pass cfun to pass::execute
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
22
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
28
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
33
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
36
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
40
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
44
45 #include "config.h"
46 #include "system.h"
47 #include "coretypes.h"
48 #include "tm.h"
49
50 #include "tree.h"
51 #include "varasm.h"
52 #include "rtl.h"
53 #include "tm_p.h"
54 #include "regs.h"
55 #include "insn-config.h"
56 #include "insn-attr.h"
57 #include "recog.h"
58 #include "conditions.h"
59 #include "flags.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "rtl-error.h"
65 #include "toplev.h" /* exact_log2, floor_log2 */
66 #include "reload.h"
67 #include "intl.h"
68 #include "basic-block.h"
69 #include "target.h"
70 #include "targhooks.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "tree-pass.h"
74 #include "cgraph.h"
75 #include "tree-ssa.h"
76 #include "coverage.h"
77 #include "df.h"
78 #include "ggc.h"
79 #include "cfgloop.h"
80 #include "params.h"
81 #include "tree-pretty-print.h" /* for dump_function_header */
82 #include "asan.h"
83
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
88
89 #include "dwarf2out.h"
90
91 #ifdef DBX_DEBUGGING_INFO
92 #include "dbxout.h"
93 #endif
94
95 #ifdef SDB_DEBUGGING_INFO
96 #include "sdbout.h"
97 #endif
98
99 /* Most ports that aren't using cc0 don't need to define CC_STATUS_INIT.
100 So define a null default for it to save conditionalization later. */
101 #ifndef CC_STATUS_INIT
102 #define CC_STATUS_INIT
103 #endif
104
105 /* Is the given character a logical line separator for the assembler? */
106 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
107 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
108 #endif
109
110 #ifndef JUMP_TABLES_IN_TEXT_SECTION
111 #define JUMP_TABLES_IN_TEXT_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_NOTE 1
116 #define SEEN_EMITTED 2
117
118 /* Last insn processed by final_scan_insn. */
119 static rtx debug_insn;
120 rtx current_output_insn;
121
122 /* Line number of last NOTE. */
123 static int last_linenum;
124
125 /* Last discriminator written to assembly. */
126 static int last_discriminator;
127
128 /* Discriminator of current block. */
129 static int discriminator;
130
131 /* Highest line number in current block. */
132 static int high_block_linenum;
133
134 /* Likewise for function. */
135 static int high_function_linenum;
136
137 /* Filename of last NOTE. */
138 static const char *last_filename;
139
140 /* Override filename and line number. */
141 static const char *override_filename;
142 static int override_linenum;
143
144 /* Whether to force emission of a line note before the next insn. */
145 static bool force_source_line = false;
146
147 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
148
149 /* Nonzero while outputting an `asm' with operands.
150 This means that inconsistencies are the user's fault, so don't die.
151 The precise value is the insn being output, to pass to error_for_asm. */
152 rtx this_is_asm_operands;
153
154 /* Number of operands of this insn, for an `asm' with operands. */
155 static unsigned int insn_noperands;
156
157 /* Compare optimization flag. */
158
159 static rtx last_ignored_compare = 0;
160
161 /* Assign a unique number to each insn that is output.
162 This can be used to generate unique local labels. */
163
164 static int insn_counter = 0;
165
166 #ifdef HAVE_cc0
167 /* This variable contains machine-dependent flags (defined in tm.h)
168 set and examined by output routines
169 that describe how to interpret the condition codes properly. */
170
171 CC_STATUS cc_status;
172
173 /* During output of an insn, this contains a copy of cc_status
174 from before the insn. */
175
176 CC_STATUS cc_prev_status;
177 #endif
178
179 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180
181 static int block_depth;
182
183 /* Nonzero if have enabled APP processing of our assembler output. */
184
185 static int app_on;
186
187 /* If we are outputting an insn sequence, this contains the sequence rtx.
188 Zero otherwise. */
189
190 rtx final_sequence;
191
192 #ifdef ASSEMBLER_DIALECT
193
194 /* Number of the assembler dialect to use, starting at 0. */
195 static int dialect_number;
196 #endif
197
198 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
199 rtx current_insn_predicate;
200
201 /* True if printing into -fdump-final-insns= dump. */
202 bool final_insns_dump_p;
203
204 /* True if profile_function should be called, but hasn't been called yet. */
205 static bool need_profile_function;
206
207 static int asm_insn_count (rtx);
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx, bool *);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 #ifdef LEAF_REGISTERS
217 static void leaf_renumber_regs (rtx);
218 #endif
219 #ifdef HAVE_cc0
220 static int alter_cond (rtx);
221 #endif
222 #ifndef ADDR_VEC_ALIGN
223 static int final_addr_vec_align (rtx);
224 #endif
225 static int align_fuzz (rtx, rtx, int, unsigned);
226 \f
227 /* Initialize data in final at the beginning of a compilation. */
228
229 void
230 init_final (const char *filename ATTRIBUTE_UNUSED)
231 {
232 app_on = 0;
233 final_sequence = 0;
234
235 #ifdef ASSEMBLER_DIALECT
236 dialect_number = ASSEMBLER_DIALECT;
237 #endif
238 }
239
240 /* Default target function prologue and epilogue assembler output.
241
242 If not overridden for epilogue code, then the function body itself
243 contains return instructions wherever needed. */
244 void
245 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
246 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
247 {
248 }
249
250 void
251 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
252 tree decl ATTRIBUTE_UNUSED,
253 bool new_is_cold ATTRIBUTE_UNUSED)
254 {
255 }
256
257 /* Default target hook that outputs nothing to a stream. */
258 void
259 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
260 {
261 }
262
263 /* Enable APP processing of subsequent output.
264 Used before the output from an `asm' statement. */
265
266 void
267 app_enable (void)
268 {
269 if (! app_on)
270 {
271 fputs (ASM_APP_ON, asm_out_file);
272 app_on = 1;
273 }
274 }
275
276 /* Disable APP processing of subsequent output.
277 Called from varasm.c before most kinds of output. */
278
279 void
280 app_disable (void)
281 {
282 if (app_on)
283 {
284 fputs (ASM_APP_OFF, asm_out_file);
285 app_on = 0;
286 }
287 }
288 \f
289 /* Return the number of slots filled in the current
290 delayed branch sequence (we don't count the insn needing the
291 delay slot). Zero if not in a delayed branch sequence. */
292
293 #ifdef DELAY_SLOTS
294 int
295 dbr_sequence_length (void)
296 {
297 if (final_sequence != 0)
298 return XVECLEN (final_sequence, 0) - 1;
299 else
300 return 0;
301 }
302 #endif
303 \f
304 /* The next two pages contain routines used to compute the length of an insn
305 and to shorten branches. */
306
307 /* Arrays for insn lengths, and addresses. The latter is referenced by
308 `insn_current_length'. */
309
310 static int *insn_lengths;
311
312 vec<int> insn_addresses_;
313
314 /* Max uid for which the above arrays are valid. */
315 static int insn_lengths_max_uid;
316
317 /* Address of insn being processed. Used by `insn_current_length'. */
318 int insn_current_address;
319
320 /* Address of insn being processed in previous iteration. */
321 int insn_last_address;
322
323 /* known invariant alignment of insn being processed. */
324 int insn_current_align;
325
326 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
327 gives the next following alignment insn that increases the known
328 alignment, or NULL_RTX if there is no such insn.
329 For any alignment obtained this way, we can again index uid_align with
330 its uid to obtain the next following align that in turn increases the
331 alignment, till we reach NULL_RTX; the sequence obtained this way
332 for each insn we'll call the alignment chain of this insn in the following
333 comments. */
334
335 struct label_alignment
336 {
337 short alignment;
338 short max_skip;
339 };
340
341 static rtx *uid_align;
342 static int *uid_shuid;
343 static struct label_alignment *label_align;
344
345 /* Indicate that branch shortening hasn't yet been done. */
346
347 void
348 init_insn_lengths (void)
349 {
350 if (uid_shuid)
351 {
352 free (uid_shuid);
353 uid_shuid = 0;
354 }
355 if (insn_lengths)
356 {
357 free (insn_lengths);
358 insn_lengths = 0;
359 insn_lengths_max_uid = 0;
360 }
361 if (HAVE_ATTR_length)
362 INSN_ADDRESSES_FREE ();
363 if (uid_align)
364 {
365 free (uid_align);
366 uid_align = 0;
367 }
368 }
369
370 /* Obtain the current length of an insn. If branch shortening has been done,
371 get its actual length. Otherwise, use FALLBACK_FN to calculate the
372 length. */
373 static inline int
374 get_attr_length_1 (rtx insn, int (*fallback_fn) (rtx))
375 {
376 rtx body;
377 int i;
378 int length = 0;
379
380 if (!HAVE_ATTR_length)
381 return 0;
382
383 if (insn_lengths_max_uid > INSN_UID (insn))
384 return insn_lengths[INSN_UID (insn)];
385 else
386 switch (GET_CODE (insn))
387 {
388 case NOTE:
389 case BARRIER:
390 case CODE_LABEL:
391 case DEBUG_INSN:
392 return 0;
393
394 case CALL_INSN:
395 case JUMP_INSN:
396 length = fallback_fn (insn);
397 break;
398
399 case INSN:
400 body = PATTERN (insn);
401 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
402 return 0;
403
404 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
405 length = asm_insn_count (body) * fallback_fn (insn);
406 else if (GET_CODE (body) == SEQUENCE)
407 for (i = 0; i < XVECLEN (body, 0); i++)
408 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
409 else
410 length = fallback_fn (insn);
411 break;
412
413 default:
414 break;
415 }
416
417 #ifdef ADJUST_INSN_LENGTH
418 ADJUST_INSN_LENGTH (insn, length);
419 #endif
420 return length;
421 }
422
423 /* Obtain the current length of an insn. If branch shortening has been done,
424 get its actual length. Otherwise, get its maximum length. */
425 int
426 get_attr_length (rtx insn)
427 {
428 return get_attr_length_1 (insn, insn_default_length);
429 }
430
431 /* Obtain the current length of an insn. If branch shortening has been done,
432 get its actual length. Otherwise, get its minimum length. */
433 int
434 get_attr_min_length (rtx insn)
435 {
436 return get_attr_length_1 (insn, insn_min_length);
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LOOP_ALIGN
485 #define LOOP_ALIGN(LABEL) align_loops_log
486 #endif
487
488 #ifndef LABEL_ALIGN_AFTER_BARRIER
489 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
490 #endif
491
492 #ifndef JUMP_ALIGN
493 #define JUMP_ALIGN(LABEL) align_jumps_log
494 #endif
495
496 int
497 default_label_align_after_barrier_max_skip (rtx insn ATTRIBUTE_UNUSED)
498 {
499 return 0;
500 }
501
502 int
503 default_loop_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
504 {
505 return align_loops_max_skip;
506 }
507
508 int
509 default_label_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
510 {
511 return align_labels_max_skip;
512 }
513
514 int
515 default_jump_align_max_skip (rtx insn ATTRIBUTE_UNUSED)
516 {
517 return align_jumps_max_skip;
518 }
519
520 #ifndef ADDR_VEC_ALIGN
521 static int
522 final_addr_vec_align (rtx addr_vec)
523 {
524 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
525
526 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
527 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
528 return exact_log2 (align);
529
530 }
531
532 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
533 #endif
534
535 #ifndef INSN_LENGTH_ALIGNMENT
536 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
537 #endif
538
539 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
540
541 static int min_labelno, max_labelno;
542
543 #define LABEL_TO_ALIGNMENT(LABEL) \
544 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
545
546 #define LABEL_TO_MAX_SKIP(LABEL) \
547 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
548
549 /* For the benefit of port specific code do this also as a function. */
550
551 int
552 label_to_alignment (rtx label)
553 {
554 if (CODE_LABEL_NUMBER (label) <= max_labelno)
555 return LABEL_TO_ALIGNMENT (label);
556 return 0;
557 }
558
559 int
560 label_to_max_skip (rtx label)
561 {
562 if (CODE_LABEL_NUMBER (label) <= max_labelno)
563 return LABEL_TO_MAX_SKIP (label);
564 return 0;
565 }
566
567 /* The differences in addresses
568 between a branch and its target might grow or shrink depending on
569 the alignment the start insn of the range (the branch for a forward
570 branch or the label for a backward branch) starts out on; if these
571 differences are used naively, they can even oscillate infinitely.
572 We therefore want to compute a 'worst case' address difference that
573 is independent of the alignment the start insn of the range end
574 up on, and that is at least as large as the actual difference.
575 The function align_fuzz calculates the amount we have to add to the
576 naively computed difference, by traversing the part of the alignment
577 chain of the start insn of the range that is in front of the end insn
578 of the range, and considering for each alignment the maximum amount
579 that it might contribute to a size increase.
580
581 For casesi tables, we also want to know worst case minimum amounts of
582 address difference, in case a machine description wants to introduce
583 some common offset that is added to all offsets in a table.
584 For this purpose, align_fuzz with a growth argument of 0 computes the
585 appropriate adjustment. */
586
587 /* Compute the maximum delta by which the difference of the addresses of
588 START and END might grow / shrink due to a different address for start
589 which changes the size of alignment insns between START and END.
590 KNOWN_ALIGN_LOG is the alignment known for START.
591 GROWTH should be ~0 if the objective is to compute potential code size
592 increase, and 0 if the objective is to compute potential shrink.
593 The return value is undefined for any other value of GROWTH. */
594
595 static int
596 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
597 {
598 int uid = INSN_UID (start);
599 rtx align_label;
600 int known_align = 1 << known_align_log;
601 int end_shuid = INSN_SHUID (end);
602 int fuzz = 0;
603
604 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
605 {
606 int align_addr, new_align;
607
608 uid = INSN_UID (align_label);
609 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
610 if (uid_shuid[uid] > end_shuid)
611 break;
612 known_align_log = LABEL_TO_ALIGNMENT (align_label);
613 new_align = 1 << known_align_log;
614 if (new_align < known_align)
615 continue;
616 fuzz += (-align_addr ^ growth) & (new_align - known_align);
617 known_align = new_align;
618 }
619 return fuzz;
620 }
621
622 /* Compute a worst-case reference address of a branch so that it
623 can be safely used in the presence of aligned labels. Since the
624 size of the branch itself is unknown, the size of the branch is
625 not included in the range. I.e. for a forward branch, the reference
626 address is the end address of the branch as known from the previous
627 branch shortening pass, minus a value to account for possible size
628 increase due to alignment. For a backward branch, it is the start
629 address of the branch as known from the current pass, plus a value
630 to account for possible size increase due to alignment.
631 NB.: Therefore, the maximum offset allowed for backward branches needs
632 to exclude the branch size. */
633
634 int
635 insn_current_reference_address (rtx branch)
636 {
637 rtx dest, seq;
638 int seq_uid;
639
640 if (! INSN_ADDRESSES_SET_P ())
641 return 0;
642
643 seq = NEXT_INSN (PREV_INSN (branch));
644 seq_uid = INSN_UID (seq);
645 if (!JUMP_P (branch))
646 /* This can happen for example on the PA; the objective is to know the
647 offset to address something in front of the start of the function.
648 Thus, we can treat it like a backward branch.
649 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
650 any alignment we'd encounter, so we skip the call to align_fuzz. */
651 return insn_current_address;
652 dest = JUMP_LABEL (branch);
653
654 /* BRANCH has no proper alignment chain set, so use SEQ.
655 BRANCH also has no INSN_SHUID. */
656 if (INSN_SHUID (seq) < INSN_SHUID (dest))
657 {
658 /* Forward branch. */
659 return (insn_last_address + insn_lengths[seq_uid]
660 - align_fuzz (seq, dest, length_unit_log, ~0));
661 }
662 else
663 {
664 /* Backward branch. */
665 return (insn_current_address
666 + align_fuzz (dest, seq, length_unit_log, ~0));
667 }
668 }
669 \f
670 /* Compute branch alignments based on frequency information in the
671 CFG. */
672
673 unsigned int
674 compute_alignments (void)
675 {
676 int log, max_skip, max_log;
677 basic_block bb;
678 int freq_max = 0;
679 int freq_threshold = 0;
680
681 if (label_align)
682 {
683 free (label_align);
684 label_align = 0;
685 }
686
687 max_labelno = max_label_num ();
688 min_labelno = get_first_label_num ();
689 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
690
691 /* If not optimizing or optimizing for size, don't assign any alignments. */
692 if (! optimize || optimize_function_for_size_p (cfun))
693 return 0;
694
695 if (dump_file)
696 {
697 dump_reg_info (dump_file);
698 dump_flow_info (dump_file, TDF_DETAILS);
699 flow_loops_dump (dump_file, NULL, 1);
700 }
701 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
702 FOR_EACH_BB_FN (bb, cfun)
703 if (bb->frequency > freq_max)
704 freq_max = bb->frequency;
705 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
706
707 if (dump_file)
708 fprintf (dump_file, "freq_max: %i\n",freq_max);
709 FOR_EACH_BB_FN (bb, cfun)
710 {
711 rtx label = BB_HEAD (bb);
712 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
713 edge e;
714 edge_iterator ei;
715
716 if (!LABEL_P (label)
717 || optimize_bb_for_size_p (bb))
718 {
719 if (dump_file)
720 fprintf (dump_file,
721 "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
722 bb->index, bb->frequency, bb->loop_father->num,
723 bb_loop_depth (bb));
724 continue;
725 }
726 max_log = LABEL_ALIGN (label);
727 max_skip = targetm.asm_out.label_align_max_skip (label);
728
729 FOR_EACH_EDGE (e, ei, bb->preds)
730 {
731 if (e->flags & EDGE_FALLTHRU)
732 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
733 else
734 branch_frequency += EDGE_FREQUENCY (e);
735 }
736 if (dump_file)
737 {
738 fprintf (dump_file, "BB %4i freq %4i loop %2i loop_depth"
739 " %2i fall %4i branch %4i",
740 bb->index, bb->frequency, bb->loop_father->num,
741 bb_loop_depth (bb),
742 fallthru_frequency, branch_frequency);
743 if (!bb->loop_father->inner && bb->loop_father->num)
744 fprintf (dump_file, " inner_loop");
745 if (bb->loop_father->header == bb)
746 fprintf (dump_file, " loop_header");
747 fprintf (dump_file, "\n");
748 }
749
750 /* There are two purposes to align block with no fallthru incoming edge:
751 1) to avoid fetch stalls when branch destination is near cache boundary
752 2) to improve cache efficiency in case the previous block is not executed
753 (so it does not need to be in the cache).
