Hot/cold partitioning update patch.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (LABEL_P (insn))
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (BARRIER_P (insn))
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (LABEL_P (insn))
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (LABEL_P (insn))
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1573 }
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1577
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1579 }
1580 }
1581 \f
1582 const char *
1583 get_insn_template (int code, rtx insn)
1584 {
1585 switch (insn_data[code].output_format)
1586 {
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1595
1596 default:
1597 abort ();
1598 }
1599 }
1600
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1604
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1608 {
1609 const char *name = LABEL_NAME (insn);
1610
1611 switch (LABEL_KIND (insn))
1612 {
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1625
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1629 }
1630 }
1631
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1635
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1638 {
1639 rtx temp;
1640 int bb_note_count = 0;
1641
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1643 {
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1649 {
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1653 }
1654 if (INSN_P (temp))
1655 return false;
1656 }
1657
1658 return false;
1659 }
1660
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1665
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1668
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1674
1675 rtx
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1679 {
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1683
1684 insn_counter++;
1685
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1690
1691 switch (GET_CODE (insn))
1692 {
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1696
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_CONT:
1703 case NOTE_INSN_LOOP_VTOP:
1704 case NOTE_INSN_FUNCTION_END:
1705 case NOTE_INSN_REPEATED_LINE_NUMBER:
1706 case NOTE_INSN_EXPECTED_VALUE:
1707 case NOTE_DISABLE_SCHED_OF_BLOCK:
1708 break;
1709
1710 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1711
1712 /* The presence of this note indicates that this basic block
1713 belongs in the "cold" section of the .o file. If we are
1714 not already writing to the cold section we need to change
1715 to it. */
1716
1717 unlikely_text_section ();
1718 break;
1719
1720 case NOTE_INSN_BASIC_BLOCK:
1721
1722 /* If we are performing the optimization that partitions
1723 basic blocks into hot & cold sections of the .o file,
1724 then at the start of each new basic block, before
1725 beginning to write code for the basic block, we need to
1726 check to see whether the basic block belongs in the hot
1727 or cold section of the .o file, and change the section we
1728 are writing to appropriately. */
1729
1730 if (flag_reorder_blocks_and_partition
1731 && !scan_ahead_for_unlikely_executed_note (insn))
1732 function_section (current_function_decl);
1733
1734 #ifdef TARGET_UNWIND_INFO
1735 targetm.asm_out.unwind_emit (asm_out_file, insn);
1736 #endif
1737
1738 if (flag_debug_asm)
1739 fprintf (asm_out_file, "\t%s basic block %d\n",
1740 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 last_filename = NULL;
1746 }
1747 else
1748 *seen |= SEEN_BB;
1749
1750 break;
1751
1752 case NOTE_INSN_EH_REGION_BEG:
1753 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1754 NOTE_EH_HANDLER (insn));
1755 break;
1756
1757 case NOTE_INSN_EH_REGION_END:
1758 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1759 NOTE_EH_HANDLER (insn));
1760 break;
1761
1762 case NOTE_INSN_PROLOGUE_END:
1763 targetm.asm_out.function_end_prologue (file);
1764 profile_after_prologue (file);
1765
1766 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1767 {
1768 *seen |= SEEN_EMITTED;
1769 last_filename = NULL;
1770 }
1771 else
1772 *seen |= SEEN_NOTE;
1773
1774 break;
1775
1776 case NOTE_INSN_EPILOGUE_BEG:
1777 targetm.asm_out.function_begin_epilogue (file);
1778 break;
1779
1780 case NOTE_INSN_FUNCTION_BEG:
1781 app_disable ();
1782 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1783
1784 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1785 {
1786 *seen |= SEEN_EMITTED;
1787 last_filename = NULL;
1788 }
1789 else
1790 *seen |= SEEN_NOTE;
1791
1792 break;
1793
1794 case NOTE_INSN_BLOCK_BEG:
1795 if (debug_info_level == DINFO_LEVEL_NORMAL
1796 || debug_info_level == DINFO_LEVEL_VERBOSE
1797 || write_symbols == DWARF_DEBUG
1798 || write_symbols == DWARF2_DEBUG
1799 || write_symbols == VMS_AND_DWARF2_DEBUG
1800 || write_symbols == VMS_DEBUG)
1801 {
1802 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1803
1804 app_disable ();
1805 ++block_depth;
1806 high_block_linenum = last_linenum;
1807
1808 /* Output debugging info about the symbol-block beginning. */
1809 (*debug_hooks->begin_block) (last_linenum, n);
1810
1811 /* Mark this block as output. */
1812 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1813 }
1814 break;
1815
1816 case NOTE_INSN_BLOCK_END:
1817 if (debug_info_level == DINFO_LEVEL_NORMAL
1818 || debug_info_level == DINFO_LEVEL_VERBOSE
1819 || write_symbols == DWARF_DEBUG
1820 || write_symbols == DWARF2_DEBUG
1821 || write_symbols == VMS_AND_DWARF2_DEBUG
1822 || write_symbols == VMS_DEBUG)
1823 {
1824 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1825
1826 app_disable ();
1827
1828 /* End of a symbol-block. */
1829 --block_depth;
1830 if (block_depth < 0)
1831 abort ();
1832
1833 (*debug_hooks->end_block) (high_block_linenum, n);
1834 }
1835 break;
1836
1837 case NOTE_INSN_DELETED_LABEL:
1838 /* Emit the label. We may have deleted the CODE_LABEL because
1839 the label could be proved to be unreachable, though still
1840 referenced (in the form of having its address taken. */
1841 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1842 break;
1843
1844 case NOTE_INSN_VAR_LOCATION:
1845 (*debug_hooks->var_location) (insn);
1846 break;
1847
1848 case 0:
1849 break;
1850
1851 default:
1852 if (NOTE_LINE_NUMBER (insn) <= 0)
1853 abort ();
1854 break;
1855 }
1856 break;
1857
1858 case BARRIER:
1859 #if defined (DWARF2_UNWIND_INFO)
1860 if (dwarf2out_do_frame ())
1861 dwarf2out_frame_debug (insn);
1862 #endif
1863 break;
1864
1865 case CODE_LABEL:
1866 /* The target port might emit labels in the output function for
1867 some insn, e.g. sh.c output_branchy_insn. */
1868 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1869 {
1870 int align = LABEL_TO_ALIGNMENT (insn);
1871 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1872 int max_skip = LABEL_TO_MAX_SKIP (insn);
1873 #endif
1874
1875 if (align && NEXT_INSN (insn))
1876 {
1877 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1878 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1879 #else
1880 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1881 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1882 #else
1883 ASM_OUTPUT_ALIGN (file, align);
1884 #endif
1885 #endif
1886 }
1887 }
1888 #ifdef HAVE_cc0
1889 CC_STATUS_INIT;
1890 /* If this label is reached from only one place, set the condition
1891 codes from the instruction just before the branch. */
1892
1893 /* Disabled because some insns set cc_status in the C output code
1894 and NOTICE_UPDATE_CC alone can set incorrect status. */
1895 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1896 {
1897 rtx jump = LABEL_REFS (insn);
1898 rtx barrier = prev_nonnote_insn (insn);
1899 rtx prev;
1900 /* If the LABEL_REFS field of this label has been set to point
1901 at a branch, the predecessor of the branch is a regular
1902 insn, and that branch is the only way to reach this label,
1903 set the condition codes based on the branch and its
1904 predecessor. */
1905 if (barrier && BARRIER_P (barrier)
1906 && jump && JUMP_P (jump)
1907 && (prev = prev_nonnote_insn (jump))
1908 && NONJUMP_INSN_P (prev))
1909 {
1910 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1911 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1912 }
1913 }
1914 #endif
1915 if (prescan > 0)
1916 break;
1917
1918 if (LABEL_NAME (insn))
1919 (*debug_hooks->label) (insn);
1920
1921 /* If we are doing the optimization that partitions hot & cold
1922 basic blocks into separate sections of the .o file, we need
1923 to ensure the jump table ends up in the correct section... */
1924
1925 if (flag_reorder_blocks_and_partition
1926 && targetm.have_named_sections)
1927 {
1928 rtx tmp_table, tmp_label;
1929 if (LABEL_P (insn)
1930 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1931 {
1932 /* Do nothing; Do NOT change the current section. */
1933 }
1934 else if (scan_ahead_for_unlikely_executed_note (insn))
1935 unlikely_text_section ();
1936 else if (in_unlikely_text_section ())
1937 function_section (current_function_decl);
1938 }
1939
1940 if (app_on)
1941 {
1942 fputs (ASM_APP_OFF, file);
1943 app_on = 0;
1944 }
1945 if (NEXT_INSN (insn) != 0
1946 && JUMP_P (NEXT_INSN (insn)))
1947 {
1948 rtx nextbody = PATTERN (NEXT_INSN (insn));
1949
1950 /* If this label is followed by a jump-table,
1951 make sure we put the label in the read-only section. Also
1952 possibly write the label and jump table together. */
1953
1954 if (GET_CODE (nextbody) == ADDR_VEC
1955 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1956 {
1957 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1958 /* In this case, the case vector is being moved by the
1959 target, so don't output the label at all. Leave that
1960 to the back end macros. */
1961 #else
1962 if (! JUMP_TABLES_IN_TEXT_SECTION)
1963 {
1964 int log_align;
1965
1966 targetm.asm_out.function_rodata_section (current_function_decl);
1967
1968 #ifdef ADDR_VEC_ALIGN
1969 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1970 #else
1971 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1972 #endif
1973 ASM_OUTPUT_ALIGN (file, log_align);
1974 }
1975 else
1976 function_section (current_function_decl);
1977
1978 #ifdef ASM_OUTPUT_CASE_LABEL
1979 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1980 NEXT_INSN (insn));
1981 #else
1982 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1983 #endif
1984 #endif
1985 break;
1986 }
1987 }
1988 if (LABEL_ALT_ENTRY_P (insn))
1989 output_alternate_entry_point (file, insn);
1990 else
1991 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1992 break;
1993
1994 default:
1995 {
1996 rtx body = PATTERN (insn);
1997 int insn_code_number;
1998 const char *template;
1999
2000 /* An INSN, JUMP_INSN or CALL_INSN.
