_LABEL itself). */
804
805 max_log = 0;
806 max_skip = 0;
807
808 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
809 {
810 int log;
811
812 INSN_SHUID (insn) = i++;
813 if (INSN_P (insn))
814 {
815 /* reorg might make the first insn of a loop being run once only,
816 and delete the label in front of it. Then we want to apply
817 the loop alignment to the new label created by reorg, which
818 is separated by the former loop start insn from the
819 NOTE_INSN_LOOP_BEG. */
820 }
821 else if (LABEL_P (insn))
822 {
823 rtx next;
824
825 /* Merge in alignments computed by compute_alignments. */
826 log = LABEL_TO_ALIGNMENT (insn);
827 if (max_log < log)
828 {
829 max_log = log;
830 max_skip = LABEL_TO_MAX_SKIP (insn);
831 }
832
833 log = LABEL_ALIGN (insn);
834 if (max_log < log)
835 {
836 max_log = log;
837 max_skip = LABEL_ALIGN_MAX_SKIP;
838 }
839 next = next_nonnote_insn (insn);
840 /* ADDR_VECs only take room if read-only data goes into the text
841 section. */
842 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
843 if (next && JUMP_P (next))
844 {
845 rtx nextbody = PATTERN (next);
846 if (GET_CODE (nextbody) == ADDR_VEC
847 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
848 {
849 log = ADDR_VEC_ALIGN (next);
850 if (max_log < log)
851 {
852 max_log = log;
853 max_skip = LABEL_ALIGN_MAX_SKIP;
854 }
855 }
856 }
857 LABEL_TO_ALIGNMENT (insn) = max_log;
858 LABEL_TO_MAX_SKIP (insn) = max_skip;
859 max_log = 0;
860 max_skip = 0;
861 }
862 else if (BARRIER_P (insn))
863 {
864 rtx label;
865
866 for (label = insn; label && ! INSN_P (label);
867 label = NEXT_INSN (label))
868 if (LABEL_P (label))
869 {
870 log = LABEL_ALIGN_AFTER_BARRIER (insn);
871 if (max_log < log)
872 {
873 max_log = log;
874 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
875 }
876 break;
877 }
878 }
879 }
880 #ifdef HAVE_ATTR_length
881
882 /* Allocate the rest of the arrays. */
883 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
884 insn_lengths_max_uid = max_uid;
885 /* Syntax errors can lead to labels being outside of the main insn stream.
886 Initialize insn_addresses, so that we get reproducible results. */
887 INSN_ADDRESSES_ALLOC (max_uid);
888
889 varying_length = xcalloc (max_uid, sizeof (char));
890
891 /* Initialize uid_align. We scan instructions
892 from end to start, and keep in align_tab[n] the last seen insn
893 that does an alignment of at least n+1, i.e. the successor
894 in the alignment chain for an insn that does / has a known
895 alignment of n. */
896 uid_align = xcalloc (max_uid, sizeof *uid_align);
897
898 for (i = MAX_CODE_ALIGN; --i >= 0;)
899 align_tab[i] = NULL_RTX;
900 seq = get_last_insn ();
901 for (; seq; seq = PREV_INSN (seq))
902 {
903 int uid = INSN_UID (seq);
904 int log;
905 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
906 uid_align[uid] = align_tab[0];
907 if (log)
908 {
909 /* Found an alignment label. */
910 uid_align[uid] = align_tab[log];
911 for (i = log - 1; i >= 0; i--)
912 align_tab[i] = seq;
913 }
914 }
915 #ifdef CASE_VECTOR_SHORTEN_MODE
916 if (optimize)
917 {
918 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
919 label fields. */
920
921 int min_shuid = INSN_SHUID (get_insns ()) - 1;
922 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
923 int rel;
924
925 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
926 {
927 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
928 int len, i, min, max, insn_shuid;
929 int min_align;
930 addr_diff_vec_flags flags;
931
932 if (!JUMP_P (insn)
933 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
934 continue;
935 pat = PATTERN (insn);
936 len = XVECLEN (pat, 1);
937 gcc_assert (len > 0);
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 memset (&flags, 0, sizeof (flags));
961 flags.min_align = min_align;
962 flags.base_after_vec = rel > insn_shuid;
963 flags.min_after_vec = min > insn_shuid;
964 flags.max_after_vec = max > insn_shuid;
965 flags.min_after_base = min > rel;
966 flags.max_after_base = max > rel;
967 ADDR_DIFF_VEC_FLAGS (pat) = flags;
968 }
969 }
970 #endif /* CASE_VECTOR_SHORTEN_MODE */
971
972 /* Compute initial lengths, addresses, and varying flags for each insn. */
973 for (insn_current_address = 0, insn = first;
974 insn != 0;
975 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
976 {
977 uid = INSN_UID (insn);
978
979 insn_lengths[uid] = 0;
980
981 if (LABEL_P (insn))
982 {
983 int log = LABEL_TO_ALIGNMENT (insn);
984 if (log)
985 {
986 int align = 1 << log;
987 int new_address = (insn_current_address + align - 1) & -align;
988 insn_lengths[uid] = new_address - insn_current_address;
989 }
990 }
991
992 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
993
994 if (NOTE_P (insn) || BARRIER_P (insn)
995 || LABEL_P (insn))
996 continue;
997 if (INSN_DELETED_P (insn))
998 continue;
999
1000 body = PATTERN (insn);
1001 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1002 {
1003 /* This only takes room if read-only data goes into the text
1004 section. */
1005 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1006 insn_lengths[uid] = (XVECLEN (body,
1007 GET_CODE (body) == ADDR_DIFF_VEC)
1008 * GET_MODE_SIZE (GET_MODE (body)));
1009 /* Alignment is handled by ADDR_VEC_ALIGN. */
1010 }
1011 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1012 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1013 else if (GET_CODE (body) == SEQUENCE)
1014 {
1015 int i;
1016 int const_delay_slots;
1017 #ifdef DELAY_SLOTS
1018 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1019 #else
1020 const_delay_slots = 0;
1021 #endif
1022 /* Inside a delay slot sequence, we do not do any branch shortening
1023 if the shortening could change the number of delay slots
1024 of the branch. */
1025 for (i = 0; i < XVECLEN (body, 0); i++)
1026 {
1027 rtx inner_insn = XVECEXP (body, 0, i);
1028 int inner_uid = INSN_UID (inner_insn);
1029 int inner_length;
1030
1031 if (GET_CODE (body) == ASM_INPUT
1032 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1033 inner_length = (asm_insn_count (PATTERN (inner_insn))
1034 * insn_default_length (inner_insn));
1035 else
1036 inner_length = insn_default_length (inner_insn);
1037
1038 insn_lengths[inner_uid] = inner_length;
1039 if (const_delay_slots)
1040 {
1041 if ((varying_length[inner_uid]
1042 = insn_variable_length_p (inner_insn)) != 0)
1043 varying_length[uid] = 1;
1044 INSN_ADDRESSES (inner_uid) = (insn_current_address
1045 + insn_lengths[uid]);
1046 }
1047 else
1048 varying_length[inner_uid] = 0;
1049 insn_lengths[uid] += inner_length;
1050 }
1051 }
1052 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1053 {
1054 insn_lengths[uid] = insn_default_length (insn);
1055 varying_length[uid] = insn_variable_length_p (insn);
1056 }
1057
1058 /* If needed, do any adjustment. */
1059 #ifdef ADJUST_INSN_LENGTH
1060 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1061 if (insn_lengths[uid] < 0)
1062 fatal_insn ("negative insn length", insn);
1063 #endif
1064 }
1065
1066 /* Now loop over all the insns finding varying length insns. For each,
1067 get the current insn length. If it has changed, reflect the change.
1068 When nothing changes for a full pass, we are done. */
1069
1070 while (something_changed)
1071 {
1072 something_changed = 0;
1073 insn_current_align = MAX_CODE_ALIGN - 1;
1074 for (insn_current_address = 0, insn = first;
1075 insn != 0;
1076 insn = NEXT_INSN (insn))
1077 {
1078 int new_length;
1079 #ifdef ADJUST_INSN_LENGTH
1080 int tmp_length;
1081 #endif
1082 int length_align;
1083
1084 uid = INSN_UID (insn);
1085
1086 if (LABEL_P (insn))
1087 {
1088 int log = LABEL_TO_ALIGNMENT (insn);
1089 if (log > insn_current_align)
1090 {
1091 int align = 1 << log;
1092 int new_address= (insn_current_address + align - 1) & -align;
1093 insn_lengths[uid] = new_address - insn_current_address;
1094 insn_current_align = log;
1095 insn_current_address = new_address;
1096 }
1097 else
1098 insn_lengths[uid] = 0;
1099 INSN_ADDRESSES (uid) = insn_current_address;
1100 continue;
1101 }
1102
1103 length_align = INSN_LENGTH_ALIGNMENT (insn);
1104 if (length_align < insn_current_align)
1105 insn_current_align = length_align;
1106
1107 insn_last_address = INSN_ADDRESSES (uid);
1108 INSN_ADDRESSES (uid) = insn_current_address;
1109
1110 #ifdef CASE_VECTOR_SHORTEN_MODE
1111 if (optimize && JUMP_P (insn)
1112 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1113 {
1114 rtx body = PATTERN (insn);
1115 int old_length = insn_lengths[uid];
1116 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1117 rtx min_lab = XEXP (XEXP (body, 2), 0);
1118 rtx max_lab = XEXP (XEXP (body, 3), 0);
1119 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1120 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1121 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1122 rtx prev;
1123 int rel_align = 0;
1124 addr_diff_vec_flags flags;
1125
1126 /* Avoid automatic aggregate initialization. */
1127 flags = ADDR_DIFF_VEC_FLAGS (body);
1128
1129 /* Try to find a known alignment for rel_lab. */
1130 for (prev = rel_lab;
1131 prev
1132 && ! insn_lengths[INSN_UID (prev)]
1133 && ! (varying_length[INSN_UID (prev)] & 1);
1134 prev = PREV_INSN (prev))
1135 if (varying_length[INSN_UID (prev)] & 2)
1136 {
1137 rel_align = LABEL_TO_ALIGNMENT (prev);
1138 break;
1139 }
1140
1141 /* See the comment on addr_diff_vec_flags in rtl.h for the
1142 meaning of the flags values. base: REL_LAB vec: INSN */
1143 /* Anything after INSN has still addresses from the last
1144 pass; adjust these so that they reflect our current
1145 estimate for this pass. */
1146 if (flags.base_after_vec)
1147 rel_addr += insn_current_address - insn_last_address;
1148 if (flags.min_after_vec)
1149 min_addr += insn_current_address - insn_last_address;
1150 if (flags.max_after_vec)
1151 max_addr += insn_current_address - insn_last_address;
1152 /* We want to know the worst case, i.e. lowest possible value
1153 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1154 its offset is positive, and we have to be wary of code shrink;
1155 otherwise, it is negative, and we have to be vary of code
1156 size increase. */
1157 if (flags.min_after_base)
1158 {
1159 /* If INSN is between REL_LAB and MIN_LAB, the size
1160 changes we are about to make can change the alignment
1161 within the observed offset, therefore we have to break
1162 it up into two parts that are independent. */
1163 if (! flags.base_after_vec && flags.min_after_vec)
1164 {
1165 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1166 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1167 }
1168 else
1169 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1170 }
1171 else
1172 {
1173 if (flags.base_after_vec && ! flags.min_after_vec)
1174 {
1175 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1176 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1177 }
1178 else
1179 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1180 }
1181 /* Likewise, determine the highest lowest possible value
1182 for the offset of MAX_LAB. */
1183 if (flags.max_after_base)
1184 {
1185 if (! flags.base_after_vec && flags.max_after_vec)
1186 {
1187 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1188 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1189 }
1190 else
1191 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1192 }
1193 else
1194 {
1195 if (flags.base_after_vec && ! flags.max_after_vec)
1196 {
1197 max_addr += align_fuzz (max_lab, insn, 0, 0);
