gcc.c (cc1_options): Pass output file as auxbase when appropriate.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49
50 #include "tree.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "regs.h"
54 #include "insn-config.h"
55 #include "insn-attr.h"
56 #include "recog.h"
57 #include "conditions.h"
58 #include "flags.h"
59 #include "real.h"
60 #include "hard-reg-set.h"
61 #include "output.h"
62 #include "except.h"
63 #include "function.h"
64 #include "toplev.h"
65 #include "reload.h"
66 #include "intl.h"
67 #include "basic-block.h"
68 #include "target.h"
69 #include "debug.h"
70 #include "expr.h"
71 #include "profile.h"
72 #include "cfglayout.h"
73
74 #ifdef XCOFF_DEBUGGING_INFO
75 #include "xcoffout.h" /* Needed for external data
76 declarations for e.g. AIX 4.x. */
77 #endif
78
79 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
80 #include "dwarf2out.h"
81 #endif
82
83 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
84 null default for it to save conditionalization later. */
85 #ifndef CC_STATUS_INIT
86 #define CC_STATUS_INIT
87 #endif
88
89 /* How to start an assembler comment. */
90 #ifndef ASM_COMMENT_START
91 #define ASM_COMMENT_START ";#"
92 #endif
93
94 /* Is the given character a logical line separator for the assembler? */
95 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
96 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
97 #endif
98
99 #ifndef JUMP_TABLES_IN_TEXT_SECTION
100 #define JUMP_TABLES_IN_TEXT_SECTION 0
101 #endif
102
103 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
104 #define HAVE_READONLY_DATA_SECTION 1
105 #else
106 #define HAVE_READONLY_DATA_SECTION 0
107 #endif
108
109 /* Last insn processed by final_scan_insn. */
110 static rtx debug_insn;
111 rtx current_output_insn;
112
113 /* Line number of last NOTE. */
114 static int last_linenum;
115
116 /* Highest line number in current block. */
117 static int high_block_linenum;
118
119 /* Likewise for function. */
120 static int high_function_linenum;
121
122 /* Filename of last NOTE. */
123 static const char *last_filename;
124
125 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
126
127 /* Nonzero while outputting an `asm' with operands.
128 This means that inconsistencies are the user's fault, so don't abort.
129 The precise value is the insn being output, to pass to error_for_asm. */
130 rtx this_is_asm_operands;
131
132 /* Number of operands of this insn, for an `asm' with operands. */
133 static unsigned int insn_noperands;
134
135 /* Compare optimization flag. */
136
137 static rtx last_ignored_compare = 0;
138
139 /* Flag indicating this insn is the start of a new basic block. */
140
141 static int new_block = 1;
142
143 /* Assign a unique number to each insn that is output.
144 This can be used to generate unique local labels. */
145
146 static int insn_counter = 0;
147
148 #ifdef HAVE_cc0
149 /* This variable contains machine-dependent flags (defined in tm.h)
150 set and examined by output routines
151 that describe how to interpret the condition codes properly. */
152
153 CC_STATUS cc_status;
154
155 /* During output of an insn, this contains a copy of cc_status
156 from before the insn. */
157
158 CC_STATUS cc_prev_status;
159 #endif
160
161 /* Indexed by hardware reg number, is 1 if that register is ever
162 used in the current function.
163
164 In life_analysis, or in stupid_life_analysis, this is set
165 up to record the hard regs used explicitly. Reload adds
166 in the hard regs used for holding pseudo regs. Final uses
167 it to generate the code in the function prologue and epilogue
168 to save and restore registers as needed. */
169
170 char regs_ever_live[FIRST_PSEUDO_REGISTER];
171
172 /* Nonzero means current function must be given a frame pointer.
173 Set in stmt.c if anything is allocated on the stack there.
174 Set in reload1.c if anything is allocated on the stack there. */
175
176 int frame_pointer_needed;
177
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
179
180 static int block_depth;
181
182 /* Nonzero if have enabled APP processing of our assembler output. */
183
184 static int app_on;
185
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
188
189 rtx final_sequence;
190
191 #ifdef ASSEMBLER_DIALECT
192
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
196
197 /* Indexed by line number, nonzero if there is a note for that line. */
198
199 static char *line_note_exists;
200
201 #ifdef HAVE_conditional_execution
202 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
203 rtx current_insn_predicate;
204 #endif
205
206 struct function_list
207 {
208 struct function_list *next; /* next function */
209 const char *name; /* function name */
210 long cfg_checksum; /* function checksum */
211 long count_edges; /* number of intrumented edges in this function */
212 };
213
214 static struct function_list *functions_head = 0;
215 static struct function_list **functions_tail = &functions_head;
216
217 #ifdef HAVE_ATTR_length
218 static int asm_insn_count PARAMS ((rtx));
219 #endif
220 static void profile_function PARAMS ((FILE *));
221 static void profile_after_prologue PARAMS ((FILE *));
222 static void notice_source_line PARAMS ((rtx));
223 static rtx walk_alter_subreg PARAMS ((rtx *));
224 static void output_asm_name PARAMS ((void));
225 static void output_alternate_entry_point PARAMS ((FILE *, rtx));
226 static tree get_mem_expr_from_op PARAMS ((rtx, int *));
227 static void output_asm_operand_names PARAMS ((rtx *, int *, int));
228 static void output_operand PARAMS ((rtx, int));
229 #ifdef LEAF_REGISTERS
230 static void leaf_renumber_regs PARAMS ((rtx));
231 #endif
232 #ifdef HAVE_cc0
233 static int alter_cond PARAMS ((rtx));
234 #endif
235 #ifndef ADDR_VEC_ALIGN
236 static int final_addr_vec_align PARAMS ((rtx));
237 #endif
238 #ifdef HAVE_ATTR_length
239 static int align_fuzz PARAMS ((rtx, rtx, int, unsigned));
240 #endif
241 \f
242 /* Initialize data in final at the beginning of a compilation. */
243
244 void
245 init_final (filename)
246 const char *filename ATTRIBUTE_UNUSED;
247 {
248 app_on = 0;
249 final_sequence = 0;
250
251 #ifdef ASSEMBLER_DIALECT
252 dialect_number = ASSEMBLER_DIALECT;
253 #endif
254 }
255
256 /* Called at end of source file,
257 to output the arc-profiling table for this entire compilation. */
258
259 void
260 end_final (filename)
261 const char *filename;
262 {
263 if (profile_arc_flag && profile_info.count_instrumented_edges)
264 {
265 char name[20];
266 tree string_type, string_cst;
267 tree structure_decl, structure_value, structure_pointer_type;
268 tree field_decl, decl_chain, value_chain;
269 tree sizeof_field_value, domain_type;
270
271 /* Build types. */
272 string_type = build_pointer_type (char_type_node);
273
274 /* Libgcc2 bb structure. */
275 structure_decl = make_node (RECORD_TYPE);
276 structure_pointer_type = build_pointer_type (structure_decl);
277
278 /* Output the main header, of 7 words:
279 0: 1 if this file is initialized, else 0.
280 1: address of file name (LPBX1).
281 2: address of table of counts (LPBX2).
282 3: number of counts in the table.
283 4: always 0, libgcc2 uses this as a pointer to next ``struct bb''
284
285 The following are GNU extensions:
286
287 5: Number of bytes in this header.
288 6: address of table of function checksums (LPBX7). */
289
290 /* The zero word. */
291 decl_chain =
292 build_decl (FIELD_DECL, get_identifier ("zero_word"),
293 long_integer_type_node);
294 value_chain = build_tree_list (decl_chain,
295 convert (long_integer_type_node,
296 integer_zero_node));
297
298 /* Address of filename. */
299 {
300 char *cwd, *da_filename;
301 int da_filename_len;
302
303 field_decl =
304 build_decl (FIELD_DECL, get_identifier ("filename"), string_type);
305 TREE_CHAIN (field_decl) = decl_chain;
306 decl_chain = field_decl;
307
308 cwd = getpwd ();
309 da_filename_len = strlen (filename) + strlen (cwd) + 4 + 1;
310 da_filename = (char *) alloca (da_filename_len);
311 strcpy (da_filename, cwd);
312 strcat (da_filename, "/");
313 strcat (da_filename, filename);
314 strcat (da_filename, ".da");
315 da_filename_len = strlen (da_filename);
316 string_cst = build_string (da_filename_len + 1, da_filename);
317 domain_type = build_index_type (build_int_2 (da_filename_len, 0));
318 TREE_TYPE (string_cst)
319 = build_array_type (char_type_node, domain_type);
320 value_chain = tree_cons (field_decl,
321 build1 (ADDR_EXPR, string_type, string_cst),
322 value_chain);
323 }
324
325 /* Table of counts. */
326 {
327 tree gcov_type_type = make_unsigned_type (GCOV_TYPE_SIZE);
328 tree gcov_type_pointer_type = build_pointer_type (gcov_type_type);
329 tree domain_tree
330 = build_index_type (build_int_2 (profile_info.
331 count_instrumented_edges - 1, 0));
332 tree gcov_type_array_type
333 = build_array_type (gcov_type_type, domain_tree);
334 tree gcov_type_array_pointer_type
335 = build_pointer_type (gcov_type_array_type);
336 tree counts_table;
337
338 field_decl =
339 build_decl (FIELD_DECL, get_identifier ("counts"),
340 gcov_type_pointer_type);
341 TREE_CHAIN (field_decl) = decl_chain;
342 decl_chain = field_decl;
343
344 /* No values. */
345 counts_table
346 = build (VAR_DECL, gcov_type_array_type, NULL_TREE, NULL_TREE);
347 TREE_STATIC (counts_table) = 1;
348 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 2);
349 DECL_NAME (counts_table) = get_identifier (name);
350 assemble_variable (counts_table, 0, 0, 0);
351
352 value_chain = tree_cons (field_decl,
353 build1 (ADDR_EXPR,
354 gcov_type_array_pointer_type,
355 counts_table), value_chain);
356 }
357
358 /* Count of the # of instrumented arcs. */
359 field_decl
360 = build_decl (FIELD_DECL, get_identifier ("ncounts"),
361 long_integer_type_node);
362 TREE_CHAIN (field_decl) = decl_chain;
363 decl_chain = field_decl;
364
365 value_chain = tree_cons (field_decl,
366 convert (long_integer_type_node,
367 build_int_2 (profile_info.
368 count_instrumented_edges,
369 0)), value_chain);
370 /* Pointer to the next bb. */
371 field_decl
372 = build_decl (FIELD_DECL, get_identifier ("next"),
373 structure_pointer_type);
374 TREE_CHAIN (field_decl) = decl_chain;
375 decl_chain = field_decl;
376
377 value_chain = tree_cons (field_decl, null_pointer_node, value_chain);
378
379 /* sizeof(struct bb). We'll set this after entire structure
380 is laid out. */
381 field_decl
382 = build_decl (FIELD_DECL, get_identifier ("sizeof_bb"),
383 long_integer_type_node);
384 TREE_CHAIN (field_decl) = decl_chain;
385 decl_chain = field_decl;
386
387 sizeof_field_value = tree_cons (field_decl, NULL, value_chain);
388 value_chain = sizeof_field_value;
389
390 /* struct bb_function []. */
391 {
392 struct function_list *item;
393 int num_nodes;
394 tree checksum_field, arc_count_field, name_field;
395 tree domain;
396 tree array_value_chain = NULL_TREE;
397 tree bb_fn_struct_type;
398 tree bb_fn_struct_array_type;
399 tree bb_fn_struct_array_pointer_type;
400 tree bb_fn_struct_pointer_type;
401 tree field_value, field_value_chain;
402
403 bb_fn_struct_type = make_node (RECORD_TYPE);
404
405 checksum_field = build_decl (FIELD_DECL, get_identifier ("checksum"),
406 long_integer_type_node);
407
408 arc_count_field
409 = build_decl (FIELD_DECL, get_identifier ("arc_count"),
410 integer_type_node);
411 TREE_CHAIN (checksum_field) = arc_count_field;
412
413 name_field
414 = build_decl (FIELD_DECL, get_identifier ("name"), string_type);
415 TREE_CHAIN (arc_count_field) = name_field;
416
417 TYPE_FIELDS (bb_fn_struct_type) = checksum_field;
418
419 num_nodes = 0;
420
421 for (item = functions_head; item != 0; item = item->next)
422 num_nodes++;
423
424 /* Note that the array contains a terminator, hence no - 1. */
425 domain = build_index_type (build_int_2 (num_nodes, 0));
426
427 bb_fn_struct_pointer_type = build_pointer_type (bb_fn_struct_type);
428 bb_fn_struct_array_type
429 = build_array_type (bb_fn_struct_type, domain);
430 bb_fn_struct_array_pointer_type
431 = build_pointer_type (bb_fn_struct_array_type);
432
433 layout_type (bb_fn_struct_type);
434 layout_type (bb_fn_struct_pointer_type);
435 layout_type (bb_fn_struct_array_type);
436 layout_type (bb_fn_struct_array_pointer_type);
437
438 for (item = functions_head; item != 0; item = item->next)
439 {
440 size_t name_len;
441
442 /* create constructor for structure. */
443 field_value_chain
444 = build_tree_list (checksum_field,
445 convert (long_integer_type_node,
446 build_int_2 (item->cfg_checksum, 0)));
447 field_value_chain
448 = tree_cons (arc_count_field,
449 convert (integer_type_node,
450 build_int_2 (item->count_edges, 0)),
451 field_value_chain);
452
453 name_len = strlen (item->name);
454 string_cst = build_string (name_len + 1, item->name);
455 domain_type = build_index_type (build_int_2 (name_len, 0));
456 TREE_TYPE (string_cst)
457 = build_array_type (char_type_node, domain_type);
458 field_value_chain = tree_cons (name_field,
459 build1 (ADDR_EXPR, string_type,
460 string_cst),
461 field_value_chain);
462
463 /* Add to chain. */
464 array_value_chain
465 = tree_cons (NULL_TREE, build (CONSTRUCTOR,
466 bb_fn_struct_type, NULL_TREE,
467 nreverse (field_value_chain)),
468 array_value_chain);
469 }
470
471 /* Add terminator. */
472 field_value = build_tree_list (arc_count_field,
473 convert (integer_type_node,
474 build_int_2 (-1, 0)));
475
476 array_value_chain = tree_cons (NULL_TREE,
477 build (CONSTRUCTOR, bb_fn_struct_type,
478 NULL_TREE, field_value),
479 array_value_chain);
480
481
482 /* Create constructor for array. */
483 field_decl
484 = build_decl (FIELD_DECL, get_identifier ("function_infos"),
485 bb_fn_struct_pointer_type);
486 value_chain = tree_cons (field_decl,
487 build1 (ADDR_EXPR,
488 bb_fn_struct_array_pointer_type,
489 build (CONSTRUCTOR,
490 bb_fn_struct_array_type,
491 NULL_TREE,
492 nreverse
493 (array_value_chain))),
494 value_chain);
495 TREE_CHAIN (field_decl) = decl_chain;
496 decl_chain = field_decl;
497 }
498
499 /* Finish structure. */
500 TYPE_FIELDS (structure_decl) = nreverse (decl_chain);
501 layout_type (structure_decl);
502
503 structure_value
504 = build (VAR_DECL, structure_decl, NULL_TREE, NULL_TREE);
505 DECL_INITIAL (structure_value)
506 = build (CONSTRUCTOR, structure_decl, NULL_TREE,
507 nreverse (value_chain));
508 TREE_STATIC (structure_value) = 1;
509 ASM_GENERATE_INTERNAL_LABEL (name, "LPBX", 0);
510 DECL_NAME (structure_value) = get_identifier (name);
511
512 /* Size of this structure. */
513 TREE_VALUE (sizeof_field_value)
514 = convert (long_integer_type_node,
515 build_int_2 (int_size_in_bytes (structure_decl), 0));
516
517 /* Build structure. */
518 assemble_variable (structure_value, 0, 0, 0);
519 }
520 }
521
522 /* Default target function prologue and epilogue assembler output.