2001 First check for special kinds that recog doesn't recognize. */
2002
2003 if (GET_CODE (body) == USE /* These are just declarations. */
2004 || GET_CODE (body) == CLOBBER)
2005 break;
2006
2007 #ifdef HAVE_cc0
2008 {
2009 /* If there is a REG_CC_SETTER note on this insn, it means that
2010 the setting of the condition code was done in the delay slot
2011 of the insn that branched here. So recover the cc status
2012 from the insn that set it. */
2013
2014 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2015 if (note)
2016 {
2017 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2018 cc_prev_status = cc_status;
2019 }
2020 }
2021 #endif
2022
2023 /* Detect insns that are really jump-tables
2024 and output them as such. */
2025
2026 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2027 {
2028 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2029 int vlen, idx;
2030 #endif
2031
2032 if (prescan > 0)
2033 break;
2034
2035 if (app_on)
2036 {
2037 fputs (ASM_APP_OFF, file);
2038 app_on = 0;
2039 }
2040
2041 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2042 if (GET_CODE (body) == ADDR_VEC)
2043 {
2044 #ifdef ASM_OUTPUT_ADDR_VEC
2045 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2046 #else
2047 abort ();
2048 #endif
2049 }
2050 else
2051 {
2052 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2053 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2054 #else
2055 abort ();
2056 #endif
2057 }
2058 #else
2059 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2060 for (idx = 0; idx < vlen; idx++)
2061 {
2062 if (GET_CODE (body) == ADDR_VEC)
2063 {
2064 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2065 ASM_OUTPUT_ADDR_VEC_ELT
2066 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2067 #else
2068 abort ();
2069 #endif
2070 }
2071 else
2072 {
2073 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2074 ASM_OUTPUT_ADDR_DIFF_ELT
2075 (file,
2076 body,
2077 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2078 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2079 #else
2080 abort ();
2081 #endif
2082 }
2083 }
2084 #ifdef ASM_OUTPUT_CASE_END
2085 ASM_OUTPUT_CASE_END (file,
2086 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2087 insn);
2088 #endif
2089 #endif
2090
2091 function_section (current_function_decl);
2092
2093 break;
2094 }
2095 /* Output this line note if it is the first or the last line
2096 note in a row. */
2097 if (notice_source_line (insn))
2098 {
2099 (*debug_hooks->source_line) (last_linenum, last_filename);
2100 }
2101
2102 if (GET_CODE (body) == ASM_INPUT)
2103 {
2104 const char *string = XSTR (body, 0);
2105
2106 /* There's no telling what that did to the condition codes. */
2107 CC_STATUS_INIT;
2108 if (prescan > 0)
2109 break;
2110
2111 if (string[0])
2112 {
2113 if (! app_on)
2114 {
2115 fputs (ASM_APP_ON, file);
2116 app_on = 1;
2117 }
2118 fprintf (asm_out_file, "\t%s\n", string);
2119 }
2120 break;
2121 }
2122
2123 /* Detect `asm' construct with operands. */
2124 if (asm_noperands (body) >= 0)
2125 {
2126 unsigned int noperands = asm_noperands (body);
2127 rtx *ops = alloca (noperands * sizeof (rtx));
2128 const char *string;
2129
2130 /* There's no telling what that did to the condition codes. */
2131 CC_STATUS_INIT;
2132 if (prescan > 0)
2133 break;
2134
2135 /* Get out the operand values. */
2136 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2137 /* Inhibit aborts on what would otherwise be compiler bugs. */
2138 insn_noperands = noperands;
2139 this_is_asm_operands = insn;
2140
2141 #ifdef FINAL_PRESCAN_INSN
2142 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2143 #endif
2144
2145 /* Output the insn using them. */
2146 if (string[0])
2147 {
2148 if (! app_on)
2149 {
2150 fputs (ASM_APP_ON, file);
2151 app_on = 1;
2152 }
2153 output_asm_insn (string, ops);
2154 }
2155
2156 this_is_asm_operands = 0;
2157 break;
2158 }
2159
2160 if (prescan <= 0 && app_on)
2161 {
2162 fputs (ASM_APP_OFF, file);
2163 app_on = 0;
2164 }
2165
2166 if (GET_CODE (body) == SEQUENCE)
2167 {
2168 /* A delayed-branch sequence */
2169 int i;
2170 rtx next;
2171
2172 if (prescan > 0)
2173 break;
2174 final_sequence = body;
2175
2176 /* Record the delay slots' frame information before the branch.
2177 This is needed for delayed calls: see execute_cfa_program(). */
2178 #if defined (DWARF2_UNWIND_INFO)
2179 if (dwarf2out_do_frame ())
2180 for (i = 1; i < XVECLEN (body, 0); i++)
2181 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2182 #endif
2183
2184 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2185 force the restoration of a comparison that was previously
2186 thought unnecessary. If that happens, cancel this sequence
2187 and cause that insn to be restored. */
2188
2189 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2190 if (next != XVECEXP (body, 0, 1))
2191 {
2192 final_sequence = 0;
2193 return next;
2194 }
2195
2196 for (i = 1; i < XVECLEN (body, 0); i++)
2197 {
2198 rtx insn = XVECEXP (body, 0, i);
2199 rtx next = NEXT_INSN (insn);
2200 /* We loop in case any instruction in a delay slot gets
2201 split. */
2202 do
2203 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2204 while (insn != next);
2205 }
2206 #ifdef DBR_OUTPUT_SEQEND
2207 DBR_OUTPUT_SEQEND (file);
2208 #endif
2209 final_sequence = 0;
2210
2211 /* If the insn requiring the delay slot was a CALL_INSN, the
2212 insns in the delay slot are actually executed before the
2213 called function. Hence we don't preserve any CC-setting
2214 actions in these insns and the CC must be marked as being
2215 clobbered by the function. */
2216 if (CALL_P (XVECEXP (body, 0, 0)))
2217 {
2218 CC_STATUS_INIT;
2219 }
2220 break;
2221 }
2222
2223 /* We have a real machine instruction as rtl. */
2224
2225 body = PATTERN (insn);
2226
2227 #ifdef HAVE_cc0
2228 set = single_set (insn);
2229
2230 /* Check for redundant test and compare instructions
2231 (when the condition codes are already set up as desired).