1198 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1199 }
1200 else
1201 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1202 }
1203 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1204 max_addr - rel_addr,
1205 body));
1206 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1207 {
1208 insn_lengths[uid]
1209 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1210 insn_current_address += insn_lengths[uid];
1211 if (insn_lengths[uid] != old_length)
1212 something_changed = 1;
1213 }
1214
1215 continue;
1216 }
1217 #endif /* CASE_VECTOR_SHORTEN_MODE */
1218
1219 if (! (varying_length[uid]))
1220 {
1221 if (NONJUMP_INSN_P (insn)
1222 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1223 {
1224 int i;
1225
1226 body = PATTERN (insn);
1227 for (i = 0; i < XVECLEN (body, 0); i++)
1228 {
1229 rtx inner_insn = XVECEXP (body, 0, i);
1230 int inner_uid = INSN_UID (inner_insn);
1231
1232 INSN_ADDRESSES (inner_uid) = insn_current_address;
1233
1234 insn_current_address += insn_lengths[inner_uid];
1235 }
1236 }
1237 else
1238 insn_current_address += insn_lengths[uid];
1239
1240 continue;
1241 }
1242
1243 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1244 {
1245 int i;
1246
1247 body = PATTERN (insn);
1248 new_length = 0;
1249 for (i = 0; i < XVECLEN (body, 0); i++)
1250 {
1251 rtx inner_insn = XVECEXP (body, 0, i);
1252 int inner_uid = INSN_UID (inner_insn);
1253 int inner_length;
1254
1255 INSN_ADDRESSES (inner_uid) = insn_current_address;
1256
1257 /* insn_current_length returns 0 for insns with a
1258 non-varying length. */
1259 if (! varying_length[inner_uid])
1260 inner_length = insn_lengths[inner_uid];
1261 else
1262 inner_length = insn_current_length (inner_insn);
1263
1264 if (inner_length != insn_lengths[inner_uid])
1265 {
1266 insn_lengths[inner_uid] = inner_length;
1267 something_changed = 1;
1268 }
1269 insn_current_address += insn_lengths[inner_uid];
1270 new_length += inner_length;
1271 }
1272 }
1273 else
1274 {
1275 new_length = insn_current_length (insn);
1276 insn_current_address += new_length;
1277 }
1278
1279 #ifdef ADJUST_INSN_LENGTH
1280 /* If needed, do any adjustment. */
1281 tmp_length = new_length;
1282 ADJUST_INSN_LENGTH (insn, new_length);
1283 insn_current_address += (new_length - tmp_length);
1284 #endif
1285
1286 if (new_length != insn_lengths[uid])
1287 {
1288 insn_lengths[uid] = new_length;
1289 something_changed = 1;
1290 }
1291 }
1292 /* For a non-optimizing compile, do only a single pass. */
1293 if (!optimize)
1294 break;
1295 }
1296
1297 free (varying_length);
1298
1299 #endif /* HAVE_ATTR_length */
1300 }
1301
1302 #ifdef HAVE_ATTR_length
1303 /* Given the body of an INSN known to be generated by an ASM statement, return
1304 the number of machine instructions likely to be generated for this insn.
1305 This is used to compute its length. */
1306
1307 static int
1308 asm_insn_count (rtx body)
1309 {
1310 const char *template;
1311 int count = 1;
1312
1313 if (GET_CODE (body) == ASM_INPUT)
1314 template = XSTR (body, 0);
1315 else
1316 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1317
1318 for (; *template; template++)
1319 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1320 count++;
1321
1322 return count;
1323 }
1324 #endif
1325 \f
1326 /* Output assembler code for the start of a function,
1327 and initialize some of the variables in this file
1328 for the new function. The label for the function and associated
1329 assembler pseudo-ops have already been output in `assemble_start_function'.
1330
1331 FIRST is the first insn of the rtl for the function being compiled.
1332 FILE is the file to write assembler code to.
1333 OPTIMIZE is nonzero if we should eliminate redundant
1334 test and compare insns. */
1335
1336 void
1337 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1338 int optimize ATTRIBUTE_UNUSED)
1339 {
1340 block_depth = 0;
1341
1342 this_is_asm_operands = 0;
1343
1344 last_filename = locator_file (prologue_locator);
1345 last_linenum = locator_line (prologue_locator);
1346
1347 high_block_linenum = high_function_linenum = last_linenum;
1348
1349 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1350
1351 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1352 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1353 dwarf2out_begin_prologue (0, NULL);
1354 #endif
1355
1356 #ifdef LEAF_REG_REMAP
1357 if (current_function_uses_only_leaf_regs)
1358 leaf_renumber_regs (first);
1359 #endif
1360
1361 /* The Sun386i and perhaps other machines don't work right
1362 if the profiling code comes after the prologue. */
1363 #ifdef PROFILE_BEFORE_PROLOGUE
1364 if (current_function_profile)
1365 profile_function (file);
1366 #endif /* PROFILE_BEFORE_PROLOGUE */
1367
1368 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1369 if (dwarf2out_do_frame ())
1370 dwarf2out_frame_debug (NULL_RTX, false);
1371 #endif
1372
1373 /* If debugging, assign block numbers to all of the blocks in this
1374 function. */
1375 if (write_symbols)
1376 {
1377 remove_unnecessary_notes ();
1378 reemit_insn_block_notes ();
1379 number_blocks (current_function_decl);
1380 /* We never actually put out begin/end notes for the top-level
1381 block in the function. But, conceptually, that block is
1382 always needed. */
1383 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1384 }
1385
1386 /* First output the function prologue: code to set up the stack frame. */
1387 targetm.asm_out.function_prologue (file, get_frame_size ());
1388
1389 /* If the machine represents the prologue as RTL, the profiling code must
1390 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1391 #ifdef HAVE_prologue
1392 if (! HAVE_prologue)
1393 #endif
1394 profile_after_prologue (file);
1395 }
1396
1397 static void
1398 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1399 {
1400 #ifndef PROFILE_BEFORE_PROLOGUE
1401 if (current_function_profile)
1402 profile_function (file);
1403 #endif /* not PROFILE_BEFORE_PROLOGUE */
1404 }
1405
1406 static void
1407 profile_function (FILE *file ATTRIBUTE_UNUSED)
1408 {
1409 #ifndef NO_PROFILE_COUNTERS
1410 # define NO_PROFILE_COUNTERS 0
1411 #endif
1412 #if defined(ASM_OUTPUT_REG_PUSH)
1413 int sval = current_function_returns_struct;
1414 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1415 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1416 int cxt = cfun->static_chain_decl != NULL;
1417 #endif
1418 #endif /* ASM_OUTPUT_REG_PUSH */
1419
1420 if (! NO_PROFILE_COUNTERS)
1421 {
1422 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1423 data_section ();
1424 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1425 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1426 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1427 }
1428
1429 current_function_section (current_function_decl);
1430
1431 #if defined(ASM_OUTPUT_REG_PUSH)
1432 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1433 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1434 #endif
1435
1436 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1437 if (cxt)
1438 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1439 #else
1440 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1441 if (cxt)
1442 {
1443 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1444 }
1445 #endif
1446 #endif
1447
1448 FUNCTION_PROFILER (file, current_function_funcdef_no);
1449
1450 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1451 if (cxt)
1452 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1453 #else
1454 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1455 if (cxt)
1456 {
1457 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1458 }
1459 #endif
1460 #endif
1461
1462 #if defined(ASM_OUTPUT_REG_PUSH)
1463 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1464 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1465 #endif
1466 }
1467
1468 /* Output assembler code for the end of a function.
1469 For clarity, args are same as those of `final_start_function'
1470 even though not all of them are needed. */
1471
1472 void
1473 final_end_function (void)
1474 {
1475 app_disable ();
1476
1477 (*debug_hooks->end_function) (high_function_linenum);
1478
1479 /* Finally, output the function epilogue:
1480 code to restore the stack frame and return to the caller. */
1481 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1482
1483 /* And debug output. */
1484 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1485
1486 #if defined (DWARF2_UNWIND_INFO)
1487 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1488 && dwarf2out_do_frame ())
1489 dwarf2out_end_epilogue (last_linenum, last_filename);
1490 #endif
1491 }
1492 \f
1493 /* Output assembler code for some insns: all or part of a function.
1494 For description of args, see `final_start_function', above. */
1495
1496 void
1497 final (rtx first, FILE *file, int optimize)
1498 {
1499 rtx insn;
1500 int max_uid = 0;
1501 int seen = 0;
1502
1503 last_ignored_compare = 0;
1504
1505 #ifdef SDB_DEBUGGING_INFO
1506 /* When producing SDB debugging info, delete troublesome line number
1507 notes from inlined functions in other files as well as duplicate
1508 line number notes. */
1509 if (write_symbols == SDB_DEBUG)
1510 {
1511 rtx last = 0;
1512 for (insn = first; insn; insn = NEXT_INSN (insn))
1513 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1514 {
1515 if (last != 0
1516 #ifdef USE_MAPPED_LOCATION
1517 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1518 #else
1519 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1520 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1521 #endif
1522 )
1523 {
1524 delete_insn (insn); /* Use delete_note. */
1525 continue;
1526 }
1527 last = insn;
1528 }
1529 }
1530 #endif
1531
1532 for (insn = first; insn; insn = NEXT_INSN (insn))
1533 {
1534 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1535 max_uid = INSN_UID (insn);
1536 #ifdef HAVE_cc0
1537 /* If CC tracking across branches is enabled, record the insn which
1538 jumps to each branch only reached from one place. */
1539 if (optimize && JUMP_P (insn))
1540 {
1541 rtx lab = JUMP_LABEL (insn);
1542 if (lab && LABEL_NUSES (lab) == 1)
1543 {
1544 LABEL_REFS (lab) = insn;
1545 }
1546 }
1547 #endif
1548 }
1549
1550 init_recog ();
1551
1552 CC_STATUS_INIT;
1553
1554 /* Output the insns. */
1555 for (insn = NEXT_INSN (first); insn;)
1556 {
1557 #ifdef HAVE_ATTR_length
1558 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1559 {
1560 /* This can be triggered by bugs elsewhere in the compiler if
1561 new insns are created after init_insn_lengths is called. */
1562 gcc_assert (NOTE_P (insn));
1563 insn_current_address = -1;
1564 }
1565 else
1566 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1567 #endif /* HAVE_ATTR_length */
1568
1569 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1570 }
1571 }
1572 \f
1573 const char *
1574 get_insn_template (int code, rtx insn)
1575 {
1576 switch (insn_data[code].output_format)
1577 {
1578 case INSN_OUTPUT_FORMAT_SINGLE:
1579 return insn_data[code].output.single;
1580 case INSN_OUTPUT_FORMAT_MULTI:
1581 return insn_data[code].output.multi[which_alternative];
1582 case INSN_OUTPUT_FORMAT_FUNCTION:
1583 gcc_assert (insn);
1584 return (*insn_data[code].output.function) (recog_data.operand, insn);
1585
1586 default:
1587 gcc_unreachable ();
1588 }
1589 }
1590
1591 /* Emit the appropriate declaration for an alternate-entry-point
1592 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1593 LABEL_KIND != LABEL_NORMAL.