523
524 If not overridden for epilogue code, then the function body itself
525 contains return instructions wherever needed. */
526 void
527 default_function_pro_epilogue (file, size)
528 FILE *file ATTRIBUTE_UNUSED;
529 HOST_WIDE_INT size ATTRIBUTE_UNUSED;
530 {
531 }
532
533 /* Default target hook that outputs nothing to a stream. */
534 void
535 no_asm_to_stream (file)
536 FILE *file ATTRIBUTE_UNUSED;
537 {
538 }
539
540 /* Enable APP processing of subsequent output.
541 Used before the output from an `asm' statement. */
542
543 void
544 app_enable ()
545 {
546 if (! app_on)
547 {
548 fputs (ASM_APP_ON, asm_out_file);
549 app_on = 1;
550 }
551 }
552
553 /* Disable APP processing of subsequent output.
554 Called from varasm.c before most kinds of output. */
555
556 void
557 app_disable ()
558 {
559 if (app_on)
560 {
561 fputs (ASM_APP_OFF, asm_out_file);
562 app_on = 0;
563 }
564 }
565 \f
566 /* Return the number of slots filled in the current
567 delayed branch sequence (we don't count the insn needing the
568 delay slot). Zero if not in a delayed branch sequence. */
569
570 #ifdef DELAY_SLOTS
571 int
572 dbr_sequence_length ()
573 {
574 if (final_sequence != 0)
575 return XVECLEN (final_sequence, 0) - 1;
576 else
577 return 0;
578 }
579 #endif
580 \f
581 /* The next two pages contain routines used to compute the length of an insn
582 and to shorten branches. */
583
584 /* Arrays for insn lengths, and addresses. The latter is referenced by
585 `insn_current_length'. */
586
587 static int *insn_lengths;
588
589 varray_type insn_addresses_;
590
591 /* Max uid for which the above arrays are valid. */
592 static int insn_lengths_max_uid;
593
594 /* Address of insn being processed. Used by `insn_current_length'. */
595 int insn_current_address;
596
597 /* Address of insn being processed in previous iteration. */
598 int insn_last_address;
599
600 /* known invariant alignment of insn being processed. */
601 int insn_current_align;
602
603 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
604 gives the next following alignment insn that increases the known
605 alignment, or NULL_RTX if there is no such insn.
606 For any alignment obtained this way, we can again index uid_align with
607 its uid to obtain the next following align that in turn increases the
608 alignment, till we reach NULL_RTX; the sequence obtained this way
609 for each insn we'll call the alignment chain of this insn in the following
610 comments. */
611
612 struct label_alignment
613 {
614 short alignment;
615 short max_skip;
616 };
617
618 static rtx *uid_align;
619 static int *uid_shuid;
620 static struct label_alignment *label_align;
621
622 /* Indicate that branch shortening hasn't yet been done. */
623
624 void
625 init_insn_lengths ()
626 {
627 if (uid_shuid)
628 {
629 free (uid_shuid);
630 uid_shuid = 0;
631 }
632 if (insn_lengths)
633 {
634 free (insn_lengths);
635 insn_lengths = 0;
636 insn_lengths_max_uid = 0;
637 }
638 #ifdef HAVE_ATTR_length
639 INSN_ADDRESSES_FREE ();
640 #endif
641 if (uid_align)
642 {
643 free (uid_align);
644 uid_align = 0;
645 }
646 }
647
648 /* Obtain the current length of an insn. If branch shortening has been done,
649 get its actual length. Otherwise, get its maximum length. */
650
651 int
652 get_attr_length (insn)
653 rtx insn ATTRIBUTE_UNUSED;
654 {
655 #ifdef HAVE_ATTR_length
656 rtx body;
657 int i;
658 int length = 0;
659
660 if (insn_lengths_max_uid > INSN_UID (insn))
661 return insn_lengths[INSN_UID (insn)];
662 else
663 switch (GET_CODE (insn))
664 {
665 case NOTE:
666 case BARRIER:
667 case CODE_LABEL:
668 return 0;
669
670 case CALL_INSN:
671 length = insn_default_length (insn);
672 break;
673
674 case JUMP_INSN:
675 body = PATTERN (insn);
676 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
677 {
678 /* Alignment is machine-dependent and should be handled by
679 ADDR_VEC_ALIGN. */
680 }
681 else
682 length = insn_default_length (insn);
683 break;
684
685 case INSN:
686 body = PATTERN (insn);
687 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
688 return 0;
689
690 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
691 length = asm_insn_count (body) * insn_default_length (insn);
692 else if (GET_CODE (body) == SEQUENCE)
693 for (i = 0; i < XVECLEN (body, 0); i++)
694 length += get_attr_length (XVECEXP (body, 0, i));
695 else
696 length = insn_default_length (insn);
697 break;
698
699 default:
700 break;
701 }
702
703 #ifdef ADJUST_INSN_LENGTH
704 ADJUST_INSN_LENGTH (insn, length);
705 #endif
706 return length;
707 #else /* not HAVE_ATTR_length */
708 return 0;
709 #endif /* not HAVE_ATTR_length */
710 }
711 \f
712 /* Code to handle alignment inside shorten_branches. */
713
714 /* Here is an explanation how the algorithm in align_fuzz can give
715 proper results:
716
717 Call a sequence of instructions beginning with alignment point X
718 and continuing until the next alignment point `block X'. When `X'
719 is used in an expression, it means the alignment value of the
720 alignment point.
721
722 Call the distance between the start of the first insn of block X, and
723 the end of the last insn of block X `IX', for the `inner size of X'.
724 This is clearly the sum of the instruction lengths.
725
726 Likewise with the next alignment-delimited block following X, which we
727 shall call block Y.
728
729 Call the distance between the start of the first insn of block X, and
730 the start of the first insn of block Y `OX', for the `outer size of X'.
731
732 The estimated padding is then OX - IX.
733
734 OX can be safely estimated as
735
736 if (X >= Y)
737 OX = round_up(IX, Y)
738 else
739 OX = round_up(IX, X) + Y - X
740
741 Clearly est(IX) >= real(IX), because that only depends on the
742 instruction lengths, and those being overestimated is a given.
743
744 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
745 we needn't worry about that when thinking about OX.
746
747 When X >= Y, the alignment provided by Y adds no uncertainty factor
748 for branch ranges starting before X, so we can just round what we have.
749 But when X < Y, we don't know anything about the, so to speak,
750 `middle bits', so we have to assume the worst when aligning up from an
751 address mod X to one mod Y, which is Y - X. */
752
753 #ifndef LABEL_ALIGN
754 #define LABEL_ALIGN(LABEL) align_labels_log
755 #endif
756
757 #ifndef LABEL_ALIGN_MAX_SKIP
758 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
759 #endif
760
761 #ifndef LOOP_ALIGN
762 #define LOOP_ALIGN(LABEL) align_loops_log
763 #endif
764
765 #ifndef LOOP_ALIGN_MAX_SKIP
766 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
767 #endif
768
769 #ifndef LABEL_ALIGN_AFTER_BARRIER
770 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
771 #endif
772
773 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
774 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
775 #endif
776
777 #ifndef JUMP_ALIGN
778 #define JUMP_ALIGN(LABEL) align_jumps_log
779 #endif
780
781 #ifndef JUMP_ALIGN_MAX_SKIP
782 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
783 #endif
784
785 #ifndef ADDR_VEC_ALIGN
786 static int
787 final_addr_vec_align (addr_vec)
788 rtx addr_vec;
789 {
790 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
791
792 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
793 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
794 return exact_log2 (align);
795
796 }
797
798 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
799 #endif
800
801 #ifndef INSN_LENGTH_ALIGNMENT
802 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
803 #endif
804
805 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
806
807 static int min_labelno, max_labelno;
808
809 #define LABEL_TO_ALIGNMENT(LABEL) \
810 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
811
812 #define LABEL_TO_MAX_SKIP(LABEL) \
813 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
814
815 /* For the benefit of port specific code do this also as a function. */
816
817 int
818 label_to_alignment (label)
819 rtx label;
820 {
821 return LABEL_TO_ALIGNMENT (label);
822 }
823
824 #ifdef HAVE_ATTR_length
825 /* The differences in addresses
826 between a branch and its target might grow or shrink depending on
827 the alignment the start insn of the range (the branch for a forward
828 branch or the label for a backward branch) starts out on; if these
829 differences are used naively, they can even oscillate infinitely.
830 We therefore want to compute a 'worst case' address difference that
831 is independent of the alignment the start insn of the range end
832 up on, and that is at least as large as the actual difference.
833 The function align_fuzz calculates the amount we have to add to the
834 naively computed difference, by traversing the part of the alignment
835 chain of the start insn of the range that is in front of the end insn
836 of the range, and considering for each alignment the maximum amount
837 that it might contribute to a size increase.
838
839 For casesi tables, we also want to know worst case minimum amounts of
840 address difference, in case a machine description wants to introduce
841 some common offset that is added to all offsets in a table.
842 For this purpose, align_fuzz with a growth argument of 0 computes the
843 appropriate adjustment. */
844
845 /* Compute the maximum delta by which the difference of the addresses of
846 START and END might grow / shrink due to a different address for start
847 which changes the size of alignment insns between START and END.
848 KNOWN_ALIGN_LOG is the alignment known for START.
849 GROWTH should be ~0 if the objective is to compute potential code size
850 increase, and 0 if the objective is to compute potential shrink.
851 The return value is undefined for any other value of GROWTH. */
852
853 static int
854 align_fuzz (start, end, known_align_log, growth)
855 rtx start, end;
856 int known_align_log;
857 unsigned growth;
858 {
859 int uid = INSN_UID (start);
860 rtx align_label;
861 int known_align = 1 << known_align_log;
862 int end_shuid = INSN_SHUID (end);
863 int fuzz = 0;
864
865 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
866 {
867 int align_addr, new_align;
868
869 uid = INSN_UID (align_label);
870 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
871 if (uid_shuid[uid] > end_shuid)
872 break;
873 known_align_log = LABEL_TO_ALIGNMENT (align_label);
874 new_align = 1 << known_align_log;
875 if (new_align < known_align)
876 continue;
877 fuzz += (-align_addr ^ growth) & (new_align - known_align);
878 known_align = new_align;
879 }
880 return fuzz;
881 }
882
883 /* Compute a worst-case reference address of a branch so that it
884 can be safely used in the presence of aligned labels. Since the
885 size of the branch itself is unknown, the size of the branch is
886 not included in the range. I.e. for a forward branch, the reference
887 address is the end address of the branch as known from the previous
888 branch shortening pass, minus a value to account for possible size
889 increase due to alignment. For a backward branch, it is the start
890 address of the branch as known from the current pass, plus a value
891 to account for possible size increase due to alignment.
