function.h (struct function): Rename profile_label_no.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
226 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
227 static void output_operand PARAMS ((rtx, int));
228 #ifdef LEAF_REGISTERS
229 static void leaf_renumber_regs PARAMS ((rtx));
230 #endif
231 #ifdef HAVE_cc0
232 static int alter_cond PARAMS ((rtx));
233 #endif
234 #ifndef ADDR_VEC_ALIGN
235 static int final_addr_vec_align PARAMS ((rtx));
236 #endif
237 #ifdef HAVE_ATTR_length
238 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
239 #endif
240 \f
241 /* Initialize data in final at the beginning of a compilation. */
242
243 void
244 init_final (filename)
245 const char *filename ATTRIBUTE_UNUSED;
246 {
247 app_on = 0;
248 final_sequence = 0;
249
250 #ifdef ASSEMBLER_DIALECT
251 dialect_number = ASSEMBLER_DIALECT;
252 #endif
253 }
254
255 /* Called at end of source file,
256 to output the arc-profiling table for this entire compilation. */
257
258 void
259 end_final (filename)
260 const char *filename;
261 {
262 if (profile_arc_flag && profile_info.count_instrumented_edges)
263 {
264 char name[20];
265 tree string_type, string_cst;
266 tree structure_decl, structure_value, structure_pointer_type;
267 tree field_decl, decl_chain, value_chain;
268 tree sizeof_field_value, domain_type;
269
270 /* Build types. */
271 string_type = build_pointer_type (char_type_node);
272
273 /* Libgcc2 bb structure. */
274 structure_decl = make_node (RECORD_TYPE);
275 structure_pointer_type = build_pointer_type (structure_decl);
276
277 /* Output the main header, of 7 words:
278 0: 1 if this file is initialized, else 0.
279 1: address of file name (LPBX1).
280 2: address of table of counts (LPBX2).
281 3: number of counts in the table.
282 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
283
284 The following are GNU extensions:
285
286 5: Number of bytes in this header.
287 6: address of table of function checksums (LPBX7). */
288
289 /* The zero word. */
290 decl_chain =
291 build_decl (FIELD_DECL, get_identifier ("zero_word"),
292 long_integer_type_node);
293 value_chain = build_tree_list (decl_chain,
294 convert (long_integer_type_node,
295 integer_zero_node));
296
297 /* Address of filename. */
298 {
299 char *cwd, *da_filename;
300 int da_filename_len;
301
302 field_decl =
303 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
304 TREE_CHAIN (field_decl) = decl_chain;
305 decl_chain = field_decl;
306
307 cwd = getpwd ();
308 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
309 da_filename = (char *) alloca (da_filename_len);
310 strcpy (da_filename, cwd);
311 strcat (da_filename, "/");
312 strcat (da_filename, filename);
313 strip_off_ending (da_filename, da_filename_len - 3);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
323 }
324
325 /* Table of counts. */
326 {
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
337
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
343
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
351
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
356 }
357
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
364
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
376
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
378
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
386
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
389
390 /* struct bb_function []. */
391 {
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
402
403 bb_fn_struct_type = make_node (RECORD_TYPE);
404
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
407
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
412
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
416
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
418
419 num_nodes = 0;
420
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
423
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
426
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
432
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
437
438 for (item = functions_head; item != 0; item = item->next)
439 {
440 size_t name_len;
441
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
452
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
462
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
469 }
470
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
475
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
480
481
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
497 }
498
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
502
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
511
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
516
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
519 }
520 }
521
522 /* Default target function prologue and epilogue assembler output.
523
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
530 {
531 }
532
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
537 {
538 }
539
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
542
543 void
544 app_enable ()
545 {
546 if (! app_on)
547 {
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
550 }
551 }
552
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
555
556 void
557 app_disable ()
558 {
559 if (app_on)
560 {
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
563 }
564 }
565 \f
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
569
570 #ifdef DELAY_SLOTS
571 int
572 dbr_sequence_length ()
573 {
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
578 }
579 #endif
580 \f
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
583
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
586
587 static int *insn_lengths;
588
589 varray_type insn_addresses_;
590
591 /* Max uid for which the above arrays are valid. */
592 static int insn_lengths_max_uid;
593
594 /* Address of insn being processed. Used by `insn_current_length'. */
595 int insn_current_address;
596
597 /* Address of insn being processed in previous iteration. */
598 int insn_last_address;
599
600 /* known invariant alignment of insn being processed. */
601 int insn_current_align;
602
603 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
604 gives the next following alignment insn that increases the known
605 alignment, or NULL_RTX if there is no such insn.
606 For any alignment obtained this way, we can again index uid_align with
607 its uid to obtain the next following align that in turn increases the
608 alignment, till we reach NULL_RTX; the sequence obtained this way
609 for each insn we'll call the alignment chain of this insn in the following
610 comments. */
611
612 struct label_alignment
613 {
614 short alignment;
615 short max_skip;
616 };
617
618 static rtx *uid_align;
619 static int *uid_shuid;
620 static struct label_alignment *label_align;
621
622 /* Indicate that branch shortening hasn't yet been done. */
623
624 void
625 init_insn_lengths ()
626 {
627 if (uid_shuid)
628 {
629 free (uid_shuid);
630 uid_shuid = 0;
631 }
632 if (insn_lengths)
633 {
634 free (insn_lengths);
635 insn_lengths = 0;
636 insn_lengths_max_uid = 0;
637 }
638 #ifdef HAVE_ATTR_length
639 INSN_ADDRESSES_FREE ();
640 #endif
641 if (uid_align)
642 {
643 free (uid_align);
644 uid_align = 0;
645 }
646 }
647
648 /* Obtain the current length of an insn. If branch shortening has been done,
649 get its actual length. Otherwise, get its maximum length. */
650
651 int
652 get_attr_length (insn)
653 rtx insn ATTRIBUTE_UNUSED;
654 {
655 #ifdef HAVE_ATTR_length
656 rtx body;
657 int i;
658 int length = 0;
659
660 if (insn_lengths_max_uid > INSN_UID (insn))
661 return insn_lengths[INSN_UID (insn)];
662 else
663 switch (GET_CODE (insn))
664 {
665 case NOTE:
666 case BARRIER:
667 case CODE_LABEL:
668 return 0;
669
670 case CALL_INSN:
671 length = insn_default_length (insn);
672 break;
673
674 case JUMP_INSN:
675 body = PATTERN (insn);
676 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
677 {
678 /* Alignment is machine-dependent and should be handled by
679 ADDR_VEC_ALIGN. */
680 }
681 else
682 length = insn_default_length (insn);
683 break;
684
685 case INSN:
686 body = PATTERN (insn);
687 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
688 return 0;
689
690 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
691 length = asm_insn_count (body) * insn_default_length (insn);
692 else if (GET_CODE (body) == SEQUENCE)
693 for (i = 0; i < XVECLEN (body, 0); i++)
694 length += get_attr_length (XVECEXP (body, 0, i));
695 else
696 length = insn_default_length (insn);
697 break;
698
699 default:
700 break;
701 }
702
703 #ifdef ADJUST_INSN_LENGTH
704 ADJUST_INSN_LENGTH (insn, length);
705 #endif
706 return length;
707 #else /* not HAVE_ATTR_length */
708 return 0;
709 #endif /* not HAVE_ATTR_length */
710 }
711 \f
712 /* Code to handle alignment inside shorten_branches. */
713
714 /* Here is an explanation how the algorithm in align_fuzz can give
715 proper results:
716
717 Call a sequence of instructions beginning with alignment point X
718 and continuing until the next alignment point `block X'. When `X'
719 is used in an expression, it means the alignment value of the
720 alignment point.
721
722 Call the distance between the start of the first insn of block X, and
723 the end of the last insn of block X `IX', for the `inner size of X'.
724 This is clearly the sum of the instruction lengths.
725
726 Likewise with the next alignment-delimited block following X, which we
727 shall call block Y.
728
729 Call the distance between the start of the first insn of block X, and
730 the start of the first insn of block Y `OX', for the `outer size of X'.
731
732 The estimated padding is then OX - IX.
733
734 OX can be safely estimated as
735
736 if (X >= Y)
737 OX = round_up(IX, Y)
738 else
739 OX = round_up(IX, X) + Y - X
740
741 Clearly est(IX) >= real(IX), because that only depends on the
742 instruction lengths, and those being overestimated is a given.
743
744 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
745 we needn't worry about that when thinking about OX.
746
747 When X >= Y, the alignment provided by Y adds no uncertainty factor
748 for branch ranges starting before X, so we can just round what we have.
749 But when X < Y, we don't know anything about the, so to speak,
750 `middle bits', so we have to assume the worst when aligning up from an
751 address mod X to one mod Y, which is Y - X. */
752
753 #ifndef LABEL_ALIGN
754 #define LABEL_ALIGN(LABEL) align_labels_log
755 #endif
756
757 #ifndef LABEL_ALIGN_MAX_SKIP
758 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
759 #endif
760
761 #ifndef LOOP_ALIGN
762 #define LOOP_ALIGN(LABEL) align_loops_log
763 #endif
764
765 #ifndef LOOP_ALIGN_MAX_SKIP
766 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
767 #endif
768
769 #ifndef LABEL_ALIGN_AFTER_BARRIER
770 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
771 #endif
772
773 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
774 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
775 #endif
776
777 #ifndef JUMP_ALIGN
778 #define JUMP_ALIGN(LABEL) align_jumps_log
779 #endif
780
781 #ifndef JUMP_ALIGN_MAX_SKIP
782 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
783 #endif
784
785 #ifndef ADDR_VEC_ALIGN
786 static int
787 final_addr_vec_align (addr_vec)
788 rtx addr_vec;
789 {
790 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
791
792 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
793 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
794 return exact_log2 (align);
795
796 }
797
798 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
799 #endif
800
801 #ifndef INSN_LENGTH_ALIGNMENT
802 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
803 #endif
804
805 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
806
807 static int min_labelno, max_labelno;
808
809 #define LABEL_TO_ALIGNMENT(LABEL) \
810 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
811
812 #define LABEL_TO_MAX_SKIP(LABEL) \
813 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
814
815 /* For the benefit of port specific code do this also as a function. */
816
817 int
818 label_to_alignment (label)
819 rtx label;
820 {
821 return LABEL_TO_ALIGNMENT (label);
822 }
823
824 #ifdef HAVE_ATTR_length
825 /* The differences in addresses
826 between a branch and its target might grow or shrink depending on
827 the alignment the start insn of the range (the branch for a forward
828 branch or the label for a backward branch) starts out on; if these
829 differences are used naively, they can even oscillate infinitely.
830 We therefore want to compute a 'worst case' address difference that
831 is independent of the alignment the start insn of the range end
832 up on, and that is at least as large as the actual difference.
833 The function align_fuzz calculates the amount we have to add to the
834 naively computed difference, by traversing the part of the alignment
835 chain of the start insn of the range that is in front of the end insn
836 of the range, and considering for each alignment the maximum amount
837 that it might contribute to a size increase.
838
839 For casesi tables, we also want to know worst case minimum amounts of
840 address difference, in case a machine description wants to introduce
841 some common offset that is added to all offsets in a table.
842 For this purpose, align_fuzz with a growth argument of 0 computes the
843 appropriate adjustment. */
844
845 /* Compute the maximum delta by which the difference of the addresses of
846 START and END might grow / shrink due to a different address for start
847 which changes the size of alignment insns between START and END.
848 KNOWN_ALIGN_LOG is the alignment known for START.
849 GROWTH should be ~0 if the objective is to compute potential code size
850 increase, and 0 if the objective is to compute potential shrink.
851 The return value is undefined for any other value of GROWTH. */
852
853 static int
854 align_fuzz (start, end, known_align_log, growth)
855 rtx start, end;
856 int known_align_log;
857 unsigned growth;
858 {
859 int uid = INSN_UID (start);
860 rtx align_label;
861 int known_align = 1 << known_align_log;
862 int end_shuid = INSN_SHUID (end);
863 int fuzz = 0;
864
865 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
866 {
867 int align_addr, new_align;
868
869 uid = INSN_UID (align_label);
870 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
871 if (uid_shuid[uid] > end_shuid)
872 break;
873 known_align_log = LABEL_TO_ALIGNMENT (align_label);
874 new_align = 1 << known_align_log;
875 if (new_align < known_align)
876 continue;
877 fuzz += (-align_addr ^ growth) & (new_align - known_align);
878 known_align = new_align;
879 }
880 return fuzz;
881 }
882
883 /* Compute a worst-case reference address of a branch so that it
884 can be safely used in the presence of aligned labels. Since the
885 size of the branch itself is unknown, the size of the branch is
886 not included in the range. I.e. for a forward branch, the reference
887 address is the end address of the branch as known from the previous
888 branch shortening pass, minus a value to account for possible size
889 increase due to alignment. For a backward branch, it is the start
890 address of the branch as known from the current pass, plus a value
891 to account for possible size increase due to alignment.
892 NB.: Therefore, the maximum offset allowed for backward branches needs
893 to exclude the branch size. */
894
895 int
896 insn_current_reference_address (branch)
897 rtx branch;
898 {
899 rtx dest, seq;
900 int seq_uid;
901
902 if (! INSN_ADDRESSES_SET_P ())
903 return 0;
904
905 seq = NEXT_INSN (PREV_INSN (branch));
906 seq_uid = INSN_UID (seq);
907 if (GET_CODE (branch) != JUMP_INSN)
908 /* This can happen for example on the PA; the objective is to know the
909 offset to address something in front of the start of the function.
