final.c (output_alternate_entry_point): If ASM_OUTPUT_TYPE_DIRECTIVE is defined,...
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
226 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
227 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
228 static void output_operand PARAMS ((rtx, int));
229 #ifdef LEAF_REGISTERS
230 static void leaf_renumber_regs PARAMS ((rtx));
231 #endif
232 #ifdef HAVE_cc0
233 static int alter_cond PARAMS ((rtx));
234 #endif
235 #ifndef ADDR_VEC_ALIGN
236 static int final_addr_vec_align PARAMS ((rtx));
237 #endif
238 #ifdef HAVE_ATTR_length
239 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
240 #endif
241 \f
242 /* Initialize data in final at the beginning of a compilation. */
243
244 void
245 init_final (filename)
246 const char *filename ATTRIBUTE_UNUSED;
247 {
248 app_on = 0;
249 final_sequence = 0;
250
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number = ASSEMBLER_DIALECT;
253 #endif
254 }
255
256 /* Called at end of source file,
257 to output the arc-profiling table for this entire compilation. */
258
259 void
260 end_final (filename)
261 const char *filename;
262 {
263 if (profile_arc_flag && profile_info.count_instrumented_edges)
264 {
265 char name[20];
266 tree string_type, string_cst;
267 tree structure_decl, structure_value, structure_pointer_type;
268 tree field_decl, decl_chain, value_chain;
269 tree sizeof_field_value, domain_type;
270
271 /* Build types. */
272 string_type = build_pointer_type (char_type_node);
273
274 /* Libgcc2 bb structure. */
275 structure_decl = make_node (RECORD_TYPE);
276 structure_pointer_type = build_pointer_type (structure_decl);
277
278 /* Output the main header, of 7 words:
279 0: 1 if this file is initialized, else 0.
280 1: address of file name (LPBX1).
281 2: address of table of counts (LPBX2).
282 3: number of counts in the table.
283 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
284
285 The following are GNU extensions:
286
287 5: Number of bytes in this header.
288 6: address of table of function checksums (LPBX7). */
289
290 /* The zero word. */
291 decl_chain =
292 build_decl (FIELD_DECL, get_identifier ("zero_word"),
293 long_integer_type_node);
294 value_chain = build_tree_list (decl_chain,
295 convert (long_integer_type_node,
296 integer_zero_node));
297
298 /* Address of filename. */
299 {
300 char *cwd, *da_filename;
301 int da_filename_len;
302
303 field_decl =
304 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
305 TREE_CHAIN (field_decl) = decl_chain;
306 decl_chain = field_decl;
307
308 cwd = getpwd ();
309 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
310 da_filename = (char *) alloca (da_filename_len);
311 strcpy (da_filename, cwd);
312 strcat (da_filename, "/");
313 strcat (da_filename, filename);
314 strip_off_ending (da_filename, da_filename_len - 3);
315 strcat (da_filename, ".da");
316 da_filename_len = strlen (da_filename);
317 string_cst = build_string (da_filename_len + 1, da_filename);
318 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
319 TREE_TYPE (string_cst)
320 = build_array_type (char_type_node, domain_type);
321 value_chain = tree_cons (field_decl,
322 build1 (ADDR_EXPR, string_type, string_cst),
323 value_chain);
324 }
325
326 /* Table of counts. */
327 {
328 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
329 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
330 tree domain_tree
331 = build_index_type (build_int_2 (profile_info.
332 count_instrumented_edges - 1, 0));
333 tree gcov_type_array_type
334 = build_array_type (gcov_type_type, domain_tree);
335 tree gcov_type_array_pointer_type
336 = build_pointer_type (gcov_type_array_type);
337 tree counts_table;
338
339 field_decl =
340 build_decl (FIELD_DECL, get_identifier ("counts"),
341 gcov_type_pointer_type);
342 TREE_CHAIN (field_decl) = decl_chain;
343 decl_chain = field_decl;
344
345 /* No values. */
346 counts_table
347 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
348 TREE_STATIC (counts_table) = 1;
349 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
350 DECL_NAME (counts_table) = get_identifier (name);
351 assemble_variable (counts_table, 0, 0, 0);
352
353 value_chain = tree_cons (field_decl,
354 build1 (ADDR_EXPR,
355 gcov_type_array_pointer_type,
356 counts_table), value_chain);
357 }
358
359 /* Count of the # of instrumented arcs. */
360 field_decl
361 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
362 long_integer_type_node);
363 TREE_CHAIN (field_decl) = decl_chain;
364 decl_chain = field_decl;
365
366 value_chain = tree_cons (field_decl,
367 convert (long_integer_type_node,
368 build_int_2 (profile_info.
369 count_instrumented_edges,
370 0)), value_chain);
371 /* Pointer to the next bb. */
372 field_decl
373 = build_decl (FIELD_DECL, get_identifier ("next"),
374 structure_pointer_type);
375 TREE_CHAIN (field_decl) = decl_chain;
376 decl_chain = field_decl;
377
378 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
379
380 /* sizeof(struct bb). We'll set this after entire structure
381 is laid out. */
382 field_decl
383 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
384 long_integer_type_node);
385 TREE_CHAIN (field_decl) = decl_chain;
386 decl_chain = field_decl;
387
388 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
389 value_chain = sizeof_field_value;
390
391 /* struct bb_function []. */
392 {
393 struct function_list *item;
394 int num_nodes;
395 tree checksum_field, arc_count_field, name_field;
396 tree domain;
397 tree array_value_chain = NULL_TREE;
398 tree bb_fn_struct_type;
399 tree bb_fn_struct_array_type;
400 tree bb_fn_struct_array_pointer_type;
401 tree bb_fn_struct_pointer_type;
402 tree field_value, field_value_chain;
403
404 bb_fn_struct_type = make_node (RECORD_TYPE);
405
406 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
407 long_integer_type_node);
408
409 arc_count_field
410 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
411 integer_type_node);
412 TREE_CHAIN (checksum_field) = arc_count_field;
413
414 name_field
415 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
416 TREE_CHAIN (arc_count_field) = name_field;
417
418 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
419
420 num_nodes = 0;
421
422 for (item = functions_head; item != 0; item = item->next)
423 num_nodes++;
424
425 /* Note that the array contains a terminator, hence no - 1. */
426 domain = build_index_type (build_int_2 (num_nodes, 0));
427
428 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
429 bb_fn_struct_array_type
430 = build_array_type (bb_fn_struct_type, domain);
431 bb_fn_struct_array_pointer_type
432 = build_pointer_type (bb_fn_struct_array_type);
433
434 layout_type (bb_fn_struct_type);
435 layout_type (bb_fn_struct_pointer_type);
436 layout_type (bb_fn_struct_array_type);
437 layout_type (bb_fn_struct_array_pointer_type);
438
439 for (item = functions_head; item != 0; item = item->next)
440 {
441 size_t name_len;
442
443 /* create constructor for structure. */
444 field_value_chain
445 = build_tree_list (checksum_field,
446 convert (long_integer_type_node,
447 build_int_2 (item->cfg_checksum, 0)));
448 field_value_chain
449 = tree_cons (arc_count_field,
450 convert (integer_type_node,
451 build_int_2 (item->count_edges, 0)),
452 field_value_chain);
453
454 name_len = strlen (item->name);
455 string_cst = build_string (name_len + 1, item->name);
456 domain_type = build_index_type (build_int_2 (name_len, 0));
457 TREE_TYPE (string_cst)
458 = build_array_type (char_type_node, domain_type);
459 field_value_chain = tree_cons (name_field,
460 build1 (ADDR_EXPR, string_type,
461 string_cst),
462 field_value_chain);
463
464 /* Add to chain. */
465 array_value_chain
466 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
467 bb_fn_struct_type, NULL_TREE,
468 nreverse (field_value_chain)),
469 array_value_chain);
470 }
471
472 /* Add terminator. */
473 field_value = build_tree_list (arc_count_field,
474 convert (integer_type_node,
475 build_int_2 (-1, 0)));
476
477 array_value_chain = tree_cons (NULL_TREE,
478 build (CONSTRUCTOR, bb_fn_struct_type,
479 NULL_TREE, field_value),
480 array_value_chain);
481
482
483 /* Create constructor for array. */
484 field_decl
485 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
486 bb_fn_struct_pointer_type);
487 value_chain = tree_cons (field_decl,
488 build1 (ADDR_EXPR,
489 bb_fn_struct_array_pointer_type,
490 build (CONSTRUCTOR,
491 bb_fn_struct_array_type,
492 NULL_TREE,
493 nreverse
494 (array_value_chain))),
495 value_chain);
496 TREE_CHAIN (field_decl) = decl_chain;
497 decl_chain = field_decl;
498 }
499
500 /* Finish structure. */
501 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
502 layout_type (structure_decl);
503
504 structure_value
505 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
506 DECL_INITIAL (structure_value)
507 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
508 nreverse (value_chain));
509 TREE_STATIC (structure_value) = 1;
510 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
511 DECL_NAME (structure_value) = get_identifier (name);
512
513 /* Size of this structure. */
514 TREE_VALUE (sizeof_field_value)
515 = convert (long_integer_type_node,
516 build_int_2 (int_size_in_bytes (structure_decl), 0));
517
518 /* Build structure. */
519 assemble_variable (structure_value, 0, 0, 0);
520 }
521 }
522
523 /* Default target function prologue and epilogue assembler output.
524
525 If not overridden for epilogue code, then the function body itself
526 contains return instructions wherever needed. */
527 void
528 default_function_pro_epilogue (file, size)
529 FILE *file ATTRIBUTE_UNUSED;
530 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
531 {
532 }
533
534 /* Default target hook that outputs nothing to a stream. */
535 void
536 no_asm_to_stream (file)
537 FILE *file ATTRIBUTE_UNUSED;
538 {
539 }
540
541 /* Enable APP processing of subsequent output.
542 Used before the output from an `asm' statement. */
543
544 void
545 app_enable ()
546 {
547 if (! app_on)
548 {
549 fputs (ASM_APP_ON, asm_out_file);
550 app_on = 1;
551 }
552 }
553
554 /* Disable APP processing of subsequent output.
555 Called from varasm.c before most kinds of output. */
556
557 void
558 app_disable ()
559 {
560 if (app_on)
561 {
562 fputs (ASM_APP_OFF, asm_out_file);
563 app_on = 0;
564 }
565 }
566 \f
567 /* Return the number of slots filled in the current
568 delayed branch sequence (we don't count the insn needing the
569 delay slot). Zero if not in a delayed branch sequence. */
570
571 #ifdef DELAY_SLOTS
572 int
573 dbr_sequence_length ()
574 {
575 if (final_sequence != 0)
576 return XVECLEN (final_sequence, 0) - 1;
577 else
578 return 0;
579 }
580 #endif
581 \f
582 /* The next two pages contain routines used to compute the length of an insn
583 and to shorten branches. */
584
585 /* Arrays for insn lengths, and addresses. The latter is referenced by
586 `insn_current_length'. */
587
588 static int *insn_lengths;
589
590 varray_type insn_addresses_;
591
592 /* Max uid for which the above arrays are valid. */
593 static int insn_lengths_max_uid;
594
595 /* Address of insn being processed. Used by `insn_current_length'. */
596 int insn_current_address;
597
598 /* Address of insn being processed in previous iteration. */
599 int insn_last_address;
600
601 /* known invariant alignment of insn being processed. */
602 int insn_current_align;
603
604 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
605 gives the next following alignment insn that increases the known
606 alignment, or NULL_RTX if there is no such insn.
607 For any alignment obtained this way, we can again index uid_align with
608 its uid to obtain the next following align that in turn increases the
609 alignment, till we reach NULL_RTX; the sequence obtained this way
610 for each insn we'll call the alignment chain of this insn in the following
611 comments. */
612
613 struct label_alignment
614 {
615 short alignment;
616 short max_skip;
617 };
618
619 static rtx *uid_align;
620 static int *uid_shuid;
621 static struct label_alignment *label_align;
622
623 /* Indicate that branch shortening hasn't yet been done. */
624
625 void
626 init_insn_lengths ()
627 {
628 if (uid_shuid)
629 {
630 free (uid_shuid);
631 uid_shuid = 0;
632 }
633 if (insn_lengths)
634 {
635 free (insn_lengths);
636 insn_lengths = 0;
637 insn_lengths_max_uid = 0;
638 }
639 #ifdef HAVE_ATTR_length
640 INSN_ADDRESSES_FREE ();
641 #endif
642 if (uid_align)
643 {
644 free (uid_align);
645 uid_align = 0;
646 }
647 }
648
649 /* Obtain the current length of an insn. If branch shortening has been done,
650 get its actual length. Otherwise, get its maximum length. */
651
652 int
653 get_attr_length (insn)
654 rtx insn ATTRIBUTE_UNUSED;
655 {
656 #ifdef HAVE_ATTR_length
657 rtx body;
658 int i;
659 int length = 0;
660
661 if (insn_lengths_max_uid > INSN_UID (insn))
662 return insn_lengths[INSN_UID (insn)];
663 else
664 switch (GET_CODE (insn))
665 {
666 case NOTE:
667 case BARRIER:
668 case CODE_LABEL:
669 return 0;
670
671 case CALL_INSN:
672 length = insn_default_length (insn);
673 break;
674
675 case JUMP_INSN:
676 body = PATTERN (insn);
677 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
678 {
679 /* Alignment is machine-dependent and should be handled by
680 ADDR_VEC_ALIGN. */
681 }
682 else
683 length = insn_default_length (insn);
684 break;
685
686 case INSN:
687 body = PATTERN (insn);
688 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
689 return 0;
690
691 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
692 length = asm_insn_count (body) * insn_default_length (insn);
693 else if (GET_CODE (body) == SEQUENCE)
694 for (i = 0; i < XVECLEN (body, 0); i++)
695 length += get_attr_length (XVECEXP (body, 0, i));
696 else
697 length = insn_default_length (insn);
698 break;
699
700 default:
701 break;
702 }
703
704 #ifdef ADJUST_INSN_LENGTH
705 ADJUST_INSN_LENGTH (insn, length);
706 #endif
707 return length;
708 #else /* not HAVE_ATTR_length */
709 return 0;
710 #endif /* not HAVE_ATTR_length */
711 }
712 \f
713 /* Code to handle alignment inside shorten_branches. */
714
715 /* Here is an explanation how the algorithm in align_fuzz can give
716 proper results:
717
718 Call a sequence of instructions beginning with alignment point X
719 and continuing until the next alignment point `block X'. When `X'
720 is used in an expression, it means the alignment value of the
721 alignment point.