2232 This is done only when optimizing; if not optimizing,
2233 it should be possible for the user to alter a variable
2234 with the debugger in between statements
2235 and the next statement should reexamine the variable
2236 to compute the condition codes. */
2237
2238 if (optimize)
2239 {
2240 if (set
2241 && GET_CODE (SET_DEST (set)) == CC0
2242 && insn != last_ignored_compare)
2243 {
2244 if (GET_CODE (SET_SRC (set)) == SUBREG)
2245 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2246 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2247 {
2248 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2249 XEXP (SET_SRC (set), 0)
2250 = alter_subreg (&XEXP (SET_SRC (set), 0));
2251 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2252 XEXP (SET_SRC (set), 1)
2253 = alter_subreg (&XEXP (SET_SRC (set), 1));
2254 }
2255 if ((cc_status.value1 != 0
2256 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2257 || (cc_status.value2 != 0
2258 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2259 {
2260 /* Don't delete insn if it has an addressing side-effect. */
2261 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2262 /* or if anything in it is volatile. */
2263 && ! volatile_refs_p (PATTERN (insn)))
2264 {
2265 /* We don't really delete the insn; just ignore it. */
2266 last_ignored_compare = insn;
2267 break;
2268 }
2269 }
2270 }
2271 }
2272 #endif
2273
2274 #ifndef STACK_REGS
2275 /* Don't bother outputting obvious no-ops, even without -O.
2276 This optimization is fast and doesn't interfere with debugging.
2277 Don't do this if the insn is in a delay slot, since this
2278 will cause an improper number of delay insns to be written. */
2279 if (final_sequence == 0
2280 && prescan >= 0
2281 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2282 && REG_P (SET_SRC (body))
2283 && REG_P (SET_DEST (body))
2284 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2285 break;
2286 #endif
2287
2288 #ifdef HAVE_cc0
2289 /* If this is a conditional branch, maybe modify it
2290 if the cc's are in a nonstandard state
2291 so that it accomplishes the same thing that it would
2292 do straightforwardly if the cc's were set up normally. */
2293
2294 if (cc_status.flags != 0
2295 && JUMP_P (insn)
2296 && GET_CODE (body) == SET
2297 && SET_DEST (body) == pc_rtx
2298 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2299 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2300 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2301 /* This is done during prescan; it is not done again
2302 in final scan when prescan has been done. */
2303 && prescan >= 0)
2304 {
2305 /* This function may alter the contents of its argument
2306 and clear some of the cc_status.flags bits.
2307 It may also return 1 meaning condition now always true
2308 or -1 meaning condition now always false
2309 or 2 meaning condition nontrivial but altered. */
2310 int result = alter_cond (XEXP (SET_SRC (body), 0));
2311 /* If condition now has fixed value, replace the IF_THEN_ELSE
2312 with its then-operand or its else-operand. */
2313 if (result == 1)
2314 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2315 if (result == -1)
2316 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2317
2318 /* The jump is now either unconditional or a no-op.
2319 If it has become a no-op, don't try to output it.
2320 (It would not be recognized.) */
2321 if (SET_SRC (body) == pc_rtx)
2322 {
2323 delete_insn (insn);
2324 break;
2325 }
2326 else if (GET_CODE (SET_SRC (body)) == RETURN)
2327 /* Replace (set (pc) (return)) with (return). */
2328 PATTERN (insn) = body = SET_SRC (body);
2329
2330 /* Rerecognize the instruction if it has changed. */
2331 if (result != 0)
2332 INSN_CODE (insn) = -1;
2333 }
2334
2335 /* Make same adjustments to instructions that examine the
2336 condition codes without jumping and instructions that
2337 handle conditional moves (if this machine has either one). */
2338
2339 if (cc_status.flags != 0
2340 && set != 0)
2341 {
2342 rtx cond_rtx, then_rtx, else_rtx;
2343
2344 if (!JUMP_P (insn)
2345 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2346 {
2347 cond_rtx = XEXP (SET_SRC (set), 0);
2348 then_rtx = XEXP (SET_SRC (set), 1);
2349 else_rtx = XEXP (SET_SRC (set), 2);
2350 }
2351 else
2352 {
2353 cond_rtx = SET_SRC (set);
2354 then_rtx = const_true_rtx;
2355 else_rtx = const0_rtx;
2356 }
2357
2358 switch (GET_CODE (cond_rtx))
2359 {
2360 case GTU:
2361 case GT:
2362 case LTU:
2363 case LT:
2364 case GEU:
2365 case GE:
2366 case LEU:
2367 case LE:
2368 case EQ:
2369 case NE:
2370 {
2371 int result;
2372 if (XEXP (cond_rtx, 0) != cc0_rtx)
2373 break;
2374 result = alter_cond (cond_rtx);
2375 if (result == 1)
2376 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2377 else if (result == -1)
2378 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2379 else if (result == 2)
2380 INSN_CODE (insn) = -1;
2381 if (SET_DEST (set) == SET_SRC (set))
2382 delete_insn (insn);
2383 }
2384 break;
2385
2386 default:
2387 break;
2388 }
2389 }
2390
2391 #endif
2392
2393 #ifdef HAVE_peephole
2394 /* Do machine-specific peephole optimizations if desired. */
2395
2396 if (optimize && !flag_no_peephole && !nopeepholes)
2397 {
2398 rtx next = peephole (insn);
2399 /* When peepholing, if there were notes within the peephole,
2400 emit them before the peephole. */
2401 if (next != 0 && next != NEXT_INSN (insn))
2402 {
2403 rtx note, prev = PREV_INSN (insn);
2404
2405 for (note = NEXT_INSN (insn); note != next;
2406 note = NEXT_INSN (note))
2407 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2408
2409 /* In case this is prescan, put the notes
2410 in proper position for later rescan. */
2411 note = NEXT_INSN (insn);
2412 PREV_INSN (note) = prev;
2413 NEXT_INSN (prev) = note;
2414 NEXT_INSN (PREV_INSN (next)) = insn;
2415 PREV_INSN (insn) = PREV_INSN (next);
2416 NEXT_INSN (insn) = next;
2417 PREV_INSN (next) = insn;
2418 }
2419
2420 /* PEEPHOLE might have changed this. */
2421 body = PATTERN (insn);
2422 }
2423 #endif
2424
2425 /* Try to recognize the instruction.
2426 If successful, verify that the operands satisfy the
2427 constraints for the instruction. Crash if they don't,
2428 since `reload' should have changed them so that they do. */
2429
2430 insn_code_number = recog_memoized (insn);
2431 cleanup_subreg_operands (insn);
2432
2433 /* Dump the insn in the assembly for debugging. */
2434 if (flag_dump_rtl_in_asm)
2435 {
2436 print_rtx_head = ASM_COMMENT_START;
2437 print_rtl_single (asm_out_file, insn);
2438 print_rtx_head = "";
2439 }
2440
2441 if (! constrain_operands_cached (1))
2442 fatal_insn_not_found (insn);
2443
2444 /* Some target machines need to prescan each insn before
2445 it is output. */
2446
2447 #ifdef FINAL_PRESCAN_INSN
2448 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2449 #endif
2450
2451 #ifdef HAVE_conditional_execution
2452 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2453 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2454 else
2455 current_insn_predicate = NULL_RTX;
2456 #endif
2457
2458 #ifdef HAVE_cc0
2459 cc_prev_status = cc_status;
2460
2461 /* Update `cc_status' for this instruction.