1594
1595 The case fall-through in this function is intentional. */
1596 static void
1597 output_alternate_entry_point (FILE *file, rtx insn)
1598 {
1599 const char *name = LABEL_NAME (insn);
1600
1601 switch (LABEL_KIND (insn))
1602 {
1603 case LABEL_WEAK_ENTRY:
1604 #ifdef ASM_WEAKEN_LABEL
1605 ASM_WEAKEN_LABEL (file, name);
1606 #endif
1607 case LABEL_GLOBAL_ENTRY:
1608 targetm.asm_out.globalize_label (file, name);
1609 case LABEL_STATIC_ENTRY:
1610 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1611 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1612 #endif
1613 ASM_OUTPUT_LABEL (file, name);
1614 break;
1615
1616 case LABEL_NORMAL:
1617 default:
1618 gcc_unreachable ();
1619 }
1620 }
1621
1622 /* The final scan for one insn, INSN.
1623 Args are same as in `final', except that INSN
1624 is the insn being scanned.
1625 Value returned is the next insn to be scanned.
1626
1627 NOPEEPHOLES is the flag to disallow peephole processing (currently
1628 used for within delayed branch sequence output).
1629
1630 SEEN is used to track the end of the prologue, for emitting
1631 debug information. We force the emission of a line note after
1632 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1633 at the beginning of the second basic block, whichever comes
1634 first. */
1635
1636 rtx
1637 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1638 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1639 {
1640 #ifdef HAVE_cc0
1641 rtx set;
1642 #endif
1643 rtx next;
1644
1645 insn_counter++;
1646
1647 /* Ignore deleted insns. These can occur when we split insns (due to a
1648 template of "#") while not optimizing. */
1649 if (INSN_DELETED_P (insn))
1650 return NEXT_INSN (insn);
1651
1652 switch (GET_CODE (insn))
1653 {
1654 case NOTE:
1655 switch (NOTE_LINE_NUMBER (insn))
1656 {
1657 case NOTE_INSN_DELETED:
1658 case NOTE_INSN_LOOP_BEG:
1659 case NOTE_INSN_LOOP_END:
1660 case NOTE_INSN_FUNCTION_END:
1661 case NOTE_INSN_REPEATED_LINE_NUMBER:
1662 case NOTE_INSN_EXPECTED_VALUE:
1663 break;
1664
1665 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1666
1667 /* The presence of this note indicates that this basic block
1668 belongs in the "cold" section of the .o file. If we are
1669 not already writing to the cold section we need to change
1670 to it. */
1671
1672 if (last_text_section == in_text)
1673 {
1674 (*debug_hooks->switch_text_section) ();
1675 unlikely_text_section ();
1676 }
1677 else
1678 {
1679 (*debug_hooks->switch_text_section) ();
1680 text_section ();
1681 }
1682 break;
1683
1684 case NOTE_INSN_BASIC_BLOCK:
1685
1686 #ifdef TARGET_UNWIND_INFO
1687 targetm.asm_out.unwind_emit (asm_out_file, insn);
1688 #endif
1689
1690 if (flag_debug_asm)
1691 fprintf (asm_out_file, "\t%s basic block %d\n",
1692 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1693
1694 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1695 {
1696 *seen |= SEEN_EMITTED;
1697 last_filename = NULL;
1698 }
1699 else
1700 *seen |= SEEN_BB;
1701
1702 break;
1703
1704 case NOTE_INSN_EH_REGION_BEG:
1705 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1706 NOTE_EH_HANDLER (insn));
1707 break;
1708
1709 case NOTE_INSN_EH_REGION_END:
1710 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1711 NOTE_EH_HANDLER (insn));
1712 break;
1713
1714 case NOTE_INSN_PROLOGUE_END:
1715 targetm.asm_out.function_end_prologue (file);
1716 profile_after_prologue (file);
1717
1718 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1719 {
1720 *seen |= SEEN_EMITTED;
1721 last_filename = NULL;
1722 }
1723 else
1724 *seen |= SEEN_NOTE;
1725
1726 break;
1727
1728 case NOTE_INSN_EPILOGUE_BEG:
1729 targetm.asm_out.function_begin_epilogue (file);
1730 break;
1731
1732 case NOTE_INSN_FUNCTION_BEG:
1733 app_disable ();
1734 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1735
1736 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1737 {
1738 *seen |= SEEN_EMITTED;
1739 last_filename = NULL;
1740 }
1741 else
1742 *seen |= SEEN_NOTE;
1743
1744 break;
1745
1746 case NOTE_INSN_BLOCK_BEG:
1747 if (debug_info_level == DINFO_LEVEL_NORMAL
1748 || debug_info_level == DINFO_LEVEL_VERBOSE
1749 || write_symbols == DWARF2_DEBUG
1750 || write_symbols == VMS_AND_DWARF2_DEBUG
1751 || write_symbols == VMS_DEBUG)
1752 {
1753 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1754
1755 app_disable ();
1756 ++block_depth;
1757 high_block_linenum = last_linenum;
1758
1759 /* Output debugging info about the symbol-block beginning. */
1760 (*debug_hooks->begin_block) (last_linenum, n);
1761
1762 /* Mark this block as output. */
1763 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1764 }
1765 break;
1766
1767 case NOTE_INSN_BLOCK_END:
1768 if (debug_info_level == DINFO_LEVEL_NORMAL
1769 || debug_info_level == DINFO_LEVEL_VERBOSE
1770 || write_symbols == DWARF2_DEBUG
1771 || write_symbols == VMS_AND_DWARF2_DEBUG
1772 || write_symbols == VMS_DEBUG)
1773 {
1774 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1775
1776 app_disable ();
1777
1778 /* End of a symbol-block. */
1779 --block_depth;
1780 gcc_assert (block_depth >= 0);
1781
1782 (*debug_hooks->end_block) (high_block_linenum, n);
1783 }
1784 break;
1785
1786 case NOTE_INSN_DELETED_LABEL:
1787 /* Emit the label. We may have deleted the CODE_LABEL because
1788 the label could be proved to be unreachable, though still
1789 referenced (in the form of having its address taken. */
1790 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1791 break;
1792
1793 case NOTE_INSN_VAR_LOCATION:
1794 (*debug_hooks->var_location) (insn);
1795 break;
1796
1797 case 0:
1798 break;
1799
1800 default:
1801 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1802 break;
1803 }
1804 break;
1805
1806 case BARRIER:
1807 #if defined (DWARF2_UNWIND_INFO)
1808 if (dwarf2out_do_frame ())
1809 dwarf2out_frame_debug (insn, false);
1810 #endif
1811 break;
1812
1813 case CODE_LABEL:
1814 /* The target port might emit labels in the output function for
1815 some insn, e.g. sh.c output_branchy_insn. */
1816 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1817 {
1818 int align = LABEL_TO_ALIGNMENT (insn);
1819 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1820 int max_skip = LABEL_TO_MAX_SKIP (insn);
1821 #endif
1822
1823 if (align && NEXT_INSN (insn))
1824 {
1825 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1826 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1827 #else
1828 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1829 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1830 #else
1831 ASM_OUTPUT_ALIGN (file, align);
1832 #endif
1833 #endif
1834 }
1835 }
1836 #ifdef HAVE_cc0
1837 CC_STATUS_INIT;
1838 /* If this label is reached from only one place, set the condition
1839 codes from the instruction just before the branch. */
1840
1841 /* Disabled because some insns set cc_status in the C output code
1842 and NOTICE_UPDATE_CC alone can set incorrect status. */
1843 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1844 {
1845 rtx jump = LABEL_REFS (insn);
1846 rtx barrier = prev_nonnote_insn (insn);
1847 rtx prev;
1848 /* If the LABEL_REFS field of this label has been set to point
1849 at a branch, the predecessor of the branch is a regular
1850 insn, and that branch is the only way to reach this label,
1851 set the condition codes based on the branch and its
1852 predecessor. */
1853 if (barrier && BARRIER_P (barrier)
1854 && jump && JUMP_P (jump)
1855 && (prev = prev_nonnote_insn (jump))
1856 && NONJUMP_INSN_P (prev))
1857 {
1858 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1859 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1860 }
1861 }
1862 #endif
1863
1864 if (LABEL_NAME (insn))
1865 (*debug_hooks->label) (insn);
1866
1867 if (app_on)
1868 {
1869 fputs (ASM_APP_OFF, file);
1870 app_on = 0;
1871 }
1872
1873 next = next_nonnote_insn (insn);
1874 if (next != 0 && JUMP_P (next))
1875 {
1876 rtx nextbody = PATTERN (next);
1877
1878 /* If this label is followed by a jump-table,
1879 make sure we put the label in the read-only section. Also
1880 possibly write the label and jump table together. */
1881
1882 if (GET_CODE (nextbody) == ADDR_VEC
1883 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1884 {
1885 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1886 /* In this case, the case vector is being moved by the
1887 target, so don't output the label at all. Leave that
1888 to the back end macros. */
1889 #else
1890 if (! JUMP_TABLES_IN_TEXT_SECTION)
1891 {
1892 int log_align;
1893
1894 targetm.asm_out.function_rodata_section (current_function_decl);
1895
1896 #ifdef ADDR_VEC_ALIGN
1897 log_align = ADDR_VEC_ALIGN (next);
1898 #else
1899 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1900 #endif
1901 ASM_OUTPUT_ALIGN (file, log_align);
1902 }
1903 else
1904 current_function_section (current_function_decl);
1905
1906 #ifdef ASM_OUTPUT_CASE_LABEL
1907 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1908 next);
1909 #else
1910 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1911 #endif
1912 #endif
1913 break;
1914 }
1915 }
1916 if (LABEL_ALT_ENTRY_P (insn))
1917 output_alternate_entry_point (file, insn);
1918 else
1919 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1920 break;
1921
1922 default:
1923 {
1924 rtx body = PATTERN (insn);
1925 int insn_code_number;
1926 const char *template;
1927
1928 /* An INSN, JUMP_INSN or CALL_INSN.
