rtl.def (ASM_INPUT): Add location.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79 #include "vecprim.h"
80
81 #ifdef XCOFF_DEBUGGING_INFO
82 #include "xcoffout.h" /* Needed for external data
83 declarations for e.g. AIX 4.x. */
84 #endif
85
86 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
87 #include "dwarf2out.h"
88 #endif
89
90 #ifdef DBX_DEBUGGING_INFO
91 #include "dbxout.h"
92 #endif
93
94 #ifdef SDB_DEBUGGING_INFO
95 #include "sdbout.h"
96 #endif
97
98 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
99 null default for it to save conditionalization later. */
100 #ifndef CC_STATUS_INIT
101 #define CC_STATUS_INIT
102 #endif
103
104 /* How to start an assembler comment. */
105 #ifndef ASM_COMMENT_START
106 #define ASM_COMMENT_START ";#"
107 #endif
108
109 /* Is the given character a logical line separator for the assembler? */
110 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
111 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
112 #endif
113
114 #ifndef JUMP_TABLES_IN_TEXT_SECTION
115 #define JUMP_TABLES_IN_TEXT_SECTION 0
116 #endif
117
118 /* Bitflags used by final_scan_insn. */
119 #define SEEN_BB 1
120 #define SEEN_NOTE 2
121 #define SEEN_EMITTED 4
122
123 /* Last insn processed by final_scan_insn. */
124 static rtx debug_insn;
125 rtx current_output_insn;
126
127 /* Line number of last NOTE. */
128 static int last_linenum;
129
130 /* Highest line number in current block. */
131 static int high_block_linenum;
132
133 /* Likewise for function. */
134 static int high_function_linenum;
135
136 /* Filename of last NOTE. */
137 static const char *last_filename;
138
139 /* Whether to force emission of a line note before the next insn. */
140 static bool force_source_line = false;
141
142 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
143
144 /* Nonzero while outputting an `asm' with operands.
145 This means that inconsistencies are the user's fault, so don't die.
146 The precise value is the insn being output, to pass to error_for_asm. */
147 rtx this_is_asm_operands;
148
149 /* Number of operands of this insn, for an `asm' with operands. */
150 static unsigned int insn_noperands;
151
152 /* Compare optimization flag. */
153
154 static rtx last_ignored_compare = 0;
155
156 /* Assign a unique number to each insn that is output.
157 This can be used to generate unique local labels. */
158
159 static int insn_counter = 0;
160
161 #ifdef HAVE_cc0
162 /* This variable contains machine-dependent flags (defined in tm.h)
163 set and examined by output routines
164 that describe how to interpret the condition codes properly. */
165
166 CC_STATUS cc_status;
167
168 /* During output of an insn, this contains a copy of cc_status
169 from before the insn. */
170
171 CC_STATUS cc_prev_status;
172 #endif
173
174 /* Indexed by hardware reg number, is 1 if that register is ever
175 used in the current function.
176
177 In life_analysis, or in stupid_life_analysis, this is set
178 up to record the hard regs used explicitly. Reload adds
179 in the hard regs used for holding pseudo regs. Final uses
180 it to generate the code in the function prologue and epilogue
181 to save and restore registers as needed. */
182
183 char regs_ever_live[FIRST_PSEUDO_REGISTER];
184
185 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
186 Unlike regs_ever_live, elements of this array corresponding to
187 eliminable regs like the frame pointer are set if an asm sets them. */
188
189 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
190
191 /* Nonzero means current function must be given a frame pointer.
192 Initialized in function.c to 0. Set only in reload1.c as per
193 the needs of the function. */
194
195 int frame_pointer_needed;
196
197 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
198
199 static int block_depth;
200
201 /* Nonzero if have enabled APP processing of our assembler output. */
202
203 static int app_on;
204
205 /* If we are outputting an insn sequence, this contains the sequence rtx.
206 Zero otherwise. */
207
208 rtx final_sequence;
209
210 #ifdef ASSEMBLER_DIALECT
211
212 /* Number of the assembler dialect to use, starting at 0. */
213 static int dialect_number;
214 #endif
215
216 #ifdef HAVE_conditional_execution
217 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
218 rtx current_insn_predicate;
219 #endif
220
221 #ifdef HAVE_ATTR_length
222 static int asm_insn_count (rtx);
223 #endif
224 static void profile_function (FILE *);
225 static void profile_after_prologue (FILE *);
226 static bool notice_source_line (rtx);
227 static rtx walk_alter_subreg (rtx *);
228 static void output_asm_name (void);
229 static void output_alternate_entry_point (FILE *, rtx);
230 static tree get_mem_expr_from_op (rtx, int *);
231 static void output_asm_operand_names (rtx *, int *, int);
232 static void output_operand (rtx, int);
233 #ifdef LEAF_REGISTERS
234 static void leaf_renumber_regs (rtx);
235 #endif
236 #ifdef HAVE_cc0
237 static int alter_cond (rtx);
238 #endif
239 #ifndef ADDR_VEC_ALIGN
240 static int final_addr_vec_align (rtx);
241 #endif
242 #ifdef HAVE_ATTR_length
243 static int align_fuzz (rtx, rtx, int, unsigned);
244 #endif
245 \f
246 /* Initialize data in final at the beginning of a compilation. */
247
248 void
249 init_final (const char *filename ATTRIBUTE_UNUSED)
250 {
251 app_on = 0;
252 final_sequence = 0;
253
254 #ifdef ASSEMBLER_DIALECT
255 dialect_number = ASSEMBLER_DIALECT;
256 #endif
257 }
258
259 /* Default target function prologue and epilogue assembler output.
260
261 If not overridden for epilogue code, then the function body itself
262 contains return instructions wherever needed. */
263 void
264 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
265 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
266 {
267 }
268
269 /* Default target hook that outputs nothing to a stream. */
270 void
271 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
272 {
273 }
274
275 /* Enable APP processing of subsequent output.
276 Used before the output from an `asm' statement. */
277
278 void
279 app_enable (void)
280 {
281 if (! app_on)
282 {
283 fputs (ASM_APP_ON, asm_out_file);
284 app_on = 1;
285 }
286 }
287
288 /* Disable APP processing of subsequent output.
289 Called from varasm.c before most kinds of output. */
290
291 void
292 app_disable (void)
293 {
294 if (app_on)
295 {
296 fputs (ASM_APP_OFF, asm_out_file);
297 app_on = 0;
298 }
299 }
300 \f
301 /* Return the number of slots filled in the current
302 delayed branch sequence (we don't count the insn needing the
303 delay slot). Zero if not in a delayed branch sequence. */
304
305 #ifdef DELAY_SLOTS
306 int
307 dbr_sequence_length (void)
308 {
309 if (final_sequence != 0)
310 return XVECLEN (final_sequence, 0) - 1;
311 else
312 return 0;
313 }
314 #endif
315 \f
316 /* The next two pages contain routines used to compute the length of an insn
317 and to shorten branches. */
318
319 /* Arrays for insn lengths, and addresses. The latter is referenced by
320 `insn_current_length'. */
321
322 static int *insn_lengths;
323
324 VEC(int,heap) *insn_addresses_;
325
326 /* Max uid for which the above arrays are valid. */
327 static int insn_lengths_max_uid;
328
329 /* Address of insn being processed. Used by `insn_current_length'. */
330 int insn_current_address;
331
332 /* Address of insn being processed in previous iteration. */
333 int insn_last_address;
334
335 /* known invariant alignment of insn being processed. */
336 int insn_current_align;
337
338 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
339 gives the next following alignment insn that increases the known
340 alignment, or NULL_RTX if there is no such insn.
341 For any alignment obtained this way, we can again index uid_align with
342 its uid to obtain the next following align that in turn increases the
343 alignment, till we reach NULL_RTX; the sequence obtained this way
344 for each insn we'll call the alignment chain of this insn in the following
345 comments. */
346
347 struct label_alignment
348 {
349 short alignment;
350 short max_skip;
351 };
352
353 static rtx *uid_align;
354 static int *uid_shuid;
355 static struct label_alignment *label_align;
356
357 /* Indicate that branch shortening hasn't yet been done. */
358
359 void
360 init_insn_lengths (void)
361 {
362 if (uid_shuid)
363 {
364 free (uid_shuid);
365 uid_shuid = 0;
366 }
367 if (insn_lengths)
368 {
369 free (insn_lengths);
370 insn_lengths = 0;
371 insn_lengths_max_uid = 0;
372 }
373 #ifdef HAVE_ATTR_length
374 INSN_ADDRESSES_FREE ();
375 #endif
376 if (uid_align)
377 {
378 free (uid_align);
379 uid_align = 0;
380 }
381 }
382
383 /* Obtain the current length of an insn. If branch shortening has been done,
384 get its actual length. Otherwise, use FALLBACK_FN to calculate the
385 length. */
386 static inline int
387 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
388 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
389 {
390 #ifdef HAVE_ATTR_length
391 rtx body;
392 int i;
393 int length = 0;
394
395 if (insn_lengths_max_uid > INSN_UID (insn))
396 return insn_lengths[INSN_UID (insn)];
397 else
398 switch (GET_CODE (insn))
399 {
400 case NOTE:
401 case BARRIER:
402 case CODE_LABEL:
403 return 0;
404
405 case CALL_INSN:
406 length = fallback_fn (insn);
407 break;
408
409 case JUMP_INSN:
410 body = PATTERN (insn);
411 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
412 {
413 /* Alignment is machine-dependent and should be handled by
414 ADDR_VEC_ALIGN. */
415 }
416 else
417 length = fallback_fn (insn);
418 break;
419
420 case INSN:
421 body = PATTERN (insn);
422 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
423 return 0;
424
425 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
426 length = asm_insn_count (body) * fallback_fn (insn);
427 else if (GET_CODE (body) == SEQUENCE)
428 for (i = 0; i < XVECLEN (body, 0); i++)
429 length += get_attr_length (XVECEXP (body, 0, i));
430 else
431 length = fallback_fn (insn);
432 break;
433
434 default:
435 break;
436 }
437
438 #ifdef ADJUST_INSN_LENGTH
439 ADJUST_INSN_LENGTH (insn, length);
440 #endif
441 return length;
442 #else /* not HAVE_ATTR_length */
443 return 0;
444 #define insn_default_length 0
445 #define insn_min_length 0
446 #endif /* not HAVE_ATTR_length */
447 }
448
449 /* Obtain the current length of an insn. If branch shortening has been done,
450 get its actual length. Otherwise, get its maximum length. */
451 int
452 get_attr_length (rtx insn)
453 {
454 return get_attr_length_1 (insn, insn_default_length);
455 }
456
457 /* Obtain the current length of an insn. If branch shortening has been done,
458 get its actual length. Otherwise, get its minimum length. */
459 int
460 get_attr_min_length (rtx insn)
461 {
462 return get_attr_length_1 (insn, insn_min_length);
463 }
464 \f
465 /* Code to handle alignment inside shorten_branches. */
466
467 /* Here is an explanation how the algorithm in align_fuzz can give
468 proper results:
469
470 Call a sequence of instructions beginning with alignment point X
471 and continuing until the next alignment point `block X'. When `X'
472 is used in an expression, it means the alignment value of the
473 alignment point.
474
475 Call the distance between the start of the first insn of block X, and
476 the end of the last insn of block X `IX', for the `inner size of X'.
477 This is clearly the sum of the instruction lengths.
478
479 Likewise with the next alignment-delimited block following X, which we
480 shall call block Y.
481
482 Call the distance between the start of the first insn of block X, and
483 the start of the first insn of block Y `OX', for the `outer size of X'.
484
485 The estimated padding is then OX - IX.
486
487 OX can be safely estimated as
488
489 if (X >= Y)
490 OX = round_up(IX, Y)
491 else
492 OX = round_up(IX, X) + Y - X
493
494 Clearly est(IX) >= real(IX), because that only depends on the
495 instruction lengths, and those being overestimated is a given.
496
497 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
498 we needn't worry about that when thinking about OX.
499
500 When X >= Y, the alignment provided by Y adds no uncertainty factor
501 for branch ranges starting before X, so we can just round what we have.
502 But when X < Y, we don't know anything about the, so to speak,
503 `middle bits', so we have to assume the worst when aligning up from an
504 address mod X to one mod Y, which is Y - X. */
505
506 #ifndef LABEL_ALIGN
507 #define LABEL_ALIGN(LABEL) align_labels_log
508 #endif
509
510 #ifndef LABEL_ALIGN_MAX_SKIP
511 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
512 #endif
513
514 #ifndef LOOP_ALIGN
515 #define LOOP_ALIGN(LABEL) align_loops_log
516 #endif
517
518 #ifndef LOOP_ALIGN_MAX_SKIP
519 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
520 #endif
521
522 #ifndef LABEL_ALIGN_AFTER_BARRIER
523 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
524 #endif
525
526 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
527 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
528 #endif
529
530 #ifndef JUMP_ALIGN
531 #define JUMP_ALIGN(LABEL) align_jumps_log
532 #endif
533
534 #ifndef JUMP_ALIGN_MAX_SKIP
535 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
536 #endif
537
538 #ifndef ADDR_VEC_ALIGN
539 static int
540 final_addr_vec_align (rtx addr_vec)
541 {
542 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
543
544 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
545 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
546 return exact_log2 (align);
547
548 }
549
550 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
551 #endif
552
553 #ifndef INSN_LENGTH_ALIGNMENT
554 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
555 #endif
556
557 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
558
559 static int min_labelno, max_labelno;
560
561 #define LABEL_TO_ALIGNMENT(LABEL) \
562 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
563
564 #define LABEL_TO_MAX_SKIP(LABEL) \
565 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
566
567 /* For the benefit of port specific code do this also as a function. */
568
569 int
570 label_to_alignment (rtx label)
571 {
572 return LABEL_TO_ALIGNMENT (label);
573 }
574
575 #ifdef HAVE_ATTR_length
576 /* The differences in addresses
577 between a branch and its target might grow or shrink depending on
578 the alignment the start insn of the range (the branch for a forward
579 branch or the label for a backward branch) starts out on; if these
580 differences are used naively, they can even oscillate infinitely.
581 We therefore want to compute a 'worst case' address difference that
582 is independent of the alignment the start insn of the range end
583 up on, and that is at least as large as the actual difference.
584 The function align_fuzz calculates the amount we have to add to the
585 naively computed difference, by traversing the part of the alignment
586 chain of the start insn of the range that is in front of the end insn
587 of the range, and considering for each alignment the maximum amount
588 that it might contribute to a size increase.
589
590 For casesi tables, we also want to know worst case minimum amounts of
591 address difference, in case a machine description wants to introduce
592 some common offset that is added to all offsets in a table.
593 For this purpose, align_fuzz with a growth argument of 0 computes the
594 appropriate adjustment. */
595
596 /* Compute the maximum delta by which the difference of the addresses of
597 START and END might grow / shrink due to a different address for start
598 which changes the size of alignment insns between START and END.
