loop.c (emit_prefetch_instructions): Properly place the address computation.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
226 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
227 static void output_operand PARAMS ((rtx, int));
228 #ifdef LEAF_REGISTERS
229 static void leaf_renumber_regs PARAMS ((rtx));
230 #endif
231 #ifdef HAVE_cc0
232 static int alter_cond PARAMS ((rtx));
233 #endif
234 #ifndef ADDR_VEC_ALIGN
235 static int final_addr_vec_align PARAMS ((rtx));
236 #endif
237 #ifdef HAVE_ATTR_length
238 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
239 #endif
240 \f
241 /* Initialize data in final at the beginning of a compilation. */
242
243 void
244 init_final (filename)
245 const char *filename ATTRIBUTE_UNUSED;
246 {
247 app_on = 0;
248 final_sequence = 0;
249
250 #ifdef ASSEMBLER_DIALECT
251 dialect_number = ASSEMBLER_DIALECT;
252 #endif
253 }
254
255 /* Called at end of source file,
256 to output the arc-profiling table for this entire compilation. */
257
258 void
259 end_final (filename)
260 const char *filename;
261 {
262 if (profile_arc_flag && profile_info.count_instrumented_edges)
263 {
264 char name[20];
265 tree string_type, string_cst;
266 tree structure_decl, structure_value, structure_pointer_type;
267 tree field_decl, decl_chain, value_chain;
268 tree sizeof_field_value, domain_type;
269
270 /* Build types. */
271 string_type = build_pointer_type (char_type_node);
272
273 /* Libgcc2 bb structure. */
274 structure_decl = make_node (RECORD_TYPE);
275 structure_pointer_type = build_pointer_type (structure_decl);
276
277 /* Output the main header, of 7 words:
278 0: 1 if this file is initialized, else 0.
279 1: address of file name (LPBX1).
280 2: address of table of counts (LPBX2).
281 3: number of counts in the table.
282 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
283
284 The following are GNU extensions:
285
286 5: Number of bytes in this header.
287 6: address of table of function checksums (LPBX7). */
288
289 /* The zero word. */
290 decl_chain =
291 build_decl (FIELD_DECL, get_identifier ("zero_word"),
292 long_integer_type_node);
293 value_chain = build_tree_list (decl_chain,
294 convert (long_integer_type_node,
295 integer_zero_node));
296
297 /* Address of filename. */
298 {
299 char *cwd, *da_filename;
300 int da_filename_len;
301
302 field_decl =
303 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
304 TREE_CHAIN (field_decl) = decl_chain;
305 decl_chain = field_decl;
306
307 cwd = getpwd ();
308 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
309 da_filename = (char *) alloca (da_filename_len);
310 strcpy (da_filename, cwd);
311 strcat (da_filename, "/");
312 strcat (da_filename, filename);
313 strip_off_ending (da_filename, da_filename_len - 3);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
323 }
324
325 /* Table of counts. */
326 {
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
337
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
343
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
351
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
356 }
357
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
364
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
376
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
378
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
386
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
389
390 /* struct bb_function []. */
391 {
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
402
403 bb_fn_struct_type = make_node (RECORD_TYPE);
404
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
407
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
412
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
416
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
418
419 num_nodes = 0;
420
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
423
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
426
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
432
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
437
438 for (item = functions_head; item != 0; item = item->next)
439 {
440 size_t name_len;
441
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
452
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
462
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
469 }
470
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
475
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
480
481
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
497 }
498
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
502
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
511
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
516
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
519 }
520 }
521
522 /* Default target function prologue and epilogue assembler output.
523
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
530 {
531 }
532
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
537 {
538 }
539
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
542
543 void
544 app_enable ()
545 {
546 if (! app_on)
547 {
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
550 }
551 }
552
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
555
556 void
557 app_disable ()
558 {
559 if (app_on)
560 {
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
563 }
564 }
565 \f
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
569
570 #ifdef DELAY_SLOTS
571 int
572 dbr_sequence_length ()
573 {
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
578 }
579 #endif
580 \f
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
583
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
586
587 static int *insn_lengths;
588
589 #ifdef HAVE_ATTR_length
590 varray_type insn_addresses_;
591 #endif
592
593 /* Max uid for which the above arrays are valid. */
594 static int insn_lengths_max_uid;
595
596 /* Address of insn being processed. Used by `insn_current_length'. */
597 int insn_current_address;
598
599 /* Address of insn being processed in previous iteration. */
600 int insn_last_address;
601
602 /* known invariant alignment of insn being processed. */
603 int insn_current_align;
604
605 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
606 gives the next following alignment insn that increases the known
607 alignment, or NULL_RTX if there is no such insn.
608 For any alignment obtained this way, we can again index uid_align with
609 its uid to obtain the next following align that in turn increases the
610 alignment, till we reach NULL_RTX; the sequence obtained this way
611 for each insn we'll call the alignment chain of this insn in the following
612 comments. */
613
614 struct label_alignment
615 {
616 short alignment;
617 short max_skip;
618 };
619
620 static rtx *uid_align;
621 static int *uid_shuid;
622 static struct label_alignment *label_align;
623
624 /* Indicate that branch shortening hasn't yet been done. */
625
626 void
627 init_insn_lengths ()
628 {
629 if (uid_shuid)
630 {
631 free (uid_shuid);
632 uid_shuid = 0;
633 }
634 if (insn_lengths)
635 {
636 free (insn_lengths);
637 insn_lengths = 0;
638 insn_lengths_max_uid = 0;
639 }
640 #ifdef HAVE_ATTR_length
641 INSN_ADDRESSES_FREE ();
642 #endif
643 if (uid_align)
644 {
645 free (uid_align);
646 uid_align = 0;
647 }
648 }
649
650 /* Obtain the current length of an insn. If branch shortening has been done,
651 get its actual length. Otherwise, get its maximum length. */
652
653 int
654 get_attr_length (insn)
655 rtx insn ATTRIBUTE_UNUSED;
656 {
657 #ifdef HAVE_ATTR_length
658 rtx body;
659 int i;
660 int length = 0;
661
662 if (insn_lengths_max_uid > INSN_UID (insn))
663 return insn_lengths[INSN_UID (insn)];
664 else
665 switch (GET_CODE (insn))
666 {
667 case NOTE:
668 case BARRIER:
669 case CODE_LABEL:
670 return 0;
671
672 case CALL_INSN:
673 length = insn_default_length (insn);
674 break;
675
676 case JUMP_INSN:
677 body = PATTERN (insn);
678 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
679 {
680 /* Alignment is machine-dependent and should be handled by
681 ADDR_VEC_ALIGN. */
682 }
683 else
684 length = insn_default_length (insn);
685 break;
686
687 case INSN:
688 body = PATTERN (insn);
689 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
690 return 0;
691
692 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
693 length = asm_insn_count (body) * insn_default_length (insn);
694 else if (GET_CODE (body) == SEQUENCE)
695 for (i = 0; i < XVECLEN (body, 0); i++)
696 length += get_attr_length (XVECEXP (body, 0, i));
697 else
698 length = insn_default_length (insn);
699 break;
700
701 default:
702 break;
703 }
704
705 #ifdef ADJUST_INSN_LENGTH
706 ADJUST_INSN_LENGTH (insn, length);
707 #endif
708 return length;
709 #else /* not HAVE_ATTR_length */
710 return 0;
711 #endif /* not HAVE_ATTR_length */
712 }
713 \f
714 /* Code to handle alignment inside shorten_branches. */
715
716 /* Here is an explanation how the algorithm in align_fuzz can give
717 proper results:
718
719 Call a sequence of instructions beginning with alignment point X
720 and continuing until the next alignment point `block X'. When `X'
721 is used in an expression, it means the alignment value of the
722 alignment point.
723
724 Call the distance between the start of the first insn of block X, and
725 the end of the last insn of block X `IX', for the `inner size of X'.
726 This is clearly the sum of the instruction lengths.
727
728 Likewise with the next alignment-delimited block following X, which we
729 shall call block Y.
730
731 Call the distance between the start of the first insn of block X, and
732 the start of the first insn of block Y `OX', for the `outer size of X'.
733
734 The estimated padding is then OX - IX.
735
736 OX can be safely estimated as
737
738 if (X >= Y)
739 OX = round_up(IX, Y)
740 else
741 OX = round_up(IX, X) + Y - X
742
743 Clearly est(IX) >= real(IX), because that only depends on the
744 instruction lengths, and those being overestimated is a given.
745
746 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
747 we needn't worry about that when thinking about OX.
748
749 When X >= Y, the alignment provided by Y adds no uncertainty factor
750 for branch ranges starting before X, so we can just round what we have.
751 But when X < Y, we don't know anything about the, so to speak,
752 `middle bits', so we have to assume the worst when aligning up from an
753 address mod X to one mod Y, which is Y - X. */
754
755 #ifndef LABEL_ALIGN
756 #define LABEL_ALIGN(LABEL) align_labels_log
757 #endif
758
759 #ifndef LABEL_ALIGN_MAX_SKIP
760 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
761 #endif
762
763 #ifndef LOOP_ALIGN
764 #define LOOP_ALIGN(LABEL) align_loops_log
765 #endif
766
767 #ifndef LOOP_ALIGN_MAX_SKIP
768 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
769 #endif
770
771 #ifndef LABEL_ALIGN_AFTER_BARRIER
772 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
773 #endif
774
775 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
776 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
777 #endif
778
779 #ifndef JUMP_ALIGN
780 #define JUMP_ALIGN(LABEL) align_jumps_log
781 #endif
782
783 #ifndef JUMP_ALIGN_MAX_SKIP
784 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
785 #endif
786
787 #ifndef ADDR_VEC_ALIGN
788 static int
789 final_addr_vec_align (addr_vec)
790 rtx addr_vec;
791 {
792 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
793
794 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
795 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
796 return exact_log2 (align);
797
798 }
799
800 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
801 #endif
802
803 #ifndef INSN_LENGTH_ALIGNMENT
804 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
805 #endif
806
807 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
808
809 static int min_labelno, max_labelno;
810
811 #define LABEL_TO_ALIGNMENT(LABEL) \
812 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
813
814 #define LABEL_TO_MAX_SKIP(LABEL) \
815 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
816
817 /* For the benefit of port specific code do this also as a function. */
818
819 int
820 label_to_alignment (label)
821 rtx label;
822 {
823 return LABEL_TO_ALIGNMENT (label);
824 }
825
826 #ifdef HAVE_ATTR_length
827 /* The differences in addresses
828 between a branch and its target might grow or shrink depending on
829 the alignment the start insn of the range (the branch for a forward
830 branch or the label for a backward branch) starts out on; if these
831 differences are used naively, they can even oscillate infinitely.
832 We therefore want to compute a 'worst case' address difference that
833 is independent of the alignment the start insn of the range end
834 up on, and that is at least as large as the actual difference.
835 The function align_fuzz calculates the amount we have to add to the
836 naively computed difference, by traversing the part of the alignment
837 chain of the start insn of the range that is in front of the end insn
838 of the range, and considering for each alignment the maximum amount
839 that it might contribute to a size increase.
840
841 For casesi tables, we also want to know worst case minimum amounts of
842 address difference, in case a machine description wants to introduce
843 some common offset that is added to all offsets in a table.
844 For this purpose, align_fuzz with a growth argument of 0 computes the
845 appropriate adjustment. */
846
847 /* Compute the maximum delta by which the difference of the addresses of
848 START and END might grow / shrink due to a different address for start
849 which changes the size of alignment insns between START and END.
850 KNOWN_ALIGN_LOG is the alignment known for START.
851 GROWTH should be ~0 if the objective is to compute potential code size
852 increase, and 0 if the objective is to compute potential shrink.
853 The return value is undefined for any other value of GROWTH. */
854
855 static int
856 align_fuzz (start, end, known_align_log, growth)
857 rtx start, end;
858 int known_align_log;
859 unsigned growth;
860 {
861 int uid = INSN_UID (start);
862 rtx align_label;
863 int known_align = 1 << known_align_log;
864 int end_shuid = INSN_SHUID (end);
865 int fuzz = 0;
866
867 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
868 {
869 int align_addr, new_align;
870
871 uid = INSN_UID (align_label);
872 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
873 if (uid_shuid[uid] > end_shuid)
874 break;
875 known_align_log = LABEL_TO_ALIGNMENT (align_label);
876 new_align = 1 << known_align_log;
877 if (new_align < known_align)
878 continue;
879 fuzz += (-align_addr ^ growth) & (new_align - known_align);
880 known_align = new_align;
881 }
882 return fuzz;
883 }
884
885 /* Compute a worst-case reference address of a branch so that it
886 can be safely used in the presence of aligned labels. Since the
887 size of the branch itself is unknown, the size of the branch is
888 not included in the range. I.e. for a forward branch, the reference
889 address is the end address of the branch as known from the previous
890 branch shortening pass, minus a value to account for possible size
891 increase due to alignment. For a backward branch, it is the start
892 address of the branch as known from the current pass, plus a value
893 to account for possible size increase due to alignment.
894 NB.: Therefore, the maximum offset allowed for backward branches needs
895 to exclude the branch size. */
896
897 int
898 insn_current_reference_address (branch)
899 rtx branch;
900 {
901 rtx dest, seq;
902 int seq_uid;
903
904 if (! INSN_ADDRESSES_SET_P ())
905 return 0;
906
907 seq = NEXT_INSN (PREV_INSN (branch));
908 seq_uid = INSN_UID (seq);
909 if (GET_CODE (branch) != JUMP_INSN)
910 /* This can happen for example on the PA; the objective is to know the
911 offset to address something in front of the start of the function.