1929 First check for special kinds that recog doesn't recognize. */
1930
1931 if (GET_CODE (body) == USE /* These are just declarations. */
1932 || GET_CODE (body) == CLOBBER)
1933 break;
1934
1935 #ifdef HAVE_cc0
1936 {
1937 /* If there is a REG_CC_SETTER note on this insn, it means that
1938 the setting of the condition code was done in the delay slot
1939 of the insn that branched here. So recover the cc status
1940 from the insn that set it. */
1941
1942 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1943 if (note)
1944 {
1945 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1946 cc_prev_status = cc_status;
1947 }
1948 }
1949 #endif
1950
1951 /* Detect insns that are really jump-tables
1952 and output them as such. */
1953
1954 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1955 {
1956 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1957 int vlen, idx;
1958 #endif
1959
1960 if (! JUMP_TABLES_IN_TEXT_SECTION)
1961 targetm.asm_out.function_rodata_section (current_function_decl);
1962 else
1963 current_function_section (current_function_decl);
1964
1965 if (app_on)
1966 {
1967 fputs (ASM_APP_OFF, file);
1968 app_on = 0;
1969 }
1970
1971 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1972 if (GET_CODE (body) == ADDR_VEC)
1973 {
1974 #ifdef ASM_OUTPUT_ADDR_VEC
1975 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
1976 #else
1977 gcc_unreachable ();
1978 #endif
1979 }
1980 else
1981 {
1982 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
1983 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
1984 #else
1985 gcc_unreachable ();
1986 #endif
1987 }
1988 #else
1989 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
1990 for (idx = 0; idx < vlen; idx++)
1991 {
1992 if (GET_CODE (body) == ADDR_VEC)
1993 {
1994 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
1995 ASM_OUTPUT_ADDR_VEC_ELT
1996 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
1997 #else
1998 gcc_unreachable ();
1999 #endif
2000 }
2001 else
2002 {
2003 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2004 ASM_OUTPUT_ADDR_DIFF_ELT
2005 (file,
2006 body,
2007 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2008 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2009 #else
2010 gcc_unreachable ();
2011 #endif
2012 }
2013 }
2014 #ifdef ASM_OUTPUT_CASE_END
2015 ASM_OUTPUT_CASE_END (file,
2016 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2017 insn);
2018 #endif
2019 #endif
2020
2021 current_function_section (current_function_decl);
2022
2023 break;
2024 }
2025 /* Output this line note if it is the first or the last line
2026 note in a row. */
2027 if (notice_source_line (insn))
2028 {
2029 (*debug_hooks->source_line) (last_linenum, last_filename);
2030 }
2031
2032 if (GET_CODE (body) == ASM_INPUT)
2033 {
2034 const char *string = XSTR (body, 0);
2035
2036 /* There's no telling what that did to the condition codes. */
2037 CC_STATUS_INIT;
2038
2039 if (string[0])
2040 {
2041 if (! app_on)
2042 {
2043 fputs (ASM_APP_ON, file);
2044 app_on = 1;
2045 }
2046 fprintf (asm_out_file, "\t%s\n", string);
2047 }
2048 break;
2049 }
2050
2051 /* Detect `asm' construct with operands. */
2052 if (asm_noperands (body) >= 0)
2053 {
2054 unsigned int noperands = asm_noperands (body);
2055 rtx *ops = alloca (noperands * sizeof (rtx));
2056 const char *string;
2057
2058 /* There's no telling what that did to the condition codes. */
2059 CC_STATUS_INIT;
2060
2061 /* Get out the operand values. */
2062 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2063 /* Inhibit aborts on what would otherwise be compiler bugs. */
2064 insn_noperands = noperands;
2065 this_is_asm_operands = insn;
2066
2067 #ifdef FINAL_PRESCAN_INSN
2068 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2069 #endif
2070
2071 /* Output the insn using them. */
2072 if (string[0])
2073 {
2074 if (! app_on)
2075 {
2076 fputs (ASM_APP_ON, file);
2077 app_on = 1;
2078 }
2079 output_asm_insn (string, ops);
2080 }
2081
2082 this_is_asm_operands = 0;
2083 break;
2084 }
2085
2086 if (app_on)
2087 {
2088 fputs (ASM_APP_OFF, file);
2089 app_on = 0;
2090 }
2091
2092 if (GET_CODE (body) == SEQUENCE)
2093 {
2094 /* A delayed-branch sequence */
2095 int i;
2096
2097 final_sequence = body;
2098
2099 /* Record the delay slots' frame information before the branch.
2100 This is needed for delayed calls: see execute_cfa_program(). */
2101 #if defined (DWARF2_UNWIND_INFO)
2102 if (dwarf2out_do_frame ())
2103 for (i = 1; i < XVECLEN (body, 0); i++)
2104 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2105 #endif
2106
2107 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2108 force the restoration of a comparison that was previously
2109 thought unnecessary. If that happens, cancel this sequence
2110 and cause that insn to be restored. */
2111
2112 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2113 if (next != XVECEXP (body, 0, 1))
2114 {
2115 final_sequence = 0;
2116 return next;
2117 }
2118
2119 for (i = 1; i < XVECLEN (body, 0); i++)
2120 {
2121 rtx insn = XVECEXP (body, 0, i);
2122 rtx next = NEXT_INSN (insn);
2123 /* We loop in case any instruction in a delay slot gets
2124 split. */
2125 do
2126 insn = final_scan_insn (insn, file, 0, 1, seen);
2127 while (insn != next);
2128 }
2129 #ifdef DBR_OUTPUT_SEQEND
2130 DBR_OUTPUT_SEQEND (file);
2131 #endif
2132 final_sequence = 0;
2133
2134 /* If the insn requiring the delay slot was a CALL_INSN, the
2135 insns in the delay slot are actually executed before the
2136 called function. Hence we don't preserve any CC-setting
2137 actions in these insns and the CC must be marked as being
2138 clobbered by the function. */
2139 if (CALL_P (XVECEXP (body, 0, 0)))
2140 {
2141 CC_STATUS_INIT;
2142 }
2143 break;
2144 }
2145
2146 /* We have a real machine instruction as rtl. */
2147
2148 body = PATTERN (insn);
2149
2150 #ifdef HAVE_cc0
2151 set = single_set (insn);
2152
2153 /* Check for redundant test and compare instructions
2154 (when the condition codes are already set up as desired).
2155 This is done only when optimizing; if not optimizing,
2156 it should be possible for the user to alter a variable
2157 with the debugger in between statements
2158 and the next statement should reexamine the variable
2159 to compute the condition codes. */
2160
2161 if (optimize)
2162 {
2163 if (set
2164 && GET_CODE (SET_DEST (set)) == CC0
2165 && insn != last_ignored_compare)
2166 {
2167 if (GET_CODE (SET_SRC (set)) == SUBREG)
2168 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2169 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2170 {
2171 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2172 XEXP (SET_SRC (set), 0)
2173 = alter_subreg (&XEXP (SET_SRC (set), 0));
2174 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2175 XEXP (SET_SRC (set), 1)
2176 = alter_subreg (&XEXP (SET_SRC (set), 1));
2177 }
2178 if ((cc_status.value1 != 0
2179 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2180 || (cc_status.value2 != 0
2181 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2182 {
2183 /* Don't delete insn if it has an addressing side-effect. */
2184 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2185 /* or if anything in it is volatile. */
2186 && ! volatile_refs_p (PATTERN (insn)))
2187 {
2188 /* We don't really delete the insn; just ignore it. */
2189 last_ignored_compare = insn;
2190 break;
2191 }
2192 }
2193 }
2194 }
2195 #endif
2196
2197 #ifdef HAVE_cc0
2198 /* If this is a conditional branch, maybe modify it
2199 if the cc's are in a nonstandard state
2200 so that it accomplishes the same thing that it would
2201 do straightforwardly if the cc's were set up normally. */
2202
2203 if (cc_status.flags != 0
2204 && JUMP_P (insn)
2205 && GET_CODE (body) == SET
2206 && SET_DEST (body) == pc_rtx
2207 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2208 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2209 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2210 {
2211 /* This function may alter the contents of its argument
2212 and clear some of the cc_status.flags bits.
2213 It may also return 1 meaning condition now always true
2214 or -1 meaning condition now always false
2215 or 2 meaning condition nontrivial but altered. */
2216 int result = alter_cond (XEXP (SET_SRC (body), 0));
2217 /* If condition now has fixed value, replace the IF_THEN_ELSE
2218 with its then-operand or its else-operand. */
2219 if (result == 1)
2220 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2221 if (result == -1)
2222 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2223
2224 /* The jump is now either unconditional or a no-op.
2225 If it has become a no-op, don't try to output it.
2226 (It would not be recognized.) */
2227 if (SET_SRC (body) == pc_rtx)
2228 {
2229 delete_insn (insn);
2230 break;
2231 }
2232 else if (GET_CODE (SET_SRC (body)) == RETURN)
2233 /* Replace (set (pc) (return)) with (return). */
2234 PATTERN (insn) = body = SET_SRC (body);
2235
2236 /* Rerecognize the instruction if it has changed. */
2237 if (result != 0)
2238 INSN_CODE (insn) = -1;
2239 }
2240
2241 /* Make same adjustments to instructions that examine the
2242 condition codes without jumping and instructions that
2243 handle conditional moves (if this machine has either one). */
2244
2245 if (cc_status.flags != 0
2246 && set != 0)
2247 {
2248 rtx cond_rtx, then_rtx, else_rtx;
2249
2250 if (!JUMP_P (insn)
2251 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2252 {
2253 cond_rtx = XEXP (SET_SRC (set), 0);
2254 then_rtx = XEXP (SET_SRC (set), 1);
2255 else_rtx = XEXP (SET_SRC (set), 2);
2256 }
2257 else
2258 {
2259 cond_rtx = SET_SRC (set);
2260 then_rtx = const_true_rtx;
2261 else_rtx = const0_rtx;
2262 }
2263
2264 switch (GET_CODE (cond_rtx))
2265 {
2266 case GTU:
2267 case GT:
2268 case LTU:
2269 case LT:
2270 case GEU:
2271 case GE:
2272 case LEU:
2273 case LE:
2274 case EQ:
2275 case NE:
2276 {
2277 int result;
2278 if (XEXP (cond_rtx, 0) != cc0_rtx)
2279 break;
2280 result = alter_cond (cond_rtx);
2281 if (result == 1)
2282 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2283 else if (result == -1)
2284 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2285 else if (result == 2)
2286 INSN_CODE (insn) = -1;
2287 if (SET_DEST (set) == SET_SRC (set))
2288 delete_insn (insn);
2289 }
2290 break;
2291
2292 default:
2293 break;
2294 }
2295 }
2296
2297 #endif
2298
2299 #ifdef HAVE_peephole
2300 /* Do machine-specific peephole optimizations if desired. */
2301
2302 if (optimize && !flag_no_peephole && !nopeepholes)
2303 {
2304 rtx next = peephole (insn);
2305 /* When peepholing, if there were notes within the peephole,
2306 emit them before the peephole. */
2307 if (next != 0 && next != NEXT_INSN (insn))
2308 {
2309 rtx note;
2310
2311 for (note = NEXT_INSN (insn); note != next;
2312 note = NEXT_INSN (note))
2313 final_scan_insn (note, file, optimize, nopeepholes, seen);
2314 }
2315
2316 /* PEEPHOLE might have changed this. */
2317 body = PATTERN (insn);
2318 }
2319 #endif
2320
2321 /* Try to recognize the instruction.