599 KNOWN_ALIGN_LOG is the alignment known for START.
600 GROWTH should be ~0 if the objective is to compute potential code size
601 increase, and 0 if the objective is to compute potential shrink.
602 The return value is undefined for any other value of GROWTH. */
603
604 static int
605 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
606 {
607 int uid = INSN_UID (start);
608 rtx align_label;
609 int known_align = 1 << known_align_log;
610 int end_shuid = INSN_SHUID (end);
611 int fuzz = 0;
612
613 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
614 {
615 int align_addr, new_align;
616
617 uid = INSN_UID (align_label);
618 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
619 if (uid_shuid[uid] > end_shuid)
620 break;
621 known_align_log = LABEL_TO_ALIGNMENT (align_label);
622 new_align = 1 << known_align_log;
623 if (new_align < known_align)
624 continue;
625 fuzz += (-align_addr ^ growth) & (new_align - known_align);
626 known_align = new_align;
627 }
628 return fuzz;
629 }
630
631 /* Compute a worst-case reference address of a branch so that it
632 can be safely used in the presence of aligned labels. Since the
633 size of the branch itself is unknown, the size of the branch is
634 not included in the range. I.e. for a forward branch, the reference
635 address is the end address of the branch as known from the previous
636 branch shortening pass, minus a value to account for possible size
637 increase due to alignment. For a backward branch, it is the start
638 address of the branch as known from the current pass, plus a value
639 to account for possible size increase due to alignment.
640 NB.: Therefore, the maximum offset allowed for backward branches needs
641 to exclude the branch size. */
642
643 int
644 insn_current_reference_address (rtx branch)
645 {
646 rtx dest, seq;
647 int seq_uid;
648
649 if (! INSN_ADDRESSES_SET_P ())
650 return 0;
651
652 seq = NEXT_INSN (PREV_INSN (branch));
653 seq_uid = INSN_UID (seq);
654 if (!JUMP_P (branch))
655 /* This can happen for example on the PA; the objective is to know the
656 offset to address something in front of the start of the function.
657 Thus, we can treat it like a backward branch.
658 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
659 any alignment we'd encounter, so we skip the call to align_fuzz. */
660 return insn_current_address;
661 dest = JUMP_LABEL (branch);
662
663 /* BRANCH has no proper alignment chain set, so use SEQ.
664 BRANCH also has no INSN_SHUID. */
665 if (INSN_SHUID (seq) < INSN_SHUID (dest))
666 {
667 /* Forward branch. */
668 return (insn_last_address + insn_lengths[seq_uid]
669 - align_fuzz (seq, dest, length_unit_log, ~0));
670 }
671 else
672 {
673 /* Backward branch. */
674 return (insn_current_address
675 + align_fuzz (dest, seq, length_unit_log, ~0));
676 }
677 }
678 #endif /* HAVE_ATTR_length */
679 \f
680 /* Compute branch alignments based on frequency information in the
681 CFG. */
682
683 static unsigned int
684 compute_alignments (void)
685 {
686 int log, max_skip, max_log;
687 basic_block bb;
688
689 if (label_align)
690 {
691 free (label_align);
692 label_align = 0;
693 }
694
695 max_labelno = max_label_num ();
696 min_labelno = get_first_label_num ();
697 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
698
699 /* If not optimizing or optimizing for size, don't assign any alignments. */
700 if (! optimize || optimize_size)
701 return 0;
702
703 FOR_EACH_BB (bb)
704 {
705 rtx label = BB_HEAD (bb);
706 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
707 edge e;
708 edge_iterator ei;
709
710 if (!LABEL_P (label)
711 || probably_never_executed_bb_p (bb))
712 continue;
713 max_log = LABEL_ALIGN (label);
714 max_skip = LABEL_ALIGN_MAX_SKIP;
715
716 FOR_EACH_EDGE (e, ei, bb->preds)
717 {
718 if (e->flags & EDGE_FALLTHRU)
719 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
720 else
721 branch_frequency += EDGE_FREQUENCY (e);
722 }
723
724 /* There are two purposes to align block with no fallthru incoming edge:
725 1) to avoid fetch stalls when branch destination is near cache boundary
726 2) to improve cache efficiency in case the previous block is not executed
727 (so it does not need to be in the cache).
728
729 We to catch first case, we align frequently executed blocks.
730 To catch the second, we align blocks that are executed more frequently
731 than the predecessor and the predecessor is likely to not be executed
732 when function is called. */
733
734 if (!has_fallthru
735 && (branch_frequency > BB_FREQ_MAX / 10
736 || (bb->frequency > bb->prev_bb->frequency * 10
737 && (bb->prev_bb->frequency
738 <= ENTRY_BLOCK_PTR->frequency / 2))))
739 {
740 log = JUMP_ALIGN (label);
741 if (max_log < log)
742 {
743 max_log = log;
744 max_skip = JUMP_ALIGN_MAX_SKIP;
745 }
746 }
747 /* In case block is frequent and reached mostly by non-fallthru edge,
748 align it. It is most likely a first block of loop. */
749 if (has_fallthru
750 && maybe_hot_bb_p (bb)
751 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
752 && branch_frequency > fallthru_frequency * 2)
753 {
754 log = LOOP_ALIGN (label);
755 if (max_log < log)
756 {
757 max_log = log;
758 max_skip = LOOP_ALIGN_MAX_SKIP;
759 }
760 }
761 LABEL_TO_ALIGNMENT (label) = max_log;
762 LABEL_TO_MAX_SKIP (label) = max_skip;
763 }
764 return 0;
765 }
766
767 struct tree_opt_pass pass_compute_alignments =
768 {
769 NULL, /* name */
770 NULL, /* gate */
771 compute_alignments, /* execute */
772 NULL, /* sub */
773 NULL, /* next */
774 0, /* static_pass_number */
775 0, /* tv_id */
776 0, /* properties_required */
777 0, /* properties_provided */
778 0, /* properties_destroyed */
779 0, /* todo_flags_start */
780 0, /* todo_flags_finish */
781 0 /* letter */
782 };
783
784 \f
785 /* Make a pass over all insns and compute their actual lengths by shortening
786 any branches of variable length if possible. */
787
788 /* shorten_branches might be called multiple times: for example, the SH
789 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
790 In order to do this, it needs proper length information, which it obtains
791 by calling shorten_branches. This cannot be collapsed with
792 shorten_branches itself into a single pass unless we also want to integrate
793 reorg.c, since the branch splitting exposes new instructions with delay
794 slots. */
795
796 void
797 shorten_branches (rtx first ATTRIBUTE_UNUSED)
798 {
799 rtx insn;
800 int max_uid;
801 int i;
802 int max_log;
803 int max_skip;
804 #ifdef HAVE_ATTR_length
805 #define MAX_CODE_ALIGN 16
806 rtx seq;
807 int something_changed = 1;
808 char *varying_length;
809 rtx body;
810 int uid;
811 rtx align_tab[MAX_CODE_ALIGN];
812
813 #endif
814
815 /* Compute maximum UID and allocate label_align / uid_shuid. */
816 max_uid = get_max_uid ();
817
818 /* Free uid_shuid before reallocating it. */
819 free (uid_shuid);
820
821 uid_shuid = XNEWVEC (int, max_uid);
822
823 if (max_labelno != max_label_num ())
824 {
825 int old = max_labelno;
826 int n_labels;
827 int n_old_labels;
828
829 max_labelno = max_label_num ();
830
831 n_labels = max_labelno - min_labelno + 1;
832 n_old_labels = old - min_labelno + 1;
833
834 label_align = xrealloc (label_align,
835 n_labels * sizeof (struct label_alignment));
836
837 /* Range of labels grows monotonically in the function. Failing here
838 means that the initialization of array got lost. */
839 gcc_assert (n_old_labels <= n_labels);
840
841 memset (label_align + n_old_labels, 0,
842 (n_labels - n_old_labels) * sizeof (struct label_alignment));
843 }
844
845 /* Initialize label_align and set up uid_shuid to be strictly
846 monotonically rising with insn order. */
847 /* We use max_log here to keep track of the maximum alignment we want to
848 impose on the next CODE_LABEL (or the current one if we are processing
849 the CODE_LABEL itself). */
850
851 max_log = 0;
852 max_skip = 0;
853
854 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
855 {
856 int log;
857
858 INSN_SHUID (insn) = i++;
859 if (INSN_P (insn))
860 continue;
861
862 if (LABEL_P (insn))
863 {
864 rtx next;
865
866 /* Merge in alignments computed by compute_alignments. */
867 log = LABEL_TO_ALIGNMENT (insn);
868 if (max_log < log)
869 {
870 max_log = log;
871 max_skip = LABEL_TO_MAX_SKIP (insn);
872 }
873
874 log = LABEL_ALIGN (insn);
875 if (max_log < log)
876 {
877 max_log = log;
878 max_skip = LABEL_ALIGN_MAX_SKIP;
879 }
880 next = next_nonnote_insn (insn);
881 /* ADDR_VECs only take room if read-only data goes into the text
882 section. */
883 if (JUMP_TABLES_IN_TEXT_SECTION
884 || readonly_data_section == text_section)
885 if (next && JUMP_P (next))
886 {
887 rtx nextbody = PATTERN (next);
888 if (GET_CODE (nextbody) == ADDR_VEC
889 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
890 {
891 log = ADDR_VEC_ALIGN (next);
892 if (max_log < log)
893 {
894 max_log = log;
895 max_skip = LABEL_ALIGN_MAX_SKIP;
896 }
897 }
898 }
899 LABEL_TO_ALIGNMENT (insn) = max_log;
900 LABEL_TO_MAX_SKIP (insn) = max_skip;
901 max_log = 0;
902 max_skip = 0;
903 }
904 else if (BARRIER_P (insn))
905 {
906 rtx label;
907
908 for (label = insn; label && ! INSN_P (label);
909 label = NEXT_INSN (label))
910 if (LABEL_P (label))
911 {
912 log = LABEL_ALIGN_AFTER_BARRIER (insn);
913 if (max_log < log)
914 {
915 max_log = log;
916 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
917 }
918 break;
919 }
920 }
921 }
922 #ifdef HAVE_ATTR_length
923
924 /* Allocate the rest of the arrays. */
925 insn_lengths = XNEWVEC (int, max_uid);
926 insn_lengths_max_uid = max_uid;
927 /* Syntax errors can lead to labels being outside of the main insn stream.
928 Initialize insn_addresses, so that we get reproducible results. */
929 INSN_ADDRESSES_ALLOC (max_uid);
930
931 varying_length = XCNEWVEC (char, max_uid);
932
933 /* Initialize uid_align. We scan instructions
934 from end to start, and keep in align_tab[n] the last seen insn
935 that does an alignment of at least n+1, i.e. the successor
936 in the alignment chain for an insn that does / has a known
937 alignment of n. */
938 uid_align = XCNEWVEC (rtx, max_uid);
939
940 for (i = MAX_CODE_ALIGN; --i >= 0;)
941 align_tab[i] = NULL_RTX;
942 seq = get_last_insn ();
943 for (; seq; seq = PREV_INSN (seq))
944 {
945 int uid = INSN_UID (seq);
946 int log;
947 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
948 uid_align[uid] = align_tab[0];
949 if (log)
950 {
951 /* Found an alignment label. */
952 uid_align[uid] = align_tab[log];
953 for (i = log - 1; i >= 0; i--)
954 align_tab[i] = seq;
955 }
956 }
957 #ifdef CASE_VECTOR_SHORTEN_MODE
958 if (optimize)
959 {
960 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
961 label fields. */
962
963 int min_shuid = INSN_SHUID (get_insns ()) - 1;
964 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
965 int rel;
966
967 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 {
969 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
970 int len, i, min, max, insn_shuid;
971 int min_align;
972 addr_diff_vec_flags flags;
973
974 if (!JUMP_P (insn)
975 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
976 continue;
977 pat = PATTERN (insn);
978 len = XVECLEN (pat, 1);
979 gcc_assert (len > 0);
980 min_align = MAX_CODE_ALIGN;
981 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 {
983 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
984 int shuid = INSN_SHUID (lab);
985 if (shuid < min)
986 {
987 min = shuid;
988 min_lab = lab;
989 }
990 if (shuid > max)
991 {
992 max = shuid;
993 max_lab = lab;
994 }
995 if (min_align > LABEL_TO_ALIGNMENT (lab))
996 min_align = LABEL_TO_ALIGNMENT (lab);
997 }
998 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
999 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1000 insn_shuid = INSN_SHUID (insn);
1001 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1002 memset (&flags, 0, sizeof (flags));
1003 flags.min_align = min_align;
1004 flags.base_after_vec = rel > insn_shuid;
1005 flags.min_after_vec = min > insn_shuid;
1006 flags.max_after_vec = max > insn_shuid;
1007 flags.min_after_base = min > rel;
1008 flags.max_after_base = max > rel;
1009 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1010 }
1011 }
1012 #endif /* CASE_VECTOR_SHORTEN_MODE */
1013
1014 /* Compute initial lengths, addresses, and varying flags for each insn. */
1015 for (insn_current_address = 0, insn = first;
1016 insn != 0;
1017 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1018 {
1019 uid = INSN_UID (insn);
1020
1021 insn_lengths[uid] = 0;
1022
1023 if (LABEL_P (insn))
1024 {
1025 int log = LABEL_TO_ALIGNMENT (insn);
1026 if (log)
1027 {
1028 int align = 1 << log;
1029 int new_address = (insn_current_address + align - 1) & -align;
1030 insn_lengths[uid] = new_address - insn_current_address;
1031 }
1032 }
1033
1034 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1035
1036 if (NOTE_P (insn) || BARRIER_P (insn)
1037 || LABEL_P (insn))
1038 continue;
1039 if (INSN_DELETED_P (insn))
1040 continue;
1041
1042 body = PATTERN (insn);
1043 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1044 {
1045 /* This only takes room if read-only data goes into the text
1046 section. */
1047 if (JUMP_TABLES_IN_TEXT_SECTION
1048 || readonly_data_section == text_section)
1049 insn_lengths[uid] = (XVECLEN (body,
1050 GET_CODE (body) == ADDR_DIFF_VEC)
1051 * GET_MODE_SIZE (GET_MODE (body)));
1052 /* Alignment is handled by ADDR_VEC_ALIGN. */
1053 }
1054 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1055 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1056 else if (GET_CODE (body) == SEQUENCE)
1057 {
1058 int i;
1059 int const_delay_slots;
1060 #ifdef DELAY_SLOTS
1061 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1062 #else
1063 const_delay_slots = 0;
1064 #endif
1065 /* Inside a delay slot sequence, we do not do any branch shortening
1066 if the shortening could change the number of delay slots
1067 of the branch. */
1068 for (i = 0; i < XVECLEN (body, 0); i++)
1069 {
1070 rtx inner_insn = XVECEXP (body, 0, i);
1071 int inner_uid = INSN_UID (inner_insn);
1072 int inner_length;
1073
1074 if (GET_CODE (body) == ASM_INPUT
1075 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1076 inner_length = (asm_insn_count (PATTERN (inner_insn))
1077 * insn_default_length (inner_insn));
1078 else
1079 inner_length = insn_default_length (inner_insn);
1080
1081 insn_lengths[inner_uid] = inner_length;
1082 if (const_delay_slots)
1083 {
1084 if ((varying_length[inner_uid]
1085 = insn_variable_length_p (inner_insn)) != 0)
1086 varying_length[uid] = 1;
1087 INSN_ADDRESSES (inner_uid) = (insn_current_address
1088 + insn_lengths[uid]);
1089 }
1090 else
1091 varying_length[inner_uid] = 0;
1092 insn_lengths[uid] += inner_length;
1093 }
1094 }
1095 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1096 {
1097 insn_lengths[uid] = insn_default_length (insn);
1098 varying_length[uid] = insn_variable_length_p (insn);
1099 }
1100
1101 /* If needed, do any adjustment. */
1102 #ifdef ADJUST_INSN_LENGTH
1103 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1104 if (insn_lengths[uid] < 0)
1105 fatal_insn ("negative insn length", insn);
1106 #endif
1107 }
1108
1109 /* Now loop over all the insns finding varying length insns. For each,
1110 get the current insn length. If it has changed, reflect the change.