910 Thus, we can treat it like a backward branch.
911 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
912 any alignment we'd encounter, so we skip the call to align_fuzz. */
913 return insn_current_address;
914 dest = JUMP_LABEL (branch);
915
916 /* BRANCH has no proper alignment chain set, so use SEQ.
917 BRANCH also has no INSN_SHUID. */
918 if (INSN_SHUID (seq) < INSN_SHUID (dest))
919 {
920 /* Forward branch. */
921 return (insn_last_address + insn_lengths[seq_uid]
922 - align_fuzz (seq, dest, length_unit_log, ~0));
923 }
924 else
925 {
926 /* Backward branch. */
927 return (insn_current_address
928 + align_fuzz (dest, seq, length_unit_log, ~0));
929 }
930 }
931 #endif /* HAVE_ATTR_length */
932 \f
933 void
934 compute_alignments ()
935 {
936 int log, max_skip, max_log;
937 basic_block bb;
938
939 if (label_align)
940 {
941 free (label_align);
942 label_align = 0;
943 }
944
945 max_labelno = max_label_num ();
946 min_labelno = get_first_label_num ();
947 label_align = (struct label_alignment *)
948 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
949
950 /* If not optimizing or optimizing for size, don't assign any alignments. */
951 if (! optimize || optimize_size)
952 return;
953
954 FOR_EACH_BB (bb)
955 {
956 rtx label = bb->head;
957 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
958 edge e;
959
960 if (GET_CODE (label) != CODE_LABEL)
961 continue;
962 max_log = LABEL_ALIGN (label);
963 max_skip = LABEL_ALIGN_MAX_SKIP;
964
965 for (e = bb->pred; e; e = e->pred_next)
966 {
967 if (e->flags & EDGE_FALLTHRU)
968 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
969 else
970 branch_frequency += EDGE_FREQUENCY (e);
971 }
972
973 /* There are two purposes to align block with no fallthru incoming edge:
974 1) to avoid fetch stalls when branch destination is near cache boundary
975 2) to improve cache efficiency in case the previous block is not executed
976 (so it does not need to be in the cache).
977
978 We to catch first case, we align frequently executed blocks.
979 To catch the second, we align blocks that are executed more frequently
980 than the predecessor and the predecessor is likely to not be executed
981 when function is called. */
982
983 if (!has_fallthru
984 && (branch_frequency > BB_FREQ_MAX / 10
985 || (bb->frequency > bb->prev_bb->frequency * 10
986 && (bb->prev_bb->frequency
987 <= ENTRY_BLOCK_PTR->frequency / 2))))
988 {
989 log = JUMP_ALIGN (label);
990 if (max_log < log)
991 {
992 max_log = log;
993 max_skip = JUMP_ALIGN_MAX_SKIP;
994 }
995 }
996 /* In case block is frequent and reached mostly by non-fallthru edge,
997 align it. It is most likely an first block of loop. */
998 if (has_fallthru
999 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1000 && branch_frequency > fallthru_frequency * 5)
1001 {
1002 log = LOOP_ALIGN (label);
1003 if (max_log < log)
1004 {
1005 max_log = log;
1006 max_skip = LOOP_ALIGN_MAX_SKIP;
1007 }
1008 }
1009 LABEL_TO_ALIGNMENT (label) = max_log;
1010 LABEL_TO_MAX_SKIP (label) = max_skip;
1011 }
1012 }
1013 \f
1014 /* Make a pass over all insns and compute their actual lengths by shortening
1015 any branches of variable length if possible. */
1016
1017 /* Give a default value for the lowest address in a function. */
1018
1019 #ifndef FIRST_INSN_ADDRESS
1020 #define FIRST_INSN_ADDRESS 0
1021 #endif
1022
1023 /* shorten_branches might be called multiple times: for example, the SH
1024 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1025 In order to do this, it needs proper length information, which it obtains
1026 by calling shorten_branches. This cannot be collapsed with
1027 shorten_branches itself into a single pass unless we also want to integrate
1028 reorg.c, since the branch splitting exposes new instructions with delay
1029 slots. */
1030
1031 void
1032 shorten_branches (first)
1033 rtx first ATTRIBUTE_UNUSED;
1034 {
1035 rtx insn;
1036 int max_uid;
1037 int i;
1038 int max_log;
1039 int max_skip;
1040 #ifdef HAVE_ATTR_length
1041 #define MAX_CODE_ALIGN 16
1042 rtx seq;
1043 int something_changed = 1;
1044 char *varying_length;
1045 rtx body;
1046 int uid;
1047 rtx align_tab[MAX_CODE_ALIGN];
1048
1049 #endif
1050
1051 /* Compute maximum UID and allocate label_align / uid_shuid. */
1052 max_uid = get_max_uid ();
1053
1054 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1055
1056 if (max_labelno != max_label_num ())
1057 {
1058 int old = max_labelno;
1059 int n_labels;
1060 int n_old_labels;
1061
1062 max_labelno = max_label_num ();
1063
1064 n_labels = max_labelno - min_labelno + 1;
1065 n_old_labels = old - min_labelno + 1;
1066
1067 label_align = (struct label_alignment *) xrealloc
1068 (label_align, n_labels * sizeof (struct label_alignment));
1069
1070 /* Range of labels grows monotonically in the function. Abort here
1071 means that the initialization of array got lost. */
1072 if (n_old_labels > n_labels)
1073 abort ();
1074
1075 memset (label_align + n_old_labels, 0,
1076 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1077 }
1078
1079 /* Initialize label_align and set up uid_shuid to be strictly
1080 monotonically rising with insn order. */
1081 /* We use max_log here to keep track of the maximum alignment we want to
1082 impose on the next CODE_LABEL (or the current one if we are processing
1083 the CODE_LABEL itself). */
1084
1085 max_log = 0;
1086 max_skip = 0;
1087
1088 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1089 {
1090 int log;
1091
1092 INSN_SHUID (insn) = i++;
1093 if (INSN_P (insn))
1094 {
1095 /* reorg might make the first insn of a loop being run once only,
1096 and delete the label in front of it. Then we want to apply
1097 the loop alignment to the new label created by reorg, which
1098 is separated by the former loop start insn from the
1099 NOTE_INSN_LOOP_BEG. */
1100 }
1101 else if (GET_CODE (insn) == CODE_LABEL)
1102 {
1103 rtx next;
1104
1105 /* Merge in alignments computed by compute_alignments. */
1106 log = LABEL_TO_ALIGNMENT (insn);
1107 if (max_log < log)
1108 {
1109 max_log = log;
1110 max_skip = LABEL_TO_MAX_SKIP (insn);
1111 }
1112
1113 log = LABEL_ALIGN (insn);
1114 if (max_log < log)
1115 {
1116 max_log = log;
1117 max_skip = LABEL_ALIGN_MAX_SKIP;
1118 }
1119 next = NEXT_INSN (insn);
1120 /* ADDR_VECs only take room if read-only data goes into the text
1121 section. */
1122 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1123 if (next && GET_CODE (next) == JUMP_INSN)
1124 {
1125 rtx nextbody = PATTERN (next);
1126 if (GET_CODE (nextbody) == ADDR_VEC
1127 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1128 {
1129 log = ADDR_VEC_ALIGN (next);
1130 if (max_log < log)
1131 {
1132 max_log = log;
1133 max_skip = LABEL_ALIGN_MAX_SKIP;
1134 }
1135 }
1136 }
1137 LABEL_TO_ALIGNMENT (insn) = max_log;
1138 LABEL_TO_MAX_SKIP (insn) = max_skip;
1139 max_log = 0;
1140 max_skip = 0;
1141 }
1142 else if (GET_CODE (insn) == BARRIER)
1143 {
1144 rtx label;
1145
1146 for (label = insn; label && ! INSN_P (label);
1147 label = NEXT_INSN (label))
1148 if (GET_CODE (label) == CODE_LABEL)
1149 {
1150 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1151 if (max_log < log)
1152 {
1153 max_log = log;
1154 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1155 }
1156 break;
1157 }
1158 }
1159 }
1160 #ifdef HAVE_ATTR_length
1161
1162 /* Allocate the rest of the arrays. */
1163 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1164 insn_lengths_max_uid = max_uid;
1165 /* Syntax errors can lead to labels being outside of the main insn stream.
1166 Initialize insn_addresses, so that we get reproducible results. */
1167 INSN_ADDRESSES_ALLOC (max_uid);
1168
1169 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1170
1171 /* Initialize uid_align. We scan instructions
1172 from end to start, and keep in align_tab[n] the last seen insn
1173 that does an alignment of at least n+1, i.e. the successor
1174 in the alignment chain for an insn that does / has a known
1175 alignment of n. */
1176 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1177
1178 for (i = MAX_CODE_ALIGN; --i >= 0;)
1179 align_tab[i] = NULL_RTX;
1180 seq = get_last_insn ();
1181 for (; seq; seq = PREV_INSN (seq))
1182 {
1183 int uid = INSN_UID (seq);
1184 int log;
1185 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1186 uid_align[uid] = align_tab[0];
1187 if (log)
1188 {
1189 /* Found an alignment label. */
1190 uid_align[uid] = align_tab[log];
1191 for (i = log - 1; i >= 0; i--)
1192 align_tab[i] = seq;
1193 }
1194 }
1195 #ifdef CASE_VECTOR_SHORTEN_MODE
1196 if (optimize)
1197 {
1198 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1199 label fields. */
1200
1201 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1202 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1203 int rel;
1204
1205 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1206 {
1207 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1208 int len, i, min, max, insn_shuid;
1209 int min_align;
1210 addr_diff_vec_flags flags;
1211
1212 if (GET_CODE (insn) != JUMP_INSN
1213 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1214 continue;
1215 pat = PATTERN (insn);
1216 len = XVECLEN (pat, 1);
1217 if (len <= 0)
1218 abort ();
1219 min_align = MAX_CODE_ALIGN;
1220 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1221 {
1222 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1223 int shuid = INSN_SHUID (lab);
1224 if (shuid < min)
1225 {
1226 min = shuid;
1227 min_lab = lab;
1228 }
1229 if (shuid > max)
1230 {
1231 max = shuid;
1232 max_lab = lab;
1233 }
1234 if (min_align > LABEL_TO_ALIGNMENT (lab))
1235 min_align = LABEL_TO_ALIGNMENT (lab);
1236 }
1237 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1238 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1239 insn_shuid = INSN_SHUID (insn);
1240 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1241 flags.min_align = min_align;
1242 flags.base_after_vec = rel > insn_shuid;
1243 flags.min_after_vec = min > insn_shuid;
1244 flags.max_after_vec = max > insn_shuid;
1245 flags.min_after_base = min > rel;
1246 flags.max_after_base = max > rel;
1247 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1248 }
1249 }
1250 #endif /* CASE_VECTOR_SHORTEN_MODE */
1251
1252 /* Compute initial lengths, addresses, and varying flags for each insn. */
1253 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1254 insn != 0;
1255 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1256 {
1257 uid = INSN_UID (insn);
1258
1259 insn_lengths[uid] = 0;
1260
1261 if (GET_CODE (insn) == CODE_LABEL)
1262 {
1263 int log = LABEL_TO_ALIGNMENT (insn);
1264 if (log)
1265 {
1266 int align = 1 << log;
1267 int new_address = (insn_current_address + align - 1) & -align;
1268 insn_lengths[uid] = new_address - insn_current_address;
1269 }
1270 }
1271
1272 INSN_ADDRESSES (uid) = insn_current_address;
1273
1274 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1275 || GET_CODE (insn) == CODE_LABEL)
1276 continue;
1277 if (INSN_DELETED_P (insn))
1278 continue;
1279
1280 body = PATTERN (insn);
1281 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1282 {
1283 /* This only takes room if read-only data goes into the text
1284 section. */
1285 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1286 insn_lengths[uid] = (XVECLEN (body,
1287 GET_CODE (body) == ADDR_DIFF_VEC)
1288 * GET_MODE_SIZE (GET_MODE (body)));
1289 /* Alignment is handled by ADDR_VEC_ALIGN. */
1290 }
1291 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1292 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1293 else if (GET_CODE (body) == SEQUENCE)
1294 {
1295 int i;
1296 int const_delay_slots;
1297 #ifdef DELAY_SLOTS
1298 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1299 #else
1300 const_delay_slots = 0;
1301 #endif
1302 /* Inside a delay slot sequence, we do not do any branch shortening
1303 if the shortening could change the number of delay slots
1304 of the branch. */
1305 for (i = 0; i < XVECLEN (body, 0); i++)
1306 {
1307 rtx inner_insn = XVECEXP (body, 0, i);
1308 int inner_uid = INSN_UID (inner_insn);
1309 int inner_length;
1310
1311 if (GET_CODE (body) == ASM_INPUT
1312 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1313 inner_length = (asm_insn_count (PATTERN (inner_insn))
1314 * insn_default_length (inner_insn));
1315 else
1316 inner_length = insn_default_length (inner_insn);
1317
1318 insn_lengths[inner_uid] = inner_length;
1319 if (const_delay_slots)
1320 {
1321 if ((varying_length[inner_uid]
1322 = insn_variable_length_p (inner_insn)) != 0)
1323 varying_length[uid] = 1;
1324 INSN_ADDRESSES (inner_uid) = (insn_current_address
1325 + insn_lengths[uid]);
1326 }
1327 else
1328 varying_length[inner_uid] = 0;
1329 insn_lengths[uid] += inner_length;
1330 }
1331 }
1332 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1333 {
1334 insn_lengths[uid] = insn_default_length (insn);
1335 varying_length[uid] = insn_variable_length_p (insn);
1336 }
1337
1338 /* If needed, do any adjustment. */
1339 #ifdef ADJUST_INSN_LENGTH
1340 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1341 if (insn_lengths[uid] < 0)
1342 fatal_insn ("negative insn length", insn);
1343 #endif
1344 }
1345
1346 /* Now loop over all the insns finding varying length insns. For each,
1347 get the current insn length. If it has changed, reflect the change.