754
755 We to catch first case, we align frequently executed blocks.
756 To catch the second, we align blocks that are executed more frequently
757 than the predecessor and the predecessor is likely to not be executed
758 when function is called. */
759
760 if (!has_fallthru
761 && (branch_frequency > freq_threshold
762 || (bb->frequency > bb->prev_bb->frequency * 10
763 && (bb->prev_bb->frequency
764 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency / 2))))
765 {
766 log = JUMP_ALIGN (label);
767 if (dump_file)
768 fprintf (dump_file, " jump alignment added.\n");
769 if (max_log < log)
770 {
771 max_log = log;
772 max_skip = targetm.asm_out.jump_align_max_skip (label);
773 }
774 }
775 /* In case block is frequent and reached mostly by non-fallthru edge,
776 align it. It is most likely a first block of loop. */
777 if (has_fallthru
778 && !(single_succ_p (bb)
779 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
780 && optimize_bb_for_speed_p (bb)
781 && branch_frequency + fallthru_frequency > freq_threshold
782 && (branch_frequency
783 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
784 {
785 log = LOOP_ALIGN (label);
786 if (dump_file)
787 fprintf (dump_file, " internal loop alignment added.\n");
788 if (max_log < log)
789 {
790 max_log = log;
791 max_skip = targetm.asm_out.loop_align_max_skip (label);
792 }
793 }
794 LABEL_TO_ALIGNMENT (label) = max_log;
795 LABEL_TO_MAX_SKIP (label) = max_skip;
796 }
797
798 loop_optimizer_finalize ();
799 free_dominance_info (CDI_DOMINATORS);
800 return 0;
801 }
802
803 /* Grow the LABEL_ALIGN array after new labels are created. */
804
805 static void
806 grow_label_align (void)
807 {
808 int old = max_labelno;
809 int n_labels;
810 int n_old_labels;
811
812 max_labelno = max_label_num ();
813
814 n_labels = max_labelno - min_labelno + 1;
815 n_old_labels = old - min_labelno + 1;
816
817 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
818
819 /* Range of labels grows monotonically in the function. Failing here
820 means that the initialization of array got lost. */
821 gcc_assert (n_old_labels <= n_labels);
822
823 memset (label_align + n_old_labels, 0,
824 (n_labels - n_old_labels) * sizeof (struct label_alignment));
825 }
826
827 /* Update the already computed alignment information. LABEL_PAIRS is a vector
828 made up of pairs of labels for which the alignment information of the first
829 element will be copied from that of the second element. */
830
831 void
832 update_alignments (vec<rtx> &label_pairs)
833 {
834 unsigned int i = 0;
835 rtx iter, label = NULL_RTX;
836
837 if (max_labelno != max_label_num ())
838 grow_label_align ();
839
840 FOR_EACH_VEC_ELT (label_pairs, i, iter)
841 if (i & 1)
842 {
843 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
844 LABEL_TO_MAX_SKIP (label) = LABEL_TO_MAX_SKIP (iter);
845 }
846 else
847 label = iter;
848 }
849
850 namespace {
851
852 const pass_data pass_data_compute_alignments =
853 {
854 RTL_PASS, /* type */
855 "alignments", /* name */
856 OPTGROUP_NONE, /* optinfo_flags */
857 true, /* has_execute */
858 TV_NONE, /* tv_id */
859 0, /* properties_required */
860 0, /* properties_provided */
861 0, /* properties_destroyed */
862 0, /* todo_flags_start */
863 TODO_verify_rtl_sharing, /* todo_flags_finish */
864 };
865
866 class pass_compute_alignments : public rtl_opt_pass
867 {
868 public:
869 pass_compute_alignments (gcc::context *ctxt)
870 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
871 {}
872
873 /* opt_pass methods: */
874 virtual unsigned int execute (function *) { return compute_alignments (); }
875
876 }; // class pass_compute_alignments
877
878 } // anon namespace
879
880 rtl_opt_pass *
881 make_pass_compute_alignments (gcc::context *ctxt)
882 {
883 return new pass_compute_alignments (ctxt);
884 }
885
886 \f
887 /* Make a pass over all insns and compute their actual lengths by shortening
888 any branches of variable length if possible. */
889
890 /* shorten_branches might be called multiple times: for example, the SH
891 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
892 In order to do this, it needs proper length information, which it obtains
893 by calling shorten_branches. This cannot be collapsed with
894 shorten_branches itself into a single pass unless we also want to integrate
895 reorg.c, since the branch splitting exposes new instructions with delay
896 slots. */
897
898 void
899 shorten_branches (rtx first)
900 {
901 rtx insn;
902 int max_uid;
903 int i;
904 int max_log;
905 int max_skip;
906 #define MAX_CODE_ALIGN 16
907 rtx seq;
908 int something_changed = 1;
909 char *varying_length;
910 rtx body;
911 int uid;
912 rtx align_tab[MAX_CODE_ALIGN];
913
914 /* Compute maximum UID and allocate label_align / uid_shuid. */
915 max_uid = get_max_uid ();
916
917 /* Free uid_shuid before reallocating it. */
918 free (uid_shuid);
919
920 uid_shuid = XNEWVEC (int, max_uid);
921
922 if (max_labelno != max_label_num ())
923 grow_label_align ();
924
925 /* Initialize label_align and set up uid_shuid to be strictly
926 monotonically rising with insn order. */
927 /* We use max_log here to keep track of the maximum alignment we want to
928 impose on the next CODE_LABEL (or the current one if we are processing
929 the CODE_LABEL itself). */
930
931 max_log = 0;
932 max_skip = 0;
933
934 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
935 {
936 int log;
937
938 INSN_SHUID (insn) = i++;
939 if (INSN_P (insn))
940 continue;
941
942 if (LABEL_P (insn))
943 {
944 rtx next;
945 bool next_is_jumptable;
946
947 /* Merge in alignments computed by compute_alignments. */
948 log = LABEL_TO_ALIGNMENT (insn);
949 if (max_log < log)
950 {
951 max_log = log;
952 max_skip = LABEL_TO_MAX_SKIP (insn);
953 }
954
955 next = next_nonnote_insn (insn);
956 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
957 if (!next_is_jumptable)
958 {
959 log = LABEL_ALIGN (insn);
960 if (max_log < log)
961 {
962 max_log = log;
963 max_skip = targetm.asm_out.label_align_max_skip (insn);
964 }
965 }
966 /* ADDR_VECs only take room if read-only data goes into the text
967 section. */
968 if ((JUMP_TABLES_IN_TEXT_SECTION
969 || readonly_data_section == text_section)
970 && next_is_jumptable)
971 {
972 log = ADDR_VEC_ALIGN (next);
973 if (max_log < log)
974 {
975 max_log = log;
976 max_skip = targetm.asm_out.label_align_max_skip (insn);
977 }
978 }
979 LABEL_TO_ALIGNMENT (insn) = max_log;
980 LABEL_TO_MAX_SKIP (insn) = max_skip;
981 max_log = 0;
982 max_skip = 0;
983 }
984 else if (BARRIER_P (insn))
985 {
986 rtx label;
987
988 for (label = insn; label && ! INSN_P (label);
989 label = NEXT_INSN (label))
990 if (LABEL_P (label))
991 {
992 log = LABEL_ALIGN_AFTER_BARRIER (insn);
993 if (max_log < log)
994 {
995 max_log = log;
996 max_skip = targetm.asm_out.label_align_after_barrier_max_skip (label);
997 }
998 break;
999 }
1000 }
1001 }
1002 if (!HAVE_ATTR_length)
1003 return;
1004
1005 /* Allocate the rest of the arrays. */
1006 insn_lengths = XNEWVEC (int, max_uid);
1007 insn_lengths_max_uid = max_uid;
1008 /* Syntax errors can lead to labels being outside of the main insn stream.
1009 Initialize insn_addresses, so that we get reproducible results. */
1010 INSN_ADDRESSES_ALLOC (max_uid);
1011
1012 varying_length = XCNEWVEC (char, max_uid);
1013
1014 /* Initialize uid_align. We scan instructions
1015 from end to start, and keep in align_tab[n] the last seen insn
1016 that does an alignment of at least n+1, i.e. the successor
1017 in the alignment chain for an insn that does / has a known
1018 alignment of n. */
1019 uid_align = XCNEWVEC (rtx, max_uid);
1020
1021 for (i = MAX_CODE_ALIGN; --i >= 0;)
1022 align_tab[i] = NULL_RTX;
1023 seq = get_last_insn ();
1024 for (; seq; seq = PREV_INSN (seq))
1025 {
1026 int uid = INSN_UID (seq);
1027 int log;
1028 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
1029 uid_align[uid] = align_tab[0];
1030 if (log)
1031 {
1032 /* Found an alignment label. */
1033 uid_align[uid] = align_tab[log];
1034 for (i = log - 1; i >= 0; i--)
1035 align_tab[i] = seq;
1036 }
1037 }
1038
1039 /* When optimizing, we start assuming minimum length, and keep increasing
1040 lengths as we find the need for this, till nothing changes.
1041 When not optimizing, we start assuming maximum lengths, and
1042 do a single pass to update the lengths. */
1043 bool increasing = optimize != 0;
1044
1045 #ifdef CASE_VECTOR_SHORTEN_MODE
1046 if (optimize)
1047 {
1048 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1049 label fields. */
1050
1051 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1052 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1053 int rel;
1054
1055 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1056 {
1057 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1058 int len, i, min, max, insn_shuid;
1059 int min_align;
1060 addr_diff_vec_flags flags;
1061
1062 if (! JUMP_TABLE_DATA_P (insn)
1063 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1064 continue;
1065 pat = PATTERN (insn);
1066 len = XVECLEN (pat, 1);
1067 gcc_assert (len > 0);
1068 min_align = MAX_CODE_ALIGN;
1069 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1070 {
1071 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1072 int shuid = INSN_SHUID (lab);
1073 if (shuid < min)
1074 {
1075 min = shuid;
1076 min_lab = lab;
1077 }
1078 if (shuid > max)
1079 {
1080 max = shuid;
1081 max_lab = lab;
1082 }
1083 if (min_align > LABEL_TO_ALIGNMENT (lab))
1084 min_align = LABEL_TO_ALIGNMENT (lab);
1085 }
1086 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1087 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1088 insn_shuid = INSN_SHUID (insn);
1089 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1090 memset (&flags, 0, sizeof (flags));
1091 flags.min_align = min_align;
1092 flags.base_after_vec = rel > insn_shuid;
1093 flags.min_after_vec = min > insn_shuid;
1094 flags.max_after_vec = max > insn_shuid;
1095 flags.min_after_base = min > rel;
1096 flags.max_after_base = max > rel;
1097 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1098
1099 if (increasing)
1100 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1101 }
1102 }
1103 #endif /* CASE_VECTOR_SHORTEN_MODE */
1104
1105 /* Compute initial lengths, addresses, and varying flags for each insn. */
1106 int (*length_fun) (rtx) = increasing ? insn_min_length : insn_default_length;
1107
1108 for (insn_current_address = 0, insn = first;
1109 insn != 0;
1110 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1111 {
1112 uid = INSN_UID (insn);
1113
1114 insn_lengths[uid] = 0;
1115
1116 if (LABEL_P (insn))
1117 {
1118 int log = LABEL_TO_ALIGNMENT (insn);
1119 if (log)
1120 {
1121 int align = 1 << log;
1122 int new_address = (insn_current_address + align - 1) & -align;
1123 insn_lengths[uid] = new_address - insn_current_address;
1124 }
1125 }
1126
1127 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1128
1129 if (NOTE_P (insn) || BARRIER_P (insn)
1130 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1131 continue;
1132 if (INSN_DELETED_P (insn))
1133 continue;
1134
1135 body = PATTERN (insn);
1136 if (JUMP_TABLE_DATA_P (insn))
1137 {
1138 /* This only takes room if read-only data goes into the text
1139 section. */
1140 if (JUMP_TABLES_IN_TEXT_SECTION
1141 || readonly_data_section == text_section)
1142 insn_lengths[uid] = (XVECLEN (body,
1143 GET_CODE (body) == ADDR_DIFF_VEC)
1144 * GET_MODE_SIZE (GET_MODE (body)));
1145 /* Alignment is handled by ADDR_VEC_ALIGN. */
1146 }
1147 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1148 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1149 else if (GET_CODE (body) == SEQUENCE)
1150 {
1151 int i;
1152 int const_delay_slots;
1153 #ifdef DELAY_SLOTS
1154 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1155 #else
1156 const_delay_slots = 0;
1157 #endif
1158 int (*inner_length_fun) (rtx)
1159 = const_delay_slots ? length_fun : insn_default_length;
1160 /* Inside a delay slot sequence, we do not do any branch shortening
1161 if the shortening could change the number of delay slots
1162 of the branch. */
1163 for (i = 0; i < XVECLEN (body, 0); i++)
1164 {
1165 rtx inner_insn = XVECEXP (body, 0, i);
1166 int inner_uid = INSN_UID (inner_insn);
1167 int inner_length;
1168
1169 if (GET_CODE (body) == ASM_INPUT
1170 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1171 inner_length = (asm_insn_count (PATTERN (inner_insn))
1172 * insn_default_length (inner_insn));
1173 else
1174 inner_length = inner_length_fun (inner_insn);
1175
1176 insn_lengths[inner_uid] = inner_length;
1177 if (const_delay_slots)
1178 {
1179 if ((varying_length[inner_uid]
1180 = insn_variable_length_p (inner_insn)) != 0)
1181 varying_length[uid] = 1;
1182 INSN_ADDRESSES (inner_uid) = (insn_current_address
1183 + insn_lengths[uid]);
1184 }
1185 else
1186 varying_length[inner_uid] = 0;
1187 insn_lengths[uid] += inner_length;
1188 }
1189 }
1190 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1191 {
1192 insn_lengths[uid] = length_fun (insn);
1193 varying_length[uid] = insn_variable_length_p (insn);
1194 }
1195
1196 /* If needed, do any adjustment. */
1197 #ifdef ADJUST_INSN_LENGTH
1198 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1199 if (insn_lengths[uid] < 0)
1200 fatal_insn ("negative insn length", insn);
1201 #endif
1202 }
1203
1204 /* Now loop over all the insns finding varying length insns. For each,
1205 get the current insn length. If it has changed, reflect the change.