1111 When nothing changes for a full pass, we are done. */
1112
1113 while (something_changed)
1114 {
1115 something_changed = 0;
1116 insn_current_align = MAX_CODE_ALIGN - 1;
1117 for (insn_current_address = 0, insn = first;
1118 insn != 0;
1119 insn = NEXT_INSN (insn))
1120 {
1121 int new_length;
1122 #ifdef ADJUST_INSN_LENGTH
1123 int tmp_length;
1124 #endif
1125 int length_align;
1126
1127 uid = INSN_UID (insn);
1128
1129 if (LABEL_P (insn))
1130 {
1131 int log = LABEL_TO_ALIGNMENT (insn);
1132 if (log > insn_current_align)
1133 {
1134 int align = 1 << log;
1135 int new_address= (insn_current_address + align - 1) & -align;
1136 insn_lengths[uid] = new_address - insn_current_address;
1137 insn_current_align = log;
1138 insn_current_address = new_address;
1139 }
1140 else
1141 insn_lengths[uid] = 0;
1142 INSN_ADDRESSES (uid) = insn_current_address;
1143 continue;
1144 }
1145
1146 length_align = INSN_LENGTH_ALIGNMENT (insn);
1147 if (length_align < insn_current_align)
1148 insn_current_align = length_align;
1149
1150 insn_last_address = INSN_ADDRESSES (uid);
1151 INSN_ADDRESSES (uid) = insn_current_address;
1152
1153 #ifdef CASE_VECTOR_SHORTEN_MODE
1154 if (optimize && JUMP_P (insn)
1155 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1156 {
1157 rtx body = PATTERN (insn);
1158 int old_length = insn_lengths[uid];
1159 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1160 rtx min_lab = XEXP (XEXP (body, 2), 0);
1161 rtx max_lab = XEXP (XEXP (body, 3), 0);
1162 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1163 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1164 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1165 rtx prev;
1166 int rel_align = 0;
1167 addr_diff_vec_flags flags;
1168
1169 /* Avoid automatic aggregate initialization. */
1170 flags = ADDR_DIFF_VEC_FLAGS (body);
1171
1172 /* Try to find a known alignment for rel_lab. */
1173 for (prev = rel_lab;
1174 prev
1175 && ! insn_lengths[INSN_UID (prev)]
1176 && ! (varying_length[INSN_UID (prev)] & 1);
1177 prev = PREV_INSN (prev))
1178 if (varying_length[INSN_UID (prev)] & 2)
1179 {
1180 rel_align = LABEL_TO_ALIGNMENT (prev);
1181 break;
1182 }
1183
1184 /* See the comment on addr_diff_vec_flags in rtl.h for the
1185 meaning of the flags values. base: REL_LAB vec: INSN */
1186 /* Anything after INSN has still addresses from the last
1187 pass; adjust these so that they reflect our current
1188 estimate for this pass. */
1189 if (flags.base_after_vec)
1190 rel_addr += insn_current_address - insn_last_address;
1191 if (flags.min_after_vec)
1192 min_addr += insn_current_address - insn_last_address;
1193 if (flags.max_after_vec)
1194 max_addr += insn_current_address - insn_last_address;
1195 /* We want to know the worst case, i.e. lowest possible value
1196 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1197 its offset is positive, and we have to be wary of code shrink;
1198 otherwise, it is negative, and we have to be vary of code
1199 size increase. */
1200 if (flags.min_after_base)
1201 {
1202 /* If INSN is between REL_LAB and MIN_LAB, the size
1203 changes we are about to make can change the alignment
1204 within the observed offset, therefore we have to break
1205 it up into two parts that are independent. */
1206 if (! flags.base_after_vec && flags.min_after_vec)
1207 {
1208 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1209 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1210 }
1211 else
1212 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1213 }
1214 else
1215 {
1216 if (flags.base_after_vec && ! flags.min_after_vec)
1217 {
1218 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1219 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1220 }
1221 else
1222 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1223 }
1224 /* Likewise, determine the highest lowest possible value
1225 for the offset of MAX_LAB. */
1226 if (flags.max_after_base)
1227 {
1228 if (! flags.base_after_vec && flags.max_after_vec)
1229 {
1230 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1231 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1232 }
1233 else
1234 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1235 }
1236 else
1237 {
1238 if (flags.base_after_vec && ! flags.max_after_vec)
1239 {
1240 max_addr += align_fuzz (max_lab, insn, 0, 0);
1241 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1242 }
1243 else
1244 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1245 }
1246 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1247 max_addr - rel_addr,
1248 body));
1249 if (JUMP_TABLES_IN_TEXT_SECTION
1250 || readonly_data_section == text_section)
1251 {
1252 insn_lengths[uid]
1253 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1254 insn_current_address += insn_lengths[uid];
1255 if (insn_lengths[uid] != old_length)
1256 something_changed = 1;
1257 }
1258
1259 continue;
1260 }
1261 #endif /* CASE_VECTOR_SHORTEN_MODE */
1262
1263 if (! (varying_length[uid]))
1264 {
1265 if (NONJUMP_INSN_P (insn)
1266 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1267 {
1268 int i;
1269
1270 body = PATTERN (insn);
1271 for (i = 0; i < XVECLEN (body, 0); i++)
1272 {
1273 rtx inner_insn = XVECEXP (body, 0, i);
1274 int inner_uid = INSN_UID (inner_insn);
1275
1276 INSN_ADDRESSES (inner_uid) = insn_current_address;
1277
1278 insn_current_address += insn_lengths[inner_uid];
1279 }
1280 }
1281 else
1282 insn_current_address += insn_lengths[uid];
1283
1284 continue;
1285 }
1286
1287 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1288 {
1289 int i;
1290
1291 body = PATTERN (insn);
1292 new_length = 0;
1293 for (i = 0; i < XVECLEN (body, 0); i++)
1294 {
1295 rtx inner_insn = XVECEXP (body, 0, i);
1296 int inner_uid = INSN_UID (inner_insn);
1297 int inner_length;
1298
1299 INSN_ADDRESSES (inner_uid) = insn_current_address;
1300
1301 /* insn_current_length returns 0 for insns with a
1302 non-varying length. */
1303 if (! varying_length[inner_uid])
1304 inner_length = insn_lengths[inner_uid];
1305 else
1306 inner_length = insn_current_length (inner_insn);
1307
1308 if (inner_length != insn_lengths[inner_uid])
1309 {
1310 insn_lengths[inner_uid] = inner_length;
1311 something_changed = 1;
1312 }
1313 insn_current_address += insn_lengths[inner_uid];
1314 new_length += inner_length;
1315 }
1316 }
1317 else
1318 {
1319 new_length = insn_current_length (insn);
1320 insn_current_address += new_length;
1321 }
1322
1323 #ifdef ADJUST_INSN_LENGTH
1324 /* If needed, do any adjustment. */
1325 tmp_length = new_length;
1326 ADJUST_INSN_LENGTH (insn, new_length);
1327 insn_current_address += (new_length - tmp_length);
1328 #endif
1329
1330 if (new_length != insn_lengths[uid])
1331 {
1332 insn_lengths[uid] = new_length;
1333 something_changed = 1;
1334 }
1335 }
1336 /* For a non-optimizing compile, do only a single pass. */
1337 if (!optimize)
1338 break;
1339 }
1340
1341 free (varying_length);
1342
1343 #endif /* HAVE_ATTR_length */
1344 }
1345
1346 #ifdef HAVE_ATTR_length
1347 /* Given the body of an INSN known to be generated by an ASM statement, return
1348 the number of machine instructions likely to be generated for this insn.
1349 This is used to compute its length. */
1350
1351 static int
1352 asm_insn_count (rtx body)
1353 {
1354 const char *template;
1355 int count = 1;
1356
1357 if (GET_CODE (body) == ASM_INPUT)
1358 template = XSTR (body, 0);
1359 else
1360 template = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1361
1362 for (; *template; template++)
1363 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1364 count++;
1365
1366 return count;
1367 }
1368 #endif
1369 \f
1370 /* Output assembler code for the start of a function,
1371 and initialize some of the variables in this file
1372 for the new function. The label for the function and associated
1373 assembler pseudo-ops have already been output in `assemble_start_function'.
1374
1375 FIRST is the first insn of the rtl for the function being compiled.
1376 FILE is the file to write assembler code to.
1377 OPTIMIZE is nonzero if we should eliminate redundant
1378 test and compare insns. */
1379
1380 void
1381 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1382 int optimize ATTRIBUTE_UNUSED)
1383 {
1384 block_depth = 0;
1385
1386 this_is_asm_operands = 0;
1387
1388 last_filename = locator_file (prologue_locator);
1389 last_linenum = locator_line (prologue_locator);
1390
1391 high_block_linenum = high_function_linenum = last_linenum;
1392
1393 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1394
1395 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1396 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1397 dwarf2out_begin_prologue (0, NULL);
1398 #endif
1399
1400 #ifdef LEAF_REG_REMAP
1401 if (current_function_uses_only_leaf_regs)
1402 leaf_renumber_regs (first);
1403 #endif
1404
1405 /* The Sun386i and perhaps other machines don't work right
1406 if the profiling code comes after the prologue. */
1407 #ifdef PROFILE_BEFORE_PROLOGUE
1408 if (current_function_profile)
1409 profile_function (file);
1410 #endif /* PROFILE_BEFORE_PROLOGUE */
1411
1412 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1413 if (dwarf2out_do_frame ())
1414 dwarf2out_frame_debug (NULL_RTX, false);
1415 #endif
1416
1417 /* If debugging, assign block numbers to all of the blocks in this
1418 function. */
1419 if (write_symbols)
1420 {
1421 reemit_insn_block_notes ();
1422 number_blocks (current_function_decl);
1423 /* We never actually put out begin/end notes for the top-level
1424 block in the function. But, conceptually, that block is
1425 always needed. */
1426 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1427 }
1428
1429 /* First output the function prologue: code to set up the stack frame. */
1430 targetm.asm_out.function_prologue (file, get_frame_size ());
1431
1432 /* If the machine represents the prologue as RTL, the profiling code must
1433 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1434 #ifdef HAVE_prologue
1435 if (! HAVE_prologue)
1436 #endif
1437 profile_after_prologue (file);
1438 }
1439
1440 static void
1441 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1442 {
1443 #ifndef PROFILE_BEFORE_PROLOGUE
1444 if (current_function_profile)
1445 profile_function (file);
1446 #endif /* not PROFILE_BEFORE_PROLOGUE */
1447 }
1448
1449 static void
1450 profile_function (FILE *file ATTRIBUTE_UNUSED)
1451 {
1452 #ifndef NO_PROFILE_COUNTERS
1453 # define NO_PROFILE_COUNTERS 0
1454 #endif
1455 #if defined(ASM_OUTPUT_REG_PUSH)
1456 int sval = current_function_returns_struct;
1457 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1458 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1459 int cxt = cfun->static_chain_decl != NULL;
1460 #endif
1461 #endif /* ASM_OUTPUT_REG_PUSH */
1462
1463 if (! NO_PROFILE_COUNTERS)
1464 {
1465 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1466 switch_to_section (data_section);
1467 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1468 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1469 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1470 }
1471
1472 switch_to_section (current_function_section ());
1473
1474 #if defined(ASM_OUTPUT_REG_PUSH)
1475 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1476 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1477 #endif
1478
1479 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1480 if (cxt)
1481 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1482 #else
1483 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1484 if (cxt)
1485 {
1486 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1487 }
1488 #endif
1489 #endif
1490
1491 FUNCTION_PROFILER (file, current_function_funcdef_no);
1492
1493 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1494 if (cxt)
1495 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1496 #else
1497 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1498 if (cxt)
1499 {
1500 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1501 }
1502 #endif
1503 #endif
1504
1505 #if defined(ASM_OUTPUT_REG_PUSH)
1506 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1507 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1508 #endif
1509 }
1510
1511 /* Output assembler code for the end of a function.
1512 For clarity, args are same as those of `final_start_function'
1513 even though not all of them are needed. */
1514
1515 void
1516 final_end_function (void)
1517 {
1518 app_disable ();
1519
1520 (*debug_hooks->end_function) (high_function_linenum);
1521
1522 /* Finally, output the function epilogue:
1523 code to restore the stack frame and return to the caller. */
1524 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1525
1526 /* And debug output. */
1527 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1528
1529 #if defined (DWARF2_UNWIND_INFO)
1530 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1531 && dwarf2out_do_frame ())
1532 dwarf2out_end_epilogue (last_linenum, last_filename);
1533 #endif
1534 }
1535 \f
1536 /* Output assembler code for some insns: all or part of a function.