722
723 Call the distance between the start of the first insn of block X, and
724 the end of the last insn of block X `IX', for the `inner size of X'.
725 This is clearly the sum of the instruction lengths.
726
727 Likewise with the next alignment-delimited block following X, which we
728 shall call block Y.
729
730 Call the distance between the start of the first insn of block X, and
731 the start of the first insn of block Y `OX', for the `outer size of X'.
732
733 The estimated padding is then OX - IX.
734
735 OX can be safely estimated as
736
737 if (X >= Y)
738 OX = round_up(IX, Y)
739 else
740 OX = round_up(IX, X) + Y - X
741
742 Clearly est(IX) >= real(IX), because that only depends on the
743 instruction lengths, and those being overestimated is a given.
744
745 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
746 we needn't worry about that when thinking about OX.
747
748 When X >= Y, the alignment provided by Y adds no uncertainty factor
749 for branch ranges starting before X, so we can just round what we have.
750 But when X < Y, we don't know anything about the, so to speak,
751 `middle bits', so we have to assume the worst when aligning up from an
752 address mod X to one mod Y, which is Y - X. */
753
754 #ifndef LABEL_ALIGN
755 #define LABEL_ALIGN(LABEL) align_labels_log
756 #endif
757
758 #ifndef LABEL_ALIGN_MAX_SKIP
759 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
760 #endif
761
762 #ifndef LOOP_ALIGN
763 #define LOOP_ALIGN(LABEL) align_loops_log
764 #endif
765
766 #ifndef LOOP_ALIGN_MAX_SKIP
767 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
768 #endif
769
770 #ifndef LABEL_ALIGN_AFTER_BARRIER
771 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
772 #endif
773
774 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
775 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
776 #endif
777
778 #ifndef JUMP_ALIGN
779 #define JUMP_ALIGN(LABEL) align_jumps_log
780 #endif
781
782 #ifndef JUMP_ALIGN_MAX_SKIP
783 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
784 #endif
785
786 #ifndef ADDR_VEC_ALIGN
787 static int
788 final_addr_vec_align (addr_vec)
789 rtx addr_vec;
790 {
791 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
792
793 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
794 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
795 return exact_log2 (align);
796
797 }
798
799 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
800 #endif
801
802 #ifndef INSN_LENGTH_ALIGNMENT
803 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
804 #endif
805
806 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
807
808 static int min_labelno, max_labelno;
809
810 #define LABEL_TO_ALIGNMENT(LABEL) \
811 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
812
813 #define LABEL_TO_MAX_SKIP(LABEL) \
814 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
815
816 /* For the benefit of port specific code do this also as a function. */
817
818 int
819 label_to_alignment (label)
820 rtx label;
821 {
822 return LABEL_TO_ALIGNMENT (label);
823 }
824
825 #ifdef HAVE_ATTR_length
826 /* The differences in addresses
827 between a branch and its target might grow or shrink depending on
828 the alignment the start insn of the range (the branch for a forward
829 branch or the label for a backward branch) starts out on; if these
830 differences are used naively, they can even oscillate infinitely.
831 We therefore want to compute a 'worst case' address difference that
832 is independent of the alignment the start insn of the range end
833 up on, and that is at least as large as the actual difference.
834 The function align_fuzz calculates the amount we have to add to the
835 naively computed difference, by traversing the part of the alignment
836 chain of the start insn of the range that is in front of the end insn
837 of the range, and considering for each alignment the maximum amount
838 that it might contribute to a size increase.
839
840 For casesi tables, we also want to know worst case minimum amounts of
841 address difference, in case a machine description wants to introduce
842 some common offset that is added to all offsets in a table.
843 For this purpose, align_fuzz with a growth argument of 0 computes the
844 appropriate adjustment. */
845
846 /* Compute the maximum delta by which the difference of the addresses of
847 START and END might grow / shrink due to a different address for start
848 which changes the size of alignment insns between START and END.
849 KNOWN_ALIGN_LOG is the alignment known for START.
850 GROWTH should be ~0 if the objective is to compute potential code size
851 increase, and 0 if the objective is to compute potential shrink.
852 The return value is undefined for any other value of GROWTH. */
853
854 static int
855 align_fuzz (start, end, known_align_log, growth)
856 rtx start, end;
857 int known_align_log;
858 unsigned growth;
859 {
860 int uid = INSN_UID (start);
861 rtx align_label;
862 int known_align = 1 << known_align_log;
863 int end_shuid = INSN_SHUID (end);
864 int fuzz = 0;
865
866 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
867 {
868 int align_addr, new_align;
869
870 uid = INSN_UID (align_label);
871 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
872 if (uid_shuid[uid] > end_shuid)
873 break;
874 known_align_log = LABEL_TO_ALIGNMENT (align_label);
875 new_align = 1 << known_align_log;
876 if (new_align < known_align)
877 continue;
878 fuzz += (-align_addr ^ growth) & (new_align - known_align);
879 known_align = new_align;
880 }
881 return fuzz;
882 }
883
884 /* Compute a worst-case reference address of a branch so that it
885 can be safely used in the presence of aligned labels. Since the
886 size of the branch itself is unknown, the size of the branch is
887 not included in the range. I.e. for a forward branch, the reference
888 address is the end address of the branch as known from the previous
889 branch shortening pass, minus a value to account for possible size
890 increase due to alignment. For a backward branch, it is the start
891 address of the branch as known from the current pass, plus a value
892 to account for possible size increase due to alignment.
893 NB.: Therefore, the maximum offset allowed for backward branches needs
894 to exclude the branch size. */
895
896 int
897 insn_current_reference_address (branch)
898 rtx branch;
899 {
900 rtx dest, seq;
901 int seq_uid;
902
903 if (! INSN_ADDRESSES_SET_P ())
904 return 0;
905
906 seq = NEXT_INSN (PREV_INSN (branch));
907 seq_uid = INSN_UID (seq);
908 if (GET_CODE (branch) != JUMP_INSN)
909 /* This can happen for example on the PA; the objective is to know the
910 offset to address something in front of the start of the function.
911 Thus, we can treat it like a backward branch.
912 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
913 any alignment we'd encounter, so we skip the call to align_fuzz. */
914 return insn_current_address;
915 dest = JUMP_LABEL (branch);
916
917 /* BRANCH has no proper alignment chain set, so use SEQ.
918 BRANCH also has no INSN_SHUID. */
919 if (INSN_SHUID (seq) < INSN_SHUID (dest))
920 {
921 /* Forward branch. */
922 return (insn_last_address + insn_lengths[seq_uid]
923 - align_fuzz (seq, dest, length_unit_log, ~0));
924 }
925 else
926 {
927 /* Backward branch. */
928 return (insn_current_address
929 + align_fuzz (dest, seq, length_unit_log, ~0));
930 }
931 }
932 #endif /* HAVE_ATTR_length */
933 \f
934 void
935 compute_alignments ()
936 {
937 int log, max_skip, max_log;
938 basic_block bb;
939
940 if (label_align)
941 {
942 free (label_align);
943 label_align = 0;
944 }
945
946 max_labelno = max_label_num ();
947 min_labelno = get_first_label_num ();
948 label_align = (struct label_alignment *)
949 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
950
951 /* If not optimizing or optimizing for size, don't assign any alignments. */
952 if (! optimize || optimize_size)
953 return;
954
955 FOR_EACH_BB (bb)
956 {
957 rtx label = bb->head;
958 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
959 edge e;
960
961 if (GET_CODE (label) != CODE_LABEL)
962 continue;
963 max_log = LABEL_ALIGN (label);
964 max_skip = LABEL_ALIGN_MAX_SKIP;
965
966 for (e = bb->pred; e; e = e->pred_next)
967 {
968 if (e->flags & EDGE_FALLTHRU)
969 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
970 else
971 branch_frequency += EDGE_FREQUENCY (e);
972 }
973
974 /* There are two purposes to align block with no fallthru incoming edge:
975 1) to avoid fetch stalls when branch destination is near cache boundary
976 2) to improve cache efficiency in case the previous block is not executed
977 (so it does not need to be in the cache).
978
979 We to catch first case, we align frequently executed blocks.
980 To catch the second, we align blocks that are executed more frequently
981 than the predecessor and the predecessor is likely to not be executed
982 when function is called. */
983
984 if (!has_fallthru
985 && (branch_frequency > BB_FREQ_MAX / 10
986 || (bb->frequency > bb->prev_bb->frequency * 10
987 && (bb->prev_bb->frequency
988 <= ENTRY_BLOCK_PTR->frequency / 2))))
989 {
990 log = JUMP_ALIGN (label);
991 if (max_log < log)
992 {
993 max_log = log;
994 max_skip = JUMP_ALIGN_MAX_SKIP;
995 }
996 }
997 /* In case block is frequent and reached mostly by non-fallthru edge,
998 align it. It is most likely an first block of loop. */
999 if (has_fallthru
1000 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1001 && branch_frequency > fallthru_frequency * 5)
1002 {
1003 log = LOOP_ALIGN (label);
1004 if (max_log < log)
1005 {
1006 max_log = log;
1007 max_skip = LOOP_ALIGN_MAX_SKIP;
1008 }
1009 }
1010 LABEL_TO_ALIGNMENT (label) = max_log;
1011 LABEL_TO_MAX_SKIP (label) = max_skip;
1012 }
1013 }
1014 \f
1015 /* Make a pass over all insns and compute their actual lengths by shortening
1016 any branches of variable length if possible. */
1017
1018 /* Give a default value for the lowest address in a function. */
1019
1020 #ifndef FIRST_INSN_ADDRESS
1021 #define FIRST_INSN_ADDRESS 0
1022 #endif
1023
1024 /* shorten_branches might be called multiple times: for example, the SH
1025 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1026 In order to do this, it needs proper length information, which it obtains
1027 by calling shorten_branches. This cannot be collapsed with
1028 shorten_branches itself into a single pass unless we also want to integrate
1029 reorg.c, since the branch splitting exposes new instructions with delay
1030 slots. */
1031
1032 void
1033 shorten_branches (first)
1034 rtx first ATTRIBUTE_UNUSED;
1035 {
1036 rtx insn;
1037 int max_uid;
1038 int i;
1039 int max_log;
1040 int max_skip;
1041 #ifdef HAVE_ATTR_length
1042 #define MAX_CODE_ALIGN 16
1043 rtx seq;
1044 int something_changed = 1;
1045 char *varying_length;
1046 rtx body;
1047 int uid;
1048 rtx align_tab[MAX_CODE_ALIGN];
1049
1050 #endif
1051
1052 /* Compute maximum UID and allocate label_align / uid_shuid. */
1053 max_uid = get_max_uid ();
1054
1055 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1056
1057 if (max_labelno != max_label_num ())
1058 {
1059 int old = max_labelno;
1060 int n_labels;
1061 int n_old_labels;
1062
1063 max_labelno = max_label_num ();
1064
1065 n_labels = max_labelno - min_labelno + 1;
1066 n_old_labels = old - min_labelno + 1;
1067
1068 label_align = (struct label_alignment *) xrealloc
1069 (label_align, n_labels * sizeof (struct label_alignment));
1070
1071 /* Range of labels grows monotonically in the function. Abort here
1072 means that the initialization of array got lost. */
1073 if (n_old_labels > n_labels)
1074 abort ();
1075
1076 memset (label_align + n_old_labels, 0,
1077 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1078 }
1079
1080 /* Initialize label_align and set up uid_shuid to be strictly
1081 monotonically rising with insn order. */
1082 /* We use max_log here to keep track of the maximum alignment we want to
1083 impose on the next CODE_LABEL (or the current one if we are processing
1084 the CODE_LABEL itself). */
1085
1086 max_log = 0;
1087 max_skip = 0;
1088
1089 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1090 {
1091 int log;
1092
1093 INSN_SHUID (insn) = i++;
1094 if (INSN_P (insn))
1095 {
1096 /* reorg might make the first insn of a loop being run once only,
1097 and delete the label in front of it. Then we want to apply
1098 the loop alignment to the new label created by reorg, which
1099 is separated by the former loop start insn from the
1100 NOTE_INSN_LOOP_BEG. */
1101 }
1102 else if (GET_CODE (insn) == CODE_LABEL)
1103 {
1104 rtx next;
1105
1106 /* Merge in alignments computed by compute_alignments. */
1107 log = LABEL_TO_ALIGNMENT (insn);
1108 if (max_log < log)
1109 {
1110 max_log = log;
1111 max_skip = LABEL_TO_MAX_SKIP (insn);
1112 }
1113
1114 log = LABEL_ALIGN (insn);
1115 if (max_log < log)
1116 {
1117 max_log = log;
1118 max_skip = LABEL_ALIGN_MAX_SKIP;
1119 }
1120 next = NEXT_INSN (insn);
1121 /* ADDR_VECs only take room if read-only data goes into the text
1122 section. */
1123 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1124 if (next && GET_CODE (next) == JUMP_INSN)
1125 {
1126 rtx nextbody = PATTERN (next);
1127 if (GET_CODE (nextbody) == ADDR_VEC
1128 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1129 {
1130 log = ADDR_VEC_ALIGN (next);
1131 if (max_log < log)
1132 {
1133 max_log = log;
1134 max_skip = LABEL_ALIGN_MAX_SKIP;
1135 }
1136 }
1137 }
1138 LABEL_TO_ALIGNMENT (insn) = max_log;
1139 LABEL_TO_MAX_SKIP (insn) = max_skip;
1140 max_log = 0;
1141 max_skip = 0;
1142 }
1143 else if (GET_CODE (insn) == BARRIER)
1144 {
1145 rtx label;
1146
1147 for (label = insn; label && ! INSN_P (label);
1148 label = NEXT_INSN (label))
1149 if (GET_CODE (label) == CODE_LABEL)
1150 {
1151 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1152 if (max_log < log)
1153 {
1154 max_log = log;
1155 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1156 }
1157 break;
1158 }
1159 }
1160 }
1161 #ifdef HAVE_ATTR_length
1162
1163 /* Allocate the rest of the arrays. */
1164 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1165 insn_lengths_max_uid = max_uid;
1166 /* Syntax errors can lead to labels being outside of the main insn stream.