1206 When nothing changes for a full pass, we are done. */
1207
1208 while (something_changed)
1209 {
1210 something_changed = 0;
1211 insn_current_align = MAX_CODE_ALIGN - 1;
1212 for (insn_current_address = 0, insn = first;
1213 insn != 0;
1214 insn = NEXT_INSN (insn))
1215 {
1216 int new_length;
1217 #ifdef ADJUST_INSN_LENGTH
1218 int tmp_length;
1219 #endif
1220 int length_align;
1221
1222 uid = INSN_UID (insn);
1223
1224 if (LABEL_P (insn))
1225 {
1226 int log = LABEL_TO_ALIGNMENT (insn);
1227
1228 #ifdef CASE_VECTOR_SHORTEN_MODE
1229 /* If the mode of a following jump table was changed, we
1230 may need to update the alignment of this label. */
1231 rtx next;
1232 bool next_is_jumptable;
1233
1234 next = next_nonnote_insn (insn);
1235 next_is_jumptable = next && JUMP_TABLE_DATA_P (next);
1236 if ((JUMP_TABLES_IN_TEXT_SECTION
1237 || readonly_data_section == text_section)
1238 && next_is_jumptable)
1239 {
1240 int newlog = ADDR_VEC_ALIGN (next);
1241 if (newlog != log)
1242 {
1243 log = newlog;
1244 LABEL_TO_ALIGNMENT (insn) = log;
1245 something_changed = 1;
1246 }
1247 }
1248 #endif
1249
1250 if (log > insn_current_align)
1251 {
1252 int align = 1 << log;
1253 int new_address= (insn_current_address + align - 1) & -align;
1254 insn_lengths[uid] = new_address - insn_current_address;
1255 insn_current_align = log;
1256 insn_current_address = new_address;
1257 }
1258 else
1259 insn_lengths[uid] = 0;
1260 INSN_ADDRESSES (uid) = insn_current_address;
1261 continue;
1262 }
1263
1264 length_align = INSN_LENGTH_ALIGNMENT (insn);
1265 if (length_align < insn_current_align)
1266 insn_current_align = length_align;
1267
1268 insn_last_address = INSN_ADDRESSES (uid);
1269 INSN_ADDRESSES (uid) = insn_current_address;
1270
1271 #ifdef CASE_VECTOR_SHORTEN_MODE
1272 if (optimize
1273 && JUMP_TABLE_DATA_P (insn)
1274 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1275 {
1276 rtx body = PATTERN (insn);
1277 int old_length = insn_lengths[uid];
1278 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1279 rtx min_lab = XEXP (XEXP (body, 2), 0);
1280 rtx max_lab = XEXP (XEXP (body, 3), 0);
1281 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1282 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1283 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1284 rtx prev;
1285 int rel_align = 0;
1286 addr_diff_vec_flags flags;
1287 enum machine_mode vec_mode;
1288
1289 /* Avoid automatic aggregate initialization. */
1290 flags = ADDR_DIFF_VEC_FLAGS (body);
1291
1292 /* Try to find a known alignment for rel_lab. */
1293 for (prev = rel_lab;
1294 prev
1295 && ! insn_lengths[INSN_UID (prev)]
1296 && ! (varying_length[INSN_UID (prev)] & 1);
1297 prev = PREV_INSN (prev))
1298 if (varying_length[INSN_UID (prev)] & 2)
1299 {
1300 rel_align = LABEL_TO_ALIGNMENT (prev);
1301 break;
1302 }
1303
1304 /* See the comment on addr_diff_vec_flags in rtl.h for the
1305 meaning of the flags values. base: REL_LAB vec: INSN */
1306 /* Anything after INSN has still addresses from the last
1307 pass; adjust these so that they reflect our current
1308 estimate for this pass. */
1309 if (flags.base_after_vec)
1310 rel_addr += insn_current_address - insn_last_address;
1311 if (flags.min_after_vec)
1312 min_addr += insn_current_address - insn_last_address;
1313 if (flags.max_after_vec)
1314 max_addr += insn_current_address - insn_last_address;
1315 /* We want to know the worst case, i.e. lowest possible value
1316 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1317 its offset is positive, and we have to be wary of code shrink;
1318 otherwise, it is negative, and we have to be vary of code
1319 size increase. */
1320 if (flags.min_after_base)
1321 {
1322 /* If INSN is between REL_LAB and MIN_LAB, the size
1323 changes we are about to make can change the alignment
1324 within the observed offset, therefore we have to break
1325 it up into two parts that are independent. */
1326 if (! flags.base_after_vec && flags.min_after_vec)
1327 {
1328 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1329 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1330 }
1331 else
1332 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1333 }
1334 else
1335 {
1336 if (flags.base_after_vec && ! flags.min_after_vec)
1337 {
1338 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1339 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1340 }
1341 else
1342 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1343 }
1344 /* Likewise, determine the highest lowest possible value
1345 for the offset of MAX_LAB. */
1346 if (flags.max_after_base)
1347 {
1348 if (! flags.base_after_vec && flags.max_after_vec)
1349 {
1350 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1351 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1352 }
1353 else
1354 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1355 }
1356 else
1357 {
1358 if (flags.base_after_vec && ! flags.max_after_vec)
1359 {
1360 max_addr += align_fuzz (max_lab, insn, 0, 0);
1361 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1362 }
1363 else
1364 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1365 }
1366 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1367 max_addr - rel_addr, body);
1368 if (!increasing
1369 || (GET_MODE_SIZE (vec_mode)
1370 >= GET_MODE_SIZE (GET_MODE (body))))
1371 PUT_MODE (body, vec_mode);
1372 if (JUMP_TABLES_IN_TEXT_SECTION
1373 || readonly_data_section == text_section)
1374 {
1375 insn_lengths[uid]
1376 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1377 insn_current_address += insn_lengths[uid];
1378 if (insn_lengths[uid] != old_length)
1379 something_changed = 1;
1380 }
1381
1382 continue;
1383 }
1384 #endif /* CASE_VECTOR_SHORTEN_MODE */
1385
1386 if (! (varying_length[uid]))
1387 {
1388 if (NONJUMP_INSN_P (insn)
1389 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1390 {
1391 int i;
1392
1393 body = PATTERN (insn);
1394 for (i = 0; i < XVECLEN (body, 0); i++)
1395 {
1396 rtx inner_insn = XVECEXP (body, 0, i);
1397 int inner_uid = INSN_UID (inner_insn);
1398
1399 INSN_ADDRESSES (inner_uid) = insn_current_address;
1400
1401 insn_current_address += insn_lengths[inner_uid];
1402 }
1403 }
1404 else
1405 insn_current_address += insn_lengths[uid];
1406
1407 continue;
1408 }
1409
1410 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1411 {
1412 int i;
1413
1414 body = PATTERN (insn);
1415 new_length = 0;
1416 for (i = 0; i < XVECLEN (body, 0); i++)
1417 {
1418 rtx inner_insn = XVECEXP (body, 0, i);
1419 int inner_uid = INSN_UID (inner_insn);
1420 int inner_length;
1421
1422 INSN_ADDRESSES (inner_uid) = insn_current_address;
1423
1424 /* insn_current_length returns 0 for insns with a
1425 non-varying length. */
1426 if (! varying_length[inner_uid])
1427 inner_length = insn_lengths[inner_uid];
1428 else
1429 inner_length = insn_current_length (inner_insn);
1430
1431 if (inner_length != insn_lengths[inner_uid])
1432 {
1433 if (!increasing || inner_length > insn_lengths[inner_uid])
1434 {
1435 insn_lengths[inner_uid] = inner_length;
1436 something_changed = 1;
1437 }
1438 else
1439 inner_length = insn_lengths[inner_uid];
1440 }
1441 insn_current_address += inner_length;
1442 new_length += inner_length;
1443 }
1444 }
1445 else
1446 {
1447 new_length = insn_current_length (insn);
1448 insn_current_address += new_length;
1449 }
1450
1451 #ifdef ADJUST_INSN_LENGTH
1452 /* If needed, do any adjustment. */
1453 tmp_length = new_length;
1454 ADJUST_INSN_LENGTH (insn, new_length);
1455 insn_current_address += (new_length - tmp_length);
1456 #endif
1457
1458 if (new_length != insn_lengths[uid]
1459 && (!increasing || new_length > insn_lengths[uid]))
1460 {
1461 insn_lengths[uid] = new_length;
1462 something_changed = 1;
1463 }
1464 else
1465 insn_current_address += insn_lengths[uid] - new_length;
1466 }
1467 /* For a non-optimizing compile, do only a single pass. */
1468 if (!increasing)
1469 break;
1470 }
1471
1472 free (varying_length);
1473 }
1474
1475 /* Given the body of an INSN known to be generated by an ASM statement, return
1476 the number of machine instructions likely to be generated for this insn.
1477 This is used to compute its length. */
1478
1479 static int
1480 asm_insn_count (rtx body)
1481 {
1482 const char *templ;
1483
1484 if (GET_CODE (body) == ASM_INPUT)
1485 templ = XSTR (body, 0);
1486 else
1487 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1488
1489 return asm_str_count (templ);
1490 }
1491
1492 /* Return the number of machine instructions likely to be generated for the
1493 inline-asm template. */
1494 int
1495 asm_str_count (const char *templ)
1496 {
1497 int count = 1;
1498
1499 if (!*templ)
1500 return 0;
1501
1502 for (; *templ; templ++)
1503 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1504 || *templ == '\n')
1505 count++;
1506
1507 return count;
1508 }
1509 \f
1510 /* ??? This is probably the wrong place for these. */
1511 /* Structure recording the mapping from source file and directory
1512 names at compile time to those to be embedded in debug
1513 information. */
1514 typedef struct debug_prefix_map
1515 {
1516 const char *old_prefix;
1517 const char *new_prefix;
1518 size_t old_len;
1519 size_t new_len;
1520 struct debug_prefix_map *next;
1521 } debug_prefix_map;
1522
1523 /* Linked list of such structures. */
1524 static debug_prefix_map *debug_prefix_maps;
1525
1526
1527 /* Record a debug file prefix mapping. ARG is the argument to
1528 -fdebug-prefix-map and must be of the form OLD=NEW. */
1529
1530 void
1531 add_debug_prefix_map (const char *arg)
1532 {
1533 debug_prefix_map *map;
1534 const char *p;
1535
1536 p = strchr (arg, '=');
1537 if (!p)
1538 {
1539 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1540 return;
1541 }
1542 map = XNEW (debug_prefix_map);
1543 map->old_prefix = xstrndup (arg, p - arg);
1544 map->old_len = p - arg;
1545 p++;
1546 map->new_prefix = xstrdup (p);
1547 map->new_len = strlen (p);
1548 map->next = debug_prefix_maps;
1549 debug_prefix_maps = map;
1550 }
1551
1552 /* Perform user-specified mapping of debug filename prefixes. Return
1553 the new name corresponding to FILENAME. */
1554
1555 const char *
1556 remap_debug_filename (const char *filename)
1557 {
1558 debug_prefix_map *map;
1559 char *s;
1560 const char *name;
1561 size_t name_len;
1562
1563 for (map = debug_prefix_maps; map; map = map->next)
1564 if (filename_ncmp (filename, map->old_prefix, map->old_len) == 0)
1565 break;
1566 if (!map)
1567 return filename;
1568 name = filename + map->old_len;
1569 name_len = strlen (name) + 1;
1570 s = (char *) alloca (name_len + map->new_len);
1571 memcpy (s, map->new_prefix, map->new_len);
1572 memcpy (s + map->new_len, name, name_len);
1573 return ggc_strdup (s);
1574 }
1575 \f
1576 /* Return true if DWARF2 debug info can be emitted for DECL. */
1577
1578 static bool
1579 dwarf2_debug_info_emitted_p (tree decl)
1580 {
1581 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1582 return false;
1583
1584 if (DECL_IGNORED_P (decl))
1585 return false;
1586
1587 return true;
1588 }
1589
1590 /* Return scope resulting from combination of S1 and S2. */
1591 static tree
1592 choose_inner_scope (tree s1, tree s2)
1593 {
1594 if (!s1)
1595 return s2;
1596 if (!s2)
1597 return s1;
1598 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1599 return s1;
1600 return s2;
1601 }
1602
1603 /* Emit lexical block notes needed to change scope from S1 to S2. */
1604
1605 static void
1606 change_scope (rtx orig_insn, tree s1, tree s2)
1607 {
1608 rtx insn = orig_insn;
1609 tree com = NULL_TREE;
1610 tree ts1 = s1, ts2 = s2;
1611 tree s;
1612
1613 while (ts1 != ts2)
1614 {
1615 gcc_assert (ts1 && ts2);
1616 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1617 ts1 = BLOCK_SUPERCONTEXT (ts1);
1618 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1619 ts2 = BLOCK_SUPERCONTEXT (ts2);
1620 else
1621 {
1622 ts1 = BLOCK_SUPERCONTEXT (ts1);
1623 ts2 = BLOCK_SUPERCONTEXT (ts2);
1624 }
1625 }
1626 com = ts1;
1627
1628 /* Close scopes. */
1629 s = s1;
1630 while (s != com)
1631 {
1632 rtx note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1633 NOTE_BLOCK (note) = s;
1634 s = BLOCK_SUPERCONTEXT (s);
1635 }
1636
1637 /* Open scopes. */
1638 s = s2;
1639 while (s != com)
1640 {
1641 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1642 NOTE_BLOCK (insn) = s;
1643 s = BLOCK_SUPERCONTEXT (s);
1644 }
1645 }
1646
1647 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1648 on the scope tree and the newly reordered instructions. */
1649
1650 static void
1651 reemit_insn_block_notes (void)
1652 {
1653 tree cur_block = DECL_INITIAL (cfun->decl);
1654 rtx insn, note;
1655
1656 insn = get_insns ();
1657 for (; insn; insn = NEXT_INSN (insn))
1658 {
1659 tree this_block;
1660
1661 /* Prevent lexical blocks from straddling section boundaries. */
1662 if (NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_SWITCH_TEXT_SECTIONS)
1663 {
1664 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1665 s = BLOCK_SUPERCONTEXT (s))
1666 {
1667 rtx note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1668 NOTE_BLOCK (note) = s;
1669 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1670 NOTE_BLOCK (note) = s;
1671 }
1672 }
1673
1674 if (!active_insn_p (insn))
1675 continue;
1676
1677 /* Avoid putting scope notes between jump table and its label. */
1678 if (JUMP_TABLE_DATA_P (insn))
1679 continue;
1680
1681 this_block = insn_scope (insn);
1682 /* For sequences compute scope resulting from merging all scopes
1683 of instructions nested inside. */
1684 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
1685 {
1686 int i;
1687 rtx body = PATTERN (insn);
1688
1689 this_block = NULL;
1690 for (i = 0; i < XVECLEN (body, 0); i++)
1691 this_block = choose_inner_scope (this_block,
1692 insn_scope (XVECEXP (body, 0, i)));
1693 }
1694 if (! this_block)
1695 {
1696 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1697 continue;
1698 else
1699 this_block = DECL_INITIAL (cfun->decl);
1700 }
1701
1702 if (this_block != cur_block)
1703 {
1704 change_scope (insn, cur_block, this_block);
1705 cur_block = this_block;
1706 }
1707 }
1708
1709 /* change_scope emits before the insn, not after. */
1710 note = emit_note (NOTE_INSN_DELETED);
1711 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1712 delete_insn (note);
1713
1714 reorder_blocks ();
1715 }
1716
1717 /* Output assembler code for the start of a function,
1718 and initialize some of the variables in this file
1719 for the new function. The label for the function and associated
1720 assembler pseudo-ops have already been output in `assemble_start_function'.
1721
1722 FIRST is the first insn of the rtl for the function being compiled.
1723 FILE is the file to write assembler code to.
1724 OPTIMIZE_P is nonzero if we should eliminate redundant
1725 test and compare insns. */
1726
1727 void
1728 final_start_function (rtx first, FILE *file,
1729 int optimize_p ATTRIBUTE_UNUSED)
1730 {
1731 block_depth = 0;
1732
1733 this_is_asm_operands = 0;
1734
1735 need_profile_function = false;
1736
1737 last_filename = LOCATION_FILE (prologue_location);
1738 last_linenum = LOCATION_LINE (prologue_location);
1739 last_discriminator = discriminator = 0;
1740
1741 high_block_linenum = high_function_linenum = last_linenum;
1742
1743 if (flag_sanitize & SANITIZE_ADDRESS)
1744 asan_function_start ();
1745
1746 if (!DECL_IGNORED_P (current_function_decl))
1747 debug_hooks->begin_prologue (last_linenum, last_filename);
1748
1749 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1750 dwarf2out_begin_prologue (0, NULL);
1751
1752 #ifdef LEAF_REG_REMAP
1753 if (crtl->uses_only_leaf_regs)
1754 leaf_renumber_regs (first);
1755 #endif
1756
1757 /* The Sun386i and perhaps other machines don't work right
1758 if the profiling code comes after the prologue. */
1759 if (targetm.profile_before_prologue () && crtl->profile)
1760 {
1761 if (targetm.asm_out.function_prologue
1762 == default_function_pro_epilogue
1763 #ifdef HAVE_prologue
1764 && HAVE_prologue
1765 #endif
1766 )
1767 {
1768 rtx insn;
1769 for (insn = first; insn; insn = NEXT_INSN (insn))
1770 if (!NOTE_P (insn))
1771 {
1772 insn = NULL_RTX;
1773 break;
1774 }
1775 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1776 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1777 break;
1778 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1779 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1780 continue;
1781 else
1782 {
1783 insn = NULL_RTX;
1784 break;
1785 }
1786
1787 if (insn)
1788 need_profile_function = true;
1789 else
1790 profile_function (file);
1791 }
1792 else
1793 profile_function (file);
1794 }
1795
1796 /* If debugging, assign block numbers to all of the blocks in this
1797 function. */
1798 if (write_symbols)
1799 {
1800 reemit_insn_block_notes ();
1801 number_blocks (current_function_decl);
1802 /* We never actually put out begin/end notes for the top-level
1803 block in the function. But, conceptually, that block is
1804 always needed. */
1805 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1806 }
1807
1808 if (warn_frame_larger_than
1809 && get_frame_size () > frame_larger_than_size)
1810 {
1811 /* Issue a warning */
1812 warning (OPT_Wframe_larger_than_,
1813 "the frame size of %wd bytes is larger than %wd bytes",
1814 get_frame_size (), frame_larger_than_size);
1815 }
1816
1817 /* First output the function prologue: code to set up the stack frame. */
1818 targetm.asm_out.function_prologue (file, get_frame_size ());
1819
1820 /* If the machine represents the prologue as RTL, the profiling code must
1821 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1822 #ifdef HAVE_prologue
1823 if (! HAVE_prologue)
1824 #endif
1825 profile_after_prologue (file);
1826 }
1827
1828 static void
1829 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1830 {
1831 if (!targetm.profile_before_prologue () && crtl->profile)
1832 profile_function (file);
1833 }
1834
1835 static void
1836 profile_function (FILE *file ATTRIBUTE_UNUSED)
1837 {
1838 #ifndef NO_PROFILE_COUNTERS
1839 # define NO_PROFILE_COUNTERS 0
1840 #endif
1841 #ifdef ASM_OUTPUT_REG_PUSH
1842 rtx sval = NULL, chain = NULL;
1843
1844 if (cfun->returns_struct)
1845 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1846 true);
1847 if (cfun->static_chain_decl)
1848 chain = targetm.calls.static_chain (current_function_decl, true);
1849 #endif /* ASM_OUTPUT_REG_PUSH */
1850
1851 if (! NO_PROFILE_COUNTERS)
1852 {
1853 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1854 switch_to_section (data_section);
1855 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1856 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1857 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1858 }
1859
1860 switch_to_section (current_function_section ());
1861
1862 #ifdef ASM_OUTPUT_REG_PUSH
1863 if (sval && REG_P (sval))
1864 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1865 if (chain && REG_P (chain))
1866 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1867 #endif
1868
1869 FUNCTION_PROFILER (file, current_function_funcdef_no);
1870
1871 #ifdef ASM_OUTPUT_REG_PUSH
1872 if (chain && REG_P (chain))
1873 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1874 if (sval && REG_P (sval))
1875 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1876 #endif
1877 }
1878
1879 /* Output assembler code for the end of a function.