1537 For description of args, see `final_start_function', above. */
1538
1539 void
1540 final (rtx first, FILE *file, int optimize)
1541 {
1542 rtx insn;
1543 int max_uid = 0;
1544 int seen = 0;
1545
1546 last_ignored_compare = 0;
1547
1548 #ifdef SDB_DEBUGGING_INFO
1549 /* When producing SDB debugging info, delete troublesome line number
1550 notes from inlined functions in other files as well as duplicate
1551 line number notes. */
1552 if (write_symbols == SDB_DEBUG)
1553 {
1554 rtx last = 0;
1555 for (insn = first; insn; insn = NEXT_INSN (insn))
1556 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1557 {
1558 if (last != 0
1559 #ifdef USE_MAPPED_LOCATION
1560 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1561 #else
1562 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1563 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1564 #endif
1565 )
1566 {
1567 delete_insn (insn); /* Use delete_note. */
1568 continue;
1569 }
1570 last = insn;
1571 }
1572 }
1573 #endif
1574
1575 for (insn = first; insn; insn = NEXT_INSN (insn))
1576 {
1577 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1578 max_uid = INSN_UID (insn);
1579 #ifdef HAVE_cc0
1580 /* If CC tracking across branches is enabled, record the insn which
1581 jumps to each branch only reached from one place. */
1582 if (optimize && JUMP_P (insn))
1583 {
1584 rtx lab = JUMP_LABEL (insn);
1585 if (lab && LABEL_NUSES (lab) == 1)
1586 {
1587 LABEL_REFS (lab) = insn;
1588 }
1589 }
1590 #endif
1591 }
1592
1593 init_recog ();
1594
1595 CC_STATUS_INIT;
1596
1597 /* Output the insns. */
1598 for (insn = first; insn;)
1599 {
1600 #ifdef HAVE_ATTR_length
1601 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1602 {
1603 /* This can be triggered by bugs elsewhere in the compiler if
1604 new insns are created after init_insn_lengths is called. */
1605 gcc_assert (NOTE_P (insn));
1606 insn_current_address = -1;
1607 }
1608 else
1609 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1610 #endif /* HAVE_ATTR_length */
1611
1612 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1613 }
1614 }
1615 \f
1616 const char *
1617 get_insn_template (int code, rtx insn)
1618 {
1619 switch (insn_data[code].output_format)
1620 {
1621 case INSN_OUTPUT_FORMAT_SINGLE:
1622 return insn_data[code].output.single;
1623 case INSN_OUTPUT_FORMAT_MULTI:
1624 return insn_data[code].output.multi[which_alternative];
1625 case INSN_OUTPUT_FORMAT_FUNCTION:
1626 gcc_assert (insn);
1627 return (*insn_data[code].output.function) (recog_data.operand, insn);
1628
1629 default:
1630 gcc_unreachable ();
1631 }
1632 }
1633
1634 /* Emit the appropriate declaration for an alternate-entry-point
1635 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1636 LABEL_KIND != LABEL_NORMAL.
1637
1638 The case fall-through in this function is intentional. */
1639 static void
1640 output_alternate_entry_point (FILE *file, rtx insn)
1641 {
1642 const char *name = LABEL_NAME (insn);
1643
1644 switch (LABEL_KIND (insn))
1645 {
1646 case LABEL_WEAK_ENTRY:
1647 #ifdef ASM_WEAKEN_LABEL
1648 ASM_WEAKEN_LABEL (file, name);
1649 #endif
1650 case LABEL_GLOBAL_ENTRY:
1651 targetm.asm_out.globalize_label (file, name);
1652 case LABEL_STATIC_ENTRY:
1653 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1654 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1655 #endif
1656 ASM_OUTPUT_LABEL (file, name);
1657 break;
1658
1659 case LABEL_NORMAL:
1660 default:
1661 gcc_unreachable ();
1662 }
1663 }
1664
1665 /* The final scan for one insn, INSN.
1666 Args are same as in `final', except that INSN
1667 is the insn being scanned.
1668 Value returned is the next insn to be scanned.
1669
1670 NOPEEPHOLES is the flag to disallow peephole processing (currently
1671 used for within delayed branch sequence output).
1672
1673 SEEN is used to track the end of the prologue, for emitting
1674 debug information. We force the emission of a line note after
1675 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1676 at the beginning of the second basic block, whichever comes
1677 first. */
1678
1679 rtx
1680 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1681 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1682 {
1683 #ifdef HAVE_cc0
1684 rtx set;
1685 #endif
1686 rtx next;
1687
1688 insn_counter++;
1689
1690 /* Ignore deleted insns. These can occur when we split insns (due to a
1691 template of "#") while not optimizing. */
1692 if (INSN_DELETED_P (insn))
1693 return NEXT_INSN (insn);
1694
1695 switch (GET_CODE (insn))
1696 {
1697 case NOTE:
1698 switch (NOTE_LINE_NUMBER (insn))
1699 {
1700 case NOTE_INSN_DELETED:
1701 break;
1702
1703 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1704 in_cold_section_p = !in_cold_section_p;
1705 (*debug_hooks->switch_text_section) ();
1706 switch_to_section (current_function_section ());
1707 break;
1708
1709 case NOTE_INSN_BASIC_BLOCK:
1710 #ifdef TARGET_UNWIND_INFO
1711 targetm.asm_out.unwind_emit (asm_out_file, insn);
1712 #endif
1713
1714 if (flag_debug_asm)
1715 fprintf (asm_out_file, "\t%s basic block %d\n",
1716 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1717
1718 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1719 {
1720 *seen |= SEEN_EMITTED;
1721 force_source_line = true;
1722 }
1723 else
1724 *seen |= SEEN_BB;
1725
1726 break;
1727
1728 case NOTE_INSN_EH_REGION_BEG:
1729 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1730 NOTE_EH_HANDLER (insn));
1731 break;
1732
1733 case NOTE_INSN_EH_REGION_END:
1734 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1735 NOTE_EH_HANDLER (insn));
1736 break;
1737
1738 case NOTE_INSN_PROLOGUE_END:
1739 targetm.asm_out.function_end_prologue (file);
1740 profile_after_prologue (file);
1741
1742 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1743 {
1744 *seen |= SEEN_EMITTED;
1745 force_source_line = true;
1746 }
1747 else
1748 *seen |= SEEN_NOTE;
1749
1750 break;
1751
1752 case NOTE_INSN_EPILOGUE_BEG:
1753 targetm.asm_out.function_begin_epilogue (file);
1754 break;
1755
1756 case NOTE_INSN_FUNCTION_BEG:
1757 app_disable ();
1758 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1759
1760 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1761 {
1762 *seen |= SEEN_EMITTED;
1763 force_source_line = true;
1764 }
1765 else
1766 *seen |= SEEN_NOTE;
1767
1768 break;
1769
1770 case NOTE_INSN_BLOCK_BEG:
1771 if (debug_info_level == DINFO_LEVEL_NORMAL
1772 || debug_info_level == DINFO_LEVEL_VERBOSE
1773 || write_symbols == DWARF2_DEBUG
1774 || write_symbols == VMS_AND_DWARF2_DEBUG
1775 || write_symbols == VMS_DEBUG)
1776 {
1777 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1778
1779 app_disable ();
1780 ++block_depth;
1781 high_block_linenum = last_linenum;
1782
1783 /* Output debugging info about the symbol-block beginning. */
1784 (*debug_hooks->begin_block) (last_linenum, n);
1785
1786 /* Mark this block as output. */
1787 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1788 }
1789 break;
1790
1791 case NOTE_INSN_BLOCK_END:
1792 if (debug_info_level == DINFO_LEVEL_NORMAL
1793 || debug_info_level == DINFO_LEVEL_VERBOSE
1794 || write_symbols == DWARF2_DEBUG
1795 || write_symbols == VMS_AND_DWARF2_DEBUG
1796 || write_symbols == VMS_DEBUG)
1797 {
1798 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1799
1800 app_disable ();
1801
1802 /* End of a symbol-block. */
1803 --block_depth;
1804 gcc_assert (block_depth >= 0);
1805
1806 (*debug_hooks->end_block) (high_block_linenum, n);
1807 }
1808 break;
1809
1810 case NOTE_INSN_DELETED_LABEL:
1811 /* Emit the label. We may have deleted the CODE_LABEL because
1812 the label could be proved to be unreachable, though still
1813 referenced (in the form of having its address taken. */
1814 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1815 break;
1816
1817 case NOTE_INSN_VAR_LOCATION:
1818 (*debug_hooks->var_location) (insn);
1819 break;
1820
1821 case 0:
1822 break;
1823
1824 default:
1825 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1826 break;
1827 }
1828 break;
1829
1830 case BARRIER:
1831 #if defined (DWARF2_UNWIND_INFO)
1832 if (dwarf2out_do_frame ())
1833 dwarf2out_frame_debug (insn, false);
1834 #endif
1835 break;
1836
1837 case CODE_LABEL:
1838 /* The target port might emit labels in the output function for
1839 some insn, e.g. sh.c output_branchy_insn. */
1840 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1841 {
1842 int align = LABEL_TO_ALIGNMENT (insn);
1843 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1844 int max_skip = LABEL_TO_MAX_SKIP (insn);
1845 #endif
1846
1847 if (align && NEXT_INSN (insn))
1848 {
1849 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1850 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1851 #else
1852 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1853 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1854 #else
1855 ASM_OUTPUT_ALIGN (file, align);
1856 #endif
1857 #endif
1858 }
1859 }
1860 #ifdef HAVE_cc0
1861 CC_STATUS_INIT;
1862 /* If this label is reached from only one place, set the condition
1863 codes from the instruction just before the branch. */
1864
1865 /* Disabled because some insns set cc_status in the C output code
1866 and NOTICE_UPDATE_CC alone can set incorrect status. */
1867 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1868 {
1869 rtx jump = LABEL_REFS (insn);
1870 rtx barrier = prev_nonnote_insn (insn);
1871 rtx prev;
1872 /* If the LABEL_REFS field of this label has been set to point
1873 at a branch, the predecessor of the branch is a regular
1874 insn, and that branch is the only way to reach this label,
1875 set the condition codes based on the branch and its
1876 predecessor. */
1877 if (barrier && BARRIER_P (barrier)
1878 && jump && JUMP_P (jump)
1879 && (prev = prev_nonnote_insn (jump))
1880 && NONJUMP_INSN_P (prev))
1881 {
1882 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1883 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1884 }
1885 }
1886 #endif
1887
1888 if (LABEL_NAME (insn))
1889 (*debug_hooks->label) (insn);
1890
1891 if (app_on)
1892 {
1893 fputs (ASM_APP_OFF, file);
1894 app_on = 0;
1895 }
1896
1897 next = next_nonnote_insn (insn);
1898 if (next != 0 && JUMP_P (next))
1899 {
1900 rtx nextbody = PATTERN (next);
1901
1902 /* If this label is followed by a jump-table,
1903 make sure we put the label in the read-only section. Also
1904 possibly write the label and jump table together. */
1905
1906 if (GET_CODE (nextbody) == ADDR_VEC
1907 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1908 {
1909 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1910 /* In this case, the case vector is being moved by the
1911 target, so don't output the label at all. Leave that
1912 to the back end macros. */
1913 #else
1914 if (! JUMP_TABLES_IN_TEXT_SECTION)
1915 {
1916 int log_align;
1917
1918 switch_to_section (targetm.asm_out.function_rodata_section
1919 (current_function_decl));
1920
1921 #ifdef ADDR_VEC_ALIGN
1922 log_align = ADDR_VEC_ALIGN (next);
1923 #else
1924 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1925 #endif
1926 ASM_OUTPUT_ALIGN (file, log_align);
1927 }
1928 else
1929 switch_to_section (current_function_section ());
1930
1931 #ifdef ASM_OUTPUT_CASE_LABEL
1932 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1933 next);
1934 #else
1935 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1936 #endif
1937 #endif
1938 break;
1939 }
1940 }
1941 if (LABEL_ALT_ENTRY_P (insn))
1942 output_alternate_entry_point (file, insn);
1943 else
1944 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1945 break;
1946
1947 default:
1948 {
1949 rtx body = PATTERN (insn);
1950 int insn_code_number;
1951 const char *template;
1952
1953 #ifdef HAVE_conditional_execution
1954 /* Reset this early so it is correct for ASM statements. */
1955 current_insn_predicate = NULL_RTX;
1956 #endif
1957 /* An INSN, JUMP_INSN or CALL_INSN.
1958 First check for special kinds that recog doesn't recognize. */
1959
1960 if (GET_CODE (body) == USE /* These are just declarations. */
1961 || GET_CODE (body) == CLOBBER)
1962 break;
1963
1964 #ifdef HAVE_cc0
1965 {
1966 /* If there is a REG_CC_SETTER note on this insn, it means that
1967 the setting of the condition code was done in the delay slot
1968 of the insn that branched here. So recover the cc status
1969 from the insn that set it. */
1970
1971 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1972 if (note)
1973 {
1974 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1975 cc_prev_status = cc_status;
1976 }
1977 }
1978 #endif
1979
1980 /* Detect insns that are really jump-tables
1981 and output them as such. */
1982
1983 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1984 {
1985 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1986 int vlen, idx;
1987 #endif
1988
1989 if (! JUMP_TABLES_IN_TEXT_SECTION)
1990 switch_to_section (targetm.asm_out.function_rodata_section
1991 (current_function_decl));
1992 else
1993 switch_to_section (current_function_section ());
1994
1995 if (app_on)
1996 {
1997 fputs (ASM_APP_OFF, file);
1998 app_on = 0;
1999 }
2000
2001 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2002 if (GET_CODE (body) == ADDR_VEC)
2003 {
2004 #ifdef ASM_OUTPUT_ADDR_VEC
2005 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2006 #else
2007 gcc_unreachable ();
2008 #endif
2009 }
2010 else
2011 {
2012 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2013 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2014 #else
2015 gcc_unreachable ();
2016 #endif
2017 }
2018 #else
2019 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2020 for (idx = 0; idx < vlen; idx++)
2021 {
2022 if (GET_CODE (body) == ADDR_VEC)
2023 {
2024 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2025 ASM_OUTPUT_ADDR_VEC_ELT
2026 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2027 #else
2028 gcc_unreachable ();
2029 #endif
2030 }
2031 else
2032 {
2033 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2034 ASM_OUTPUT_ADDR_DIFF_ELT
2035 (file,
2036 body,
2037 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2038 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2039 #else
2040 gcc_unreachable ();
2041 #endif
2042 }
2043 }
2044 #ifdef ASM_OUTPUT_CASE_END
2045 ASM_OUTPUT_CASE_END (file,
2046 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2047 insn);
2048 #endif
2049 #endif
2050
2051 switch_to_section (current_function_section ());
2052
2053 break;
2054 }
2055 /* Output this line note if it is the first or the last line
2056 note in a row. */
2057 if (notice_source_line (insn))
2058 {
2059 (*debug_hooks->source_line) (last_linenum, last_filename);
2060 }
2061
2062 if (GET_CODE (body) == ASM_INPUT)
2063 {
2064 const char *string = XSTR (body, 0);
2065
2066 /* There's no telling what that did to the condition codes. */
2067 CC_STATUS_INIT;
2068
2069 if (string[0])
2070 {
2071 location_t loc;
2072
2073 if (! app_on)
2074 {
2075 fputs (ASM_APP_ON, file);
2076 app_on = 1;
2077 }
2078 #ifdef USE_MAPPED_LOCATION
2079 loc = ASM_INPUT_SOURCE_LOCATION (body);
2080 #else
2081 loc.file = ASM_INPUT_SOURCE_FILE (body);
2082 loc.line = ASM_INPUT_SOURCE_LINE (body);
2083 #endif
2084 if (loc.file && loc.line)
2085 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2086 ASM_COMMENT_START, loc.line, loc.file);
2087 fprintf (asm_out_file, "\t%s\n", string);
2088 if (loc.file && loc.line)
2089 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2090 }
2091 break;
2092 }
2093
2094 /* Detect `asm' construct with operands. */
2095 if (asm_noperands (body) >= 0)
2096 {
2097 unsigned int noperands = asm_noperands (body);
2098 rtx *ops = alloca (noperands * sizeof (rtx));
2099 const char *string;
2100 location_t loc;
2101
2102 /* There's no telling what that did to the condition codes. */
2103 CC_STATUS_INIT;
2104
2105 /* Get out the operand values. */
2106 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2107 /* Inhibit dieing on what would otherwise be compiler bugs. */
2108 insn_noperands = noperands;
2109 this_is_asm_operands = insn;
2110
2111 #ifdef FINAL_PRESCAN_INSN
2112 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2113 #endif
2114
2115 /* Output the insn using them. */
2116 if (string[0])
2117 {
2118 if (! app_on)
2119 {
2120 fputs (ASM_APP_ON, file);
2121 app_on = 1;
2122 }
2123 if (loc.file && loc.line)
2124 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2125 ASM_COMMENT_START, loc.line, loc.file);
2126 output_asm_insn (string, ops);
2127 if (loc.file && loc.line)
2128 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2129 }
2130
2131 this_is_asm_operands = 0;
2132 break;
2133 }
2134
2135 if (app_on)
2136 {
2137 fputs (ASM_APP_OFF, file);
2138 app_on = 0;
2139 }
2140
2141 if (GET_CODE (body) == SEQUENCE)
2142 {
2143 /* A delayed-branch sequence */
2144 int i;
2145
2146 final_sequence = body;
2147
2148 /* Record the delay slots' frame information before the branch.