892 NB.: Therefore, the maximum offset allowed for backward branches needs
893 to exclude the branch size. */
894
895 int
896 insn_current_reference_address (branch)
897 rtx branch;
898 {
899 rtx dest, seq;
900 int seq_uid;
901
902 if (! INSN_ADDRESSES_SET_P ())
903 return 0;
904
905 seq = NEXT_INSN (PREV_INSN (branch));
906 seq_uid = INSN_UID (seq);
907 if (GET_CODE (branch) != JUMP_INSN)
908 /* This can happen for example on the PA; the objective is to know the
909 offset to address something in front of the start of the function.
910 Thus, we can treat it like a backward branch.
911 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
912 any alignment we'd encounter, so we skip the call to align_fuzz. */
913 return insn_current_address;
914 dest = JUMP_LABEL (branch);
915
916 /* BRANCH has no proper alignment chain set, so use SEQ.
917 BRANCH also has no INSN_SHUID. */
918 if (INSN_SHUID (seq) < INSN_SHUID (dest))
919 {
920 /* Forward branch. */
921 return (insn_last_address + insn_lengths[seq_uid]
922 - align_fuzz (seq, dest, length_unit_log, ~0));
923 }
924 else
925 {
926 /* Backward branch. */
927 return (insn_current_address
928 + align_fuzz (dest, seq, length_unit_log, ~0));
929 }
930 }
931 #endif /* HAVE_ATTR_length */
932 \f
933 void
934 compute_alignments ()
935 {
936 int log, max_skip, max_log;
937 basic_block bb;
938
939 if (label_align)
940 {
941 free (label_align);
942 label_align = 0;
943 }
944
945 max_labelno = max_label_num ();
946 min_labelno = get_first_label_num ();
947 label_align = (struct label_alignment *)
948 xcalloc (max_labelno - min_labelno + 1, sizeof (struct label_alignment));
949
950 /* If not optimizing or optimizing for size, don't assign any alignments. */
951 if (! optimize || optimize_size)
952 return;
953
954 FOR_EACH_BB (bb)
955 {
956 rtx label = bb->head;
957 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
958 edge e;
959
960 if (GET_CODE (label) != CODE_LABEL)
961 continue;
962 max_log = LABEL_ALIGN (label);
963 max_skip = LABEL_ALIGN_MAX_SKIP;
964
965 for (e = bb->pred; e; e = e->pred_next)
966 {
967 if (e->flags & EDGE_FALLTHRU)
968 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
969 else
970 branch_frequency += EDGE_FREQUENCY (e);
971 }
972
973 /* There are two purposes to align block with no fallthru incoming edge:
974 1) to avoid fetch stalls when branch destination is near cache boundary
975 2) to improve cache efficiency in case the previous block is not executed
976 (so it does not need to be in the cache).
977
978 We to catch first case, we align frequently executed blocks.
979 To catch the second, we align blocks that are executed more frequently
980 than the predecessor and the predecessor is likely to not be executed
981 when function is called. */
982
983 if (!has_fallthru
984 && (branch_frequency > BB_FREQ_MAX / 10
985 || (bb->frequency > bb->prev_bb->frequency * 10
986 && (bb->prev_bb->frequency
987 <= ENTRY_BLOCK_PTR->frequency / 2))))
988 {
989 log = JUMP_ALIGN (label);
990 if (max_log < log)
991 {
992 max_log = log;
993 max_skip = JUMP_ALIGN_MAX_SKIP;
994 }
995 }
996 /* In case block is frequent and reached mostly by non-fallthru edge,
997 align it. It is most likely an first block of loop. */
998 if (has_fallthru
999 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
1000 && branch_frequency > fallthru_frequency * 5)
1001 {
1002 log = LOOP_ALIGN (label);
1003 if (max_log < log)
1004 {
1005 max_log = log;
1006 max_skip = LOOP_ALIGN_MAX_SKIP;
1007 }
1008 }
1009 LABEL_TO_ALIGNMENT (label) = max_log;
1010 LABEL_TO_MAX_SKIP (label) = max_skip;
1011 }
1012 }
1013 \f
1014 /* Make a pass over all insns and compute their actual lengths by shortening
1015 any branches of variable length if possible. */
1016
1017 /* Give a default value for the lowest address in a function. */
1018
1019 #ifndef FIRST_INSN_ADDRESS
1020 #define FIRST_INSN_ADDRESS 0
1021 #endif
1022
1023 /* shorten_branches might be called multiple times: for example, the SH
1024 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
1025 In order to do this, it needs proper length information, which it obtains
1026 by calling shorten_branches. This cannot be collapsed with
1027 shorten_branches itself into a single pass unless we also want to integrate
1028 reorg.c, since the branch splitting exposes new instructions with delay
1029 slots. */
1030
1031 void
1032 shorten_branches (first)
1033 rtx first ATTRIBUTE_UNUSED;
1034 {
1035 rtx insn;
1036 int max_uid;
1037 int i;
1038 int max_log;
1039 int max_skip;
1040 #ifdef HAVE_ATTR_length
1041 #define MAX_CODE_ALIGN 16
1042 rtx seq;
1043 int something_changed = 1;
1044 char *varying_length;
1045 rtx body;
1046 int uid;
1047 rtx align_tab[MAX_CODE_ALIGN];
1048
1049 #endif
1050
1051 /* Compute maximum UID and allocate label_align / uid_shuid. */
1052 max_uid = get_max_uid ();
1053
1054 uid_shuid = (int *) xmalloc (max_uid * sizeof *uid_shuid);
1055
1056 if (max_labelno != max_label_num ())
1057 {
1058 int old = max_labelno;
1059 int n_labels;
1060 int n_old_labels;
1061
1062 max_labelno = max_label_num ();
1063
1064 n_labels = max_labelno - min_labelno + 1;
1065 n_old_labels = old - min_labelno + 1;
1066
1067 label_align = (struct label_alignment *) xrealloc
1068 (label_align, n_labels * sizeof (struct label_alignment));
1069
1070 /* Range of labels grows monotonically in the function. Abort here
1071 means that the initialization of array got lost. */
1072 if (n_old_labels > n_labels)
1073 abort ();
1074
1075 memset (label_align + n_old_labels, 0,
1076 (n_labels - n_old_labels) * sizeof (struct label_alignment));
1077 }
1078
1079 /* Initialize label_align and set up uid_shuid to be strictly
1080 monotonically rising with insn order. */
1081 /* We use max_log here to keep track of the maximum alignment we want to
1082 impose on the next CODE_LABEL (or the current one if we are processing
1083 the CODE_LABEL itself). */
1084
1085 max_log = 0;
1086 max_skip = 0;
1087
1088 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
1089 {
1090 int log;
1091
1092 INSN_SHUID (insn) = i++;
1093 if (INSN_P (insn))
1094 {
1095 /* reorg might make the first insn of a loop being run once only,
1096 and delete the label in front of it. Then we want to apply
1097 the loop alignment to the new label created by reorg, which
1098 is separated by the former loop start insn from the
1099 NOTE_INSN_LOOP_BEG. */
1100 }
1101 else if (GET_CODE (insn) == CODE_LABEL)
1102 {
1103 rtx next;
1104
1105 /* Merge in alignments computed by compute_alignments. */
1106 log = LABEL_TO_ALIGNMENT (insn);
1107 if (max_log < log)
1108 {
1109 max_log = log;
1110 max_skip = LABEL_TO_MAX_SKIP (insn);
1111 }
1112
1113 log = LABEL_ALIGN (insn);
1114 if (max_log < log)
1115 {
1116 max_log = log;
1117 max_skip = LABEL_ALIGN_MAX_SKIP;
1118 }
1119 next = NEXT_INSN (insn);
1120 /* ADDR_VECs only take room if read-only data goes into the text
1121 section. */
1122 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1123 if (next && GET_CODE (next) == JUMP_INSN)
1124 {
1125 rtx nextbody = PATTERN (next);
1126 if (GET_CODE (nextbody) == ADDR_VEC
1127 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1128 {
1129 log = ADDR_VEC_ALIGN (next);
1130 if (max_log < log)
1131 {
1132 max_log = log;
1133 max_skip = LABEL_ALIGN_MAX_SKIP;
1134 }
1135 }
1136 }
1137 LABEL_TO_ALIGNMENT (insn) = max_log;
1138 LABEL_TO_MAX_SKIP (insn) = max_skip;
1139 max_log = 0;
1140 max_skip = 0;
1141 }
1142 else if (GET_CODE (insn) == BARRIER)
1143 {
1144 rtx label;
1145
1146 for (label = insn; label && ! INSN_P (label);
1147 label = NEXT_INSN (label))
1148 if (GET_CODE (label) == CODE_LABEL)
1149 {
1150 log = LABEL_ALIGN_AFTER_BARRIER (insn);
1151 if (max_log < log)
1152 {
1153 max_log = log;
1154 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
1155 }
1156 break;
1157 }
1158 }
1159 }
1160 #ifdef HAVE_ATTR_length
1161
1162 /* Allocate the rest of the arrays. */
1163 insn_lengths = (int *) xmalloc (max_uid * sizeof (*insn_lengths));
1164 insn_lengths_max_uid = max_uid;
1165 /* Syntax errors can lead to labels being outside of the main insn stream.
1166 Initialize insn_addresses, so that we get reproducible results. */
1167 INSN_ADDRESSES_ALLOC (max_uid);
1168
1169 varying_length = (char *) xcalloc (max_uid, sizeof (char));
1170
1171 /* Initialize uid_align. We scan instructions
1172 from end to start, and keep in align_tab[n] the last seen insn
1173 that does an alignment of at least n+1, i.e. the successor
1174 in the alignment chain for an insn that does / has a known
1175 alignment of n. */
1176 uid_align = (rtx *) xcalloc (max_uid, sizeof *uid_align);
1177
1178 for (i = MAX_CODE_ALIGN; --i >= 0;)
1179 align_tab[i] = NULL_RTX;
1180 seq = get_last_insn ();
1181 for (; seq; seq = PREV_INSN (seq))
1182 {
1183 int uid = INSN_UID (seq);
1184 int log;
1185 log = (GET_CODE (seq) == CODE_LABEL ? LABEL_TO_ALIGNMENT (seq) : 0);
1186 uid_align[uid] = align_tab[0];
1187 if (log)
1188 {
1189 /* Found an alignment label. */
1190 uid_align[uid] = align_tab[log];
1191 for (i = log - 1; i >= 0; i--)
1192 align_tab[i] = seq;
1193 }
1194 }
1195 #ifdef CASE_VECTOR_SHORTEN_MODE
1196 if (optimize)
1197 {
1198 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
1199 label fields. */
1200
1201 int min_shuid = INSN_SHUID (get_insns ()) - 1;
1202 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
1203 int rel;
1204
1205 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
1206 {
1207 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
1208 int len, i, min, max, insn_shuid;
1209 int min_align;
1210 addr_diff_vec_flags flags;
1211
1212 if (GET_CODE (insn) != JUMP_INSN
1213 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1214 continue;
1215 pat = PATTERN (insn);
1216 len = XVECLEN (pat, 1);
1217 if (len <= 0)
1218 abort ();
1219 min_align = MAX_CODE_ALIGN;
1220 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1221 {
1222 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1223 int shuid = INSN_SHUID (lab);
1224 if (shuid < min)
1225 {
1226 min = shuid;
1227 min_lab = lab;
1228 }
1229 if (shuid > max)
1230 {
1231 max = shuid;
1232 max_lab = lab;
1233 }
1234 if (min_align > LABEL_TO_ALIGNMENT (lab))
1235 min_align = LABEL_TO_ALIGNMENT (lab);
1236 }
1237 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
1238 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
1239 insn_shuid = INSN_SHUID (insn);
1240 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1241 flags.min_align = min_align;
1242 flags.base_after_vec = rel > insn_shuid;
1243 flags.min_after_vec = min > insn_shuid;
1244 flags.max_after_vec = max > insn_shuid;
1245 flags.min_after_base = min > rel;
1246 flags.max_after_base = max > rel;
1247 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1248 }
1249 }
1250 #endif /* CASE_VECTOR_SHORTEN_MODE */
1251
1252 /* Compute initial lengths, addresses, and varying flags for each insn. */
1253 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1254 insn != 0;
1255 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1256 {
1257 uid = INSN_UID (insn);
1258
1259 insn_lengths[uid] = 0;
1260
1261 if (GET_CODE (insn) == CODE_LABEL)
1262 {
1263 int log = LABEL_TO_ALIGNMENT (insn);
1264 if (log)
1265 {
1266 int align = 1 << log;
1267 int new_address = (insn_current_address + align - 1) & -align;
1268 insn_lengths[uid] = new_address - insn_current_address;
1269 }
1270 }
1271
1272 INSN_ADDRESSES (uid) = insn_current_address;
1273
1274 if (GET_CODE (insn) == NOTE || GET_CODE (insn) == BARRIER
1275 || GET_CODE (insn) == CODE_LABEL)
1276 continue;
1277 if (INSN_DELETED_P (insn))
1278 continue;
1279
1280 body = PATTERN (insn);
1281 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1282 {
1283 /* This only takes room if read-only data goes into the text
1284 section. */
1285 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1286 insn_lengths[uid] = (XVECLEN (body,
1287 GET_CODE (body) == ADDR_DIFF_VEC)
1288 * GET_MODE_SIZE (GET_MODE (body)));
1289 /* Alignment is handled by ADDR_VEC_ALIGN. */
1290 }
1291 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1292 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1293 else if (GET_CODE (body) == SEQUENCE)
1294 {
1295 int i;
1296 int const_delay_slots;
1297 #ifdef DELAY_SLOTS
1298 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1299 #else
1300 const_delay_slots = 0;
1301 #endif
1302 /* Inside a delay slot sequence, we do not do any branch shortening
1303 if the shortening could change the number of delay slots
1304 of the branch. */
1305 for (i = 0; i < XVECLEN (body, 0); i++)
1306 {
1307 rtx inner_insn = XVECEXP (body, 0, i);
1308 int inner_uid = INSN_UID (inner_insn);
1309 int inner_length;
1310
1311 if (GET_CODE (body) == ASM_INPUT
1312 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1313 inner_length = (asm_insn_count (PATTERN (inner_insn))
1314 * insn_default_length (inner_insn));
1315 else
1316 inner_length = insn_default_length (inner_insn);
1317
1318 insn_lengths[inner_uid] = inner_length;
1319 if (const_delay_slots)
1320 {
1321 if ((varying_length[inner_uid]
1322 = insn_variable_length_p (inner_insn)) != 0)
1323 varying_length[uid] = 1;
1324 INSN_ADDRESSES (inner_uid) = (insn_current_address
1325 + insn_lengths[uid]);
1326 }
1327 else
1328 varying_length[inner_uid] = 0;
1329 insn_lengths[uid] += inner_length;
1330 }
1331 }
1332 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1333 {
1334 insn_lengths[uid] = insn_default_length (insn);
1335 varying_length[uid] = insn_variable_length_p (insn);
1336 }
1337
1338 /* If needed, do any adjustment. */
1339 #ifdef ADJUST_INSN_LENGTH
1340 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1341 if (insn_lengths[uid] < 0)
1342 fatal_insn ("negative insn length", insn);
1343 #endif
1344 }
1345
1346 /* Now loop over all the insns finding varying length insns. For each,
1347 get the current insn length. If it has changed, reflect the change.