1880 For clarity, args are same as those of `final_start_function'
1881 even though not all of them are needed. */
1882
1883 void
1884 final_end_function (void)
1885 {
1886 app_disable ();
1887
1888 if (!DECL_IGNORED_P (current_function_decl))
1889 debug_hooks->end_function (high_function_linenum);
1890
1891 /* Finally, output the function epilogue:
1892 code to restore the stack frame and return to the caller. */
1893 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1894
1895 /* And debug output. */
1896 if (!DECL_IGNORED_P (current_function_decl))
1897 debug_hooks->end_epilogue (last_linenum, last_filename);
1898
1899 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1900 && dwarf2out_do_frame ())
1901 dwarf2out_end_epilogue (last_linenum, last_filename);
1902 }
1903 \f
1904
1905 /* Dumper helper for basic block information. FILE is the assembly
1906 output file, and INSN is the instruction being emitted. */
1907
1908 static void
1909 dump_basic_block_info (FILE *file, rtx insn, basic_block *start_to_bb,
1910 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1911 {
1912 basic_block bb;
1913
1914 if (!flag_debug_asm)
1915 return;
1916
1917 if (INSN_UID (insn) < bb_map_size
1918 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1919 {
1920 edge e;
1921 edge_iterator ei;
1922
1923 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1924 if (bb->frequency)
1925 fprintf (file, " freq:%d", bb->frequency);
1926 if (bb->count)
1927 fprintf (file, " count:" HOST_WIDEST_INT_PRINT_DEC,
1928 bb->count);
1929 fprintf (file, " seq:%d", (*bb_seqn)++);
1930 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1931 FOR_EACH_EDGE (e, ei, bb->preds)
1932 {
1933 dump_edge_info (file, e, TDF_DETAILS, 0);
1934 }
1935 fprintf (file, "\n");
1936 }
1937 if (INSN_UID (insn) < bb_map_size
1938 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1939 {
1940 edge e;
1941 edge_iterator ei;
1942
1943 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1944 FOR_EACH_EDGE (e, ei, bb->succs)
1945 {
1946 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1947 }
1948 fprintf (file, "\n");
1949 }
1950 }
1951
1952 /* Output assembler code for some insns: all or part of a function.
1953 For description of args, see `final_start_function', above. */
1954
1955 void
1956 final (rtx first, FILE *file, int optimize_p)
1957 {
1958 rtx insn, next;
1959 int seen = 0;
1960
1961 /* Used for -dA dump. */
1962 basic_block *start_to_bb = NULL;
1963 basic_block *end_to_bb = NULL;
1964 int bb_map_size = 0;
1965 int bb_seqn = 0;
1966
1967 last_ignored_compare = 0;
1968
1969 #ifdef HAVE_cc0
1970 for (insn = first; insn; insn = NEXT_INSN (insn))
1971 {
1972 /* If CC tracking across branches is enabled, record the insn which
1973 jumps to each branch only reached from one place. */
1974 if (optimize_p && JUMP_P (insn))
1975 {
1976 rtx lab = JUMP_LABEL (insn);
1977 if (lab && LABEL_P (lab) && LABEL_NUSES (lab) == 1)
1978 {
1979 LABEL_REFS (lab) = insn;
1980 }
1981 }
1982 }
1983 #endif
1984
1985 init_recog ();
1986
1987 CC_STATUS_INIT;
1988
1989 if (flag_debug_asm)
1990 {
1991 basic_block bb;
1992
1993 bb_map_size = get_max_uid () + 1;
1994 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1995 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1996
1997 /* There is no cfg for a thunk. */
1998 if (!cfun->is_thunk)
1999 FOR_EACH_BB_REVERSE_FN (bb, cfun)
2000 {
2001 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
2002 end_to_bb[INSN_UID (BB_END (bb))] = bb;
2003 }
2004 }
2005
2006 /* Output the insns. */
2007 for (insn = first; insn;)
2008 {
2009 if (HAVE_ATTR_length)
2010 {
2011 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
2012 {
2013 /* This can be triggered by bugs elsewhere in the compiler if
2014 new insns are created after init_insn_lengths is called. */
2015 gcc_assert (NOTE_P (insn));
2016 insn_current_address = -1;
2017 }
2018 else
2019 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
2020 }
2021
2022 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
2023 bb_map_size, &bb_seqn);
2024 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2025 }
2026
2027 if (flag_debug_asm)
2028 {
2029 free (start_to_bb);
2030 free (end_to_bb);
2031 }
2032
2033 /* Remove CFI notes, to avoid compare-debug failures. */
2034 for (insn = first; insn; insn = next)
2035 {
2036 next = NEXT_INSN (insn);
2037 if (NOTE_P (insn)
2038 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2039 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2040 delete_insn (insn);
2041 }
2042 }
2043 \f
2044 const char *
2045 get_insn_template (int code, rtx insn)
2046 {
2047 switch (insn_data[code].output_format)
2048 {
2049 case INSN_OUTPUT_FORMAT_SINGLE:
2050 return insn_data[code].output.single;
2051 case INSN_OUTPUT_FORMAT_MULTI:
2052 return insn_data[code].output.multi[which_alternative];
2053 case INSN_OUTPUT_FORMAT_FUNCTION:
2054 gcc_assert (insn);
2055 return (*insn_data[code].output.function) (recog_data.operand, insn);
2056
2057 default:
2058 gcc_unreachable ();
2059 }
2060 }
2061
2062 /* Emit the appropriate declaration for an alternate-entry-point
2063 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2064 LABEL_KIND != LABEL_NORMAL.
2065
2066 The case fall-through in this function is intentional. */
2067 static void
2068 output_alternate_entry_point (FILE *file, rtx insn)
2069 {
2070 const char *name = LABEL_NAME (insn);
2071
2072 switch (LABEL_KIND (insn))
2073 {
2074 case LABEL_WEAK_ENTRY:
2075 #ifdef ASM_WEAKEN_LABEL
2076 ASM_WEAKEN_LABEL (file, name);
2077 #endif
2078 case LABEL_GLOBAL_ENTRY:
2079 targetm.asm_out.globalize_label (file, name);
2080 case LABEL_STATIC_ENTRY:
2081 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2082 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2083 #endif
2084 ASM_OUTPUT_LABEL (file, name);
2085 break;
2086
2087 case LABEL_NORMAL:
2088 default:
2089 gcc_unreachable ();
2090 }
2091 }
2092
2093 /* Given a CALL_INSN, find and return the nested CALL. */
2094 static rtx
2095 call_from_call_insn (rtx insn)
2096 {
2097 rtx x;
2098 gcc_assert (CALL_P (insn));
2099 x = PATTERN (insn);
2100
2101 while (GET_CODE (x) != CALL)
2102 {
2103 switch (GET_CODE (x))
2104 {
2105 default:
2106 gcc_unreachable ();
2107 case COND_EXEC:
2108 x = COND_EXEC_CODE (x);
2109 break;
2110 case PARALLEL:
2111 x = XVECEXP (x, 0, 0);
2112 break;
2113 case SET:
2114 x = XEXP (x, 1);
2115 break;
2116 }
2117 }
2118 return x;
2119 }
2120
2121 /* The final scan for one insn, INSN.
2122 Args are same as in `final', except that INSN
2123 is the insn being scanned.
2124 Value returned is the next insn to be scanned.
2125
2126 NOPEEPHOLES is the flag to disallow peephole processing (currently
2127 used for within delayed branch sequence output).
2128
2129 SEEN is used to track the end of the prologue, for emitting
2130 debug information. We force the emission of a line note after
2131 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2132
2133 rtx
2134 final_scan_insn (rtx insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2135 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2136 {
2137 #ifdef HAVE_cc0
2138 rtx set;
2139 #endif
2140 rtx next;
2141
2142 insn_counter++;
2143
2144 /* Ignore deleted insns. These can occur when we split insns (due to a
2145 template of "#") while not optimizing. */
2146 if (INSN_DELETED_P (insn))
2147 return NEXT_INSN (insn);
2148
2149 switch (GET_CODE (insn))
2150 {
2151 case NOTE:
2152 switch (NOTE_KIND (insn))
2153 {
2154 case NOTE_INSN_DELETED:
2155 break;
2156
2157 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2158 in_cold_section_p = !in_cold_section_p;
2159
2160 if (dwarf2out_do_frame ())
2161 dwarf2out_switch_text_section ();
2162 else if (!DECL_IGNORED_P (current_function_decl))
2163 debug_hooks->switch_text_section ();
2164
2165 switch_to_section (current_function_section ());
2166 targetm.asm_out.function_switched_text_sections (asm_out_file,
2167 current_function_decl,
2168 in_cold_section_p);
2169 /* Emit a label for the split cold section. Form label name by
2170 suffixing "cold" to the original function's name. */
2171 if (in_cold_section_p)
2172 {
2173 tree cold_function_name
2174 = clone_function_name (current_function_decl, "cold");
2175 ASM_OUTPUT_LABEL (asm_out_file,
2176 IDENTIFIER_POINTER (cold_function_name));
2177 }
2178 break;
2179
2180 case NOTE_INSN_BASIC_BLOCK:
2181 if (need_profile_function)
2182 {
2183 profile_function (asm_out_file);
2184 need_profile_function = false;
2185 }
2186
2187 if (targetm.asm_out.unwind_emit)
2188 targetm.asm_out.unwind_emit (asm_out_file, insn);
2189
2190 discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2191
2192 break;
2193
2194 case NOTE_INSN_EH_REGION_BEG:
2195 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2196 NOTE_EH_HANDLER (insn));
2197 break;
2198
2199 case NOTE_INSN_EH_REGION_END:
2200 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2201 NOTE_EH_HANDLER (insn));
2202 break;
2203
2204 case NOTE_INSN_PROLOGUE_END:
2205 targetm.asm_out.function_end_prologue (file);
2206 profile_after_prologue (file);
2207
2208 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2209 {
2210 *seen |= SEEN_EMITTED;
2211 force_source_line = true;
2212 }
2213 else
2214 *seen |= SEEN_NOTE;
2215
2216 break;
2217
2218 case NOTE_INSN_EPILOGUE_BEG:
2219 if (!DECL_IGNORED_P (current_function_decl))
2220 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2221 targetm.asm_out.function_begin_epilogue (file);
2222 break;
2223
2224 case NOTE_INSN_CFI:
2225 dwarf2out_emit_cfi (NOTE_CFI (insn));
2226 break;
2227
2228 case NOTE_INSN_CFI_LABEL:
2229 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2230 NOTE_LABEL_NUMBER (insn));
2231 break;
2232
2233 case NOTE_INSN_FUNCTION_BEG:
2234 if (need_profile_function)
2235 {
2236 profile_function (asm_out_file);
2237 need_profile_function = false;
2238 }
2239
2240 app_disable ();
2241 if (!DECL_IGNORED_P (current_function_decl))
2242 debug_hooks->end_prologue (last_linenum, last_filename);
2243
2244 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2245 {
2246 *seen |= SEEN_EMITTED;
2247 force_source_line = true;
2248 }
2249 else
2250 *seen |= SEEN_NOTE;
2251
2252 break;
2253
2254 case NOTE_INSN_BLOCK_BEG:
2255 if (debug_info_level == DINFO_LEVEL_NORMAL
2256 || debug_info_level == DINFO_LEVEL_VERBOSE
2257 || write_symbols == DWARF2_DEBUG
2258 || write_symbols == VMS_AND_DWARF2_DEBUG
2259 || write_symbols == VMS_DEBUG)
2260 {
2261 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2262
2263 app_disable ();
2264 ++block_depth;
2265 high_block_linenum = last_linenum;
2266
2267 /* Output debugging info about the symbol-block beginning. */
2268 if (!DECL_IGNORED_P (current_function_decl))
2269 debug_hooks->begin_block (last_linenum, n);
2270
2271 /* Mark this block as output. */
2272 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2273 }
2274 if (write_symbols == DBX_DEBUG
2275 || write_symbols == SDB_DEBUG)
2276 {
2277 location_t *locus_ptr
2278 = block_nonartificial_location (NOTE_BLOCK (insn));
2279
2280 if (locus_ptr != NULL)
2281 {
2282 override_filename = LOCATION_FILE (*locus_ptr);
2283 override_linenum = LOCATION_LINE (*locus_ptr);
2284 }
2285 }
2286 break;
2287
2288 case NOTE_INSN_BLOCK_END:
2289 if (debug_info_level == DINFO_LEVEL_NORMAL
2290 || debug_info_level == DINFO_LEVEL_VERBOSE
2291 || write_symbols == DWARF2_DEBUG
2292 || write_symbols == VMS_AND_DWARF2_DEBUG
2293 || write_symbols == VMS_DEBUG)
2294 {
2295 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2296
2297 app_disable ();
2298
2299 /* End of a symbol-block. */
2300 --block_depth;
2301 gcc_assert (block_depth >= 0);
2302
2303 if (!DECL_IGNORED_P (current_function_decl))
2304 debug_hooks->end_block (high_block_linenum, n);
2305 }
2306 if (write_symbols == DBX_DEBUG
2307 || write_symbols == SDB_DEBUG)
2308 {
2309 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2310 location_t *locus_ptr
2311 = block_nonartificial_location (outer_block);
2312
2313 if (locus_ptr != NULL)
2314 {
2315 override_filename = LOCATION_FILE (*locus_ptr);
2316 override_linenum = LOCATION_LINE (*locus_ptr);
2317 }
2318 else
2319 {
2320 override_filename = NULL;
2321 override_linenum = 0;
2322 }
2323 }
2324 break;
2325
2326 case NOTE_INSN_DELETED_LABEL:
2327 /* Emit the label. We may have deleted the CODE_LABEL because
2328 the label could be proved to be unreachable, though still
2329 referenced (in the form of having its address taken. */
2330 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2331 break;
2332
2333 case NOTE_INSN_DELETED_DEBUG_LABEL:
2334 /* Similarly, but need to use different namespace for it. */
2335 if (CODE_LABEL_NUMBER (insn) != -1)
2336 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2337 break;
2338
2339 case NOTE_INSN_VAR_LOCATION:
2340 case NOTE_INSN_CALL_ARG_LOCATION:
2341 if (!DECL_IGNORED_P (current_function_decl))
2342 debug_hooks->var_location (insn);
2343 break;
2344
2345 default:
2346 gcc_unreachable ();
2347 break;
2348 }
2349 break;
2350
2351 case BARRIER:
2352 break;
2353
2354 case CODE_LABEL:
2355 /* The target port might emit labels in the output function for
2356 some insn, e.g. sh.c output_branchy_insn. */
2357 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2358 {
2359 int align = LABEL_TO_ALIGNMENT (insn);
2360 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2361 int max_skip = LABEL_TO_MAX_SKIP (insn);
2362 #endif
2363
2364 if (align && NEXT_INSN (insn))
2365 {
2366 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2367 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2368 #else
2369 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2370 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2371 #else
2372 ASM_OUTPUT_ALIGN (file, align);
2373 #endif
2374 #endif
2375 }
2376 }
2377 CC_STATUS_INIT;
2378
2379 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2380 debug_hooks->label (insn);
2381
2382 app_disable ();
2383
2384 next = next_nonnote_insn (insn);
2385 /* If this label is followed by a jump-table, make sure we put
2386 the label in the read-only section. Also possibly write the
2387 label and jump table together. */
2388 if (next != 0 && JUMP_TABLE_DATA_P (next))
2389 {
2390 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2391 /* In this case, the case vector is being moved by the
2392 target, so don't output the label at all. Leave that
2393 to the back end macros. */
2394 #else
2395 if (! JUMP_TABLES_IN_TEXT_SECTION)
2396 {
2397 int log_align;
2398
2399 switch_to_section (targetm.asm_out.function_rodata_section
2400 (current_function_decl));
2401
2402 #ifdef ADDR_VEC_ALIGN
2403 log_align = ADDR_VEC_ALIGN (next);
2404 #else
2405 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2406 #endif
2407 ASM_OUTPUT_ALIGN (file, log_align);
2408 }
2409 else
2410 switch_to_section (current_function_section ());
2411
2412 #ifdef ASM_OUTPUT_CASE_LABEL
2413 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2414 next);
2415 #else
2416 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2417 #endif
2418 #endif
2419 break;
2420 }
2421 if (LABEL_ALT_ENTRY_P (insn))
2422 output_alternate_entry_point (file, insn);
2423 else
2424 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2425 break;
2426
2427 default:
2428 {
2429 rtx body = PATTERN (insn);
2430 int insn_code_number;
2431 const char *templ;
2432 bool is_stmt;
2433
2434 /* Reset this early so it is correct for ASM statements. */
2435 current_insn_predicate = NULL_RTX;
2436
2437 /* An INSN, JUMP_INSN or CALL_INSN.