1167 Initialize insn_addresses, so that we get reproducible results. */
1168 INSN_ADDRESSES_ALLOC (max_uid);
1169
1170 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1171
1172 /* Initialize uid_align. We scan instructions
1173 from end to start, and keep in align_tab[n] the last seen insn
1174 that does an alignment of at least n+1, i.e. the successor
1175 in the alignment chain for an insn that does / has a known
1176 alignment of n. */
1177 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1178
1179 for (i = MAX_CODE_ALIGN; --i >= 0;)
1180 align_tab[i] = NULL_RTX;
1181 seq = get_last_insn ();
1182 for (; seq; seq = PREV_INSN (seq))
1183 {
1184 int uid = INSN_UID (seq);
1185 int log;
1186 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1187 uid_align[uid] = align_tab[0];
1188 if (log)
1189 {
1190 /* Found an alignment label. */
1191 uid_align[uid] = align_tab[log];
1192 for (i = log - 1; i >= 0; i--)
1193 align_tab[i] = seq;
1194 }
1195 }
1196 #ifdef CASE_VECTOR_SHORTEN_MODE
1197 if (optimize)
1198 {
1199 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1200 label fields. */
1201
1202 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1203 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1204 int rel;
1205
1206 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1207 {
1208 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1209 int len, i, min, max, insn_shuid;
1210 int min_align;
1211 addr_diff_vec_flags flags;
1212
1213 if (GET_CODE (insn) != JUMP_INSN
1214 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1215 continue;
1216 pat = PATTERN (insn);
1217 len = XVECLEN (pat, 1);
1218 if (len <= 0)
1219 abort ();
1220 min_align = MAX_CODE_ALIGN;
1221 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1222 {
1223 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1224 int shuid = INSN_SHUID (lab);
1225 if (shuid < min)
1226 {
1227 min = shuid;
1228 min_lab = lab;
1229 }
1230 if (shuid > max)
1231 {
1232 max = shuid;
1233 max_lab = lab;
1234 }
1235 if (min_align > LABEL_TO_ALIGNMENT (lab))
1236 min_align = LABEL_TO_ALIGNMENT (lab);
1237 }
1238 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1239 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1240 insn_shuid = INSN_SHUID (insn);
1241 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1242 flags.min_align = min_align;
1243 flags.base_after_vec = rel > insn_shuid;
1244 flags.min_after_vec = min > insn_shuid;
1245 flags.max_after_vec = max > insn_shuid;
1246 flags.min_after_base = min > rel;
1247 flags.max_after_base = max > rel;
1248 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1249 }
1250 }
1251 #endif /* CASE_VECTOR_SHORTEN_MODE */
1252
1253 /* Compute initial lengths, addresses, and varying flags for each insn. */
1254 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1255 insn != 0;
1256 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1257 {
1258 uid = INSN_UID (insn);
1259
1260 insn_lengths[uid] = 0;
1261
1262 if (GET_CODE (insn) == CODE_LABEL)
1263 {
1264 int log = LABEL_TO_ALIGNMENT (insn);
1265 if (log)
1266 {
1267 int align = 1 << log;
1268 int new_address = (insn_current_address + align - 1) & -align;
1269 insn_lengths[uid] = new_address - insn_current_address;
1270 }
1271 }
1272
1273 INSN_ADDRESSES (uid) = insn_current_address;
1274
1275 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1276 || GET_CODE (insn) == CODE_LABEL)
1277 continue;
1278 if (INSN_DELETED_P (insn))
1279 continue;
1280
1281 body = PATTERN (insn);
1282 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1283 {
1284 /* This only takes room if read-only data goes into the text
1285 section. */
1286 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1287 insn_lengths[uid] = (XVECLEN (body,
1288 GET_CODE (body) == ADDR_DIFF_VEC)
1289 * GET_MODE_SIZE (GET_MODE (body)));
1290 /* Alignment is handled by ADDR_VEC_ALIGN. */
1291 }
1292 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1293 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1294 else if (GET_CODE (body) == SEQUENCE)
1295 {
1296 int i;
1297 int const_delay_slots;
1298 #ifdef DELAY_SLOTS
1299 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1300 #else
1301 const_delay_slots = 0;
1302 #endif
1303 /* Inside a delay slot sequence, we do not do any branch shortening
1304 if the shortening could change the number of delay slots
1305 of the branch. */
1306 for (i = 0; i < XVECLEN (body, 0); i++)
1307 {
1308 rtx inner_insn = XVECEXP (body, 0, i);
1309 int inner_uid = INSN_UID (inner_insn);
1310 int inner_length;
1311
1312 if (GET_CODE (body) == ASM_INPUT
1313 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1314 inner_length = (asm_insn_count (PATTERN (inner_insn))
1315 * insn_default_length (inner_insn));
1316 else
1317 inner_length = insn_default_length (inner_insn);
1318
1319 insn_lengths[inner_uid] = inner_length;
1320 if (const_delay_slots)
1321 {
1322 if ((varying_length[inner_uid]
1323 = insn_variable_length_p (inner_insn)) != 0)
1324 varying_length[uid] = 1;
1325 INSN_ADDRESSES (inner_uid) = (insn_current_address
1326 + insn_lengths[uid]);
1327 }
1328 else
1329 varying_length[inner_uid] = 0;
1330 insn_lengths[uid] += inner_length;
1331 }
1332 }
1333 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1334 {
1335 insn_lengths[uid] = insn_default_length (insn);
1336 varying_length[uid] = insn_variable_length_p (insn);
1337 }
1338
1339 /* If needed, do any adjustment. */
1340 #ifdef ADJUST_INSN_LENGTH
1341 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1342 if (insn_lengths[uid] < 0)
1343 fatal_insn ("negative insn length", insn);
1344 #endif
1345 }
1346
1347 /* Now loop over all the insns finding varying length insns. For each,
1348 get the current insn length. If it has changed, reflect the change.
1349 When nothing changes for a full pass, we are done. */
1350
1351 while (something_changed)
1352 {
1353 something_changed = 0;
1354 insn_current_align = MAX_CODE_ALIGN - 1;
1355 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1356 insn != 0;
1357 insn = NEXT_INSN (insn))
1358 {
1359 int new_length;
1360 #ifdef ADJUST_INSN_LENGTH
1361 int tmp_length;
1362 #endif
1363 int length_align;
1364
1365 uid = INSN_UID (insn);
1366
1367 if (GET_CODE (insn) == CODE_LABEL)
1368 {
1369 int log = LABEL_TO_ALIGNMENT (insn);
1370 if (log > insn_current_align)
1371 {
1372 int align = 1 << log;
1373 int new_address= (insn_current_address + align - 1) & -align;
1374 insn_lengths[uid] = new_address - insn_current_address;
1375 insn_current_align = log;
1376 insn_current_address = new_address;
1377 }
1378 else
1379 insn_lengths[uid] = 0;
1380 INSN_ADDRESSES (uid) = insn_current_address;
1381 continue;
1382 }
1383
1384 length_align = INSN_LENGTH_ALIGNMENT (insn);
1385 if (length_align < insn_current_align)
1386 insn_current_align = length_align;
1387
1388 insn_last_address = INSN_ADDRESSES (uid);
1389 INSN_ADDRESSES (uid) = insn_current_address;
1390
1391 #ifdef CASE_VECTOR_SHORTEN_MODE
1392 if (optimize && GET_CODE (insn) == JUMP_INSN
1393 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1394 {
1395 rtx body = PATTERN (insn);
1396 int old_length = insn_lengths[uid];
1397 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1398 rtx min_lab = XEXP (XEXP (body, 2), 0);
1399 rtx max_lab = XEXP (XEXP (body, 3), 0);
1400 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1401 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1402 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1403 rtx prev;
1404 int rel_align = 0;
1405 addr_diff_vec_flags flags;
1406
1407 /* Avoid automatic aggregate initialization. */
1408 flags = ADDR_DIFF_VEC_FLAGS (body);
1409
1410 /* Try to find a known alignment for rel_lab. */
1411 for (prev = rel_lab;
1412 prev
1413 && ! insn_lengths[INSN_UID (prev)]
1414 && ! (varying_length[INSN_UID (prev)] & 1);
1415 prev = PREV_INSN (prev))
1416 if (varying_length[INSN_UID (prev)] & 2)
1417 {
1418 rel_align = LABEL_TO_ALIGNMENT (prev);
1419 break;
1420 }
1421
1422 /* See the comment on addr_diff_vec_flags in rtl.h for the
1423 meaning of the flags values. base: REL_LAB vec: INSN */
1424 /* Anything after INSN has still addresses from the last
1425 pass; adjust these so that they reflect our current
1426 estimate for this pass. */
1427 if (flags.base_after_vec)
1428 rel_addr += insn_current_address - insn_last_address;
1429 if (flags.min_after_vec)
1430 min_addr += insn_current_address - insn_last_address;
1431 if (flags.max_after_vec)
1432 max_addr += insn_current_address - insn_last_address;
1433 /* We want to know the worst case, i.e. lowest possible value
1434 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1435 its offset is positive, and we have to be wary of code shrink;
1436 otherwise, it is negative, and we have to be vary of code
1437 size increase. */
1438 if (flags.min_after_base)
1439 {
1440 /* If INSN is between REL_LAB and MIN_LAB, the size
1441 changes we are about to make can change the alignment
1442 within the observed offset, therefore we have to break
1443 it up into two parts that are independent. */
1444 if (! flags.base_after_vec && flags.min_after_vec)
1445 {
1446 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1447 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1448 }
1449 else
1450 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1451 }
1452 else
1453 {
1454 if (flags.base_after_vec && ! flags.min_after_vec)
1455 {
1456 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1457 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1458 }
1459 else
1460 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1461 }
1462 /* Likewise, determine the highest lowest possible value
1463 for the offset of MAX_LAB. */
1464 if (flags.max_after_base)
1465 {
1466 if (! flags.base_after_vec && flags.max_after_vec)
1467 {
1468 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1469 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1470 }
1471 else
1472 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1473 }
1474 else
1475 {
1476 if (flags.base_after_vec && ! flags.max_after_vec)
1477 {
1478 max_addr += align_fuzz (max_lab, insn, 0, 0);
1479 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1480 }
1481 else
1482 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1483 }
1484 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1485 max_addr - rel_addr,
1486 body));
1487 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1488 {
1489 insn_lengths[uid]
1490 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1491 insn_current_address += insn_lengths[uid];
1492 if (insn_lengths[uid] != old_length)
1493 something_changed = 1;
1494 }
1495
1496 continue;
1497 }
1498 #endif /* CASE_VECTOR_SHORTEN_MODE */
1499
1500 if (! (varying_length[uid]))
1501 {
1502 if (GET_CODE (insn) == INSN
1503 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1504 {
1505 int i;
1506
1507 body = PATTERN (insn);
1508 for (i = 0; i < XVECLEN (body, 0); i++)
1509 {
1510 rtx inner_insn = XVECEXP (body, 0, i);
1511 int inner_uid = INSN_UID (inner_insn);
1512
1513 INSN_ADDRESSES (inner_uid) = insn_current_address;
1514
1515 insn_current_address += insn_lengths[inner_uid];
1516 }
1517 }
1518 else
1519 insn_current_address += insn_lengths[uid];
1520
1521 continue;
1522 }
1523
1524 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1525 {
1526 int i;
1527
1528 body = PATTERN (insn);
1529 new_length = 0;
1530 for (i = 0; i < XVECLEN (body, 0); i++)
1531 {
1532 rtx inner_insn = XVECEXP (body, 0, i);
1533 int inner_uid = INSN_UID (inner_insn);
1534 int inner_length;
1535
1536 INSN_ADDRESSES (inner_uid) = insn_current_address;
1537
1538 /* insn_current_length returns 0 for insns with a
1539 non-varying length. */
1540 if (! varying_length[inner_uid])
1541 inner_length = insn_lengths[inner_uid];
1542 else
1543 inner_length = insn_current_length (inner_insn);
1544
1545 if (inner_length != insn_lengths[inner_uid])
1546 {
1547 insn_lengths[inner_uid] = inner_length;
1548 something_changed = 1;
1549 }
1550 insn_current_address += insn_lengths[inner_uid];
1551 new_length += inner_length;
1552 }
1553 }
1554 else
1555 {
1556 new_length = insn_current_length (insn);
1557 insn_current_address += new_length;
1558 }
1559
1560 #ifdef ADJUST_INSN_LENGTH
1561 /* If needed, do any adjustment. */
1562 tmp_length = new_length;
1563 ADJUST_INSN_LENGTH (insn, new_length);
1564 insn_current_address += (new_length - tmp_length);
1565 #endif
1566
1567 if (new_length != insn_lengths[uid])
1568 {
1569 insn_lengths[uid] = new_length;
1570 something_changed = 1;
1571 }
1572 }
1573 /* For a non-optimizing compile, do only a single pass. */
1574 if (!optimize)
1575 break;
1576 }
1577
1578 free (varying_length);
1579
1580 #endif /* HAVE_ATTR_length */
1581 }
1582
1583 #ifdef HAVE_ATTR_length
1584 /* Given the body of an INSN known to be generated by an ASM statement, return
1585 the number of machine instructions likely to be generated for this insn.
1586 This is used to compute its length. */
1587
1588 static int
1589 asm_insn_count (body)
1590 rtx body;
1591 {
1592 const char *template;
1593 int count = 1;
1594
1595 if (GET_CODE (body) == ASM_INPUT)
1596 template = XSTR (body, 0);
1597 else
1598 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1599
1600 for (; *template; template++)
1601 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1602 count++;
1603
1604 return count;
1605 }
1606 #endif
1607 \f
1608 /* Output assembler code for the start of a function,
1609 and initialize some of the variables in this file
1610 for the new function. The label for the function and associated
1611 assembler pseudo-ops have already been output in `assemble_start_function'.