912 Thus, we can treat it like a backward branch.
913 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
914 any alignment we'd encounter, so we skip the call to align_fuzz. */
915 return insn_current_address;
916 dest = JUMP_LABEL (branch);
917
918 /* BRANCH has no proper alignment chain set, so use SEQ.
919 BRANCH also has no INSN_SHUID. */
920 if (INSN_SHUID (seq) < INSN_SHUID (dest))
921 {
922 /* Forward branch. */
923 return (insn_last_address + insn_lengths[seq_uid]
924 - align_fuzz (seq, dest, length_unit_log, ~0));
925 }
926 else
927 {
928 /* Backward branch. */
929 return (insn_current_address
930 + align_fuzz (dest, seq, length_unit_log, ~0));
931 }
932 }
933 #endif /* HAVE_ATTR_length */
934 \f
935 void
936 compute_alignments ()
937 {
938 int log, max_skip, max_log;
939 basic_block bb;
940
941 if (label_align)
942 {
943 free (label_align);
944 label_align = 0;
945 }
946
947 max_labelno = max_label_num ();
948 min_labelno = get_first_label_num ();
949 label_align = (struct label_alignment *)
950 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
951
952 /* If not optimizing or optimizing for size, don't assign any alignments. */
953 if (! optimize || optimize_size)
954 return;
955
956 FOR_EACH_BB (bb)
957 {
958 rtx label = bb->head;
959 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
960 edge e;
961
962 if (GET_CODE (label) != CODE_LABEL)
963 continue;
964 max_log = LABEL_ALIGN (label);
965 max_skip = LABEL_ALIGN_MAX_SKIP;
966
967 for (e = bb->pred; e; e = e->pred_next)
968 {
969 if (e->flags & EDGE_FALLTHRU)
970 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
971 else
972 branch_frequency += EDGE_FREQUENCY (e);
973 }
974
975 /* There are two purposes to align block with no fallthru incoming edge:
976 1) to avoid fetch stalls when branch destination is near cache boundary
977 2) to improve cache efficiency in case the previous block is not executed
978 (so it does not need to be in the cache).
979
980 We to catch first case, we align frequently executed blocks.
981 To catch the second, we align blocks that are executed more frequently
982 than the predecessor and the predecessor is likely to not be executed
983 when function is called. */
984
985 if (!has_fallthru
986 && (branch_frequency > BB_FREQ_MAX / 10
987 || (bb->frequency > bb->prev_bb->frequency * 10
988 && (bb->prev_bb->frequency
989 <= ENTRY_BLOCK_PTR->frequency / 2))))
990 {
991 log = JUMP_ALIGN (label);
992 if (max_log < log)
993 {
994 max_log = log;
995 max_skip = JUMP_ALIGN_MAX_SKIP;
996 }
997 }
998 /* In case block is frequent and reached mostly by non-fallthru edge,
999 align it. It is most likely an first block of loop. */
1000 if (has_fallthru
1001 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1002 && branch_frequency > fallthru_frequency * 5)
1003 {
1004 log = LOOP_ALIGN (label);
1005 if (max_log < log)
1006 {
1007 max_log = log;
1008 max_skip = LOOP_ALIGN_MAX_SKIP;
1009 }
1010 }
1011 LABEL_TO_ALIGNMENT (label) = max_log;
1012 LABEL_TO_MAX_SKIP (label) = max_skip;
1013 }
1014 }
1015 \f
1016 /* Make a pass over all insns and compute their actual lengths by shortening
1017 any branches of variable length if possible. */
1018
1019 /* Give a default value for the lowest address in a function. */
1020
1021 #ifndef FIRST_INSN_ADDRESS
1022 #define FIRST_INSN_ADDRESS 0
1023 #endif
1024
1025 /* shorten_branches might be called multiple times: for example, the SH
1026 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1027 In order to do this, it needs proper length information, which it obtains
1028 by calling shorten_branches. This cannot be collapsed with
1029 shorten_branches itself into a single pass unless we also want to integrate
1030 reorg.c, since the branch splitting exposes new instructions with delay
1031 slots. */
1032
1033 void
1034 shorten_branches (first)
1035 rtx first ATTRIBUTE_UNUSED;
1036 {
1037 rtx insn;
1038 int max_uid;
1039 int i;
1040 int max_log;
1041 int max_skip;
1042 #ifdef HAVE_ATTR_length
1043 #define MAX_CODE_ALIGN 16
1044 rtx seq;
1045 int something_changed = 1;
1046 char *varying_length;
1047 rtx body;
1048 int uid;
1049 rtx align_tab[MAX_CODE_ALIGN];
1050
1051 #endif
1052
1053 /* Compute maximum UID and allocate label_align / uid_shuid. */
1054 max_uid = get_max_uid ();
1055
1056 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1057
1058 if (max_labelno != max_label_num ())
1059 {
1060 int old = max_labelno;
1061 int n_labels;
1062 int n_old_labels;
1063
1064 max_labelno = max_label_num ();
1065
1066 n_labels = max_labelno - min_labelno + 1;
1067 n_old_labels = old - min_labelno + 1;
1068
1069 label_align = (struct label_alignment *) xrealloc
1070 (label_align, n_labels * sizeof (struct label_alignment));
1071
1072 /* Range of labels grows monotonically in the function. Abort here
1073 means that the initialization of array got lost. */
1074 if (n_old_labels > n_labels)
1075 abort ();
1076
1077 memset (label_align + n_old_labels, 0,
1078 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1079 }
1080
1081 /* Initialize label_align and set up uid_shuid to be strictly
1082 monotonically rising with insn order. */
1083 /* We use max_log here to keep track of the maximum alignment we want to
1084 impose on the next CODE_LABEL (or the current one if we are processing
1085 the CODE_LABEL itself). */
1086
1087 max_log = 0;
1088 max_skip = 0;
1089
1090 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1091 {
1092 int log;
1093
1094 INSN_SHUID (insn) = i++;
1095 if (INSN_P (insn))
1096 {
1097 /* reorg might make the first insn of a loop being run once only,
1098 and delete the label in front of it. Then we want to apply
1099 the loop alignment to the new label created by reorg, which
1100 is separated by the former loop start insn from the
1101 NOTE_INSN_LOOP_BEG. */
1102 }
1103 else if (GET_CODE (insn) == CODE_LABEL)
1104 {
1105 rtx next;
1106
1107 /* Merge in alignments computed by compute_alignments. */
1108 log = LABEL_TO_ALIGNMENT (insn);
1109 if (max_log < log)
1110 {
1111 max_log = log;
1112 max_skip = LABEL_TO_MAX_SKIP (insn);
1113 }
1114
1115 log = LABEL_ALIGN (insn);
1116 if (max_log < log)
1117 {
1118 max_log = log;
1119 max_skip = LABEL_ALIGN_MAX_SKIP;
1120 }
1121 next = NEXT_INSN (insn);
1122 /* ADDR_VECs only take room if read-only data goes into the text
1123 section. */
1124 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1125 if (next && GET_CODE (next) == JUMP_INSN)
1126 {
1127 rtx nextbody = PATTERN (next);
1128 if (GET_CODE (nextbody) == ADDR_VEC
1129 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1130 {
1131 log = ADDR_VEC_ALIGN (next);
1132 if (max_log < log)
1133 {
1134 max_log = log;
1135 max_skip = LABEL_ALIGN_MAX_SKIP;
1136 }
1137 }
1138 }
1139 LABEL_TO_ALIGNMENT (insn) = max_log;
1140 LABEL_TO_MAX_SKIP (insn) = max_skip;
1141 max_log = 0;
1142 max_skip = 0;
1143 }
1144 else if (GET_CODE (insn) == BARRIER)
1145 {
1146 rtx label;
1147
1148 for (label = insn; label && ! INSN_P (label);
1149 label = NEXT_INSN (label))
1150 if (GET_CODE (label) == CODE_LABEL)
1151 {
1152 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1153 if (max_log < log)
1154 {
1155 max_log = log;
1156 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1157 }
1158 break;
1159 }
1160 }
1161 }
1162 #ifdef HAVE_ATTR_length
1163
1164 /* Allocate the rest of the arrays. */
1165 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1166 insn_lengths_max_uid = max_uid;
1167 /* Syntax errors can lead to labels being outside of the main insn stream.
1168 Initialize insn_addresses, so that we get reproducible results. */
1169 INSN_ADDRESSES_ALLOC (max_uid);
1170
1171 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1172
1173 /* Initialize uid_align. We scan instructions
1174 from end to start, and keep in align_tab[n] the last seen insn
1175 that does an alignment of at least n+1, i.e. the successor
1176 in the alignment chain for an insn that does / has a known
1177 alignment of n. */
1178 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1179
1180 for (i = MAX_CODE_ALIGN; --i >= 0;)
1181 align_tab[i] = NULL_RTX;
1182 seq = get_last_insn ();
1183 for (; seq; seq = PREV_INSN (seq))
1184 {
1185 int uid = INSN_UID (seq);
1186 int log;
1187 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1188 uid_align[uid] = align_tab[0];
1189 if (log)
1190 {
1191 /* Found an alignment label. */
1192 uid_align[uid] = align_tab[log];
1193 for (i = log - 1; i >= 0; i--)
1194 align_tab[i] = seq;
1195 }
1196 }
1197 #ifdef CASE_VECTOR_SHORTEN_MODE
1198 if (optimize)
1199 {
1200 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1201 label fields. */
1202
1203 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1204 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1205 int rel;
1206
1207 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1208 {
1209 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1210 int len, i, min, max, insn_shuid;
1211 int min_align;
1212 addr_diff_vec_flags flags;
1213
1214 if (GET_CODE (insn) != JUMP_INSN
1215 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1216 continue;
1217 pat = PATTERN (insn);
1218 len = XVECLEN (pat, 1);
1219 if (len <= 0)
1220 abort ();
1221 min_align = MAX_CODE_ALIGN;
1222 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1223 {
1224 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1225 int shuid = INSN_SHUID (lab);
1226 if (shuid < min)
1227 {
1228 min = shuid;
1229 min_lab = lab;
1230 }
1231 if (shuid > max)
1232 {
1233 max = shuid;
1234 max_lab = lab;
1235 }
1236 if (min_align > LABEL_TO_ALIGNMENT (lab))
1237 min_align = LABEL_TO_ALIGNMENT (lab);
1238 }
1239 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1240 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1241 insn_shuid = INSN_SHUID (insn);
1242 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1243 flags.min_align = min_align;
1244 flags.base_after_vec = rel > insn_shuid;
1245 flags.min_after_vec = min > insn_shuid;
1246 flags.max_after_vec = max > insn_shuid;
1247 flags.min_after_base = min > rel;
1248 flags.max_after_base = max > rel;
1249 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1250 }
1251 }
1252 #endif /* CASE_VECTOR_SHORTEN_MODE */
1253
1254 /* Compute initial lengths, addresses, and varying flags for each insn. */
1255 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1256 insn != 0;
1257 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1258 {
1259 uid = INSN_UID (insn);
1260
1261 insn_lengths[uid] = 0;
1262
1263 if (GET_CODE (insn) == CODE_LABEL)
1264 {
1265 int log = LABEL_TO_ALIGNMENT (insn);
1266 if (log)
1267 {
1268 int align = 1 << log;
1269 int new_address = (insn_current_address + align - 1) & -align;
1270 insn_lengths[uid] = new_address - insn_current_address;
1271 }
1272 }
1273
1274 INSN_ADDRESSES (uid) = insn_current_address;
1275
1276 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1277 || GET_CODE (insn) == CODE_LABEL)
1278 continue;
1279 if (INSN_DELETED_P (insn))
1280 continue;
1281
1282 body = PATTERN (insn);
1283 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1284 {
1285 /* This only takes room if read-only data goes into the text
1286 section. */
1287 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1288 insn_lengths[uid] = (XVECLEN (body,
1289 GET_CODE (body) == ADDR_DIFF_VEC)
1290 * GET_MODE_SIZE (GET_MODE (body)));
1291 /* Alignment is handled by ADDR_VEC_ALIGN. */
1292 }
1293 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1294 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1295 else if (GET_CODE (body) == SEQUENCE)
1296 {
1297 int i;
1298 int const_delay_slots;
1299 #ifdef DELAY_SLOTS
1300 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1301 #else
1302 const_delay_slots = 0;
1303 #endif
1304 /* Inside a delay slot sequence, we do not do any branch shortening
1305 if the shortening could change the number of delay slots
1306 of the branch. */
1307 for (i = 0; i < XVECLEN (body, 0); i++)
1308 {
1309 rtx inner_insn = XVECEXP (body, 0, i);
1310 int inner_uid = INSN_UID (inner_insn);
1311 int inner_length;
1312
1313 if (GET_CODE (body) == ASM_INPUT
1314 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1315 inner_length = (asm_insn_count (PATTERN (inner_insn))
1316 * insn_default_length (inner_insn));
1317 else
1318 inner_length = insn_default_length (inner_insn);
1319
1320 insn_lengths[inner_uid] = inner_length;
1321 if (const_delay_slots)
1322 {
1323 if ((varying_length[inner_uid]
1324 = insn_variable_length_p (inner_insn)) != 0)
1325 varying_length[uid] = 1;
1326 INSN_ADDRESSES (inner_uid) = (insn_current_address
1327 + insn_lengths[uid]);
1328 }
1329 else
1330 varying_length[inner_uid] = 0;
1331 insn_lengths[uid] += inner_length;
1332 }
1333 }
1334 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1335 {
1336 insn_lengths[uid] = insn_default_length (insn);
1337 varying_length[uid] = insn_variable_length_p (insn);
1338 }
1339
1340 /* If needed, do any adjustment. */
1341 #ifdef ADJUST_INSN_LENGTH
1342 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1343 if (insn_lengths[uid] < 0)
1344 fatal_insn ("negative insn length", insn);
1345 #endif
1346 }
1347
1348 /* Now loop over all the insns finding varying length insns. For each,
1349 get the current insn length. If it has changed, reflect the change.