2462 The instruction's output routine may change it further.
2463 If the output routine for a jump insn needs to depend
2464 on the cc status, it should look at cc_prev_status. */
2465
2466 NOTICE_UPDATE_CC (body, insn);
2467 #endif
2468
2469 current_output_insn = debug_insn = insn;
2470
2471 #if defined (DWARF2_UNWIND_INFO)
2472 if (CALL_P (insn) && dwarf2out_do_frame ())
2473 dwarf2out_frame_debug (insn);
2474 #endif
2475
2476 /* Find the proper template for this insn. */
2477 template = get_insn_template (insn_code_number, insn);
2478
2479 /* If the C code returns 0, it means that it is a jump insn
2480 which follows a deleted test insn, and that test insn
2481 needs to be reinserted. */
2482 if (template == 0)
2483 {
2484 rtx prev;
2485
2486 if (prev_nonnote_insn (insn) != last_ignored_compare)
2487 abort ();
2488
2489 /* We have already processed the notes between the setter and
2490 the user. Make sure we don't process them again, this is
2491 particularly important if one of the notes is a block
2492 scope note or an EH note. */
2493 for (prev = insn;
2494 prev != last_ignored_compare;
2495 prev = PREV_INSN (prev))
2496 {
2497 if (NOTE_P (prev))
2498 delete_insn (prev); /* Use delete_note. */
2499 }
2500
2501 return prev;
2502 }
2503
2504 /* If the template is the string "#", it means that this insn must
2505 be split. */
2506 if (template[0] == '#' && template[1] == '\0')
2507 {
2508 rtx new = try_split (body, insn, 0);
2509
2510 /* If we didn't split the insn, go away. */
2511 if (new == insn && PATTERN (new) == body)
2512 fatal_insn ("could not split insn", insn);
2513
2514 #ifdef HAVE_ATTR_length
2515 /* This instruction should have been split in shorten_branches,
2516 to ensure that we would have valid length info for the
2517 splitees. */
2518 abort ();
2519 #endif
2520
2521 return new;
2522 }
2523
2524 if (prescan > 0)
2525 break;
2526
2527 #ifdef TARGET_UNWIND_INFO
2528 /* ??? This will put the directives in the wrong place if
2529 get_insn_template outputs assembly directly. However calling it
2530 before get_insn_template breaks if the insns is split. */
2531 targetm.asm_out.unwind_emit (asm_out_file, insn);
2532 #endif
2533
2534 /* Output assembler code from the template. */
2535 output_asm_insn (template, recog_data.operand);
2536
2537 /* If necessary, report the effect that the instruction has on
2538 the unwind info. We've already done this for delay slots
2539 and call instructions. */
2540 #if defined (DWARF2_UNWIND_INFO)
2541 if (NONJUMP_INSN_P (insn)
2542 #if !defined (HAVE_prologue)
2543 && !ACCUMULATE_OUTGOING_ARGS
2544 #endif
2545 && final_sequence == 0
2546 && dwarf2out_do_frame ())
2547 dwarf2out_frame_debug (insn);
2548 #endif
2549
2550 current_output_insn = debug_insn = 0;
2551 }
2552 }
2553 return NEXT_INSN (insn);
2554 }
2555 \f
2556 /* Output debugging info to the assembler file FILE
2557 based on the NOTE-insn INSN, assumed to be a line number. */
2558
2559 static bool
2560 notice_source_line (rtx insn)
2561 {
2562 const char *filename = insn_file (insn);
2563 int linenum = insn_line (insn);
2564
2565 if (filename && (filename != last_filename || last_linenum != linenum))
2566 {
2567 last_filename = filename;
2568 last_linenum = linenum;
2569 high_block_linenum = MAX (last_linenum, high_block_linenum);
2570 high_function_linenum = MAX (last_linenum, high_function_linenum);
2571 return true;
2572 }
2573 return false;
2574 }
2575 \f
2576 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2577 directly to the desired hard register. */
2578
2579 void
2580 cleanup_subreg_operands (rtx insn)
2581 {
2582 int i;
2583 extract_insn_cached (insn);
2584 for (i = 0; i < recog_data.n_operands; i++)
2585 {
2586 /* The following test cannot use recog_data.operand when testing
2587 for a SUBREG: the underlying object might have been changed
2588 already if we are inside a match_operator expression that
2589 matches the else clause. Instead we test the underlying
2590 expression directly. */
2591 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2592 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2593 else if (GET_CODE (recog_data.operand[i]) == PLUS
2594 || GET_CODE (recog_data.operand[i]) == MULT
2595 || MEM_P (recog_data.operand[i]))
2596 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2597 }
2598
2599 for (i = 0; i < recog_data.n_dups; i++)
2600 {
2601 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2602 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2603 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2604 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2605 || MEM_P (*recog_data.dup_loc[i]))
2606 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2607 }
2608 }
2609
2610 /* If X is a SUBREG, replace it with a REG or a MEM,
2611 based on the thing it is a subreg of. */
2612
2613 rtx
2614 alter_subreg (rtx *xp)
2615 {
2616 rtx x = *xp;
2617 rtx y = SUBREG_REG (x);
2618
2619 /* simplify_subreg does not remove subreg from volatile references.
2620 We are required to. */
2621 if (MEM_P (y))
2622 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2623 else
2624 {
2625 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2626 SUBREG_BYTE (x));
2627
2628 if (new != 0)
2629 *xp = new;
2630 /* Simplify_subreg can't handle some REG cases, but we have to. */
2631 else if (REG_P (y))
2632 {
2633 unsigned int regno = subreg_hard_regno (x, 1);
2634 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2635 }
2636 else
2637 abort ();
2638 }
2639
2640 return *xp;
2641 }
2642
2643 /* Do alter_subreg on all the SUBREGs contained in X. */
2644
2645 static rtx
2646 walk_alter_subreg (rtx *xp)
2647 {
2648 rtx x = *xp;
2649 switch (GET_CODE (x))
2650 {
2651 case PLUS:
2652 case MULT:
2653 case AND:
2654 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2655 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2656 break;
2657
2658 case MEM:
2659 case ZERO_EXTEND:
2660 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2661 break;
2662
2663 case SUBREG:
2664 return alter_subreg (xp);
2665
2666 default:
2667 break;
2668 }
2669
2670 return *xp;
2671 }
2672 \f
2673 #ifdef HAVE_cc0
2674
2675 /* Given BODY, the body of a jump instruction, alter the jump condition
2676 as required by the bits that are set in cc_status.flags.
2677 Not all of the bits there can be handled at this level in all cases.
2678
2679 The value is normally 0.
2680 1 means that the condition has become always true.
2681 -1 means that the condition has become always false.
2682 2 means that COND has been altered. */
2683
2684 static int
2685 alter_cond (rtx cond)
2686 {
2687 int value = 0;
2688
2689 if (cc_status.flags & CC_REVERSED)
2690 {
2691 value = 2;
2692 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2693 }
2694
2695 if (cc_status.flags & CC_INVERTED)
2696 {
2697 value = 2;
2698 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2699 }
2700
2701 if (cc_status.flags & CC_NOT_POSITIVE)
2702 switch (GET_CODE (cond))
2703 {
2704 case LE:
2705 case LEU:
2706 case GEU:
2707 /* Jump becomes unconditional. */
2708 return 1;
2709
2710 case GT:
2711 case GTU:
2712 case LTU:
2713 /* Jump becomes no-op. */
2714 return -1;
2715
2716 case GE:
2717 PUT_CODE (cond, EQ);
2718 value = 2;
2719 break;
2720
2721 case LT:
2722 PUT_CODE (cond, NE);
2723 value = 2;
2724 break;
2725
2726 default:
2727 break;
2728 }
2729
2730 if (cc_status.flags & CC_NOT_NEGATIVE)
2731 switch (GET_CODE (cond))
2732 {
2733 case GE:
2734 case GEU:
2735 /* Jump becomes unconditional. */
2736 return 1;
2737
2738 case LT:
2739 case LTU:
2740 /* Jump becomes no-op. */
2741 return -1;
2742
2743 case LE:
2744 case LEU:
2745 PUT_CODE (cond, EQ);
2746 value = 2;
2747 break;
2748
2749 case GT:
2750 case GTU:
2751 PUT_CODE (cond, NE);
2752 value = 2;
2753 break;
2754
2755 default:
2756 break;
2757 }
2758
2759 if (cc_status.flags & CC_NO_OVERFLOW)
2760 switch (GET_CODE (cond))
2761 {
2762 case GEU:
2763 /* Jump becomes unconditional. */
2764 return 1;
2765
2766 case LEU:
2767 PUT_CODE (cond, EQ);
2768 value = 2;
2769 break;
2770
2771 case GTU:
2772 PUT_CODE (cond, NE);
2773 value = 2;
2774 break;
2775
2776 case LTU:
2777 /* Jump becomes no-op. */
2778 return -1;
2779
2780 default:
2781 break;
2782 }
2783
2784 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2785 switch (GET_CODE (cond))
2786 {
2787 default:
2788 abort ();
2789
2790 case NE:
2791 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2792 value = 2;
2793 break;
2794
2795 case EQ:
2796 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2797 value = 2;
2798 break;
2799 }
2800
2801 if (cc_status.flags & CC_NOT_SIGNED)
2802 /* The flags are valid if signed condition operators are converted
2803 to unsigned. */
2804 switch (GET_CODE (cond))
2805 {
2806 case LE:
2807 PUT_CODE (cond, LEU);
2808 value = 2;
2809 break;
2810
2811 case LT:
2812 PUT_CODE (cond, LTU);
2813 value = 2;
2814 break;
2815
2816 case GT:
2817 PUT_CODE (cond, GTU);
2818 value = 2;
2819 break;
2820
2821 case GE:
2822 PUT_CODE (cond, GEU);
2823 value = 2;
2824 break;
2825
2826 default:
2827 break;
2828 }
2829
2830 return value;
2831 }
2832 #endif
2833 \f
2834 /* Report inconsistency between the assembler template and the operands.