1348 When nothing changes for a full pass, we are done. */
1349
1350 while (something_changed)
1351 {
1352 something_changed = 0;
1353 insn_current_align = MAX_CODE_ALIGN - 1;
1354 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1355 insn != 0;
1356 insn = NEXT_INSN (insn))
1357 {
1358 int new_length;
1359 #ifdef ADJUST_INSN_LENGTH
1360 int tmp_length;
1361 #endif
1362 int length_align;
1363
1364 uid = INSN_UID (insn);
1365
1366 if (GET_CODE (insn) == CODE_LABEL)
1367 {
1368 int log = LABEL_TO_ALIGNMENT (insn);
1369 if (log > insn_current_align)
1370 {
1371 int align = 1 << log;
1372 int new_address= (insn_current_address + align - 1) & -align;
1373 insn_lengths[uid] = new_address - insn_current_address;
1374 insn_current_align = log;
1375 insn_current_address = new_address;
1376 }
1377 else
1378 insn_lengths[uid] = 0;
1379 INSN_ADDRESSES (uid) = insn_current_address;
1380 continue;
1381 }
1382
1383 length_align = INSN_LENGTH_ALIGNMENT (insn);
1384 if (length_align < insn_current_align)
1385 insn_current_align = length_align;
1386
1387 insn_last_address = INSN_ADDRESSES (uid);
1388 INSN_ADDRESSES (uid) = insn_current_address;
1389
1390 #ifdef CASE_VECTOR_SHORTEN_MODE
1391 if (optimize && GET_CODE (insn) == JUMP_INSN
1392 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1393 {
1394 rtx body = PATTERN (insn);
1395 int old_length = insn_lengths[uid];
1396 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1397 rtx min_lab = XEXP (XEXP (body, 2), 0);
1398 rtx max_lab = XEXP (XEXP (body, 3), 0);
1399 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1400 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1401 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1402 rtx prev;
1403 int rel_align = 0;
1404 addr_diff_vec_flags flags;
1405
1406 /* Avoid automatic aggregate initialization. */
1407 flags = ADDR_DIFF_VEC_FLAGS (body);
1408
1409 /* Try to find a known alignment for rel_lab. */
1410 for (prev = rel_lab;
1411 prev
1412 && ! insn_lengths[INSN_UID (prev)]
1413 && ! (varying_length[INSN_UID (prev)] & 1);
1414 prev = PREV_INSN (prev))
1415 if (varying_length[INSN_UID (prev)] & 2)
1416 {
1417 rel_align = LABEL_TO_ALIGNMENT (prev);
1418 break;
1419 }
1420
1421 /* See the comment on addr_diff_vec_flags in rtl.h for the
1422 meaning of the flags values. base: REL_LAB vec: INSN */
1423 /* Anything after INSN has still addresses from the last
1424 pass; adjust these so that they reflect our current
1425 estimate for this pass. */
1426 if (flags.base_after_vec)
1427 rel_addr += insn_current_address - insn_last_address;
1428 if (flags.min_after_vec)
1429 min_addr += insn_current_address - insn_last_address;
1430 if (flags.max_after_vec)
1431 max_addr += insn_current_address - insn_last_address;
1432 /* We want to know the worst case, i.e. lowest possible value
1433 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1434 its offset is positive, and we have to be wary of code shrink;
1435 otherwise, it is negative, and we have to be vary of code
1436 size increase. */
1437 if (flags.min_after_base)
1438 {
1439 /* If INSN is between REL_LAB and MIN_LAB, the size
1440 changes we are about to make can change the alignment
1441 within the observed offset, therefore we have to break
1442 it up into two parts that are independent. */
1443 if (! flags.base_after_vec && flags.min_after_vec)
1444 {
1445 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1446 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1447 }
1448 else
1449 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1450 }
1451 else
1452 {
1453 if (flags.base_after_vec && ! flags.min_after_vec)
1454 {
1455 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1456 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1457 }
1458 else
1459 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1460 }
1461 /* Likewise, determine the highest lowest possible value
1462 for the offset of MAX_LAB. */
1463 if (flags.max_after_base)
1464 {
1465 if (! flags.base_after_vec && flags.max_after_vec)
1466 {
1467 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1468 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1469 }
1470 else
1471 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1472 }
1473 else
1474 {
1475 if (flags.base_after_vec && ! flags.max_after_vec)
1476 {
1477 max_addr += align_fuzz (max_lab, insn, 0, 0);
1478 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1479 }
1480 else
1481 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1482 }
1483 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1484 max_addr - rel_addr,
1485 body));
1486 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1487 {
1488 insn_lengths[uid]
1489 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1490 insn_current_address += insn_lengths[uid];
1491 if (insn_lengths[uid] != old_length)
1492 something_changed = 1;
1493 }
1494
1495 continue;
1496 }
1497 #endif /* CASE_VECTOR_SHORTEN_MODE */
1498
1499 if (! (varying_length[uid]))
1500 {
1501 if (GET_CODE (insn) == INSN
1502 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1503 {
1504 int i;
1505
1506 body = PATTERN (insn);
1507 for (i = 0; i < XVECLEN (body, 0); i++)
1508 {
1509 rtx inner_insn = XVECEXP (body, 0, i);
1510 int inner_uid = INSN_UID (inner_insn);
1511
1512 INSN_ADDRESSES (inner_uid) = insn_current_address;
1513
1514 insn_current_address += insn_lengths[inner_uid];
1515 }
1516 }
1517 else
1518 insn_current_address += insn_lengths[uid];
1519
1520 continue;
1521 }
1522
1523 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1524 {
1525 int i;
1526
1527 body = PATTERN (insn);
1528 new_length = 0;
1529 for (i = 0; i < XVECLEN (body, 0); i++)
1530 {
1531 rtx inner_insn = XVECEXP (body, 0, i);
1532 int inner_uid = INSN_UID (inner_insn);
1533 int inner_length;
1534
1535 INSN_ADDRESSES (inner_uid) = insn_current_address;
1536
1537 /* insn_current_length returns 0 for insns with a
1538 non-varying length. */
1539 if (! varying_length[inner_uid])
1540 inner_length = insn_lengths[inner_uid];
1541 else
1542 inner_length = insn_current_length (inner_insn);
1543
1544 if (inner_length != insn_lengths[inner_uid])
1545 {
1546 insn_lengths[inner_uid] = inner_length;
1547 something_changed = 1;
1548 }
1549 insn_current_address += insn_lengths[inner_uid];
1550 new_length += inner_length;
1551 }
1552 }
1553 else
1554 {
1555 new_length = insn_current_length (insn);
1556 insn_current_address += new_length;
1557 }
1558
1559 #ifdef ADJUST_INSN_LENGTH
1560 /* If needed, do any adjustment. */
1561 tmp_length = new_length;
1562 ADJUST_INSN_LENGTH (insn, new_length);
1563 insn_current_address += (new_length - tmp_length);
1564 #endif
1565
1566 if (new_length != insn_lengths[uid])
1567 {
1568 insn_lengths[uid] = new_length;
1569 something_changed = 1;
1570 }
1571 }
1572 /* For a non-optimizing compile, do only a single pass. */
1573 if (!optimize)
1574 break;
1575 }
1576
1577 free (varying_length);
1578
1579 #endif /* HAVE_ATTR_length */
1580 }
1581
1582 #ifdef HAVE_ATTR_length
1583 /* Given the body of an INSN known to be generated by an ASM statement, return
1584 the number of machine instructions likely to be generated for this insn.
1585 This is used to compute its length. */
1586
1587 static int
1588 asm_insn_count (body)
1589 rtx body;
1590 {
1591 const char *template;
1592 int count = 1;
1593
1594 if (GET_CODE (body) == ASM_INPUT)
1595 template = XSTR (body, 0);
1596 else
1597 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1598
1599 for (; *template; template++)
1600 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1601 count++;
1602
1603 return count;
1604 }
1605 #endif
1606 \f
1607 /* Output assembler code for the start of a function,
1608 and initialize some of the variables in this file
1609 for the new function. The label for the function and associated
1610 assembler pseudo-ops have already been output in `assemble_start_function'.
1611
1612 FIRST is the first insn of the rtl for the function being compiled.
1613 FILE is the file to write assembler code to.
1614 OPTIMIZE is nonzero if we should eliminate redundant
1615 test and compare insns. */
1616
1617 void
1618 final_start_function (first, file, optimize)
1619 rtx first;
1620 FILE *file;
1621 int optimize ATTRIBUTE_UNUSED;
1622 {
1623 block_depth = 0;
1624
1625 this_is_asm_operands = 0;
1626
1627 #ifdef NON_SAVING_SETJMP
1628 /* A function that calls setjmp should save and restore all the
1629 call-saved registers on a system where longjmp clobbers them. */
1630 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1631 {
1632 int i;
1633
1634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1635 if (!call_used_regs[i])
1636 regs_ever_live[i] = 1;
1637 }
1638 #endif
1639
1640 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1641 notice_source_line (first);
1642 high_block_linenum = high_function_linenum = last_linenum;
1643
1644 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1645
1646 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1647 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1648 dwarf2out_begin_prologue (0, NULL);
1649 #endif
1650
1651 #ifdef LEAF_REG_REMAP
1652 if (current_function_uses_only_leaf_regs)
1653 leaf_renumber_regs (first);
1654 #endif
1655
1656 /* The Sun386i and perhaps other machines don't work right
1657 if the profiling code comes after the prologue. */
1658 #ifdef PROFILE_BEFORE_PROLOGUE
1659 if (current_function_profile)
1660 profile_function (file);
1661 #endif /* PROFILE_BEFORE_PROLOGUE */
1662
1663 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1664 if (dwarf2out_do_frame ())
1665 dwarf2out_frame_debug (NULL_RTX);
1666 #endif
1667
1668 /* If debugging, assign block numbers to all of the blocks in this
1669 function. */
1670 if (write_symbols)
1671 {
1672 remove_unnecessary_notes ();
1673 scope_to_insns_finalize ();
1674 number_blocks (current_function_decl);
1675 /* We never actually put out begin/end notes for the top-level
1676 block in the function. But, conceptually, that block is
1677 always needed. */
1678 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1679 }
1680
1681 /* First output the function prologue: code to set up the stack frame. */
1682 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1683
1684 #ifdef VMS_DEBUGGING_INFO
1685 /* Output label after the prologue of the function. */
1686 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1687 vmsdbgout_after_prologue ();
1688 #endif
1689
1690 /* If the machine represents the prologue as RTL, the profiling code must
1691 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1692 #ifdef HAVE_prologue
1693 if (! HAVE_prologue)
1694 #endif
1695 profile_after_prologue (file);
1696 }
1697
1698 static void
1699 profile_after_prologue (file)
1700 FILE *file ATTRIBUTE_UNUSED;
1701 {
1702 #ifndef PROFILE_BEFORE_PROLOGUE
1703 if (current_function_profile)
1704 profile_function (file);
1705 #endif /* not PROFILE_BEFORE_PROLOGUE */
1706 }
1707
1708 static void
1709 profile_function (file)
1710 FILE *file ATTRIBUTE_UNUSED;
1711 {
1712 #ifndef NO_PROFILE_COUNTERS
1713 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1714 #endif
1715 #if defined(ASM_OUTPUT_REG_PUSH)
1716 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1717 int sval = current_function_returns_struct;
1718 #endif
1719 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1720 int cxt = current_function_needs_context;
1721 #endif
1722 #endif /* ASM_OUTPUT_REG_PUSH */
1723
1724 #ifndef NO_PROFILE_COUNTERS
1725 data_section ();
1726 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1727 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1728 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1729 #endif
1730
1731 function_section (current_function_decl);
1732
1733 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1734 if (sval)
1735 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1736 #else
1737 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1738 if (sval)
1739 {
1740 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1741 }
1742 #endif
1743 #endif
1744
1745 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1746 if (cxt)
1747 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1748 #else
1749 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1750 if (cxt)
1751 {
1752 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1753 }
1754 #endif
1755 #endif
1756
1757 FUNCTION_PROFILER (file, current_function_funcdef_no);
1758
1759 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1760 if (cxt)
1761 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1762 #else
1763 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1764 if (cxt)
1765 {
1766 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1767 }
1768 #endif
1769 #endif
1770
1771 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1772 if (sval)
1773 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1774 #else
1775 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1776 if (sval)
1777 {
1778 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1779 }
1780 #endif
1781 #endif
1782 }
1783
1784 /* Output assembler code for the end of a function.
1785 For clarity, args are same as those of `final_start_function'
1786 even though not all of them are needed. */
1787
1788 void
1789 final_end_function ()
1790 {
1791 app_disable ();
1792
1793 (*debug_hooks->end_function) (high_function_linenum);
1794
1795 /* Finally, output the function epilogue:
1796 code to restore the stack frame and return to the caller. */
1797 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1798
1799 /* And debug output. */
1800 (*debug_hooks->end_epilogue) ();
1801
1802 #if defined (DWARF2_UNWIND_INFO)
1803 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1804 && dwarf2out_do_frame ())
1805 dwarf2out_end_epilogue ();
1806 #endif
1807 }
1808 \f
1809 /* Output assembler code for some insns: all or part of a function.