1350 When nothing changes for a full pass, we are done. */
1351
1352 while (something_changed)
1353 {
1354 something_changed = 0;
1355 insn_current_align = MAX_CODE_ALIGN - 1;
1356 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1357 insn != 0;
1358 insn = NEXT_INSN (insn))
1359 {
1360 int new_length;
1361 #ifdef ADJUST_INSN_LENGTH
1362 int tmp_length;
1363 #endif
1364 int length_align;
1365
1366 uid = INSN_UID (insn);
1367
1368 if (GET_CODE (insn) == CODE_LABEL)
1369 {
1370 int log = LABEL_TO_ALIGNMENT (insn);
1371 if (log > insn_current_align)
1372 {
1373 int align = 1 << log;
1374 int new_address= (insn_current_address + align - 1) & -align;
1375 insn_lengths[uid] = new_address - insn_current_address;
1376 insn_current_align = log;
1377 insn_current_address = new_address;
1378 }
1379 else
1380 insn_lengths[uid] = 0;
1381 INSN_ADDRESSES (uid) = insn_current_address;
1382 continue;
1383 }
1384
1385 length_align = INSN_LENGTH_ALIGNMENT (insn);
1386 if (length_align < insn_current_align)
1387 insn_current_align = length_align;
1388
1389 insn_last_address = INSN_ADDRESSES (uid);
1390 INSN_ADDRESSES (uid) = insn_current_address;
1391
1392 #ifdef CASE_VECTOR_SHORTEN_MODE
1393 if (optimize && GET_CODE (insn) == JUMP_INSN
1394 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1395 {
1396 rtx body = PATTERN (insn);
1397 int old_length = insn_lengths[uid];
1398 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1399 rtx min_lab = XEXP (XEXP (body, 2), 0);
1400 rtx max_lab = XEXP (XEXP (body, 3), 0);
1401 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1402 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1403 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1404 rtx prev;
1405 int rel_align = 0;
1406 addr_diff_vec_flags flags;
1407
1408 /* Avoid automatic aggregate initialization. */
1409 flags = ADDR_DIFF_VEC_FLAGS (body);
1410
1411 /* Try to find a known alignment for rel_lab. */
1412 for (prev = rel_lab;
1413 prev
1414 && ! insn_lengths[INSN_UID (prev)]
1415 && ! (varying_length[INSN_UID (prev)] & 1);
1416 prev = PREV_INSN (prev))
1417 if (varying_length[INSN_UID (prev)] & 2)
1418 {
1419 rel_align = LABEL_TO_ALIGNMENT (prev);
1420 break;
1421 }
1422
1423 /* See the comment on addr_diff_vec_flags in rtl.h for the
1424 meaning of the flags values. base: REL_LAB vec: INSN */
1425 /* Anything after INSN has still addresses from the last
1426 pass; adjust these so that they reflect our current
1427 estimate for this pass. */
1428 if (flags.base_after_vec)
1429 rel_addr += insn_current_address - insn_last_address;
1430 if (flags.min_after_vec)
1431 min_addr += insn_current_address - insn_last_address;
1432 if (flags.max_after_vec)
1433 max_addr += insn_current_address - insn_last_address;
1434 /* We want to know the worst case, i.e. lowest possible value
1435 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1436 its offset is positive, and we have to be wary of code shrink;
1437 otherwise, it is negative, and we have to be vary of code
1438 size increase. */
1439 if (flags.min_after_base)
1440 {
1441 /* If INSN is between REL_LAB and MIN_LAB, the size
1442 changes we are about to make can change the alignment
1443 within the observed offset, therefore we have to break
1444 it up into two parts that are independent. */
1445 if (! flags.base_after_vec && flags.min_after_vec)
1446 {
1447 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1448 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1449 }
1450 else
1451 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1452 }
1453 else
1454 {
1455 if (flags.base_after_vec && ! flags.min_after_vec)
1456 {
1457 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1458 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1459 }
1460 else
1461 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1462 }
1463 /* Likewise, determine the highest lowest possible value
1464 for the offset of MAX_LAB. */
1465 if (flags.max_after_base)
1466 {
1467 if (! flags.base_after_vec && flags.max_after_vec)
1468 {
1469 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1470 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1471 }
1472 else
1473 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1474 }
1475 else
1476 {
1477 if (flags.base_after_vec && ! flags.max_after_vec)
1478 {
1479 max_addr += align_fuzz (max_lab, insn, 0, 0);
1480 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1481 }
1482 else
1483 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1484 }
1485 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1486 max_addr - rel_addr,
1487 body));
1488 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1489 {
1490 insn_lengths[uid]
1491 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1492 insn_current_address += insn_lengths[uid];
1493 if (insn_lengths[uid] != old_length)
1494 something_changed = 1;
1495 }
1496
1497 continue;
1498 }
1499 #endif /* CASE_VECTOR_SHORTEN_MODE */
1500
1501 if (! (varying_length[uid]))
1502 {
1503 if (GET_CODE (insn) == INSN
1504 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1505 {
1506 int i;
1507
1508 body = PATTERN (insn);
1509 for (i = 0; i < XVECLEN (body, 0); i++)
1510 {
1511 rtx inner_insn = XVECEXP (body, 0, i);
1512 int inner_uid = INSN_UID (inner_insn);
1513
1514 INSN_ADDRESSES (inner_uid) = insn_current_address;
1515
1516 insn_current_address += insn_lengths[inner_uid];
1517 }
1518 }
1519 else
1520 insn_current_address += insn_lengths[uid];
1521
1522 continue;
1523 }
1524
1525 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1526 {
1527 int i;
1528
1529 body = PATTERN (insn);
1530 new_length = 0;
1531 for (i = 0; i < XVECLEN (body, 0); i++)
1532 {
1533 rtx inner_insn = XVECEXP (body, 0, i);
1534 int inner_uid = INSN_UID (inner_insn);
1535 int inner_length;
1536
1537 INSN_ADDRESSES (inner_uid) = insn_current_address;
1538
1539 /* insn_current_length returns 0 for insns with a
1540 non-varying length. */
1541 if (! varying_length[inner_uid])
1542 inner_length = insn_lengths[inner_uid];
1543 else
1544 inner_length = insn_current_length (inner_insn);
1545
1546 if (inner_length != insn_lengths[inner_uid])
1547 {
1548 insn_lengths[inner_uid] = inner_length;
1549 something_changed = 1;
1550 }
1551 insn_current_address += insn_lengths[inner_uid];
1552 new_length += inner_length;
1553 }
1554 }
1555 else
1556 {
1557 new_length = insn_current_length (insn);
1558 insn_current_address += new_length;
1559 }
1560
1561 #ifdef ADJUST_INSN_LENGTH
1562 /* If needed, do any adjustment. */
1563 tmp_length = new_length;
1564 ADJUST_INSN_LENGTH (insn, new_length);
1565 insn_current_address += (new_length - tmp_length);
1566 #endif
1567
1568 if (new_length != insn_lengths[uid])
1569 {
1570 insn_lengths[uid] = new_length;
1571 something_changed = 1;
1572 }
1573 }
1574 /* For a non-optimizing compile, do only a single pass. */
1575 if (!optimize)
1576 break;
1577 }
1578
1579 free (varying_length);
1580
1581 #endif /* HAVE_ATTR_length */
1582 }
1583
1584 #ifdef HAVE_ATTR_length
1585 /* Given the body of an INSN known to be generated by an ASM statement, return
1586 the number of machine instructions likely to be generated for this insn.
1587 This is used to compute its length. */
1588
1589 static int
1590 asm_insn_count (body)
1591 rtx body;
1592 {
1593 const char *template;
1594 int count = 1;
1595
1596 if (GET_CODE (body) == ASM_INPUT)
1597 template = XSTR (body, 0);
1598 else
1599 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1600
1601 for (; *template; template++)
1602 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1603 count++;
1604
1605 return count;
1606 }
1607 #endif
1608 \f
1609 /* Output assembler code for the start of a function,
1610 and initialize some of the variables in this file
1611 for the new function. The label for the function and associated
1612 assembler pseudo-ops have already been output in `assemble_start_function'.
1613
1614 FIRST is the first insn of the rtl for the function being compiled.
1615 FILE is the file to write assembler code to.
1616 OPTIMIZE is nonzero if we should eliminate redundant
1617 test and compare insns. */
1618
1619 void
1620 final_start_function (first, file, optimize)
1621 rtx first;
1622 FILE *file;
1623 int optimize ATTRIBUTE_UNUSED;
1624 {
1625 block_depth = 0;
1626
1627 this_is_asm_operands = 0;
1628
1629 #ifdef NON_SAVING_SETJMP
1630 /* A function that calls setjmp should save and restore all the
1631 call-saved registers on a system where longjmp clobbers them. */
1632 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1633 {
1634 int i;
1635
1636 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1637 if (!call_used_regs[i])
1638 regs_ever_live[i] = 1;
1639 }
1640 #endif
1641
1642 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1643 notice_source_line (first);
1644 high_block_linenum = high_function_linenum = last_linenum;
1645
1646 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1647
1648 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1649 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1650 dwarf2out_begin_prologue (0, NULL);
1651 #endif
1652
1653 #ifdef LEAF_REG_REMAP
1654 if (current_function_uses_only_leaf_regs)
1655 leaf_renumber_regs (first);
1656 #endif
1657
1658 /* The Sun386i and perhaps other machines don't work right
1659 if the profiling code comes after the prologue. */
1660 #ifdef PROFILE_BEFORE_PROLOGUE
1661 if (current_function_profile)
1662 profile_function (file);
1663 #endif /* PROFILE_BEFORE_PROLOGUE */
1664
1665 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1666 if (dwarf2out_do_frame ())
1667 dwarf2out_frame_debug (NULL_RTX);
1668 #endif
1669
1670 /* If debugging, assign block numbers to all of the blocks in this
1671 function. */
1672 if (write_symbols)
1673 {
1674 remove_unnecessary_notes ();
1675 scope_to_insns_finalize ();
1676 number_blocks (current_function_decl);
1677 /* We never actually put out begin/end notes for the top-level
1678 block in the function. But, conceptually, that block is
1679 always needed. */
1680 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1681 }
1682
1683 /* First output the function prologue: code to set up the stack frame. */
1684 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1685
1686 #ifdef VMS_DEBUGGING_INFO
1687 /* Output label after the prologue of the function. */
1688 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1689 vmsdbgout_after_prologue ();
1690 #endif
1691
1692 /* If the machine represents the prologue as RTL, the profiling code must
1693 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1694 #ifdef HAVE_prologue
1695 if (! HAVE_prologue)
1696 #endif
1697 profile_after_prologue (file);
1698 }
1699
1700 static void
1701 profile_after_prologue (file)
1702 FILE *file ATTRIBUTE_UNUSED;
1703 {
1704 #ifndef PROFILE_BEFORE_PROLOGUE
1705 if (current_function_profile)
1706 profile_function (file);
1707 #endif /* not PROFILE_BEFORE_PROLOGUE */
1708 }
1709
1710 static void
1711 profile_function (file)
1712 FILE *file ATTRIBUTE_UNUSED;
1713 {
1714 #ifndef NO_PROFILE_COUNTERS
1715 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1716 #endif
1717 #if defined(ASM_OUTPUT_REG_PUSH)
1718 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1719 int sval = current_function_returns_struct;
1720 #endif
1721 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1722 int cxt = current_function_needs_context;
1723 #endif
1724 #endif /* ASM_OUTPUT_REG_PUSH */
1725
1726 #ifndef NO_PROFILE_COUNTERS
1727 data_section ();
1728 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1729 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_profile_label_no);
1730 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1731 #endif
1732
1733 function_section (current_function_decl);
1734
1735 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1736 if (sval)
1737 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1738 #else
1739 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1740 if (sval)
1741 {
1742 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1743 }
1744 #endif
1745 #endif
1746
1747 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1748 if (cxt)
1749 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1750 #else
1751 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1752 if (cxt)
1753 {
1754 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1755 }
1756 #endif
1757 #endif
1758
1759 FUNCTION_PROFILER (file, current_function_profile_label_no);
1760
1761 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1762 if (cxt)
1763 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1764 #else
1765 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1766 if (cxt)
1767 {
1768 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1769 }
1770 #endif
1771 #endif
1772
1773 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1774 if (sval)
1775 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1776 #else
1777 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1778 if (sval)
1779 {
1780 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1781 }
1782 #endif
1783 #endif
1784 }
1785
1786 /* Output assembler code for the end of a function.
1787 For clarity, args are same as those of `final_start_function'
1788 even though not all of them are needed. */
1789
1790 void
1791 final_end_function ()
1792 {
1793 app_disable ();
1794
1795 (*debug_hooks->end_function) (high_function_linenum);
1796
1797 /* Finally, output the function epilogue:
1798 code to restore the stack frame and return to the caller. */
1799 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1800
1801 /* And debug output. */
1802 (*debug_hooks->end_epilogue) ();
1803
1804 #if defined (DWARF2_UNWIND_INFO)
1805 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1806 && dwarf2out_do_frame ())
1807 dwarf2out_end_epilogue ();
1808 #endif
1809 }
1810 \f
1811 /* Output assembler code for some insns: all or part of a function.