2149 This is needed for delayed calls: see execute_cfa_program(). */
2150 #if defined (DWARF2_UNWIND_INFO)
2151 if (dwarf2out_do_frame ())
2152 for (i = 1; i < XVECLEN (body, 0); i++)
2153 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2154 #endif
2155
2156 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2157 force the restoration of a comparison that was previously
2158 thought unnecessary. If that happens, cancel this sequence
2159 and cause that insn to be restored. */
2160
2161 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2162 if (next != XVECEXP (body, 0, 1))
2163 {
2164 final_sequence = 0;
2165 return next;
2166 }
2167
2168 for (i = 1; i < XVECLEN (body, 0); i++)
2169 {
2170 rtx insn = XVECEXP (body, 0, i);
2171 rtx next = NEXT_INSN (insn);
2172 /* We loop in case any instruction in a delay slot gets
2173 split. */
2174 do
2175 insn = final_scan_insn (insn, file, 0, 1, seen);
2176 while (insn != next);
2177 }
2178 #ifdef DBR_OUTPUT_SEQEND
2179 DBR_OUTPUT_SEQEND (file);
2180 #endif
2181 final_sequence = 0;
2182
2183 /* If the insn requiring the delay slot was a CALL_INSN, the
2184 insns in the delay slot are actually executed before the
2185 called function. Hence we don't preserve any CC-setting
2186 actions in these insns and the CC must be marked as being
2187 clobbered by the function. */
2188 if (CALL_P (XVECEXP (body, 0, 0)))
2189 {
2190 CC_STATUS_INIT;
2191 }
2192 break;
2193 }
2194
2195 /* We have a real machine instruction as rtl. */
2196
2197 body = PATTERN (insn);
2198
2199 #ifdef HAVE_cc0
2200 set = single_set (insn);
2201
2202 /* Check for redundant test and compare instructions
2203 (when the condition codes are already set up as desired).
2204 This is done only when optimizing; if not optimizing,
2205 it should be possible for the user to alter a variable
2206 with the debugger in between statements
2207 and the next statement should reexamine the variable
2208 to compute the condition codes. */
2209
2210 if (optimize)
2211 {
2212 if (set
2213 && GET_CODE (SET_DEST (set)) == CC0
2214 && insn != last_ignored_compare)
2215 {
2216 if (GET_CODE (SET_SRC (set)) == SUBREG)
2217 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2218 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2219 {
2220 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2221 XEXP (SET_SRC (set), 0)
2222 = alter_subreg (&XEXP (SET_SRC (set), 0));
2223 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2224 XEXP (SET_SRC (set), 1)
2225 = alter_subreg (&XEXP (SET_SRC (set), 1));
2226 }
2227 if ((cc_status.value1 != 0
2228 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2229 || (cc_status.value2 != 0
2230 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2231 {
2232 /* Don't delete insn if it has an addressing side-effect. */
2233 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2234 /* or if anything in it is volatile. */
2235 && ! volatile_refs_p (PATTERN (insn)))
2236 {
2237 /* We don't really delete the insn; just ignore it. */
2238 last_ignored_compare = insn;
2239 break;
2240 }
2241 }
2242 }
2243 }
2244 #endif
2245
2246 #ifdef HAVE_cc0
2247 /* If this is a conditional branch, maybe modify it
2248 if the cc's are in a nonstandard state
2249 so that it accomplishes the same thing that it would
2250 do straightforwardly if the cc's were set up normally. */
2251
2252 if (cc_status.flags != 0
2253 && JUMP_P (insn)
2254 && GET_CODE (body) == SET
2255 && SET_DEST (body) == pc_rtx
2256 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2257 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2258 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2259 {
2260 /* This function may alter the contents of its argument
2261 and clear some of the cc_status.flags bits.
2262 It may also return 1 meaning condition now always true
2263 or -1 meaning condition now always false
2264 or 2 meaning condition nontrivial but altered. */
2265 int result = alter_cond (XEXP (SET_SRC (body), 0));
2266 /* If condition now has fixed value, replace the IF_THEN_ELSE
2267 with its then-operand or its else-operand. */
2268 if (result == 1)
2269 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2270 if (result == -1)
2271 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2272
2273 /* The jump is now either unconditional or a no-op.
2274 If it has become a no-op, don't try to output it.
2275 (It would not be recognized.) */
2276 if (SET_SRC (body) == pc_rtx)
2277 {
2278 delete_insn (insn);
2279 break;
2280 }
2281 else if (GET_CODE (SET_SRC (body)) == RETURN)
2282 /* Replace (set (pc) (return)) with (return). */
2283 PATTERN (insn) = body = SET_SRC (body);
2284
2285 /* Rerecognize the instruction if it has changed. */
2286 if (result != 0)
2287 INSN_CODE (insn) = -1;
2288 }
2289
2290 /* Make same adjustments to instructions that examine the
2291 condition codes without jumping and instructions that
2292 handle conditional moves (if this machine has either one). */
2293
2294 if (cc_status.flags != 0
2295 && set != 0)
2296 {
2297 rtx cond_rtx, then_rtx, else_rtx;
2298
2299 if (!JUMP_P (insn)
2300 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2301 {
2302 cond_rtx = XEXP (SET_SRC (set), 0);
2303 then_rtx = XEXP (SET_SRC (set), 1);
2304 else_rtx = XEXP (SET_SRC (set), 2);
2305 }
2306 else
2307 {
2308 cond_rtx = SET_SRC (set);
2309 then_rtx = const_true_rtx;
2310 else_rtx = const0_rtx;
2311 }
2312
2313 switch (GET_CODE (cond_rtx))
2314 {
2315 case GTU:
2316 case GT:
2317 case LTU:
2318 case LT:
2319 case GEU:
2320 case GE:
2321 case LEU:
2322 case LE:
2323 case EQ:
2324 case NE:
2325 {
2326 int result;
2327 if (XEXP (cond_rtx, 0) != cc0_rtx)
2328 break;
2329 result = alter_cond (cond_rtx);
2330 if (result == 1)
2331 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2332 else if (result == -1)
2333 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2334 else if (result == 2)
2335 INSN_CODE (insn) = -1;
2336 if (SET_DEST (set) == SET_SRC (set))
2337 delete_insn (insn);
2338 }
2339 break;
2340
2341 default:
2342 break;
2343 }
2344 }
2345
2346 #endif
2347
2348 #ifdef HAVE_peephole
2349 /* Do machine-specific peephole optimizations if desired. */
2350
2351 if (optimize && !flag_no_peephole && !nopeepholes)
2352 {
2353 rtx next = peephole (insn);
2354 /* When peepholing, if there were notes within the peephole,
2355 emit them before the peephole. */
2356 if (next != 0 && next != NEXT_INSN (insn))
2357 {
2358 rtx note, prev = PREV_INSN (insn);
2359
2360 for (note = NEXT_INSN (insn); note != next;
2361 note = NEXT_INSN (note))
2362 final_scan_insn (note, file, optimize, nopeepholes, seen);
2363
2364 /* Put the notes in the proper position for a later
2365 rescan. For example, the SH target can do this
2366 when generating a far jump in a delayed branch
2367 sequence. */
2368 note = NEXT_INSN (insn);
2369 PREV_INSN (note) = prev;
2370 NEXT_INSN (prev) = note;
2371 NEXT_INSN (PREV_INSN (next)) = insn;
2372 PREV_INSN (insn) = PREV_INSN (next);
2373 NEXT_INSN (insn) = next;
2374 PREV_INSN (next) = insn;
2375 }
2376
2377 /* PEEPHOLE might have changed this. */
2378 body = PATTERN (insn);
2379 }
2380 #endif
2381
2382 /* Try to recognize the instruction.
2383 If successful, verify that the operands satisfy the
2384 constraints for the instruction. Crash if they don't,
2385 since `reload' should have changed them so that they do. */
2386
2387 insn_code_number = recog_memoized (insn);
2388 cleanup_subreg_operands (insn);
2389
2390 /* Dump the insn in the assembly for debugging. */
2391 if (flag_dump_rtl_in_asm)
2392 {
2393 print_rtx_head = ASM_COMMENT_START;
2394 print_rtl_single (asm_out_file, insn);
2395 print_rtx_head = "";
2396 }
2397
2398 if (! constrain_operands_cached (1))
2399 fatal_insn_not_found (insn);
2400
2401 /* Some target machines need to prescan each insn before
2402 it is output. */
2403
2404 #ifdef FINAL_PRESCAN_INSN
2405 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2406 #endif
2407
2408 #ifdef HAVE_conditional_execution
2409 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2410 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2411 #endif
2412
2413 #ifdef HAVE_cc0
2414 cc_prev_status = cc_status;
2415
2416 /* Update `cc_status' for this instruction.
2417 The instruction's output routine may change it further.
2418 If the output routine for a jump insn needs to depend
2419 on the cc status, it should look at cc_prev_status. */
2420
2421 NOTICE_UPDATE_CC (body, insn);
2422 #endif
2423
2424 current_output_insn = debug_insn = insn;
2425
2426 #if defined (DWARF2_UNWIND_INFO)
2427 if (CALL_P (insn) && dwarf2out_do_frame ())
2428 dwarf2out_frame_debug (insn, false);
2429 #endif
2430
2431 /* Find the proper template for this insn. */
2432 template = get_insn_template (insn_code_number, insn);
2433
2434 /* If the C code returns 0, it means that it is a jump insn
2435 which follows a deleted test insn, and that test insn
2436 needs to be reinserted. */
2437 if (template == 0)
2438 {
2439 rtx prev;
2440
2441 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2442
2443 /* We have already processed the notes between the setter and
2444 the user. Make sure we don't process them again, this is
2445 particularly important if one of the notes is a block
2446 scope note or an EH note. */
2447 for (prev = insn;
2448 prev != last_ignored_compare;
2449 prev = PREV_INSN (prev))
2450 {
2451 if (NOTE_P (prev))
2452 delete_insn (prev); /* Use delete_note. */
2453 }
2454
2455 return prev;
2456 }
2457
2458 /* If the template is the string "#", it means that this insn must
2459 be split. */
2460 if (template[0] == '#' && template[1] == '\0')
2461 {
2462 rtx new = try_split (body, insn, 0);
2463
2464 /* If we didn't split the insn, go away. */
2465 if (new == insn && PATTERN (new) == body)
2466 fatal_insn ("could not split insn", insn);
2467
2468 #ifdef HAVE_ATTR_length
2469 /* This instruction should have been split in shorten_branches,
2470 to ensure that we would have valid length info for the
2471 splitees. */
2472 gcc_unreachable ();
2473 #endif
2474
2475 return new;
2476 }
2477
2478 #ifdef TARGET_UNWIND_INFO
2479 /* ??? This will put the directives in the wrong place if
2480 get_insn_template outputs assembly directly. However calling it
2481 before get_insn_template breaks if the insns is split. */
2482 targetm.asm_out.unwind_emit (asm_out_file, insn);
2483 #endif
2484
2485 /* Output assembler code from the template. */
2486 output_asm_insn (template, recog_data.operand);
2487
2488 /* If necessary, report the effect that the instruction has on
2489 the unwind info. We've already done this for delay slots
2490 and call instructions. */
2491 #if defined (DWARF2_UNWIND_INFO)
2492 if (final_sequence == 0
2493 #if !defined (HAVE_prologue)
2494 && !ACCUMULATE_OUTGOING_ARGS
2495 #endif
2496 && dwarf2out_do_frame ())
2497 dwarf2out_frame_debug (insn, true);
2498 #endif
2499
2500 current_output_insn = debug_insn = 0;
2501 }
2502 }
2503 return NEXT_INSN (insn);
2504 }
2505 \f
2506 /* Return whether a source line note needs to be emitted before INSN. */
2507
2508 static bool
2509 notice_source_line (rtx insn)
2510 {
2511 const char *filename = insn_file (insn);
2512 int linenum = insn_line (insn);
2513
2514 if (filename
2515 && (force_source_line
2516 || filename != last_filename
2517 || last_linenum != linenum))
2518 {
2519 force_source_line = false;
2520 last_filename = filename;
2521 last_linenum = linenum;
2522 high_block_linenum = MAX (last_linenum, high_block_linenum);
2523 high_function_linenum = MAX (last_linenum, high_function_linenum);
2524 return true;
2525 }
2526 return false;
2527 }
2528 \f
2529 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2530 directly to the desired hard register. */
2531
2532 void
2533 cleanup_subreg_operands (rtx insn)
2534 {
2535 int i;
2536 extract_insn_cached (insn);
2537 for (i = 0; i < recog_data.n_operands; i++)
2538 {
2539 /* The following test cannot use recog_data.operand when testing
2540 for a SUBREG: the underlying object might have been changed
2541 already if we are inside a match_operator expression that
2542 matches the else clause. Instead we test the underlying
2543 expression directly. */
2544 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2545 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2546 else if (GET_CODE (recog_data.operand[i]) == PLUS
2547 || GET_CODE (recog_data.operand[i]) == MULT
2548 || MEM_P (recog_data.operand[i]))
2549 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2550 }
2551
2552 for (i = 0; i < recog_data.n_dups; i++)
2553 {
2554 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2555 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2556 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2557 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2558 || MEM_P (*recog_data.dup_loc[i]))
2559 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2560 }
2561 }
2562
2563 /* If X is a SUBREG, replace it with a REG or a MEM,
2564 based on the thing it is a subreg of. */
2565
2566 rtx
2567 alter_subreg (rtx *xp)
2568 {
2569 rtx x = *xp;
2570 rtx y = SUBREG_REG (x);
2571
2572 /* simplify_subreg does not remove subreg from volatile references.