2438 First check for special kinds that recog doesn't recognize. */
2439
2440 if (GET_CODE (body) == USE /* These are just declarations. */
2441 || GET_CODE (body) == CLOBBER)
2442 break;
2443
2444 #ifdef HAVE_cc0
2445 {
2446 /* If there is a REG_CC_SETTER note on this insn, it means that
2447 the setting of the condition code was done in the delay slot
2448 of the insn that branched here. So recover the cc status
2449 from the insn that set it. */
2450
2451 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2452 if (note)
2453 {
2454 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2455 cc_prev_status = cc_status;
2456 }
2457 }
2458 #endif
2459
2460 /* Detect insns that are really jump-tables
2461 and output them as such. */
2462
2463 if (JUMP_TABLE_DATA_P (insn))
2464 {
2465 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2466 int vlen, idx;
2467 #endif
2468
2469 if (! JUMP_TABLES_IN_TEXT_SECTION)
2470 switch_to_section (targetm.asm_out.function_rodata_section
2471 (current_function_decl));
2472 else
2473 switch_to_section (current_function_section ());
2474
2475 app_disable ();
2476
2477 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2478 if (GET_CODE (body) == ADDR_VEC)
2479 {
2480 #ifdef ASM_OUTPUT_ADDR_VEC
2481 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2482 #else
2483 gcc_unreachable ();
2484 #endif
2485 }
2486 else
2487 {
2488 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2489 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2490 #else
2491 gcc_unreachable ();
2492 #endif
2493 }
2494 #else
2495 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2496 for (idx = 0; idx < vlen; idx++)
2497 {
2498 if (GET_CODE (body) == ADDR_VEC)
2499 {
2500 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2501 ASM_OUTPUT_ADDR_VEC_ELT
2502 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2503 #else
2504 gcc_unreachable ();
2505 #endif
2506 }
2507 else
2508 {
2509 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2510 ASM_OUTPUT_ADDR_DIFF_ELT
2511 (file,
2512 body,
2513 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2514 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2515 #else
2516 gcc_unreachable ();
2517 #endif
2518 }
2519 }
2520 #ifdef ASM_OUTPUT_CASE_END
2521 ASM_OUTPUT_CASE_END (file,
2522 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2523 insn);
2524 #endif
2525 #endif
2526
2527 switch_to_section (current_function_section ());
2528
2529 break;
2530 }
2531 /* Output this line note if it is the first or the last line
2532 note in a row. */
2533 if (!DECL_IGNORED_P (current_function_decl)
2534 && notice_source_line (insn, &is_stmt))
2535 (*debug_hooks->source_line) (last_linenum, last_filename,
2536 last_discriminator, is_stmt);
2537
2538 if (GET_CODE (body) == ASM_INPUT)
2539 {
2540 const char *string = XSTR (body, 0);
2541
2542 /* There's no telling what that did to the condition codes. */
2543 CC_STATUS_INIT;
2544
2545 if (string[0])
2546 {
2547 expanded_location loc;
2548
2549 app_enable ();
2550 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2551 if (*loc.file && loc.line)
2552 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2553 ASM_COMMENT_START, loc.line, loc.file);
2554 fprintf (asm_out_file, "\t%s\n", string);
2555 #if HAVE_AS_LINE_ZERO
2556 if (*loc.file && loc.line)
2557 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2558 #endif
2559 }
2560 break;
2561 }
2562
2563 /* Detect `asm' construct with operands. */
2564 if (asm_noperands (body) >= 0)
2565 {
2566 unsigned int noperands = asm_noperands (body);
2567 rtx *ops = XALLOCAVEC (rtx, noperands);
2568 const char *string;
2569 location_t loc;
2570 expanded_location expanded;
2571
2572 /* There's no telling what that did to the condition codes. */
2573 CC_STATUS_INIT;
2574
2575 /* Get out the operand values. */
2576 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2577 /* Inhibit dying on what would otherwise be compiler bugs. */
2578 insn_noperands = noperands;
2579 this_is_asm_operands = insn;
2580 expanded = expand_location (loc);
2581
2582 #ifdef FINAL_PRESCAN_INSN
2583 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2584 #endif
2585
2586 /* Output the insn using them. */
2587 if (string[0])
2588 {
2589 app_enable ();
2590 if (expanded.file && expanded.line)
2591 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2592 ASM_COMMENT_START, expanded.line, expanded.file);
2593 output_asm_insn (string, ops);
2594 #if HAVE_AS_LINE_ZERO
2595 if (expanded.file && expanded.line)
2596 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2597 #endif
2598 }
2599
2600 if (targetm.asm_out.final_postscan_insn)
2601 targetm.asm_out.final_postscan_insn (file, insn, ops,
2602 insn_noperands);
2603
2604 this_is_asm_operands = 0;
2605 break;
2606 }
2607
2608 app_disable ();
2609
2610 if (GET_CODE (body) == SEQUENCE)
2611 {
2612 /* A delayed-branch sequence */
2613 int i;
2614
2615 final_sequence = body;
2616
2617 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2618 force the restoration of a comparison that was previously
2619 thought unnecessary. If that happens, cancel this sequence
2620 and cause that insn to be restored. */
2621
2622 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2623 if (next != XVECEXP (body, 0, 1))
2624 {
2625 final_sequence = 0;
2626 return next;
2627 }
2628
2629 for (i = 1; i < XVECLEN (body, 0); i++)
2630 {
2631 rtx insn = XVECEXP (body, 0, i);
2632 rtx next = NEXT_INSN (insn);
2633 /* We loop in case any instruction in a delay slot gets
2634 split. */
2635 do
2636 insn = final_scan_insn (insn, file, 0, 1, seen);
2637 while (insn != next);
2638 }
2639 #ifdef DBR_OUTPUT_SEQEND
2640 DBR_OUTPUT_SEQEND (file);
2641 #endif
2642 final_sequence = 0;
2643
2644 /* If the insn requiring the delay slot was a CALL_INSN, the
2645 insns in the delay slot are actually executed before the
2646 called function. Hence we don't preserve any CC-setting
2647 actions in these insns and the CC must be marked as being
2648 clobbered by the function. */
2649 if (CALL_P (XVECEXP (body, 0, 0)))
2650 {
2651 CC_STATUS_INIT;
2652 }
2653 break;
2654 }
2655
2656 /* We have a real machine instruction as rtl. */
2657
2658 body = PATTERN (insn);
2659
2660 #ifdef HAVE_cc0
2661 set = single_set (insn);
2662
2663 /* Check for redundant test and compare instructions
2664 (when the condition codes are already set up as desired).
2665 This is done only when optimizing; if not optimizing,
2666 it should be possible for the user to alter a variable
2667 with the debugger in between statements
2668 and the next statement should reexamine the variable
2669 to compute the condition codes. */
2670
2671 if (optimize_p)
2672 {
2673 if (set
2674 && GET_CODE (SET_DEST (set)) == CC0
2675 && insn != last_ignored_compare)
2676 {
2677 rtx src1, src2;
2678 if (GET_CODE (SET_SRC (set)) == SUBREG)
2679 SET_SRC (set) = alter_subreg (&SET_SRC (set), true);
2680
2681 src1 = SET_SRC (set);
2682 src2 = NULL_RTX;
2683 if (GET_CODE (SET_SRC (set)) == COMPARE)
2684 {
2685 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2686 XEXP (SET_SRC (set), 0)
2687 = alter_subreg (&XEXP (SET_SRC (set), 0), true);
2688 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2689 XEXP (SET_SRC (set), 1)
2690 = alter_subreg (&XEXP (SET_SRC (set), 1), true);
2691 if (XEXP (SET_SRC (set), 1)
2692 == CONST0_RTX (GET_MODE (XEXP (SET_SRC (set), 0))))
2693 src2 = XEXP (SET_SRC (set), 0);
2694 }
2695 if ((cc_status.value1 != 0
2696 && rtx_equal_p (src1, cc_status.value1))
2697 || (cc_status.value2 != 0
2698 && rtx_equal_p (src1, cc_status.value2))
2699 || (src2 != 0 && cc_status.value1 != 0
2700 && rtx_equal_p (src2, cc_status.value1))
2701 || (src2 != 0 && cc_status.value2 != 0
2702 && rtx_equal_p (src2, cc_status.value2)))
2703 {
2704 /* Don't delete insn if it has an addressing side-effect. */
2705 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2706 /* or if anything in it is volatile. */
2707 && ! volatile_refs_p (PATTERN (insn)))
2708 {
2709 /* We don't really delete the insn; just ignore it. */
2710 last_ignored_compare = insn;
2711 break;
2712 }
2713 }
2714 }
2715 }
2716
2717 /* If this is a conditional branch, maybe modify it
2718 if the cc's are in a nonstandard state
2719 so that it accomplishes the same thing that it would
2720 do straightforwardly if the cc's were set up normally. */
2721
2722 if (cc_status.flags != 0
2723 && JUMP_P (insn)
2724 && GET_CODE (body) == SET
2725 && SET_DEST (body) == pc_rtx
2726 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2727 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2728 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2729 {
2730 /* This function may alter the contents of its argument
2731 and clear some of the cc_status.flags bits.
2732 It may also return 1 meaning condition now always true
2733 or -1 meaning condition now always false
2734 or 2 meaning condition nontrivial but altered. */
2735 int result = alter_cond (XEXP (SET_SRC (body), 0));
2736 /* If condition now has fixed value, replace the IF_THEN_ELSE
2737 with its then-operand or its else-operand. */
2738 if (result == 1)
2739 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2740 if (result == -1)
2741 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2742
2743 /* The jump is now either unconditional or a no-op.
2744 If it has become a no-op, don't try to output it.
2745 (It would not be recognized.) */
2746 if (SET_SRC (body) == pc_rtx)
2747 {
2748 delete_insn (insn);
2749 break;
2750 }
2751 else if (ANY_RETURN_P (SET_SRC (body)))
2752 /* Replace (set (pc) (return)) with (return). */
2753 PATTERN (insn) = body = SET_SRC (body);
2754
2755 /* Rerecognize the instruction if it has changed. */
2756 if (result != 0)
2757 INSN_CODE (insn) = -1;
2758 }
2759
2760 /* If this is a conditional trap, maybe modify it if the cc's
2761 are in a nonstandard state so that it accomplishes the same
2762 thing that it would do straightforwardly if the cc's were
2763 set up normally. */
2764 if (cc_status.flags != 0
2765 && NONJUMP_INSN_P (insn)
2766 && GET_CODE (body) == TRAP_IF
2767 && COMPARISON_P (TRAP_CONDITION (body))
2768 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2769 {
2770 /* This function may alter the contents of its argument
2771 and clear some of the cc_status.flags bits.
2772 It may also return 1 meaning condition now always true
2773 or -1 meaning condition now always false
2774 or 2 meaning condition nontrivial but altered. */
2775 int result = alter_cond (TRAP_CONDITION (body));
2776
2777 /* If TRAP_CONDITION has become always false, delete the
2778 instruction. */
2779 if (result == -1)
2780 {
2781 delete_insn (insn);
2782 break;
2783 }
2784
2785 /* If TRAP_CONDITION has become always true, replace
2786 TRAP_CONDITION with const_true_rtx. */
2787 if (result == 1)
2788 TRAP_CONDITION (body) = const_true_rtx;
2789
2790 /* Rerecognize the instruction if it has changed. */
2791 if (result != 0)
2792 INSN_CODE (insn) = -1;
2793 }
2794
2795 /* Make same adjustments to instructions that examine the
2796 condition codes without jumping and instructions that
2797 handle conditional moves (if this machine has either one). */
2798
2799 if (cc_status.flags != 0
2800 && set != 0)
2801 {
2802 rtx cond_rtx, then_rtx, else_rtx;
2803
2804 if (!JUMP_P (insn)
2805 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2806 {
2807 cond_rtx = XEXP (SET_SRC (set), 0);
2808 then_rtx = XEXP (SET_SRC (set), 1);
2809 else_rtx = XEXP (SET_SRC (set), 2);
2810 }
2811 else
2812 {
2813 cond_rtx = SET_SRC (set);
2814 then_rtx = const_true_rtx;
2815 else_rtx = const0_rtx;
2816 }
2817
2818 if (COMPARISON_P (cond_rtx)
2819 && XEXP (cond_rtx, 0) == cc0_rtx)
2820 {
2821 int result;
2822 result = alter_cond (cond_rtx);
2823 if (result == 1)
2824 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2825 else if (result == -1)
2826 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2827 else if (result == 2)
2828 INSN_CODE (insn) = -1;
2829 if (SET_DEST (set) == SET_SRC (set))
2830 delete_insn (insn);
2831 }
2832 }
2833
2834 #endif
2835
2836 #ifdef HAVE_peephole
2837 /* Do machine-specific peephole optimizations if desired. */
2838
2839 if (optimize_p && !flag_no_peephole && !nopeepholes)
2840 {
2841 rtx next = peephole (insn);
2842 /* When peepholing, if there were notes within the peephole,
2843 emit them before the peephole. */
2844 if (next != 0 && next != NEXT_INSN (insn))
2845 {
2846 rtx note, prev = PREV_INSN (insn);
2847
2848 for (note = NEXT_INSN (insn); note != next;
2849 note = NEXT_INSN (note))
2850 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2851
2852 /* Put the notes in the proper position for a later
2853 rescan. For example, the SH target can do this
2854 when generating a far jump in a delayed branch
2855 sequence. */
2856 note = NEXT_INSN (insn);
2857 PREV_INSN (note) = prev;
2858 NEXT_INSN (prev) = note;
2859 NEXT_INSN (PREV_INSN (next)) = insn;
2860 PREV_INSN (insn) = PREV_INSN (next);
2861 NEXT_INSN (insn) = next;
2862 PREV_INSN (next) = insn;
2863 }
2864
2865 /* PEEPHOLE might have changed this. */
2866 body = PATTERN (insn);
2867 }
2868 #endif
2869
2870 /* Try to recognize the instruction.
2871 If successful, verify that the operands satisfy the
2872 constraints for the instruction. Crash if they don't,
2873 since `reload' should have changed them so that they do. */
2874
2875 insn_code_number = recog_memoized (insn);
2876 cleanup_subreg_operands (insn);
2877
2878 /* Dump the insn in the assembly for debugging (-dAP).
2879 If the final dump is requested as slim RTL, dump slim
2880 RTL to the assembly file also. */
2881 if (flag_dump_rtl_in_asm)
2882 {
2883 print_rtx_head = ASM_COMMENT_START;
2884 if (! (dump_flags & TDF_SLIM))
2885 print_rtl_single (asm_out_file, insn);
2886 else
2887 dump_insn_slim (asm_out_file, insn);
2888 print_rtx_head = "";
2889 }
2890
2891 if (! constrain_operands_cached (1))
2892 fatal_insn_not_found (insn);
2893
2894 /* Some target machines need to prescan each insn before
2895 it is output. */
2896
2897 #ifdef FINAL_PRESCAN_INSN
2898 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2899 #endif
2900
2901 if (targetm.have_conditional_execution ()
2902 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2903 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2904
2905 #ifdef HAVE_cc0
2906 cc_prev_status = cc_status;
2907
2908 /* Update `cc_status' for this instruction.