1348 When nothing changes for a full pass, we are done. */
1349
1350 while (something_changed)
1351 {
1352 something_changed = 0;
1353 insn_current_align = MAX_CODE_ALIGN - 1;
1354 for (insn_current_address = FIRST_INSN_ADDRESS, insn = first;
1355 insn != 0;
1356 insn = NEXT_INSN (insn))
1357 {
1358 int new_length;
1359 #ifdef ADJUST_INSN_LENGTH
1360 int tmp_length;
1361 #endif
1362 int length_align;
1363
1364 uid = INSN_UID (insn);
1365
1366 if (GET_CODE (insn) == CODE_LABEL)
1367 {
1368 int log = LABEL_TO_ALIGNMENT (insn);
1369 if (log > insn_current_align)
1370 {
1371 int align = 1 << log;
1372 int new_address= (insn_current_address + align - 1) & -align;
1373 insn_lengths[uid] = new_address - insn_current_address;
1374 insn_current_align = log;
1375 insn_current_address = new_address;
1376 }
1377 else
1378 insn_lengths[uid] = 0;
1379 INSN_ADDRESSES (uid) = insn_current_address;
1380 continue;
1381 }
1382
1383 length_align = INSN_LENGTH_ALIGNMENT (insn);
1384 if (length_align < insn_current_align)
1385 insn_current_align = length_align;
1386
1387 insn_last_address = INSN_ADDRESSES (uid);
1388 INSN_ADDRESSES (uid) = insn_current_address;
1389
1390 #ifdef CASE_VECTOR_SHORTEN_MODE
1391 if (optimize && GET_CODE (insn) == JUMP_INSN
1392 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1393 {
1394 rtx body = PATTERN (insn);
1395 int old_length = insn_lengths[uid];
1396 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1397 rtx min_lab = XEXP (XEXP (body, 2), 0);
1398 rtx max_lab = XEXP (XEXP (body, 3), 0);
1399 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1400 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1401 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1402 rtx prev;
1403 int rel_align = 0;
1404 addr_diff_vec_flags flags;
1405
1406 /* Avoid automatic aggregate initialization. */
1407 flags = ADDR_DIFF_VEC_FLAGS (body);
1408
1409 /* Try to find a known alignment for rel_lab. */
1410 for (prev = rel_lab;
1411 prev
1412 && ! insn_lengths[INSN_UID (prev)]
1413 && ! (varying_length[INSN_UID (prev)] & 1);
1414 prev = PREV_INSN (prev))
1415 if (varying_length[INSN_UID (prev)] & 2)
1416 {
1417 rel_align = LABEL_TO_ALIGNMENT (prev);
1418 break;
1419 }
1420
1421 /* See the comment on addr_diff_vec_flags in rtl.h for the
1422 meaning of the flags values. base: REL_LAB vec: INSN */
1423 /* Anything after INSN has still addresses from the last
1424 pass; adjust these so that they reflect our current
1425 estimate for this pass. */
1426 if (flags.base_after_vec)
1427 rel_addr += insn_current_address - insn_last_address;
1428 if (flags.min_after_vec)
1429 min_addr += insn_current_address - insn_last_address;
1430 if (flags.max_after_vec)
1431 max_addr += insn_current_address - insn_last_address;
1432 /* We want to know the worst case, i.e. lowest possible value
1433 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1434 its offset is positive, and we have to be wary of code shrink;
1435 otherwise, it is negative, and we have to be vary of code
1436 size increase. */
1437 if (flags.min_after_base)
1438 {
1439 /* If INSN is between REL_LAB and MIN_LAB, the size
1440 changes we are about to make can change the alignment
1441 within the observed offset, therefore we have to break
1442 it up into two parts that are independent. */
1443 if (! flags.base_after_vec && flags.min_after_vec)
1444 {
1445 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1446 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1447 }
1448 else
1449 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1450 }
1451 else
1452 {
1453 if (flags.base_after_vec && ! flags.min_after_vec)
1454 {
1455 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1456 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1457 }
1458 else
1459 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1460 }
1461 /* Likewise, determine the highest lowest possible value
1462 for the offset of MAX_LAB. */
1463 if (flags.max_after_base)
1464 {
1465 if (! flags.base_after_vec && flags.max_after_vec)
1466 {
1467 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1468 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1469 }
1470 else
1471 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1472 }
1473 else
1474 {
1475 if (flags.base_after_vec && ! flags.max_after_vec)
1476 {
1477 max_addr += align_fuzz (max_lab, insn, 0, 0);
1478 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1479 }
1480 else
1481 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1482 }
1483 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1484 max_addr - rel_addr,
1485 body));
1486 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1487 {
1488 insn_lengths[uid]
1489 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1490 insn_current_address += insn_lengths[uid];
1491 if (insn_lengths[uid] != old_length)
1492 something_changed = 1;
1493 }
1494
1495 continue;
1496 }
1497 #endif /* CASE_VECTOR_SHORTEN_MODE */
1498
1499 if (! (varying_length[uid]))
1500 {
1501 if (GET_CODE (insn) == INSN
1502 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1503 {
1504 int i;
1505
1506 body = PATTERN (insn);
1507 for (i = 0; i < XVECLEN (body, 0); i++)
1508 {
1509 rtx inner_insn = XVECEXP (body, 0, i);
1510 int inner_uid = INSN_UID (inner_insn);
1511
1512 INSN_ADDRESSES (inner_uid) = insn_current_address;
1513
1514 insn_current_address += insn_lengths[inner_uid];
1515 }
1516 }
1517 else
1518 insn_current_address += insn_lengths[uid];
1519
1520 continue;
1521 }
1522
1523 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SEQUENCE)
1524 {
1525 int i;
1526
1527 body = PATTERN (insn);
1528 new_length = 0;
1529 for (i = 0; i < XVECLEN (body, 0); i++)
1530 {
1531 rtx inner_insn = XVECEXP (body, 0, i);
1532 int inner_uid = INSN_UID (inner_insn);
1533 int inner_length;
1534
1535 INSN_ADDRESSES (inner_uid) = insn_current_address;
1536
1537 /* insn_current_length returns 0 for insns with a
1538 non-varying length. */
1539 if (! varying_length[inner_uid])
1540 inner_length = insn_lengths[inner_uid];
1541 else
1542 inner_length = insn_current_length (inner_insn);
1543
1544 if (inner_length != insn_lengths[inner_uid])
1545 {
1546 insn_lengths[inner_uid] = inner_length;
1547 something_changed = 1;
1548 }
1549 insn_current_address += insn_lengths[inner_uid];
1550 new_length += inner_length;
1551 }
1552 }
1553 else
1554 {
1555 new_length = insn_current_length (insn);
1556 insn_current_address += new_length;
1557 }
1558
1559 #ifdef ADJUST_INSN_LENGTH
1560 /* If needed, do any adjustment. */
1561 tmp_length = new_length;
1562 ADJUST_INSN_LENGTH (insn, new_length);
1563 insn_current_address += (new_length - tmp_length);
1564 #endif
1565
1566 if (new_length != insn_lengths[uid])
1567 {
1568 insn_lengths[uid] = new_length;
1569 something_changed = 1;
1570 }
1571 }
1572 /* For a non-optimizing compile, do only a single pass. */
1573 if (!optimize)
1574 break;
1575 }
1576
1577 free (varying_length);
1578
1579 #endif /* HAVE_ATTR_length */
1580 }
1581
1582 #ifdef HAVE_ATTR_length
1583 /* Given the body of an INSN known to be generated by an ASM statement, return
1584 the number of machine instructions likely to be generated for this insn.
1585 This is used to compute its length. */
1586
1587 static int
1588 asm_insn_count (body)
1589 rtx body;
1590 {
1591 const char *template;
1592 int count = 1;
1593
1594 if (GET_CODE (body) == ASM_INPUT)
1595 template = XSTR (body, 0);
1596 else
1597 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1598
1599 for (; *template; template++)
1600 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1601 count++;
1602
1603 return count;
1604 }
1605 #endif
1606 \f
1607 /* Output assembler code for the start of a function,
1608 and initialize some of the variables in this file
1609 for the new function. The label for the function and associated
1610 assembler pseudo-ops have already been output in `assemble_start_function'.
1611
1612 FIRST is the first insn of the rtl for the function being compiled.
1613 FILE is the file to write assembler code to.
1614 OPTIMIZE is nonzero if we should eliminate redundant
1615 test and compare insns. */
1616
1617 void
1618 final_start_function (first, file, optimize)
1619 rtx first;
1620 FILE *file;
1621 int optimize ATTRIBUTE_UNUSED;
1622 {
1623 block_depth = 0;
1624
1625 this_is_asm_operands = 0;
1626
1627 #ifdef NON_SAVING_SETJMP
1628 /* A function that calls setjmp should save and restore all the
1629 call-saved registers on a system where longjmp clobbers them. */
1630 if (NON_SAVING_SETJMP && current_function_calls_setjmp)
1631 {
1632 int i;
1633
1634 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1635 if (!call_used_regs[i])
1636 regs_ever_live[i] = 1;
1637 }
1638 #endif
1639
1640 if (NOTE_LINE_NUMBER (first) != NOTE_INSN_DELETED)
1641 notice_source_line (first);
1642 high_block_linenum = high_function_linenum = last_linenum;
1643
1644 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1645
1646 #if defined (DWARF2_UNWIND_INFO) || defined (IA64_UNWIND_INFO)
1647 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1648 dwarf2out_begin_prologue (0, NULL);
1649 #endif
1650
1651 #ifdef LEAF_REG_REMAP
1652 if (current_function_uses_only_leaf_regs)
1653 leaf_renumber_regs (first);
1654 #endif
1655
1656 /* The Sun386i and perhaps other machines don't work right
1657 if the profiling code comes after the prologue. */
1658 #ifdef PROFILE_BEFORE_PROLOGUE
1659 if (current_function_profile)
1660 profile_function (file);
1661 #endif /* PROFILE_BEFORE_PROLOGUE */
1662
1663 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1664 if (dwarf2out_do_frame ())
1665 dwarf2out_frame_debug (NULL_RTX);
1666 #endif
1667
1668 /* If debugging, assign block numbers to all of the blocks in this
1669 function. */
1670 if (write_symbols)
1671 {
1672 remove_unnecessary_notes ();
1673 scope_to_insns_finalize ();
1674 number_blocks (current_function_decl);
1675 /* We never actually put out begin/end notes for the top-level
1676 block in the function. But, conceptually, that block is
1677 always needed. */
1678 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1679 }
1680
1681 /* First output the function prologue: code to set up the stack frame. */
1682 (*targetm.asm_out.function_prologue) (file, get_frame_size ());
1683
1684 #ifdef VMS_DEBUGGING_INFO
1685 /* Output label after the prologue of the function. */
1686 if (write_symbols == VMS_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
1687 vmsdbgout_after_prologue ();
1688 #endif
1689
1690 /* If the machine represents the prologue as RTL, the profiling code must
1691 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1692 #ifdef HAVE_prologue
1693 if (! HAVE_prologue)
1694 #endif
1695 profile_after_prologue (file);
1696 }
1697
1698 static void
1699 profile_after_prologue (file)
1700 FILE *file ATTRIBUTE_UNUSED;
1701 {
1702 #ifndef PROFILE_BEFORE_PROLOGUE
1703 if (current_function_profile)
1704 profile_function (file);
1705 #endif /* not PROFILE_BEFORE_PROLOGUE */
1706 }
1707
1708 static void
1709 profile_function (file)
1710 FILE *file ATTRIBUTE_UNUSED;
1711 {
1712 #ifndef NO_PROFILE_COUNTERS
1713 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1714 #endif
1715 #if defined(ASM_OUTPUT_REG_PUSH)
1716 #if defined(STRUCT_VALUE_INCOMING_REGNUM) || defined(STRUCT_VALUE_REGNUM)
1717 int sval = current_function_returns_struct;
1718 #endif
1719 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1720 int cxt = current_function_needs_context;
1721 #endif
1722 #endif /* ASM_OUTPUT_REG_PUSH */
1723
1724 #ifndef NO_PROFILE_COUNTERS
1725 data_section ();
1726 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1727 ASM_OUTPUT_INTERNAL_LABEL (file, "LP", current_function_funcdef_no);
1728 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1729 #endif
1730
1731 function_section (current_function_decl);
1732
1733 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1734 if (sval)
1735 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_INCOMING_REGNUM);
1736 #else
1737 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1738 if (sval)
1739 {
1740 ASM_OUTPUT_REG_PUSH (file, STRUCT_VALUE_REGNUM);
1741 }
1742 #endif
1743 #endif
1744
1745 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1746 if (cxt)
1747 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1748 #else
1749 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1750 if (cxt)
1751 {
1752 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1753 }
1754 #endif
1755 #endif
1756
1757 FUNCTION_PROFILER (file, current_function_funcdef_no);
1758
1759 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1760 if (cxt)
1761 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1762 #else
1763 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1764 if (cxt)
1765 {
1766 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1767 }
1768 #endif
1769 #endif
1770
1771 #if defined(STRUCT_VALUE_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1772 if (sval)
1773 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_INCOMING_REGNUM);
1774 #else
1775 #if defined(STRUCT_VALUE_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1776 if (sval)
1777 {
1778 ASM_OUTPUT_REG_POP (file, STRUCT_VALUE_REGNUM);
1779 }
1780 #endif
1781 #endif
1782 }
1783
1784 /* Output assembler code for the end of a function.