2573 We are required to. */
2574 if (MEM_P (y))
2575 {
2576 int offset = SUBREG_BYTE (x);
2577
2578 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2579 contains 0 instead of the proper offset. See simplify_subreg. */
2580 if (offset == 0
2581 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2582 {
2583 int difference = GET_MODE_SIZE (GET_MODE (y))
2584 - GET_MODE_SIZE (GET_MODE (x));
2585 if (WORDS_BIG_ENDIAN)
2586 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2587 if (BYTES_BIG_ENDIAN)
2588 offset += difference % UNITS_PER_WORD;
2589 }
2590
2591 *xp = adjust_address (y, GET_MODE (x), offset);
2592 }
2593 else
2594 {
2595 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2596 SUBREG_BYTE (x));
2597
2598 if (new != 0)
2599 *xp = new;
2600 else if (REG_P (y))
2601 {
2602 /* Simplify_subreg can't handle some REG cases, but we have to. */
2603 unsigned int regno = subreg_regno (x);
2604 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2605 }
2606 }
2607
2608 return *xp;
2609 }
2610
2611 /* Do alter_subreg on all the SUBREGs contained in X. */
2612
2613 static rtx
2614 walk_alter_subreg (rtx *xp)
2615 {
2616 rtx x = *xp;
2617 switch (GET_CODE (x))
2618 {
2619 case PLUS:
2620 case MULT:
2621 case AND:
2622 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2623 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2624 break;
2625
2626 case MEM:
2627 case ZERO_EXTEND:
2628 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2629 break;
2630
2631 case SUBREG:
2632 return alter_subreg (xp);
2633
2634 default:
2635 break;
2636 }
2637
2638 return *xp;
2639 }
2640 \f
2641 #ifdef HAVE_cc0
2642
2643 /* Given BODY, the body of a jump instruction, alter the jump condition
2644 as required by the bits that are set in cc_status.flags.
2645 Not all of the bits there can be handled at this level in all cases.
2646
2647 The value is normally 0.
2648 1 means that the condition has become always true.
2649 -1 means that the condition has become always false.
2650 2 means that COND has been altered. */
2651
2652 static int
2653 alter_cond (rtx cond)
2654 {
2655 int value = 0;
2656
2657 if (cc_status.flags & CC_REVERSED)
2658 {
2659 value = 2;
2660 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2661 }
2662
2663 if (cc_status.flags & CC_INVERTED)
2664 {
2665 value = 2;
2666 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2667 }
2668
2669 if (cc_status.flags & CC_NOT_POSITIVE)
2670 switch (GET_CODE (cond))
2671 {
2672 case LE:
2673 case LEU:
2674 case GEU:
2675 /* Jump becomes unconditional. */
2676 return 1;
2677
2678 case GT:
2679 case GTU:
2680 case LTU:
2681 /* Jump becomes no-op. */
2682 return -1;
2683
2684 case GE:
2685 PUT_CODE (cond, EQ);
2686 value = 2;
2687 break;
2688
2689 case LT:
2690 PUT_CODE (cond, NE);
2691 value = 2;
2692 break;
2693
2694 default:
2695 break;
2696 }
2697
2698 if (cc_status.flags & CC_NOT_NEGATIVE)
2699 switch (GET_CODE (cond))
2700 {
2701 case GE:
2702 case GEU:
2703 /* Jump becomes unconditional. */
2704 return 1;
2705
2706 case LT:
2707 case LTU:
2708 /* Jump becomes no-op. */
2709 return -1;
2710
2711 case LE:
2712 case LEU:
2713 PUT_CODE (cond, EQ);
2714 value = 2;
2715 break;
2716
2717 case GT:
2718 case GTU:
2719 PUT_CODE (cond, NE);
2720 value = 2;
2721 break;
2722
2723 default:
2724 break;
2725 }
2726
2727 if (cc_status.flags & CC_NO_OVERFLOW)
2728 switch (GET_CODE (cond))
2729 {
2730 case GEU:
2731 /* Jump becomes unconditional. */
2732 return 1;
2733
2734 case LEU:
2735 PUT_CODE (cond, EQ);
2736 value = 2;
2737 break;
2738
2739 case GTU:
2740 PUT_CODE (cond, NE);
2741 value = 2;
2742 break;
2743
2744 case LTU:
2745 /* Jump becomes no-op. */
2746 return -1;
2747
2748 default:
2749 break;
2750 }
2751
2752 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2753 switch (GET_CODE (cond))
2754 {
2755 default:
2756 gcc_unreachable ();
2757
2758 case NE:
2759 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2760 value = 2;
2761 break;
2762
2763 case EQ:
2764 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2765 value = 2;
2766 break;
2767 }
2768
2769 if (cc_status.flags & CC_NOT_SIGNED)
2770 /* The flags are valid if signed condition operators are converted
2771 to unsigned. */
2772 switch (GET_CODE (cond))
2773 {
2774 case LE:
2775 PUT_CODE (cond, LEU);
2776 value = 2;
2777 break;
2778
2779 case LT:
2780 PUT_CODE (cond, LTU);
2781 value = 2;
2782 break;
2783
2784 case GT:
2785 PUT_CODE (cond, GTU);
2786 value = 2;
2787 break;
2788
2789 case GE:
2790 PUT_CODE (cond, GEU);
2791 value = 2;
2792 break;
2793
2794 default:
2795 break;
2796 }
2797
2798 return value;
2799 }
2800 #endif
2801 \f
2802 /* Report inconsistency between the assembler template and the operands.
2803 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2804
2805 void
2806 output_operand_lossage (const char *cmsgid, ...)
2807 {
2808 char *fmt_string;
2809 char *new_message;
2810 const char *pfx_str;
2811 va_list ap;
2812
2813 va_start (ap, cmsgid);
2814
2815 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2816 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2817 vasprintf (&new_message, fmt_string, ap);
2818
2819 if (this_is_asm_operands)
2820 error_for_asm (this_is_asm_operands, "%s", new_message);
2821 else
2822 internal_error ("%s", new_message);
2823
2824 free (fmt_string);
2825 free (new_message);
2826 va_end (ap);
2827 }
2828 \f
2829 /* Output of assembler code from a template, and its subroutines. */
2830
2831 /* Annotate the assembly with a comment describing the pattern and
2832 alternative used. */
2833
2834 static void
2835 output_asm_name (void)
2836 {
2837 if (debug_insn)
2838 {
2839 int num = INSN_CODE (debug_insn);
2840 fprintf (asm_out_file, "\t%s %d\t%s",
2841 ASM_COMMENT_START, INSN_UID (debug_insn),
2842 insn_data[num].name);
2843 if (insn_data[num].n_alternatives > 1)
2844 fprintf (asm_out_file, "/%d", which_alternative + 1);
2845 #ifdef HAVE_ATTR_length
2846 fprintf (asm_out_file, "\t[length = %d]",
2847 get_attr_length (debug_insn));
2848 #endif
2849 /* Clear this so only the first assembler insn
2850 of any rtl insn will get the special comment for -dp. */
2851 debug_insn = 0;
2852 }
2853 }
2854
2855 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2856 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2857 corresponds to the address of the object and 0 if to the object. */
2858
2859 static tree
2860 get_mem_expr_from_op (rtx op, int *paddressp)
2861 {
2862 tree expr;
2863 int inner_addressp;
2864
2865 *paddressp = 0;
2866
2867 if (REG_P (op))
2868 return REG_EXPR (op);
2869 else if (!MEM_P (op))
2870 return 0;
2871
2872 if (MEM_EXPR (op) != 0)
2873 return MEM_EXPR (op);
2874
2875 /* Otherwise we have an address, so indicate it and look at the address. */
2876 *paddressp = 1;
2877 op = XEXP (op, 0);
2878
2879 /* First check if we have a decl for the address, then look at the right side
2880 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2881 But don't allow the address to itself be indirect. */
2882 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2883 return expr;
2884 else if (GET_CODE (op) == PLUS
2885 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2886 return expr;
2887
2888 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2889 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2890 op = XEXP (op, 0);
2891
2892 expr = get_mem_expr_from_op (op, &inner_addressp);
2893 return inner_addressp ? 0 : expr;
2894 }
2895
2896 /* Output operand names for assembler instructions. OPERANDS is the
2897 operand vector, OPORDER is the order to write the operands, and NOPS
2898 is the number of operands to write. */
2899
2900 static void
2901 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2902 {
2903 int wrote = 0;
2904 int i;
2905
2906 for (i = 0; i < nops; i++)
2907 {
2908 int addressp;
2909 rtx op = operands[oporder[i]];
2910 tree expr = get_mem_expr_from_op (op, &addressp);
2911
2912 fprintf (asm_out_file, "%c%s",
2913 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2914 wrote = 1;
2915 if (expr)
2916 {
2917 fprintf (asm_out_file, "%s",
2918 addressp ? "*" : "");
2919 print_mem_expr (asm_out_file, expr);
2920 wrote = 1;
2921 }
2922 else if (REG_P (op) && ORIGINAL_REGNO (op)
2923 && ORIGINAL_REGNO (op) != REGNO (op))
2924 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2925 }
2926 }
2927
2928 /* Output text from TEMPLATE to the assembler output file,
2929 obeying %-directions to substitute operands taken from
2930 the vector OPERANDS.
2931
2932 %N (for N a digit) means print operand N in usual manner.
2933 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2934 and print the label name with no punctuation.
2935 %cN means require operand N to be a constant
2936 and print the constant expression with no punctuation.
2937 %aN means expect operand N to be a memory address
2938 (not a memory reference!) and print a reference
2939 to that address.
2940 %nN means expect operand N to be a constant
2941 and print a constant expression for minus the value
2942 of the operand, with no other punctuation. */
2943
2944 void
2945 output_asm_insn (const char *template, rtx *operands)
2946 {
2947 const char *p;
2948 int c;
2949 #ifdef ASSEMBLER_DIALECT
2950 int dialect = 0;
2951 #endif
2952 int oporder[MAX_RECOG_OPERANDS];
2953 char opoutput[MAX_RECOG_OPERANDS];
2954 int ops = 0;
2955
2956 /* An insn may return a null string template
2957 in a case where no assembler code is needed. */
2958 if (*template == 0)
2959 return;
2960
2961 memset (opoutput, 0, sizeof opoutput);
2962 p = template;
2963 putc ('\t', asm_out_file);
2964
2965 #ifdef ASM_OUTPUT_OPCODE
2966 ASM_OUTPUT_OPCODE (asm_out_file, p);
2967 #endif
2968
2969 while ((c = *p++))
2970 switch (c)
2971 {
2972 case '\n':
2973 if (flag_verbose_asm)
2974 output_asm_operand_names (operands, oporder, ops);
2975 if (flag_print_asm_name)
2976 output_asm_name ();
2977
2978 ops = 0;
2979 memset (opoutput, 0, sizeof opoutput);
2980
2981 putc (c, asm_out_file);
2982 #ifdef ASM_OUTPUT_OPCODE
2983 while ((c = *p) == '\t')
2984 {
2985 putc (c, asm_out_file);
2986 p++;
2987 }
2988 ASM_OUTPUT_OPCODE (asm_out_file, p);
2989 #endif
2990 break;
2991
2992 #ifdef ASSEMBLER_DIALECT
2993 case '{':
2994 {
2995 int i;
2996
2997 if (dialect)
2998 output_operand_lossage ("nested assembly dialect alternatives");
2999 else
3000 dialect = 1;
3001
3002 /* If we want the first dialect, do nothing. Otherwise, skip
3003 DIALECT_NUMBER of strings ending with '|'. */
3004 for (i = 0; i < dialect_number; i++)
3005 {
3006 while (*p && *p != '}' && *p++ != '|')
3007 ;
3008 if (*p == '}')
3009 break;
3010 if (*p == '|')
3011 p++;
3012 }
3013
3014 if (*p == '\0')
3015 output_operand_lossage ("unterminated assembly dialect alternative");
3016 }
3017 break;
3018
3019 case '|':
3020 if (dialect)
3021 {
3022 /* Skip to close brace. */
3023 do
3024 {
3025 if (*p == '\0')
3026 {
3027 output_operand_lossage ("unterminated assembly dialect alternative");
3028 break;
3029 }
3030 }
3031 while (*p++ != '}');
3032 dialect = 0;
3033 }
3034 else
3035 putc (c, asm_out_file);
3036 break;
3037
3038 case '}':
3039 if (! dialect)
3040 putc (c, asm_out_file);
3041 dialect = 0;
3042 break;
3043 #endif
3044
3045 case '%':
3046 /* %% outputs a single %. */
3047 if (*p == '%')
3048 {
3049 p++;
3050 putc (c, asm_out_file);
3051 }
3052 /* %= outputs a number which is unique to each insn in the entire
3053 compilation. This is useful for making local labels that are
3054 referred to more than once in a given insn. */
3055 else if (*p == '=')
3056 {
3057 p++;
3058 fprintf (asm_out_file, "%d", insn_counter);
3059 }
3060 /* % followed by a letter and some digits
3061 outputs an operand in a special way depending on the letter.
3062 Letters `acln' are implemented directly.
3063 Other letters are passed to `output_operand' so that
3064 the PRINT_OPERAND macro can define them. */
3065 else if (ISALPHA (*p))
3066 {
3067 int letter = *p++;
3068 unsigned long opnum;
3069 char *endptr;
3070
3071 opnum = strtoul (p, &endptr, 10);
3072
3073 if (endptr == p)
3074 output_operand_lossage ("operand number missing "
3075 "after %%-letter");
3076 else if (this_is_asm_operands && opnum >= insn_noperands)
3077 output_operand_lossage ("operand number out of range");
3078 else if (letter == 'l')
3079 output_asm_label (operands[opnum]);
3080 else if (letter == 'a')
3081 output_address (operands[opnum]);
3082 else if (letter == 'c')
3083 {
3084 if (CONSTANT_ADDRESS_P (operands[opnum]))
3085 output_addr_const (asm_out_file, operands[opnum]);
3086 else
3087 output_operand (operands[opnum], 'c');
3088 }
3089 else if (letter == 'n')
3090 {
3091 if (GET_CODE (operands[opnum]) == CONST_INT)
3092 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3093 - INTVAL (operands[opnum]));
3094 else
3095 {
3096 putc ('-', asm_out_file);
3097 output_addr_const (asm_out_file, operands[opnum]);
3098 }
3099 }
3100 else
3101 output_operand (operands[opnum], letter);
3102
3103 if (!opoutput[opnum])
3104 oporder[ops++] = opnum;
3105 opoutput[opnum] = 1;
3106
3107 p = endptr;
3108 c = *p;
3109 }
3110 /* % followed by a digit outputs an operand the default way. */
3111 else if (ISDIGIT (*p))
3112 {
3113 unsigned long opnum;
3114 char *endptr;
3115
3116 opnum = strtoul (p, &endptr, 10);
3117 if (this_is_asm_operands && opnum >= insn_noperands)
3118 output_operand_lossage ("operand number out of range");
3119 else
3120 output_operand (operands[opnum], 0);
3121
3122 if (!opoutput[opnum])
3123 oporder[ops++] = opnum;
3124 opoutput[opnum] = 1;
3125
3126 p = endptr;
3127 c = *p;
3128 }
3129 /* % followed by punctuation: output something for that
3130 punctuation character alone, with no operand.