1812 For description of args, see `final_start_function', above.
1813
1814 PRESCAN is 1 if we are not really outputting,
1815 just scanning as if we were outputting.
1816 Prescanning deletes and rearranges insns just like ordinary output.
1817 PRESCAN is -2 if we are outputting after having prescanned.
1818 In this case, don't try to delete or rearrange insns
1819 because that has already been done.
1820 Prescanning is done only on certain machines. */
1821
1822 void
1823 final (first, file, optimize, prescan)
1824 rtx first;
1825 FILE *file;
1826 int optimize;
1827 int prescan;
1828 {
1829 rtx insn;
1830 int max_line = 0;
1831 int max_uid = 0;
1832
1833 last_ignored_compare = 0;
1834 new_block = 1;
1835
1836 /* Make a map indicating which line numbers appear in this function.
1837 When producing SDB debugging info, delete troublesome line number
1838 notes from inlined functions in other files as well as duplicate
1839 line number notes. */
1840 #ifdef SDB_DEBUGGING_INFO
1841 if (write_symbols == SDB_DEBUG)
1842 {
1843 rtx last = 0;
1844 for (insn = first; insn; insn = NEXT_INSN (insn))
1845 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1846 {
1847 if ((RTX_INTEGRATED_P (insn)
1848 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1849 || (last != 0
1850 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1851 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1852 {
1853 delete_insn (insn); /* Use delete_note. */
1854 continue;
1855 }
1856 last = insn;
1857 if (NOTE_LINE_NUMBER (insn) > max_line)
1858 max_line = NOTE_LINE_NUMBER (insn);
1859 }
1860 }
1861 else
1862 #endif
1863 {
1864 for (insn = first; insn; insn = NEXT_INSN (insn))
1865 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1866 max_line = NOTE_LINE_NUMBER (insn);
1867 }
1868
1869 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1870
1871 for (insn = first; insn; insn = NEXT_INSN (insn))
1872 {
1873 if (INSN_UID (insn) > max_uid) /* find largest UID */
1874 max_uid = INSN_UID (insn);
1875 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1876 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1877 #ifdef HAVE_cc0
1878 /* If CC tracking across branches is enabled, record the insn which
1879 jumps to each branch only reached from one place. */
1880 if (optimize && GET_CODE (insn) == JUMP_INSN)
1881 {
1882 rtx lab = JUMP_LABEL (insn);
1883 if (lab && LABEL_NUSES (lab) == 1)
1884 {
1885 LABEL_REFS (lab) = insn;
1886 }
1887 }
1888 #endif
1889 }
1890
1891 init_recog ();
1892
1893 CC_STATUS_INIT;
1894
1895 /* Output the insns. */
1896 for (insn = NEXT_INSN (first); insn;)
1897 {
1898 #ifdef HAVE_ATTR_length
1899 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1900 {
1901 #ifdef STACK_REGS
1902 /* Irritatingly, the reg-stack pass is creating new instructions
1903 and because of REG_DEAD note abuse it has to run after
1904 shorten_branches. Fake address of -1 then. */
1905 insn_current_address = -1;
1906 #else
1907 /* This can be triggered by bugs elsewhere in the compiler if
1908 new insns are created after init_insn_lengths is called. */
1909 abort ();
1910 #endif
1911 }
1912 else
1913 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1914 #endif /* HAVE_ATTR_length */
1915
1916 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1917 }
1918
1919 /* Store function names for edge-profiling. */
1920 /* ??? Probably should re-use the existing struct function. */
1921
1922 if (cfun->arc_profile)
1923 {
1924 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1925
1926 *functions_tail = new_item;
1927 functions_tail = &new_item->next;
1928
1929 new_item->next = 0;
1930 new_item->name = xstrdup (current_function_name);
1931 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1932 new_item->count_edges = profile_info.count_edges_instrumented_now;
1933 }
1934
1935 free (line_note_exists);
1936 line_note_exists = NULL;
1937 }
1938 \f
1939 const char *
1940 get_insn_template (code, insn)
1941 int code;
1942 rtx insn;
1943 {
1944 const void *output = insn_data[code].output;
1945 switch (insn_data[code].output_format)
1946 {
1947 case INSN_OUTPUT_FORMAT_SINGLE:
1948 return (const char *) output;
1949 case INSN_OUTPUT_FORMAT_MULTI:
1950 return ((const char *const *) output)[which_alternative];
1951 case INSN_OUTPUT_FORMAT_FUNCTION:
1952 if (insn == NULL)
1953 abort ();
1954 return (*(insn_output_fn) output) (recog_data.operand, insn);
1955
1956 default:
1957 abort ();
1958 }
1959 }
1960
1961 /* The final scan for one insn, INSN.
1962 Args are same as in `final', except that INSN
1963 is the insn being scanned.
1964 Value returned is the next insn to be scanned.
1965
1966 NOPEEPHOLES is the flag to disallow peephole processing (currently
1967 used for within delayed branch sequence output). */
1968
1969 rtx
1970 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1971 rtx insn;
1972 FILE *file;
1973 int optimize ATTRIBUTE_UNUSED;
1974 int prescan;
1975 int nopeepholes ATTRIBUTE_UNUSED;
1976 {
1977 #ifdef HAVE_cc0
1978 rtx set;
1979 #endif
1980
1981 insn_counter++;
1982
1983 /* Ignore deleted insns. These can occur when we split insns (due to a
1984 template of "#") while not optimizing. */
1985 if (INSN_DELETED_P (insn))
1986 return NEXT_INSN (insn);
1987
1988 switch (GET_CODE (insn))
1989 {
1990 case NOTE:
1991 if (prescan > 0)
1992 break;
1993
1994 switch (NOTE_LINE_NUMBER (insn))
1995 {
1996 case NOTE_INSN_DELETED:
1997 case NOTE_INSN_LOOP_BEG:
1998 case NOTE_INSN_LOOP_END:
1999 case NOTE_INSN_LOOP_END_TOP_COND:
2000 case NOTE_INSN_LOOP_CONT:
2001 case NOTE_INSN_LOOP_VTOP:
2002 case NOTE_INSN_FUNCTION_END:
2003 case NOTE_INSN_REPEATED_LINE_NUMBER:
2004 case NOTE_INSN_RANGE_BEG:
2005 case NOTE_INSN_RANGE_END:
2006 case NOTE_INSN_LIVE:
2007 case NOTE_INSN_EXPECTED_VALUE:
2008 break;
2009
2010 case NOTE_INSN_BASIC_BLOCK:
2011 #ifdef IA64_UNWIND_INFO
2012 IA64_UNWIND_EMIT (asm_out_file, insn);
2013 #endif
2014 if (flag_debug_asm)
2015 fprintf (asm_out_file, "\t%s basic block %d\n",
2016 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2017 break;
2018
2019 case NOTE_INSN_EH_REGION_BEG:
2020 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2021 NOTE_EH_HANDLER (insn));
2022 break;
2023
2024 case NOTE_INSN_EH_REGION_END:
2025 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2026 NOTE_EH_HANDLER (insn));
2027 break;
2028
2029 case NOTE_INSN_PROLOGUE_END:
2030 (*targetm.asm_out.function_end_prologue) (file);
2031 profile_after_prologue (file);
2032 break;
2033
2034 case NOTE_INSN_EPILOGUE_BEG:
2035 (*targetm.asm_out.function_begin_epilogue) (file);
2036 break;
2037
2038 case NOTE_INSN_FUNCTION_BEG:
2039 app_disable ();
2040 (*debug_hooks->end_prologue) (last_linenum);
2041 break;
2042
2043 case NOTE_INSN_BLOCK_BEG:
2044 if (debug_info_level == DINFO_LEVEL_NORMAL
2045 || debug_info_level == DINFO_LEVEL_VERBOSE
2046 || write_symbols == DWARF_DEBUG
2047 || write_symbols == DWARF2_DEBUG
2048 || write_symbols == VMS_AND_DWARF2_DEBUG
2049 || write_symbols == VMS_DEBUG)
2050 {
2051 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2052
2053 app_disable ();
2054 ++block_depth;
2055 high_block_linenum = last_linenum;
2056
2057 /* Output debugging info about the symbol-block beginning. */
2058 (*debug_hooks->begin_block) (last_linenum, n);
2059
2060 /* Mark this block as output. */
2061 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2062 }
2063 break;
2064
2065 case NOTE_INSN_BLOCK_END:
2066 if (debug_info_level == DINFO_LEVEL_NORMAL
2067 || debug_info_level == DINFO_LEVEL_VERBOSE
2068 || write_symbols == DWARF_DEBUG
2069 || write_symbols == DWARF2_DEBUG
2070 || write_symbols == VMS_AND_DWARF2_DEBUG
2071 || write_symbols == VMS_DEBUG)
2072 {
2073 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2074
2075 app_disable ();
2076
2077 /* End of a symbol-block. */
2078 --block_depth;
2079 if (block_depth < 0)
2080 abort ();
2081
2082 (*debug_hooks->end_block) (high_block_linenum, n);
2083 }
2084 break;
2085
2086 case NOTE_INSN_DELETED_LABEL:
2087 /* Emit the label. We may have deleted the CODE_LABEL because
2088 the label could be proved to be unreachable, though still
2089 referenced (in the form of having its address taken. */
2090 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2091 break;
2092
2093 case 0:
2094 break;
2095
2096 default:
2097 if (NOTE_LINE_NUMBER (insn) <= 0)
2098 abort ();
2099
2100 /* This note is a line-number. */
2101 {
2102 rtx note;
2103 int note_after = 0;
2104
2105 /* If there is anything real after this note, output it.
2106 If another line note follows, omit this one. */
2107 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2108 {
2109 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2110 break;
2111
2112 /* These types of notes can be significant
2113 so make sure the preceding line number stays. */
2114 else if (GET_CODE (note) == NOTE
2115 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2116 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2117 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2118 break;
2119 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2120 {
2121 /* Another line note follows; we can delete this note
2122 if no intervening line numbers have notes elsewhere. */
2123 int num;
2124 for (num = NOTE_LINE_NUMBER (insn) + 1;
2125 num < NOTE_LINE_NUMBER (note);
2126 num++)
2127 if (line_note_exists[num])
2128 break;
2129
2130 if (num >= NOTE_LINE_NUMBER (note))
2131 note_after = 1;
2132 break;
2133 }
2134 }
2135
2136 /* Output this line note if it is the first or the last line
2137 note in a row. */
2138 if (!note_after)
2139 {
2140 notice_source_line (insn);
2141 (*debug_hooks->source_line) (last_linenum, last_filename);
2142 }
2143 }
2144 break;
2145 }
2146 break;
2147
2148 case BARRIER:
2149 #if defined (DWARF2_UNWIND_INFO)
2150 if (dwarf2out_do_frame ())
2151 dwarf2out_frame_debug (insn);
2152 #endif
2153 break;
2154
2155 case CODE_LABEL:
2156 /* The target port might emit labels in the output function for
2157 some insn, e.g. sh.c output_branchy_insn. */
2158 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2159 {
2160 int align = LABEL_TO_ALIGNMENT (insn);
2161 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2162 int max_skip = LABEL_TO_MAX_SKIP (insn);
2163 #endif
2164
2165 if (align && NEXT_INSN (insn))
2166 {
2167 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2168 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2169 #else
2170 ASM_OUTPUT_ALIGN (file, align);
2171 #endif
2172 }
2173 }
2174 #ifdef HAVE_cc0
2175 CC_STATUS_INIT;
2176 /* If this label is reached from only one place, set the condition
2177 codes from the instruction just before the branch. */
2178
2179 /* Disabled because some insns set cc_status in the C output code
2180 and NOTICE_UPDATE_CC alone can set incorrect status. */
2181 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2182 {
2183 rtx jump = LABEL_REFS (insn);
2184 rtx barrier = prev_nonnote_insn (insn);
2185 rtx prev;
2186 /* If the LABEL_REFS field of this label has been set to point
2187 at a branch, the predecessor of the branch is a regular
2188 insn, and that branch is the only way to reach this label,
2189 set the condition codes based on the branch and its
2190 predecessor. */
2191 if (barrier && GET_CODE (barrier) == BARRIER
2192 && jump && GET_CODE (jump) == JUMP_INSN
2193 && (prev = prev_nonnote_insn (jump))
2194 && GET_CODE (prev) == INSN)
2195 {
2196 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2197 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2198 }
2199 }
2200 #endif
2201 if (prescan > 0)
2202 break;
2203 new_block = 1;
2204
2205 #ifdef FINAL_PRESCAN_LABEL
2206 FINAL_PRESCAN_INSN (insn, NULL, 0);
2207 #endif
2208
2209 if (LABEL_NAME (insn))
2210 (*debug_hooks->label) (insn);
2211
2212 if (app_on)
2213 {
2214 fputs (ASM_APP_OFF, file);
2215 app_on = 0;
2216 }
2217 if (NEXT_INSN (insn) != 0
2218 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2219 {
2220 rtx nextbody = PATTERN (NEXT_INSN (insn));
2221
2222 /* If this label is followed by a jump-table,
2223 make sure we put the label in the read-only section. Also
2224 possibly write the label and jump table together. */
2225
2226 if (GET_CODE (nextbody) == ADDR_VEC
2227 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2228 {
2229 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2230 /* In this case, the case vector is being moved by the
2231 target, so don't output the label at all. Leave that
2232 to the back end macros. */
2233 #else
2234 if (! JUMP_TABLES_IN_TEXT_SECTION)
2235 {
2236 int log_align;
2237
2238 readonly_data_section ();
2239
2240 #ifdef ADDR_VEC_ALIGN
2241 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2242 #else
2243 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2244 #endif
2245 ASM_OUTPUT_ALIGN (file, log_align);
2246 }
2247 else
2248 function_section (current_function_decl);
2249
2250 #ifdef ASM_OUTPUT_CASE_LABEL
2251 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2252 NEXT_INSN (insn));
2253 #else
2254 if (LABEL_ALTERNATE_NAME (insn))
2255 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2256 else
2257 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2258 #endif
2259 #endif
2260 break;
2261 }
2262 }
2263 if (LABEL_ALTERNATE_NAME (insn))
2264 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2265 else
2266 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2267 break;
2268
2269 default:
2270 {
2271 rtx body = PATTERN (insn);
2272 int insn_code_number;
2273 const char *template;
2274 rtx note;
2275
2276 /* An INSN, JUMP_INSN or CALL_INSN.