1612
1613 FIRST is the first insn of the rtl for the function being compiled.
1614 FILE is the file to write assembler code to.
1615 OPTIMIZE is nonzero if we should eliminate redundant
1616 test and compare insns. */
1617
1618 void
1619 final_start_function (first, file, optimize)
1620 rtx first;
1621 FILE *file;
1622 int optimize ATTRIBUTE_UNUSED;
1623 {
1624 block_depth = 0;
1625
1626 this_is_asm_operands = 0;
1627
1628 #ifdef NON_SAVING_SETJMP
1629 /* A function that calls setjmp should save and restore all the
1630 call-saved registers on a system where longjmp clobbers them. */
1631 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1632 {
1633 int i;
1634
1635 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1636 if (!call_used_regs[i])
1637 regs_ever_live[i] = 1;
1638 }
1639 #endif
1640
1641 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1642 notice_source_line (first);
1643 high_block_linenum = high_function_linenum = last_linenum;
1644
1645 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1646
1647 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1648 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1649 dwarf2out_begin_prologue (0, NULL);
1650 #endif
1651
1652 #ifdef LEAF_REG_REMAP
1653 if (current_function_uses_only_leaf_regs)
1654 leaf_renumber_regs (first);
1655 #endif
1656
1657 /* The Sun386i and perhaps other machines don't work right
1658 if the profiling code comes after the prologue. */
1659 #ifdef PROFILE_BEFORE_PROLOGUE
1660 if (current_function_profile)
1661 profile_function (file);
1662 #endif /* PROFILE_BEFORE_PROLOGUE */
1663
1664 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1665 if (dwarf2out_do_frame ())
1666 dwarf2out_frame_debug (NULL_RTX);
1667 #endif
1668
1669 /* If debugging, assign block numbers to all of the blocks in this
1670 function. */
1671 if (write_symbols)
1672 {
1673 remove_unnecessary_notes ();
1674 scope_to_insns_finalize ();
1675 number_blocks (current_function_decl);
1676 /* We never actually put out begin/end notes for the top-level
1677 block in the function. But, conceptually, that block is
1678 always needed. */
1679 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1680 }
1681
1682 /* First output the function prologue: code to set up the stack frame. */
1683 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1684
1685 #ifdef VMS_DEBUGGING_INFO
1686 /* Output label after the prologue of the function. */
1687 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1688 vmsdbgout_after_prologue ();
1689 #endif
1690
1691 /* If the machine represents the prologue as RTL, the profiling code must
1692 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1693 #ifdef HAVE_prologue
1694 if (! HAVE_prologue)
1695 #endif
1696 profile_after_prologue (file);
1697 }
1698
1699 static void
1700 profile_after_prologue (file)
1701 FILE *file ATTRIBUTE_UNUSED;
1702 {
1703 #ifndef PROFILE_BEFORE_PROLOGUE
1704 if (current_function_profile)
1705 profile_function (file);
1706 #endif /* not PROFILE_BEFORE_PROLOGUE */
1707 }
1708
1709 static void
1710 profile_function (file)
1711 FILE *file ATTRIBUTE_UNUSED;
1712 {
1713 #ifndef NO_PROFILE_COUNTERS
1714 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1715 #endif
1716 #if defined(ASM_OUTPUT_REG_PUSH)
1717 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1718 int sval = current_function_returns_struct;
1719 #endif
1720 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1721 int cxt = current_function_needs_context;
1722 #endif
1723 #endif /* ASM_OUTPUT_REG_PUSH */
1724
1725 #ifndef NO_PROFILE_COUNTERS
1726 data_section ();
1727 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1728 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1729 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1730 #endif
1731
1732 function_section (current_function_decl);
1733
1734 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1735 if (sval)
1736 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1737 #else
1738 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1739 if (sval)
1740 {
1741 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1742 }
1743 #endif
1744 #endif
1745
1746 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1747 if (cxt)
1748 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1749 #else
1750 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1751 if (cxt)
1752 {
1753 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1754 }
1755 #endif
1756 #endif
1757
1758 FUNCTION_PROFILER (file, current_function_funcdef_no);
1759
1760 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1761 if (cxt)
1762 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1763 #else
1764 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1765 if (cxt)
1766 {
1767 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1768 }
1769 #endif
1770 #endif
1771
1772 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1773 if (sval)
1774 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1775 #else
1776 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1777 if (sval)
1778 {
1779 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1780 }
1781 #endif
1782 #endif
1783 }
1784
1785 /* Output assembler code for the end of a function.
1786 For clarity, args are same as those of `final_start_function'
1787 even though not all of them are needed. */
1788
1789 void
1790 final_end_function ()
1791 {
1792 app_disable ();
1793
1794 (*debug_hooks->end_function) (high_function_linenum);
1795
1796 /* Finally, output the function epilogue:
1797 code to restore the stack frame and return to the caller. */
1798 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1799
1800 /* And debug output. */
1801 (*debug_hooks->end_epilogue) ();
1802
1803 #if defined (DWARF2_UNWIND_INFO)
1804 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1805 && dwarf2out_do_frame ())
1806 dwarf2out_end_epilogue ();
1807 #endif
1808 }
1809 \f
1810 /* Output assembler code for some insns: all or part of a function.
1811 For description of args, see `final_start_function', above.
1812
1813 PRESCAN is 1 if we are not really outputting,
1814 just scanning as if we were outputting.
1815 Prescanning deletes and rearranges insns just like ordinary output.
1816 PRESCAN is -2 if we are outputting after having prescanned.
1817 In this case, don't try to delete or rearrange insns
1818 because that has already been done.
1819 Prescanning is done only on certain machines. */
1820
1821 void
1822 final (first, file, optimize, prescan)
1823 rtx first;
1824 FILE *file;
1825 int optimize;
1826 int prescan;
1827 {
1828 rtx insn;
1829 int max_line = 0;
1830 int max_uid = 0;
1831
1832 last_ignored_compare = 0;
1833 new_block = 1;
1834
1835 /* Make a map indicating which line numbers appear in this function.
1836 When producing SDB debugging info, delete troublesome line number
1837 notes from inlined functions in other files as well as duplicate
1838 line number notes. */
1839 #ifdef SDB_DEBUGGING_INFO
1840 if (write_symbols == SDB_DEBUG)
1841 {
1842 rtx last = 0;
1843 for (insn = first; insn; insn = NEXT_INSN (insn))
1844 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1845 {
1846 if ((RTX_INTEGRATED_P (insn)
1847 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1848 || (last != 0
1849 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1850 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1851 {
1852 delete_insn (insn); /* Use delete_note. */
1853 continue;
1854 }
1855 last = insn;
1856 if (NOTE_LINE_NUMBER (insn) > max_line)
1857 max_line = NOTE_LINE_NUMBER (insn);
1858 }
1859 }
1860 else
1861 #endif
1862 {
1863 for (insn = first; insn; insn = NEXT_INSN (insn))
1864 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1865 max_line = NOTE_LINE_NUMBER (insn);
1866 }
1867
1868 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1869
1870 for (insn = first; insn; insn = NEXT_INSN (insn))
1871 {
1872 if (INSN_UID (insn) > max_uid) /* find largest UID */
1873 max_uid = INSN_UID (insn);
1874 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1875 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1876 #ifdef HAVE_cc0
1877 /* If CC tracking across branches is enabled, record the insn which
1878 jumps to each branch only reached from one place. */
1879 if (optimize && GET_CODE (insn) == JUMP_INSN)
1880 {
1881 rtx lab = JUMP_LABEL (insn);
1882 if (lab && LABEL_NUSES (lab) == 1)
1883 {
1884 LABEL_REFS (lab) = insn;
1885 }
1886 }
1887 #endif
1888 }
1889
1890 init_recog ();
1891
1892 CC_STATUS_INIT;
1893
1894 /* Output the insns. */
1895 for (insn = NEXT_INSN (first); insn;)
1896 {
1897 #ifdef HAVE_ATTR_length
1898 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1899 {
1900 /* This can be triggered by bugs elsewhere in the compiler if
1901 new insns are created after init_insn_lengths is called. */
1902 if (GET_CODE (insn) == NOTE)
1903 insn_current_address = -1;
1904 else
1905 abort ();
1906 }
1907 else
1908 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1909 #endif /* HAVE_ATTR_length */
1910
1911 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1912 }
1913
1914 /* Store function names for edge-profiling. */
1915 /* ??? Probably should re-use the existing struct function. */
1916
1917 if (cfun->arc_profile)
1918 {
1919 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1920
1921 *functions_tail = new_item;
1922 functions_tail = &new_item->next;
1923
1924 new_item->next = 0;
1925 new_item->name = xstrdup (current_function_name);
1926 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1927 new_item->count_edges = profile_info.count_edges_instrumented_now;
1928 }
1929
1930 free (line_note_exists);
1931 line_note_exists = NULL;
1932 }
1933 \f
1934 const char *
1935 get_insn_template (code, insn)
1936 int code;
1937 rtx insn;
1938 {
1939 const void *output = insn_data[code].output;
1940 switch (insn_data[code].output_format)
1941 {
1942 case INSN_OUTPUT_FORMAT_SINGLE:
1943 return (const char *) output;
1944 case INSN_OUTPUT_FORMAT_MULTI:
1945 return ((const char *const *) output)[which_alternative];
1946 case INSN_OUTPUT_FORMAT_FUNCTION:
1947 if (insn == NULL)
1948 abort ();
1949 return (*(insn_output_fn) output) (recog_data.operand, insn);
1950
1951 default:
1952 abort ();
1953 }
1954 }
1955
1956 /* Emit the appropriate declaration for an alternate-entry-point
1957 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1958 LABEL_KIND != LABEL_NORMAL.
1959
1960 The case fall-through in this function is intentional. */
1961 static void
1962 output_alternate_entry_point (file, insn)
1963 FILE *file;
1964 rtx insn;
1965 {
1966 const char *name = LABEL_NAME (insn);
1967
1968 switch (LABEL_KIND (insn))
1969 {
1970 case LABEL_WEAK_ENTRY:
1971 #ifdef ASM_WEAKEN_LABEL
1972 ASM_WEAKEN_LABEL (file, name);
1973 #endif
1974 case LABEL_GLOBAL_ENTRY:
1975 ASM_GLOBALIZE_LABEL (file, name);
1976 case LABEL_STATIC_ENTRY:
1977 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1978 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1979 #endif
1980 ASM_OUTPUT_LABEL (file, name);
1981 break;
1982
1983 case LABEL_NORMAL:
1984 default:
1985 abort ();
1986 }
1987 }
1988
1989 /* The final scan for one insn, INSN.
1990 Args are same as in `final', except that INSN
1991 is the insn being scanned.
1992 Value returned is the next insn to be scanned.
1993
1994 NOPEEPHOLES is the flag to disallow peephole processing (currently
1995 used for within delayed branch sequence output). */
1996
1997 rtx
1998 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1999 rtx insn;
2000 FILE *file;
2001 int optimize ATTRIBUTE_UNUSED;
2002 int prescan;
2003 int nopeepholes ATTRIBUTE_UNUSED;
2004 {
2005 #ifdef HAVE_cc0
2006 rtx set;
2007 #endif
2008
2009 insn_counter++;
2010
2011 /* Ignore deleted insns. These can occur when we split insns (due to a
2012 template of "#") while not optimizing. */
2013 if (INSN_DELETED_P (insn))
2014 return NEXT_INSN (insn);
2015
2016 switch (GET_CODE (insn))
2017 {
2018 case NOTE:
2019 if (prescan > 0)
2020 break;
2021
2022 switch (NOTE_LINE_NUMBER (insn))
2023 {
2024 case NOTE_INSN_DELETED:
2025 case NOTE_INSN_LOOP_BEG:
2026 case NOTE_INSN_LOOP_END:
2027 case NOTE_INSN_LOOP_END_TOP_COND:
2028 case NOTE_INSN_LOOP_CONT:
2029 case NOTE_INSN_LOOP_VTOP:
2030 case NOTE_INSN_FUNCTION_END:
2031 case NOTE_INSN_REPEATED_LINE_NUMBER:
2032 case NOTE_INSN_EXPECTED_VALUE:
2033 break;
2034
2035 case NOTE_INSN_BASIC_BLOCK:
2036 #ifdef IA64_UNWIND_INFO
2037 IA64_UNWIND_EMIT (asm_out_file, insn);
2038 #endif
2039 if (flag_debug_asm)
2040 fprintf (asm_out_file, "\t%s basic block %d\n",
2041 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2042 break;
2043
2044 case NOTE_INSN_EH_REGION_BEG:
2045 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2046 NOTE_EH_HANDLER (insn));
2047 break;
2048
2049 case NOTE_INSN_EH_REGION_END:
2050 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2051 NOTE_EH_HANDLER (insn));
2052 break;
2053
2054 case NOTE_INSN_PROLOGUE_END:
2055 (*targetm.asm_out.function_end_prologue) (file);
2056 profile_after_prologue (file);
2057 break;
2058
2059 case NOTE_INSN_EPILOGUE_BEG:
2060 (*targetm.asm_out.function_begin_epilogue) (file);
2061 break;
2062
2063 case NOTE_INSN_FUNCTION_BEG:
2064 app_disable ();
2065 (*debug_hooks->end_prologue) (last_linenum);
2066 break;
2067
2068 case NOTE_INSN_BLOCK_BEG:
2069 if (debug_info_level == DINFO_LEVEL_NORMAL
2070 || debug_info_level == DINFO_LEVEL_VERBOSE
2071 || write_symbols == DWARF_DEBUG
2072 || write_symbols == DWARF2_DEBUG
2073 || write_symbols == VMS_AND_DWARF2_DEBUG
2074 || write_symbols == VMS_DEBUG)
2075 {
2076 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2077
2078 app_disable ();
2079 ++block_depth;
2080 high_block_linenum = last_linenum;
2081
2082 /* Output debugging info about the symbol-block beginning. */
2083 (*debug_hooks->begin_block) (last_linenum, n);
2084
2085 /* Mark this block as output. */
2086 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2087 }
2088 break;
2089
2090 case NOTE_INSN_BLOCK_END:
2091 if (debug_info_level == DINFO_LEVEL_NORMAL
2092 || debug_info_level == DINFO_LEVEL_VERBOSE
2093 || write_symbols == DWARF_DEBUG
2094 || write_symbols == DWARF2_DEBUG
2095 || write_symbols == VMS_AND_DWARF2_DEBUG
2096 || write_symbols == VMS_DEBUG)
2097 {
2098 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2099
2100 app_disable ();
2101
2102 /* End of a symbol-block. */
2103 --block_depth;
2104 if (block_depth < 0)
2105 abort ();
2106
2107 (*debug_hooks->end_block) (high_block_linenum, n);
2108 }
2109 break;
2110
2111 case NOTE_INSN_DELETED_LABEL:
2112 /* Emit the label. We may have deleted the CODE_LABEL because
2113 the label could be proved to be unreachable, though still
2114 referenced (in the form of having its address taken. */
2115 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2116 break;
2117
2118 case 0:
2119 break;
2120
2121 default:
2122 if (NOTE_LINE_NUMBER (insn) <= 0)
2123 abort ();
2124
2125 /* This note is a line-number. */
2126 {
2127 rtx note;
2128 int note_after = 0;
2129
2130 /* If there is anything real after this note, output it.