1785 For clarity, args are same as those of `final_start_function'
1786 even though not all of them are needed. */
1787
1788 void
1789 final_end_function ()
1790 {
1791 app_disable ();
1792
1793 (*debug_hooks->end_function) (high_function_linenum);
1794
1795 /* Finally, output the function epilogue:
1796 code to restore the stack frame and return to the caller. */
1797 (*targetm.asm_out.function_epilogue) (asm_out_file, get_frame_size ());
1798
1799 /* And debug output. */
1800 (*debug_hooks->end_epilogue) ();
1801
1802 #if defined (DWARF2_UNWIND_INFO)
1803 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1804 && dwarf2out_do_frame ())
1805 dwarf2out_end_epilogue ();
1806 #endif
1807 }
1808 \f
1809 /* Output assembler code for some insns: all or part of a function.
1810 For description of args, see `final_start_function', above.
1811
1812 PRESCAN is 1 if we are not really outputting,
1813 just scanning as if we were outputting.
1814 Prescanning deletes and rearranges insns just like ordinary output.
1815 PRESCAN is -2 if we are outputting after having prescanned.
1816 In this case, don't try to delete or rearrange insns
1817 because that has already been done.
1818 Prescanning is done only on certain machines. */
1819
1820 void
1821 final (first, file, optimize, prescan)
1822 rtx first;
1823 FILE *file;
1824 int optimize;
1825 int prescan;
1826 {
1827 rtx insn;
1828 int max_line = 0;
1829 int max_uid = 0;
1830
1831 last_ignored_compare = 0;
1832 new_block = 1;
1833
1834 /* Make a map indicating which line numbers appear in this function.
1835 When producing SDB debugging info, delete troublesome line number
1836 notes from inlined functions in other files as well as duplicate
1837 line number notes. */
1838 #ifdef SDB_DEBUGGING_INFO
1839 if (write_symbols == SDB_DEBUG)
1840 {
1841 rtx last = 0;
1842 for (insn = first; insn; insn = NEXT_INSN (insn))
1843 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1844 {
1845 if ((RTX_INTEGRATED_P (insn)
1846 && strcmp (NOTE_SOURCE_FILE (insn), main_input_filename) != 0)
1847 || (last != 0
1848 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1849 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)))
1850 {
1851 delete_insn (insn); /* Use delete_note. */
1852 continue;
1853 }
1854 last = insn;
1855 if (NOTE_LINE_NUMBER (insn) > max_line)
1856 max_line = NOTE_LINE_NUMBER (insn);
1857 }
1858 }
1859 else
1860 #endif
1861 {
1862 for (insn = first; insn; insn = NEXT_INSN (insn))
1863 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > max_line)
1864 max_line = NOTE_LINE_NUMBER (insn);
1865 }
1866
1867 line_note_exists = (char *) xcalloc (max_line + 1, sizeof (char));
1868
1869 for (insn = first; insn; insn = NEXT_INSN (insn))
1870 {
1871 if (INSN_UID (insn) > max_uid) /* find largest UID */
1872 max_uid = INSN_UID (insn);
1873 if (GET_CODE (insn) == NOTE && NOTE_LINE_NUMBER (insn) > 0)
1874 line_note_exists[NOTE_LINE_NUMBER (insn)] = 1;
1875 #ifdef HAVE_cc0
1876 /* If CC tracking across branches is enabled, record the insn which
1877 jumps to each branch only reached from one place. */
1878 if (optimize && GET_CODE (insn) == JUMP_INSN)
1879 {
1880 rtx lab = JUMP_LABEL (insn);
1881 if (lab && LABEL_NUSES (lab) == 1)
1882 {
1883 LABEL_REFS (lab) = insn;
1884 }
1885 }
1886 #endif
1887 }
1888
1889 init_recog ();
1890
1891 CC_STATUS_INIT;
1892
1893 /* Output the insns. */
1894 for (insn = NEXT_INSN (first); insn;)
1895 {
1896 #ifdef HAVE_ATTR_length
1897 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1898 {
1899 /* This can be triggered by bugs elsewhere in the compiler if
1900 new insns are created after init_insn_lengths is called. */
1901 if (GET_CODE (insn) == NOTE)
1902 insn_current_address = -1;
1903 else
1904 abort ();
1905 }
1906 else
1907 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1908 #endif /* HAVE_ATTR_length */
1909
1910 insn = final_scan_insn (insn, file, optimize, prescan, 0);
1911 }
1912
1913 /* Store function names for edge-profiling. */
1914 /* ??? Probably should re-use the existing struct function. */
1915
1916 if (cfun->arc_profile)
1917 {
1918 struct function_list *new_item = xmalloc (sizeof (struct function_list));
1919
1920 *functions_tail = new_item;
1921 functions_tail = &new_item->next;
1922
1923 new_item->next = 0;
1924 new_item->name = xstrdup (current_function_name);
1925 new_item->cfg_checksum = profile_info.current_function_cfg_checksum;
1926 new_item->count_edges = profile_info.count_edges_instrumented_now;
1927 }
1928
1929 free (line_note_exists);
1930 line_note_exists = NULL;
1931 }
1932 \f
1933 const char *
1934 get_insn_template (code, insn)
1935 int code;
1936 rtx insn;
1937 {
1938 const void *output = insn_data[code].output;
1939 switch (insn_data[code].output_format)
1940 {
1941 case INSN_OUTPUT_FORMAT_SINGLE:
1942 return (const char *) output;
1943 case INSN_OUTPUT_FORMAT_MULTI:
1944 return ((const char *const *) output)[which_alternative];
1945 case INSN_OUTPUT_FORMAT_FUNCTION:
1946 if (insn == NULL)
1947 abort ();
1948 return (*(insn_output_fn) output) (recog_data.operand, insn);
1949
1950 default:
1951 abort ();
1952 }
1953 }
1954
1955 /* Emit the appropriate declaration for an alternate-entry-point
1956 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1957 LABEL_KIND != LABEL_NORMAL.
1958
1959 The case fall-through in this function is intentional. */
1960 static void
1961 output_alternate_entry_point (file, insn)
1962 FILE *file;
1963 rtx insn;
1964 {
1965 const char *name = LABEL_NAME (insn);
1966
1967 switch (LABEL_KIND (insn))
1968 {
1969 case LABEL_WEAK_ENTRY:
1970 #ifdef ASM_WEAKEN_LABEL
1971 ASM_WEAKEN_LABEL (file, name);
1972 #endif
1973 case LABEL_GLOBAL_ENTRY:
1974 ASM_GLOBALIZE_LABEL (file, name);
1975 case LABEL_STATIC_ENTRY:
1976 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1977 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1978 #endif
1979 ASM_OUTPUT_LABEL (file, name);
1980 break;
1981
1982 case LABEL_NORMAL:
1983 default:
1984 abort ();
1985 }
1986 }
1987
1988 /* The final scan for one insn, INSN.
1989 Args are same as in `final', except that INSN
1990 is the insn being scanned.
1991 Value returned is the next insn to be scanned.
1992
1993 NOPEEPHOLES is the flag to disallow peephole processing (currently
1994 used for within delayed branch sequence output). */
1995
1996 rtx
1997 final_scan_insn (insn, file, optimize, prescan, nopeepholes)
1998 rtx insn;
1999 FILE *file;
2000 int optimize ATTRIBUTE_UNUSED;
2001 int prescan;
2002 int nopeepholes ATTRIBUTE_UNUSED;
2003 {
2004 #ifdef HAVE_cc0
2005 rtx set;
2006 #endif
2007
2008 insn_counter++;
2009
2010 /* Ignore deleted insns. These can occur when we split insns (due to a
2011 template of "#") while not optimizing. */
2012 if (INSN_DELETED_P (insn))
2013 return NEXT_INSN (insn);
2014
2015 switch (GET_CODE (insn))
2016 {
2017 case NOTE:
2018 if (prescan > 0)
2019 break;
2020
2021 switch (NOTE_LINE_NUMBER (insn))
2022 {
2023 case NOTE_INSN_DELETED:
2024 case NOTE_INSN_LOOP_BEG:
2025 case NOTE_INSN_LOOP_END:
2026 case NOTE_INSN_LOOP_END_TOP_COND:
2027 case NOTE_INSN_LOOP_CONT:
2028 case NOTE_INSN_LOOP_VTOP:
2029 case NOTE_INSN_FUNCTION_END:
2030 case NOTE_INSN_REPEATED_LINE_NUMBER:
2031 case NOTE_INSN_EXPECTED_VALUE:
2032 break;
2033
2034 case NOTE_INSN_BASIC_BLOCK:
2035 #ifdef IA64_UNWIND_INFO
2036 IA64_UNWIND_EMIT (asm_out_file, insn);
2037 #endif
2038 if (flag_debug_asm)
2039 fprintf (asm_out_file, "\t%s basic block %d\n",
2040 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
2041 break;
2042
2043 case NOTE_INSN_EH_REGION_BEG:
2044 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2045 NOTE_EH_HANDLER (insn));
2046 break;
2047
2048 case NOTE_INSN_EH_REGION_END:
2049 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2050 NOTE_EH_HANDLER (insn));
2051 break;
2052
2053 case NOTE_INSN_PROLOGUE_END:
2054 (*targetm.asm_out.function_end_prologue) (file);
2055 profile_after_prologue (file);
2056 break;
2057
2058 case NOTE_INSN_EPILOGUE_BEG:
2059 (*targetm.asm_out.function_begin_epilogue) (file);
2060 break;
2061
2062 case NOTE_INSN_FUNCTION_BEG:
2063 app_disable ();
2064 (*debug_hooks->end_prologue) (last_linenum);
2065 break;
2066
2067 case NOTE_INSN_BLOCK_BEG:
2068 if (debug_info_level == DINFO_LEVEL_NORMAL
2069 || debug_info_level == DINFO_LEVEL_VERBOSE
2070 || write_symbols == DWARF_DEBUG
2071 || write_symbols == DWARF2_DEBUG
2072 || write_symbols == VMS_AND_DWARF2_DEBUG
2073 || write_symbols == VMS_DEBUG)
2074 {
2075 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2076
2077 app_disable ();
2078 ++block_depth;
2079 high_block_linenum = last_linenum;
2080
2081 /* Output debugging info about the symbol-block beginning. */
2082 (*debug_hooks->begin_block) (last_linenum, n);
2083
2084 /* Mark this block as output. */
2085 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2086 }
2087 break;
2088
2089 case NOTE_INSN_BLOCK_END:
2090 if (debug_info_level == DINFO_LEVEL_NORMAL
2091 || debug_info_level == DINFO_LEVEL_VERBOSE
2092 || write_symbols == DWARF_DEBUG
2093 || write_symbols == DWARF2_DEBUG
2094 || write_symbols == VMS_AND_DWARF2_DEBUG
2095 || write_symbols == VMS_DEBUG)
2096 {
2097 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2098
2099 app_disable ();
2100
2101 /* End of a symbol-block. */
2102 --block_depth;
2103 if (block_depth < 0)
2104 abort ();
2105
2106 (*debug_hooks->end_block) (high_block_linenum, n);
2107 }
2108 break;
2109
2110 case NOTE_INSN_DELETED_LABEL:
2111 /* Emit the label. We may have deleted the CODE_LABEL because
2112 the label could be proved to be unreachable, though still
2113 referenced (in the form of having its address taken. */
2114 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2115 break;
2116
2117 case 0:
2118 break;
2119
2120 default:
2121 if (NOTE_LINE_NUMBER (insn) <= 0)
2122 abort ();
2123
2124 /* This note is a line-number. */
2125 {
2126 rtx note;
2127 int note_after = 0;
2128
2129 /* If there is anything real after this note, output it.