2277 First check for special kinds that recog doesn't recognize. */
2278
2279 if (GET_CODE (body) == USE /* These are just declarations */
2280 || GET_CODE (body) == CLOBBER)
2281 break;
2282
2283 #ifdef HAVE_cc0
2284 /* If there is a REG_CC_SETTER note on this insn, it means that
2285 the setting of the condition code was done in the delay slot
2286 of the insn that branched here. So recover the cc status
2287 from the insn that set it. */
2288
2289 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2290 if (note)
2291 {
2292 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2293 cc_prev_status = cc_status;
2294 }
2295 #endif
2296
2297 /* Detect insns that are really jump-tables
2298 and output them as such. */
2299
2300 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2301 {
2302 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2303 int vlen, idx;
2304 #endif
2305
2306 if (prescan > 0)
2307 break;
2308
2309 if (app_on)
2310 {
2311 fputs (ASM_APP_OFF, file);
2312 app_on = 0;
2313 }
2314
2315 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2316 if (GET_CODE (body) == ADDR_VEC)
2317 {
2318 #ifdef ASM_OUTPUT_ADDR_VEC
2319 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2320 #else
2321 abort ();
2322 #endif
2323 }
2324 else
2325 {
2326 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2327 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2328 #else
2329 abort ();
2330 #endif
2331 }
2332 #else
2333 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2334 for (idx = 0; idx < vlen; idx++)
2335 {
2336 if (GET_CODE (body) == ADDR_VEC)
2337 {
2338 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2339 ASM_OUTPUT_ADDR_VEC_ELT
2340 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2341 #else
2342 abort ();
2343 #endif
2344 }
2345 else
2346 {
2347 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2348 ASM_OUTPUT_ADDR_DIFF_ELT
2349 (file,
2350 body,
2351 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2352 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2353 #else
2354 abort ();
2355 #endif
2356 }
2357 }
2358 #ifdef ASM_OUTPUT_CASE_END
2359 ASM_OUTPUT_CASE_END (file,
2360 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2361 insn);
2362 #endif
2363 #endif
2364
2365 function_section (current_function_decl);
2366
2367 break;
2368 }
2369
2370 if (GET_CODE (body) == ASM_INPUT)
2371 {
2372 const char *string = XSTR (body, 0);
2373
2374 /* There's no telling what that did to the condition codes. */
2375 CC_STATUS_INIT;
2376 if (prescan > 0)
2377 break;
2378
2379 if (string[0])
2380 {
2381 if (! app_on)
2382 {
2383 fputs (ASM_APP_ON, file);
2384 app_on = 1;
2385 }
2386 fprintf (asm_out_file, "\t%s\n", string);
2387 }
2388 break;
2389 }
2390
2391 /* Detect `asm' construct with operands. */
2392 if (asm_noperands (body) >= 0)
2393 {
2394 unsigned int noperands = asm_noperands (body);
2395 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2396 const char *string;
2397
2398 /* There's no telling what that did to the condition codes. */
2399 CC_STATUS_INIT;
2400 if (prescan > 0)
2401 break;
2402
2403 /* Get out the operand values. */
2404 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2405 /* Inhibit aborts on what would otherwise be compiler bugs. */
2406 insn_noperands = noperands;
2407 this_is_asm_operands = insn;
2408
2409 /* Output the insn using them. */
2410 if (string[0])
2411 {
2412 if (! app_on)
2413 {
2414 fputs (ASM_APP_ON, file);
2415 app_on = 1;
2416 }
2417 output_asm_insn (string, ops);
2418 }
2419
2420 this_is_asm_operands = 0;
2421 break;
2422 }
2423
2424 if (prescan <= 0 && app_on)
2425 {
2426 fputs (ASM_APP_OFF, file);
2427 app_on = 0;
2428 }
2429
2430 if (GET_CODE (body) == SEQUENCE)
2431 {
2432 /* A delayed-branch sequence */
2433 int i;
2434 rtx next;
2435
2436 if (prescan > 0)
2437 break;
2438 final_sequence = body;
2439
2440 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2441 force the restoration of a comparison that was previously
2442 thought unnecessary. If that happens, cancel this sequence
2443 and cause that insn to be restored. */
2444
2445 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2446 if (next != XVECEXP (body, 0, 1))
2447 {
2448 final_sequence = 0;
2449 return next;
2450 }
2451
2452 for (i = 1; i < XVECLEN (body, 0); i++)
2453 {
2454 rtx insn = XVECEXP (body, 0, i);
2455 rtx next = NEXT_INSN (insn);
2456 /* We loop in case any instruction in a delay slot gets
2457 split. */
2458 do
2459 insn = final_scan_insn (insn, file, 0, prescan, 1);
2460 while (insn != next);
2461 }
2462 #ifdef DBR_OUTPUT_SEQEND
2463 DBR_OUTPUT_SEQEND (file);
2464 #endif
2465 final_sequence = 0;
2466
2467 /* If the insn requiring the delay slot was a CALL_INSN, the
2468 insns in the delay slot are actually executed before the
2469 called function. Hence we don't preserve any CC-setting
2470 actions in these insns and the CC must be marked as being
2471 clobbered by the function. */
2472 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2473 {
2474 CC_STATUS_INIT;
2475 }
2476 break;
2477 }
2478
2479 /* We have a real machine instruction as rtl. */
2480
2481 body = PATTERN (insn);
2482
2483 #ifdef HAVE_cc0
2484 set = single_set (insn);
2485
2486 /* Check for redundant test and compare instructions
2487 (when the condition codes are already set up as desired).
2488 This is done only when optimizing; if not optimizing,
2489 it should be possible for the user to alter a variable
2490 with the debugger in between statements
2491 and the next statement should reexamine the variable
2492 to compute the condition codes. */
2493
2494 if (optimize)
2495 {
2496 #if 0
2497 rtx set = single_set (insn);
2498 #endif
2499
2500 if (set
2501 && GET_CODE (SET_DEST (set)) == CC0
2502 && insn != last_ignored_compare)
2503 {
2504 if (GET_CODE (SET_SRC (set)) == SUBREG)
2505 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2506 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2507 {
2508 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2509 XEXP (SET_SRC (set), 0)
2510 = alter_subreg (&XEXP (SET_SRC (set), 0));
2511 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2512 XEXP (SET_SRC (set), 1)
2513 = alter_subreg (&XEXP (SET_SRC (set), 1));
2514 }
2515 if ((cc_status.value1 != 0
2516 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2517 || (cc_status.value2 != 0
2518 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2519 {
2520 /* Don't delete insn if it has an addressing side-effect. */
2521 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2522 /* or if anything in it is volatile. */
2523 && ! volatile_refs_p (PATTERN (insn)))
2524 {
2525 /* We don't really delete the insn; just ignore it. */
2526 last_ignored_compare = insn;
2527 break;
2528 }
2529 }
2530 }
2531 }
2532 #endif
2533
2534 #ifndef STACK_REGS
2535 /* Don't bother outputting obvious no-ops, even without -O.
2536 This optimization is fast and doesn't interfere with debugging.
2537 Don't do this if the insn is in a delay slot, since this
2538 will cause an improper number of delay insns to be written. */
2539 if (final_sequence == 0
2540 && prescan >= 0
2541 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2542 && GET_CODE (SET_SRC (body)) == REG
2543 && GET_CODE (SET_DEST (body)) == REG
2544 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2545 break;
2546 #endif
2547
2548 #ifdef HAVE_cc0
2549 /* If this is a conditional branch, maybe modify it
2550 if the cc's are in a nonstandard state
2551 so that it accomplishes the same thing that it would
2552 do straightforwardly if the cc's were set up normally. */
2553
2554 if (cc_status.flags != 0
2555 && GET_CODE (insn) == JUMP_INSN
2556 && GET_CODE (body) == SET
2557 && SET_DEST (body) == pc_rtx
2558 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2559 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2560 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2561 /* This is done during prescan; it is not done again
2562 in final scan when prescan has been done. */
2563 && prescan >= 0)
2564 {
2565 /* This function may alter the contents of its argument
2566 and clear some of the cc_status.flags bits.
2567 It may also return 1 meaning condition now always true
2568 or -1 meaning condition now always false
2569 or 2 meaning condition nontrivial but altered. */
2570 int result = alter_cond (XEXP (SET_SRC (body), 0));
2571 /* If condition now has fixed value, replace the IF_THEN_ELSE
2572 with its then-operand or its else-operand. */
2573 if (result == 1)
2574 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2575 if (result == -1)
2576 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2577
2578 /* The jump is now either unconditional or a no-op.
2579 If it has become a no-op, don't try to output it.
2580 (It would not be recognized.) */
2581 if (SET_SRC (body) == pc_rtx)
2582 {
2583 delete_insn (insn);
2584 break;
2585 }
2586 else if (GET_CODE (SET_SRC (body)) == RETURN)
2587 /* Replace (set (pc) (return)) with (return). */
2588 PATTERN (insn) = body = SET_SRC (body);
2589
2590 /* Rerecognize the instruction if it has changed. */
2591 if (result != 0)
2592 INSN_CODE (insn) = -1;
2593 }
2594
2595 /* Make same adjustments to instructions that examine the
2596 condition codes without jumping and instructions that
2597 handle conditional moves (if this machine has either one). */
2598
2599 if (cc_status.flags != 0
2600 && set != 0)
2601 {
2602 rtx cond_rtx, then_rtx, else_rtx;
2603
2604 if (GET_CODE (insn) != JUMP_INSN
2605 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2606 {
2607 cond_rtx = XEXP (SET_SRC (set), 0);
2608 then_rtx = XEXP (SET_SRC (set), 1);
2609 else_rtx = XEXP (SET_SRC (set), 2);
2610 }
2611 else
2612 {
2613 cond_rtx = SET_SRC (set);
2614 then_rtx = const_true_rtx;
2615 else_rtx = const0_rtx;
2616 }
2617
2618 switch (GET_CODE (cond_rtx))
2619 {
2620 case GTU:
2621 case GT:
2622 case LTU:
2623 case LT:
2624 case GEU:
2625 case GE:
2626 case LEU:
2627 case LE:
2628 case EQ:
2629 case NE:
2630 {
2631 int result;
2632 if (XEXP (cond_rtx, 0) != cc0_rtx)
2633 break;
2634 result = alter_cond (cond_rtx);
2635 if (result == 1)
2636 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2637 else if (result == -1)
2638 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2639 else if (result == 2)
2640 INSN_CODE (insn) = -1;
2641 if (SET_DEST (set) == SET_SRC (set))
2642 delete_insn (insn);
2643 }
2644 break;
2645
2646 default:
2647 break;
2648 }
2649 }
2650
2651 #endif
2652
2653 #ifdef HAVE_peephole
2654 /* Do machine-specific peephole optimizations if desired. */
2655
2656 if (optimize && !flag_no_peephole && !nopeepholes)
2657 {
2658 rtx next = peephole (insn);
2659 /* When peepholing, if there were notes within the peephole,
2660 emit them before the peephole. */
2661 if (next != 0 && next != NEXT_INSN (insn))
2662 {
2663 rtx prev = PREV_INSN (insn);
2664
2665 for (note = NEXT_INSN (insn); note != next;
2666 note = NEXT_INSN (note))
2667 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2668
2669 /* In case this is prescan, put the notes
2670 in proper position for later rescan. */
2671 note = NEXT_INSN (insn);
2672 PREV_INSN (note) = prev;
2673 NEXT_INSN (prev) = note;
2674 NEXT_INSN (PREV_INSN (next)) = insn;
2675 PREV_INSN (insn) = PREV_INSN (next);
2676 NEXT_INSN (insn) = next;
2677 PREV_INSN (next) = insn;
2678 }
2679
2680 /* PEEPHOLE might have changed this. */
2681 body = PATTERN (insn);
2682 }
2683 #endif
2684
2685 /* Try to recognize the instruction.
2686 If successful, verify that the operands satisfy the
2687 constraints for the instruction. Crash if they don't,
2688 since `reload' should have changed them so that they do. */
2689
2690 insn_code_number = recog_memoized (insn);
2691 cleanup_subreg_operands (insn);
2692
2693 /* Dump the insn in the assembly for debugging. */
2694 if (flag_dump_rtl_in_asm)
2695 {
2696 print_rtx_head = ASM_COMMENT_START;
2697 print_rtl_single (asm_out_file, insn);
2698 print_rtx_head = "";
2699 }
2700
2701 if (! constrain_operands_cached (1))
2702 fatal_insn_not_found (insn);
2703
2704 /* Some target machines need to prescan each insn before
2705 it is output. */
2706
2707 #ifdef FINAL_PRESCAN_INSN
2708 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2709 #endif
2710
2711 #ifdef HAVE_conditional_execution
2712 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2713 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2714 else
2715 current_insn_predicate = NULL_RTX;
2716 #endif
2717
2718 #ifdef HAVE_cc0
2719 cc_prev_status = cc_status;
2720
2721 /* Update `cc_status' for this instruction.