2835 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2836
2837 void
2838 output_operand_lossage (const char *msgid, ...)
2839 {
2840 char *fmt_string;
2841 char *new_message;
2842 const char *pfx_str;
2843 va_list ap;
2844
2845 va_start (ap, msgid);
2846
2847 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2848 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2849 vasprintf (&new_message, fmt_string, ap);
2850
2851 if (this_is_asm_operands)
2852 error_for_asm (this_is_asm_operands, "%s", new_message);
2853 else
2854 internal_error ("%s", new_message);
2855
2856 free (fmt_string);
2857 free (new_message);
2858 va_end (ap);
2859 }
2860 \f
2861 /* Output of assembler code from a template, and its subroutines. */
2862
2863 /* Annotate the assembly with a comment describing the pattern and
2864 alternative used. */
2865
2866 static void
2867 output_asm_name (void)
2868 {
2869 if (debug_insn)
2870 {
2871 int num = INSN_CODE (debug_insn);
2872 fprintf (asm_out_file, "\t%s %d\t%s",
2873 ASM_COMMENT_START, INSN_UID (debug_insn),
2874 insn_data[num].name);
2875 if (insn_data[num].n_alternatives > 1)
2876 fprintf (asm_out_file, "/%d", which_alternative + 1);
2877 #ifdef HAVE_ATTR_length
2878 fprintf (asm_out_file, "\t[length = %d]",
2879 get_attr_length (debug_insn));
2880 #endif
2881 /* Clear this so only the first assembler insn
2882 of any rtl insn will get the special comment for -dp. */
2883 debug_insn = 0;
2884 }
2885 }
2886
2887 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2888 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2889 corresponds to the address of the object and 0 if to the object. */
2890
2891 static tree
2892 get_mem_expr_from_op (rtx op, int *paddressp)
2893 {
2894 tree expr;
2895 int inner_addressp;
2896
2897 *paddressp = 0;
2898
2899 if (REG_P (op))
2900 return REG_EXPR (op);
2901 else if (!MEM_P (op))
2902 return 0;
2903
2904 if (MEM_EXPR (op) != 0)
2905 return MEM_EXPR (op);
2906
2907 /* Otherwise we have an address, so indicate it and look at the address. */
2908 *paddressp = 1;
2909 op = XEXP (op, 0);
2910
2911 /* First check if we have a decl for the address, then look at the right side
2912 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2913 But don't allow the address to itself be indirect. */
2914 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2915 return expr;
2916 else if (GET_CODE (op) == PLUS
2917 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2918 return expr;
2919
2920 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2921 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2922 op = XEXP (op, 0);
2923
2924 expr = get_mem_expr_from_op (op, &inner_addressp);
2925 return inner_addressp ? 0 : expr;
2926 }
2927
2928 /* Output operand names for assembler instructions. OPERANDS is the
2929 operand vector, OPORDER is the order to write the operands, and NOPS
2930 is the number of operands to write. */
2931
2932 static void
2933 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2934 {
2935 int wrote = 0;
2936 int i;
2937
2938 for (i = 0; i < nops; i++)
2939 {
2940 int addressp;
2941 rtx op = operands[oporder[i]];
2942 tree expr = get_mem_expr_from_op (op, &addressp);
2943
2944 fprintf (asm_out_file, "%c%s",
2945 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2946 wrote = 1;
2947 if (expr)
2948 {
2949 fprintf (asm_out_file, "%s",
2950 addressp ? "*" : "");
2951 print_mem_expr (asm_out_file, expr);
2952 wrote = 1;
2953 }
2954 else if (REG_P (op) && ORIGINAL_REGNO (op)
2955 && ORIGINAL_REGNO (op) != REGNO (op))
2956 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2957 }
2958 }
2959
2960 /* Output text from TEMPLATE to the assembler output file,
2961 obeying %-directions to substitute operands taken from
2962 the vector OPERANDS.
2963
2964 %N (for N a digit) means print operand N in usual manner.
2965 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2966 and print the label name with no punctuation.
2967 %cN means require operand N to be a constant
2968 and print the constant expression with no punctuation.
2969 %aN means expect operand N to be a memory address
2970 (not a memory reference!) and print a reference
2971 to that address.
2972 %nN means expect operand N to be a constant
2973 and print a constant expression for minus the value
2974 of the operand, with no other punctuation. */
2975
2976 void
2977 output_asm_insn (const char *template, rtx *operands)
2978 {
2979 const char *p;
2980 int c;
2981 #ifdef ASSEMBLER_DIALECT
2982 int dialect = 0;
2983 #endif
2984 int oporder[MAX_RECOG_OPERANDS];
2985 char opoutput[MAX_RECOG_OPERANDS];
2986 int ops = 0;
2987
2988 /* An insn may return a null string template
2989 in a case where no assembler code is needed. */
2990 if (*template == 0)
2991 return;
2992
2993 memset (opoutput, 0, sizeof opoutput);
2994 p = template;
2995 putc ('\t', asm_out_file);
2996
2997 #ifdef ASM_OUTPUT_OPCODE
2998 ASM_OUTPUT_OPCODE (asm_out_file, p);
2999 #endif
3000
3001 while ((c = *p++))
3002 switch (c)
3003 {
3004 case '\n':
3005 if (flag_verbose_asm)
3006 output_asm_operand_names (operands, oporder, ops);
3007 if (flag_print_asm_name)
3008 output_asm_name ();
3009
3010 ops = 0;
3011 memset (opoutput, 0, sizeof opoutput);
3012
3013 putc (c, asm_out_file);
3014 #ifdef ASM_OUTPUT_OPCODE
3015 while ((c = *p) == '\t')
3016 {
3017 putc (c, asm_out_file);
3018 p++;
3019 }
3020 ASM_OUTPUT_OPCODE (asm_out_file, p);
3021 #endif
3022 break;
3023
3024 #ifdef ASSEMBLER_DIALECT
3025 case '{':
3026 {
3027 int i;
3028
3029 if (dialect)
3030 output_operand_lossage ("nested assembly dialect alternatives");
3031 else
3032 dialect = 1;
3033
3034 /* If we want the first dialect, do nothing. Otherwise, skip
3035 DIALECT_NUMBER of strings ending with '|'. */
3036 for (i = 0; i < dialect_number; i++)
3037 {
3038 while (*p && *p != '}' && *p++ != '|')
3039 ;
3040 if (*p == '}')
3041 break;
3042 if (*p == '|')
3043 p++;
3044 }
3045
3046 if (*p == '\0')
3047 output_operand_lossage ("unterminated assembly dialect alternative");
3048 }
3049 break;
3050
3051 case '|':
3052 if (dialect)
3053 {
3054 /* Skip to close brace. */
3055 do
3056 {
3057 if (*p == '\0')
3058 {
3059 output_operand_lossage ("unterminated assembly dialect alternative");
3060 break;
3061 }
3062 }
3063 while (*p++ != '}');
3064 dialect = 0;
3065 }
3066 else
3067 putc (c, asm_out_file);
3068 break;
3069
3070 case '}':
3071 if (! dialect)
3072 putc (c, asm_out_file);
3073 dialect = 0;
3074 break;
3075 #endif
3076
3077 case '%':
3078 /* %% outputs a single %. */
3079 if (*p == '%')
3080 {
3081 p++;
3082 putc (c, asm_out_file);
3083 }
3084 /* %= outputs a number which is unique to each insn in the entire
3085 compilation. This is useful for making local labels that are
3086 referred to more than once in a given insn. */
3087 else if (*p == '=')
3088 {
3089 p++;
3090 fprintf (asm_out_file, "%d", insn_counter);
3091 }
3092 /* % followed by a letter and some digits
3093 outputs an operand in a special way depending on the letter.