2909 The instruction's output routine may change it further.
2910 If the output routine for a jump insn needs to depend
2911 on the cc status, it should look at cc_prev_status. */
2912
2913 NOTICE_UPDATE_CC (body, insn);
2914 #endif
2915
2916 current_output_insn = debug_insn = insn;
2917
2918 /* Find the proper template for this insn. */
2919 templ = get_insn_template (insn_code_number, insn);
2920
2921 /* If the C code returns 0, it means that it is a jump insn
2922 which follows a deleted test insn, and that test insn
2923 needs to be reinserted. */
2924 if (templ == 0)
2925 {
2926 rtx prev;
2927
2928 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2929
2930 /* We have already processed the notes between the setter and
2931 the user. Make sure we don't process them again, this is
2932 particularly important if one of the notes is a block
2933 scope note or an EH note. */
2934 for (prev = insn;
2935 prev != last_ignored_compare;
2936 prev = PREV_INSN (prev))
2937 {
2938 if (NOTE_P (prev))
2939 delete_insn (prev); /* Use delete_note. */
2940 }
2941
2942 return prev;
2943 }
2944
2945 /* If the template is the string "#", it means that this insn must
2946 be split. */
2947 if (templ[0] == '#' && templ[1] == '\0')
2948 {
2949 rtx new_rtx = try_split (body, insn, 0);
2950
2951 /* If we didn't split the insn, go away. */
2952 if (new_rtx == insn && PATTERN (new_rtx) == body)
2953 fatal_insn ("could not split insn", insn);
2954
2955 /* If we have a length attribute, this instruction should have
2956 been split in shorten_branches, to ensure that we would have
2957 valid length info for the splitees. */
2958 gcc_assert (!HAVE_ATTR_length);
2959
2960 return new_rtx;
2961 }
2962
2963 /* ??? This will put the directives in the wrong place if
2964 get_insn_template outputs assembly directly. However calling it
2965 before get_insn_template breaks if the insns is split. */
2966 if (targetm.asm_out.unwind_emit_before_insn
2967 && targetm.asm_out.unwind_emit)
2968 targetm.asm_out.unwind_emit (asm_out_file, insn);
2969
2970 if (CALL_P (insn))
2971 {
2972 rtx x = call_from_call_insn (insn);
2973 x = XEXP (x, 0);
2974 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2975 {
2976 tree t;
2977 x = XEXP (x, 0);
2978 t = SYMBOL_REF_DECL (x);
2979 if (t)
2980 assemble_external (t);
2981 }
2982 if (!DECL_IGNORED_P (current_function_decl))
2983 debug_hooks->var_location (insn);
2984 }
2985
2986 /* Output assembler code from the template. */
2987 output_asm_insn (templ, recog_data.operand);
2988
2989 /* Some target machines need to postscan each insn after
2990 it is output. */
2991 if (targetm.asm_out.final_postscan_insn)
2992 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2993 recog_data.n_operands);
2994
2995 if (!targetm.asm_out.unwind_emit_before_insn
2996 && targetm.asm_out.unwind_emit)
2997 targetm.asm_out.unwind_emit (asm_out_file, insn);
2998
2999 current_output_insn = debug_insn = 0;
3000 }
3001 }
3002 return NEXT_INSN (insn);
3003 }
3004 \f
3005 /* Return whether a source line note needs to be emitted before INSN.
3006 Sets IS_STMT to TRUE if the line should be marked as a possible
3007 breakpoint location. */
3008
3009 static bool
3010 notice_source_line (rtx insn, bool *is_stmt)
3011 {
3012 const char *filename;
3013 int linenum;
3014
3015 if (override_filename)
3016 {
3017 filename = override_filename;
3018 linenum = override_linenum;
3019 }
3020 else
3021 {
3022 filename = insn_file (insn);
3023 linenum = insn_line (insn);
3024 }
3025
3026 if (filename == NULL)
3027 return false;
3028
3029 if (force_source_line
3030 || filename != last_filename
3031 || last_linenum != linenum)
3032 {
3033 force_source_line = false;
3034 last_filename = filename;
3035 last_linenum = linenum;
3036 last_discriminator = discriminator;
3037 *is_stmt = true;
3038 high_block_linenum = MAX (last_linenum, high_block_linenum);
3039 high_function_linenum = MAX (last_linenum, high_function_linenum);
3040 return true;
3041 }
3042
3043 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3044 {
3045 /* If the discriminator changed, but the line number did not,
3046 output the line table entry with is_stmt false so the
3047 debugger does not treat this as a breakpoint location. */
3048 last_discriminator = discriminator;
3049 *is_stmt = false;
3050 return true;
3051 }
3052
3053 return false;
3054 }
3055 \f
3056 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3057 directly to the desired hard register. */
3058
3059 void
3060 cleanup_subreg_operands (rtx insn)
3061 {
3062 int i;
3063 bool changed = false;
3064 extract_insn_cached (insn);
3065 for (i = 0; i < recog_data.n_operands; i++)
3066 {
3067 /* The following test cannot use recog_data.operand when testing
3068 for a SUBREG: the underlying object might have been changed
3069 already if we are inside a match_operator expression that
3070 matches the else clause. Instead we test the underlying
3071 expression directly. */
3072 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3073 {
3074 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3075 changed = true;
3076 }
3077 else if (GET_CODE (recog_data.operand[i]) == PLUS
3078 || GET_CODE (recog_data.operand[i]) == MULT
3079 || MEM_P (recog_data.operand[i]))
3080 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3081 }
3082
3083 for (i = 0; i < recog_data.n_dups; i++)
3084 {
3085 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3086 {
3087 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3088 changed = true;
3089 }
3090 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3091 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3092 || MEM_P (*recog_data.dup_loc[i]))
3093 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3094 }
3095 if (changed)
3096 df_insn_rescan (insn);
3097 }
3098
3099 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3100 the thing it is a subreg of. Do it anyway if FINAL_P. */
3101
3102 rtx
3103 alter_subreg (rtx *xp, bool final_p)
3104 {
3105 rtx x = *xp;
3106 rtx y = SUBREG_REG (x);
3107
3108 /* simplify_subreg does not remove subreg from volatile references.
3109 We are required to. */
3110 if (MEM_P (y))
3111 {
3112 int offset = SUBREG_BYTE (x);
3113
3114 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3115 contains 0 instead of the proper offset. See simplify_subreg. */
3116 if (offset == 0
3117 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
3118 {
3119 int difference = GET_MODE_SIZE (GET_MODE (y))
3120 - GET_MODE_SIZE (GET_MODE (x));
3121 if (WORDS_BIG_ENDIAN)
3122 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3123 if (BYTES_BIG_ENDIAN)
3124 offset += difference % UNITS_PER_WORD;
3125 }
3126
3127 if (final_p)
3128 *xp = adjust_address (y, GET_MODE (x), offset);
3129 else
3130 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3131 }
3132 else
3133 {
3134 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3135 SUBREG_BYTE (x));
3136
3137 if (new_rtx != 0)
3138 *xp = new_rtx;
3139 else if (final_p && REG_P (y))
3140 {
3141 /* Simplify_subreg can't handle some REG cases, but we have to. */
3142 unsigned int regno;
3143 HOST_WIDE_INT offset;
3144
3145 regno = subreg_regno (x);
3146 if (subreg_lowpart_p (x))
3147 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3148 else
3149 offset = SUBREG_BYTE (x);
3150 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3151 }
3152 }
3153
3154 return *xp;
3155 }
3156
3157 /* Do alter_subreg on all the SUBREGs contained in X. */
3158
3159 static rtx
3160 walk_alter_subreg (rtx *xp, bool *changed)
3161 {
3162 rtx x = *xp;
3163 switch (GET_CODE (x))
3164 {
3165 case PLUS:
3166 case MULT:
3167 case AND:
3168 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3169 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3170 break;
3171
3172 case MEM:
3173 case ZERO_EXTEND:
3174 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3175 break;
3176
3177 case SUBREG:
3178 *changed = true;
3179 return alter_subreg (xp, true);
3180
3181 default:
3182 break;
3183 }
3184
3185 return *xp;
3186 }
3187 \f
3188 #ifdef HAVE_cc0
3189
3190 /* Given BODY, the body of a jump instruction, alter the jump condition
3191 as required by the bits that are set in cc_status.flags.
3192 Not all of the bits there can be handled at this level in all cases.
3193
3194 The value is normally 0.
3195 1 means that the condition has become always true.
3196 -1 means that the condition has become always false.
3197 2 means that COND has been altered. */
3198
3199 static int
3200 alter_cond (rtx cond)
3201 {
3202 int value = 0;
3203
3204 if (cc_status.flags & CC_REVERSED)
3205 {
3206 value = 2;
3207 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
3208 }
3209
3210 if (cc_status.flags & CC_INVERTED)
3211 {
3212 value = 2;
3213 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
3214 }
3215
3216 if (cc_status.flags & CC_NOT_POSITIVE)
3217 switch (GET_CODE (cond))
3218 {
3219 case LE:
3220 case LEU:
3221 case GEU:
3222 /* Jump becomes unconditional. */
3223 return 1;
3224
3225 case GT:
3226 case GTU:
3227 case LTU:
3228 /* Jump becomes no-op. */
3229 return -1;
3230
3231 case GE:
3232 PUT_CODE (cond, EQ);
3233 value = 2;
3234 break;
3235
3236 case LT:
3237 PUT_CODE (cond, NE);
3238 value = 2;
3239 break;
3240
3241 default:
3242 break;
3243 }
3244
3245 if (cc_status.flags & CC_NOT_NEGATIVE)
3246 switch (GET_CODE (cond))
3247 {
3248 case GE:
3249 case GEU:
3250 /* Jump becomes unconditional. */
3251 return 1;
3252
3253 case LT:
3254 case LTU:
3255 /* Jump becomes no-op. */
3256 return -1;
3257
3258 case LE:
3259 case LEU:
3260 PUT_CODE (cond, EQ);
3261 value = 2;
3262 break;
3263
3264 case GT:
3265 case GTU:
3266 PUT_CODE (cond, NE);
3267 value = 2;
3268 break;
3269
3270 default:
3271 break;
3272 }
3273
3274 if (cc_status.flags & CC_NO_OVERFLOW)
3275 switch (GET_CODE (cond))
3276 {
3277 case GEU:
3278 /* Jump becomes unconditional. */
3279 return 1;
3280
3281 case LEU:
3282 PUT_CODE (cond, EQ);
3283 value = 2;
3284 break;
3285
3286 case GTU:
3287 PUT_CODE (cond, NE);
3288 value = 2;
3289 break;
3290
3291 case LTU:
3292 /* Jump becomes no-op. */
3293 return -1;
3294
3295 default:
3296 break;
3297 }
3298
3299 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3300 switch (GET_CODE (cond))
3301 {
3302 default:
3303 gcc_unreachable ();
3304
3305 case NE:
3306 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3307 value = 2;
3308 break;
3309
3310 case EQ:
3311 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3312 value = 2;
3313 break;
3314 }
3315
3316 if (cc_status.flags & CC_NOT_SIGNED)
3317 /* The flags are valid if signed condition operators are converted
3318 to unsigned. */
3319 switch (GET_CODE (cond))
3320 {
3321 case LE:
3322 PUT_CODE (cond, LEU);
3323 value = 2;
3324 break;
3325
3326 case LT:
3327 PUT_CODE (cond, LTU);
3328 value = 2;
3329 break;
3330
3331 case GT:
3332 PUT_CODE (cond, GTU);
3333 value = 2;
3334 break;
3335
3336 case GE:
3337 PUT_CODE (cond, GEU);
3338 value = 2;
3339 break;
3340
3341 default:
3342 break;
3343 }
3344
3345 return value;
3346 }
3347 #endif
3348 \f
3349 /* Report inconsistency between the assembler template and the operands.
3350 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3351
3352 void
3353 output_operand_lossage (const char *cmsgid, ...)
3354 {
3355 char *fmt_string;
3356 char *new_message;
3357 const char *pfx_str;
3358 va_list ap;
3359
3360 va_start (ap, cmsgid);
3361
3362 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3363 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
3364 vasprintf (&new_message, fmt_string, ap);
3365
3366 if (this_is_asm_operands)
3367 error_for_asm (this_is_asm_operands, "%s", new_message);
3368 else
3369 internal_error ("%s", new_message);
3370
3371 free (fmt_string);
3372 free (new_message);
3373 va_end (ap);
3374 }
3375 \f
3376 /* Output of assembler code from a template, and its subroutines. */
3377
3378 /* Annotate the assembly with a comment describing the pattern and
3379 alternative used. */
3380
3381 static void
3382 output_asm_name (void)
3383 {
3384 if (debug_insn)
3385 {
3386 int num = INSN_CODE (debug_insn);
3387 fprintf (asm_out_file, "\t%s %d\t%s",
3388 ASM_COMMENT_START, INSN_UID (debug_insn),
3389 insn_data[num].name);
3390 if (insn_data[num].n_alternatives > 1)
3391 fprintf (asm_out_file, "/%d", which_alternative + 1);
3392
3393 if (HAVE_ATTR_length)
3394 fprintf (asm_out_file, "\t[length = %d]",
3395 get_attr_length (debug_insn));
3396
3397 /* Clear this so only the first assembler insn
3398 of any rtl insn will get the special comment for -dp. */
3399 debug_insn = 0;
3400 }
3401 }
3402
3403 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3404 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3405 corresponds to the address of the object and 0 if to the object. */
3406
3407 static tree
3408 get_mem_expr_from_op (rtx op, int *paddressp)
3409 {
3410 tree expr;
3411 int inner_addressp;
3412
3413 *paddressp = 0;
3414
3415 if (REG_P (op))
3416 return REG_EXPR (op);
3417 else if (!MEM_P (op))
3418 return 0;
3419
3420 if (MEM_EXPR (op) != 0)
3421 return MEM_EXPR (op);
3422
3423 /* Otherwise we have an address, so indicate it and look at the address. */
3424 *paddressp = 1;
3425 op = XEXP (op, 0);
3426
3427 /* First check if we have a decl for the address, then look at the right side
3428 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3429 But don't allow the address to itself be indirect. */
3430 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3431 return expr;
3432 else if (GET_CODE (op) == PLUS
3433 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3434 return expr;
3435
3436 while (UNARY_P (op)
3437 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3438 op = XEXP (op, 0);
3439
3440 expr = get_mem_expr_from_op (op, &inner_addressp);
3441 return inner_addressp ? 0 : expr;
3442 }
3443
3444 /* Output operand names for assembler instructions. OPERANDS is the
3445 operand vector, OPORDER is the order to write the operands, and NOPS
3446 is the number of operands to write. */
3447
3448 static void
3449 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3450 {
3451 int wrote = 0;
3452 int i;
3453
3454 for (i = 0; i < nops; i++)
3455 {
3456 int addressp;
3457 rtx op = operands[oporder[i]];
3458 tree expr = get_mem_expr_from_op (op, &addressp);
3459
3460 fprintf (asm_out_file, "%c%s",
3461 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3462 wrote = 1;
3463 if (expr)
3464 {
3465 fprintf (asm_out_file, "%s",
3466 addressp ? "*" : "");
3467 print_mem_expr (asm_out_file, expr);
3468 wrote = 1;
3469 }
3470 else if (REG_P (op) && ORIGINAL_REGNO (op)
3471 && ORIGINAL_REGNO (op) != REGNO (op))
3472 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3473 }
3474 }
3475
3476 #ifdef ASSEMBLER_DIALECT
3477 /* Helper function to parse assembler dialects in the asm string.
3478 This is called from output_asm_insn and asm_fprintf. */
3479 static const char *
3480 do_assembler_dialects (const char *p, int *dialect)
3481 {
3482 char c = *(p - 1);
3483
3484 switch (c)
3485 {
3486 case '{':
3487 {
3488 int i;
3489
3490 if (*dialect)
3491 output_operand_lossage ("nested assembly dialect alternatives");
3492 else
3493 *dialect = 1;
3494
3495 /* If we want the first dialect, do nothing. Otherwise, skip
3496 DIALECT_NUMBER of strings ending with '|'. */
3497 for (i = 0; i < dialect_number; i++)
3498 {
3499 while (*p && *p != '}')
3500 {
3501 if (*p == '|')
3502 {
3503 p++;
3504 break;
3505 }
3506
3507 /* Skip over any character after a percent sign. */
3508 if (*p == '%')
3509 p++;
3510 if (*p)
3511 p++;
3512 }
3513
3514 if (*p == '}')
3515 break;
3516 }
3517
3518 if (*p == '\0')
3519 output_operand_lossage ("unterminated assembly dialect alternative");
3520 }
3521 break;
3522
3523 case '|':
3524 if (*dialect)
3525 {
3526 /* Skip to close brace. */
3527 do
3528 {
3529 if (*p == '\0')
3530 {
3531 output_operand_lossage ("unterminated assembly dialect alternative");
3532 break;
3533 }
3534
3535 /* Skip over any character after a percent sign. */
3536 if (*p == '%' && p[1])
3537 {
3538 p += 2;
3539 continue;
3540 }
3541
3542 if (*p++ == '}')
3543 break;
3544 }
3545 while (1);
3546
3547 *dialect = 0;
3548 }
3549 else
3550 putc (c, asm_out_file);
3551 break;
3552
3553 case '}':
3554 if (! *dialect)
3555 putc (c, asm_out_file);
3556 *dialect = 0;
3557 break;
3558 default:
3559 gcc_unreachable ();
3560 }
3561
3562 return p;
3563 }
3564 #endif
3565
3566 /* Output text from TEMPLATE to the assembler output file,
3567 obeying %-directions to substitute operands taken from
3568 the vector OPERANDS.