2722 The instruction's output routine may change it further.
2723 If the output routine for a jump insn needs to depend
2724 on the cc status, it should look at cc_prev_status. */
2725
2726 NOTICE_UPDATE_CC (body, insn);
2727 #endif
2728
2729 current_output_insn = debug_insn = insn;
2730
2731 #if defined (DWARF2_UNWIND_INFO)
2732 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2733 dwarf2out_frame_debug (insn);
2734 #endif
2735
2736 /* Find the proper template for this insn. */
2737 template = get_insn_template (insn_code_number, insn);
2738
2739 /* If the C code returns 0, it means that it is a jump insn
2740 which follows a deleted test insn, and that test insn
2741 needs to be reinserted. */
2742 if (template == 0)
2743 {
2744 rtx prev;
2745
2746 if (prev_nonnote_insn (insn) != last_ignored_compare)
2747 abort ();
2748 new_block = 0;
2749
2750 /* We have already processed the notes between the setter and
2751 the user. Make sure we don't process them again, this is
2752 particularly important if one of the notes is a block
2753 scope note or an EH note. */
2754 for (prev = insn;
2755 prev != last_ignored_compare;
2756 prev = PREV_INSN (prev))
2757 {
2758 if (GET_CODE (prev) == NOTE)
2759 delete_insn (prev); /* Use delete_note. */
2760 }
2761
2762 return prev;
2763 }
2764
2765 /* If the template is the string "#", it means that this insn must
2766 be split. */
2767 if (template[0] == '#' && template[1] == '\0')
2768 {
2769 rtx new = try_split (body, insn, 0);
2770
2771 /* If we didn't split the insn, go away. */
2772 if (new == insn && PATTERN (new) == body)
2773 fatal_insn ("could not split insn", insn);
2774
2775 #ifdef HAVE_ATTR_length
2776 /* This instruction should have been split in shorten_branches,
2777 to ensure that we would have valid length info for the
2778 splitees. */
2779 abort ();
2780 #endif
2781
2782 new_block = 0;
2783 return new;
2784 }
2785
2786 if (prescan > 0)
2787 break;
2788
2789 #ifdef IA64_UNWIND_INFO
2790 IA64_UNWIND_EMIT (asm_out_file, insn);
2791 #endif
2792 /* Output assembler code from the template. */
2793
2794 output_asm_insn (template, recog_data.operand);
2795
2796 #if defined (DWARF2_UNWIND_INFO)
2797 #if defined (HAVE_prologue)
2798 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2799 dwarf2out_frame_debug (insn);
2800 #else
2801 if (!ACCUMULATE_OUTGOING_ARGS
2802 && GET_CODE (insn) == INSN
2803 && dwarf2out_do_frame ())
2804 dwarf2out_frame_debug (insn);
2805 #endif
2806 #endif
2807
2808 #if 0
2809 /* It's not at all clear why we did this and doing so interferes
2810 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2811 with this out. */
2812
2813 /* Mark this insn as having been output. */
2814 INSN_DELETED_P (insn) = 1;
2815 #endif
2816
2817 /* Emit information for vtable gc. */
2818 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2819 if (note)
2820 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2821 INTVAL (XEXP (XEXP (note, 0), 1)));
2822
2823 current_output_insn = debug_insn = 0;
2824 }
2825 }
2826 return NEXT_INSN (insn);
2827 }
2828 \f
2829 /* Output debugging info to the assembler file FILE
2830 based on the NOTE-insn INSN, assumed to be a line number. */
2831
2832 static void
2833 notice_source_line (insn)
2834 rtx insn;
2835 {
2836 const char *filename = NOTE_SOURCE_FILE (insn);
2837
2838 last_filename = filename;
2839 last_linenum = NOTE_LINE_NUMBER (insn);
2840 high_block_linenum = MAX (last_linenum, high_block_linenum);
2841 high_function_linenum = MAX (last_linenum, high_function_linenum);
2842 }
2843 \f
2844 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2845 directly to the desired hard register. */
2846
2847 void
2848 cleanup_subreg_operands (insn)
2849 rtx insn;
2850 {
2851 int i;
2852 extract_insn_cached (insn);
2853 for (i = 0; i < recog_data.n_operands; i++)
2854 {
2855 /* The following test cannot use recog_data.operand when tesing
2856 for a SUBREG: the underlying object might have been changed
2857 already if we are inside a match_operator expression that
2858 matches the else clause. Instead we test the underlying
2859 expression directly. */
2860 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2861 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2862 else if (GET_CODE (recog_data.operand[i]) == PLUS
2863 || GET_CODE (recog_data.operand[i]) == MULT
2864 || GET_CODE (recog_data.operand[i]) == MEM)
2865 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2866 }
2867
2868 for (i = 0; i < recog_data.n_dups; i++)
2869 {
2870 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2871 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2872 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2873 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2874 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2875 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2876 }
2877 }
2878
2879 /* If X is a SUBREG, replace it with a REG or a MEM,
2880 based on the thing it is a subreg of. */
2881
2882 rtx
2883 alter_subreg (xp)
2884 rtx *xp;
2885 {
2886 rtx x = *xp;
2887 rtx y = SUBREG_REG (x);
2888
2889 /* simplify_subreg does not remove subreg from volatile references.
2890 We are required to. */
2891 if (GET_CODE (y) == MEM)
2892 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2893 else
2894 {
2895 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2896 SUBREG_BYTE (x));
2897
2898 if (new != 0)
2899 *xp = new;
2900 /* Simplify_subreg can't handle some REG cases, but we have to. */
2901 else if (GET_CODE (y) == REG)
2902 {
2903 unsigned int regno = subreg_hard_regno (x, 1);
2904 PUT_CODE (x, REG);
2905 REGNO (x) = regno;
2906 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2907 /* This field has a different meaning for REGs and SUBREGs. Make
2908 sure to clear it! */
2909 RTX_FLAG (x, used) = 0;
2910 }
2911 else
2912 abort ();
2913 }
2914
2915 return *xp;
2916 }
2917
2918 /* Do alter_subreg on all the SUBREGs contained in X. */
2919
2920 static rtx
2921 walk_alter_subreg (xp)
2922 rtx *xp;
2923 {
2924 rtx x = *xp;
2925 switch (GET_CODE (x))
2926 {
2927 case PLUS:
2928 case MULT:
2929 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2930 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2931 break;
2932
2933 case MEM:
2934 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2935 break;
2936
2937 case SUBREG:
2938 return alter_subreg (xp);
2939
2940 default:
2941 break;
2942 }
2943
2944 return *xp;
2945 }
2946 \f
2947 #ifdef HAVE_cc0
2948
2949 /* Given BODY, the body of a jump instruction, alter the jump condition
2950 as required by the bits that are set in cc_status.flags.
2951 Not all of the bits there can be handled at this level in all cases.
2952
2953 The value is normally 0.
2954 1 means that the condition has become always true.
2955 -1 means that the condition has become always false.
2956 2 means that COND has been altered. */
2957
2958 static int
2959 alter_cond (cond)
2960 rtx cond;
2961 {
2962 int value = 0;
2963
2964 if (cc_status.flags & CC_REVERSED)
2965 {
2966 value = 2;
2967 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2968 }
2969
2970 if (cc_status.flags & CC_INVERTED)
2971 {
2972 value = 2;
2973 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2974 }
2975
2976 if (cc_status.flags & CC_NOT_POSITIVE)
2977 switch (GET_CODE (cond))
2978 {
2979 case LE:
2980 case LEU:
2981 case GEU:
2982 /* Jump becomes unconditional. */
2983 return 1;
2984
2985 case GT:
2986 case GTU:
2987 case LTU:
2988 /* Jump becomes no-op. */
2989 return -1;
2990
2991 case GE:
2992 PUT_CODE (cond, EQ);
2993 value = 2;
2994 break;
2995
2996 case LT:
2997 PUT_CODE (cond, NE);
2998 value = 2;
2999 break;
3000
3001 default:
3002 break;
3003 }
3004
3005 if (cc_status.flags & CC_NOT_NEGATIVE)
3006 switch (GET_CODE (cond))
3007 {
3008 case GE:
3009 case GEU:
3010 /* Jump becomes unconditional. */
3011 return 1;
3012
3013 case LT:
3014 case LTU:
3015 /* Jump becomes no-op. */
3016 return -1;
3017
3018 case LE:
3019 case LEU:
3020 PUT_CODE (cond, EQ);
3021 value = 2;
3022 break;
3023
3024 case GT:
3025 case GTU:
3026 PUT_CODE (cond, NE);
3027 value = 2;
3028 break;
3029
3030 default:
3031 break;
3032 }
3033
3034 if (cc_status.flags & CC_NO_OVERFLOW)
3035 switch (GET_CODE (cond))
3036 {
3037 case GEU:
3038 /* Jump becomes unconditional. */
3039 return 1;
3040
3041 case LEU:
3042 PUT_CODE (cond, EQ);
3043 value = 2;
3044 break;
3045
3046 case GTU:
3047 PUT_CODE (cond, NE);
3048 value = 2;
3049 break;
3050
3051 case LTU:
3052 /* Jump becomes no-op. */
3053 return -1;
3054
3055 default:
3056 break;
3057 }
3058
3059 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3060 switch (GET_CODE (cond))
3061 {
3062 default:
3063 abort ();
3064
3065 case NE:
3066 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3067 value = 2;
3068 break;
3069
3070 case EQ:
3071 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3072 value = 2;
3073 break;
3074 }
3075
3076 if (cc_status.flags & CC_NOT_SIGNED)
3077 /* The flags are valid if signed condition operators are converted
3078 to unsigned. */
3079 switch (GET_CODE (cond))
3080 {
3081 case LE:
3082 PUT_CODE (cond, LEU);
3083 value = 2;
3084 break;
3085
3086 case LT:
3087 PUT_CODE (cond, LTU);
3088 value = 2;
3089 break;
3090
3091 case GT:
3092 PUT_CODE (cond, GTU);
3093 value = 2;
3094 break;
3095
3096 case GE:
3097 PUT_CODE (cond, GEU);
3098 value = 2;
3099 break;
3100
3101 default:
3102 break;
3103 }
3104
3105 return value;
3106 }
3107 #endif
3108 \f
3109 /* Report inconsistency between the assembler template and the operands.
3110 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3111
3112 void
3113 output_operand_lossage VPARAMS ((const char *msgid, ...))
3114 {
3115 char *fmt_string;
3116 char *new_message;
3117 const char *pfx_str;
3118 VA_OPEN (ap, msgid);
3119 VA_FIXEDARG (ap, const char *, msgid);
3120
3121 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3122 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3123 vasprintf (&new_message, fmt_string, ap);
3124
3125 if (this_is_asm_operands)
3126 error_for_asm (this_is_asm_operands, "%s", new_message);
3127 else
3128 internal_error ("%s", new_message);
3129
3130 free (fmt_string);
3131 free (new_message);
3132 VA_CLOSE (ap);
3133 }
3134 \f
3135 /* Output of assembler code from a template, and its subroutines. */
3136
3137 /* Annotate the assembly with a comment describing the pattern and
3138 alternative used. */
3139
3140 static void
3141 output_asm_name ()
3142 {
3143 if (debug_insn)
3144 {
3145 int num = INSN_CODE (debug_insn);
3146 fprintf (asm_out_file, "\t%s %d\t%s",
3147 ASM_COMMENT_START, INSN_UID (debug_insn),
3148 insn_data[num].name);
3149 if (insn_data[num].n_alternatives > 1)
3150 fprintf (asm_out_file, "/%d", which_alternative + 1);
3151 #ifdef HAVE_ATTR_length
3152 fprintf (asm_out_file, "\t[length = %d]",
3153 get_attr_length (debug_insn));
3154 #endif
3155 /* Clear this so only the first assembler insn
3156 of any rtl insn will get the special comment for -dp. */
3157 debug_insn = 0;
3158 }
3159 }
3160
3161 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3162 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3163 corresponds to the address of the object and 0 if to the object. */
3164
3165 static tree
3166 get_mem_expr_from_op (op, paddressp)
3167 rtx op;
3168 int *paddressp;
3169 {
3170 tree expr;
3171 int inner_addressp;
3172
3173 *paddressp = 0;
3174
3175 if (op == NULL)
3176 return 0;
3177
3178 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3179 return REGNO_DECL (ORIGINAL_REGNO (op));
3180 else if (GET_CODE (op) != MEM)
3181 return 0;
3182
3183 if (MEM_EXPR (op) != 0)
3184 return MEM_EXPR (op);
3185
3186 /* Otherwise we have an address, so indicate it and look at the address. */
3187 *paddressp = 1;
3188 op = XEXP (op, 0);
3189
3190 /* First check if we have a decl for the address, then look at the right side
3191 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3192 But don't allow the address to itself be indirect. */
3193 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3194 return expr;
3195 else if (GET_CODE (op) == PLUS
3196 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3197 return expr;
3198
3199 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3200 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3201 op = XEXP (op, 0);
3202
3203 expr = get_mem_expr_from_op (op, &inner_addressp);
3204 return inner_addressp ? 0 : expr;
3205 }
3206
3207 /* Output operand names for assembler instructions. OPERANDS is the
3208 operand vector, OPORDER is the order to write the operands, and NOPS
3209 is the number of operands to write. */
3210
3211 static void
3212 output_asm_operand_names (operands, oporder, nops)
3213 rtx *operands;
3214 int *oporder;
3215 int nops;
3216 {
3217 int wrote = 0;
3218 int i;
3219
3220 for (i = 0; i < nops; i++)
3221 {
3222 int addressp;
3223 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3224
3225 if (expr)
3226 {
3227 fprintf (asm_out_file, "%c%s %s",
3228 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3229 addressp ? "*" : "");
3230 print_mem_expr (asm_out_file, expr);
3231 wrote = 1;
3232 }
3233 }
3234 }
3235
3236 /* Output text from TEMPLATE to the assembler output file,
3237 obeying %-directions to substitute operands taken from
3238 the vector OPERANDS.