3131 The PRINT_OPERAND macro decides what is actually done. */
3132 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3133 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3134 output_operand (NULL_RTX, *p++);
3135 #endif
3136 else
3137 output_operand_lossage ("invalid %%-code");
3138 break;
3139
3140 default:
3141 putc (c, asm_out_file);
3142 }
3143
3144 /* Write out the variable names for operands, if we know them. */
3145 if (flag_verbose_asm)
3146 output_asm_operand_names (operands, oporder, ops);
3147 if (flag_print_asm_name)
3148 output_asm_name ();
3149
3150 putc ('\n', asm_out_file);
3151 }
3152 \f
3153 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3154
3155 void
3156 output_asm_label (rtx x)
3157 {
3158 char buf[256];
3159
3160 if (GET_CODE (x) == LABEL_REF)
3161 x = XEXP (x, 0);
3162 if (LABEL_P (x)
3163 || (NOTE_P (x)
3164 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3165 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3166 else
3167 output_operand_lossage ("'%%l' operand isn't a label");
3168
3169 assemble_name (asm_out_file, buf);
3170 }
3171
3172 /* Print operand X using machine-dependent assembler syntax.
3173 The macro PRINT_OPERAND is defined just to control this function.
3174 CODE is a non-digit that preceded the operand-number in the % spec,
3175 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3176 between the % and the digits.
3177 When CODE is a non-letter, X is 0.
3178
3179 The meanings of the letters are machine-dependent and controlled
3180 by PRINT_OPERAND. */
3181
3182 static void
3183 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3184 {
3185 if (x && GET_CODE (x) == SUBREG)
3186 x = alter_subreg (&x);
3187
3188 /* X must not be a pseudo reg. */
3189 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3190
3191 PRINT_OPERAND (asm_out_file, x, code);
3192 }
3193
3194 /* Print a memory reference operand for address X
3195 using machine-dependent assembler syntax.
3196 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3197
3198 void
3199 output_address (rtx x)
3200 {
3201 walk_alter_subreg (&x);
3202 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3203 }
3204 \f
3205 /* Print an integer constant expression in assembler syntax.
3206 Addition and subtraction are the only arithmetic
3207 that may appear in these expressions. */
3208
3209 void
3210 output_addr_const (FILE *file, rtx x)
3211 {
3212 char buf[256];
3213
3214 restart:
3215 switch (GET_CODE (x))
3216 {
3217 case PC:
3218 putc ('.', file);
3219 break;
3220
3221 case SYMBOL_REF:
3222 if (SYMBOL_REF_DECL (x))
3223 mark_decl_referenced (SYMBOL_REF_DECL (x));
3224 #ifdef ASM_OUTPUT_SYMBOL_REF
3225 ASM_OUTPUT_SYMBOL_REF (file, x);
3226 #else
3227 assemble_name (file, XSTR (x, 0));
3228 #endif
3229 break;
3230
3231 case LABEL_REF:
3232 x = XEXP (x, 0);
3233 /* Fall through. */
3234 case CODE_LABEL:
3235 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3236 #ifdef ASM_OUTPUT_LABEL_REF
3237 ASM_OUTPUT_LABEL_REF (file, buf);
3238 #else
3239 assemble_name (file, buf);
3240 #endif
3241 break;
3242
3243 case CONST_INT:
3244 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3245 break;
3246
3247 case CONST:
3248 /* This used to output parentheses around the expression,
3249 but that does not work on the 386 (either ATT or BSD assembler). */
3250 output_addr_const (file, XEXP (x, 0));
3251 break;
3252
3253 case CONST_DOUBLE:
3254 if (GET_MODE (x) == VOIDmode)
3255 {
3256 /* We can use %d if the number is one word and positive. */
3257 if (CONST_DOUBLE_HIGH (x))
3258 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3259 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3260 else if (CONST_DOUBLE_LOW (x) < 0)
3261 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3262 else
3263 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3264 }
3265 else
3266 /* We can't handle floating point constants;
3267 PRINT_OPERAND must handle them. */
3268 output_operand_lossage ("floating constant misused");
3269 break;
3270
3271 case PLUS:
3272 /* Some assemblers need integer constants to appear last (eg masm). */
3273 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3274 {
3275 output_addr_const (file, XEXP (x, 1));
3276 if (INTVAL (XEXP (x, 0)) >= 0)
3277 fprintf (file, "+");
3278 output_addr_const (file, XEXP (x, 0));
3279 }
3280 else
3281 {
3282 output_addr_const (file, XEXP (x, 0));
3283 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3284 || INTVAL (XEXP (x, 1)) >= 0)
3285 fprintf (file, "+");
3286 output_addr_const (file, XEXP (x, 1));
3287 }
3288 break;
3289
3290 case MINUS:
3291 /* Avoid outputting things like x-x or x+5-x,
3292 since some assemblers can't handle that. */
3293 x = simplify_subtraction (x);
3294 if (GET_CODE (x) != MINUS)
3295 goto restart;
3296
3297 output_addr_const (file, XEXP (x, 0));
3298 fprintf (file, "-");
3299 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3300 || GET_CODE (XEXP (x, 1)) == PC
3301 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3302 output_addr_const (file, XEXP (x, 1));
3303 else
3304 {
3305 fputs (targetm.asm_out.open_paren, file);
3306 output_addr_const (file, XEXP (x, 1));
3307 fputs (targetm.asm_out.close_paren, file);
3308 }
3309 break;
3310
3311 case ZERO_EXTEND:
3312 case SIGN_EXTEND:
3313 case SUBREG:
3314 output_addr_const (file, XEXP (x, 0));
3315 break;
3316
3317 default:
3318 #ifdef OUTPUT_ADDR_CONST_EXTRA
3319 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3320 break;
3321
3322 fail:
3323 #endif
3324 output_operand_lossage ("invalid expression as operand");
3325 }
3326 }
3327 \f
3328 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3329 %R prints the value of REGISTER_PREFIX.
3330 %L prints the value of LOCAL_LABEL_PREFIX.
3331 %U prints the value of USER_LABEL_PREFIX.
3332 %I prints the value of IMMEDIATE_PREFIX.
3333 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3334 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3335
3336 We handle alternate assembler dialects here, just like output_asm_insn. */
3337
3338 void
3339 asm_fprintf (FILE *file, const char *p, ...)
3340 {
3341 char buf[10];
3342 char *q, c;
3343 va_list argptr;
3344
3345 va_start (argptr, p);
3346
3347 buf[0] = '%';
3348
3349 while ((c = *p++))
3350 switch (c)
3351 {
3352 #ifdef ASSEMBLER_DIALECT
3353 case '{':
3354 {
3355 int i;
3356
3357 /* If we want the first dialect, do nothing. Otherwise, skip
3358 DIALECT_NUMBER of strings ending with '|'. */
3359 for (i = 0; i < dialect_number; i++)
3360 {
3361 while (*p && *p++ != '|')
3362 ;
3363
3364 if (*p == '|')
3365 p++;
3366 }
3367 }
3368 break;
3369
3370 case '|':
3371 /* Skip to close brace. */
3372 while (*p && *p++ != '}')
3373 ;
3374 break;
3375
3376 case '}':
3377 break;
3378 #endif
3379
3380 case '%':
3381 c = *p++;
3382 q = &buf[1];
3383 while (strchr ("-+ #0", c))
3384 {
3385 *q++ = c;
3386 c = *p++;
3387 }
3388 while (ISDIGIT (c) || c == '.')
3389 {
3390 *q++ = c;
3391 c = *p++;
3392 }
3393 switch (c)
3394 {
3395 case '%':
3396 putc ('%', file);
3397 break;
3398
3399 case 'd': case 'i': case 'u':
3400 case 'x': case 'X': case 'o':
3401 case 'c':
3402 *q++ = c;
3403 *q = 0;
3404 fprintf (file, buf, va_arg (argptr, int));
3405 break;
3406
3407 case 'w':
3408 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3409 'o' cases, but we do not check for those cases. It
3410 means that the value is a HOST_WIDE_INT, which may be
3411 either `long' or `long long'. */
3412 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3413 q += strlen (HOST_WIDE_INT_PRINT);
3414 *q++ = *p++;
3415 *q = 0;
3416 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3417 break;
3418
3419 case 'l':
3420 *q++ = c;
3421 #ifdef HAVE_LONG_LONG
3422 if (*p == 'l')
3423 {
3424 *q++ = *p++;
3425 *q++ = *p++;
3426 *q = 0;
3427 fprintf (file, buf, va_arg (argptr, long long));
3428 }
3429 else
3430 #endif
3431 {
3432 *q++ = *p++;
3433 *q = 0;
3434 fprintf (file, buf, va_arg (argptr, long));
3435 }
3436
3437 break;
3438
3439 case 's':
3440 *q++ = c;
3441 *q = 0;
3442 fprintf (file, buf, va_arg (argptr, char *));
3443 break;
3444
3445 case 'O':
3446 #ifdef ASM_OUTPUT_OPCODE
3447 ASM_OUTPUT_OPCODE (asm_out_file, p);
3448 #endif
3449 break;
3450
3451 case 'R':
3452 #ifdef REGISTER_PREFIX
3453 fprintf (file, "%s", REGISTER_PREFIX);
3454 #endif
3455 break;
3456
3457 case 'I':
3458 #ifdef IMMEDIATE_PREFIX
3459 fprintf (file, "%s", IMMEDIATE_PREFIX);
3460 #endif
3461 break;
3462
3463 case 'L':
3464 #ifdef LOCAL_LABEL_PREFIX
3465 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3466 #endif
3467 break;
3468
3469 case 'U':
3470 fputs (user_label_prefix, file);
3471 break;
3472
3473 #ifdef ASM_FPRINTF_EXTENSIONS
3474 /* Uppercase letters are reserved for general use by asm_fprintf
3475 and so are not available to target specific code. In order to
3476 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3477 they are defined here. As they get turned into real extensions
3478 to asm_fprintf they should be removed from this list. */
3479 case 'A': case 'B': case 'C': case 'D': case 'E':
3480 case 'F': case 'G': case 'H': case 'J': case 'K':
3481 case 'M': case 'N': case 'P': case 'Q': case 'S':
3482 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3483 break;
3484
3485 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3486 #endif
3487 default:
3488 gcc_unreachable ();
3489 }
3490 break;
3491
3492 default:
3493 putc (c, file);
3494 }
3495 va_end (argptr);
3496 }
3497 \f
3498 /* Split up a CONST_DOUBLE or integer constant rtx
3499 into two rtx's for single words,
3500 storing in *FIRST the word that comes first in memory in the target
3501 and in *SECOND the other. */
3502
3503 void
3504 split_double (rtx value, rtx *first, rtx *second)
3505 {
3506 if (GET_CODE (value) == CONST_INT)
3507 {
3508 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3509 {
3510 /* In this case the CONST_INT holds both target words.
3511 Extract the bits from it into two word-sized pieces.
3512 Sign extend each half to HOST_WIDE_INT. */
3513 unsigned HOST_WIDE_INT low, high;
3514 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3515
3516 /* Set sign_bit to the most significant bit of a word. */
3517 sign_bit = 1;
3518 sign_bit <<= BITS_PER_WORD - 1;
3519
3520 /* Set mask so that all bits of the word are set. We could
3521 have used 1 << BITS_PER_WORD instead of basing the
3522 calculation on sign_bit. However, on machines where
3523 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3524 compiler warning, even though the code would never be
3525 executed. */
3526 mask = sign_bit << 1;
3527 mask--;
3528
3529 /* Set sign_extend as any remaining bits. */
3530 sign_extend = ~mask;
3531
3532 /* Pick the lower word and sign-extend it. */
3533 low = INTVAL (value);
3534 low &= mask;
3535 if (low & sign_bit)
3536 low |= sign_extend;
3537
3538 /* Pick the higher word, shifted to the least significant
3539 bits, and sign-extend it. */
3540 high = INTVAL (value);
3541 high >>= BITS_PER_WORD - 1;
3542 high >>= 1;
3543 high &= mask;
3544 if (high & sign_bit)
3545 high |= sign_extend;
3546
3547 /* Store the words in the target machine order. */
3548 if (WORDS_BIG_ENDIAN)
3549 {
3550 *first = GEN_INT (high);
3551 *second = GEN_INT (low);
3552 }
3553 else
3554 {
3555 *first = GEN_INT (low);
3556 *second = GEN_INT (high);
3557 }
3558 }
3559 else
3560 {
3561 /* The rule for using CONST_INT for a wider mode
3562 is that we regard the value as signed.
3563 So sign-extend it. */
3564 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3565 if (WORDS_BIG_ENDIAN)
3566 {
3567 *first = high;
3568 *second = value;
3569 }
3570 else
3571 {
3572 *first = value;
3573 *second = high;
3574 }
3575 }
3576 }
3577 else if (GET_CODE (value) != CONST_DOUBLE)
3578 {
3579 if (WORDS_BIG_ENDIAN)
3580 {
3581 *first = const0_rtx;
3582 *second = value;
3583 }
3584 else
3585 {
3586 *first = value;
3587 *second = const0_rtx;
3588 }
3589 }
3590 else if (GET_MODE (value) == VOIDmode
3591 /* This is the old way we did CONST_DOUBLE integers. */
3592 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3593 {
3594 /* In an integer, the words are defined as most and least significant.