1810 For description of args, see `final_start_function', above.
1811
1812 PRESCAN is 1 if we are not really outputting,
1813 just scanning as if we were outputting.
1814 Prescanning deletes and rearranges insns just like ordinary output.
1815 PRESCAN is -2 if we are outputting after having prescanned.
1816 In this case, don't try to delete or rearrange insns
1817 because that has already been done.
1818 Prescanning is done only on certain machines. */
1819
1820 void
1821 final (first, file, optimize, prescan)
1822 rtx first;
1823 FILE *file;
1824 int optimize;
1825 int prescan;
1826 {
1827 rtx insn;
1828 int max_line = 0;
1829 int max_uid = 0;
1830
1831 last_ignored_compare = 0;
1832 new_block = 1;
1833
1834 /* Make a map indicating which line numbers appear in this function.
1835 When producing SDB debugging info, delete troublesome line number
1836 notes from inlined functions in other files as well as duplicate
1837 line number notes. */
1838 #ifdef SDB_DEBUGGING_INFO
1839 if (write_symbols == SDB_DEBUG)
1840 {
1841 rtx last = 0;
1842 for (insn = first; insn; insn = NEXT_INSN (insn))
1843 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1844 {
1845 if ((RTX_INTEGRATED_P (insn)
1846 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1847 || (last != 0
1848 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1849 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1850 {
1851 delete_insn (insn); /* Use delete_note. */
1852 continue;
1853 }
1854 last = insn;
1855 if (NOTE_LINE_NUMBER (insn) > max_line)
1856 max_line = NOTE_LINE_NUMBER (insn);
1857 }
1858 }
1859 else
1860 #endif
1861 {
1862 for (insn = first; insn; insn = NEXT_INSN (insn))
1863 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1864 max_line = NOTE_LINE_NUMBER (insn);
1865 }
1866
1867 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1868
1869 for (insn = first; insn; insn = NEXT_INSN (insn))
1870 {
1871 if (INSN_UID (insn) > max_uid) /* find largest UID */
1872 max_uid = INSN_UID (insn);
1873 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1874 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1875 #ifdef HAVE_cc0
1876 /* If CC tracking across branches is enabled, record the insn which
1877 jumps to each branch only reached from one place. */
1878 if (optimize && GET_CODE (insn) == JUMP_INSN)
1879 {
1880 rtx lab = JUMP_LABEL (insn);
1881 if (lab && LABEL_NUSES (lab) == 1)
1882 {
1883 LABEL_REFS (lab) = insn;
1884 }
1885 }
1886 #endif
1887 }
1888
1889 init_recog ();
1890
1891 CC_STATUS_INIT;
1892
1893 /* Output the insns. */
1894 for (insn = NEXT_INSN (first); insn;)
1895 {
1896 #ifdef HAVE_ATTR_length
1897 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1898 {
1899 /* This can be triggered by bugs elsewhere in the compiler if
1900 new insns are created after init_insn_lengths is called. */
1901 if (GET_CODE (insn) == NOTE)
1902 insn_current_address = -1;
1903 else
1904 abort ();
1905 }
1906 else
1907 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1908 #endif /* HAVE_ATTR_length */
1909
1910 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1911 }
1912
1913 /* Store function names for edge-profiling. */
1914 /* ??? Probably should re-use the existing struct function. */
1915
1916 if (cfun->arc_profile)
1917 {
1918 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1919
1920 *functions_tail = new_item;
1921 functions_tail = &new_item->next;
1922
1923 new_item->next = 0;
1924 new_item->name = xstrdup (current_function_name);
1925 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1926 new_item->count_edges = profile_info.count_edges_instrumented_now;
1927 }
1928
1929 free (line_note_exists);
1930 line_note_exists = NULL;
1931 }
1932 \f
1933 const char *
1934 get_insn_template (code, insn)
1935 int code;
1936 rtx insn;
1937 {
1938 const void *output = insn_data[code].output;
1939 switch (insn_data[code].output_format)
1940 {
1941 case INSN_OUTPUT_FORMAT_SINGLE:
1942 return (const char *) output;
1943 case INSN_OUTPUT_FORMAT_MULTI:
1944 return ((const char *const *) output)[which_alternative];
1945 case INSN_OUTPUT_FORMAT_FUNCTION:
1946 if (insn == NULL)
1947 abort ();
1948 return (*(insn_output_fn) output) (recog_data.operand, insn);
1949
1950 default:
1951 abort ();
1952 }
1953 }
1954
1955 /* The final scan for one insn, INSN.
1956 Args are same as in `final', except that INSN
1957 is the insn being scanned.
1958 Value returned is the next insn to be scanned.
1959
1960 NOPEEPHOLES is the flag to disallow peephole processing (currently
1961 used for within delayed branch sequence output). */
1962
1963 rtx
1964 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1965 rtx insn;
1966 FILE *file;
1967 int optimize ATTRIBUTE_UNUSED;
1968 int prescan;
1969 int nopeepholes ATTRIBUTE_UNUSED;
1970 {
1971 #ifdef HAVE_cc0
1972 rtx set;
1973 #endif
1974
1975 insn_counter++;
1976
1977 /* Ignore deleted insns. These can occur when we split insns (due to a
1978 template of "#") while not optimizing. */
1979 if (INSN_DELETED_P (insn))
1980 return NEXT_INSN (insn);
1981
1982 switch (GET_CODE (insn))
1983 {
1984 case NOTE:
1985 if (prescan > 0)
1986 break;
1987
1988 switch (NOTE_LINE_NUMBER (insn))
1989 {
1990 case NOTE_INSN_DELETED:
1991 case NOTE_INSN_LOOP_BEG:
1992 case NOTE_INSN_LOOP_END:
1993 case NOTE_INSN_LOOP_END_TOP_COND:
1994 case NOTE_INSN_LOOP_CONT:
1995 case NOTE_INSN_LOOP_VTOP:
1996 case NOTE_INSN_FUNCTION_END:
1997 case NOTE_INSN_REPEATED_LINE_NUMBER:
1998 case NOTE_INSN_EXPECTED_VALUE:
1999 break;
2000
2001 case NOTE_INSN_BASIC_BLOCK:
2002 #ifdef IA64_UNWIND_INFO
2003 IA64_UNWIND_EMIT (asm_out_file, insn);
2004 #endif
2005 if (flag_debug_asm)
2006 fprintf (asm_out_file, "\t%s basic block %d\n",
2007 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2008 break;
2009
2010 case NOTE_INSN_EH_REGION_BEG:
2011 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2012 NOTE_EH_HANDLER (insn));
2013 break;
2014
2015 case NOTE_INSN_EH_REGION_END:
2016 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2017 NOTE_EH_HANDLER (insn));
2018 break;
2019
2020 case NOTE_INSN_PROLOGUE_END:
2021 (*targetm.asm_out.function_end_prologue) (file);
2022 profile_after_prologue (file);
2023 break;
2024
2025 case NOTE_INSN_EPILOGUE_BEG:
2026 (*targetm.asm_out.function_begin_epilogue) (file);
2027 break;
2028
2029 case NOTE_INSN_FUNCTION_BEG:
2030 app_disable ();
2031 (*debug_hooks->end_prologue) (last_linenum);
2032 break;
2033
2034 case NOTE_INSN_BLOCK_BEG:
2035 if (debug_info_level == DINFO_LEVEL_NORMAL
2036 || debug_info_level == DINFO_LEVEL_VERBOSE
2037 || write_symbols == DWARF_DEBUG
2038 || write_symbols == DWARF2_DEBUG
2039 || write_symbols == VMS_AND_DWARF2_DEBUG
2040 || write_symbols == VMS_DEBUG)
2041 {
2042 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2043
2044 app_disable ();
2045 ++block_depth;
2046 high_block_linenum = last_linenum;
2047
2048 /* Output debugging info about the symbol-block beginning. */
2049 (*debug_hooks->begin_block) (last_linenum, n);
2050
2051 /* Mark this block as output. */
2052 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2053 }
2054 break;
2055
2056 case NOTE_INSN_BLOCK_END:
2057 if (debug_info_level == DINFO_LEVEL_NORMAL
2058 || debug_info_level == DINFO_LEVEL_VERBOSE
2059 || write_symbols == DWARF_DEBUG
2060 || write_symbols == DWARF2_DEBUG
2061 || write_symbols == VMS_AND_DWARF2_DEBUG
2062 || write_symbols == VMS_DEBUG)
2063 {
2064 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2065
2066 app_disable ();
2067
2068 /* End of a symbol-block. */
2069 --block_depth;
2070 if (block_depth < 0)
2071 abort ();
2072
2073 (*debug_hooks->end_block) (high_block_linenum, n);
2074 }
2075 break;
2076
2077 case NOTE_INSN_DELETED_LABEL:
2078 /* Emit the label. We may have deleted the CODE_LABEL because
2079 the label could be proved to be unreachable, though still
2080 referenced (in the form of having its address taken. */
2081 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2082 break;
2083
2084 case 0:
2085 break;
2086
2087 default:
2088 if (NOTE_LINE_NUMBER (insn) <= 0)
2089 abort ();
2090
2091 /* This note is a line-number. */
2092 {
2093 rtx note;
2094 int note_after = 0;
2095
2096 /* If there is anything real after this note, output it.
2097 If another line note follows, omit this one. */
2098 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2099 {
2100 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2101 break;
2102
2103 /* These types of notes can be significant
2104 so make sure the preceding line number stays. */
2105 else if (GET_CODE (note) == NOTE
2106 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2107 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2108 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2109 break;
2110 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2111 {
2112 /* Another line note follows; we can delete this note
2113 if no intervening line numbers have notes elsewhere. */
2114 int num;
2115 for (num = NOTE_LINE_NUMBER (insn) + 1;
2116 num < NOTE_LINE_NUMBER (note);
2117 num++)
2118 if (line_note_exists[num])
2119 break;
2120
2121 if (num >= NOTE_LINE_NUMBER (note))
2122 note_after = 1;
2123 break;
2124 }
2125 }
2126
2127 /* Output this line note if it is the first or the last line
2128 note in a row. */
2129 if (!note_after)
2130 {
2131 notice_source_line (insn);
2132 (*debug_hooks->source_line) (last_linenum, last_filename);
2133 }
2134 }
2135 break;
2136 }
2137 break;
2138
2139 case BARRIER:
2140 #if defined (DWARF2_UNWIND_INFO)
2141 if (dwarf2out_do_frame ())
2142 dwarf2out_frame_debug (insn);
2143 #endif
2144 break;
2145
2146 case CODE_LABEL:
2147 /* The target port might emit labels in the output function for
2148 some insn, e.g. sh.c output_branchy_insn. */
2149 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2150 {
2151 int align = LABEL_TO_ALIGNMENT (insn);
2152 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2153 int max_skip = LABEL_TO_MAX_SKIP (insn);
2154 #endif
2155
2156 if (align && NEXT_INSN (insn))
2157 {
2158 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2159 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2160 #else
2161 ASM_OUTPUT_ALIGN (file, align);
2162 #endif
2163 }
2164 }
2165 #ifdef HAVE_cc0
2166 CC_STATUS_INIT;
2167 /* If this label is reached from only one place, set the condition
2168 codes from the instruction just before the branch. */
2169
2170 /* Disabled because some insns set cc_status in the C output code
2171 and NOTICE_UPDATE_CC alone can set incorrect status. */
2172 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2173 {
2174 rtx jump = LABEL_REFS (insn);
2175 rtx barrier = prev_nonnote_insn (insn);
2176 rtx prev;
2177 /* If the LABEL_REFS field of this label has been set to point
2178 at a branch, the predecessor of the branch is a regular
2179 insn, and that branch is the only way to reach this label,
2180 set the condition codes based on the branch and its
2181 predecessor. */
2182 if (barrier && GET_CODE (barrier) == BARRIER
2183 && jump && GET_CODE (jump) == JUMP_INSN
2184 && (prev = prev_nonnote_insn (jump))
2185 && GET_CODE (prev) == INSN)
2186 {
2187 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2188 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2189 }
2190 }
2191 #endif
2192 if (prescan > 0)
2193 break;
2194 new_block = 1;
2195
2196 #ifdef FINAL_PRESCAN_LABEL
2197 FINAL_PRESCAN_INSN (insn, NULL, 0);
2198 #endif
2199
2200 if (LABEL_NAME (insn))
2201 (*debug_hooks->label) (insn);
2202
2203 if (app_on)
2204 {
2205 fputs (ASM_APP_OFF, file);
2206 app_on = 0;
2207 }
2208 if (NEXT_INSN (insn) != 0
2209 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2210 {
2211 rtx nextbody = PATTERN (NEXT_INSN (insn));
2212
2213 /* If this label is followed by a jump-table,
2214 make sure we put the label in the read-only section. Also
2215 possibly write the label and jump table together. */
2216
2217 if (GET_CODE (nextbody) == ADDR_VEC
2218 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2219 {
2220 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2221 /* In this case, the case vector is being moved by the
2222 target, so don't output the label at all. Leave that
2223 to the back end macros. */
2224 #else
2225 if (! JUMP_TABLES_IN_TEXT_SECTION)
2226 {
2227 int log_align;
2228
2229 readonly_data_section ();
2230
2231 #ifdef ADDR_VEC_ALIGN
2232 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2233 #else
2234 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2235 #endif
2236 ASM_OUTPUT_ALIGN (file, log_align);
2237 }
2238 else
2239 function_section (current_function_decl);
2240
2241 #ifdef ASM_OUTPUT_CASE_LABEL
2242 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2243 NEXT_INSN (insn));
2244 #else
2245 if (LABEL_ALTERNATE_NAME (insn))
2246 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2247 else
2248 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2249 #endif
2250 #endif
2251 break;
2252 }
2253 }
2254 if (LABEL_ALTERNATE_NAME (insn))
2255 ASM_OUTPUT_ALTERNATE_LABEL_NAME (file, insn);
2256 else
2257 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2258 break;
2259
2260 default:
2261 {
2262 rtx body = PATTERN (insn);
2263 int insn_code_number;
2264 const char *template;
2265 rtx note;
2266
2267 /* An INSN, JUMP_INSN or CALL_INSN.