3094 Letters `acln' are implemented directly.
3095 Other letters are passed to `output_operand' so that
3096 the PRINT_OPERAND macro can define them. */
3097 else if (ISALPHA (*p))
3098 {
3099 int letter = *p++;
3100 c = atoi (p);
3101
3102 if (! ISDIGIT (*p))
3103 output_operand_lossage ("operand number missing after %%-letter");
3104 else if (this_is_asm_operands
3105 && (c < 0 || (unsigned int) c >= insn_noperands))
3106 output_operand_lossage ("operand number out of range");
3107 else if (letter == 'l')
3108 output_asm_label (operands[c]);
3109 else if (letter == 'a')
3110 output_address (operands[c]);
3111 else if (letter == 'c')
3112 {
3113 if (CONSTANT_ADDRESS_P (operands[c]))
3114 output_addr_const (asm_out_file, operands[c]);
3115 else
3116 output_operand (operands[c], 'c');
3117 }
3118 else if (letter == 'n')
3119 {
3120 if (GET_CODE (operands[c]) == CONST_INT)
3121 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3122 - INTVAL (operands[c]));
3123 else
3124 {
3125 putc ('-', asm_out_file);
3126 output_addr_const (asm_out_file, operands[c]);
3127 }
3128 }
3129 else
3130 output_operand (operands[c], letter);
3131
3132 if (!opoutput[c])
3133 oporder[ops++] = c;
3134 opoutput[c] = 1;
3135
3136 while (ISDIGIT (c = *p))
3137 p++;
3138 }
3139 /* % followed by a digit outputs an operand the default way. */
3140 else if (ISDIGIT (*p))
3141 {
3142 c = atoi (p);
3143 if (this_is_asm_operands
3144 && (c < 0 || (unsigned int) c >= insn_noperands))
3145 output_operand_lossage ("operand number out of range");
3146 else
3147 output_operand (operands[c], 0);
3148
3149 if (!opoutput[c])
3150 oporder[ops++] = c;
3151 opoutput[c] = 1;
3152
3153 while (ISDIGIT (c = *p))
3154 p++;
3155 }
3156 /* % followed by punctuation: output something for that
3157 punctuation character alone, with no operand.
3158 The PRINT_OPERAND macro decides what is actually done. */
3159 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3160 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3161 output_operand (NULL_RTX, *p++);
3162 #endif
3163 else
3164 output_operand_lossage ("invalid %%-code");
3165 break;
3166
3167 default:
3168 putc (c, asm_out_file);
3169 }
3170
3171 /* Write out the variable names for operands, if we know them. */
3172 if (flag_verbose_asm)
3173 output_asm_operand_names (operands, oporder, ops);
3174 if (flag_print_asm_name)
3175 output_asm_name ();
3176
3177 putc ('\n', asm_out_file);
3178 }
3179 \f
3180 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3181
3182 void
3183 output_asm_label (rtx x)
3184 {
3185 char buf[256];
3186
3187 if (GET_CODE (x) == LABEL_REF)
3188 x = XEXP (x, 0);
3189 if (LABEL_P (x)
3190 || (NOTE_P (x)
3191 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3192 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3193 else
3194 output_operand_lossage ("`%%l' operand isn't a label");
3195
3196 assemble_name (asm_out_file, buf);
3197 }
3198
3199 /* Print operand X using machine-dependent assembler syntax.
3200 The macro PRINT_OPERAND is defined just to control this function.
3201 CODE is a non-digit that preceded the operand-number in the % spec,
3202 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3203 between the % and the digits.
3204 When CODE is a non-letter, X is 0.
3205
3206 The meanings of the letters are machine-dependent and controlled
3207 by PRINT_OPERAND. */
3208
3209 static void
3210 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3211 {
3212 if (x && GET_CODE (x) == SUBREG)
3213 x = alter_subreg (&x);
3214
3215 /* If X is a pseudo-register, abort now rather than writing trash to the
3216 assembler file. */
3217
3218 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3219 abort ();
3220
3221 PRINT_OPERAND (asm_out_file, x, code);
3222 }
3223
3224 /* Print a memory reference operand for address X
3225 using machine-dependent assembler syntax.
3226 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3227
3228 void
3229 output_address (rtx x)
3230 {
3231 walk_alter_subreg (&x);
3232 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3233 }
3234 \f
3235 /* Print an integer constant expression in assembler syntax.
3236 Addition and subtraction are the only arithmetic
3237 that may appear in these expressions. */
3238
3239 void
3240 output_addr_const (FILE *file, rtx x)
3241 {
3242 char buf[256];
3243
3244 restart:
3245 switch (GET_CODE (x))
3246 {
3247 case PC:
3248 putc ('.', file);
3249 break;
3250
3251 case SYMBOL_REF:
3252 if (SYMBOL_REF_DECL (x))
3253 mark_decl_referenced (SYMBOL_REF_DECL (x));
3254 #ifdef ASM_OUTPUT_SYMBOL_REF
3255 ASM_OUTPUT_SYMBOL_REF (file, x);
3256 #else
3257 assemble_name (file, XSTR (x, 0));
3258 #endif
3259 break;
3260
3261 case LABEL_REF:
3262 x = XEXP (x, 0);
3263 /* Fall through. */
3264 case CODE_LABEL:
3265 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3266 #ifdef ASM_OUTPUT_LABEL_REF
3267 ASM_OUTPUT_LABEL_REF (file, buf);
3268 #else
3269 assemble_name (file, buf);
3270 #endif
3271 break;
3272
3273 case CONST_INT:
3274 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3275 break;
3276
3277 case CONST:
3278 /* This used to output parentheses around the expression,
3279 but that does not work on the 386 (either ATT or BSD assembler). */
3280 output_addr_const (file, XEXP (x, 0));
3281 break;
3282
3283 case CONST_DOUBLE:
3284 if (GET_MODE (x) == VOIDmode)
3285 {
3286 /* We can use %d if the number is one word and positive. */
3287 if (CONST_DOUBLE_HIGH (x))
3288 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3289 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3290 else if (CONST_DOUBLE_LOW (x) < 0)
3291 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3292 else
3293 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3294 }
3295 else
3296 /* We can't handle floating point constants;
3297 PRINT_OPERAND must handle them. */
3298 output_operand_lossage ("floating constant misused");
3299 break;
3300
3301 case PLUS:
3302 /* Some assemblers need integer constants to appear last (eg masm). */
3303 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3304 {
3305 output_addr_const (file, XEXP (x, 1));
3306 if (INTVAL (XEXP (x, 0)) >= 0)
3307 fprintf (file, "+");
3308 output_addr_const (file, XEXP (x, 0));
3309 }
3310 else
3311 {
3312 output_addr_const (file, XEXP (x, 0));
3313 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3314 || INTVAL (XEXP (x, 1)) >= 0)
3315 fprintf (file, "+");
3316 output_addr_const (file, XEXP (x, 1));
3317 }
3318 break;
3319
3320 case MINUS:
3321 /* Avoid outputting things like x-x or x+5-x,
3322 since some assemblers can't handle that. */
3323 x = simplify_subtraction (x);
3324 if (GET_CODE (x) != MINUS)
3325 goto restart;
3326
3327 output_addr_const (file, XEXP (x, 0));
3328 fprintf (file, "-");
3329 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3330 || GET_CODE (XEXP (x, 1)) == PC
3331 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3332 output_addr_const (file, XEXP (x, 1));
3333 else
3334 {
3335 fputs (targetm.asm_out.open_paren, file);
3336 output_addr_const (file, XEXP (x, 1));
3337 fputs (targetm.asm_out.close_paren, file);
3338 }
3339 break;
3340
3341 case ZERO_EXTEND:
3342 case SIGN_EXTEND:
3343 case SUBREG:
3344 output_addr_const (file, XEXP (x, 0));
3345 break;
3346
3347 default:
3348 #ifdef OUTPUT_ADDR_CONST_EXTRA
3349 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3350 break;
3351
3352 fail:
3353 #endif
3354 output_operand_lossage ("invalid expression as operand");
3355 }
3356 }
3357 \f
3358 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3359 %R prints the value of REGISTER_PREFIX.
3360 %L prints the value of LOCAL_LABEL_PREFIX.
3361 %U prints the value of USER_LABEL_PREFIX.
3362 %I prints the value of IMMEDIATE_PREFIX.
3363 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3364 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3365
3366 We handle alternate assembler dialects here, just like output_asm_insn. */
3367
3368 void
3369 asm_fprintf (FILE *file, const char *p, ...)