2322 If successful, verify that the operands satisfy the
2323 constraints for the instruction. Crash if they don't,
2324 since `reload' should have changed them so that they do. */
2325
2326 insn_code_number = recog_memoized (insn);
2327 cleanup_subreg_operands (insn);
2328
2329 /* Dump the insn in the assembly for debugging. */
2330 if (flag_dump_rtl_in_asm)
2331 {
2332 print_rtx_head = ASM_COMMENT_START;
2333 print_rtl_single (asm_out_file, insn);
2334 print_rtx_head = "";
2335 }
2336
2337 if (! constrain_operands_cached (1))
2338 fatal_insn_not_found (insn);
2339
2340 /* Some target machines need to prescan each insn before
2341 it is output. */
2342
2343 #ifdef FINAL_PRESCAN_INSN
2344 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2345 #endif
2346
2347 #ifdef HAVE_conditional_execution
2348 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2349 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2350 else
2351 current_insn_predicate = NULL_RTX;
2352 #endif
2353
2354 #ifdef HAVE_cc0
2355 cc_prev_status = cc_status;
2356
2357 /* Update `cc_status' for this instruction.
2358 The instruction's output routine may change it further.
2359 If the output routine for a jump insn needs to depend
2360 on the cc status, it should look at cc_prev_status. */
2361
2362 NOTICE_UPDATE_CC (body, insn);
2363 #endif
2364
2365 current_output_insn = debug_insn = insn;
2366
2367 #if defined (DWARF2_UNWIND_INFO)
2368 if (CALL_P (insn) && dwarf2out_do_frame ())
2369 dwarf2out_frame_debug (insn, false);
2370 #endif
2371
2372 /* Find the proper template for this insn. */
2373 template = get_insn_template (insn_code_number, insn);
2374
2375 /* If the C code returns 0, it means that it is a jump insn
2376 which follows a deleted test insn, and that test insn
2377 needs to be reinserted. */
2378 if (template == 0)
2379 {
2380 rtx prev;
2381
2382 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2383
2384 /* We have already processed the notes between the setter and
2385 the user. Make sure we don't process them again, this is
2386 particularly important if one of the notes is a block
2387 scope note or an EH note. */
2388 for (prev = insn;
2389 prev != last_ignored_compare;
2390 prev = PREV_INSN (prev))
2391 {
2392 if (NOTE_P (prev))
2393 delete_insn (prev); /* Use delete_note. */
2394 }
2395
2396 return prev;
2397 }
2398
2399 /* If the template is the string "#", it means that this insn must
2400 be split. */
2401 if (template[0] == '#' && template[1] == '\0')
2402 {
2403 rtx new = try_split (body, insn, 0);
2404
2405 /* If we didn't split the insn, go away. */
2406 if (new == insn && PATTERN (new) == body)
2407 fatal_insn ("could not split insn", insn);
2408
2409 #ifdef HAVE_ATTR_length
2410 /* This instruction should have been split in shorten_branches,
2411 to ensure that we would have valid length info for the
2412 splitees. */
2413 gcc_unreachable ();
2414 #endif
2415
2416 return new;
2417 }
2418
2419 #ifdef TARGET_UNWIND_INFO
2420 /* ??? This will put the directives in the wrong place if
2421 get_insn_template outputs assembly directly. However calling it
2422 before get_insn_template breaks if the insns is split. */
2423 targetm.asm_out.unwind_emit (asm_out_file, insn);
2424 #endif
2425
2426 /* Output assembler code from the template. */
2427 output_asm_insn (template, recog_data.operand);
2428
2429 /* If necessary, report the effect that the instruction has on
2430 the unwind info. We've already done this for delay slots
2431 and call instructions. */
2432 #if defined (DWARF2_UNWIND_INFO)
2433 if (final_sequence == 0
2434 #if !defined (HAVE_prologue)
2435 && !ACCUMULATE_OUTGOING_ARGS
2436 #endif
2437 && dwarf2out_do_frame ())
2438 dwarf2out_frame_debug (insn, true);
2439 #endif
2440
2441 current_output_insn = debug_insn = 0;
2442 }
2443 }
2444 return NEXT_INSN (insn);
2445 }
2446 \f
2447 /* Output debugging info to the assembler file FILE
2448 based on the NOTE-insn INSN, assumed to be a line number. */
2449
2450 static bool
2451 notice_source_line (rtx insn)
2452 {
2453 const char *filename = insn_file (insn);
2454 int linenum = insn_line (insn);
2455
2456 if (filename && (filename != last_filename || last_linenum != linenum))
2457 {
2458 last_filename = filename;
2459 last_linenum = linenum;
2460 high_block_linenum = MAX (last_linenum, high_block_linenum);
2461 high_function_linenum = MAX (last_linenum, high_function_linenum);
2462 return true;
2463 }
2464 return false;
2465 }
2466 \f
2467 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2468 directly to the desired hard register. */
2469
2470 void
2471 cleanup_subreg_operands (rtx insn)
2472 {
2473 int i;
2474 extract_insn_cached (insn);
2475 for (i = 0; i < recog_data.n_operands; i++)
2476 {
2477 /* The following test cannot use recog_data.operand when testing
2478 for a SUBREG: the underlying object might have been changed
2479 already if we are inside a match_operator expression that
2480 matches the else clause. Instead we test the underlying
2481 expression directly. */
2482 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2483 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2484 else if (GET_CODE (recog_data.operand[i]) == PLUS
2485 || GET_CODE (recog_data.operand[i]) == MULT
2486 || MEM_P (recog_data.operand[i]))
2487 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2488 }
2489
2490 for (i = 0; i < recog_data.n_dups; i++)
2491 {
2492 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2493 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2494 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2495 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2496 || MEM_P (*recog_data.dup_loc[i]))
2497 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2498 }
2499 }
2500
2501 /* If X is a SUBREG, replace it with a REG or a MEM,
2502 based on the thing it is a subreg of. */
2503
2504 rtx
2505 alter_subreg (rtx *xp)
2506 {
2507 rtx x = *xp;
2508 rtx y = SUBREG_REG (x);
2509
2510 /* simplify_subreg does not remove subreg from volatile references.
2511 We are required to. */
2512 if (MEM_P (y))
2513 {
2514 int offset = SUBREG_BYTE (x);
2515
2516 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2517 contains 0 instead of the proper offset. See simplify_subreg. */
2518 if (offset == 0
2519 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2520 {
2521 int difference = GET_MODE_SIZE (GET_MODE (y))
2522 - GET_MODE_SIZE (GET_MODE (x));
2523 if (WORDS_BIG_ENDIAN)
2524 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2525 if (BYTES_BIG_ENDIAN)
2526 offset += difference % UNITS_PER_WORD;
2527 }
2528
2529 *xp = adjust_address (y, GET_MODE (x), offset);
2530 }
2531 else
2532 {
2533 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2534 SUBREG_BYTE (x));
2535
2536 if (new != 0)
2537 *xp = new;
2538 else
2539 {
2540 /* Simplify_subreg can't handle some REG cases, but we have to. */
2541 unsigned int regno = subreg_regno (x);
2542 gcc_assert (REG_P (y));
2543 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2544 }
2545 }
2546
2547 return *xp;
2548 }
2549
2550 /* Do alter_subreg on all the SUBREGs contained in X. */
2551
2552 static rtx
2553 walk_alter_subreg (rtx *xp)
2554 {
2555 rtx x = *xp;
2556 switch (GET_CODE (x))
2557 {
2558 case PLUS:
2559 case MULT:
2560 case AND:
2561 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2562 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2563 break;
2564
2565 case MEM:
2566 case ZERO_EXTEND:
2567 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2568 break;
2569
2570 case SUBREG:
2571 return alter_subreg (xp);
2572
2573 default:
2574 break;
2575 }
2576
2577 return *xp;
2578 }
2579 \f
2580 #ifdef HAVE_cc0
2581
2582 /* Given BODY, the body of a jump instruction, alter the jump condition
2583 as required by the bits that are set in cc_status.flags.
2584 Not all of the bits there can be handled at this level in all cases.
2585
2586 The value is normally 0.
2587 1 means that the condition has become always true.
2588 -1 means that the condition has become always false.
2589 2 means that COND has been altered. */
2590
2591 static int
2592 alter_cond (rtx cond)
2593 {
2594 int value = 0;
2595
2596 if (cc_status.flags & CC_REVERSED)
2597 {
2598 value = 2;
2599 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2600 }
2601
2602 if (cc_status.flags & CC_INVERTED)
2603 {
2604 value = 2;
2605 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2606 }
2607
2608 if (cc_status.flags & CC_NOT_POSITIVE)
2609 switch (GET_CODE (cond))
2610 {
2611 case LE:
2612 case LEU:
2613 case GEU:
2614 /* Jump becomes unconditional. */
2615 return 1;
2616
2617 case GT:
2618 case GTU:
2619 case LTU:
2620 /* Jump becomes no-op. */
2621 return -1;
2622
2623 case GE:
2624 PUT_CODE (cond, EQ);
2625 value = 2;
2626 break;
2627
2628 case LT:
2629 PUT_CODE (cond, NE);
2630 value = 2;
2631 break;
2632
2633 default:
2634 break;
2635 }
2636
2637 if (cc_status.flags & CC_NOT_NEGATIVE)
2638 switch (GET_CODE (cond))
2639 {
2640 case GE:
2641 case GEU:
2642 /* Jump becomes unconditional. */
2643 return 1;
2644
2645 case LT:
2646 case LTU:
2647 /* Jump becomes no-op. */
2648 return -1;
2649
2650 case LE:
2651 case LEU:
2652 PUT_CODE (cond, EQ);
2653 value = 2;
2654 break;
2655
2656 case GT:
2657 case GTU:
2658 PUT_CODE (cond, NE);
2659 value = 2;
2660 break;
2661
2662 default:
2663 break;
2664 }
2665
2666 if (cc_status.flags & CC_NO_OVERFLOW)
2667 switch (GET_CODE (cond))
2668 {
2669 case GEU:
2670 /* Jump becomes unconditional. */
2671 return 1;
2672
2673 case LEU:
2674 PUT_CODE (cond, EQ);
2675 value = 2;
2676 break;
2677
2678 case GTU:
2679 PUT_CODE (cond, NE);
2680 value = 2;
2681 break;
2682
2683 case LTU:
2684 /* Jump becomes no-op. */
2685 return -1;
2686
2687 default:
2688 break;
2689 }
2690
2691 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2692 switch (GET_CODE (cond))
2693 {
2694 default:
2695 gcc_unreachable ();
2696
2697 case NE:
2698 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2699 value = 2;
2700 break;
2701
2702 case EQ:
2703 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2704 value = 2;
2705 break;
2706 }
2707
2708 if (cc_status.flags & CC_NOT_SIGNED)
2709 /* The flags are valid if signed condition operators are converted
2710 to unsigned. */
2711 switch (GET_CODE (cond))
2712 {
2713 case LE:
2714 PUT_CODE (cond, LEU);
2715 value = 2;
2716 break;
2717
2718 case LT:
2719 PUT_CODE (cond, LTU);
2720 value = 2;
2721 break;
2722
2723 case GT:
2724 PUT_CODE (cond, GTU);
2725 value = 2;
2726 break;
2727
2728 case GE:
2729 PUT_CODE (cond, GEU);
2730 value = 2;
2731 break;
2732
2733 default:
2734 break;
2735 }
2736
2737 return value;
2738 }
2739 #endif
2740 \f
2741 /* Report inconsistency between the assembler template and the operands.