2268 First check for special kinds that recog doesn't recognize. */
2269
2270 if (GET_CODE (body) == USE /* These are just declarations */
2271 || GET_CODE (body) == CLOBBER)
2272 break;
2273
2274 #ifdef HAVE_cc0
2275 /* If there is a REG_CC_SETTER note on this insn, it means that
2276 the setting of the condition code was done in the delay slot
2277 of the insn that branched here. So recover the cc status
2278 from the insn that set it. */
2279
2280 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2281 if (note)
2282 {
2283 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2284 cc_prev_status = cc_status;
2285 }
2286 #endif
2287
2288 /* Detect insns that are really jump-tables
2289 and output them as such. */
2290
2291 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2292 {
2293 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2294 int vlen, idx;
2295 #endif
2296
2297 if (prescan > 0)
2298 break;
2299
2300 if (app_on)
2301 {
2302 fputs (ASM_APP_OFF, file);
2303 app_on = 0;
2304 }
2305
2306 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2307 if (GET_CODE (body) == ADDR_VEC)
2308 {
2309 #ifdef ASM_OUTPUT_ADDR_VEC
2310 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2311 #else
2312 abort ();
2313 #endif
2314 }
2315 else
2316 {
2317 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2318 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2319 #else
2320 abort ();
2321 #endif
2322 }
2323 #else
2324 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2325 for (idx = 0; idx < vlen; idx++)
2326 {
2327 if (GET_CODE (body) == ADDR_VEC)
2328 {
2329 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2330 ASM_OUTPUT_ADDR_VEC_ELT
2331 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2332 #else
2333 abort ();
2334 #endif
2335 }
2336 else
2337 {
2338 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2339 ASM_OUTPUT_ADDR_DIFF_ELT
2340 (file,
2341 body,
2342 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2343 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2344 #else
2345 abort ();
2346 #endif
2347 }
2348 }
2349 #ifdef ASM_OUTPUT_CASE_END
2350 ASM_OUTPUT_CASE_END (file,
2351 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2352 insn);
2353 #endif
2354 #endif
2355
2356 function_section (current_function_decl);
2357
2358 break;
2359 }
2360
2361 if (GET_CODE (body) == ASM_INPUT)
2362 {
2363 const char *string = XSTR (body, 0);
2364
2365 /* There's no telling what that did to the condition codes. */
2366 CC_STATUS_INIT;
2367 if (prescan > 0)
2368 break;
2369
2370 if (string[0])
2371 {
2372 if (! app_on)
2373 {
2374 fputs (ASM_APP_ON, file);
2375 app_on = 1;
2376 }
2377 fprintf (asm_out_file, "\t%s\n", string);
2378 }
2379 break;
2380 }
2381
2382 /* Detect `asm' construct with operands. */
2383 if (asm_noperands (body) >= 0)
2384 {
2385 unsigned int noperands = asm_noperands (body);
2386 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2387 const char *string;
2388
2389 /* There's no telling what that did to the condition codes. */
2390 CC_STATUS_INIT;
2391 if (prescan > 0)
2392 break;
2393
2394 /* Get out the operand values. */
2395 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2396 /* Inhibit aborts on what would otherwise be compiler bugs. */
2397 insn_noperands = noperands;
2398 this_is_asm_operands = insn;
2399
2400 /* Output the insn using them. */
2401 if (string[0])
2402 {
2403 if (! app_on)
2404 {
2405 fputs (ASM_APP_ON, file);
2406 app_on = 1;
2407 }
2408 output_asm_insn (string, ops);
2409 }
2410
2411 this_is_asm_operands = 0;
2412 break;
2413 }
2414
2415 if (prescan <= 0 && app_on)
2416 {
2417 fputs (ASM_APP_OFF, file);
2418 app_on = 0;
2419 }
2420
2421 if (GET_CODE (body) == SEQUENCE)
2422 {
2423 /* A delayed-branch sequence */
2424 int i;
2425 rtx next;
2426
2427 if (prescan > 0)
2428 break;
2429 final_sequence = body;
2430
2431 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2432 force the restoration of a comparison that was previously
2433 thought unnecessary. If that happens, cancel this sequence
2434 and cause that insn to be restored. */
2435
2436 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2437 if (next != XVECEXP (body, 0, 1))
2438 {
2439 final_sequence = 0;
2440 return next;
2441 }
2442
2443 for (i = 1; i < XVECLEN (body, 0); i++)
2444 {
2445 rtx insn = XVECEXP (body, 0, i);
2446 rtx next = NEXT_INSN (insn);
2447 /* We loop in case any instruction in a delay slot gets
2448 split. */
2449 do
2450 insn = final_scan_insn (insn, file, 0, prescan, 1);
2451 while (insn != next);
2452 }
2453 #ifdef DBR_OUTPUT_SEQEND
2454 DBR_OUTPUT_SEQEND (file);
2455 #endif
2456 final_sequence = 0;
2457
2458 /* If the insn requiring the delay slot was a CALL_INSN, the
2459 insns in the delay slot are actually executed before the
2460 called function. Hence we don't preserve any CC-setting
2461 actions in these insns and the CC must be marked as being
2462 clobbered by the function. */
2463 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2464 {
2465 CC_STATUS_INIT;
2466 }
2467 break;
2468 }
2469
2470 /* We have a real machine instruction as rtl. */
2471
2472 body = PATTERN (insn);
2473
2474 #ifdef HAVE_cc0
2475 set = single_set (insn);
2476
2477 /* Check for redundant test and compare instructions
2478 (when the condition codes are already set up as desired).
2479 This is done only when optimizing; if not optimizing,
2480 it should be possible for the user to alter a variable
2481 with the debugger in between statements
2482 and the next statement should reexamine the variable
2483 to compute the condition codes. */
2484
2485 if (optimize)
2486 {
2487 #if 0
2488 rtx set = single_set (insn);
2489 #endif
2490
2491 if (set
2492 && GET_CODE (SET_DEST (set)) == CC0
2493 && insn != last_ignored_compare)
2494 {
2495 if (GET_CODE (SET_SRC (set)) == SUBREG)
2496 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2497 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2498 {
2499 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2500 XEXP (SET_SRC (set), 0)
2501 = alter_subreg (&XEXP (SET_SRC (set), 0));
2502 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2503 XEXP (SET_SRC (set), 1)
2504 = alter_subreg (&XEXP (SET_SRC (set), 1));
2505 }
2506 if ((cc_status.value1 != 0
2507 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2508 || (cc_status.value2 != 0
2509 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2510 {
2511 /* Don't delete insn if it has an addressing side-effect. */
2512 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2513 /* or if anything in it is volatile. */
2514 && ! volatile_refs_p (PATTERN (insn)))
2515 {
2516 /* We don't really delete the insn; just ignore it. */
2517 last_ignored_compare = insn;
2518 break;
2519 }
2520 }
2521 }
2522 }
2523 #endif
2524
2525 #ifndef STACK_REGS
2526 /* Don't bother outputting obvious no-ops, even without -O.
2527 This optimization is fast and doesn't interfere with debugging.
2528 Don't do this if the insn is in a delay slot, since this
2529 will cause an improper number of delay insns to be written. */
2530 if (final_sequence == 0
2531 && prescan >= 0
2532 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2533 && GET_CODE (SET_SRC (body)) == REG
2534 && GET_CODE (SET_DEST (body)) == REG
2535 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2536 break;
2537 #endif
2538
2539 #ifdef HAVE_cc0
2540 /* If this is a conditional branch, maybe modify it
2541 if the cc's are in a nonstandard state
2542 so that it accomplishes the same thing that it would
2543 do straightforwardly if the cc's were set up normally. */
2544
2545 if (cc_status.flags != 0
2546 && GET_CODE (insn) == JUMP_INSN
2547 && GET_CODE (body) == SET
2548 && SET_DEST (body) == pc_rtx
2549 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2550 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2551 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2552 /* This is done during prescan; it is not done again
2553 in final scan when prescan has been done. */
2554 && prescan >= 0)
2555 {
2556 /* This function may alter the contents of its argument
2557 and clear some of the cc_status.flags bits.
2558 It may also return 1 meaning condition now always true
2559 or -1 meaning condition now always false
2560 or 2 meaning condition nontrivial but altered. */
2561 int result = alter_cond (XEXP (SET_SRC (body), 0));
2562 /* If condition now has fixed value, replace the IF_THEN_ELSE
2563 with its then-operand or its else-operand. */
2564 if (result == 1)
2565 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2566 if (result == -1)
2567 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2568
2569 /* The jump is now either unconditional or a no-op.
2570 If it has become a no-op, don't try to output it.
2571 (It would not be recognized.) */
2572 if (SET_SRC (body) == pc_rtx)
2573 {
2574 delete_insn (insn);
2575 break;
2576 }
2577 else if (GET_CODE (SET_SRC (body)) == RETURN)
2578 /* Replace (set (pc) (return)) with (return). */
2579 PATTERN (insn) = body = SET_SRC (body);
2580
2581 /* Rerecognize the instruction if it has changed. */
2582 if (result != 0)
2583 INSN_CODE (insn) = -1;
2584 }
2585
2586 /* Make same adjustments to instructions that examine the
2587 condition codes without jumping and instructions that
2588 handle conditional moves (if this machine has either one). */
2589
2590 if (cc_status.flags != 0
2591 && set != 0)
2592 {
2593 rtx cond_rtx, then_rtx, else_rtx;
2594
2595 if (GET_CODE (insn) != JUMP_INSN
2596 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2597 {
2598 cond_rtx = XEXP (SET_SRC (set), 0);
2599 then_rtx = XEXP (SET_SRC (set), 1);
2600 else_rtx = XEXP (SET_SRC (set), 2);
2601 }
2602 else
2603 {
2604 cond_rtx = SET_SRC (set);
2605 then_rtx = const_true_rtx;
2606 else_rtx = const0_rtx;
2607 }
2608
2609 switch (GET_CODE (cond_rtx))
2610 {
2611 case GTU:
2612 case GT:
2613 case LTU:
2614 case LT:
2615 case GEU:
2616 case GE:
2617 case LEU:
2618 case LE:
2619 case EQ:
2620 case NE:
2621 {
2622 int result;
2623 if (XEXP (cond_rtx, 0) != cc0_rtx)
2624 break;
2625 result = alter_cond (cond_rtx);
2626 if (result == 1)
2627 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2628 else if (result == -1)
2629 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2630 else if (result == 2)
2631 INSN_CODE (insn) = -1;
2632 if (SET_DEST (set) == SET_SRC (set))
2633 delete_insn (insn);
2634 }
2635 break;
2636
2637 default:
2638 break;
2639 }
2640 }
2641
2642 #endif
2643
2644 #ifdef HAVE_peephole
2645 /* Do machine-specific peephole optimizations if desired. */
2646
2647 if (optimize && !flag_no_peephole && !nopeepholes)
2648 {
2649 rtx next = peephole (insn);
2650 /* When peepholing, if there were notes within the peephole,
2651 emit them before the peephole. */
2652 if (next != 0 && next != NEXT_INSN (insn))
2653 {
2654 rtx prev = PREV_INSN (insn);
2655
2656 for (note = NEXT_INSN (insn); note != next;
2657 note = NEXT_INSN (note))
2658 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2659
2660 /* In case this is prescan, put the notes
2661 in proper position for later rescan. */
2662 note = NEXT_INSN (insn);
2663 PREV_INSN (note) = prev;
2664 NEXT_INSN (prev) = note;
2665 NEXT_INSN (PREV_INSN (next)) = insn;
2666 PREV_INSN (insn) = PREV_INSN (next);
2667 NEXT_INSN (insn) = next;
2668 PREV_INSN (next) = insn;
2669 }
2670
2671 /* PEEPHOLE might have changed this. */
2672 body = PATTERN (insn);
2673 }
2674 #endif
2675
2676 /* Try to recognize the instruction.
2677 If successful, verify that the operands satisfy the
2678 constraints for the instruction. Crash if they don't,
2679 since `reload' should have changed them so that they do. */
2680
2681 insn_code_number = recog_memoized (insn);
2682 cleanup_subreg_operands (insn);
2683
2684 /* Dump the insn in the assembly for debugging. */
2685 if (flag_dump_rtl_in_asm)
2686 {
2687 print_rtx_head = ASM_COMMENT_START;
2688 print_rtl_single (asm_out_file, insn);
2689 print_rtx_head = "";
2690 }
2691
2692 if (! constrain_operands_cached (1))
2693 fatal_insn_not_found (insn);
2694
2695 /* Some target machines need to prescan each insn before
2696 it is output. */
2697
2698 #ifdef FINAL_PRESCAN_INSN
2699 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2700 #endif
2701
2702 #ifdef HAVE_conditional_execution
2703 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2704 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2705 else
2706 current_insn_predicate = NULL_RTX;
2707 #endif
2708
2709 #ifdef HAVE_cc0
2710 cc_prev_status = cc_status;
2711
2712 /* Update `cc_status' for this instruction.