3370 {
3371 char buf[10];
3372 char *q, c;
3373 va_list argptr;
3374
3375 va_start (argptr, p);
3376
3377 buf[0] = '%';
3378
3379 while ((c = *p++))
3380 switch (c)
3381 {
3382 #ifdef ASSEMBLER_DIALECT
3383 case '{':
3384 {
3385 int i;
3386
3387 /* If we want the first dialect, do nothing. Otherwise, skip
3388 DIALECT_NUMBER of strings ending with '|'. */
3389 for (i = 0; i < dialect_number; i++)
3390 {
3391 while (*p && *p++ != '|')
3392 ;
3393
3394 if (*p == '|')
3395 p++;
3396 }
3397 }
3398 break;
3399
3400 case '|':
3401 /* Skip to close brace. */
3402 while (*p && *p++ != '}')
3403 ;
3404 break;
3405
3406 case '}':
3407 break;
3408 #endif
3409
3410 case '%':
3411 c = *p++;
3412 q = &buf[1];
3413 while (strchr ("-+ #0", c))
3414 {
3415 *q++ = c;
3416 c = *p++;
3417 }
3418 while (ISDIGIT (c) || c == '.')
3419 {
3420 *q++ = c;
3421 c = *p++;
3422 }
3423 switch (c)
3424 {
3425 case '%':
3426 putc ('%', file);
3427 break;
3428
3429 case 'd': case 'i': case 'u':
3430 case 'x': case 'X': case 'o':
3431 case 'c':
3432 *q++ = c;
3433 *q = 0;
3434 fprintf (file, buf, va_arg (argptr, int));
3435 break;
3436
3437 case 'w':
3438 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3439 'o' cases, but we do not check for those cases. It
3440 means that the value is a HOST_WIDE_INT, which may be
3441 either `long' or `long long'. */
3442 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3443 q += strlen (HOST_WIDE_INT_PRINT);
3444 *q++ = *p++;
3445 *q = 0;
3446 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3447 break;
3448
3449 case 'l':
3450 *q++ = c;
3451 #ifdef HAVE_LONG_LONG
3452 if (*p == 'l')
3453 {
3454 *q++ = *p++;
3455 *q++ = *p++;
3456 *q = 0;
3457 fprintf (file, buf, va_arg (argptr, long long));
3458 }
3459 else
3460 #endif
3461 {
3462 *q++ = *p++;
3463 *q = 0;
3464 fprintf (file, buf, va_arg (argptr, long));
3465 }
3466
3467 break;
3468
3469 case 's':
3470 *q++ = c;
3471 *q = 0;
3472 fprintf (file, buf, va_arg (argptr, char *));
3473 break;
3474
3475 case 'O':
3476 #ifdef ASM_OUTPUT_OPCODE
3477 ASM_OUTPUT_OPCODE (asm_out_file, p);
3478 #endif
3479 break;
3480
3481 case 'R':
3482 #ifdef REGISTER_PREFIX
3483 fprintf (file, "%s", REGISTER_PREFIX);
3484 #endif
3485 break;
3486
3487 case 'I':
3488 #ifdef IMMEDIATE_PREFIX
3489 fprintf (file, "%s", IMMEDIATE_PREFIX);
3490 #endif
3491 break;
3492
3493 case 'L':
3494 #ifdef LOCAL_LABEL_PREFIX
3495 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3496 #endif
3497 break;
3498
3499 case 'U':
3500 fputs (user_label_prefix, file);
3501 break;
3502
3503 #ifdef ASM_FPRINTF_EXTENSIONS
3504 /* Uppercase letters are reserved for general use by asm_fprintf
3505 and so are not available to target specific code. In order to
3506 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3507 they are defined here. As they get turned into real extensions
3508 to asm_fprintf they should be removed from this list. */
3509 case 'A': case 'B': case 'C': case 'D': case 'E':
3510 case 'F': case 'G': case 'H': case 'J': case 'K':
3511 case 'M': case 'N': case 'P': case 'Q': case 'S':
3512 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3513 break;
3514
3515 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3516 #endif
3517 default:
3518 abort ();
3519 }
3520 break;
3521
3522 default:
3523 putc (c, file);
3524 }
3525 va_end (argptr);
3526 }
3527 \f
3528 /* Split up a CONST_DOUBLE or integer constant rtx
3529 into two rtx's for single words,
3530 storing in *FIRST the word that comes first in memory in the target
3531 and in *SECOND the other. */
3532
3533 void
3534 split_double (rtx value, rtx *first, rtx *second)
3535 {
3536 if (GET_CODE (value) == CONST_INT)
3537 {
3538 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3539 {
3540 /* In this case the CONST_INT holds both target words.
3541 Extract the bits from it into two word-sized pieces.
3542 Sign extend each half to HOST_WIDE_INT. */
3543 unsigned HOST_WIDE_INT low, high;
3544 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3545
3546 /* Set sign_bit to the most significant bit of a word. */
3547 sign_bit = 1;
3548 sign_bit <<= BITS_PER_WORD - 1;
3549
3550 /* Set mask so that all bits of the word are set. We could
3551 have used 1 << BITS_PER_WORD instead of basing the
3552 calculation on sign_bit. However, on machines where
3553 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3554 compiler warning, even though the code would never be
3555 executed. */
3556 mask = sign_bit << 1;
3557 mask--;
3558
3559 /* Set sign_extend as any remaining bits. */
3560 sign_extend = ~mask;
3561
3562 /* Pick the lower word and sign-extend it. */
3563 low = INTVAL (value);
3564 low &= mask;
3565 if (low & sign_bit)
3566 low |= sign_extend;
3567
3568 /* Pick the higher word, shifted to the least significant
3569 bits, and sign-extend it. */
3570 high = INTVAL (value);
3571 high >>= BITS_PER_WORD - 1;
3572 high >>= 1;
3573 high &= mask;
3574 if (high & sign_bit)
3575 high |= sign_extend;
3576
3577 /* Store the words in the target machine order. */
3578 if (WORDS_BIG_ENDIAN)
3579 {
3580 *first = GEN_INT (high);
3581 *second = GEN_INT (low);
3582 }
3583 else
3584 {
3585 *first = GEN_INT (low);
3586 *second = GEN_INT (high);
3587 }
3588 }
3589 else
3590 {
3591 /* The rule for using CONST_INT for a wider mode
3592 is that we regard the value as signed.
3593 So sign-extend it. */
3594 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3595 if (WORDS_BIG_ENDIAN)
3596 {
3597 *first = high;
3598 *second = value;
3599 }
3600 else
3601 {
3602 *first = value;
3603 *second = high;
3604 }
3605 }
3606 }
3607 else if (GET_CODE (value) != CONST_DOUBLE)
3608 {
3609 if (WORDS_BIG_ENDIAN)
3610 {
3611 *first = const0_rtx;
3612 *second = value;
3613 }
3614 else
3615 {
3616 *first = value;
3617 *second = const0_rtx;
3618 }
3619 }
3620 else if (GET_MODE (value) == VOIDmode
3621 /* This is the old way we did CONST_DOUBLE integers. */
3622 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3623 {
3624 /* In an integer, the words are defined as most and least significant.