2131 If another line note follows, omit this one. */
2132 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2133 {
2134 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2135 break;
2136
2137 /* These types of notes can be significant
2138 so make sure the preceding line number stays. */
2139 else if (GET_CODE (note) == NOTE
2140 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2141 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2142 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2143 break;
2144 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2145 {
2146 /* Another line note follows; we can delete this note
2147 if no intervening line numbers have notes elsewhere. */
2148 int num;
2149 for (num = NOTE_LINE_NUMBER (insn) + 1;
2150 num < NOTE_LINE_NUMBER (note);
2151 num++)
2152 if (line_note_exists[num])
2153 break;
2154
2155 if (num >= NOTE_LINE_NUMBER (note))
2156 note_after = 1;
2157 break;
2158 }
2159 }
2160
2161 /* Output this line note if it is the first or the last line
2162 note in a row. */
2163 if (!note_after)
2164 {
2165 notice_source_line (insn);
2166 (*debug_hooks->source_line) (last_linenum, last_filename);
2167 }
2168 }
2169 break;
2170 }
2171 break;
2172
2173 case BARRIER:
2174 #if defined (DWARF2_UNWIND_INFO)
2175 if (dwarf2out_do_frame ())
2176 dwarf2out_frame_debug (insn);
2177 #endif
2178 break;
2179
2180 case CODE_LABEL:
2181 /* The target port might emit labels in the output function for
2182 some insn, e.g. sh.c output_branchy_insn. */
2183 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2184 {
2185 int align = LABEL_TO_ALIGNMENT (insn);
2186 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2187 int max_skip = LABEL_TO_MAX_SKIP (insn);
2188 #endif
2189
2190 if (align && NEXT_INSN (insn))
2191 {
2192 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2193 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2194 #else
2195 ASM_OUTPUT_ALIGN (file, align);
2196 #endif
2197 }
2198 }
2199 #ifdef HAVE_cc0
2200 CC_STATUS_INIT;
2201 /* If this label is reached from only one place, set the condition
2202 codes from the instruction just before the branch. */
2203
2204 /* Disabled because some insns set cc_status in the C output code
2205 and NOTICE_UPDATE_CC alone can set incorrect status. */
2206 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2207 {
2208 rtx jump = LABEL_REFS (insn);
2209 rtx barrier = prev_nonnote_insn (insn);
2210 rtx prev;
2211 /* If the LABEL_REFS field of this label has been set to point
2212 at a branch, the predecessor of the branch is a regular
2213 insn, and that branch is the only way to reach this label,
2214 set the condition codes based on the branch and its
2215 predecessor. */
2216 if (barrier && GET_CODE (barrier) == BARRIER
2217 && jump && GET_CODE (jump) == JUMP_INSN
2218 && (prev = prev_nonnote_insn (jump))
2219 && GET_CODE (prev) == INSN)
2220 {
2221 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2222 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2223 }
2224 }
2225 #endif
2226 if (prescan > 0)
2227 break;
2228 new_block = 1;
2229
2230 #ifdef FINAL_PRESCAN_LABEL
2231 FINAL_PRESCAN_INSN (insn, NULL, 0);
2232 #endif
2233
2234 if (LABEL_NAME (insn))
2235 (*debug_hooks->label) (insn);
2236
2237 if (app_on)
2238 {
2239 fputs (ASM_APP_OFF, file);
2240 app_on = 0;
2241 }
2242 if (NEXT_INSN (insn) != 0
2243 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2244 {
2245 rtx nextbody = PATTERN (NEXT_INSN (insn));
2246
2247 /* If this label is followed by a jump-table,
2248 make sure we put the label in the read-only section. Also
2249 possibly write the label and jump table together. */
2250
2251 if (GET_CODE (nextbody) == ADDR_VEC
2252 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2253 {
2254 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2255 /* In this case, the case vector is being moved by the
2256 target, so don't output the label at all. Leave that
2257 to the back end macros. */
2258 #else
2259 if (! JUMP_TABLES_IN_TEXT_SECTION)
2260 {
2261 int log_align;
2262
2263 readonly_data_section ();
2264
2265 #ifdef ADDR_VEC_ALIGN
2266 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2267 #else
2268 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2269 #endif
2270 ASM_OUTPUT_ALIGN (file, log_align);
2271 }
2272 else
2273 function_section (current_function_decl);
2274
2275 #ifdef ASM_OUTPUT_CASE_LABEL
2276 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2277 NEXT_INSN (insn));
2278 #else
2279 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2280 #endif
2281 #endif
2282 break;
2283 }
2284 }
2285 if (LABEL_ALT_ENTRY_P (insn))
2286 output_alternate_entry_point (file, insn);
2287 else
2288 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2289 break;
2290
2291 default:
2292 {
2293 rtx body = PATTERN (insn);
2294 int insn_code_number;
2295 const char *template;
2296 rtx note;
2297
2298 /* An INSN, JUMP_INSN or CALL_INSN.
2299 First check for special kinds that recog doesn't recognize. */
2300
2301 if (GET_CODE (body) == USE /* These are just declarations */
2302 || GET_CODE (body) == CLOBBER)
2303 break;
2304
2305 #ifdef HAVE_cc0
2306 /* If there is a REG_CC_SETTER note on this insn, it means that
2307 the setting of the condition code was done in the delay slot
2308 of the insn that branched here. So recover the cc status
2309 from the insn that set it. */
2310
2311 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2312 if (note)
2313 {
2314 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2315 cc_prev_status = cc_status;
2316 }
2317 #endif
2318
2319 /* Detect insns that are really jump-tables
2320 and output them as such. */
2321
2322 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2323 {
2324 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2325 int vlen, idx;
2326 #endif
2327
2328 if (prescan > 0)
2329 break;
2330
2331 if (app_on)
2332 {
2333 fputs (ASM_APP_OFF, file);
2334 app_on = 0;
2335 }
2336
2337 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2338 if (GET_CODE (body) == ADDR_VEC)
2339 {
2340 #ifdef ASM_OUTPUT_ADDR_VEC
2341 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2342 #else
2343 abort ();
2344 #endif
2345 }
2346 else
2347 {
2348 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2349 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2350 #else
2351 abort ();
2352 #endif
2353 }
2354 #else
2355 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2356 for (idx = 0; idx < vlen; idx++)
2357 {
2358 if (GET_CODE (body) == ADDR_VEC)
2359 {
2360 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2361 ASM_OUTPUT_ADDR_VEC_ELT
2362 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2363 #else
2364 abort ();
2365 #endif
2366 }
2367 else
2368 {
2369 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2370 ASM_OUTPUT_ADDR_DIFF_ELT
2371 (file,
2372 body,
2373 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2374 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2375 #else
2376 abort ();
2377 #endif
2378 }
2379 }
2380 #ifdef ASM_OUTPUT_CASE_END
2381 ASM_OUTPUT_CASE_END (file,
2382 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2383 insn);
2384 #endif
2385 #endif
2386
2387 function_section (current_function_decl);
2388
2389 break;
2390 }
2391
2392 if (GET_CODE (body) == ASM_INPUT)
2393 {
2394 const char *string = XSTR (body, 0);
2395
2396 /* There's no telling what that did to the condition codes. */
2397 CC_STATUS_INIT;
2398 if (prescan > 0)
2399 break;
2400
2401 if (string[0])
2402 {
2403 if (! app_on)
2404 {
2405 fputs (ASM_APP_ON, file);
2406 app_on = 1;
2407 }
2408 fprintf (asm_out_file, "\t%s\n", string);
2409 }
2410 break;
2411 }
2412
2413 /* Detect `asm' construct with operands. */
2414 if (asm_noperands (body) >= 0)
2415 {
2416 unsigned int noperands = asm_noperands (body);
2417 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2418 const char *string;
2419
2420 /* There's no telling what that did to the condition codes. */
2421 CC_STATUS_INIT;
2422 if (prescan > 0)
2423 break;
2424
2425 /* Get out the operand values. */
2426 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2427 /* Inhibit aborts on what would otherwise be compiler bugs. */
2428 insn_noperands = noperands;
2429 this_is_asm_operands = insn;
2430
2431 /* Output the insn using them. */
2432 if (string[0])
2433 {
2434 if (! app_on)
2435 {
2436 fputs (ASM_APP_ON, file);
2437 app_on = 1;
2438 }
2439 output_asm_insn (string, ops);
2440 }
2441
2442 this_is_asm_operands = 0;
2443 break;
2444 }
2445
2446 if (prescan <= 0 && app_on)
2447 {
2448 fputs (ASM_APP_OFF, file);
2449 app_on = 0;
2450 }
2451
2452 if (GET_CODE (body) == SEQUENCE)
2453 {
2454 /* A delayed-branch sequence */
2455 int i;
2456 rtx next;
2457
2458 if (prescan > 0)
2459 break;
2460 final_sequence = body;
2461
2462 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2463 force the restoration of a comparison that was previously
2464 thought unnecessary. If that happens, cancel this sequence
2465 and cause that insn to be restored. */
2466
2467 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2468 if (next != XVECEXP (body, 0, 1))
2469 {
2470 final_sequence = 0;
2471 return next;
2472 }
2473
2474 for (i = 1; i < XVECLEN (body, 0); i++)
2475 {
2476 rtx insn = XVECEXP (body, 0, i);
2477 rtx next = NEXT_INSN (insn);
2478 /* We loop in case any instruction in a delay slot gets
2479 split. */
2480 do
2481 insn = final_scan_insn (insn, file, 0, prescan, 1);
2482 while (insn != next);
2483 }
2484 #ifdef DBR_OUTPUT_SEQEND
2485 DBR_OUTPUT_SEQEND (file);
2486 #endif
2487 final_sequence = 0;
2488
2489 /* If the insn requiring the delay slot was a CALL_INSN, the
2490 insns in the delay slot are actually executed before the
2491 called function. Hence we don't preserve any CC-setting
2492 actions in these insns and the CC must be marked as being
2493 clobbered by the function. */
2494 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2495 {
2496 CC_STATUS_INIT;
2497 }
2498 break;
2499 }
2500
2501 /* We have a real machine instruction as rtl. */
2502
2503 body = PATTERN (insn);
2504
2505 #ifdef HAVE_cc0
2506 set = single_set (insn);
2507
2508 /* Check for redundant test and compare instructions
2509 (when the condition codes are already set up as desired).
2510 This is done only when optimizing; if not optimizing,
2511 it should be possible for the user to alter a variable
2512 with the debugger in between statements
2513 and the next statement should reexamine the variable
2514 to compute the condition codes. */
2515
2516 if (optimize)
2517 {
2518 #if 0
2519 rtx set = single_set (insn);
2520 #endif
2521
2522 if (set
2523 && GET_CODE (SET_DEST (set)) == CC0
2524 && insn != last_ignored_compare)
2525 {
2526 if (GET_CODE (SET_SRC (set)) == SUBREG)
2527 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2528 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2529 {
2530 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2531 XEXP (SET_SRC (set), 0)
2532 = alter_subreg (&XEXP (SET_SRC (set), 0));
2533 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2534 XEXP (SET_SRC (set), 1)
2535 = alter_subreg (&XEXP (SET_SRC (set), 1));
2536 }
2537 if ((cc_status.value1 != 0
2538 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2539 || (cc_status.value2 != 0
2540 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2541 {
2542 /* Don't delete insn if it has an addressing side-effect. */
2543 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2544 /* or if anything in it is volatile. */
2545 && ! volatile_refs_p (PATTERN (insn)))
2546 {
2547 /* We don't really delete the insn; just ignore it. */
2548 last_ignored_compare = insn;
2549 break;
2550 }
2551 }
2552 }
2553 }
2554 #endif
2555
2556 #ifndef STACK_REGS
2557 /* Don't bother outputting obvious no-ops, even without -O.
2558 This optimization is fast and doesn't interfere with debugging.
2559 Don't do this if the insn is in a delay slot, since this
2560 will cause an improper number of delay insns to be written. */
2561 if (final_sequence == 0
2562 && prescan >= 0
2563 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2564 && GET_CODE (SET_SRC (body)) == REG
2565 && GET_CODE (SET_DEST (body)) == REG
2566 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2567 break;
2568 #endif
2569
2570 #ifdef HAVE_cc0
2571 /* If this is a conditional branch, maybe modify it
2572 if the cc's are in a nonstandard state
2573 so that it accomplishes the same thing that it would
2574 do straightforwardly if the cc's were set up normally. */
2575
2576 if (cc_status.flags != 0
2577 && GET_CODE (insn) == JUMP_INSN
2578 && GET_CODE (body) == SET
2579 && SET_DEST (body) == pc_rtx
2580 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2581 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2582 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2583 /* This is done during prescan; it is not done again
2584 in final scan when prescan has been done. */
2585 && prescan >= 0)
2586 {
2587 /* This function may alter the contents of its argument
2588 and clear some of the cc_status.flags bits.
2589 It may also return 1 meaning condition now always true
2590 or -1 meaning condition now always false
2591 or 2 meaning condition nontrivial but altered. */
2592 int result = alter_cond (XEXP (SET_SRC (body), 0));
2593 /* If condition now has fixed value, replace the IF_THEN_ELSE
2594 with its then-operand or its else-operand. */
2595 if (result == 1)
2596 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2597 if (result == -1)
2598 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2599
2600 /* The jump is now either unconditional or a no-op.