2713 The instruction's output routine may change it further.
2714 If the output routine for a jump insn needs to depend
2715 on the cc status, it should look at cc_prev_status. */
2716
2717 NOTICE_UPDATE_CC (body, insn);
2718 #endif
2719
2720 current_output_insn = debug_insn = insn;
2721
2722 #if defined (DWARF2_UNWIND_INFO)
2723 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2724 dwarf2out_frame_debug (insn);
2725 #endif
2726
2727 /* Find the proper template for this insn. */
2728 template = get_insn_template (insn_code_number, insn);
2729
2730 /* If the C code returns 0, it means that it is a jump insn
2731 which follows a deleted test insn, and that test insn
2732 needs to be reinserted. */
2733 if (template == 0)
2734 {
2735 rtx prev;
2736
2737 if (prev_nonnote_insn (insn) != last_ignored_compare)
2738 abort ();
2739 new_block = 0;
2740
2741 /* We have already processed the notes between the setter and
2742 the user. Make sure we don't process them again, this is
2743 particularly important if one of the notes is a block
2744 scope note or an EH note. */
2745 for (prev = insn;
2746 prev != last_ignored_compare;
2747 prev = PREV_INSN (prev))
2748 {
2749 if (GET_CODE (prev) == NOTE)
2750 delete_insn (prev); /* Use delete_note. */
2751 }
2752
2753 return prev;
2754 }
2755
2756 /* If the template is the string "#", it means that this insn must
2757 be split. */
2758 if (template[0] == '#' && template[1] == '\0')
2759 {
2760 rtx new = try_split (body, insn, 0);
2761
2762 /* If we didn't split the insn, go away. */
2763 if (new == insn && PATTERN (new) == body)
2764 fatal_insn ("could not split insn", insn);
2765
2766 #ifdef HAVE_ATTR_length
2767 /* This instruction should have been split in shorten_branches,
2768 to ensure that we would have valid length info for the
2769 splitees. */
2770 abort ();
2771 #endif
2772
2773 new_block = 0;
2774 return new;
2775 }
2776
2777 if (prescan > 0)
2778 break;
2779
2780 #ifdef IA64_UNWIND_INFO
2781 IA64_UNWIND_EMIT (asm_out_file, insn);
2782 #endif
2783 /* Output assembler code from the template. */
2784
2785 output_asm_insn (template, recog_data.operand);
2786
2787 #if defined (DWARF2_UNWIND_INFO)
2788 #if defined (HAVE_prologue)
2789 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2790 dwarf2out_frame_debug (insn);
2791 #else
2792 if (!ACCUMULATE_OUTGOING_ARGS
2793 && GET_CODE (insn) == INSN
2794 && dwarf2out_do_frame ())
2795 dwarf2out_frame_debug (insn);
2796 #endif
2797 #endif
2798
2799 #if 0
2800 /* It's not at all clear why we did this and doing so interferes
2801 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2802 with this out. */
2803
2804 /* Mark this insn as having been output. */
2805 INSN_DELETED_P (insn) = 1;
2806 #endif
2807
2808 /* Emit information for vtable gc. */
2809 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2810 if (note)
2811 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2812 INTVAL (XEXP (XEXP (note, 0), 1)));
2813
2814 current_output_insn = debug_insn = 0;
2815 }
2816 }
2817 return NEXT_INSN (insn);
2818 }
2819 \f
2820 /* Output debugging info to the assembler file FILE
2821 based on the NOTE-insn INSN, assumed to be a line number. */
2822
2823 static void
2824 notice_source_line (insn)
2825 rtx insn;
2826 {
2827 const char *filename = NOTE_SOURCE_FILE (insn);
2828
2829 last_filename = filename;
2830 last_linenum = NOTE_LINE_NUMBER (insn);
2831 high_block_linenum = MAX (last_linenum, high_block_linenum);
2832 high_function_linenum = MAX (last_linenum, high_function_linenum);
2833 }
2834 \f
2835 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2836 directly to the desired hard register. */
2837
2838 void
2839 cleanup_subreg_operands (insn)
2840 rtx insn;
2841 {
2842 int i;
2843 extract_insn_cached (insn);
2844 for (i = 0; i < recog_data.n_operands; i++)
2845 {
2846 /* The following test cannot use recog_data.operand when tesing
2847 for a SUBREG: the underlying object might have been changed
2848 already if we are inside a match_operator expression that
2849 matches the else clause. Instead we test the underlying
2850 expression directly. */
2851 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2852 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2853 else if (GET_CODE (recog_data.operand[i]) == PLUS
2854 || GET_CODE (recog_data.operand[i]) == MULT
2855 || GET_CODE (recog_data.operand[i]) == MEM)
2856 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2857 }
2858
2859 for (i = 0; i < recog_data.n_dups; i++)
2860 {
2861 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2862 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2863 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2864 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2865 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2866 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2867 }
2868 }
2869
2870 /* If X is a SUBREG, replace it with a REG or a MEM,
2871 based on the thing it is a subreg of. */
2872
2873 rtx
2874 alter_subreg (xp)
2875 rtx *xp;
2876 {
2877 rtx x = *xp;
2878 rtx y = SUBREG_REG (x);
2879
2880 /* simplify_subreg does not remove subreg from volatile references.
2881 We are required to. */
2882 if (GET_CODE (y) == MEM)
2883 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2884 else
2885 {
2886 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2887 SUBREG_BYTE (x));
2888
2889 if (new != 0)
2890 *xp = new;
2891 /* Simplify_subreg can't handle some REG cases, but we have to. */
2892 else if (GET_CODE (y) == REG)
2893 {
2894 unsigned int regno = subreg_hard_regno (x, 1);
2895 PUT_CODE (x, REG);
2896 REGNO (x) = regno;
2897 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2898 /* This field has a different meaning for REGs and SUBREGs. Make
2899 sure to clear it! */
2900 RTX_FLAG (x, used) = 0;
2901 }
2902 else
2903 abort ();
2904 }
2905
2906 return *xp;
2907 }
2908
2909 /* Do alter_subreg on all the SUBREGs contained in X. */
2910
2911 static rtx
2912 walk_alter_subreg (xp)
2913 rtx *xp;
2914 {
2915 rtx x = *xp;
2916 switch (GET_CODE (x))
2917 {
2918 case PLUS:
2919 case MULT:
2920 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2921 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2922 break;
2923
2924 case MEM:
2925 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2926 break;
2927
2928 case SUBREG:
2929 return alter_subreg (xp);
2930
2931 default:
2932 break;
2933 }
2934
2935 return *xp;
2936 }
2937 \f
2938 #ifdef HAVE_cc0
2939
2940 /* Given BODY, the body of a jump instruction, alter the jump condition
2941 as required by the bits that are set in cc_status.flags.
2942 Not all of the bits there can be handled at this level in all cases.
2943
2944 The value is normally 0.
2945 1 means that the condition has become always true.
2946 -1 means that the condition has become always false.
2947 2 means that COND has been altered. */
2948
2949 static int
2950 alter_cond (cond)
2951 rtx cond;
2952 {
2953 int value = 0;
2954
2955 if (cc_status.flags & CC_REVERSED)
2956 {
2957 value = 2;
2958 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2959 }
2960
2961 if (cc_status.flags & CC_INVERTED)
2962 {
2963 value = 2;
2964 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2965 }
2966
2967 if (cc_status.flags & CC_NOT_POSITIVE)
2968 switch (GET_CODE (cond))
2969 {
2970 case LE:
2971 case LEU:
2972 case GEU:
2973 /* Jump becomes unconditional. */
2974 return 1;
2975
2976 case GT:
2977 case GTU:
2978 case LTU:
2979 /* Jump becomes no-op. */
2980 return -1;
2981
2982 case GE:
2983 PUT_CODE (cond, EQ);
2984 value = 2;
2985 break;
2986
2987 case LT:
2988 PUT_CODE (cond, NE);
2989 value = 2;
2990 break;
2991
2992 default:
2993 break;
2994 }
2995
2996 if (cc_status.flags & CC_NOT_NEGATIVE)
2997 switch (GET_CODE (cond))
2998 {
2999 case GE:
3000 case GEU:
3001 /* Jump becomes unconditional. */
3002 return 1;
3003
3004 case LT:
3005 case LTU:
3006 /* Jump becomes no-op. */
3007 return -1;
3008
3009 case LE:
3010 case LEU:
3011 PUT_CODE (cond, EQ);
3012 value = 2;
3013 break;
3014
3015 case GT:
3016 case GTU:
3017 PUT_CODE (cond, NE);
3018 value = 2;
3019 break;
3020
3021 default:
3022 break;
3023 }
3024
3025 if (cc_status.flags & CC_NO_OVERFLOW)
3026 switch (GET_CODE (cond))
3027 {
3028 case GEU:
3029 /* Jump becomes unconditional. */
3030 return 1;
3031
3032 case LEU:
3033 PUT_CODE (cond, EQ);
3034 value = 2;
3035 break;
3036
3037 case GTU:
3038 PUT_CODE (cond, NE);
3039 value = 2;
3040 break;
3041
3042 case LTU:
3043 /* Jump becomes no-op. */
3044 return -1;
3045
3046 default:
3047 break;
3048 }
3049
3050 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3051 switch (GET_CODE (cond))
3052 {
3053 default:
3054 abort ();
3055
3056 case NE:
3057 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3058 value = 2;
3059 break;
3060
3061 case EQ:
3062 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3063 value = 2;
3064 break;
3065 }
3066
3067 if (cc_status.flags & CC_NOT_SIGNED)
3068 /* The flags are valid if signed condition operators are converted
3069 to unsigned. */
3070 switch (GET_CODE (cond))
3071 {
3072 case LE:
3073 PUT_CODE (cond, LEU);
3074 value = 2;
3075 break;
3076
3077 case LT:
3078 PUT_CODE (cond, LTU);
3079 value = 2;
3080 break;
3081
3082 case GT:
3083 PUT_CODE (cond, GTU);
3084 value = 2;
3085 break;
3086
3087 case GE:
3088 PUT_CODE (cond, GEU);
3089 value = 2;
3090 break;
3091
3092 default:
3093 break;
3094 }
3095
3096 return value;
3097 }
3098 #endif
3099 \f
3100 /* Report inconsistency between the assembler template and the operands.
3101 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3102
3103 void
3104 output_operand_lossage VPARAMS ((const char *msgid, ...))
3105 {
3106 char *fmt_string;
3107 char *new_message;
3108 const char *pfx_str;
3109 VA_OPEN (ap, msgid);
3110 VA_FIXEDARG (ap, const char *, msgid);
3111
3112 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3113 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3114 vasprintf (&new_message, fmt_string, ap);
3115
3116 if (this_is_asm_operands)
3117 error_for_asm (this_is_asm_operands, "%s", new_message);
3118 else
3119 internal_error ("%s", new_message);
3120
3121 free (fmt_string);
3122 free (new_message);
3123 VA_CLOSE (ap);
3124 }
3125 \f
3126 /* Output of assembler code from a template, and its subroutines. */
3127
3128 /* Annotate the assembly with a comment describing the pattern and
3129 alternative used. */
3130
3131 static void
3132 output_asm_name ()
3133 {
3134 if (debug_insn)
3135 {
3136 int num = INSN_CODE (debug_insn);
3137 fprintf (asm_out_file, "\t%s %d\t%s",
3138 ASM_COMMENT_START, INSN_UID (debug_insn),
3139 insn_data[num].name);
3140 if (insn_data[num].n_alternatives > 1)
3141 fprintf (asm_out_file, "/%d", which_alternative + 1);
3142 #ifdef HAVE_ATTR_length
3143 fprintf (asm_out_file, "\t[length = %d]",
3144 get_attr_length (debug_insn));
3145 #endif
3146 /* Clear this so only the first assembler insn
3147 of any rtl insn will get the special comment for -dp. */
3148 debug_insn = 0;
3149 }
3150 }
3151
3152 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3153 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3154 corresponds to the address of the object and 0 if to the object. */
3155
3156 static tree
3157 get_mem_expr_from_op (op, paddressp)
3158 rtx op;
3159 int *paddressp;
3160 {
3161 tree expr;
3162 int inner_addressp;
3163
3164 *paddressp = 0;
3165
3166 if (op == NULL)
3167 return 0;
3168
3169 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3170 return REGNO_DECL (ORIGINAL_REGNO (op));
3171 else if (GET_CODE (op) != MEM)
3172 return 0;
3173
3174 if (MEM_EXPR (op) != 0)
3175 return MEM_EXPR (op);
3176
3177 /* Otherwise we have an address, so indicate it and look at the address. */
3178 *paddressp = 1;
3179 op = XEXP (op, 0);
3180
3181 /* First check if we have a decl for the address, then look at the right side
3182 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3183 But don't allow the address to itself be indirect. */
3184 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3185 return expr;
3186 else if (GET_CODE (op) == PLUS
3187 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3188 return expr;
3189
3190 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3191 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3192 op = XEXP (op, 0);
3193
3194 expr = get_mem_expr_from_op (op, &inner_addressp);
3195 return inner_addressp ? 0 : expr;
3196 }
3197
3198 /* Output operand names for assembler instructions. OPERANDS is the
3199 operand vector, OPORDER is the order to write the operands, and NOPS
3200 is the number of operands to write. */
3201
3202 static void
3203 output_asm_operand_names (operands, oporder, nops)
3204 rtx *operands;
3205 int *oporder;
3206 int nops;
3207 {
3208 int wrote = 0;
3209 int i;
3210
3211 for (i = 0; i < nops; i++)
3212 {
3213 int addressp;
3214 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3215
3216 if (expr)
3217 {
3218 fprintf (asm_out_file, "%c%s %s",
3219 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3220 addressp ? "*" : "");
3221 print_mem_expr (asm_out_file, expr);
3222 wrote = 1;
3223 }
3224 }
3225 }
3226
3227 /* Output text from TEMPLATE to the assembler output file,
3228 obeying %-directions to substitute operands taken from
3229 the vector OPERANDS.