3569
3570 %N (for N a digit) means print operand N in usual manner.
3571 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3572 and print the label name with no punctuation.
3573 %cN means require operand N to be a constant
3574 and print the constant expression with no punctuation.
3575 %aN means expect operand N to be a memory address
3576 (not a memory reference!) and print a reference
3577 to that address.
3578 %nN means expect operand N to be a constant
3579 and print a constant expression for minus the value
3580 of the operand, with no other punctuation. */
3581
3582 void
3583 output_asm_insn (const char *templ, rtx *operands)
3584 {
3585 const char *p;
3586 int c;
3587 #ifdef ASSEMBLER_DIALECT
3588 int dialect = 0;
3589 #endif
3590 int oporder[MAX_RECOG_OPERANDS];
3591 char opoutput[MAX_RECOG_OPERANDS];
3592 int ops = 0;
3593
3594 /* An insn may return a null string template
3595 in a case where no assembler code is needed. */
3596 if (*templ == 0)
3597 return;
3598
3599 memset (opoutput, 0, sizeof opoutput);
3600 p = templ;
3601 putc ('\t', asm_out_file);
3602
3603 #ifdef ASM_OUTPUT_OPCODE
3604 ASM_OUTPUT_OPCODE (asm_out_file, p);
3605 #endif
3606
3607 while ((c = *p++))
3608 switch (c)
3609 {
3610 case '\n':
3611 if (flag_verbose_asm)
3612 output_asm_operand_names (operands, oporder, ops);
3613 if (flag_print_asm_name)
3614 output_asm_name ();
3615
3616 ops = 0;
3617 memset (opoutput, 0, sizeof opoutput);
3618
3619 putc (c, asm_out_file);
3620 #ifdef ASM_OUTPUT_OPCODE
3621 while ((c = *p) == '\t')
3622 {
3623 putc (c, asm_out_file);
3624 p++;
3625 }
3626 ASM_OUTPUT_OPCODE (asm_out_file, p);
3627 #endif
3628 break;
3629
3630 #ifdef ASSEMBLER_DIALECT
3631 case '{':
3632 case '}':
3633 case '|':
3634 p = do_assembler_dialects (p, &dialect);
3635 break;
3636 #endif
3637
3638 case '%':
3639 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3640 if ASSEMBLER_DIALECT defined and these characters have a special
3641 meaning as dialect delimiters.*/
3642 if (*p == '%'
3643 #ifdef ASSEMBLER_DIALECT
3644 || *p == '{' || *p == '}' || *p == '|'
3645 #endif
3646 )
3647 {
3648 putc (*p, asm_out_file);
3649 p++;
3650 }
3651 /* %= outputs a number which is unique to each insn in the entire
3652 compilation. This is useful for making local labels that are
3653 referred to more than once in a given insn. */
3654 else if (*p == '=')
3655 {
3656 p++;
3657 fprintf (asm_out_file, "%d", insn_counter);
3658 }
3659 /* % followed by a letter and some digits
3660 outputs an operand in a special way depending on the letter.
3661 Letters `acln' are implemented directly.
3662 Other letters are passed to `output_operand' so that
3663 the TARGET_PRINT_OPERAND hook can define them. */
3664 else if (ISALPHA (*p))
3665 {
3666 int letter = *p++;
3667 unsigned long opnum;
3668 char *endptr;
3669
3670 opnum = strtoul (p, &endptr, 10);
3671
3672 if (endptr == p)
3673 output_operand_lossage ("operand number missing "
3674 "after %%-letter");
3675 else if (this_is_asm_operands && opnum >= insn_noperands)
3676 output_operand_lossage ("operand number out of range");
3677 else if (letter == 'l')
3678 output_asm_label (operands[opnum]);
3679 else if (letter == 'a')
3680 output_address (operands[opnum]);
3681 else if (letter == 'c')
3682 {
3683 if (CONSTANT_ADDRESS_P (operands[opnum]))
3684 output_addr_const (asm_out_file, operands[opnum]);
3685 else
3686 output_operand (operands[opnum], 'c');
3687 }
3688 else if (letter == 'n')
3689 {
3690 if (CONST_INT_P (operands[opnum]))
3691 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3692 - INTVAL (operands[opnum]));
3693 else
3694 {
3695 putc ('-', asm_out_file);
3696 output_addr_const (asm_out_file, operands[opnum]);
3697 }
3698 }
3699 else
3700 output_operand (operands[opnum], letter);
3701
3702 if (!opoutput[opnum])
3703 oporder[ops++] = opnum;
3704 opoutput[opnum] = 1;
3705
3706 p = endptr;
3707 c = *p;
3708 }
3709 /* % followed by a digit outputs an operand the default way. */
3710 else if (ISDIGIT (*p))
3711 {
3712 unsigned long opnum;
3713 char *endptr;
3714
3715 opnum = strtoul (p, &endptr, 10);
3716 if (this_is_asm_operands && opnum >= insn_noperands)
3717 output_operand_lossage ("operand number out of range");
3718 else
3719 output_operand (operands[opnum], 0);
3720
3721 if (!opoutput[opnum])
3722 oporder[ops++] = opnum;
3723 opoutput[opnum] = 1;
3724
3725 p = endptr;
3726 c = *p;
3727 }
3728 /* % followed by punctuation: output something for that
3729 punctuation character alone, with no operand. The
3730 TARGET_PRINT_OPERAND hook decides what is actually done. */
3731 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3732 output_operand (NULL_RTX, *p++);
3733 else
3734 output_operand_lossage ("invalid %%-code");
3735 break;
3736
3737 default:
3738 putc (c, asm_out_file);
3739 }
3740
3741 /* Write out the variable names for operands, if we know them. */
3742 if (flag_verbose_asm)
3743 output_asm_operand_names (operands, oporder, ops);
3744 if (flag_print_asm_name)
3745 output_asm_name ();
3746
3747 putc ('\n', asm_out_file);
3748 }
3749 \f
3750 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3751
3752 void
3753 output_asm_label (rtx x)
3754 {
3755 char buf[256];
3756
3757 if (GET_CODE (x) == LABEL_REF)
3758 x = XEXP (x, 0);
3759 if (LABEL_P (x)
3760 || (NOTE_P (x)
3761 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3762 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3763 else
3764 output_operand_lossage ("'%%l' operand isn't a label");
3765
3766 assemble_name (asm_out_file, buf);
3767 }
3768
3769 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3770 output_operand. Marks SYMBOL_REFs as referenced through use of
3771 assemble_external. */
3772
3773 static int
3774 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3775 {
3776 rtx x = *xp;
3777
3778 /* If we have a used symbol, we may have to emit assembly
3779 annotations corresponding to whether the symbol is external, weak
3780 or has non-default visibility. */
3781 if (GET_CODE (x) == SYMBOL_REF)
3782 {
3783 tree t;
3784
3785 t = SYMBOL_REF_DECL (x);
3786 if (t)
3787 assemble_external (t);
3788
3789 return -1;
3790 }
3791
3792 return 0;
3793 }
3794
3795 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3796
3797 void
3798 mark_symbol_refs_as_used (rtx x)
3799 {
3800 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3801 }
3802
3803 /* Print operand X using machine-dependent assembler syntax.
3804 CODE is a non-digit that preceded the operand-number in the % spec,
3805 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3806 between the % and the digits.
3807 When CODE is a non-letter, X is 0.
3808
3809 The meanings of the letters are machine-dependent and controlled
3810 by TARGET_PRINT_OPERAND. */
3811
3812 void
3813 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3814 {
3815 if (x && GET_CODE (x) == SUBREG)
3816 x = alter_subreg (&x, true);
3817
3818 /* X must not be a pseudo reg. */
3819 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3820
3821 targetm.asm_out.print_operand (asm_out_file, x, code);
3822
3823 if (x == NULL_RTX)
3824 return;
3825
3826 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3827 }
3828
3829 /* Print a memory reference operand for address X using
3830 machine-dependent assembler syntax. */
3831
3832 void
3833 output_address (rtx x)
3834 {
3835 bool changed = false;
3836 walk_alter_subreg (&x, &changed);
3837 targetm.asm_out.print_operand_address (asm_out_file, x);
3838 }
3839 \f
3840 /* Print an integer constant expression in assembler syntax.
3841 Addition and subtraction are the only arithmetic
3842 that may appear in these expressions. */
3843
3844 void
3845 output_addr_const (FILE *file, rtx x)
3846 {
3847 char buf[256];
3848
3849 restart:
3850 switch (GET_CODE (x))
3851 {
3852 case PC:
3853 putc ('.', file);
3854 break;
3855
3856 case SYMBOL_REF:
3857 if (SYMBOL_REF_DECL (x))
3858 assemble_external (SYMBOL_REF_DECL (x));
3859 #ifdef ASM_OUTPUT_SYMBOL_REF
3860 ASM_OUTPUT_SYMBOL_REF (file, x);
3861 #else
3862 assemble_name (file, XSTR (x, 0));
3863 #endif
3864 break;
3865
3866 case LABEL_REF:
3867 x = XEXP (x, 0);
3868 /* Fall through. */
3869 case CODE_LABEL:
3870 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3871 #ifdef ASM_OUTPUT_LABEL_REF
3872 ASM_OUTPUT_LABEL_REF (file, buf);
3873 #else
3874 assemble_name (file, buf);
3875 #endif
3876 break;
3877
3878 case CONST_INT:
3879 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3880 break;
3881
3882 case CONST:
3883 /* This used to output parentheses around the expression,
3884 but that does not work on the 386 (either ATT or BSD assembler). */
3885 output_addr_const (file, XEXP (x, 0));
3886 break;
3887
3888 case CONST_DOUBLE:
3889 if (GET_MODE (x) == VOIDmode)
3890 {
3891 /* We can use %d if the number is one word and positive. */
3892 if (CONST_DOUBLE_HIGH (x))
3893 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3894 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3895 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3896 else if (CONST_DOUBLE_LOW (x) < 0)
3897 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3898 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3899 else
3900 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3901 }
3902 else
3903 /* We can't handle floating point constants;
3904 PRINT_OPERAND must handle them. */
3905 output_operand_lossage ("floating constant misused");
3906 break;
3907
3908 case CONST_FIXED:
3909 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3910 break;
3911
3912 case PLUS:
3913 /* Some assemblers need integer constants to appear last (eg masm). */
3914 if (CONST_INT_P (XEXP (x, 0)))
3915 {
3916 output_addr_const (file, XEXP (x, 1));
3917 if (INTVAL (XEXP (x, 0)) >= 0)
3918 fprintf (file, "+");
3919 output_addr_const (file, XEXP (x, 0));
3920 }
3921 else
3922 {
3923 output_addr_const (file, XEXP (x, 0));
3924 if (!CONST_INT_P (XEXP (x, 1))
3925 || INTVAL (XEXP (x, 1)) >= 0)
3926 fprintf (file, "+");
3927 output_addr_const (file, XEXP (x, 1));
3928 }
3929 break;
3930
3931 case MINUS:
3932 /* Avoid outputting things like x-x or x+5-x,
3933 since some assemblers can't handle that. */
3934 x = simplify_subtraction (x);
3935 if (GET_CODE (x) != MINUS)
3936 goto restart;
3937
3938 output_addr_const (file, XEXP (x, 0));
3939 fprintf (file, "-");
3940 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3941 || GET_CODE (XEXP (x, 1)) == PC
3942 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3943 output_addr_const (file, XEXP (x, 1));
3944 else
3945 {
3946 fputs (targetm.asm_out.open_paren, file);
3947 output_addr_const (file, XEXP (x, 1));
3948 fputs (targetm.asm_out.close_paren, file);
3949 }
3950 break;
3951
3952 case ZERO_EXTEND:
3953 case SIGN_EXTEND:
3954 case SUBREG:
3955 case TRUNCATE:
3956 output_addr_const (file, XEXP (x, 0));
3957 break;
3958
3959 default:
3960 if (targetm.asm_out.output_addr_const_extra (file, x))
3961 break;
3962
3963 output_operand_lossage ("invalid expression as operand");
3964 }
3965 }
3966 \f
3967 /* Output a quoted string. */
3968
3969 void
3970 output_quoted_string (FILE *asm_file, const char *string)
3971 {
3972 #ifdef OUTPUT_QUOTED_STRING
3973 OUTPUT_QUOTED_STRING (asm_file, string);
3974 #else
3975 char c;
3976
3977 putc ('\"', asm_file);
3978 while ((c = *string++) != 0)
3979 {
3980 if (ISPRINT (c))
3981 {
3982 if (c == '\"' || c == '\\')
3983 putc ('\\', asm_file);
3984 putc (c, asm_file);
3985 }
3986 else
3987 fprintf (asm_file, "\\%03o", (unsigned char) c);
3988 }
3989 putc ('\"', asm_file);
3990 #endif
3991 }
3992 \f
3993 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3994
3995 void
3996 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
3997 {
3998 char buf[2 + CHAR_BIT * sizeof (value) / 4];
3999 if (value == 0)
4000 putc ('0', f);
4001 else
4002 {
4003 char *p = buf + sizeof (buf);
4004 do
4005 *--p = "0123456789abcdef"[value % 16];
4006 while ((value /= 16) != 0);
4007 *--p = 'x';
4008 *--p = '0';
4009 fwrite (p, 1, buf + sizeof (buf) - p, f);
4010 }
4011 }
4012
4013 /* Internal function that prints an unsigned long in decimal in reverse.
4014 The output string IS NOT null-terminated. */
4015
4016 static int
4017 sprint_ul_rev (char *s, unsigned long value)
4018 {
4019 int i = 0;
4020 do
4021 {
4022 s[i] = "0123456789"[value % 10];
4023 value /= 10;
4024 i++;
4025 /* alternate version, without modulo */
4026 /* oldval = value; */
4027 /* value /= 10; */
4028 /* s[i] = "0123456789" [oldval - 10*value]; */
4029 /* i++ */
4030 }
4031 while (value != 0);
4032 return i;
4033 }
4034
4035 /* Write an unsigned long as decimal to a file, fast. */
4036
4037 void
4038 fprint_ul (FILE *f, unsigned long value)
4039 {
4040 /* python says: len(str(2**64)) == 20 */
4041 char s[20];
4042 int i;
4043
4044 i = sprint_ul_rev (s, value);
4045
4046 /* It's probably too small to bother with string reversal and fputs. */
4047 do
4048 {
4049 i--;
4050 putc (s[i], f);
4051 }
4052 while (i != 0);
4053 }
4054
4055 /* Write an unsigned long as decimal to a string, fast.
4056 s must be wide enough to not overflow, at least 21 chars.
4057 Returns the length of the string (without terminating '\0'). */
4058
4059 int
4060 sprint_ul (char *s, unsigned long value)
4061 {
4062 int len;
4063 char tmp_c;
4064 int i;
4065 int j;
4066
4067 len = sprint_ul_rev (s, value);
4068 s[len] = '\0';
4069
4070 /* Reverse the string. */
4071 i = 0;
4072 j = len - 1;
4073 while (i < j)
4074 {
4075 tmp_c = s[i];
4076 s[i] = s[j];
4077 s[j] = tmp_c;
4078 i++; j--;
4079 }
4080
4081 return len;
4082 }
4083
4084 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
4085 %R prints the value of REGISTER_PREFIX.
4086 %L prints the value of LOCAL_LABEL_PREFIX.
4087 %U prints the value of USER_LABEL_PREFIX.
4088 %I prints the value of IMMEDIATE_PREFIX.
4089 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
4090 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
4091
4092 We handle alternate assembler dialects here, just like output_asm_insn. */
4093
4094 void
4095 asm_fprintf (FILE *file, const char *p, ...)
4096 {
4097 char buf[10];
4098 char *q, c;
4099 #ifdef ASSEMBLER_DIALECT
4100 int dialect = 0;
4101 #endif
4102 va_list argptr;
4103
4104 va_start (argptr, p);
4105
4106 buf[0] = '%';
4107
4108 while ((c = *p++))
4109 switch (c)
4110 {
4111 #ifdef ASSEMBLER_DIALECT
4112 case '{':
4113 case '}':
4114 case '|':
4115 p = do_assembler_dialects (p, &dialect);
4116 break;
4117 #endif
4118
4119 case '%':
4120 c = *p++;
4121 q = &buf[1];
4122 while (strchr ("-+ #0", c))
4123 {
4124 *q++ = c;
4125 c = *p++;
4126 }
4127 while (ISDIGIT (c) || c == '.')