2742 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2743
2744 void
2745 output_operand_lossage (const char *msgid, ...)
2746 {
2747 char *fmt_string;
2748 char *new_message;
2749 const char *pfx_str;
2750 va_list ap;
2751
2752 va_start (ap, msgid);
2753
2754 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2755 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2756 vasprintf (&new_message, fmt_string, ap);
2757
2758 if (this_is_asm_operands)
2759 error_for_asm (this_is_asm_operands, "%s", new_message);
2760 else
2761 internal_error ("%s", new_message);
2762
2763 free (fmt_string);
2764 free (new_message);
2765 va_end (ap);
2766 }
2767 \f
2768 /* Output of assembler code from a template, and its subroutines. */
2769
2770 /* Annotate the assembly with a comment describing the pattern and
2771 alternative used. */
2772
2773 static void
2774 output_asm_name (void)
2775 {
2776 if (debug_insn)
2777 {
2778 int num = INSN_CODE (debug_insn);
2779 fprintf (asm_out_file, "\t%s %d\t%s",
2780 ASM_COMMENT_START, INSN_UID (debug_insn),
2781 insn_data[num].name);
2782 if (insn_data[num].n_alternatives > 1)
2783 fprintf (asm_out_file, "/%d", which_alternative + 1);
2784 #ifdef HAVE_ATTR_length
2785 fprintf (asm_out_file, "\t[length = %d]",
2786 get_attr_length (debug_insn));
2787 #endif
2788 /* Clear this so only the first assembler insn
2789 of any rtl insn will get the special comment for -dp. */
2790 debug_insn = 0;
2791 }
2792 }
2793
2794 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2795 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2796 corresponds to the address of the object and 0 if to the object. */
2797
2798 static tree
2799 get_mem_expr_from_op (rtx op, int *paddressp)
2800 {
2801 tree expr;
2802 int inner_addressp;
2803
2804 *paddressp = 0;
2805
2806 if (REG_P (op))
2807 return REG_EXPR (op);
2808 else if (!MEM_P (op))
2809 return 0;
2810
2811 if (MEM_EXPR (op) != 0)
2812 return MEM_EXPR (op);
2813
2814 /* Otherwise we have an address, so indicate it and look at the address. */
2815 *paddressp = 1;
2816 op = XEXP (op, 0);
2817
2818 /* First check if we have a decl for the address, then look at the right side
2819 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2820 But don't allow the address to itself be indirect. */
2821 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2822 return expr;
2823 else if (GET_CODE (op) == PLUS
2824 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2825 return expr;
2826
2827 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2828 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2829 op = XEXP (op, 0);
2830
2831 expr = get_mem_expr_from_op (op, &inner_addressp);
2832 return inner_addressp ? 0 : expr;
2833 }
2834
2835 /* Output operand names for assembler instructions. OPERANDS is the
2836 operand vector, OPORDER is the order to write the operands, and NOPS
2837 is the number of operands to write. */
2838
2839 static void
2840 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2841 {
2842 int wrote = 0;
2843 int i;
2844
2845 for (i = 0; i < nops; i++)
2846 {
2847 int addressp;
2848 rtx op = operands[oporder[i]];
2849 tree expr = get_mem_expr_from_op (op, &addressp);
2850
2851 fprintf (asm_out_file, "%c%s",
2852 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2853 wrote = 1;
2854 if (expr)
2855 {
2856 fprintf (asm_out_file, "%s",
2857 addressp ? "*" : "");
2858 print_mem_expr (asm_out_file, expr);
2859 wrote = 1;
2860 }
2861 else if (REG_P (op) && ORIGINAL_REGNO (op)
2862 && ORIGINAL_REGNO (op) != REGNO (op))
2863 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2864 }
2865 }
2866
2867 /* Output text from TEMPLATE to the assembler output file,
2868 obeying %-directions to substitute operands taken from
2869 the vector OPERANDS.
2870
2871 %N (for N a digit) means print operand N in usual manner.
2872 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2873 and print the label name with no punctuation.
2874 %cN means require operand N to be a constant
2875 and print the constant expression with no punctuation.
2876 %aN means expect operand N to be a memory address
2877 (not a memory reference!) and print a reference
2878 to that address.
2879 %nN means expect operand N to be a constant
2880 and print a constant expression for minus the value
2881 of the operand, with no other punctuation. */
2882
2883 void
2884 output_asm_insn (const char *template, rtx *operands)
2885 {
2886 const char *p;
2887 int c;
2888 #ifdef ASSEMBLER_DIALECT
2889 int dialect = 0;
2890 #endif
2891 int oporder[MAX_RECOG_OPERANDS];
2892 char opoutput[MAX_RECOG_OPERANDS];
2893 int ops = 0;
2894
2895 /* An insn may return a null string template
2896 in a case where no assembler code is needed. */
2897 if (*template == 0)
2898 return;
2899
2900 memset (opoutput, 0, sizeof opoutput);
2901 p = template;
2902 putc ('\t', asm_out_file);
2903
2904 #ifdef ASM_OUTPUT_OPCODE
2905 ASM_OUTPUT_OPCODE (asm_out_file, p);
2906 #endif
2907
2908 while ((c = *p++))
2909 switch (c)
2910 {
2911 case '\n':
2912 if (flag_verbose_asm)
2913 output_asm_operand_names (operands, oporder, ops);
2914 if (flag_print_asm_name)
2915 output_asm_name ();
2916
2917 ops = 0;
2918 memset (opoutput, 0, sizeof opoutput);
2919
2920 putc (c, asm_out_file);
2921 #ifdef ASM_OUTPUT_OPCODE
2922 while ((c = *p) == '\t')
2923 {
2924 putc (c, asm_out_file);
2925 p++;
2926 }
2927 ASM_OUTPUT_OPCODE (asm_out_file, p);
2928 #endif
2929 break;
2930
2931 #ifdef ASSEMBLER_DIALECT
2932 case '{':
2933 {
2934 int i;
2935
2936 if (dialect)
2937 output_operand_lossage ("nested assembly dialect alternatives");
2938 else
2939 dialect = 1;
2940
2941 /* If we want the first dialect, do nothing. Otherwise, skip
2942 DIALECT_NUMBER of strings ending with '|'. */
2943 for (i = 0; i < dialect_number; i++)
2944 {
2945 while (*p && *p != '}' && *p++ != '|')
2946 ;
2947 if (*p == '}')
2948 break;
2949 if (*p == '|')
2950 p++;
2951 }
2952
2953 if (*p == '\0')
2954 output_operand_lossage ("unterminated assembly dialect alternative");
2955 }
2956 break;
2957
2958 case '|':
2959 if (dialect)
2960 {
2961 /* Skip to close brace. */
2962 do
2963 {
2964 if (*p == '\0')
2965 {
2966 output_operand_lossage ("unterminated assembly dialect alternative");
2967 break;
2968 }
2969 }
2970 while (*p++ != '}');
2971 dialect = 0;
2972 }
2973 else
2974 putc (c, asm_out_file);
2975 break;
2976
2977 case '}':
2978 if (! dialect)
2979 putc (c, asm_out_file);
2980 dialect = 0;
2981 break;
2982 #endif
2983
2984 case '%':
2985 /* %% outputs a single %. */
2986 if (*p == '%')
2987 {
2988 p++;
2989 putc (c, asm_out_file);
2990 }
2991 /* %= outputs a number which is unique to each insn in the entire
2992 compilation. This is useful for making local labels that are
2993 referred to more than once in a given insn. */
2994 else if (*p == '=')
2995 {
2996 p++;
2997 fprintf (asm_out_file, "%d", insn_counter);
2998 }
2999 /* % followed by a letter and some digits
3000 outputs an operand in a special way depending on the letter.
3001 Letters `acln' are implemented directly.
3002 Other letters are passed to `output_operand' so that
3003 the PRINT_OPERAND macro can define them. */
3004 else if (ISALPHA (*p))
3005 {
3006 int letter = *p++;
3007 unsigned long opnum;
3008 char *endptr;
3009
3010 opnum = strtoul (p, &endptr, 10);
3011
3012 if (endptr == p)
3013 output_operand_lossage ("operand number missing "
3014 "after %%-letter");
3015 else if (this_is_asm_operands && opnum >= insn_noperands)
3016 output_operand_lossage ("operand number out of range");
3017 else if (letter == 'l')
3018 output_asm_label (operands[opnum]);
3019 else if (letter == 'a')
3020 output_address (operands[opnum]);
3021 else if (letter == 'c')
3022 {
3023 if (CONSTANT_ADDRESS_P (operands[opnum]))
3024 output_addr_const (asm_out_file, operands[opnum]);
3025 else
3026 output_operand (operands[opnum], 'c');
3027 }
3028 else if (letter == 'n')
3029 {
3030 if (GET_CODE (operands[opnum]) == CONST_INT)
3031 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3032 - INTVAL (operands[opnum]));
3033 else
3034 {
3035 putc ('-', asm_out_file);
3036 output_addr_const (asm_out_file, operands[opnum]);
3037 }
3038 }
3039 else
3040 output_operand (operands[opnum], letter);
3041
3042 if (!opoutput[opnum])
3043 oporder[ops++] = opnum;
3044 opoutput[opnum] = 1;
3045
3046 p = endptr;
3047 c = *p;
3048 }
3049 /* % followed by a digit outputs an operand the default way. */
3050 else if (ISDIGIT (*p))
3051 {
3052 unsigned long opnum;
3053 char *endptr;
3054
3055 opnum = strtoul (p, &endptr, 10);
3056 if (this_is_asm_operands && opnum >= insn_noperands)
3057 output_operand_lossage ("operand number out of range");
3058 else
3059 output_operand (operands[opnum], 0);
3060
3061 if (!opoutput[opnum])
3062 oporder[ops++] = opnum;
3063 opoutput[opnum] = 1;
3064
3065 p = endptr;
3066 c = *p;
3067 }
3068 /* % followed by punctuation: output something for that
3069 punctuation character alone, with no operand.
3070 The PRINT_OPERAND macro decides what is actually done. */
3071 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3072 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3073 output_operand (NULL_RTX, *p++);
3074 #endif
3075 else
3076 output_operand_lossage ("invalid %%-code");
3077 break;
3078
3079 default:
3080 putc (c, asm_out_file);
3081 }
3082
3083 /* Write out the variable names for operands, if we know them. */
3084 if (flag_verbose_asm)
3085 output_asm_operand_names (operands, oporder, ops);
3086 if (flag_print_asm_name)
3087 output_asm_name ();
3088
3089 putc ('\n', asm_out_file);
3090 }
3091 \f
3092 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3093
3094 void
3095 output_asm_label (rtx x)
3096 {
3097 char buf[256];
3098
3099 if (GET_CODE (x) == LABEL_REF)
3100 x = XEXP (x, 0);
3101 if (LABEL_P (x)
3102 || (NOTE_P (x)
3103 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3104 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3105 else
3106 output_operand_lossage ("'%%l' operand isn't a label");
3107
3108 assemble_name (asm_out_file, buf);
3109 }
3110
3111 /* Print operand X using machine-dependent assembler syntax.