3230
3231 %N (for N a digit) means print operand N in usual manner.
3232 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3233 and print the label name with no punctuation.
3234 %cN means require operand N to be a constant
3235 and print the constant expression with no punctuation.
3236 %aN means expect operand N to be a memory address
3237 (not a memory reference!) and print a reference
3238 to that address.
3239 %nN means expect operand N to be a constant
3240 and print a constant expression for minus the value
3241 of the operand, with no other punctuation. */
3242
3243 void
3244 output_asm_insn (template, operands)
3245 const char *template;
3246 rtx *operands;
3247 {
3248 const char *p;
3249 int c;
3250 #ifdef ASSEMBLER_DIALECT
3251 int dialect = 0;
3252 #endif
3253 int oporder[MAX_RECOG_OPERANDS];
3254 char opoutput[MAX_RECOG_OPERANDS];
3255 int ops = 0;
3256
3257 /* An insn may return a null string template
3258 in a case where no assembler code is needed. */
3259 if (*template == 0)
3260 return;
3261
3262 memset (opoutput, 0, sizeof opoutput);
3263 p = template;
3264 putc ('\t', asm_out_file);
3265
3266 #ifdef ASM_OUTPUT_OPCODE
3267 ASM_OUTPUT_OPCODE (asm_out_file, p);
3268 #endif
3269
3270 while ((c = *p++))
3271 switch (c)
3272 {
3273 case '\n':
3274 if (flag_verbose_asm)
3275 output_asm_operand_names (operands, oporder, ops);
3276 if (flag_print_asm_name)
3277 output_asm_name ();
3278
3279 ops = 0;
3280 memset (opoutput, 0, sizeof opoutput);
3281
3282 putc (c, asm_out_file);
3283 #ifdef ASM_OUTPUT_OPCODE
3284 while ((c = *p) == '\t')
3285 {
3286 putc (c, asm_out_file);
3287 p++;
3288 }
3289 ASM_OUTPUT_OPCODE (asm_out_file, p);
3290 #endif
3291 break;
3292
3293 #ifdef ASSEMBLER_DIALECT
3294 case '{':
3295 {
3296 int i;
3297
3298 if (dialect)
3299 output_operand_lossage ("nested assembly dialect alternatives");
3300 else
3301 dialect = 1;
3302
3303 /* If we want the first dialect, do nothing. Otherwise, skip
3304 DIALECT_NUMBER of strings ending with '|'. */
3305 for (i = 0; i < dialect_number; i++)
3306 {
3307 while (*p && *p != '}' && *p++ != '|')
3308 ;
3309 if (*p == '}')
3310 break;
3311 if (*p == '|')
3312 p++;
3313 }
3314
3315 if (*p == '\0')
3316 output_operand_lossage ("unterminated assembly dialect alternative");
3317 }
3318 break;
3319
3320 case '|':
3321 if (dialect)
3322 {
3323 /* Skip to close brace. */
3324 do
3325 {
3326 if (*p == '\0')
3327 {
3328 output_operand_lossage ("unterminated assembly dialect alternative");
3329 break;
3330 }
3331 }
3332 while (*p++ != '}');
3333 dialect = 0;
3334 }
3335 else
3336 putc (c, asm_out_file);
3337 break;
3338
3339 case '}':
3340 if (! dialect)
3341 putc (c, asm_out_file);
3342 dialect = 0;
3343 break;
3344 #endif
3345
3346 case '%':
3347 /* %% outputs a single %. */
3348 if (*p == '%')
3349 {
3350 p++;
3351 putc (c, asm_out_file);
3352 }
3353 /* %= outputs a number which is unique to each insn in the entire
3354 compilation. This is useful for making local labels that are
3355 referred to more than once in a given insn. */
3356 else if (*p == '=')
3357 {
3358 p++;
3359 fprintf (asm_out_file, "%d", insn_counter);
3360 }
3361 /* % followed by a letter and some digits
3362 outputs an operand in a special way depending on the letter.
3363 Letters `acln' are implemented directly.
3364 Other letters are passed to `output_operand' so that
3365 the PRINT_OPERAND macro can define them. */
3366 else if (ISALPHA (*p))
3367 {
3368 int letter = *p++;
3369 c = atoi (p);
3370
3371 if (! ISDIGIT (*p))
3372 output_operand_lossage ("operand number missing after %%-letter");
3373 else if (this_is_asm_operands
3374 && (c < 0 || (unsigned int) c >= insn_noperands))
3375 output_operand_lossage ("operand number out of range");
3376 else if (letter == 'l')
3377 output_asm_label (operands[c]);
3378 else if (letter == 'a')
3379 output_address (operands[c]);
3380 else if (letter == 'c')
3381 {
3382 if (CONSTANT_ADDRESS_P (operands[c]))
3383 output_addr_const (asm_out_file, operands[c]);
3384 else
3385 output_operand (operands[c], 'c');
3386 }
3387 else if (letter == 'n')
3388 {
3389 if (GET_CODE (operands[c]) == CONST_INT)
3390 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3391 - INTVAL (operands[c]));
3392 else
3393 {
3394 putc ('-', asm_out_file);
3395 output_addr_const (asm_out_file, operands[c]);
3396 }
3397 }
3398 else
3399 output_operand (operands[c], letter);
3400
3401 if (!opoutput[c])
3402 oporder[ops++] = c;
3403 opoutput[c] = 1;
3404
3405 while (ISDIGIT (c = *p))
3406 p++;
3407 }
3408 /* % followed by a digit outputs an operand the default way. */
3409 else if (ISDIGIT (*p))
3410 {
3411 c = atoi (p);
3412 if (this_is_asm_operands
3413 && (c < 0 || (unsigned int) c >= insn_noperands))
3414 output_operand_lossage ("operand number out of range");
3415 else
3416 output_operand (operands[c], 0);
3417
3418 if (!opoutput[c])
3419 oporder[ops++] = c;
3420 opoutput[c] = 1;
3421
3422 while (ISDIGIT (c = *p))
3423 p++;
3424 }
3425 /* % followed by punctuation: output something for that
3426 punctuation character alone, with no operand.
3427 The PRINT_OPERAND macro decides what is actually done. */
3428 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3429 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3430 output_operand (NULL_RTX, *p++);
3431 #endif
3432 else
3433 output_operand_lossage ("invalid %%-code");
3434 break;
3435
3436 default:
3437 putc (c, asm_out_file);
3438 }
3439
3440 /* Write out the variable names for operands, if we know them. */
3441 if (flag_verbose_asm)
3442 output_asm_operand_names (operands, oporder, ops);
3443 if (flag_print_asm_name)
3444 output_asm_name ();
3445
3446 putc ('\n', asm_out_file);
3447 }
3448 \f
3449 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3450
3451 void
3452 output_asm_label (x)
3453 rtx x;
3454 {
3455 char buf[256];
3456
3457 if (GET_CODE (x) == LABEL_REF)
3458 x = XEXP (x, 0);
3459 if (GET_CODE (x) == CODE_LABEL
3460 || (GET_CODE (x) == NOTE
3461 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3462 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3463 else
3464 output_operand_lossage ("`%%l' operand isn't a label");
3465
3466 assemble_name (asm_out_file, buf);
3467 }
3468
3469 /* Print operand X using machine-dependent assembler syntax.
3470 The macro PRINT_OPERAND is defined just to control this function.
3471 CODE is a non-digit that preceded the operand-number in the % spec,
3472 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3473 between the % and the digits.
3474 When CODE is a non-letter, X is 0.
3475
3476 The meanings of the letters are machine-dependent and controlled
3477 by PRINT_OPERAND. */
3478
3479 static void
3480 output_operand (x, code)
3481 rtx x;
3482 int code ATTRIBUTE_UNUSED;
3483 {
3484 if (x && GET_CODE (x) == SUBREG)
3485 x = alter_subreg (&x);
3486
3487 /* If X is a pseudo-register, abort now rather than writing trash to the
3488 assembler file. */
3489
3490 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3491 abort ();
3492
3493 PRINT_OPERAND (asm_out_file, x, code);
3494 }
3495
3496 /* Print a memory reference operand for address X
3497 using machine-dependent assembler syntax.
3498 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3499
3500 void
3501 output_address (x)
3502 rtx x;
3503 {
3504 walk_alter_subreg (&x);
3505 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3506 }
3507 \f
3508 /* Print an integer constant expression in assembler syntax.
3509 Addition and subtraction are the only arithmetic
3510 that may appear in these expressions. */
3511
3512 void
3513 output_addr_const (file, x)
3514 FILE *file;
3515 rtx x;
3516 {
3517 char buf[256];
3518
3519 restart:
3520 switch (GET_CODE (x))
3521 {
3522 case PC:
3523 putc ('.', file);
3524 break;
3525
3526 case SYMBOL_REF:
3527 #ifdef ASM_OUTPUT_SYMBOL_REF
3528 ASM_OUTPUT_SYMBOL_REF (file, x);
3529 #else
3530 assemble_name (file, XSTR (x, 0));
3531 #endif
3532 break;
3533
3534 case LABEL_REF:
3535 x = XEXP (x, 0);
3536 /* Fall through. */
3537 case CODE_LABEL:
3538 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3539 #ifdef ASM_OUTPUT_LABEL_REF
3540 ASM_OUTPUT_LABEL_REF (file, buf);
3541 #else
3542 assemble_name (file, buf);
3543 #endif
3544 break;
3545
3546 case CONST_INT:
3547 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3548 break;
3549
3550 case CONST:
3551 /* This used to output parentheses around the expression,
3552 but that does not work on the 386 (either ATT or BSD assembler). */
3553 output_addr_const (file, XEXP (x, 0));
3554 break;
3555
3556 case CONST_DOUBLE:
3557 if (GET_MODE (x) == VOIDmode)
3558 {
3559 /* We can use %d if the number is one word and positive. */
3560 if (CONST_DOUBLE_HIGH (x))
3561 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3562 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3563 else if (CONST_DOUBLE_LOW (x) < 0)
3564 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3565 else
3566 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3567 }
3568 else
3569 /* We can't handle floating point constants;
3570 PRINT_OPERAND must handle them. */
3571 output_operand_lossage ("floating constant misused");
3572 break;
3573
3574 case PLUS:
3575 /* Some assemblers need integer constants to appear last (eg masm). */
3576 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3577 {
3578 output_addr_const (file, XEXP (x, 1));
3579 if (INTVAL (XEXP (x, 0)) >= 0)
3580 fprintf (file, "+");
3581 output_addr_const (file, XEXP (x, 0));
3582 }
3583 else
3584 {
3585 output_addr_const (file, XEXP (x, 0));
3586 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3587 || INTVAL (XEXP (x, 1)) >= 0)
3588 fprintf (file, "+");
3589 output_addr_const (file, XEXP (x, 1));
3590 }
3591 break;
3592
3593 case MINUS:
3594 /* Avoid outputting things like x-x or x+5-x,
3595 since some assemblers can't handle that. */
3596 x = simplify_subtraction (x);
3597 if (GET_CODE (x) != MINUS)
3598 goto restart;
3599
3600 output_addr_const (file, XEXP (x, 0));
3601 fprintf (file, "-");
3602 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3603 || GET_CODE (XEXP (x, 1)) == PC
3604 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3605 output_addr_const (file, XEXP (x, 1));
3606 else
3607 {
3608 fputs (targetm.asm_out.open_paren, file);
3609 output_addr_const (file, XEXP (x, 1));
3610 fputs (targetm.asm_out.close_paren, file);
3611 }
3612 break;
3613
3614 case ZERO_EXTEND:
3615 case SIGN_EXTEND:
3616 case SUBREG:
3617 output_addr_const (file, XEXP (x, 0));
3618 break;
3619
3620 default:
3621 #ifdef OUTPUT_ADDR_CONST_EXTRA
3622 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3623 break;
3624
3625 fail:
3626 #endif
3627 output_operand_lossage ("invalid expression as operand");
3628 }
3629 }
3630 \f
3631 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3632 %R prints the value of REGISTER_PREFIX.
3633 %L prints the value of LOCAL_LABEL_PREFIX.
3634 %U prints the value of USER_LABEL_PREFIX.
3635 %I prints the value of IMMEDIATE_PREFIX.
3636 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3637 Also supported are %d, %x, %s, %e, %f, %g and %%.