3239
3240 %N (for N a digit) means print operand N in usual manner.
3241 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3242 and print the label name with no punctuation.
3243 %cN means require operand N to be a constant
3244 and print the constant expression with no punctuation.
3245 %aN means expect operand N to be a memory address
3246 (not a memory reference!) and print a reference
3247 to that address.
3248 %nN means expect operand N to be a constant
3249 and print a constant expression for minus the value
3250 of the operand, with no other punctuation. */
3251
3252 void
3253 output_asm_insn (template, operands)
3254 const char *template;
3255 rtx *operands;
3256 {
3257 const char *p;
3258 int c;
3259 #ifdef ASSEMBLER_DIALECT
3260 int dialect = 0;
3261 #endif
3262 int oporder[MAX_RECOG_OPERANDS];
3263 char opoutput[MAX_RECOG_OPERANDS];
3264 int ops = 0;
3265
3266 /* An insn may return a null string template
3267 in a case where no assembler code is needed. */
3268 if (*template == 0)
3269 return;
3270
3271 memset (opoutput, 0, sizeof opoutput);
3272 p = template;
3273 putc ('\t', asm_out_file);
3274
3275 #ifdef ASM_OUTPUT_OPCODE
3276 ASM_OUTPUT_OPCODE (asm_out_file, p);
3277 #endif
3278
3279 while ((c = *p++))
3280 switch (c)
3281 {
3282 case '\n':
3283 if (flag_verbose_asm)
3284 output_asm_operand_names (operands, oporder, ops);
3285 if (flag_print_asm_name)
3286 output_asm_name ();
3287
3288 ops = 0;
3289 memset (opoutput, 0, sizeof opoutput);
3290
3291 putc (c, asm_out_file);
3292 #ifdef ASM_OUTPUT_OPCODE
3293 while ((c = *p) == '\t')
3294 {
3295 putc (c, asm_out_file);
3296 p++;
3297 }
3298 ASM_OUTPUT_OPCODE (asm_out_file, p);
3299 #endif
3300 break;
3301
3302 #ifdef ASSEMBLER_DIALECT
3303 case '{':
3304 {
3305 int i;
3306
3307 if (dialect)
3308 output_operand_lossage ("nested assembly dialect alternatives");
3309 else
3310 dialect = 1;
3311
3312 /* If we want the first dialect, do nothing. Otherwise, skip
3313 DIALECT_NUMBER of strings ending with '|'. */
3314 for (i = 0; i < dialect_number; i++)
3315 {
3316 while (*p && *p != '}' && *p++ != '|')
3317 ;
3318 if (*p == '}')
3319 break;
3320 if (*p == '|')
3321 p++;
3322 }
3323
3324 if (*p == '\0')
3325 output_operand_lossage ("unterminated assembly dialect alternative");
3326 }
3327 break;
3328
3329 case '|':
3330 if (dialect)
3331 {
3332 /* Skip to close brace. */
3333 do
3334 {
3335 if (*p == '\0')
3336 {
3337 output_operand_lossage ("unterminated assembly dialect alternative");
3338 break;
3339 }
3340 }
3341 while (*p++ != '}');
3342 dialect = 0;
3343 }
3344 else
3345 putc (c, asm_out_file);
3346 break;
3347
3348 case '}':
3349 if (! dialect)
3350 putc (c, asm_out_file);
3351 dialect = 0;
3352 break;
3353 #endif
3354
3355 case '%':
3356 /* %% outputs a single %. */
3357 if (*p == '%')
3358 {
3359 p++;
3360 putc (c, asm_out_file);
3361 }
3362 /* %= outputs a number which is unique to each insn in the entire
3363 compilation. This is useful for making local labels that are
3364 referred to more than once in a given insn. */
3365 else if (*p == '=')
3366 {
3367 p++;
3368 fprintf (asm_out_file, "%d", insn_counter);
3369 }
3370 /* % followed by a letter and some digits
3371 outputs an operand in a special way depending on the letter.
3372 Letters `acln' are implemented directly.
3373 Other letters are passed to `output_operand' so that
3374 the PRINT_OPERAND macro can define them. */
3375 else if (ISALPHA (*p))
3376 {
3377 int letter = *p++;
3378 c = atoi (p);
3379
3380 if (! ISDIGIT (*p))
3381 output_operand_lossage ("operand number missing after %%-letter");
3382 else if (this_is_asm_operands
3383 && (c < 0 || (unsigned int) c >= insn_noperands))
3384 output_operand_lossage ("operand number out of range");
3385 else if (letter == 'l')
3386 output_asm_label (operands[c]);
3387 else if (letter == 'a')
3388 output_address (operands[c]);
3389 else if (letter == 'c')
3390 {
3391 if (CONSTANT_ADDRESS_P (operands[c]))
3392 output_addr_const (asm_out_file, operands[c]);
3393 else
3394 output_operand (operands[c], 'c');
3395 }
3396 else if (letter == 'n')
3397 {
3398 if (GET_CODE (operands[c]) == CONST_INT)
3399 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3400 - INTVAL (operands[c]));
3401 else
3402 {
3403 putc ('-', asm_out_file);
3404 output_addr_const (asm_out_file, operands[c]);
3405 }
3406 }
3407 else
3408 output_operand (operands[c], letter);
3409
3410 if (!opoutput[c])
3411 oporder[ops++] = c;
3412 opoutput[c] = 1;
3413
3414 while (ISDIGIT (c = *p))
3415 p++;
3416 }
3417 /* % followed by a digit outputs an operand the default way. */
3418 else if (ISDIGIT (*p))
3419 {
3420 c = atoi (p);
3421 if (this_is_asm_operands
3422 && (c < 0 || (unsigned int) c >= insn_noperands))
3423 output_operand_lossage ("operand number out of range");
3424 else
3425 output_operand (operands[c], 0);
3426
3427 if (!opoutput[c])
3428 oporder[ops++] = c;
3429 opoutput[c] = 1;
3430
3431 while (ISDIGIT (c = *p))
3432 p++;
3433 }
3434 /* % followed by punctuation: output something for that
3435 punctuation character alone, with no operand.
3436 The PRINT_OPERAND macro decides what is actually done. */
3437 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3438 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3439 output_operand (NULL_RTX, *p++);
3440 #endif
3441 else
3442 output_operand_lossage ("invalid %%-code");
3443 break;
3444
3445 default:
3446 putc (c, asm_out_file);
3447 }
3448
3449 /* Write out the variable names for operands, if we know them. */
3450 if (flag_verbose_asm)
3451 output_asm_operand_names (operands, oporder, ops);
3452 if (flag_print_asm_name)
3453 output_asm_name ();
3454
3455 putc ('\n', asm_out_file);
3456 }
3457 \f
3458 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3459
3460 void
3461 output_asm_label (x)
3462 rtx x;
3463 {
3464 char buf[256];
3465
3466 if (GET_CODE (x) == LABEL_REF)
3467 x = XEXP (x, 0);
3468 if (GET_CODE (x) == CODE_LABEL
3469 || (GET_CODE (x) == NOTE
3470 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3471 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3472 else
3473 output_operand_lossage ("`%%l' operand isn't a label");
3474
3475 assemble_name (asm_out_file, buf);
3476 }
3477
3478 /* Print operand X using machine-dependent assembler syntax.
3479 The macro PRINT_OPERAND is defined just to control this function.
3480 CODE is a non-digit that preceded the operand-number in the % spec,
3481 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3482 between the % and the digits.
3483 When CODE is a non-letter, X is 0.
3484
3485 The meanings of the letters are machine-dependent and controlled
3486 by PRINT_OPERAND. */
3487
3488 static void
3489 output_operand (x, code)
3490 rtx x;
3491 int code ATTRIBUTE_UNUSED;
3492 {
3493 if (x && GET_CODE (x) == SUBREG)
3494 x = alter_subreg (&x);
3495
3496 /* If X is a pseudo-register, abort now rather than writing trash to the
3497 assembler file. */
3498
3499 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3500 abort ();
3501
3502 PRINT_OPERAND (asm_out_file, x, code);
3503 }
3504
3505 /* Print a memory reference operand for address X
3506 using machine-dependent assembler syntax.
3507 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3508
3509 void
3510 output_address (x)
3511 rtx x;
3512 {
3513 walk_alter_subreg (&x);
3514 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3515 }
3516 \f
3517 /* Print an integer constant expression in assembler syntax.
3518 Addition and subtraction are the only arithmetic
3519 that may appear in these expressions. */
3520
3521 void
3522 output_addr_const (file, x)
3523 FILE *file;
3524 rtx x;
3525 {
3526 char buf[256];
3527
3528 restart:
3529 switch (GET_CODE (x))
3530 {
3531 case PC:
3532 putc ('.', file);
3533 break;
3534
3535 case SYMBOL_REF:
3536 #ifdef ASM_OUTPUT_SYMBOL_REF
3537 ASM_OUTPUT_SYMBOL_REF (file, x);
3538 #else
3539 assemble_name (file, XSTR (x, 0));
3540 #endif
3541 break;
3542
3543 case LABEL_REF:
3544 x = XEXP (x, 0);
3545 /* Fall through. */
3546 case CODE_LABEL:
3547 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3548 #ifdef ASM_OUTPUT_LABEL_REF
3549 ASM_OUTPUT_LABEL_REF (file, buf);
3550 #else
3551 assemble_name (file, buf);
3552 #endif
3553 break;
3554
3555 case CONST_INT:
3556 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3557 break;
3558
3559 case CONST:
3560 /* This used to output parentheses around the expression,
3561 but that does not work on the 386 (either ATT or BSD assembler). */
3562 output_addr_const (file, XEXP (x, 0));
3563 break;
3564
3565 case CONST_DOUBLE:
3566 if (GET_MODE (x) == VOIDmode)
3567 {
3568 /* We can use %d if the number is one word and positive. */
3569 if (CONST_DOUBLE_HIGH (x))
3570 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3571 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3572 else if (CONST_DOUBLE_LOW (x) < 0)
3573 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3574 else
3575 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3576 }
3577 else
3578 /* We can't handle floating point constants;
3579 PRINT_OPERAND must handle them. */
3580 output_operand_lossage ("floating constant misused");
3581 break;
3582
3583 case PLUS:
3584 /* Some assemblers need integer constants to appear last (eg masm). */
3585 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3586 {
3587 output_addr_const (file, XEXP (x, 1));
3588 if (INTVAL (XEXP (x, 0)) >= 0)
3589 fprintf (file, "+");
3590 output_addr_const (file, XEXP (x, 0));
3591 }
3592 else
3593 {
3594 output_addr_const (file, XEXP (x, 0));
3595 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3596 || INTVAL (XEXP (x, 1)) >= 0)
3597 fprintf (file, "+");
3598 output_addr_const (file, XEXP (x, 1));
3599 }
3600 break;
3601
3602 case MINUS:
3603 /* Avoid outputting things like x-x or x+5-x,
3604 since some assemblers can't handle that. */
3605 x = simplify_subtraction (x);
3606 if (GET_CODE (x) != MINUS)
3607 goto restart;
3608
3609 output_addr_const (file, XEXP (x, 0));
3610 fprintf (file, "-");
3611 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3612 || GET_CODE (XEXP (x, 1)) == PC
3613 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3614 output_addr_const (file, XEXP (x, 1));
3615 else
3616 {
3617 fputs (targetm.asm_out.open_paren, file);
3618 output_addr_const (file, XEXP (x, 1));
3619 fputs (targetm.asm_out.close_paren, file);
3620 }
3621 break;
3622
3623 case ZERO_EXTEND:
3624 case SIGN_EXTEND:
3625 case SUBREG:
3626 output_addr_const (file, XEXP (x, 0));
3627 break;
3628
3629 default:
3630 #ifdef OUTPUT_ADDR_CONST_EXTRA
3631 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3632 break;
3633
3634 fail:
3635 #endif
3636 output_operand_lossage ("invalid expression as operand");
3637 }
3638 }
3639 \f
3640 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3641 %R prints the value of REGISTER_PREFIX.
3642 %L prints the value of LOCAL_LABEL_PREFIX.
3643 %U prints the value of USER_LABEL_PREFIX.
3644 %I prints the value of IMMEDIATE_PREFIX.
3645 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3646 Also supported are %d, %x, %s, %e, %f, %g and %%.