3595 So order them by the target's convention. */
3596 if (WORDS_BIG_ENDIAN)
3597 {
3598 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3599 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3600 }
3601 else
3602 {
3603 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3604 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3605 }
3606 }
3607 else
3608 {
3609 REAL_VALUE_TYPE r;
3610 long l[2];
3611 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3612
3613 /* Note, this converts the REAL_VALUE_TYPE to the target's
3614 format, splits up the floating point double and outputs
3615 exactly 32 bits of it into each of l[0] and l[1] --
3616 not necessarily BITS_PER_WORD bits. */
3617 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3618
3619 /* If 32 bits is an entire word for the target, but not for the host,
3620 then sign-extend on the host so that the number will look the same
3621 way on the host that it would on the target. See for instance
3622 simplify_unary_operation. The #if is needed to avoid compiler
3623 warnings. */
3624
3625 #if HOST_BITS_PER_LONG > 32
3626 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3627 {
3628 if (l[0] & ((long) 1 << 31))
3629 l[0] |= ((long) (-1) << 32);
3630 if (l[1] & ((long) 1 << 31))
3631 l[1] |= ((long) (-1) << 32);
3632 }
3633 #endif
3634
3635 *first = GEN_INT (l[0]);
3636 *second = GEN_INT (l[1]);
3637 }
3638 }
3639 \f
3640 /* Return nonzero if this function has no function calls. */
3641
3642 int
3643 leaf_function_p (void)
3644 {
3645 rtx insn;
3646 rtx link;
3647
3648 if (current_function_profile || profile_arc_flag)
3649 return 0;
3650
3651 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3652 {
3653 if (CALL_P (insn)
3654 && ! SIBLING_CALL_P (insn))
3655 return 0;
3656 if (NONJUMP_INSN_P (insn)
3657 && GET_CODE (PATTERN (insn)) == SEQUENCE
3658 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3659 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3660 return 0;
3661 }
3662 for (link = current_function_epilogue_delay_list;
3663 link;
3664 link = XEXP (link, 1))
3665 {
3666 insn = XEXP (link, 0);
3667
3668 if (CALL_P (insn)
3669 && ! SIBLING_CALL_P (insn))
3670 return 0;
3671 if (NONJUMP_INSN_P (insn)
3672 && GET_CODE (PATTERN (insn)) == SEQUENCE
3673 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3674 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3675 return 0;
3676 }
3677
3678 return 1;
3679 }
3680
3681 /* Return 1 if branch is a forward branch.
3682 Uses insn_shuid array, so it works only in the final pass. May be used by
3683 output templates to customary add branch prediction hints.
3684 */
3685 int
3686 final_forward_branch_p (rtx insn)
3687 {
3688 int insn_id, label_id;
3689
3690 gcc_assert (uid_shuid);
3691 insn_id = INSN_SHUID (insn);
3692 label_id = INSN_SHUID (JUMP_LABEL (insn));
3693 /* We've hit some insns that does not have id information available. */
3694 gcc_assert (insn_id && label_id);
3695 return insn_id < label_id;
3696 }
3697
3698 /* On some machines, a function with no call insns
3699 can run faster if it doesn't create its own register window.
3700 When output, the leaf function should use only the "output"
3701 registers. Ordinarily, the function would be compiled to use
3702 the "input" registers to find its arguments; it is a candidate
3703 for leaf treatment if it uses only the "input" registers.
3704 Leaf function treatment means renumbering so the function
3705 uses the "output" registers instead. */
3706
3707 #ifdef LEAF_REGISTERS
3708
3709 /* Return 1 if this function uses only the registers that can be
3710 safely renumbered. */
3711
3712 int
3713 only_leaf_regs_used (void)
3714 {
3715 int i;
3716 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3717
3718 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3719 if ((regs_ever_live[i] || global_regs[i])
3720 && ! permitted_reg_in_leaf_functions[i])
3721 return 0;
3722
3723 if (current_function_uses_pic_offset_table
3724 && pic_offset_table_rtx != 0
3725 && REG_P (pic_offset_table_rtx)
3726 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3727 return 0;
3728
3729 return 1;
3730 }
3731
3732 /* Scan all instructions and renumber all registers into those
3733 available in leaf functions. */
3734
3735 static void
3736 leaf_renumber_regs (rtx first)
3737 {
3738 rtx insn;
3739
3740 /* Renumber only the actual patterns.
3741 The reg-notes can contain frame pointer refs,
3742 and renumbering them could crash, and should not be needed. */
3743 for (insn = first; insn; insn = NEXT_INSN (insn))
3744 if (INSN_P (insn))
3745 leaf_renumber_regs_insn (PATTERN (insn));
3746 for (insn = current_function_epilogue_delay_list;
3747 insn;
3748 insn = XEXP (insn, 1))
3749 if (INSN_P (XEXP (insn, 0)))
3750 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3751 }
3752
3753 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3754 available in leaf functions. */
3755
3756 void
3757 leaf_renumber_regs_insn (rtx in_rtx)
3758 {
3759 int i, j;
3760 const char *format_ptr;
3761
3762 if (in_rtx == 0)
3763 return;
3764
3765 /* Renumber all input-registers into output-registers.
3766 renumbered_regs would be 1 for an output-register;
3767 they */
3768
3769 if (REG_P (in_rtx))
3770 {
3771 int newreg;
3772
3773 /* Don't renumber the same reg twice. */
3774 if (in_rtx->used)
3775 return;
3776
3777 newreg = REGNO (in_rtx);
3778 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3779 to reach here as part of a REG_NOTE. */
3780 if (newreg >= FIRST_PSEUDO_REGISTER)
3781 {
3782 in_rtx->used = 1;
3783 return;
3784 }
3785 newreg = LEAF_REG_REMAP (newreg);
3786 gcc_assert (newreg >= 0);
3787 regs_ever_live[REGNO (in_rtx)] = 0;
3788 regs_ever_live[newreg] = 1;
3789 REGNO (in_rtx) = newreg;
3790 in_rtx->used = 1;
3791 }
3792
3793 if (INSN_P (in_rtx))
3794 {
3795 /* Inside a SEQUENCE, we find insns.
3796 Renumber just the patterns of these insns,
3797 just as we do for the top-level insns. */
3798 leaf_renumber_regs_insn (PATTERN (in_rtx));
3799 return;
3800 }
3801
3802 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3803
3804 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3805 switch (*format_ptr++)
3806 {
3807 case 'e':
3808 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3809 break;
3810
3811 case 'E':
3812 if (NULL != XVEC (in_rtx, i))
3813 {
3814 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3815 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3816 }
3817 break;
3818
3819 case 'S':
3820 case 's':
3821 case '0':
3822 case 'i':
3823 case 'w':
3824 case 'n':
3825 case 'u':
3826 break;
3827
3828 default:
3829 gcc_unreachable ();
3830 }
3831 }
3832 #endif
3833
3834
3835 /* When -gused is used, emit debug info for only used symbols. But in
3836 addition to the standard intercepted debug_hooks there are some direct
3837 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3838 Those routines may also be called from a higher level intercepted routine. So
3839 to prevent recording data for an inner call to one of these for an intercept,
3840 we maintain an intercept nesting counter (debug_nesting). We only save the
3841 intercepted arguments if the nesting is 1. */
3842 int debug_nesting = 0;
3843
3844 static tree *symbol_queue;
3845 int symbol_queue_index = 0;
3846 static int symbol_queue_size = 0;
3847
3848 /* Generate the symbols for any queued up type symbols we encountered
3849 while generating the type info for some originally used symbol.
3850 This might generate additional entries in the queue. Only when
3851 the nesting depth goes to 0 is this routine called. */
3852
3853 void
3854 debug_flush_symbol_queue (void)
3855 {
3856 int i;
3857
3858 /* Make sure that additionally queued items are not flushed
3859 prematurely. */
3860
3861 ++debug_nesting;
3862
3863 for (i = 0; i < symbol_queue_index; ++i)
3864 {
3865 /* If we pushed queued symbols then such symbols must be
3866 output no matter what anyone else says. Specifically,
3867 we need to make sure dbxout_symbol() thinks the symbol was
3868 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3869 which may be set for outside reasons. */
3870 int saved_tree_used = TREE_USED (symbol_queue[i]);
3871 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3872 TREE_USED (symbol_queue[i]) = 1;
3873 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3874
3875 #ifdef DBX_DEBUGGING_INFO
3876 dbxout_symbol (symbol_queue[i], 0);
3877 #endif
3878
3879 TREE_USED (symbol_queue[i]) = saved_tree_used;
3880 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3881 }
3882
3883 symbol_queue_index = 0;
3884 --debug_nesting;
3885 }
3886
3887 /* Queue a type symbol needed as part of the definition of a decl
3888 symbol. These symbols are generated when debug_flush_symbol_queue()
3889 is called. */
3890
3891 void
3892 debug_queue_symbol (tree decl)
3893 {
3894 if (symbol_queue_index >= symbol_queue_size)
3895 {
3896 symbol_queue_size += 10;
3897 symbol_queue = xrealloc (symbol_queue,
3898 symbol_queue_size * sizeof (tree));
3899 }
3900
3901 symbol_queue[symbol_queue_index++] = decl;
3902 }
3903
3904 /* Free symbol queue. */
3905 void
3906 debug_free_queue (void)
3907 {
3908 if (symbol_queue)
3909 {
3910 free (symbol_queue);
3911 symbol_queue = NULL;
3912 symbol_queue_size = 0;
3913 }
3914 }
3915 \f
3916 /* Turn the RTL into assembly. */
3917 static unsigned int
3918 rest_of_handle_final (void)
3919 {
3920 rtx x;
3921 const char *fnname;
3922
3923 /* Get the function's name, as described by its RTL. This may be
3924 different from the DECL_NAME name used in the source file. */
3925
3926 x = DECL_RTL (current_function_decl);
3927 gcc_assert (MEM_P (x));
3928 x = XEXP (x, 0);
3929 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3930 fnname = XSTR (x, 0);
3931
3932 assemble_start_function (current_function_decl, fnname);
3933 final_start_function (get_insns (), asm_out_file, optimize);
3934 final (get_insns (), asm_out_file, optimize);
3935 final_end_function ();
3936
3937 #ifdef TARGET_UNWIND_INFO
3938 /* ??? The IA-64 ".handlerdata" directive must be issued before
3939 the ".endp" directive that closes the procedure descriptor. */
3940 output_function_exception_table (fnname);
3941 #endif
3942
3943 assemble_end_function (current_function_decl, fnname);
3944
3945 #ifndef TARGET_UNWIND_INFO
3946 /* Otherwise, it feels unclean to switch sections in the middle. */
3947 output_function_exception_table (fnname);
3948 #endif
3949
3950 user_defined_section_attribute = false;
3951
3952 if (! quiet_flag)
3953 fflush (asm_out_file);
3954
3955 /* Release all memory allocated by flow. */
3956 free_basic_block_vars ();
3957
3958 /* Write DBX symbols if requested. */
3959
3960 /* Note that for those inline functions where we don't initially
3961 know for certain that we will be generating an out-of-line copy,
3962 the first invocation of this routine (rest_of_compilation) will
3963 skip over this code by doing a `goto exit_rest_of_compilation;'.
3964 Later on, wrapup_global_declarations will (indirectly) call
3965 rest_of_compilation again for those inline functions that need
3966 to have out-of-line copies generated. During that call, we
3967 *will* be routed past here. */
3968
3969 timevar_push (TV_SYMOUT);
3970 (*debug_hooks->function_decl) (current_function_decl);
3971 timevar_pop (TV_SYMOUT);
3972 return 0;
3973 }
3974
3975 struct tree_opt_pass pass_final =
3976 {
3977 NULL, /* name */
3978 NULL, /* gate */
3979 rest_of_handle_final, /* execute */
3980 NULL, /* sub */
3981 NULL, /* next */
3982 0, /* static_pass_number */
3983 TV_FINAL, /* tv_id */
3984 0, /* properties_required */
3985 0, /* properties_provided */
3986 0, /* properties_destroyed */
3987 0, /* todo_flags_start */
3988 TODO_ggc_collect, /* todo_flags_finish */
3989 0 /* letter */
3990 };
3991
3992
3993 static unsigned int
3994 rest_of_handle_shorten_branches (void)
3995 {
3996 /* Shorten branches. */
3997 shorten_branches (get_insns ());
3998 return 0;
3999 }
4000
4001 struct tree_opt_pass pass_shorten_branches =
4002 {
4003 "shorten", /* name */
4004 NULL, /* gate */
4005 rest_of_handle_shorten_branches, /* execute */
4006 NULL, /* sub */
4007 NULL, /* next */
4008 0, /* static_pass_number */
4009 TV_FINAL, /* tv_id */
4010 0, /* properties_required */
4011 0, /* properties_provided */
4012 0, /* properties_destroyed */
4013 0, /* todo_flags_start */
4014 TODO_dump_func, /* todo_flags_finish */
4015 0 /* letter */
4016 };
4017
4018
4019 static unsigned int
4020 rest_of_clean_state (void)
4021 {
4022 rtx insn, next;
4023
4024 /* It is very important to decompose the RTL instruction chain here:
4025 debug information keeps pointing into CODE_LABEL insns inside the function
4026 body. If these remain pointing to the other insns, we end up preserving
4027 whole RTL chain and attached detailed debug info in memory. */
4028 for (insn = get_insns (); insn; insn = next)
4029 {
4030 next = NEXT_INSN (insn);
4031 NEXT_INSN (insn) = NULL;
4032 PREV_INSN (insn) = NULL;
4033 }
4034
4035 /* In case the function was not output,
4036 don't leave any temporary anonymous types
4037 queued up for sdb output. */
4038 #ifdef SDB_DEBUGGING_INFO
4039 if (write_symbols == SDB_DEBUG)
4040 sdbout_types (NULL_TREE);
4041 #endif
4042
4043 reload_completed = 0;
4044 epilogue_completed = 0;
4045 flow2_completed = 0;
4046 no_new_pseudos = 0;
4047 #ifdef STACK_REGS
4048 regstack_completed = 0;
4049 #endif
4050
4051 /* Clear out the insn_length contents now that they are no
4052 longer valid. */
4053 init_insn_lengths ();
4054
4055 /* Show no temporary slots allocated. */
4056 init_temp_slots ();
4057
4058 free_basic_block_vars ();
4059 free_bb_for_insn ();
4060
4061
4062 if (targetm.binds_local_p (current_function_decl))
4063 {
4064 int pref = cfun->preferred_stack_boundary;
4065 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4066 pref = cfun->stack_alignment_needed;
4067 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4068 = pref;
4069 }
4070
4071 /* Make sure volatile mem refs aren't considered valid operands for
4072 arithmetic insns. We must call this here if this is a nested inline
4073 function, since the above code leaves us in the init_recog state,
4074 and the function context push/pop code does not save/restore volatile_ok.
4075
4076 ??? Maybe it isn't necessary for expand_start_function to call this
4077 anymore if we do it here? */
4078
4079 init_recog_no_volatile ();
4080
4081 /* We're done with this function. Free up memory if we can. */
4082 free_after_parsing (cfun);
4083 free_after_compilation (cfun);
4084 return 0;
4085 }
4086
4087 struct tree_opt_pass pass_clean_state =
4088 {
4089 NULL, /* name */
4090 NULL, /* gate */
4091 rest_of_clean_state, /* execute */
4092 NULL, /* sub */
4093 NULL, /* next */
4094 0, /* static_pass_number */
4095 TV_FINAL, /* tv_id */
4096 0, /* properties_required */
4097 0, /* properties_provided */
4098 PROP_rtl, /* properties_destroyed */
4099 0, /* todo_flags_start */
4100 0, /* todo_flags_finish */
4101 0 /* letter */
4102 };
4103