3625 So order them by the target's convention. */
3626 if (WORDS_BIG_ENDIAN)
3627 {
3628 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3629 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3630 }
3631 else
3632 {
3633 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3634 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3635 }
3636 }
3637 else
3638 {
3639 REAL_VALUE_TYPE r;
3640 long l[2];
3641 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3642
3643 /* Note, this converts the REAL_VALUE_TYPE to the target's
3644 format, splits up the floating point double and outputs
3645 exactly 32 bits of it into each of l[0] and l[1] --
3646 not necessarily BITS_PER_WORD bits. */
3647 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3648
3649 /* If 32 bits is an entire word for the target, but not for the host,
3650 then sign-extend on the host so that the number will look the same
3651 way on the host that it would on the target. See for instance
3652 simplify_unary_operation. The #if is needed to avoid compiler
3653 warnings. */
3654
3655 #if HOST_BITS_PER_LONG > 32
3656 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3657 {
3658 if (l[0] & ((long) 1 << 31))
3659 l[0] |= ((long) (-1) << 32);
3660 if (l[1] & ((long) 1 << 31))
3661 l[1] |= ((long) (-1) << 32);
3662 }
3663 #endif
3664
3665 *first = GEN_INT (l[0]);
3666 *second = GEN_INT (l[1]);
3667 }
3668 }
3669 \f
3670 /* Return nonzero if this function has no function calls. */
3671
3672 int
3673 leaf_function_p (void)
3674 {
3675 rtx insn;
3676 rtx link;
3677
3678 if (current_function_profile || profile_arc_flag)
3679 return 0;
3680
3681 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3682 {
3683 if (CALL_P (insn)
3684 && ! SIBLING_CALL_P (insn))
3685 return 0;
3686 if (NONJUMP_INSN_P (insn)
3687 && GET_CODE (PATTERN (insn)) == SEQUENCE
3688 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3689 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3690 return 0;
3691 }
3692 for (link = current_function_epilogue_delay_list;
3693 link;
3694 link = XEXP (link, 1))
3695 {
3696 insn = XEXP (link, 0);
3697
3698 if (CALL_P (insn)
3699 && ! SIBLING_CALL_P (insn))
3700 return 0;
3701 if (NONJUMP_INSN_P (insn)
3702 && GET_CODE (PATTERN (insn)) == SEQUENCE
3703 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3704 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3705 return 0;
3706 }
3707
3708 return 1;
3709 }
3710
3711 /* Return 1 if branch is a forward branch.
3712 Uses insn_shuid array, so it works only in the final pass. May be used by
3713 output templates to customary add branch prediction hints.
3714 */
3715 int
3716 final_forward_branch_p (rtx insn)
3717 {
3718 int insn_id, label_id;
3719 if (!uid_shuid)
3720 abort ();
3721 insn_id = INSN_SHUID (insn);
3722 label_id = INSN_SHUID (JUMP_LABEL (insn));
3723 /* We've hit some insns that does not have id information available. */
3724 if (!insn_id || !label_id)
3725 abort ();
3726 return insn_id < label_id;
3727 }
3728
3729 /* On some machines, a function with no call insns
3730 can run faster if it doesn't create its own register window.
3731 When output, the leaf function should use only the "output"
3732 registers. Ordinarily, the function would be compiled to use
3733 the "input" registers to find its arguments; it is a candidate
3734 for leaf treatment if it uses only the "input" registers.
3735 Leaf function treatment means renumbering so the function
3736 uses the "output" registers instead. */
3737
3738 #ifdef LEAF_REGISTERS
3739
3740 /* Return 1 if this function uses only the registers that can be
3741 safely renumbered. */
3742
3743 int
3744 only_leaf_regs_used (void)
3745 {
3746 int i;
3747 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3748
3749 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3750 if ((regs_ever_live[i] || global_regs[i])
3751 && ! permitted_reg_in_leaf_functions[i])
3752 return 0;
3753
3754 if (current_function_uses_pic_offset_table
3755 && pic_offset_table_rtx != 0
3756 && REG_P (pic_offset_table_rtx)
3757 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3758 return 0;
3759
3760 return 1;
3761 }
3762
3763 /* Scan all instructions and renumber all registers into those
3764 available in leaf functions. */
3765
3766 static void
3767 leaf_renumber_regs (rtx first)
3768 {
3769 rtx insn;
3770
3771 /* Renumber only the actual patterns.
3772 The reg-notes can contain frame pointer refs,
3773 and renumbering them could crash, and should not be needed. */
3774 for (insn = first; insn; insn = NEXT_INSN (insn))
3775 if (INSN_P (insn))
3776 leaf_renumber_regs_insn (PATTERN (insn));
3777 for (insn = current_function_epilogue_delay_list;
3778 insn;
3779 insn = XEXP (insn, 1))
3780 if (INSN_P (XEXP (insn, 0)))
3781 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3782 }
3783
3784 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3785 available in leaf functions. */
3786
3787 void
3788 leaf_renumber_regs_insn (rtx in_rtx)
3789 {
3790 int i, j;
3791 const char *format_ptr;
3792
3793 if (in_rtx == 0)
3794 return;
3795
3796 /* Renumber all input-registers into output-registers.
3797 renumbered_regs would be 1 for an output-register;
3798 they */
3799
3800 if (REG_P (in_rtx))
3801 {
3802 int newreg;
3803
3804 /* Don't renumber the same reg twice. */
3805 if (in_rtx->used)
3806 return;
3807
3808 newreg = REGNO (in_rtx);
3809 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3810 to reach here as part of a REG_NOTE. */
3811 if (newreg >= FIRST_PSEUDO_REGISTER)
3812 {
3813 in_rtx->used = 1;
3814 return;
3815 }
3816 newreg = LEAF_REG_REMAP (newreg);
3817 if (newreg < 0)
3818 abort ();
3819 regs_ever_live[REGNO (in_rtx)] = 0;
3820 regs_ever_live[newreg] = 1;
3821 REGNO (in_rtx) = newreg;
3822 in_rtx->used = 1;
3823 }
3824
3825 if (INSN_P (in_rtx))
3826 {
3827 /* Inside a SEQUENCE, we find insns.
3828 Renumber just the patterns of these insns,
3829 just as we do for the top-level insns. */
3830 leaf_renumber_regs_insn (PATTERN (in_rtx));
3831 return;
3832 }
3833
3834 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3835
3836 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3837 switch (*format_ptr++)
3838 {
3839 case 'e':
3840 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3841 break;
3842
3843 case 'E':
3844 if (NULL != XVEC (in_rtx, i))
3845 {
3846 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3847 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3848 }
3849 break;
3850
3851 case 'S':
3852 case 's':
3853 case '0':
3854 case 'i':
3855 case 'w':
3856 case 'n':
3857 case 'u':
3858 break;
3859
3860 default:
3861 abort ();
3862 }
3863 }
3864 #endif
3865
3866
3867 /* When -gused is used, emit debug info for only used symbols. But in
3868 addition to the standard intercepted debug_hooks there are some direct
3869 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3870 Those routines may also be called from a higher level intercepted routine. So
3871 to prevent recording data for an inner call to one of these for an intercept,
3872 we maintain an intercept nesting counter (debug_nesting). We only save the
3873 intercepted arguments if the nesting is 1. */
3874 int debug_nesting = 0;
3875
3876 static tree *symbol_queue;
3877 int symbol_queue_index = 0;
3878 static int symbol_queue_size = 0;
3879
3880 /* Generate the symbols for any queued up type symbols we encountered
3881 while generating the type info for some originally used symbol.
3882 This might generate additional entries in the queue. Only when
3883 the nesting depth goes to 0 is this routine called. */
3884
3885 void
3886 debug_flush_symbol_queue (void)
3887 {
3888 int i;
3889
3890 /* Make sure that additionally queued items are not flushed
3891 prematurely. */
3892
3893 ++debug_nesting;
3894
3895 for (i = 0; i < symbol_queue_index; ++i)
3896 {
3897 /* If we pushed queued symbols then such symbols are must be
3898 output no matter what anyone else says. Specifically,
3899 we need to make sure dbxout_symbol() thinks the symbol was
3900 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3901 which may be set for outside reasons. */
3902 int saved_tree_used = TREE_USED (symbol_queue[i]);
3903 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3904 TREE_USED (symbol_queue[i]) = 1;
3905 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3906
3907 #ifdef DBX_DEBUGGING_INFO
3908 dbxout_symbol (symbol_queue[i], 0);
3909 #endif
3910
3911 TREE_USED (symbol_queue[i]) = saved_tree_used;
3912 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3913 }
3914
3915 symbol_queue_index = 0;
3916 --debug_nesting;
3917 }
3918
3919 /* Queue a type symbol needed as part of the definition of a decl
3920 symbol. These symbols are generated when debug_flush_symbol_queue()
3921 is called. */
3922
3923 void
3924 debug_queue_symbol (tree decl)
3925 {
3926 if (symbol_queue_index >= symbol_queue_size)
3927 {
3928 symbol_queue_size += 10;
3929 symbol_queue = xrealloc (symbol_queue,
3930 symbol_queue_size * sizeof (tree));
3931 }
3932
3933 symbol_queue[symbol_queue_index++] = decl;
3934 }
3935
3936 /* Free symbol queue. */
3937 void
3938 debug_free_queue (void)
3939 {
3940 if (symbol_queue)
3941 {
3942 free (symbol_queue);
3943 symbol_queue = NULL;
3944 symbol_queue_size = 0;
3945 }
3946 }