3112 The macro PRINT_OPERAND is defined just to control this function.
3113 CODE is a non-digit that preceded the operand-number in the % spec,
3114 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3115 between the % and the digits.
3116 When CODE is a non-letter, X is 0.
3117
3118 The meanings of the letters are machine-dependent and controlled
3119 by PRINT_OPERAND. */
3120
3121 static void
3122 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3123 {
3124 if (x && GET_CODE (x) == SUBREG)
3125 x = alter_subreg (&x);
3126
3127 /* If X is a pseudo-register, abort now rather than writing trash to the
3128 assembler file. */
3129 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3130
3131 PRINT_OPERAND (asm_out_file, x, code);
3132 }
3133
3134 /* Print a memory reference operand for address X
3135 using machine-dependent assembler syntax.
3136 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3137
3138 void
3139 output_address (rtx x)
3140 {
3141 walk_alter_subreg (&x);
3142 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3143 }
3144 \f
3145 /* Print an integer constant expression in assembler syntax.
3146 Addition and subtraction are the only arithmetic
3147 that may appear in these expressions. */
3148
3149 void
3150 output_addr_const (FILE *file, rtx x)
3151 {
3152 char buf[256];
3153
3154 restart:
3155 switch (GET_CODE (x))
3156 {
3157 case PC:
3158 putc ('.', file);
3159 break;
3160
3161 case SYMBOL_REF:
3162 if (SYMBOL_REF_DECL (x))
3163 mark_decl_referenced (SYMBOL_REF_DECL (x));
3164 #ifdef ASM_OUTPUT_SYMBOL_REF
3165 ASM_OUTPUT_SYMBOL_REF (file, x);
3166 #else
3167 assemble_name (file, XSTR (x, 0));
3168 #endif
3169 break;
3170
3171 case LABEL_REF:
3172 x = XEXP (x, 0);
3173 /* Fall through. */
3174 case CODE_LABEL:
3175 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3176 #ifdef ASM_OUTPUT_LABEL_REF
3177 ASM_OUTPUT_LABEL_REF (file, buf);
3178 #else
3179 assemble_name (file, buf);
3180 #endif
3181 break;
3182
3183 case CONST_INT:
3184 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3185 break;
3186
3187 case CONST:
3188 /* This used to output parentheses around the expression,
3189 but that does not work on the 386 (either ATT or BSD assembler). */
3190 output_addr_const (file, XEXP (x, 0));
3191 break;
3192
3193 case CONST_DOUBLE:
3194 if (GET_MODE (x) == VOIDmode)
3195 {
3196 /* We can use %d if the number is one word and positive. */
3197 if (CONST_DOUBLE_HIGH (x))
3198 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3199 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3200 else if (CONST_DOUBLE_LOW (x) < 0)
3201 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3202 else
3203 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3204 }
3205 else
3206 /* We can't handle floating point constants;
3207 PRINT_OPERAND must handle them. */
3208 output_operand_lossage ("floating constant misused");
3209 break;
3210
3211 case PLUS:
3212 /* Some assemblers need integer constants to appear last (eg masm). */
3213 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3214 {
3215 output_addr_const (file, XEXP (x, 1));
3216 if (INTVAL (XEXP (x, 0)) >= 0)
3217 fprintf (file, "+");
3218 output_addr_const (file, XEXP (x, 0));
3219 }
3220 else
3221 {
3222 output_addr_const (file, XEXP (x, 0));
3223 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3224 || INTVAL (XEXP (x, 1)) >= 0)
3225 fprintf (file, "+");
3226 output_addr_const (file, XEXP (x, 1));
3227 }
3228 break;
3229
3230 case MINUS:
3231 /* Avoid outputting things like x-x or x+5-x,
3232 since some assemblers can't handle that. */
3233 x = simplify_subtraction (x);
3234 if (GET_CODE (x) != MINUS)
3235 goto restart;
3236
3237 output_addr_const (file, XEXP (x, 0));
3238 fprintf (file, "-");
3239 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3240 || GET_CODE (XEXP (x, 1)) == PC
3241 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3242 output_addr_const (file, XEXP (x, 1));
3243 else
3244 {
3245 fputs (targetm.asm_out.open_paren, file);
3246 output_addr_const (file, XEXP (x, 1));
3247 fputs (targetm.asm_out.close_paren, file);
3248 }
3249 break;
3250
3251 case ZERO_EXTEND:
3252 case SIGN_EXTEND:
3253 case SUBREG:
3254 output_addr_const (file, XEXP (x, 0));
3255 break;
3256
3257 default:
3258 #ifdef OUTPUT_ADDR_CONST_EXTRA
3259 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3260 break;
3261
3262 fail:
3263 #endif
3264 output_operand_lossage ("invalid expression as operand");
3265 }
3266 }
3267 \f
3268 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3269 %R prints the value of REGISTER_PREFIX.
3270 %L prints the value of LOCAL_LABEL_PREFIX.
3271 %U prints the value of USER_LABEL_PREFIX.
3272 %I prints the value of IMMEDIATE_PREFIX.
3273 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3274 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3275
3276 We handle alternate assembler dialects here, just like output_asm_insn. */
3277
3278 void
3279 asm_fprintf (FILE *file, const char *p, ...)
3280 {
3281 char buf[10];
3282 char *q, c;
3283 va_list argptr;
3284
3285 va_start (argptr, p);
3286
3287 buf[0] = '%';
3288
3289 while ((c = *p++))
3290 switch (c)
3291 {
3292 #ifdef ASSEMBLER_DIALECT
3293 case '{':
3294 {
3295 int i;
3296
3297 /* If we want the first dialect, do nothing. Otherwise, skip
3298 DIALECT_NUMBER of strings ending with '|'. */
3299 for (i = 0; i < dialect_number; i++)
3300 {
3301 while (*p && *p++ != '|')
3302 ;
3303
3304 if (*p == '|')
3305 p++;
3306 }
3307 }
3308 break;
3309
3310 case '|':
3311 /* Skip to close brace. */
3312 while (*p && *p++ != '}')
3313 ;
3314 break;
3315
3316 case '}':
3317 break;
3318 #endif
3319
3320 case '%':
3321 c = *p++;
3322 q = &buf[1];
3323 while (strchr ("-+ #0", c))
3324 {
3325 *q++ = c;
3326 c = *p++;
3327 }
3328 while (ISDIGIT (c) || c == '.')
3329 {
3330 *q++ = c;
3331 c = *p++;
3332 }
3333 switch (c)
3334 {
3335 case '%':
3336 putc ('%', file);
3337 break;
3338
3339 case 'd': case 'i': case 'u':
3340 case 'x': case 'X': case 'o':
3341 case 'c':
3342 *q++ = c;
3343 *q = 0;
3344 fprintf (file, buf, va_arg (argptr, int));
3345 break;
3346
3347 case 'w':
3348 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3349 'o' cases, but we do not check for those cases. It
3350 means that the value is a HOST_WIDE_INT, which may be
3351 either `long' or `long long'. */
3352 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3353 q += strlen (HOST_WIDE_INT_PRINT);
3354 *q++ = *p++;
3355 *q = 0;
3356 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3357 break;
3358
3359 case 'l':
3360 *q++ = c;
3361 #ifdef HAVE_LONG_LONG
3362 if (*p == 'l')
3363 {
3364 *q++ = *p++;
3365 *q++ = *p++;
3366 *q = 0;
3367 fprintf (file, buf, va_arg (argptr, long long));
3368 }
3369 else
3370 #endif
3371 {
3372 *q++ = *p++;
3373 *q = 0;
3374 fprintf (file, buf, va_arg (argptr, long));
3375 }
3376
3377 break;
3378
3379 case 's':
3380 *q++ = c;
3381 *q = 0;
3382 fprintf (file, buf, va_arg (argptr, char *));
3383 break;
3384
3385 case 'O':
3386 #ifdef ASM_OUTPUT_OPCODE
3387 ASM_OUTPUT_OPCODE (asm_out_file, p);
3388 #endif
3389 break;
3390
3391 case 'R':
3392 #ifdef REGISTER_PREFIX
3393 fprintf (file, "%s", REGISTER_PREFIX);
3394 #endif
3395 break;
3396
3397 case 'I':
3398 #ifdef IMMEDIATE_PREFIX
3399 fprintf (file, "%s", IMMEDIATE_PREFIX);
3400 #endif
3401 break;
3402
3403 case 'L':
3404 #ifdef LOCAL_LABEL_PREFIX
3405 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3406 #endif
3407 break;
3408
3409 case 'U':
3410 fputs (user_label_prefix, file);
3411 break;
3412
3413 #ifdef ASM_FPRINTF_EXTENSIONS
3414 /* Uppercase letters are reserved for general use by asm_fprintf
3415 and so are not available to target specific code. In order to
3416 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3417 they are defined here. As they get turned into real extensions
3418 to asm_fprintf they should be removed from this list. */
3419 case 'A': case 'B': case 'C': case 'D': case 'E':
3420 case 'F': case 'G': case 'H': case 'J': case 'K':
3421 case 'M': case 'N': case 'P': case 'Q': case 'S':
3422 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3423 break;
3424
3425 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3426 #endif
3427 default:
3428 gcc_unreachable ();
3429 }
3430 break;
3431
3432 default:
3433 putc (c, file);
3434 }
3435 va_end (argptr);
3436 }
3437 \f
3438 /* Split up a CONST_DOUBLE or integer constant rtx
3439 into two rtx's for single words,
3440 storing in *FIRST the word that comes first in memory in the target
3441 and in *SECOND the other. */
3442
3443 void
3444 split_double (rtx value, rtx *first, rtx *second)
3445 {
3446 if (GET_CODE (value) == CONST_INT)
3447 {
3448 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3449 {
3450 /* In this case the CONST_INT holds both target words.