2130 If another line note follows, omit this one. */
2131 for (note = NEXT_INSN (insn); note; note = NEXT_INSN (note))
2132 {
2133 if (GET_CODE (note) != NOTE && GET_CODE (note) != CODE_LABEL)
2134 break;
2135
2136 /* These types of notes can be significant
2137 so make sure the preceding line number stays. */
2138 else if (GET_CODE (note) == NOTE
2139 && (NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_BEG
2140 || NOTE_LINE_NUMBER (note) == NOTE_INSN_BLOCK_END
2141 || NOTE_LINE_NUMBER (note) == NOTE_INSN_FUNCTION_BEG))
2142 break;
2143 else if (GET_CODE (note) == NOTE && NOTE_LINE_NUMBER (note) > 0)
2144 {
2145 /* Another line note follows; we can delete this note
2146 if no intervening line numbers have notes elsewhere. */
2147 int num;
2148 for (num = NOTE_LINE_NUMBER (insn) + 1;
2149 num < NOTE_LINE_NUMBER (note);
2150 num++)
2151 if (line_note_exists[num])
2152 break;
2153
2154 if (num >= NOTE_LINE_NUMBER (note))
2155 note_after = 1;
2156 break;
2157 }
2158 }
2159
2160 /* Output this line note if it is the first or the last line
2161 note in a row. */
2162 if (!note_after)
2163 {
2164 notice_source_line (insn);
2165 (*debug_hooks->source_line) (last_linenum, last_filename);
2166 }
2167 }
2168 break;
2169 }
2170 break;
2171
2172 case BARRIER:
2173 #if defined (DWARF2_UNWIND_INFO)
2174 if (dwarf2out_do_frame ())
2175 dwarf2out_frame_debug (insn);
2176 #endif
2177 break;
2178
2179 case CODE_LABEL:
2180 /* The target port might emit labels in the output function for
2181 some insn, e.g. sh.c output_branchy_insn. */
2182 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2183 {
2184 int align = LABEL_TO_ALIGNMENT (insn);
2185 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2186 int max_skip = LABEL_TO_MAX_SKIP (insn);
2187 #endif
2188
2189 if (align && NEXT_INSN (insn))
2190 {
2191 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2192 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
2193 #else
2194 ASM_OUTPUT_ALIGN (file, align);
2195 #endif
2196 }
2197 }
2198 #ifdef HAVE_cc0
2199 CC_STATUS_INIT;
2200 /* If this label is reached from only one place, set the condition
2201 codes from the instruction just before the branch. */
2202
2203 /* Disabled because some insns set cc_status in the C output code
2204 and NOTICE_UPDATE_CC alone can set incorrect status. */
2205 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
2206 {
2207 rtx jump = LABEL_REFS (insn);
2208 rtx barrier = prev_nonnote_insn (insn);
2209 rtx prev;
2210 /* If the LABEL_REFS field of this label has been set to point
2211 at a branch, the predecessor of the branch is a regular
2212 insn, and that branch is the only way to reach this label,
2213 set the condition codes based on the branch and its
2214 predecessor. */
2215 if (barrier && GET_CODE (barrier) == BARRIER
2216 && jump && GET_CODE (jump) == JUMP_INSN
2217 && (prev = prev_nonnote_insn (jump))
2218 && GET_CODE (prev) == INSN)
2219 {
2220 NOTICE_UPDATE_CC (PATTERN (prev), prev);
2221 NOTICE_UPDATE_CC (PATTERN (jump), jump);
2222 }
2223 }
2224 #endif
2225 if (prescan > 0)
2226 break;
2227 new_block = 1;
2228
2229 #ifdef FINAL_PRESCAN_LABEL
2230 FINAL_PRESCAN_INSN (insn, NULL, 0);
2231 #endif
2232
2233 if (LABEL_NAME (insn))
2234 (*debug_hooks->label) (insn);
2235
2236 if (app_on)
2237 {
2238 fputs (ASM_APP_OFF, file);
2239 app_on = 0;
2240 }
2241 if (NEXT_INSN (insn) != 0
2242 && GET_CODE (NEXT_INSN (insn)) == JUMP_INSN)
2243 {
2244 rtx nextbody = PATTERN (NEXT_INSN (insn));
2245
2246 /* If this label is followed by a jump-table,
2247 make sure we put the label in the read-only section. Also
2248 possibly write the label and jump table together. */
2249
2250 if (GET_CODE (nextbody) == ADDR_VEC
2251 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2252 {
2253 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2254 /* In this case, the case vector is being moved by the
2255 target, so don't output the label at all. Leave that
2256 to the back end macros. */
2257 #else
2258 if (! JUMP_TABLES_IN_TEXT_SECTION)
2259 {
2260 int log_align;
2261
2262 readonly_data_section ();
2263
2264 #ifdef ADDR_VEC_ALIGN
2265 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
2266 #else
2267 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2268 #endif
2269 ASM_OUTPUT_ALIGN (file, log_align);
2270 }
2271 else
2272 function_section (current_function_decl);
2273
2274 #ifdef ASM_OUTPUT_CASE_LABEL
2275 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2276 NEXT_INSN (insn));
2277 #else
2278 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2279 #endif
2280 #endif
2281 break;
2282 }
2283 }
2284 if (LABEL_ALT_ENTRY_P (insn))
2285 output_alternate_entry_point (file, insn);
2286 else
2287 ASM_OUTPUT_INTERNAL_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2288 break;
2289
2290 default:
2291 {
2292 rtx body = PATTERN (insn);
2293 int insn_code_number;
2294 const char *template;
2295 rtx note;
2296
2297 /* An INSN, JUMP_INSN or CALL_INSN.
2298 First check for special kinds that recog doesn't recognize. */
2299
2300 if (GET_CODE (body) == USE /* These are just declarations */
2301 || GET_CODE (body) == CLOBBER)
2302 break;
2303
2304 #ifdef HAVE_cc0
2305 /* If there is a REG_CC_SETTER note on this insn, it means that
2306 the setting of the condition code was done in the delay slot
2307 of the insn that branched here. So recover the cc status
2308 from the insn that set it. */
2309
2310 note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2311 if (note)
2312 {
2313 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2314 cc_prev_status = cc_status;
2315 }
2316 #endif
2317
2318 /* Detect insns that are really jump-tables
2319 and output them as such. */
2320
2321 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2322 {
2323 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2324 int vlen, idx;
2325 #endif
2326
2327 if (prescan > 0)
2328 break;
2329
2330 if (app_on)
2331 {
2332 fputs (ASM_APP_OFF, file);
2333 app_on = 0;
2334 }
2335
2336 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2337 if (GET_CODE (body) == ADDR_VEC)
2338 {
2339 #ifdef ASM_OUTPUT_ADDR_VEC
2340 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2341 #else
2342 abort ();
2343 #endif
2344 }
2345 else
2346 {
2347 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2348 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2349 #else
2350 abort ();
2351 #endif
2352 }
2353 #else
2354 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2355 for (idx = 0; idx < vlen; idx++)
2356 {
2357 if (GET_CODE (body) == ADDR_VEC)
2358 {
2359 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2360 ASM_OUTPUT_ADDR_VEC_ELT
2361 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2362 #else
2363 abort ();
2364 #endif
2365 }
2366 else
2367 {
2368 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2369 ASM_OUTPUT_ADDR_DIFF_ELT
2370 (file,
2371 body,
2372 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2373 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2374 #else
2375 abort ();
2376 #endif
2377 }
2378 }
2379 #ifdef ASM_OUTPUT_CASE_END
2380 ASM_OUTPUT_CASE_END (file,
2381 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2382 insn);
2383 #endif
2384 #endif
2385
2386 function_section (current_function_decl);
2387
2388 break;
2389 }
2390
2391 if (GET_CODE (body) == ASM_INPUT)
2392 {
2393 const char *string = XSTR (body, 0);
2394
2395 /* There's no telling what that did to the condition codes. */
2396 CC_STATUS_INIT;
2397 if (prescan > 0)
2398 break;
2399
2400 if (string[0])
2401 {
2402 if (! app_on)
2403 {
2404 fputs (ASM_APP_ON, file);
2405 app_on = 1;
2406 }
2407 fprintf (asm_out_file, "\t%s\n", string);
2408 }
2409 break;
2410 }
2411
2412 /* Detect `asm' construct with operands. */
2413 if (asm_noperands (body) >= 0)
2414 {
2415 unsigned int noperands = asm_noperands (body);
2416 rtx *ops = (rtx *) alloca (noperands * sizeof (rtx));
2417 const char *string;
2418
2419 /* There's no telling what that did to the condition codes. */
2420 CC_STATUS_INIT;
2421 if (prescan > 0)
2422 break;
2423
2424 /* Get out the operand values. */
2425 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2426 /* Inhibit aborts on what would otherwise be compiler bugs. */
2427 insn_noperands = noperands;
2428 this_is_asm_operands = insn;
2429
2430 /* Output the insn using them. */
2431 if (string[0])
2432 {
2433 if (! app_on)
2434 {
2435 fputs (ASM_APP_ON, file);
2436 app_on = 1;
2437 }
2438 output_asm_insn (string, ops);
2439 }
2440
2441 this_is_asm_operands = 0;
2442 break;
2443 }
2444
2445 if (prescan <= 0 && app_on)
2446 {
2447 fputs (ASM_APP_OFF, file);
2448 app_on = 0;
2449 }
2450
2451 if (GET_CODE (body) == SEQUENCE)
2452 {
2453 /* A delayed-branch sequence */
2454 int i;
2455 rtx next;
2456
2457 if (prescan > 0)
2458 break;
2459 final_sequence = body;
2460
2461 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2462 force the restoration of a comparison that was previously
2463 thought unnecessary. If that happens, cancel this sequence
2464 and cause that insn to be restored. */
2465
2466 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1);
2467 if (next != XVECEXP (body, 0, 1))
2468 {
2469 final_sequence = 0;
2470 return next;
2471 }
2472
2473 for (i = 1; i < XVECLEN (body, 0); i++)
2474 {
2475 rtx insn = XVECEXP (body, 0, i);
2476 rtx next = NEXT_INSN (insn);
2477 /* We loop in case any instruction in a delay slot gets
2478 split. */
2479 do
2480 insn = final_scan_insn (insn, file, 0, prescan, 1);
2481 while (insn != next);
2482 }
2483 #ifdef DBR_OUTPUT_SEQEND
2484 DBR_OUTPUT_SEQEND (file);
2485 #endif
2486 final_sequence = 0;
2487
2488 /* If the insn requiring the delay slot was a CALL_INSN, the
2489 insns in the delay slot are actually executed before the
2490 called function. Hence we don't preserve any CC-setting
2491 actions in these insns and the CC must be marked as being
2492 clobbered by the function. */
2493 if (GET_CODE (XVECEXP (body, 0, 0)) == CALL_INSN)
2494 {
2495 CC_STATUS_INIT;
2496 }
2497 break;
2498 }
2499
2500 /* We have a real machine instruction as rtl. */
2501
2502 body = PATTERN (insn);
2503
2504 #ifdef HAVE_cc0
2505 set = single_set (insn);
2506
2507 /* Check for redundant test and compare instructions
2508 (when the condition codes are already set up as desired).
2509 This is done only when optimizing; if not optimizing,
2510 it should be possible for the user to alter a variable
2511 with the debugger in between statements
2512 and the next statement should reexamine the variable
2513 to compute the condition codes. */
2514
2515 if (optimize)
2516 {
2517 #if 0
2518 rtx set = single_set (insn);
2519 #endif
2520
2521 if (set
2522 && GET_CODE (SET_DEST (set)) == CC0
2523 && insn != last_ignored_compare)
2524 {
2525 if (GET_CODE (SET_SRC (set)) == SUBREG)
2526 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2527 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2528 {
2529 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2530 XEXP (SET_SRC (set), 0)
2531 = alter_subreg (&XEXP (SET_SRC (set), 0));
2532 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2533 XEXP (SET_SRC (set), 1)
2534 = alter_subreg (&XEXP (SET_SRC (set), 1));
2535 }
2536 if ((cc_status.value1 != 0
2537 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2538 || (cc_status.value2 != 0
2539 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2540 {
2541 /* Don't delete insn if it has an addressing side-effect. */
2542 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2543 /* or if anything in it is volatile. */
2544 && ! volatile_refs_p (PATTERN (insn)))
2545 {
2546 /* We don't really delete the insn; just ignore it. */
2547 last_ignored_compare = insn;
2548 break;
2549 }
2550 }
2551 }
2552 }
2553 #endif
2554
2555 #ifndef STACK_REGS
2556 /* Don't bother outputting obvious no-ops, even without -O.
2557 This optimization is fast and doesn't interfere with debugging.
2558 Don't do this if the insn is in a delay slot, since this
2559 will cause an improper number of delay insns to be written. */
2560 if (final_sequence == 0
2561 && prescan >= 0
2562 && GET_CODE (insn) == INSN && GET_CODE (body) == SET
2563 && GET_CODE (SET_SRC (body)) == REG
2564 && GET_CODE (SET_DEST (body)) == REG
2565 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2566 break;
2567 #endif
2568
2569 #ifdef HAVE_cc0
2570 /* If this is a conditional branch, maybe modify it
2571 if the cc's are in a nonstandard state
2572 so that it accomplishes the same thing that it would
2573 do straightforwardly if the cc's were set up normally. */
2574
2575 if (cc_status.flags != 0
2576 && GET_CODE (insn) == JUMP_INSN
2577 && GET_CODE (body) == SET
2578 && SET_DEST (body) == pc_rtx
2579 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2580 && GET_RTX_CLASS (GET_CODE (XEXP (SET_SRC (body), 0))) == '<'
2581 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2582 /* This is done during prescan; it is not done again
2583 in final scan when prescan has been done. */
2584 && prescan >= 0)
2585 {
2586 /* This function may alter the contents of its argument
2587 and clear some of the cc_status.flags bits.