2601 If it has become a no-op, don't try to output it.
2602 (It would not be recognized.) */
2603 if (SET_SRC (body) == pc_rtx)
2604 {
2605 delete_insn (insn);
2606 break;
2607 }
2608 else if (GET_CODE (SET_SRC (body)) == RETURN)
2609 /* Replace (set (pc) (return)) with (return). */
2610 PATTERN (insn) = body = SET_SRC (body);
2611
2612 /* Rerecognize the instruction if it has changed. */
2613 if (result != 0)
2614 INSN_CODE (insn) = -1;
2615 }
2616
2617 /* Make same adjustments to instructions that examine the
2618 condition codes without jumping and instructions that
2619 handle conditional moves (if this machine has either one). */
2620
2621 if (cc_status.flags != 0
2622 && set != 0)
2623 {
2624 rtx cond_rtx, then_rtx, else_rtx;
2625
2626 if (GET_CODE (insn) != JUMP_INSN
2627 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2628 {
2629 cond_rtx = XEXP (SET_SRC (set), 0);
2630 then_rtx = XEXP (SET_SRC (set), 1);
2631 else_rtx = XEXP (SET_SRC (set), 2);
2632 }
2633 else
2634 {
2635 cond_rtx = SET_SRC (set);
2636 then_rtx = const_true_rtx;
2637 else_rtx = const0_rtx;
2638 }
2639
2640 switch (GET_CODE (cond_rtx))
2641 {
2642 case GTU:
2643 case GT:
2644 case LTU:
2645 case LT:
2646 case GEU:
2647 case GE:
2648 case LEU:
2649 case LE:
2650 case EQ:
2651 case NE:
2652 {
2653 int result;
2654 if (XEXP (cond_rtx, 0) != cc0_rtx)
2655 break;
2656 result = alter_cond (cond_rtx);
2657 if (result == 1)
2658 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2659 else if (result == -1)
2660 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2661 else if (result == 2)
2662 INSN_CODE (insn) = -1;
2663 if (SET_DEST (set) == SET_SRC (set))
2664 delete_insn (insn);
2665 }
2666 break;
2667
2668 default:
2669 break;
2670 }
2671 }
2672
2673 #endif
2674
2675 #ifdef HAVE_peephole
2676 /* Do machine-specific peephole optimizations if desired. */
2677
2678 if (optimize && !flag_no_peephole && !nopeepholes)
2679 {
2680 rtx next = peephole (insn);
2681 /* When peepholing, if there were notes within the peephole,
2682 emit them before the peephole. */
2683 if (next != 0 && next != NEXT_INSN (insn))
2684 {
2685 rtx prev = PREV_INSN (insn);
2686
2687 for (note = NEXT_INSN (insn); note != next;
2688 note = NEXT_INSN (note))
2689 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2690
2691 /* In case this is prescan, put the notes
2692 in proper position for later rescan. */
2693 note = NEXT_INSN (insn);
2694 PREV_INSN (note) = prev;
2695 NEXT_INSN (prev) = note;
2696 NEXT_INSN (PREV_INSN (next)) = insn;
2697 PREV_INSN (insn) = PREV_INSN (next);
2698 NEXT_INSN (insn) = next;
2699 PREV_INSN (next) = insn;
2700 }
2701
2702 /* PEEPHOLE might have changed this. */
2703 body = PATTERN (insn);
2704 }
2705 #endif
2706
2707 /* Try to recognize the instruction.
2708 If successful, verify that the operands satisfy the
2709 constraints for the instruction. Crash if they don't,
2710 since `reload' should have changed them so that they do. */
2711
2712 insn_code_number = recog_memoized (insn);
2713 cleanup_subreg_operands (insn);
2714
2715 /* Dump the insn in the assembly for debugging. */
2716 if (flag_dump_rtl_in_asm)
2717 {
2718 print_rtx_head = ASM_COMMENT_START;
2719 print_rtl_single (asm_out_file, insn);
2720 print_rtx_head = "";
2721 }
2722
2723 if (! constrain_operands_cached (1))
2724 fatal_insn_not_found (insn);
2725
2726 /* Some target machines need to prescan each insn before
2727 it is output. */
2728
2729 #ifdef FINAL_PRESCAN_INSN
2730 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2731 #endif
2732
2733 #ifdef HAVE_conditional_execution
2734 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2735 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2736 else
2737 current_insn_predicate = NULL_RTX;
2738 #endif
2739
2740 #ifdef HAVE_cc0
2741 cc_prev_status = cc_status;
2742
2743 /* Update `cc_status' for this instruction.
2744 The instruction's output routine may change it further.
2745 If the output routine for a jump insn needs to depend
2746 on the cc status, it should look at cc_prev_status. */
2747
2748 NOTICE_UPDATE_CC (body, insn);
2749 #endif
2750
2751 current_output_insn = debug_insn = insn;
2752
2753 #if defined (DWARF2_UNWIND_INFO)
2754 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2755 dwarf2out_frame_debug (insn);
2756 #endif
2757
2758 /* Find the proper template for this insn. */
2759 template = get_insn_template (insn_code_number, insn);
2760
2761 /* If the C code returns 0, it means that it is a jump insn
2762 which follows a deleted test insn, and that test insn
2763 needs to be reinserted. */
2764 if (template == 0)
2765 {
2766 rtx prev;
2767
2768 if (prev_nonnote_insn (insn) != last_ignored_compare)
2769 abort ();
2770 new_block = 0;
2771
2772 /* We have already processed the notes between the setter and
2773 the user. Make sure we don't process them again, this is
2774 particularly important if one of the notes is a block
2775 scope note or an EH note. */
2776 for (prev = insn;
2777 prev != last_ignored_compare;
2778 prev = PREV_INSN (prev))
2779 {
2780 if (GET_CODE (prev) == NOTE)
2781 delete_insn (prev); /* Use delete_note. */
2782 }
2783
2784 return prev;
2785 }
2786
2787 /* If the template is the string "#", it means that this insn must
2788 be split. */
2789 if (template[0] == '#' && template[1] == '\0')
2790 {
2791 rtx new = try_split (body, insn, 0);
2792
2793 /* If we didn't split the insn, go away. */
2794 if (new == insn && PATTERN (new) == body)
2795 fatal_insn ("could not split insn", insn);
2796
2797 #ifdef HAVE_ATTR_length
2798 /* This instruction should have been split in shorten_branches,
2799 to ensure that we would have valid length info for the
2800 splitees. */
2801 abort ();
2802 #endif
2803
2804 new_block = 0;
2805 return new;
2806 }
2807
2808 if (prescan > 0)
2809 break;
2810
2811 #ifdef IA64_UNWIND_INFO
2812 IA64_UNWIND_EMIT (asm_out_file, insn);
2813 #endif
2814 /* Output assembler code from the template. */
2815
2816 output_asm_insn (template, recog_data.operand);
2817
2818 #if defined (DWARF2_UNWIND_INFO)
2819 #if defined (HAVE_prologue)
2820 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2821 dwarf2out_frame_debug (insn);
2822 #else
2823 if (!ACCUMULATE_OUTGOING_ARGS
2824 && GET_CODE (insn) == INSN
2825 && dwarf2out_do_frame ())
2826 dwarf2out_frame_debug (insn);
2827 #endif
2828 #endif
2829
2830 #if 0
2831 /* It's not at all clear why we did this and doing so interferes
2832 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2833 with this out. */
2834
2835 /* Mark this insn as having been output. */
2836 INSN_DELETED_P (insn) = 1;
2837 #endif
2838
2839 /* Emit information for vtable gc. */
2840 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2841 if (note)
2842 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2843 INTVAL (XEXP (XEXP (note, 0), 1)));
2844
2845 current_output_insn = debug_insn = 0;
2846 }
2847 }
2848 return NEXT_INSN (insn);
2849 }
2850 \f
2851 /* Output debugging info to the assembler file FILE
2852 based on the NOTE-insn INSN, assumed to be a line number. */
2853
2854 static void
2855 notice_source_line (insn)
2856 rtx insn;
2857 {
2858 const char *filename = NOTE_SOURCE_FILE (insn);
2859
2860 last_filename = filename;
2861 last_linenum = NOTE_LINE_NUMBER (insn);
2862 high_block_linenum = MAX (last_linenum, high_block_linenum);
2863 high_function_linenum = MAX (last_linenum, high_function_linenum);
2864 }
2865 \f
2866 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2867 directly to the desired hard register. */
2868
2869 void
2870 cleanup_subreg_operands (insn)
2871 rtx insn;
2872 {
2873 int i;
2874 extract_insn_cached (insn);
2875 for (i = 0; i < recog_data.n_operands; i++)
2876 {
2877 /* The following test cannot use recog_data.operand when tesing
2878 for a SUBREG: the underlying object might have been changed
2879 already if we are inside a match_operator expression that
2880 matches the else clause. Instead we test the underlying
2881 expression directly. */
2882 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2883 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2884 else if (GET_CODE (recog_data.operand[i]) == PLUS
2885 || GET_CODE (recog_data.operand[i]) == MULT
2886 || GET_CODE (recog_data.operand[i]) == MEM)
2887 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2888 }
2889
2890 for (i = 0; i < recog_data.n_dups; i++)
2891 {
2892 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2893 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2894 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2895 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2896 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2897 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2898 }
2899 }
2900
2901 /* If X is a SUBREG, replace it with a REG or a MEM,
2902 based on the thing it is a subreg of. */
2903
2904 rtx
2905 alter_subreg (xp)
2906 rtx *xp;
2907 {
2908 rtx x = *xp;
2909 rtx y = SUBREG_REG (x);
2910
2911 /* simplify_subreg does not remove subreg from volatile references.
2912 We are required to. */
2913 if (GET_CODE (y) == MEM)
2914 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2915 else
2916 {
2917 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2918 SUBREG_BYTE (x));
2919
2920 if (new != 0)
2921 *xp = new;
2922 /* Simplify_subreg can't handle some REG cases, but we have to. */
2923 else if (GET_CODE (y) == REG)
2924 {
2925 unsigned int regno = subreg_hard_regno (x, 1);
2926 PUT_CODE (x, REG);
2927 REGNO (x) = regno;
2928 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2929 /* This field has a different meaning for REGs and SUBREGs. Make
2930 sure to clear it! */
2931 RTX_FLAG (x, used) = 0;
2932 }
2933 else
2934 abort ();
2935 }
2936
2937 return *xp;
2938 }
2939
2940 /* Do alter_subreg on all the SUBREGs contained in X. */
2941
2942 static rtx
2943 walk_alter_subreg (xp)
2944 rtx *xp;
2945 {
2946 rtx x = *xp;
2947 switch (GET_CODE (x))
2948 {
2949 case PLUS:
2950 case MULT:
2951 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2952 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2953 break;
2954
2955 case MEM:
2956 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2957 break;
2958
2959 case SUBREG:
2960 return alter_subreg (xp);
2961
2962 default:
2963 break;
2964 }
2965
2966 return *xp;
2967 }
2968 \f
2969 #ifdef HAVE_cc0
2970
2971 /* Given BODY, the body of a jump instruction, alter the jump condition
2972 as required by the bits that are set in cc_status.flags.
2973 Not all of the bits there can be handled at this level in all cases.
2974
2975 The value is normally 0.
2976 1 means that the condition has become always true.
2977 -1 means that the condition has become always false.
2978 2 means that COND has been altered. */
2979
2980 static int
2981 alter_cond (cond)
2982 rtx cond;
2983 {
2984 int value = 0;
2985
2986 if (cc_status.flags & CC_REVERSED)
2987 {
2988 value = 2;
2989 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2990 }
2991
2992 if (cc_status.flags & CC_INVERTED)
2993 {
2994 value = 2;
2995 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2996 }
2997
2998 if (cc_status.flags & CC_NOT_POSITIVE)
2999 switch (GET_CODE (cond))
3000 {
3001 case LE:
3002 case LEU:
3003 case GEU:
3004 /* Jump becomes unconditional. */
3005 return 1;
3006
3007 case GT:
3008 case GTU:
3009 case LTU:
3010 /* Jump becomes no-op. */
3011 return -1;
3012
3013 case GE:
3014 PUT_CODE (cond, EQ);
3015 value = 2;
3016 break;
3017
3018 case LT:
3019 PUT_CODE (cond, NE);
3020 value = 2;
3021 break;
3022
3023 default:
3024 break;
3025 }
3026
3027 if (cc_status.flags & CC_NOT_NEGATIVE)
3028 switch (GET_CODE (cond))
3029 {
3030 case GE:
3031 case GEU:
3032 /* Jump becomes unconditional. */
3033 return 1;
3034
3035 case LT:
3036 case LTU:
3037 /* Jump becomes no-op. */
3038 return -1;
3039
3040 case LE:
3041 case LEU:
3042 PUT_CODE (cond, EQ);
3043 value = 2;
3044 break;
3045
3046 case GT:
3047 case GTU:
3048 PUT_CODE (cond, NE);
3049 value = 2;
3050 break;
3051
3052 default:
3053 break;
3054 }
3055
3056 if (cc_status.flags & CC_NO_OVERFLOW)
3057 switch (GET_CODE (cond))
3058 {
3059 case GEU:
3060 /* Jump becomes unconditional. */
3061 return 1;
3062
3063 case LEU:
3064 PUT_CODE (cond, EQ);
3065 value = 2;
3066 break;
3067
3068 case GTU:
3069 PUT_CODE (cond, NE);
3070 value = 2;
3071 break;
3072
3073 case LTU:
3074 /* Jump becomes no-op. */
3075 return -1;
3076
3077 default:
3078 break;
3079 }
3080
3081 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3082 switch (GET_CODE (cond))
3083 {
3084 default:
3085 abort ();
3086
3087 case NE:
3088 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3089 value = 2;
3090 break;
3091
3092 case EQ:
3093 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3094 value = 2;
3095 break;
3096 }
3097
3098 if (cc_status.flags & CC_NOT_SIGNED)
3099 /* The flags are valid if signed condition operators are converted
3100 to unsigned. */
3101 switch (GET_CODE (cond))
3102 {
3103 case LE:
3104 PUT_CODE (cond, LEU);
3105 value = 2;
3106 break;
3107
3108 case LT:
3109 PUT_CODE (cond, LTU);
3110 value = 2;
3111 break;
3112
3113 case GT:
3114 PUT_CODE (cond, GTU);
3115 value = 2;
3116 break;
3117
3118 case GE:
3119 PUT_CODE (cond, GEU);
3120 value = 2;
3121 break;
3122
3123 default:
3124 break;
3125 }
3126
3127 return value;
3128 }
3129 #endif
3130 \f
3131 /* Report inconsistency between the assembler template and the operands.
3132 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3133
3134 void
3135 output_operand_lossage VPARAMS ((const char *msgid, ...))