4128 {
4129 *q++ = c;
4130 c = *p++;
4131 }
4132 switch (c)
4133 {
4134 case '%':
4135 putc ('%', file);
4136 break;
4137
4138 case 'd': case 'i': case 'u':
4139 case 'x': case 'X': case 'o':
4140 case 'c':
4141 *q++ = c;
4142 *q = 0;
4143 fprintf (file, buf, va_arg (argptr, int));
4144 break;
4145
4146 case 'w':
4147 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4148 'o' cases, but we do not check for those cases. It
4149 means that the value is a HOST_WIDE_INT, which may be
4150 either `long' or `long long'. */
4151 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4152 q += strlen (HOST_WIDE_INT_PRINT);
4153 *q++ = *p++;
4154 *q = 0;
4155 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4156 break;
4157
4158 case 'l':
4159 *q++ = c;
4160 #ifdef HAVE_LONG_LONG
4161 if (*p == 'l')
4162 {
4163 *q++ = *p++;
4164 *q++ = *p++;
4165 *q = 0;
4166 fprintf (file, buf, va_arg (argptr, long long));
4167 }
4168 else
4169 #endif
4170 {
4171 *q++ = *p++;
4172 *q = 0;
4173 fprintf (file, buf, va_arg (argptr, long));
4174 }
4175
4176 break;
4177
4178 case 's':
4179 *q++ = c;
4180 *q = 0;
4181 fprintf (file, buf, va_arg (argptr, char *));
4182 break;
4183
4184 case 'O':
4185 #ifdef ASM_OUTPUT_OPCODE
4186 ASM_OUTPUT_OPCODE (asm_out_file, p);
4187 #endif
4188 break;
4189
4190 case 'R':
4191 #ifdef REGISTER_PREFIX
4192 fprintf (file, "%s", REGISTER_PREFIX);
4193 #endif
4194 break;
4195
4196 case 'I':
4197 #ifdef IMMEDIATE_PREFIX
4198 fprintf (file, "%s", IMMEDIATE_PREFIX);
4199 #endif
4200 break;
4201
4202 case 'L':
4203 #ifdef LOCAL_LABEL_PREFIX
4204 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4205 #endif
4206 break;
4207
4208 case 'U':
4209 fputs (user_label_prefix, file);
4210 break;
4211
4212 #ifdef ASM_FPRINTF_EXTENSIONS
4213 /* Uppercase letters are reserved for general use by asm_fprintf
4214 and so are not available to target specific code. In order to
4215 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4216 they are defined here. As they get turned into real extensions
4217 to asm_fprintf they should be removed from this list. */
4218 case 'A': case 'B': case 'C': case 'D': case 'E':
4219 case 'F': case 'G': case 'H': case 'J': case 'K':
4220 case 'M': case 'N': case 'P': case 'Q': case 'S':
4221 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4222 break;
4223
4224 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4225 #endif
4226 default:
4227 gcc_unreachable ();
4228 }
4229 break;
4230
4231 default:
4232 putc (c, file);
4233 }
4234 va_end (argptr);
4235 }
4236 \f
4237 /* Return nonzero if this function has no function calls. */
4238
4239 int
4240 leaf_function_p (void)
4241 {
4242 rtx insn;
4243
4244 if (crtl->profile || profile_arc_flag)
4245 return 0;
4246
4247 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4248 {
4249 if (CALL_P (insn)
4250 && ! SIBLING_CALL_P (insn))
4251 return 0;
4252 if (NONJUMP_INSN_P (insn)
4253 && GET_CODE (PATTERN (insn)) == SEQUENCE
4254 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4255 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4256 return 0;
4257 }
4258
4259 return 1;
4260 }
4261
4262 /* Return 1 if branch is a forward branch.
4263 Uses insn_shuid array, so it works only in the final pass. May be used by
4264 output templates to customary add branch prediction hints.
4265 */
4266 int
4267 final_forward_branch_p (rtx insn)
4268 {
4269 int insn_id, label_id;
4270
4271 gcc_assert (uid_shuid);
4272 insn_id = INSN_SHUID (insn);
4273 label_id = INSN_SHUID (JUMP_LABEL (insn));
4274 /* We've hit some insns that does not have id information available. */
4275 gcc_assert (insn_id && label_id);
4276 return insn_id < label_id;
4277 }
4278
4279 /* On some machines, a function with no call insns
4280 can run faster if it doesn't create its own register window.
4281 When output, the leaf function should use only the "output"
4282 registers. Ordinarily, the function would be compiled to use
4283 the "input" registers to find its arguments; it is a candidate
4284 for leaf treatment if it uses only the "input" registers.
4285 Leaf function treatment means renumbering so the function
4286 uses the "output" registers instead. */
4287
4288 #ifdef LEAF_REGISTERS
4289
4290 /* Return 1 if this function uses only the registers that can be
4291 safely renumbered. */
4292
4293 int
4294 only_leaf_regs_used (void)
4295 {
4296 int i;
4297 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4298
4299 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4300 if ((df_regs_ever_live_p (i) || global_regs[i])
4301 && ! permitted_reg_in_leaf_functions[i])
4302 return 0;
4303
4304 if (crtl->uses_pic_offset_table
4305 && pic_offset_table_rtx != 0
4306 && REG_P (pic_offset_table_rtx)
4307 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4308 return 0;
4309
4310 return 1;
4311 }
4312
4313 /* Scan all instructions and renumber all registers into those
4314 available in leaf functions. */
4315
4316 static void
4317 leaf_renumber_regs (rtx first)
4318 {
4319 rtx insn;
4320
4321 /* Renumber only the actual patterns.
4322 The reg-notes can contain frame pointer refs,
4323 and renumbering them could crash, and should not be needed. */
4324 for (insn = first; insn; insn = NEXT_INSN (insn))
4325 if (INSN_P (insn))
4326 leaf_renumber_regs_insn (PATTERN (insn));
4327 }
4328
4329 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4330 available in leaf functions. */
4331
4332 void
4333 leaf_renumber_regs_insn (rtx in_rtx)
4334 {
4335 int i, j;
4336 const char *format_ptr;
4337
4338 if (in_rtx == 0)
4339 return;
4340
4341 /* Renumber all input-registers into output-registers.
4342 renumbered_regs would be 1 for an output-register;
4343 they */
4344
4345 if (REG_P (in_rtx))
4346 {
4347 int newreg;
4348
4349 /* Don't renumber the same reg twice. */
4350 if (in_rtx->used)
4351 return;
4352
4353 newreg = REGNO (in_rtx);
4354 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4355 to reach here as part of a REG_NOTE. */
4356 if (newreg >= FIRST_PSEUDO_REGISTER)
4357 {
4358 in_rtx->used = 1;
4359 return;
4360 }
4361 newreg = LEAF_REG_REMAP (newreg);
4362 gcc_assert (newreg >= 0);
4363 df_set_regs_ever_live (REGNO (in_rtx), false);
4364 df_set_regs_ever_live (newreg, true);
4365 SET_REGNO (in_rtx, newreg);
4366 in_rtx->used = 1;
4367 }
4368
4369 if (INSN_P (in_rtx))
4370 {
4371 /* Inside a SEQUENCE, we find insns.
4372 Renumber just the patterns of these insns,
4373 just as we do for the top-level insns. */
4374 leaf_renumber_regs_insn (PATTERN (in_rtx));
4375 return;
4376 }
4377
4378 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4379
4380 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4381 switch (*format_ptr++)
4382 {
4383 case 'e':
4384 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4385 break;
4386
4387 case 'E':
4388 if (NULL != XVEC (in_rtx, i))
4389 {
4390 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4391 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4392 }
4393 break;
4394
4395 case 'S':
4396 case 's':
4397 case '0':
4398 case 'i':
4399 case 'w':
4400 case 'n':
4401 case 'u':
4402 break;
4403
4404 default:
4405 gcc_unreachable ();
4406 }
4407 }
4408 #endif
4409 \f
4410 /* Turn the RTL into assembly. */
4411 static unsigned int
4412 rest_of_handle_final (void)
4413 {
4414 rtx x;
4415 const char *fnname;
4416
4417 /* Get the function's name, as described by its RTL. This may be
4418 different from the DECL_NAME name used in the source file. */
4419
4420 x = DECL_RTL (current_function_decl);
4421 gcc_assert (MEM_P (x));
4422 x = XEXP (x, 0);
4423 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4424 fnname = XSTR (x, 0);
4425
4426 assemble_start_function (current_function_decl, fnname);
4427 final_start_function (get_insns (), asm_out_file, optimize);
4428 final (get_insns (), asm_out_file, optimize);
4429 final_end_function ();
4430
4431 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4432 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4433 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4434 output_function_exception_table (fnname);
4435
4436 assemble_end_function (current_function_decl, fnname);
4437
4438 user_defined_section_attribute = false;
4439
4440 /* Free up reg info memory. */
4441 free_reg_info ();
4442
4443 if (! quiet_flag)
4444 fflush (asm_out_file);
4445
4446 /* Write DBX symbols if requested. */
4447
4448 /* Note that for those inline functions where we don't initially
4449 know for certain that we will be generating an out-of-line copy,
4450 the first invocation of this routine (rest_of_compilation) will
4451 skip over this code by doing a `goto exit_rest_of_compilation;'.
4452 Later on, wrapup_global_declarations will (indirectly) call
4453 rest_of_compilation again for those inline functions that need
4454 to have out-of-line copies generated. During that call, we
4455 *will* be routed past here. */
4456
4457 timevar_push (TV_SYMOUT);
4458 if (!DECL_IGNORED_P (current_function_decl))
4459 debug_hooks->function_decl (current_function_decl);
4460 timevar_pop (TV_SYMOUT);
4461
4462 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4463 DECL_INITIAL (current_function_decl) = error_mark_node;
4464
4465 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4466 && targetm.have_ctors_dtors)
4467 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4468 decl_init_priority_lookup
4469 (current_function_decl));
4470 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4471 && targetm.have_ctors_dtors)
4472 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4473 decl_fini_priority_lookup
4474 (current_function_decl));
4475 return 0;
4476 }
4477
4478 namespace {
4479
4480 const pass_data pass_data_final =
4481 {
4482 RTL_PASS, /* type */
4483 "final", /* name */
4484 OPTGROUP_NONE, /* optinfo_flags */
4485 true, /* has_execute */
4486 TV_FINAL, /* tv_id */
4487 0, /* properties_required */
4488 0, /* properties_provided */
4489 0, /* properties_destroyed */
4490 0, /* todo_flags_start */
4491 0, /* todo_flags_finish */
4492 };
4493
4494 class pass_final : public rtl_opt_pass
4495 {
4496 public:
4497 pass_final (gcc::context *ctxt)
4498 : rtl_opt_pass (pass_data_final, ctxt)
4499 {}
4500
4501 /* opt_pass methods: */
4502 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4503
4504 }; // class pass_final
4505
4506 } // anon namespace
4507
4508 rtl_opt_pass *
4509 make_pass_final (gcc::context *ctxt)
4510 {
4511 return new pass_final (ctxt);
4512 }
4513
4514
4515 static unsigned int
4516 rest_of_handle_shorten_branches (void)
4517 {
4518 /* Shorten branches. */
4519 shorten_branches (get_insns ());
4520 return 0;
4521 }
4522
4523 namespace {
4524
4525 const pass_data pass_data_shorten_branches =
4526 {
4527 RTL_PASS, /* type */
4528 "shorten", /* name */
4529 OPTGROUP_NONE, /* optinfo_flags */
4530 true, /* has_execute */
4531 TV_SHORTEN_BRANCH, /* tv_id */
4532 0, /* properties_required */
4533 0, /* properties_provided */
4534 0, /* properties_destroyed */
4535 0, /* todo_flags_start */
4536 0, /* todo_flags_finish */
4537 };
4538
4539 class pass_shorten_branches : public rtl_opt_pass
4540 {
4541 public:
4542 pass_shorten_branches (gcc::context *ctxt)
4543 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4544 {}
4545
4546 /* opt_pass methods: */
4547 virtual unsigned int execute (function *)
4548 {
4549 return rest_of_handle_shorten_branches ();
4550 }
4551
4552 }; // class pass_shorten_branches
4553
4554 } // anon namespace
4555
4556 rtl_opt_pass *
4557 make_pass_shorten_branches (gcc::context *ctxt)
4558 {
4559 return new pass_shorten_branches (ctxt);
4560 }
4561
4562
4563 static unsigned int
4564 rest_of_clean_state (void)
4565 {
4566 rtx insn, next;
4567 FILE *final_output = NULL;
4568 int save_unnumbered = flag_dump_unnumbered;
4569 int save_noaddr = flag_dump_noaddr;
4570
4571 if (flag_dump_final_insns)
4572 {
4573 final_output = fopen (flag_dump_final_insns, "a");
4574 if (!final_output)
4575 {
4576 error ("could not open final insn dump file %qs: %m",
4577 flag_dump_final_insns);
4578 flag_dump_final_insns = NULL;
4579 }
4580 else
4581 {
4582 flag_dump_noaddr = flag_dump_unnumbered = 1;
4583 if (flag_compare_debug_opt || flag_compare_debug)
4584 dump_flags |= TDF_NOUID;
4585 dump_function_header (final_output, current_function_decl,
4586 dump_flags);
4587 final_insns_dump_p = true;
4588
4589 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4590 if (LABEL_P (insn))
4591 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4592 else
4593 {
4594 if (NOTE_P (insn))
4595 set_block_for_insn (insn, NULL);
4596 INSN_UID (insn) = 0;
4597 }
4598 }
4599 }
4600
4601 /* It is very important to decompose the RTL instruction chain here:
4602 debug information keeps pointing into CODE_LABEL insns inside the function
4603 body. If these remain pointing to the other insns, we end up preserving
4604 whole RTL chain and attached detailed debug info in memory. */
4605 for (insn = get_insns (); insn; insn = next)
4606 {
4607 next = NEXT_INSN (insn);
4608 NEXT_INSN (insn) = NULL;
4609 PREV_INSN (insn) = NULL;
4610
4611 if (final_output
4612 && (!NOTE_P (insn) ||
4613 (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4614 && NOTE_KIND (insn) != NOTE_INSN_CALL_ARG_LOCATION
4615 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4616 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4617 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4618 print_rtl_single (final_output, insn);
4619 }
4620
4621 if (final_output)
4622 {
4623 flag_dump_noaddr = save_noaddr;
4624 flag_dump_unnumbered = save_unnumbered;
4625 final_insns_dump_p = false;
4626
4627 if (fclose (final_output))
4628 {
4629 error ("could not close final insn dump file %qs: %m",
4630 flag_dump_final_insns);
4631 flag_dump_final_insns = NULL;
4632 }
4633 }
4634
4635 /* In case the function was not output,
4636 don't leave any temporary anonymous types
4637 queued up for sdb output. */
4638 #ifdef SDB_DEBUGGING_INFO
4639 if (write_symbols == SDB_DEBUG)
4640 sdbout_types (NULL_TREE);
4641 #endif
4642
4643 flag_rerun_cse_after_global_opts = 0;
4644 reload_completed = 0;
4645 epilogue_completed = 0;
4646 #ifdef STACK_REGS
4647 regstack_completed = 0;
4648 #endif
4649
4650 /* Clear out the insn_length contents now that they are no
4651 longer valid. */
4652 init_insn_lengths ();
4653
4654 /* Show no temporary slots allocated. */
4655 init_temp_slots ();
4656
4657 free_bb_for_insn ();
4658
4659 delete_tree_ssa ();
4660
4661 /* We can reduce stack alignment on call site only when we are sure that
4662 the function body just produced will be actually used in the final
4663 executable. */
4664 if (decl_binds_to_current_def_p (current_function_decl))
4665 {
4666 unsigned int pref = crtl->preferred_stack_boundary;
4667 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4668 pref = crtl->stack_alignment_needed;
4669 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4670 = pref;
4671 }
4672
4673 /* Make sure volatile mem refs aren't considered valid operands for
4674 arithmetic insns. We must call this here if this is a nested inline
4675 function, since the above code leaves us in the init_recog state,
4676 and the function context push/pop code does not save/restore volatile_ok.
4677
4678 ??? Maybe it isn't necessary for expand_start_function to call this
4679 anymore if we do it here? */
4680
4681 init_recog_no_volatile ();
4682
4683 /* We're done with this function. Free up memory if we can. */
4684 free_after_parsing (cfun);
4685 free_after_compilation (cfun);
4686 return 0;
4687 }
4688
4689 namespace {
4690
4691 const pass_data pass_data_clean_state =
4692 {
4693 RTL_PASS, /* type */
4694 "*clean_state", /* name */
4695 OPTGROUP_NONE, /* optinfo_flags */
4696 true, /* has_execute */
4697 TV_FINAL, /* tv_id */
4698 0, /* properties_required */
4699 0, /* properties_provided */
4700 PROP_rtl, /* properties_destroyed */
4701 0, /* todo_flags_start */
4702 0, /* todo_flags_finish */
4703 };
4704
4705 class pass_clean_state : public rtl_opt_pass
4706 {
4707 public:
4708 pass_clean_state (gcc::context *ctxt)
4709 : rtl_opt_pass (pass_data_clean_state, ctxt)
4710 {}
4711
4712 /* opt_pass methods: */
4713 virtual unsigned int execute (function *)
4714 {
4715 return rest_of_clean_state ();
4716 }
4717
4718 }; // class pass_clean_state
4719
4720 } // anon namespace
4721
4722 rtl_opt_pass *
4723 make_pass_clean_state (gcc::context *ctxt)
4724 {
4725 return new pass_clean_state (ctxt);
4726 }