3638
3639 We handle alternate assembler dialects here, just like output_asm_insn. */
3640
3641 void
3642 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3643 {
3644 char buf[10];
3645 char *q, c;
3646
3647 VA_OPEN (argptr, p);
3648 VA_FIXEDARG (argptr, FILE *, file);
3649 VA_FIXEDARG (argptr, const char *, p);
3650
3651 buf[0] = '%';
3652
3653 while ((c = *p++))
3654 switch (c)
3655 {
3656 #ifdef ASSEMBLER_DIALECT
3657 case '{':
3658 {
3659 int i;
3660
3661 /* If we want the first dialect, do nothing. Otherwise, skip
3662 DIALECT_NUMBER of strings ending with '|'. */
3663 for (i = 0; i < dialect_number; i++)
3664 {
3665 while (*p && *p++ != '|')
3666 ;
3667
3668 if (*p == '|')
3669 p++;
3670 }
3671 }
3672 break;
3673
3674 case '|':
3675 /* Skip to close brace. */
3676 while (*p && *p++ != '}')
3677 ;
3678 break;
3679
3680 case '}':
3681 break;
3682 #endif
3683
3684 case '%':
3685 c = *p++;
3686 q = &buf[1];
3687 while (ISDIGIT (c) || c == '.')
3688 {
3689 *q++ = c;
3690 c = *p++;
3691 }
3692 switch (c)
3693 {
3694 case '%':
3695 fprintf (file, "%%");
3696 break;
3697
3698 case 'd': case 'i': case 'u':
3699 case 'x': case 'p': case 'X':
3700 case 'o':
3701 *q++ = c;
3702 *q = 0;
3703 fprintf (file, buf, va_arg (argptr, int));
3704 break;
3705
3706 case 'w':
3707 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3708 but we do not check for those cases. It means that the value
3709 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3710
3711 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3712 #else
3713 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3714 *q++ = 'l';
3715 #else
3716 *q++ = 'l';
3717 *q++ = 'l';
3718 #endif
3719 #endif
3720
3721 *q++ = *p++;
3722 *q = 0;
3723 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3724 break;
3725
3726 case 'l':
3727 *q++ = c;
3728 *q++ = *p++;
3729 *q = 0;
3730 fprintf (file, buf, va_arg (argptr, long));
3731 break;
3732
3733 case 'e':
3734 case 'f':
3735 case 'g':
3736 *q++ = c;
3737 *q = 0;
3738 fprintf (file, buf, va_arg (argptr, double));
3739 break;
3740
3741 case 's':
3742 *q++ = c;
3743 *q = 0;
3744 fprintf (file, buf, va_arg (argptr, char *));
3745 break;
3746
3747 case 'O':
3748 #ifdef ASM_OUTPUT_OPCODE
3749 ASM_OUTPUT_OPCODE (asm_out_file, p);
3750 #endif
3751 break;
3752
3753 case 'R':
3754 #ifdef REGISTER_PREFIX
3755 fprintf (file, "%s", REGISTER_PREFIX);
3756 #endif
3757 break;
3758
3759 case 'I':
3760 #ifdef IMMEDIATE_PREFIX
3761 fprintf (file, "%s", IMMEDIATE_PREFIX);
3762 #endif
3763 break;
3764
3765 case 'L':
3766 #ifdef LOCAL_LABEL_PREFIX
3767 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3768 #endif
3769 break;
3770
3771 case 'U':
3772 fputs (user_label_prefix, file);
3773 break;
3774
3775 #ifdef ASM_FPRINTF_EXTENSIONS
3776 /* Upper case letters are reserved for general use by asm_fprintf
3777 and so are not available to target specific code. In order to
3778 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3779 they are defined here. As they get turned into real extensions
3780 to asm_fprintf they should be removed from this list. */
3781 case 'A': case 'B': case 'C': case 'D': case 'E':
3782 case 'F': case 'G': case 'H': case 'J': case 'K':
3783 case 'M': case 'N': case 'P': case 'Q': case 'S':
3784 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3785 break;
3786
3787 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3788 #endif
3789 default:
3790 abort ();
3791 }
3792 break;
3793
3794 default:
3795 fputc (c, file);
3796 }
3797 VA_CLOSE (argptr);
3798 }
3799 \f
3800 /* Split up a CONST_DOUBLE or integer constant rtx
3801 into two rtx's for single words,
3802 storing in *FIRST the word that comes first in memory in the target
3803 and in *SECOND the other. */
3804
3805 void
3806 split_double (value, first, second)
3807 rtx value;
3808 rtx *first, *second;
3809 {
3810 if (GET_CODE (value) == CONST_INT)
3811 {
3812 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3813 {
3814 /* In this case the CONST_INT holds both target words.
3815 Extract the bits from it into two word-sized pieces.
3816 Sign extend each half to HOST_WIDE_INT. */
3817 unsigned HOST_WIDE_INT low, high;
3818 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3819
3820 /* Set sign_bit to the most significant bit of a word. */
3821 sign_bit = 1;
3822 sign_bit <<= BITS_PER_WORD - 1;
3823
3824 /* Set mask so that all bits of the word are set. We could
3825 have used 1 << BITS_PER_WORD instead of basing the
3826 calculation on sign_bit. However, on machines where
3827 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3828 compiler warning, even though the code would never be
3829 executed. */
3830 mask = sign_bit << 1;
3831 mask--;
3832
3833 /* Set sign_extend as any remaining bits. */
3834 sign_extend = ~mask;
3835
3836 /* Pick the lower word and sign-extend it. */
3837 low = INTVAL (value);
3838 low &= mask;
3839 if (low & sign_bit)
3840 low |= sign_extend;
3841
3842 /* Pick the higher word, shifted to the least significant
3843 bits, and sign-extend it. */
3844 high = INTVAL (value);
3845 high >>= BITS_PER_WORD - 1;
3846 high >>= 1;
3847 high &= mask;
3848 if (high & sign_bit)
3849 high |= sign_extend;
3850
3851 /* Store the words in the target machine order. */
3852 if (WORDS_BIG_ENDIAN)
3853 {
3854 *first = GEN_INT (high);
3855 *second = GEN_INT (low);
3856 }
3857 else
3858 {
3859 *first = GEN_INT (low);
3860 *second = GEN_INT (high);
3861 }
3862 }
3863 else
3864 {
3865 /* The rule for using CONST_INT for a wider mode
3866 is that we regard the value as signed.
3867 So sign-extend it. */
3868 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3869 if (WORDS_BIG_ENDIAN)
3870 {
3871 *first = high;
3872 *second = value;
3873 }
3874 else
3875 {
3876 *first = value;
3877 *second = high;
3878 }
3879 }
3880 }
3881 else if (GET_CODE (value) != CONST_DOUBLE)
3882 {
3883 if (WORDS_BIG_ENDIAN)
3884 {
3885 *first = const0_rtx;
3886 *second = value;
3887 }
3888 else
3889 {
3890 *first = value;
3891 *second = const0_rtx;
3892 }
3893 }
3894 else if (GET_MODE (value) == VOIDmode
3895 /* This is the old way we did CONST_DOUBLE integers. */
3896 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3897 {
3898 /* In an integer, the words are defined as most and least significant.
3899 So order them by the target's convention. */
3900 if (WORDS_BIG_ENDIAN)
3901 {
3902 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3903 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3904 }
3905 else
3906 {
3907 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3908 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3909 }
3910 }
3911 else
3912 {
3913 REAL_VALUE_TYPE r;
3914 long l[2];
3915 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3916
3917 /* Note, this converts the REAL_VALUE_TYPE to the target's
3918 format, splits up the floating point double and outputs
3919 exactly 32 bits of it into each of l[0] and l[1] --
3920 not necessarily BITS_PER_WORD bits. */
3921 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3922
3923 /* If 32 bits is an entire word for the target, but not for the host,
3924 then sign-extend on the host so that the number will look the same
3925 way on the host that it would on the target. See for instance
3926 simplify_unary_operation. The #if is needed to avoid compiler
3927 warnings. */
3928
3929 #if HOST_BITS_PER_LONG > 32
3930 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3931 {
3932 if (l[0] & ((long) 1 << 31))
3933 l[0] |= ((long) (-1) << 32);
3934 if (l[1] & ((long) 1 << 31))
3935 l[1] |= ((long) (-1) << 32);
3936 }
3937 #endif
3938
3939 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3940 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3941 }
3942 }
3943 \f
3944 /* Return nonzero if this function has no function calls. */
3945
3946 int
3947 leaf_function_p ()
3948 {
3949 rtx insn;
3950 rtx link;
3951
3952 if (current_function_profile || profile_arc_flag)
3953 return 0;
3954
3955 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3956 {
3957 if (GET_CODE (insn) == CALL_INSN
3958 && ! SIBLING_CALL_P (insn))
3959 return 0;
3960 if (GET_CODE (insn) == INSN
3961 && GET_CODE (PATTERN (insn)) == SEQUENCE
3962 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3963 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3964 return 0;
3965 }
3966 for (link = current_function_epilogue_delay_list;
3967 link;
3968 link = XEXP (link, 1))
3969 {
3970 insn = XEXP (link, 0);
3971
3972 if (GET_CODE (insn) == CALL_INSN
3973 && ! SIBLING_CALL_P (insn))
3974 return 0;
3975 if (GET_CODE (insn) == INSN
3976 && GET_CODE (PATTERN (insn)) == SEQUENCE
3977 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3978 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3979 return 0;
3980 }
3981
3982 return 1;
3983 }
3984
3985 /* Return 1 if branch is an forward branch.
3986 Uses insn_shuid array, so it works only in the final pass. May be used by
3987 output templates to customary add branch prediction hints.
3988 */
3989 int
3990 final_forward_branch_p (insn)
3991 rtx insn;
3992 {
3993 int insn_id, label_id;
3994 if (!uid_shuid)
3995 abort ();
3996 insn_id = INSN_SHUID (insn);
3997 label_id = INSN_SHUID (JUMP_LABEL (insn));
3998 /* We've hit some insns that does not have id information available. */
3999 if (!insn_id || !label_id)
4000 abort ();
4001 return insn_id < label_id;
4002 }
4003
4004 /* On some machines, a function with no call insns
4005 can run faster if it doesn't create its own register window.
4006 When output, the leaf function should use only the "output"
4007 registers. Ordinarily, the function would be compiled to use
4008 the "input" registers to find its arguments; it is a candidate
4009 for leaf treatment if it uses only the "input" registers.
4010 Leaf function treatment means renumbering so the function
4011 uses the "output" registers instead. */
4012
4013 #ifdef LEAF_REGISTERS
4014
4015 /* Return 1 if this function uses only the registers that can be
4016 safely renumbered. */
4017
4018 int
4019 only_leaf_regs_used ()
4020 {
4021 int i;
4022 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4023
4024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4025 if ((regs_ever_live[i] || global_regs[i])
4026 && ! permitted_reg_in_leaf_functions[i])
4027 return 0;
4028
4029 if (current_function_uses_pic_offset_table
4030 && pic_offset_table_rtx != 0
4031 && GET_CODE (pic_offset_table_rtx) == REG
4032 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4033 return 0;
4034
4035 return 1;
4036 }
4037
4038 /* Scan all instructions and renumber all registers into those
4039 available in leaf functions. */
4040
4041 static void
4042 leaf_renumber_regs (first)
4043 rtx first;
4044 {
4045 rtx insn;
4046
4047 /* Renumber only the actual patterns.
4048 The reg-notes can contain frame pointer refs,
4049 and renumbering them could crash, and should not be needed. */
4050 for (insn = first; insn; insn = NEXT_INSN (insn))
4051 if (INSN_P (insn))
4052 leaf_renumber_regs_insn (PATTERN (insn));
4053 for (insn = current_function_epilogue_delay_list;
4054 insn;
4055 insn = XEXP (insn, 1))
4056 if (INSN_P (XEXP (insn, 0)))
4057 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4058 }
4059
4060 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4061 available in leaf functions. */
4062
4063 void
4064 leaf_renumber_regs_insn (in_rtx)
4065 rtx in_rtx;
4066 {
4067 int i, j;
4068 const char *format_ptr;
4069
4070 if (in_rtx == 0)
4071 return;
4072
4073 /* Renumber all input-registers into output-registers.
4074 renumbered_regs would be 1 for an output-register;
4075 they */
4076
4077 if (GET_CODE (in_rtx) == REG)
4078 {
4079 int newreg;
4080
4081 /* Don't renumber the same reg twice. */
4082 if (in_rtx->used)
4083 return;
4084
4085 newreg = REGNO (in_rtx);
4086 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4087 to reach here as part of a REG_NOTE. */
4088 if (newreg >= FIRST_PSEUDO_REGISTER)
4089 {
4090 in_rtx->used = 1;
4091 return;
4092 }
4093 newreg = LEAF_REG_REMAP (newreg);
4094 if (newreg < 0)
4095 abort ();
4096 regs_ever_live[REGNO (in_rtx)] = 0;
4097 regs_ever_live[newreg] = 1;
4098 REGNO (in_rtx) = newreg;
4099 in_rtx->used = 1;
4100 }
4101
4102 if (INSN_P (in_rtx))
4103 {
4104 /* Inside a SEQUENCE, we find insns.
4105 Renumber just the patterns of these insns,
4106 just as we do for the top-level insns. */
4107 leaf_renumber_regs_insn (PATTERN (in_rtx));
4108 return;
4109 }
4110
4111 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4112
4113 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4114 switch (*format_ptr++)
4115 {
4116 case 'e':
4117 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4118 break;
4119
4120 case 'E':
4121 if (NULL != XVEC (in_rtx, i))
4122 {
4123 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4124 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4125 }
4126 break;
4127
4128 case 'S':
4129 case 's':
4130 case '0':
4131 case 'i':
4132 case 'w':
4133 case 'n':
4134 case 'u':
4135 break;
4136
4137 default:
4138 abort ();
4139 }
4140 }
4141 #endif