3451 Extract the bits from it into two word-sized pieces.
3452 Sign extend each half to HOST_WIDE_INT. */
3453 unsigned HOST_WIDE_INT low, high;
3454 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3455
3456 /* Set sign_bit to the most significant bit of a word. */
3457 sign_bit = 1;
3458 sign_bit <<= BITS_PER_WORD - 1;
3459
3460 /* Set mask so that all bits of the word are set. We could
3461 have used 1 << BITS_PER_WORD instead of basing the
3462 calculation on sign_bit. However, on machines where
3463 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3464 compiler warning, even though the code would never be
3465 executed. */
3466 mask = sign_bit << 1;
3467 mask--;
3468
3469 /* Set sign_extend as any remaining bits. */
3470 sign_extend = ~mask;
3471
3472 /* Pick the lower word and sign-extend it. */
3473 low = INTVAL (value);
3474 low &= mask;
3475 if (low & sign_bit)
3476 low |= sign_extend;
3477
3478 /* Pick the higher word, shifted to the least significant
3479 bits, and sign-extend it. */
3480 high = INTVAL (value);
3481 high >>= BITS_PER_WORD - 1;
3482 high >>= 1;
3483 high &= mask;
3484 if (high & sign_bit)
3485 high |= sign_extend;
3486
3487 /* Store the words in the target machine order. */
3488 if (WORDS_BIG_ENDIAN)
3489 {
3490 *first = GEN_INT (high);
3491 *second = GEN_INT (low);
3492 }
3493 else
3494 {
3495 *first = GEN_INT (low);
3496 *second = GEN_INT (high);
3497 }
3498 }
3499 else
3500 {
3501 /* The rule for using CONST_INT for a wider mode
3502 is that we regard the value as signed.
3503 So sign-extend it. */
3504 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3505 if (WORDS_BIG_ENDIAN)
3506 {
3507 *first = high;
3508 *second = value;
3509 }
3510 else
3511 {
3512 *first = value;
3513 *second = high;
3514 }
3515 }
3516 }
3517 else if (GET_CODE (value) != CONST_DOUBLE)
3518 {
3519 if (WORDS_BIG_ENDIAN)
3520 {
3521 *first = const0_rtx;
3522 *second = value;
3523 }
3524 else
3525 {
3526 *first = value;
3527 *second = const0_rtx;
3528 }
3529 }
3530 else if (GET_MODE (value) == VOIDmode
3531 /* This is the old way we did CONST_DOUBLE integers. */
3532 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3533 {
3534 /* In an integer, the words are defined as most and least significant.
3535 So order them by the target's convention. */
3536 if (WORDS_BIG_ENDIAN)
3537 {
3538 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3539 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3540 }
3541 else
3542 {
3543 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3544 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3545 }
3546 }
3547 else
3548 {
3549 REAL_VALUE_TYPE r;
3550 long l[2];
3551 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3552
3553 /* Note, this converts the REAL_VALUE_TYPE to the target's
3554 format, splits up the floating point double and outputs
3555 exactly 32 bits of it into each of l[0] and l[1] --
3556 not necessarily BITS_PER_WORD bits. */
3557 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3558
3559 /* If 32 bits is an entire word for the target, but not for the host,
3560 then sign-extend on the host so that the number will look the same
3561 way on the host that it would on the target. See for instance
3562 simplify_unary_operation. The #if is needed to avoid compiler
3563 warnings. */
3564
3565 #if HOST_BITS_PER_LONG > 32
3566 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3567 {
3568 if (l[0] & ((long) 1 << 31))
3569 l[0] |= ((long) (-1) << 32);
3570 if (l[1] & ((long) 1 << 31))
3571 l[1] |= ((long) (-1) << 32);
3572 }
3573 #endif
3574
3575 *first = GEN_INT (l[0]);
3576 *second = GEN_INT (l[1]);
3577 }
3578 }
3579 \f
3580 /* Return nonzero if this function has no function calls. */
3581
3582 int
3583 leaf_function_p (void)
3584 {
3585 rtx insn;
3586 rtx link;
3587
3588 if (current_function_profile || profile_arc_flag)
3589 return 0;
3590
3591 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3592 {
3593 if (CALL_P (insn)
3594 && ! SIBLING_CALL_P (insn))
3595 return 0;
3596 if (NONJUMP_INSN_P (insn)
3597 && GET_CODE (PATTERN (insn)) == SEQUENCE
3598 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3599 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3600 return 0;
3601 }
3602 for (link = current_function_epilogue_delay_list;
3603 link;
3604 link = XEXP (link, 1))
3605 {
3606 insn = XEXP (link, 0);
3607
3608 if (CALL_P (insn)
3609 && ! SIBLING_CALL_P (insn))
3610 return 0;
3611 if (NONJUMP_INSN_P (insn)
3612 && GET_CODE (PATTERN (insn)) == SEQUENCE
3613 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3614 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3615 return 0;
3616 }
3617
3618 return 1;
3619 }
3620
3621 /* Return 1 if branch is a forward branch.
3622 Uses insn_shuid array, so it works only in the final pass. May be used by
3623 output templates to customary add branch prediction hints.
3624 */
3625 int
3626 final_forward_branch_p (rtx insn)
3627 {
3628 int insn_id, label_id;
3629
3630 gcc_assert (uid_shuid);
3631 insn_id = INSN_SHUID (insn);
3632 label_id = INSN_SHUID (JUMP_LABEL (insn));
3633 /* We've hit some insns that does not have id information available. */
3634 gcc_assert (insn_id && label_id);
3635 return insn_id < label_id;
3636 }
3637
3638 /* On some machines, a function with no call insns
3639 can run faster if it doesn't create its own register window.
3640 When output, the leaf function should use only the "output"
3641 registers. Ordinarily, the function would be compiled to use
3642 the "input" registers to find its arguments; it is a candidate
3643 for leaf treatment if it uses only the "input" registers.
3644 Leaf function treatment means renumbering so the function
3645 uses the "output" registers instead. */
3646
3647 #ifdef LEAF_REGISTERS
3648
3649 /* Return 1 if this function uses only the registers that can be
3650 safely renumbered. */
3651
3652 int
3653 only_leaf_regs_used (void)
3654 {
3655 int i;
3656 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3657
3658 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3659 if ((regs_ever_live[i] || global_regs[i])
3660 && ! permitted_reg_in_leaf_functions[i])
3661 return 0;
3662
3663 if (current_function_uses_pic_offset_table
3664 && pic_offset_table_rtx != 0
3665 && REG_P (pic_offset_table_rtx)
3666 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3667 return 0;
3668
3669 return 1;
3670 }
3671
3672 /* Scan all instructions and renumber all registers into those
3673 available in leaf functions. */
3674
3675 static void
3676 leaf_renumber_regs (rtx first)
3677 {
3678 rtx insn;
3679
3680 /* Renumber only the actual patterns.
3681 The reg-notes can contain frame pointer refs,
3682 and renumbering them could crash, and should not be needed. */
3683 for (insn = first; insn; insn = NEXT_INSN (insn))
3684 if (INSN_P (insn))
3685 leaf_renumber_regs_insn (PATTERN (insn));
3686 for (insn = current_function_epilogue_delay_list;
3687 insn;
3688 insn = XEXP (insn, 1))
3689 if (INSN_P (XEXP (insn, 0)))
3690 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3691 }
3692
3693 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3694 available in leaf functions. */
3695
3696 void
3697 leaf_renumber_regs_insn (rtx in_rtx)
3698 {
3699 int i, j;
3700 const char *format_ptr;
3701
3702 if (in_rtx == 0)
3703 return;
3704
3705 /* Renumber all input-registers into output-registers.
3706 renumbered_regs would be 1 for an output-register;
3707 they */
3708
3709 if (REG_P (in_rtx))
3710 {
3711 int newreg;
3712
3713 /* Don't renumber the same reg twice. */
3714 if (in_rtx->used)
3715 return;
3716
3717 newreg = REGNO (in_rtx);
3718 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3719 to reach here as part of a REG_NOTE. */
3720 if (newreg >= FIRST_PSEUDO_REGISTER)
3721 {
3722 in_rtx->used = 1;
3723 return;
3724 }
3725 newreg = LEAF_REG_REMAP (newreg);
3726 gcc_assert (newreg >= 0);
3727 regs_ever_live[REGNO (in_rtx)] = 0;
3728 regs_ever_live[newreg] = 1;
3729 REGNO (in_rtx) = newreg;
3730 in_rtx->used = 1;
3731 }
3732
3733 if (INSN_P (in_rtx))
3734 {
3735 /* Inside a SEQUENCE, we find insns.
3736 Renumber just the patterns of these insns,
3737 just as we do for the top-level insns. */
3738 leaf_renumber_regs_insn (PATTERN (in_rtx));
3739 return;
3740 }
3741
3742 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3743
3744 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3745 switch (*format_ptr++)
3746 {
3747 case 'e':
3748 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3749 break;
3750
3751 case 'E':
3752 if (NULL != XVEC (in_rtx, i))
3753 {
3754 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3755 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3756 }
3757 break;
3758
3759 case 'S':
3760 case 's':
3761 case '0':
3762 case 'i':
3763 case 'w':
3764 case 'n':
3765 case 'u':
3766 break;
3767
3768 default:
3769 gcc_unreachable ();
3770 }
3771 }
3772 #endif
3773
3774
3775 /* When -gused is used, emit debug info for only used symbols. But in
3776 addition to the standard intercepted debug_hooks there are some direct
3777 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3778 Those routines may also be called from a higher level intercepted routine. So
3779 to prevent recording data for an inner call to one of these for an intercept,
3780 we maintain an intercept nesting counter (debug_nesting). We only save the
3781 intercepted arguments if the nesting is 1. */
3782 int debug_nesting = 0;
3783
3784 static tree *symbol_queue;
3785 int symbol_queue_index = 0;
3786 static int symbol_queue_size = 0;
3787
3788 /* Generate the symbols for any queued up type symbols we encountered
3789 while generating the type info for some originally used symbol.
3790 This might generate additional entries in the queue. Only when
3791 the nesting depth goes to 0 is this routine called. */
3792
3793 void
3794 debug_flush_symbol_queue (void)
3795 {
3796 int i;
3797
3798 /* Make sure that additionally queued items are not flushed
3799 prematurely. */
3800
3801 ++debug_nesting;
3802
3803 for (i = 0; i < symbol_queue_index; ++i)
3804 {
3805 /* If we pushed queued symbols then such symbols are must be
3806 output no matter what anyone else says. Specifically,
3807 we need to make sure dbxout_symbol() thinks the symbol was
3808 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3809 which may be set for outside reasons. */
3810 int saved_tree_used = TREE_USED (symbol_queue[i]);
3811 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3812 TREE_USED (symbol_queue[i]) = 1;
3813 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3814
3815 #ifdef DBX_DEBUGGING_INFO
3816 dbxout_symbol (symbol_queue[i], 0);
3817 #endif
3818
3819 TREE_USED (symbol_queue[i]) = saved_tree_used;
3820 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3821 }
3822
3823 symbol_queue_index = 0;
3824 --debug_nesting;
3825 }
3826
3827 /* Queue a type symbol needed as part of the definition of a decl
3828 symbol. These symbols are generated when debug_flush_symbol_queue()
3829 is called. */
3830
3831 void
3832 debug_queue_symbol (tree decl)
3833 {
3834 if (symbol_queue_index >= symbol_queue_size)
3835 {
3836 symbol_queue_size += 10;
3837 symbol_queue = xrealloc (symbol_queue,
3838 symbol_queue_size * sizeof (tree));
3839 }
3840
3841 symbol_queue[symbol_queue_index++] = decl;
3842 }
3843
3844 /* Free symbol queue. */
3845 void
3846 debug_free_queue (void)
3847 {
3848 if (symbol_queue)
3849 {
3850 free (symbol_queue);
3851 symbol_queue = NULL;
3852 symbol_queue_size = 0;
3853 }
3854 }