3136 {
3137 char *fmt_string;
3138 char *new_message;
3139 const char *pfx_str;
3140 VA_OPEN (ap, msgid);
3141 VA_FIXEDARG (ap, const char *, msgid);
3142
3143 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3144 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3145 vasprintf (&new_message, fmt_string, ap);
3146
3147 if (this_is_asm_operands)
3148 error_for_asm (this_is_asm_operands, "%s", new_message);
3149 else
3150 internal_error ("%s", new_message);
3151
3152 free (fmt_string);
3153 free (new_message);
3154 VA_CLOSE (ap);
3155 }
3156 \f
3157 /* Output of assembler code from a template, and its subroutines. */
3158
3159 /* Annotate the assembly with a comment describing the pattern and
3160 alternative used. */
3161
3162 static void
3163 output_asm_name ()
3164 {
3165 if (debug_insn)
3166 {
3167 int num = INSN_CODE (debug_insn);
3168 fprintf (asm_out_file, "\t%s %d\t%s",
3169 ASM_COMMENT_START, INSN_UID (debug_insn),
3170 insn_data[num].name);
3171 if (insn_data[num].n_alternatives > 1)
3172 fprintf (asm_out_file, "/%d", which_alternative + 1);
3173 #ifdef HAVE_ATTR_length
3174 fprintf (asm_out_file, "\t[length = %d]",
3175 get_attr_length (debug_insn));
3176 #endif
3177 /* Clear this so only the first assembler insn
3178 of any rtl insn will get the special comment for -dp. */
3179 debug_insn = 0;
3180 }
3181 }
3182
3183 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3184 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3185 corresponds to the address of the object and 0 if to the object. */
3186
3187 static tree
3188 get_mem_expr_from_op (op, paddressp)
3189 rtx op;
3190 int *paddressp;
3191 {
3192 tree expr;
3193 int inner_addressp;
3194
3195 *paddressp = 0;
3196
3197 if (op == NULL)
3198 return 0;
3199
3200 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3201 return REGNO_DECL (ORIGINAL_REGNO (op));
3202 else if (GET_CODE (op) != MEM)
3203 return 0;
3204
3205 if (MEM_EXPR (op) != 0)
3206 return MEM_EXPR (op);
3207
3208 /* Otherwise we have an address, so indicate it and look at the address. */
3209 *paddressp = 1;
3210 op = XEXP (op, 0);
3211
3212 /* First check if we have a decl for the address, then look at the right side
3213 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3214 But don't allow the address to itself be indirect. */
3215 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3216 return expr;
3217 else if (GET_CODE (op) == PLUS
3218 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3219 return expr;
3220
3221 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3222 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3223 op = XEXP (op, 0);
3224
3225 expr = get_mem_expr_from_op (op, &inner_addressp);
3226 return inner_addressp ? 0 : expr;
3227 }
3228
3229 /* Output operand names for assembler instructions. OPERANDS is the
3230 operand vector, OPORDER is the order to write the operands, and NOPS
3231 is the number of operands to write. */
3232
3233 static void
3234 output_asm_operand_names (operands, oporder, nops)
3235 rtx *operands;
3236 int *oporder;
3237 int nops;
3238 {
3239 int wrote = 0;
3240 int i;
3241
3242 for (i = 0; i < nops; i++)
3243 {
3244 int addressp;
3245 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3246
3247 if (expr)
3248 {
3249 fprintf (asm_out_file, "%c%s %s",
3250 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3251 addressp ? "*" : "");
3252 print_mem_expr (asm_out_file, expr);
3253 wrote = 1;
3254 }
3255 }
3256 }
3257
3258 /* Output text from TEMPLATE to the assembler output file,
3259 obeying %-directions to substitute operands taken from
3260 the vector OPERANDS.
3261
3262 %N (for N a digit) means print operand N in usual manner.
3263 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3264 and print the label name with no punctuation.
3265 %cN means require operand N to be a constant
3266 and print the constant expression with no punctuation.
3267 %aN means expect operand N to be a memory address
3268 (not a memory reference!) and print a reference
3269 to that address.
3270 %nN means expect operand N to be a constant
3271 and print a constant expression for minus the value
3272 of the operand, with no other punctuation. */
3273
3274 void
3275 output_asm_insn (template, operands)
3276 const char *template;
3277 rtx *operands;
3278 {
3279 const char *p;
3280 int c;
3281 #ifdef ASSEMBLER_DIALECT
3282 int dialect = 0;
3283 #endif
3284 int oporder[MAX_RECOG_OPERANDS];
3285 char opoutput[MAX_RECOG_OPERANDS];
3286 int ops = 0;
3287
3288 /* An insn may return a null string template
3289 in a case where no assembler code is needed. */
3290 if (*template == 0)
3291 return;
3292
3293 memset (opoutput, 0, sizeof opoutput);
3294 p = template;
3295 putc ('\t', asm_out_file);
3296
3297 #ifdef ASM_OUTPUT_OPCODE
3298 ASM_OUTPUT_OPCODE (asm_out_file, p);
3299 #endif
3300
3301 while ((c = *p++))
3302 switch (c)
3303 {
3304 case '\n':
3305 if (flag_verbose_asm)
3306 output_asm_operand_names (operands, oporder, ops);
3307 if (flag_print_asm_name)
3308 output_asm_name ();
3309
3310 ops = 0;
3311 memset (opoutput, 0, sizeof opoutput);
3312
3313 putc (c, asm_out_file);
3314 #ifdef ASM_OUTPUT_OPCODE
3315 while ((c = *p) == '\t')
3316 {
3317 putc (c, asm_out_file);
3318 p++;
3319 }
3320 ASM_OUTPUT_OPCODE (asm_out_file, p);
3321 #endif
3322 break;
3323
3324 #ifdef ASSEMBLER_DIALECT
3325 case '{':
3326 {
3327 int i;
3328
3329 if (dialect)
3330 output_operand_lossage ("nested assembly dialect alternatives");
3331 else
3332 dialect = 1;
3333
3334 /* If we want the first dialect, do nothing. Otherwise, skip
3335 DIALECT_NUMBER of strings ending with '|'. */
3336 for (i = 0; i < dialect_number; i++)
3337 {
3338 while (*p && *p != '}' && *p++ != '|')
3339 ;
3340 if (*p == '}')
3341 break;
3342 if (*p == '|')
3343 p++;
3344 }
3345
3346 if (*p == '\0')
3347 output_operand_lossage ("unterminated assembly dialect alternative");
3348 }
3349 break;
3350
3351 case '|':
3352 if (dialect)
3353 {
3354 /* Skip to close brace. */
3355 do
3356 {
3357 if (*p == '\0')
3358 {
3359 output_operand_lossage ("unterminated assembly dialect alternative");
3360 break;
3361 }
3362 }
3363 while (*p++ != '}');
3364 dialect = 0;
3365 }
3366 else
3367 putc (c, asm_out_file);
3368 break;
3369
3370 case '}':
3371 if (! dialect)
3372 putc (c, asm_out_file);
3373 dialect = 0;
3374 break;
3375 #endif
3376
3377 case '%':
3378 /* %% outputs a single %. */
3379 if (*p == '%')
3380 {
3381 p++;
3382 putc (c, asm_out_file);
3383 }
3384 /* %= outputs a number which is unique to each insn in the entire
3385 compilation. This is useful for making local labels that are
3386 referred to more than once in a given insn. */
3387 else if (*p == '=')
3388 {
3389 p++;
3390 fprintf (asm_out_file, "%d", insn_counter);
3391 }
3392 /* % followed by a letter and some digits
3393 outputs an operand in a special way depending on the letter.
3394 Letters `acln' are implemented directly.
3395 Other letters are passed to `output_operand' so that
3396 the PRINT_OPERAND macro can define them. */
3397 else if (ISALPHA (*p))
3398 {
3399 int letter = *p++;
3400 c = atoi (p);
3401
3402 if (! ISDIGIT (*p))
3403 output_operand_lossage ("operand number missing after %%-letter");
3404 else if (this_is_asm_operands
3405 && (c < 0 || (unsigned int) c >= insn_noperands))
3406 output_operand_lossage ("operand number out of range");
3407 else if (letter == 'l')
3408 output_asm_label (operands[c]);
3409 else if (letter == 'a')
3410 output_address (operands[c]);
3411 else if (letter == 'c')
3412 {
3413 if (CONSTANT_ADDRESS_P (operands[c]))
3414 output_addr_const (asm_out_file, operands[c]);
3415 else
3416 output_operand (operands[c], 'c');
3417 }
3418 else if (letter == 'n')
3419 {
3420 if (GET_CODE (operands[c]) == CONST_INT)
3421 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3422 - INTVAL (operands[c]));
3423 else
3424 {
3425 putc ('-', asm_out_file);
3426 output_addr_const (asm_out_file, operands[c]);
3427 }
3428 }
3429 else
3430 output_operand (operands[c], letter);
3431
3432 if (!opoutput[c])
3433 oporder[ops++] = c;
3434 opoutput[c] = 1;
3435
3436 while (ISDIGIT (c = *p))
3437 p++;
3438 }
3439 /* % followed by a digit outputs an operand the default way. */
3440 else if (ISDIGIT (*p))
3441 {
3442 c = atoi (p);
3443 if (this_is_asm_operands
3444 && (c < 0 || (unsigned int) c >= insn_noperands))
3445 output_operand_lossage ("operand number out of range");
3446 else
3447 output_operand (operands[c], 0);
3448
3449 if (!opoutput[c])
3450 oporder[ops++] = c;
3451 opoutput[c] = 1;
3452
3453 while (ISDIGIT (c = *p))
3454 p++;
3455 }
3456 /* % followed by punctuation: output something for that
3457 punctuation character alone, with no operand.
3458 The PRINT_OPERAND macro decides what is actually done. */
3459 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3460 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3461 output_operand (NULL_RTX, *p++);
3462 #endif
3463 else
3464 output_operand_lossage ("invalid %%-code");
3465 break;
3466
3467 default:
3468 putc (c, asm_out_file);
3469 }
3470
3471 /* Write out the variable names for operands, if we know them. */
3472 if (flag_verbose_asm)
3473 output_asm_operand_names (operands, oporder, ops);
3474 if (flag_print_asm_name)
3475 output_asm_name ();
3476
3477 putc ('\n', asm_out_file);
3478 }
3479 \f
3480 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3481
3482 void
3483 output_asm_label (x)
3484 rtx x;
3485 {
3486 char buf[256];
3487
3488 if (GET_CODE (x) == LABEL_REF)
3489 x = XEXP (x, 0);
3490 if (GET_CODE (x) == CODE_LABEL
3491 || (GET_CODE (x) == NOTE
3492 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3493 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3494 else
3495 output_operand_lossage ("`%%l' operand isn't a label");
3496
3497 assemble_name (asm_out_file, buf);
3498 }
3499
3500 /* Print operand X using machine-dependent assembler syntax.
3501 The macro PRINT_OPERAND is defined just to control this function.
3502 CODE is a non-digit that preceded the operand-number in the % spec,
3503 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3504 between the % and the digits.
3505 When CODE is a non-letter, X is 0.
3506
3507 The meanings of the letters are machine-dependent and controlled
3508 by PRINT_OPERAND. */
3509
3510 static void
3511 output_operand (x, code)
3512 rtx x;
3513 int code ATTRIBUTE_UNUSED;
3514 {
3515 if (x && GET_CODE (x) == SUBREG)
3516 x = alter_subreg (&x);
3517
3518 /* If X is a pseudo-register, abort now rather than writing trash to the
3519 assembler file. */
3520
3521 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3522 abort ();
3523
3524 PRINT_OPERAND (asm_out_file, x, code);
3525 }
3526
3527 /* Print a memory reference operand for address X
3528 using machine-dependent assembler syntax.
3529 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3530
3531 void
3532 output_address (x)
3533 rtx x;
3534 {
3535 walk_alter_subreg (&x);
3536 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3537 }
3538 \f
3539 /* Print an integer constant expression in assembler syntax.
3540 Addition and subtraction are the only arithmetic
3541 that may appear in these expressions. */
3542
3543 void
3544 output_addr_const (file, x)
3545 FILE *file;
3546 rtx x;
3547 {
3548 char buf[256];
3549
3550 restart:
3551 switch (GET_CODE (x))
3552 {
3553 case PC:
3554 putc ('.', file);
3555 break;
3556
3557 case SYMBOL_REF:
3558 #ifdef ASM_OUTPUT_SYMBOL_REF
3559 ASM_OUTPUT_SYMBOL_REF (file, x);
3560 #else
3561 assemble_name (file, XSTR (x, 0));
3562 #endif
3563 break;
3564
3565 case LABEL_REF:
3566 x = XEXP (x, 0);
3567 /* Fall through. */
3568 case CODE_LABEL:
3569 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3570 #ifdef ASM_OUTPUT_LABEL_REF
3571 ASM_OUTPUT_LABEL_REF (file, buf);
3572 #else
3573 assemble_name (file, buf);
3574 #endif
3575 break;
3576
3577 case CONST_INT:
3578 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3579 break;
3580
3581 case CONST:
3582 /* This used to output parentheses around the expression,
3583 but that does not work on the 386 (either ATT or BSD assembler). */
3584 output_addr_const (file, XEXP (x, 0));
3585 break;
3586
3587 case CONST_DOUBLE:
3588 if (GET_MODE (x) == VOIDmode)
3589 {
3590 /* We can use %d if the number is one word and positive. */
3591 if (CONST_DOUBLE_HIGH (x))
3592 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3593 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3594 else if (CONST_DOUBLE_LOW (x) < 0)
3595 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3596 else
3597 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3598 }
3599 else
3600 /* We can't handle floating point constants;
3601 PRINT_OPERAND must handle them. */
3602 output_operand_lossage ("floating constant misused");
3603 break;
3604
3605 case PLUS:
3606 /* Some assemblers need integer constants to appear last (eg masm). */
3607 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3608 {
3609 output_addr_const (file, XEXP (x, 1));
3610 if (INTVAL (XEXP (x, 0)) >= 0)
3611 fprintf (file, "+");
3612 output_addr_const (file, XEXP (x, 0));
3613 }
3614 else
3615 {
3616 output_addr_const (file, XEXP (x, 0));
3617 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3618 || INTVAL (XEXP (x, 1)) >= 0)
3619 fprintf (file, "+");
3620 output_addr_const (file, XEXP (x, 1));
3621 }
3622 break;
3623
3624 case MINUS:
3625 /* Avoid outputting things like x-x or x+5-x,
3626 since some assemblers can't handle that. */
3627 x = simplify_subtraction (x);
3628 if (GET_CODE (x) != MINUS)
3629 goto restart;
3630
3631 output_addr_const (file, XEXP (x, 0));
3632 fprintf (file, "-");
3633 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3634 || GET_CODE (XEXP (x, 1)) == PC
3635 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3636 output_addr_const (file, XEXP (x, 1));
3637 else
3638 {
3639 fputs (targetm.asm_out.open_paren, file);
3640 output_addr_const (file, XEXP (x, 1));
3641 fputs (targetm.asm_out.close_paren, file);
3642 }
3643 break;
3644
3645 case ZERO_EXTEND:
3646 case SIGN_EXTEND:
3647 case SUBREG:
3648 output_addr_const (file, XEXP (x, 0));
3649 break;
3650
3651 default:
3652 #ifdef OUTPUT_ADDR_CONST_EXTRA
3653 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3654 break;
3655
3656 fail:
3657 #endif
3658 output_operand_lossage ("invalid expression as operand");
3659 }
3660 }
3661 \f
3662 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3663 %R prints the value of REGISTER_PREFIX.