2588 It may also return 1 meaning condition now always true
2589 or -1 meaning condition now always false
2590 or 2 meaning condition nontrivial but altered. */
2591 int result = alter_cond (XEXP (SET_SRC (body), 0));
2592 /* If condition now has fixed value, replace the IF_THEN_ELSE
2593 with its then-operand or its else-operand. */
2594 if (result == 1)
2595 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2596 if (result == -1)
2597 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2598
2599 /* The jump is now either unconditional or a no-op.
2600 If it has become a no-op, don't try to output it.
2601 (It would not be recognized.) */
2602 if (SET_SRC (body) == pc_rtx)
2603 {
2604 delete_insn (insn);
2605 break;
2606 }
2607 else if (GET_CODE (SET_SRC (body)) == RETURN)
2608 /* Replace (set (pc) (return)) with (return). */
2609 PATTERN (insn) = body = SET_SRC (body);
2610
2611 /* Rerecognize the instruction if it has changed. */
2612 if (result != 0)
2613 INSN_CODE (insn) = -1;
2614 }
2615
2616 /* Make same adjustments to instructions that examine the
2617 condition codes without jumping and instructions that
2618 handle conditional moves (if this machine has either one). */
2619
2620 if (cc_status.flags != 0
2621 && set != 0)
2622 {
2623 rtx cond_rtx, then_rtx, else_rtx;
2624
2625 if (GET_CODE (insn) != JUMP_INSN
2626 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2627 {
2628 cond_rtx = XEXP (SET_SRC (set), 0);
2629 then_rtx = XEXP (SET_SRC (set), 1);
2630 else_rtx = XEXP (SET_SRC (set), 2);
2631 }
2632 else
2633 {
2634 cond_rtx = SET_SRC (set);
2635 then_rtx = const_true_rtx;
2636 else_rtx = const0_rtx;
2637 }
2638
2639 switch (GET_CODE (cond_rtx))
2640 {
2641 case GTU:
2642 case GT:
2643 case LTU:
2644 case LT:
2645 case GEU:
2646 case GE:
2647 case LEU:
2648 case LE:
2649 case EQ:
2650 case NE:
2651 {
2652 int result;
2653 if (XEXP (cond_rtx, 0) != cc0_rtx)
2654 break;
2655 result = alter_cond (cond_rtx);
2656 if (result == 1)
2657 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2658 else if (result == -1)
2659 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2660 else if (result == 2)
2661 INSN_CODE (insn) = -1;
2662 if (SET_DEST (set) == SET_SRC (set))
2663 delete_insn (insn);
2664 }
2665 break;
2666
2667 default:
2668 break;
2669 }
2670 }
2671
2672 #endif
2673
2674 #ifdef HAVE_peephole
2675 /* Do machine-specific peephole optimizations if desired. */
2676
2677 if (optimize && !flag_no_peephole && !nopeepholes)
2678 {
2679 rtx next = peephole (insn);
2680 /* When peepholing, if there were notes within the peephole,
2681 emit them before the peephole. */
2682 if (next != 0 && next != NEXT_INSN (insn))
2683 {
2684 rtx prev = PREV_INSN (insn);
2685
2686 for (note = NEXT_INSN (insn); note != next;
2687 note = NEXT_INSN (note))
2688 final_scan_insn (note, file, optimize, prescan, nopeepholes);
2689
2690 /* In case this is prescan, put the notes
2691 in proper position for later rescan. */
2692 note = NEXT_INSN (insn);
2693 PREV_INSN (note) = prev;
2694 NEXT_INSN (prev) = note;
2695 NEXT_INSN (PREV_INSN (next)) = insn;
2696 PREV_INSN (insn) = PREV_INSN (next);
2697 NEXT_INSN (insn) = next;
2698 PREV_INSN (next) = insn;
2699 }
2700
2701 /* PEEPHOLE might have changed this. */
2702 body = PATTERN (insn);
2703 }
2704 #endif
2705
2706 /* Try to recognize the instruction.
2707 If successful, verify that the operands satisfy the
2708 constraints for the instruction. Crash if they don't,
2709 since `reload' should have changed them so that they do. */
2710
2711 insn_code_number = recog_memoized (insn);
2712 cleanup_subreg_operands (insn);
2713
2714 /* Dump the insn in the assembly for debugging. */
2715 if (flag_dump_rtl_in_asm)
2716 {
2717 print_rtx_head = ASM_COMMENT_START;
2718 print_rtl_single (asm_out_file, insn);
2719 print_rtx_head = "";
2720 }
2721
2722 if (! constrain_operands_cached (1))
2723 fatal_insn_not_found (insn);
2724
2725 /* Some target machines need to prescan each insn before
2726 it is output. */
2727
2728 #ifdef FINAL_PRESCAN_INSN
2729 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2730 #endif
2731
2732 #ifdef HAVE_conditional_execution
2733 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2734 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2735 else
2736 current_insn_predicate = NULL_RTX;
2737 #endif
2738
2739 #ifdef HAVE_cc0
2740 cc_prev_status = cc_status;
2741
2742 /* Update `cc_status' for this instruction.
2743 The instruction's output routine may change it further.
2744 If the output routine for a jump insn needs to depend
2745 on the cc status, it should look at cc_prev_status. */
2746
2747 NOTICE_UPDATE_CC (body, insn);
2748 #endif
2749
2750 current_output_insn = debug_insn = insn;
2751
2752 #if defined (DWARF2_UNWIND_INFO)
2753 if (GET_CODE (insn) == CALL_INSN && dwarf2out_do_frame ())
2754 dwarf2out_frame_debug (insn);
2755 #endif
2756
2757 /* Find the proper template for this insn. */
2758 template = get_insn_template (insn_code_number, insn);
2759
2760 /* If the C code returns 0, it means that it is a jump insn
2761 which follows a deleted test insn, and that test insn
2762 needs to be reinserted. */
2763 if (template == 0)
2764 {
2765 rtx prev;
2766
2767 if (prev_nonnote_insn (insn) != last_ignored_compare)
2768 abort ();
2769 new_block = 0;
2770
2771 /* We have already processed the notes between the setter and
2772 the user. Make sure we don't process them again, this is
2773 particularly important if one of the notes is a block
2774 scope note or an EH note. */
2775 for (prev = insn;
2776 prev != last_ignored_compare;
2777 prev = PREV_INSN (prev))
2778 {
2779 if (GET_CODE (prev) == NOTE)
2780 delete_insn (prev); /* Use delete_note. */
2781 }
2782
2783 return prev;
2784 }
2785
2786 /* If the template is the string "#", it means that this insn must
2787 be split. */
2788 if (template[0] == '#' && template[1] == '\0')
2789 {
2790 rtx new = try_split (body, insn, 0);
2791
2792 /* If we didn't split the insn, go away. */
2793 if (new == insn && PATTERN (new) == body)
2794 fatal_insn ("could not split insn", insn);
2795
2796 #ifdef HAVE_ATTR_length
2797 /* This instruction should have been split in shorten_branches,
2798 to ensure that we would have valid length info for the
2799 splitees. */
2800 abort ();
2801 #endif
2802
2803 new_block = 0;
2804 return new;
2805 }
2806
2807 if (prescan > 0)
2808 break;
2809
2810 #ifdef IA64_UNWIND_INFO
2811 IA64_UNWIND_EMIT (asm_out_file, insn);
2812 #endif
2813 /* Output assembler code from the template. */
2814
2815 output_asm_insn (template, recog_data.operand);
2816
2817 #if defined (DWARF2_UNWIND_INFO)
2818 #if defined (HAVE_prologue)
2819 if (GET_CODE (insn) == INSN && dwarf2out_do_frame ())
2820 dwarf2out_frame_debug (insn);
2821 #else
2822 if (!ACCUMULATE_OUTGOING_ARGS
2823 && GET_CODE (insn) == INSN
2824 && dwarf2out_do_frame ())
2825 dwarf2out_frame_debug (insn);
2826 #endif
2827 #endif
2828
2829 #if 0
2830 /* It's not at all clear why we did this and doing so interferes
2831 with tests we'd like to do to use REG_WAS_0 notes, so let's try
2832 with this out. */
2833
2834 /* Mark this insn as having been output. */
2835 INSN_DELETED_P (insn) = 1;
2836 #endif
2837
2838 /* Emit information for vtable gc. */
2839 note = find_reg_note (insn, REG_VTABLE_REF, NULL_RTX);
2840 if (note)
2841 assemble_vtable_entry (XEXP (XEXP (note, 0), 0),
2842 INTVAL (XEXP (XEXP (note, 0), 1)));
2843
2844 current_output_insn = debug_insn = 0;
2845 }
2846 }
2847 return NEXT_INSN (insn);
2848 }
2849 \f
2850 /* Output debugging info to the assembler file FILE
2851 based on the NOTE-insn INSN, assumed to be a line number. */
2852
2853 static void
2854 notice_source_line (insn)
2855 rtx insn;
2856 {
2857 const char *filename = NOTE_SOURCE_FILE (insn);
2858
2859 last_filename = filename;
2860 last_linenum = NOTE_LINE_NUMBER (insn);
2861 high_block_linenum = MAX (last_linenum, high_block_linenum);
2862 high_function_linenum = MAX (last_linenum, high_function_linenum);
2863 }
2864 \f
2865 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2866 directly to the desired hard register. */
2867
2868 void
2869 cleanup_subreg_operands (insn)
2870 rtx insn;
2871 {
2872 int i;
2873 extract_insn_cached (insn);
2874 for (i = 0; i < recog_data.n_operands; i++)
2875 {
2876 /* The following test cannot use recog_data.operand when tesing
2877 for a SUBREG: the underlying object might have been changed
2878 already if we are inside a match_operator expression that
2879 matches the else clause. Instead we test the underlying
2880 expression directly. */
2881 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2882 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2883 else if (GET_CODE (recog_data.operand[i]) == PLUS
2884 || GET_CODE (recog_data.operand[i]) == MULT
2885 || GET_CODE (recog_data.operand[i]) == MEM)
2886 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2887 }
2888
2889 for (i = 0; i < recog_data.n_dups; i++)
2890 {
2891 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2892 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2893 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2894 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2895 || GET_CODE (*recog_data.dup_loc[i]) == MEM)
2896 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2897 }
2898 }
2899
2900 /* If X is a SUBREG, replace it with a REG or a MEM,
2901 based on the thing it is a subreg of. */
2902
2903 rtx
2904 alter_subreg (xp)
2905 rtx *xp;
2906 {
2907 rtx x = *xp;
2908 rtx y = SUBREG_REG (x);
2909
2910 /* simplify_subreg does not remove subreg from volatile references.
2911 We are required to. */
2912 if (GET_CODE (y) == MEM)
2913 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2914 else
2915 {
2916 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2917 SUBREG_BYTE (x));
2918
2919 if (new != 0)
2920 *xp = new;
2921 /* Simplify_subreg can't handle some REG cases, but we have to. */
2922 else if (GET_CODE (y) == REG)
2923 {
2924 unsigned int regno = subreg_hard_regno (x, 1);
2925 PUT_CODE (x, REG);
2926 REGNO (x) = regno;
2927 ORIGINAL_REGNO (x) = ORIGINAL_REGNO (y);
2928 /* This field has a different meaning for REGs and SUBREGs. Make
2929 sure to clear it! */
2930 RTX_FLAG (x, used) = 0;
2931 }
2932 else
2933 abort ();
2934 }
2935
2936 return *xp;
2937 }
2938
2939 /* Do alter_subreg on all the SUBREGs contained in X. */
2940
2941 static rtx
2942 walk_alter_subreg (xp)
2943 rtx *xp;
2944 {
2945 rtx x = *xp;
2946 switch (GET_CODE (x))
2947 {
2948 case PLUS:
2949 case MULT:
2950 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2951 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2952 break;
2953
2954 case MEM:
2955 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2956 break;
2957
2958 case SUBREG:
2959 return alter_subreg (xp);
2960
2961 default:
2962 break;
2963 }
2964
2965 return *xp;
2966 }
2967 \f
2968 #ifdef HAVE_cc0
2969
2970 /* Given BODY, the body of a jump instruction, alter the jump condition
2971 as required by the bits that are set in cc_status.flags.
2972 Not all of the bits there can be handled at this level in all cases.
2973
2974 The value is normally 0.
2975 1 means that the condition has become always true.
2976 -1 means that the condition has become always false.