3647
3648 We handle alternate assembler dialects here, just like output_asm_insn. */
3649
3650 void
3651 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3652 {
3653 char buf[10];
3654 char *q, c;
3655
3656 VA_OPEN (argptr, p);
3657 VA_FIXEDARG (argptr, FILE *, file);
3658 VA_FIXEDARG (argptr, const char *, p);
3659
3660 buf[0] = '%';
3661
3662 while ((c = *p++))
3663 switch (c)
3664 {
3665 #ifdef ASSEMBLER_DIALECT
3666 case '{':
3667 {
3668 int i;
3669
3670 /* If we want the first dialect, do nothing. Otherwise, skip
3671 DIALECT_NUMBER of strings ending with '|'. */
3672 for (i = 0; i < dialect_number; i++)
3673 {
3674 while (*p && *p++ != '|')
3675 ;
3676
3677 if (*p == '|')
3678 p++;
3679 }
3680 }
3681 break;
3682
3683 case '|':
3684 /* Skip to close brace. */
3685 while (*p && *p++ != '}')
3686 ;
3687 break;
3688
3689 case '}':
3690 break;
3691 #endif
3692
3693 case '%':
3694 c = *p++;
3695 q = &buf[1];
3696 while (ISDIGIT (c) || c == '.')
3697 {
3698 *q++ = c;
3699 c = *p++;
3700 }
3701 switch (c)
3702 {
3703 case '%':
3704 fprintf (file, "%%");
3705 break;
3706
3707 case 'd': case 'i': case 'u':
3708 case 'x': case 'p': case 'X':
3709 case 'o':
3710 *q++ = c;
3711 *q = 0;
3712 fprintf (file, buf, va_arg (argptr, int));
3713 break;
3714
3715 case 'w':
3716 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3717 but we do not check for those cases. It means that the value
3718 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3719
3720 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3721 #else
3722 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3723 *q++ = 'l';
3724 #else
3725 *q++ = 'l';
3726 *q++ = 'l';
3727 #endif
3728 #endif
3729
3730 *q++ = *p++;
3731 *q = 0;
3732 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3733 break;
3734
3735 case 'l':
3736 *q++ = c;
3737 *q++ = *p++;
3738 *q = 0;
3739 fprintf (file, buf, va_arg (argptr, long));
3740 break;
3741
3742 case 'e':
3743 case 'f':
3744 case 'g':
3745 *q++ = c;
3746 *q = 0;
3747 fprintf (file, buf, va_arg (argptr, double));
3748 break;
3749
3750 case 's':
3751 *q++ = c;
3752 *q = 0;
3753 fprintf (file, buf, va_arg (argptr, char *));
3754 break;
3755
3756 case 'O':
3757 #ifdef ASM_OUTPUT_OPCODE
3758 ASM_OUTPUT_OPCODE (asm_out_file, p);
3759 #endif
3760 break;
3761
3762 case 'R':
3763 #ifdef REGISTER_PREFIX
3764 fprintf (file, "%s", REGISTER_PREFIX);
3765 #endif
3766 break;
3767
3768 case 'I':
3769 #ifdef IMMEDIATE_PREFIX
3770 fprintf (file, "%s", IMMEDIATE_PREFIX);
3771 #endif
3772 break;
3773
3774 case 'L':
3775 #ifdef LOCAL_LABEL_PREFIX
3776 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3777 #endif
3778 break;
3779
3780 case 'U':
3781 fputs (user_label_prefix, file);
3782 break;
3783
3784 #ifdef ASM_FPRINTF_EXTENSIONS
3785 /* Upper case letters are reserved for general use by asm_fprintf
3786 and so are not available to target specific code. In order to
3787 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3788 they are defined here. As they get turned into real extensions
3789 to asm_fprintf they should be removed from this list. */
3790 case 'A': case 'B': case 'C': case 'D': case 'E':
3791 case 'F': case 'G': case 'H': case 'J': case 'K':
3792 case 'M': case 'N': case 'P': case 'Q': case 'S':
3793 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3794 break;
3795
3796 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3797 #endif
3798 default:
3799 abort ();
3800 }
3801 break;
3802
3803 default:
3804 fputc (c, file);
3805 }
3806 VA_CLOSE (argptr);
3807 }
3808 \f
3809 /* Split up a CONST_DOUBLE or integer constant rtx
3810 into two rtx's for single words,
3811 storing in *FIRST the word that comes first in memory in the target
3812 and in *SECOND the other. */
3813
3814 void
3815 split_double (value, first, second)
3816 rtx value;
3817 rtx *first, *second;
3818 {
3819 if (GET_CODE (value) == CONST_INT)
3820 {
3821 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3822 {
3823 /* In this case the CONST_INT holds both target words.
3824 Extract the bits from it into two word-sized pieces.
3825 Sign extend each half to HOST_WIDE_INT. */
3826 unsigned HOST_WIDE_INT low, high;
3827 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3828
3829 /* Set sign_bit to the most significant bit of a word. */
3830 sign_bit = 1;
3831 sign_bit <<= BITS_PER_WORD - 1;
3832
3833 /* Set mask so that all bits of the word are set. We could
3834 have used 1 << BITS_PER_WORD instead of basing the
3835 calculation on sign_bit. However, on machines where
3836 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3837 compiler warning, even though the code would never be
3838 executed. */
3839 mask = sign_bit << 1;
3840 mask--;
3841
3842 /* Set sign_extend as any remaining bits. */
3843 sign_extend = ~mask;
3844
3845 /* Pick the lower word and sign-extend it. */
3846 low = INTVAL (value);
3847 low &= mask;
3848 if (low & sign_bit)
3849 low |= sign_extend;
3850
3851 /* Pick the higher word, shifted to the least significant
3852 bits, and sign-extend it. */
3853 high = INTVAL (value);
3854 high >>= BITS_PER_WORD - 1;
3855 high >>= 1;
3856 high &= mask;
3857 if (high & sign_bit)
3858 high |= sign_extend;
3859
3860 /* Store the words in the target machine order. */
3861 if (WORDS_BIG_ENDIAN)
3862 {
3863 *first = GEN_INT (high);
3864 *second = GEN_INT (low);
3865 }
3866 else
3867 {
3868 *first = GEN_INT (low);
3869 *second = GEN_INT (high);
3870 }
3871 }
3872 else
3873 {
3874 /* The rule for using CONST_INT for a wider mode
3875 is that we regard the value as signed.
3876 So sign-extend it. */
3877 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3878 if (WORDS_BIG_ENDIAN)
3879 {
3880 *first = high;
3881 *second = value;
3882 }
3883 else
3884 {
3885 *first = value;
3886 *second = high;
3887 }
3888 }
3889 }
3890 else if (GET_CODE (value) != CONST_DOUBLE)
3891 {
3892 if (WORDS_BIG_ENDIAN)
3893 {
3894 *first = const0_rtx;
3895 *second = value;
3896 }
3897 else
3898 {
3899 *first = value;
3900 *second = const0_rtx;
3901 }
3902 }
3903 else if (GET_MODE (value) == VOIDmode
3904 /* This is the old way we did CONST_DOUBLE integers. */
3905 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3906 {
3907 /* In an integer, the words are defined as most and least significant.
3908 So order them by the target's convention. */
3909 if (WORDS_BIG_ENDIAN)
3910 {
3911 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3912 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3913 }
3914 else
3915 {
3916 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3917 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3918 }
3919 }
3920 else
3921 {
3922 REAL_VALUE_TYPE r;
3923 long l[2];
3924 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3925
3926 /* Note, this converts the REAL_VALUE_TYPE to the target's
3927 format, splits up the floating point double and outputs
3928 exactly 32 bits of it into each of l[0] and l[1] --
3929 not necessarily BITS_PER_WORD bits. */
3930 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3931
3932 /* If 32 bits is an entire word for the target, but not for the host,
3933 then sign-extend on the host so that the number will look the same
3934 way on the host that it would on the target. See for instance
3935 simplify_unary_operation. The #if is needed to avoid compiler
3936 warnings. */
3937
3938 #if HOST_BITS_PER_LONG > 32
3939 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3940 {
3941 if (l[0] & ((long) 1 << 31))
3942 l[0] |= ((long) (-1) << 32);
3943 if (l[1] & ((long) 1 << 31))
3944 l[1] |= ((long) (-1) << 32);
3945 }
3946 #endif
3947
3948 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3949 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3950 }
3951 }
3952 \f
3953 /* Return nonzero if this function has no function calls. */
3954
3955 int
3956 leaf_function_p ()
3957 {
3958 rtx insn;
3959 rtx link;
3960
3961 if (current_function_profile || profile_arc_flag)
3962 return 0;
3963
3964 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3965 {
3966 if (GET_CODE (insn) == CALL_INSN
3967 && ! SIBLING_CALL_P (insn))
3968 return 0;
3969 if (GET_CODE (insn) == INSN
3970 && GET_CODE (PATTERN (insn)) == SEQUENCE
3971 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3972 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3973 return 0;
3974 }
3975 for (link = current_function_epilogue_delay_list;
3976 link;
3977 link = XEXP (link, 1))
3978 {
3979 insn = XEXP (link, 0);
3980
3981 if (GET_CODE (insn) == CALL_INSN
3982 && ! SIBLING_CALL_P (insn))
3983 return 0;
3984 if (GET_CODE (insn) == INSN
3985 && GET_CODE (PATTERN (insn)) == SEQUENCE
3986 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3987 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3988 return 0;
3989 }
3990
3991 return 1;
3992 }
3993
3994 /* Return 1 if branch is an forward branch.
3995 Uses insn_shuid array, so it works only in the final pass. May be used by
3996 output templates to customary add branch prediction hints.
3997 */
3998 int
3999 final_forward_branch_p (insn)
4000 rtx insn;
4001 {
4002 int insn_id, label_id;
4003 if (!uid_shuid)
4004 abort ();
4005 insn_id = INSN_SHUID (insn);
4006 label_id = INSN_SHUID (JUMP_LABEL (insn));
4007 /* We've hit some insns that does not have id information available. */
4008 if (!insn_id || !label_id)
4009 abort ();
4010 return insn_id < label_id;
4011 }
4012
4013 /* On some machines, a function with no call insns
4014 can run faster if it doesn't create its own register window.
4015 When output, the leaf function should use only the "output"
4016 registers. Ordinarily, the function would be compiled to use
4017 the "input" registers to find its arguments; it is a candidate
4018 for leaf treatment if it uses only the "input" registers.
4019 Leaf function treatment means renumbering so the function
4020 uses the "output" registers instead. */
4021
4022 #ifdef LEAF_REGISTERS
4023
4024 /* Return 1 if this function uses only the registers that can be
4025 safely renumbered. */
4026
4027 int
4028 only_leaf_regs_used ()
4029 {
4030 int i;
4031 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4032
4033 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4034 if ((regs_ever_live[i] || global_regs[i])
4035 && ! permitted_reg_in_leaf_functions[i])
4036 return 0;
4037
4038 if (current_function_uses_pic_offset_table
4039 && pic_offset_table_rtx != 0
4040 && GET_CODE (pic_offset_table_rtx) == REG
4041 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4042 return 0;
4043
4044 return 1;
4045 }
4046
4047 /* Scan all instructions and renumber all registers into those
4048 available in leaf functions. */
4049
4050 static void
4051 leaf_renumber_regs (first)
4052 rtx first;
4053 {
4054 rtx insn;
4055
4056 /* Renumber only the actual patterns.
4057 The reg-notes can contain frame pointer refs,
4058 and renumbering them could crash, and should not be needed. */
4059 for (insn = first; insn; insn = NEXT_INSN (insn))
4060 if (INSN_P (insn))
4061 leaf_renumber_regs_insn (PATTERN (insn));
4062 for (insn = current_function_epilogue_delay_list;
4063 insn;
4064 insn = XEXP (insn, 1))
4065 if (INSN_P (XEXP (insn, 0)))
4066 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4067 }
4068
4069 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4070 available in leaf functions. */
4071
4072 void
4073 leaf_renumber_regs_insn (in_rtx)
4074 rtx in_rtx;
4075 {
4076 int i, j;
4077 const char *format_ptr;
4078
4079 if (in_rtx == 0)
4080 return;
4081
4082 /* Renumber all input-registers into output-registers.
4083 renumbered_regs would be 1 for an output-register;
4084 they */
4085
4086 if (GET_CODE (in_rtx) == REG)
4087 {
4088 int newreg;
4089
4090 /* Don't renumber the same reg twice. */
4091 if (in_rtx->used)
4092 return;
4093
4094 newreg = REGNO (in_rtx);
4095 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4096 to reach here as part of a REG_NOTE. */
4097 if (newreg >= FIRST_PSEUDO_REGISTER)
4098 {
4099 in_rtx->used = 1;
4100 return;
4101 }
4102 newreg = LEAF_REG_REMAP (newreg);
4103 if (newreg < 0)
4104 abort ();
4105 regs_ever_live[REGNO (in_rtx)] = 0;
4106 regs_ever_live[newreg] = 1;
4107 REGNO (in_rtx) = newreg;
4108 in_rtx->used = 1;
4109 }
4110
4111 if (INSN_P (in_rtx))
4112 {
4113 /* Inside a SEQUENCE, we find insns.
4114 Renumber just the patterns of these insns,
4115 just as we do for the top-level insns. */
4116 leaf_renumber_regs_insn (PATTERN (in_rtx));
4117 return;
4118 }
4119
4120 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4121
4122 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4123 switch (*format_ptr++)
4124 {
4125 case 'e':
4126 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4127 break;
4128
4129 case 'E':
4130 if (NULL != XVEC (in_rtx, i))
4131 {
4132 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4133 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4134 }
4135 break;
4136
4137 case 'S':
4138 case 's':
4139 case '0':
4140 case 'i':
4141 case 'w':
4142 case 'n':
4143 case 'u':
4144 break;
4145
4146 default:
4147 abort ();
4148 }
4149 }
4150 #endif