3664 %L prints the value of LOCAL_LABEL_PREFIX.
3665 %U prints the value of USER_LABEL_PREFIX.
3666 %I prints the value of IMMEDIATE_PREFIX.
3667 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3668 Also supported are %d, %x, %s, %e, %f, %g and %%.
3669
3670 We handle alternate assembler dialects here, just like output_asm_insn. */
3671
3672 void
3673 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3674 {
3675 char buf[10];
3676 char *q, c;
3677
3678 VA_OPEN (argptr, p);
3679 VA_FIXEDARG (argptr, FILE *, file);
3680 VA_FIXEDARG (argptr, const char *, p);
3681
3682 buf[0] = '%';
3683
3684 while ((c = *p++))
3685 switch (c)
3686 {
3687 #ifdef ASSEMBLER_DIALECT
3688 case '{':
3689 {
3690 int i;
3691
3692 /* If we want the first dialect, do nothing. Otherwise, skip
3693 DIALECT_NUMBER of strings ending with '|'. */
3694 for (i = 0; i < dialect_number; i++)
3695 {
3696 while (*p && *p++ != '|')
3697 ;
3698
3699 if (*p == '|')
3700 p++;
3701 }
3702 }
3703 break;
3704
3705 case '|':
3706 /* Skip to close brace. */
3707 while (*p && *p++ != '}')
3708 ;
3709 break;
3710
3711 case '}':
3712 break;
3713 #endif
3714
3715 case '%':
3716 c = *p++;
3717 q = &buf[1];
3718 while (ISDIGIT (c) || c == '.')
3719 {
3720 *q++ = c;
3721 c = *p++;
3722 }
3723 switch (c)
3724 {
3725 case '%':
3726 fprintf (file, "%%");
3727 break;
3728
3729 case 'd': case 'i': case 'u':
3730 case 'x': case 'p': case 'X':
3731 case 'o':
3732 *q++ = c;
3733 *q = 0;
3734 fprintf (file, buf, va_arg (argptr, int));
3735 break;
3736
3737 case 'w':
3738 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3739 but we do not check for those cases. It means that the value
3740 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3741
3742 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3743 #else
3744 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3745 *q++ = 'l';
3746 #else
3747 *q++ = 'l';
3748 *q++ = 'l';
3749 #endif
3750 #endif
3751
3752 *q++ = *p++;
3753 *q = 0;
3754 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3755 break;
3756
3757 case 'l':
3758 *q++ = c;
3759 *q++ = *p++;
3760 *q = 0;
3761 fprintf (file, buf, va_arg (argptr, long));
3762 break;
3763
3764 case 'e':
3765 case 'f':
3766 case 'g':
3767 *q++ = c;
3768 *q = 0;
3769 fprintf (file, buf, va_arg (argptr, double));
3770 break;
3771
3772 case 's':
3773 *q++ = c;
3774 *q = 0;
3775 fprintf (file, buf, va_arg (argptr, char *));
3776 break;
3777
3778 case 'O':
3779 #ifdef ASM_OUTPUT_OPCODE
3780 ASM_OUTPUT_OPCODE (asm_out_file, p);
3781 #endif
3782 break;
3783
3784 case 'R':
3785 #ifdef REGISTER_PREFIX
3786 fprintf (file, "%s", REGISTER_PREFIX);
3787 #endif
3788 break;
3789
3790 case 'I':
3791 #ifdef IMMEDIATE_PREFIX
3792 fprintf (file, "%s", IMMEDIATE_PREFIX);
3793 #endif
3794 break;
3795
3796 case 'L':
3797 #ifdef LOCAL_LABEL_PREFIX
3798 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3799 #endif
3800 break;
3801
3802 case 'U':
3803 fputs (user_label_prefix, file);
3804 break;
3805
3806 #ifdef ASM_FPRINTF_EXTENSIONS
3807 /* Upper case letters are reserved for general use by asm_fprintf
3808 and so are not available to target specific code. In order to
3809 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3810 they are defined here. As they get turned into real extensions
3811 to asm_fprintf they should be removed from this list. */
3812 case 'A': case 'B': case 'C': case 'D': case 'E':
3813 case 'F': case 'G': case 'H': case 'J': case 'K':
3814 case 'M': case 'N': case 'P': case 'Q': case 'S':
3815 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3816 break;
3817
3818 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3819 #endif
3820 default:
3821 abort ();
3822 }
3823 break;
3824
3825 default:
3826 fputc (c, file);
3827 }
3828 VA_CLOSE (argptr);
3829 }
3830 \f
3831 /* Split up a CONST_DOUBLE or integer constant rtx
3832 into two rtx's for single words,
3833 storing in *FIRST the word that comes first in memory in the target
3834 and in *SECOND the other. */
3835
3836 void
3837 split_double (value, first, second)
3838 rtx value;
3839 rtx *first, *second;
3840 {
3841 if (GET_CODE (value) == CONST_INT)
3842 {
3843 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3844 {
3845 /* In this case the CONST_INT holds both target words.
3846 Extract the bits from it into two word-sized pieces.
3847 Sign extend each half to HOST_WIDE_INT. */
3848 unsigned HOST_WIDE_INT low, high;
3849 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3850
3851 /* Set sign_bit to the most significant bit of a word. */
3852 sign_bit = 1;
3853 sign_bit <<= BITS_PER_WORD - 1;
3854
3855 /* Set mask so that all bits of the word are set. We could
3856 have used 1 << BITS_PER_WORD instead of basing the
3857 calculation on sign_bit. However, on machines where
3858 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3859 compiler warning, even though the code would never be
3860 executed. */
3861 mask = sign_bit << 1;
3862 mask--;
3863
3864 /* Set sign_extend as any remaining bits. */
3865 sign_extend = ~mask;
3866
3867 /* Pick the lower word and sign-extend it. */
3868 low = INTVAL (value);
3869 low &= mask;
3870 if (low & sign_bit)
3871 low |= sign_extend;
3872
3873 /* Pick the higher word, shifted to the least significant
3874 bits, and sign-extend it. */
3875 high = INTVAL (value);
3876 high >>= BITS_PER_WORD - 1;
3877 high >>= 1;
3878 high &= mask;
3879 if (high & sign_bit)
3880 high |= sign_extend;
3881
3882 /* Store the words in the target machine order. */
3883 if (WORDS_BIG_ENDIAN)
3884 {
3885 *first = GEN_INT (high);
3886 *second = GEN_INT (low);
3887 }
3888 else
3889 {
3890 *first = GEN_INT (low);
3891 *second = GEN_INT (high);
3892 }
3893 }
3894 else
3895 {
3896 /* The rule for using CONST_INT for a wider mode
3897 is that we regard the value as signed.
3898 So sign-extend it. */
3899 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3900 if (WORDS_BIG_ENDIAN)
3901 {
3902 *first = high;
3903 *second = value;
3904 }
3905 else
3906 {
3907 *first = value;
3908 *second = high;
3909 }
3910 }
3911 }
3912 else if (GET_CODE (value) != CONST_DOUBLE)
3913 {
3914 if (WORDS_BIG_ENDIAN)
3915 {
3916 *first = const0_rtx;
3917 *second = value;
3918 }
3919 else
3920 {
3921 *first = value;
3922 *second = const0_rtx;
3923 }
3924 }
3925 else if (GET_MODE (value) == VOIDmode
3926 /* This is the old way we did CONST_DOUBLE integers. */
3927 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3928 {
3929 /* In an integer, the words are defined as most and least significant.
3930 So order them by the target's convention. */
3931 if (WORDS_BIG_ENDIAN)
3932 {
3933 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3934 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3935 }
3936 else
3937 {
3938 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3939 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3940 }
3941 }
3942 else
3943 {
3944 REAL_VALUE_TYPE r;
3945 long l[2];
3946 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3947
3948 /* Note, this converts the REAL_VALUE_TYPE to the target's
3949 format, splits up the floating point double and outputs
3950 exactly 32 bits of it into each of l[0] and l[1] --
3951 not necessarily BITS_PER_WORD bits. */
3952 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3953
3954 /* If 32 bits is an entire word for the target, but not for the host,
3955 then sign-extend on the host so that the number will look the same
3956 way on the host that it would on the target. See for instance
3957 simplify_unary_operation. The #if is needed to avoid compiler
3958 warnings. */
3959
3960 #if HOST_BITS_PER_LONG > 32
3961 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3962 {
3963 if (l[0] & ((long) 1 << 31))
3964 l[0] |= ((long) (-1) << 32);
3965 if (l[1] & ((long) 1 << 31))
3966 l[1] |= ((long) (-1) << 32);
3967 }
3968 #endif
3969
3970 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3971 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3972 }
3973 }
3974 \f
3975 /* Return nonzero if this function has no function calls. */
3976
3977 int
3978 leaf_function_p ()
3979 {
3980 rtx insn;
3981 rtx link;
3982
3983 if (current_function_profile || profile_arc_flag)
3984 return 0;
3985
3986 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3987 {
3988 if (GET_CODE (insn) == CALL_INSN
3989 && ! SIBLING_CALL_P (insn))
3990 return 0;
3991 if (GET_CODE (insn) == INSN
3992 && GET_CODE (PATTERN (insn)) == SEQUENCE
3993 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3994 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3995 return 0;
3996 }
3997 for (link = current_function_epilogue_delay_list;
3998 link;
3999 link = XEXP (link, 1))
4000 {
4001 insn = XEXP (link, 0);
4002
4003 if (GET_CODE (insn) == CALL_INSN
4004 && ! SIBLING_CALL_P (insn))
4005 return 0;
4006 if (GET_CODE (insn) == INSN
4007 && GET_CODE (PATTERN (insn)) == SEQUENCE
4008 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4009 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4010 return 0;
4011 }
4012
4013 return 1;
4014 }
4015
4016 /* Return 1 if branch is an forward branch.
4017 Uses insn_shuid array, so it works only in the final pass. May be used by
4018 output templates to customary add branch prediction hints.
4019 */
4020 int
4021 final_forward_branch_p (insn)
4022 rtx insn;
4023 {
4024 int insn_id, label_id;
4025 if (!uid_shuid)
4026 abort ();
4027 insn_id = INSN_SHUID (insn);
4028 label_id = INSN_SHUID (JUMP_LABEL (insn));
4029 /* We've hit some insns that does not have id information available. */
4030 if (!insn_id || !label_id)
4031 abort ();
4032 return insn_id < label_id;
4033 }
4034
4035 /* On some machines, a function with no call insns
4036 can run faster if it doesn't create its own register window.
4037 When output, the leaf function should use only the "output"
4038 registers. Ordinarily, the function would be compiled to use
4039 the "input" registers to find its arguments; it is a candidate
4040 for leaf treatment if it uses only the "input" registers.
4041 Leaf function treatment means renumbering so the function
4042 uses the "output" registers instead. */
4043
4044 #ifdef LEAF_REGISTERS
4045
4046 /* Return 1 if this function uses only the registers that can be
4047 safely renumbered. */
4048
4049 int
4050 only_leaf_regs_used ()
4051 {
4052 int i;
4053 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4054
4055 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4056 if ((regs_ever_live[i] || global_regs[i])
4057 && ! permitted_reg_in_leaf_functions[i])
4058 return 0;
4059
4060 if (current_function_uses_pic_offset_table
4061 && pic_offset_table_rtx != 0
4062 && GET_CODE (pic_offset_table_rtx) == REG
4063 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4064 return 0;
4065
4066 return 1;
4067 }
4068
4069 /* Scan all instructions and renumber all registers into those
4070 available in leaf functions. */
4071
4072 static void
4073 leaf_renumber_regs (first)
4074 rtx first;
4075 {
4076 rtx insn;
4077
4078 /* Renumber only the actual patterns.
4079 The reg-notes can contain frame pointer refs,
4080 and renumbering them could crash, and should not be needed. */
4081 for (insn = first; insn; insn = NEXT_INSN (insn))
4082 if (INSN_P (insn))
4083 leaf_renumber_regs_insn (PATTERN (insn));
4084 for (insn = current_function_epilogue_delay_list;
4085 insn;
4086 insn = XEXP (insn, 1))
4087 if (INSN_P (XEXP (insn, 0)))
4088 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4089 }
4090
4091 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4092 available in leaf functions. */
4093
4094 void
4095 leaf_renumber_regs_insn (in_rtx)
4096 rtx in_rtx;
4097 {
4098 int i, j;
4099 const char *format_ptr;
4100
4101 if (in_rtx == 0)
4102 return;
4103
4104 /* Renumber all input-registers into output-registers.
4105 renumbered_regs would be 1 for an output-register;
4106 they */
4107
4108 if (GET_CODE (in_rtx) == REG)
4109 {
4110 int newreg;
4111
4112 /* Don't renumber the same reg twice. */
4113 if (in_rtx->used)
4114 return;
4115
4116 newreg = REGNO (in_rtx);
4117 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4118 to reach here as part of a REG_NOTE. */
4119 if (newreg >= FIRST_PSEUDO_REGISTER)
4120 {
4121 in_rtx->used = 1;
4122 return;
4123 }
4124 newreg = LEAF_REG_REMAP (newreg);
4125 if (newreg < 0)
4126 abort ();
4127 regs_ever_live[REGNO (in_rtx)] = 0;
4128 regs_ever_live[newreg] = 1;
4129 REGNO (in_rtx) = newreg;
4130 in_rtx->used = 1;
4131 }
4132
4133 if (INSN_P (in_rtx))
4134 {
4135 /* Inside a SEQUENCE, we find insns.
4136 Renumber just the patterns of these insns,
4137 just as we do for the top-level insns. */
4138 leaf_renumber_regs_insn (PATTERN (in_rtx));
4139 return;
4140 }
4141
4142 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4143
4144 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4145 switch (*format_ptr++)
4146 {
4147 case 'e':
4148 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4149 break;
4150
4151 case 'E':
4152 if (NULL != XVEC (in_rtx, i))
4153 {
4154 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4155 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4156 }
4157 break;
4158
4159 case 'S':
4160 case 's':
4161 case '0':
4162 case 'i':
4163 case 'w':
4164 case 'n':
4165 case 'u':
4166 break;
4167
4168 default:
4169 abort ();
4170 }
4171 }
4172 #endif