2977 2 means that COND has been altered. */
2978
2979 static int
2980 alter_cond (cond)
2981 rtx cond;
2982 {
2983 int value = 0;
2984
2985 if (cc_status.flags & CC_REVERSED)
2986 {
2987 value = 2;
2988 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2989 }
2990
2991 if (cc_status.flags & CC_INVERTED)
2992 {
2993 value = 2;
2994 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2995 }
2996
2997 if (cc_status.flags & CC_NOT_POSITIVE)
2998 switch (GET_CODE (cond))
2999 {
3000 case LE:
3001 case LEU:
3002 case GEU:
3003 /* Jump becomes unconditional. */
3004 return 1;
3005
3006 case GT:
3007 case GTU:
3008 case LTU:
3009 /* Jump becomes no-op. */
3010 return -1;
3011
3012 case GE:
3013 PUT_CODE (cond, EQ);
3014 value = 2;
3015 break;
3016
3017 case LT:
3018 PUT_CODE (cond, NE);
3019 value = 2;
3020 break;
3021
3022 default:
3023 break;
3024 }
3025
3026 if (cc_status.flags & CC_NOT_NEGATIVE)
3027 switch (GET_CODE (cond))
3028 {
3029 case GE:
3030 case GEU:
3031 /* Jump becomes unconditional. */
3032 return 1;
3033
3034 case LT:
3035 case LTU:
3036 /* Jump becomes no-op. */
3037 return -1;
3038
3039 case LE:
3040 case LEU:
3041 PUT_CODE (cond, EQ);
3042 value = 2;
3043 break;
3044
3045 case GT:
3046 case GTU:
3047 PUT_CODE (cond, NE);
3048 value = 2;
3049 break;
3050
3051 default:
3052 break;
3053 }
3054
3055 if (cc_status.flags & CC_NO_OVERFLOW)
3056 switch (GET_CODE (cond))
3057 {
3058 case GEU:
3059 /* Jump becomes unconditional. */
3060 return 1;
3061
3062 case LEU:
3063 PUT_CODE (cond, EQ);
3064 value = 2;
3065 break;
3066
3067 case GTU:
3068 PUT_CODE (cond, NE);
3069 value = 2;
3070 break;
3071
3072 case LTU:
3073 /* Jump becomes no-op. */
3074 return -1;
3075
3076 default:
3077 break;
3078 }
3079
3080 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
3081 switch (GET_CODE (cond))
3082 {
3083 default:
3084 abort ();
3085
3086 case NE:
3087 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
3088 value = 2;
3089 break;
3090
3091 case EQ:
3092 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
3093 value = 2;
3094 break;
3095 }
3096
3097 if (cc_status.flags & CC_NOT_SIGNED)
3098 /* The flags are valid if signed condition operators are converted
3099 to unsigned. */
3100 switch (GET_CODE (cond))
3101 {
3102 case LE:
3103 PUT_CODE (cond, LEU);
3104 value = 2;
3105 break;
3106
3107 case LT:
3108 PUT_CODE (cond, LTU);
3109 value = 2;
3110 break;
3111
3112 case GT:
3113 PUT_CODE (cond, GTU);
3114 value = 2;
3115 break;
3116
3117 case GE:
3118 PUT_CODE (cond, GEU);
3119 value = 2;
3120 break;
3121
3122 default:
3123 break;
3124 }
3125
3126 return value;
3127 }
3128 #endif
3129 \f
3130 /* Report inconsistency between the assembler template and the operands.
3131 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3132
3133 void
3134 output_operand_lossage VPARAMS ((const char *msgid, ...))
3135 {
3136 char *fmt_string;
3137 char *new_message;
3138 const char *pfx_str;
3139 VA_OPEN (ap, msgid);
3140 VA_FIXEDARG (ap, const char *, msgid);
3141
3142 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
3143 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
3144 vasprintf (&new_message, fmt_string, ap);
3145
3146 if (this_is_asm_operands)
3147 error_for_asm (this_is_asm_operands, "%s", new_message);
3148 else
3149 internal_error ("%s", new_message);
3150
3151 free (fmt_string);
3152 free (new_message);
3153 VA_CLOSE (ap);
3154 }
3155 \f
3156 /* Output of assembler code from a template, and its subroutines. */
3157
3158 /* Annotate the assembly with a comment describing the pattern and
3159 alternative used. */
3160
3161 static void
3162 output_asm_name ()
3163 {
3164 if (debug_insn)
3165 {
3166 int num = INSN_CODE (debug_insn);
3167 fprintf (asm_out_file, "\t%s %d\t%s",
3168 ASM_COMMENT_START, INSN_UID (debug_insn),
3169 insn_data[num].name);
3170 if (insn_data[num].n_alternatives > 1)
3171 fprintf (asm_out_file, "/%d", which_alternative + 1);
3172 #ifdef HAVE_ATTR_length
3173 fprintf (asm_out_file, "\t[length = %d]",
3174 get_attr_length (debug_insn));
3175 #endif
3176 /* Clear this so only the first assembler insn
3177 of any rtl insn will get the special comment for -dp. */
3178 debug_insn = 0;
3179 }
3180 }
3181
3182 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3183 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3184 corresponds to the address of the object and 0 if to the object. */
3185
3186 static tree
3187 get_mem_expr_from_op (op, paddressp)
3188 rtx op;
3189 int *paddressp;
3190 {
3191 tree expr;
3192 int inner_addressp;
3193
3194 *paddressp = 0;
3195
3196 if (op == NULL)
3197 return 0;
3198
3199 if (GET_CODE (op) == REG && ORIGINAL_REGNO (op) >= FIRST_PSEUDO_REGISTER)
3200 return REGNO_DECL (ORIGINAL_REGNO (op));
3201 else if (GET_CODE (op) != MEM)
3202 return 0;
3203
3204 if (MEM_EXPR (op) != 0)
3205 return MEM_EXPR (op);
3206
3207 /* Otherwise we have an address, so indicate it and look at the address. */
3208 *paddressp = 1;
3209 op = XEXP (op, 0);
3210
3211 /* First check if we have a decl for the address, then look at the right side
3212 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3213 But don't allow the address to itself be indirect. */
3214 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3215 return expr;
3216 else if (GET_CODE (op) == PLUS
3217 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3218 return expr;
3219
3220 while (GET_RTX_CLASS (GET_CODE (op)) == '1'
3221 || GET_RTX_CLASS (GET_CODE (op)) == '2')
3222 op = XEXP (op, 0);
3223
3224 expr = get_mem_expr_from_op (op, &inner_addressp);
3225 return inner_addressp ? 0 : expr;
3226 }
3227
3228 /* Output operand names for assembler instructions. OPERANDS is the
3229 operand vector, OPORDER is the order to write the operands, and NOPS
3230 is the number of operands to write. */
3231
3232 static void
3233 output_asm_operand_names (operands, oporder, nops)
3234 rtx *operands;
3235 int *oporder;
3236 int nops;
3237 {
3238 int wrote = 0;
3239 int i;
3240
3241 for (i = 0; i < nops; i++)
3242 {
3243 int addressp;
3244 tree expr = get_mem_expr_from_op (operands[oporder[i]], &addressp);
3245
3246 if (expr)
3247 {
3248 fprintf (asm_out_file, "%c%s %s",
3249 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START,
3250 addressp ? "*" : "");
3251 print_mem_expr (asm_out_file, expr);
3252 wrote = 1;
3253 }
3254 }
3255 }
3256
3257 /* Output text from TEMPLATE to the assembler output file,
3258 obeying %-directions to substitute operands taken from
3259 the vector OPERANDS.
3260
3261 %N (for N a digit) means print operand N in usual manner.
3262 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3263 and print the label name with no punctuation.
3264 %cN means require operand N to be a constant
3265 and print the constant expression with no punctuation.
3266 %aN means expect operand N to be a memory address
3267 (not a memory reference!) and print a reference
3268 to that address.
3269 %nN means expect operand N to be a constant
3270 and print a constant expression for minus the value
3271 of the operand, with no other punctuation. */
3272
3273 void
3274 output_asm_insn (template, operands)
3275 const char *template;
3276 rtx *operands;
3277 {
3278 const char *p;
3279 int c;
3280 #ifdef ASSEMBLER_DIALECT
3281 int dialect = 0;
3282 #endif
3283 int oporder[MAX_RECOG_OPERANDS];
3284 char opoutput[MAX_RECOG_OPERANDS];
3285 int ops = 0;
3286
3287 /* An insn may return a null string template
3288 in a case where no assembler code is needed. */
3289 if (*template == 0)
3290 return;
3291
3292 memset (opoutput, 0, sizeof opoutput);
3293 p = template;
3294 putc ('\t', asm_out_file);
3295
3296 #ifdef ASM_OUTPUT_OPCODE
3297 ASM_OUTPUT_OPCODE (asm_out_file, p);
3298 #endif
3299
3300 while ((c = *p++))
3301 switch (c)
3302 {
3303 case '\n':
3304 if (flag_verbose_asm)
3305 output_asm_operand_names (operands, oporder, ops);
3306 if (flag_print_asm_name)
3307 output_asm_name ();
3308
3309 ops = 0;
3310 memset (opoutput, 0, sizeof opoutput);
3311
3312 putc (c, asm_out_file);
3313 #ifdef ASM_OUTPUT_OPCODE
3314 while ((c = *p) == '\t')
3315 {
3316 putc (c, asm_out_file);
3317 p++;
3318 }
3319 ASM_OUTPUT_OPCODE (asm_out_file, p);
3320 #endif
3321 break;
3322
3323 #ifdef ASSEMBLER_DIALECT
3324 case '{':
3325 {
3326 int i;
3327
3328 if (dialect)
3329 output_operand_lossage ("nested assembly dialect alternatives");
3330 else
3331 dialect = 1;
3332
3333 /* If we want the first dialect, do nothing. Otherwise, skip
3334 DIALECT_NUMBER of strings ending with '|'. */
3335 for (i = 0; i < dialect_number; i++)
3336 {
3337 while (*p && *p != '}' && *p++ != '|')
3338 ;
3339 if (*p == '}')
3340 break;
3341 if (*p == '|')
3342 p++;
3343 }
3344
3345 if (*p == '\0')
3346 output_operand_lossage ("unterminated assembly dialect alternative");
3347 }
3348 break;
3349
3350 case '|':
3351 if (dialect)
3352 {
3353 /* Skip to close brace. */
3354 do
3355 {
3356 if (*p == '\0')
3357 {
3358 output_operand_lossage ("unterminated assembly dialect alternative");
3359 break;
3360 }
3361 }
3362 while (*p++ != '}');
3363 dialect = 0;
3364 }
3365 else
3366 putc (c, asm_out_file);
3367 break;
3368
3369 case '}':
3370 if (! dialect)
3371 putc (c, asm_out_file);
3372 dialect = 0;
3373 break;
3374 #endif
3375
3376 case '%':
3377 /* %% outputs a single %. */
3378 if (*p == '%')
3379 {
3380 p++;
3381 putc (c, asm_out_file);
3382 }
3383 /* %= outputs a number which is unique to each insn in the entire
3384 compilation. This is useful for making local labels that are
3385 referred to more than once in a given insn. */
3386 else if (*p == '=')
3387 {
3388 p++;
3389 fprintf (asm_out_file, "%d", insn_counter);
3390 }
3391 /* % followed by a letter and some digits
3392 outputs an operand in a special way depending on the letter.
3393 Letters `acln' are implemented directly.
3394 Other letters are passed to `output_operand' so that
3395 the PRINT_OPERAND macro can define them. */
3396 else if (ISALPHA (*p))
3397 {
3398 int letter = *p++;
3399 c = atoi (p);
3400
3401 if (! ISDIGIT (*p))
3402 output_operand_lossage ("operand number missing after %%-letter");
3403 else if (this_is_asm_operands
3404 && (c < 0 || (unsigned int) c >= insn_noperands))
3405 output_operand_lossage ("operand number out of range");
3406 else if (letter == 'l')
3407 output_asm_label (operands[c]);
3408 else if (letter == 'a')
3409 output_address (operands[c]);
3410 else if (letter == 'c')
3411 {
3412 if (CONSTANT_ADDRESS_P (operands[c]))
3413 output_addr_const (asm_out_file, operands[c]);
3414 else
3415 output_operand (operands[c], 'c');
3416 }
3417 else if (letter == 'n')
3418 {
3419 if (GET_CODE (operands[c]) == CONST_INT)
3420 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3421 - INTVAL (operands[c]));
3422 else
3423 {
3424 putc ('-', asm_out_file);
3425 output_addr_const (asm_out_file, operands[c]);
3426 }
3427 }
3428 else
3429 output_operand (operands[c], letter);
3430
3431 if (!opoutput[c])
3432 oporder[ops++] = c;
3433 opoutput[c] = 1;
3434
3435 while (ISDIGIT (c = *p))
3436 p++;
3437 }
3438 /* % followed by a digit outputs an operand the default way. */
3439 else if (ISDIGIT (*p))
3440 {
3441 c = atoi (p);
3442 if (this_is_asm_operands
3443 && (c < 0 || (unsigned int) c >= insn_noperands))
3444 output_operand_lossage ("operand number out of range");
3445 else
3446 output_operand (operands[c], 0);
3447
3448 if (!opoutput[c])
3449 oporder[ops++] = c;
3450 opoutput[c] = 1;
3451
3452 while (ISDIGIT (c = *p))
3453 p++;
3454 }
3455 /* % followed by punctuation: output something for that
3456 punctuation character alone, with no operand.
3457 The PRINT_OPERAND macro decides what is actually done. */
3458 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3459 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3460 output_operand (NULL_RTX, *p++);
3461 #endif
3462 else
3463 output_operand_lossage ("invalid %%-code");
3464 break;
3465
3466 default:
3467 putc (c, asm_out_file);
3468 }
3469
3470 /* Write out the variable names for operands, if we know them. */
3471 if (flag_verbose_asm)
3472 output_asm_operand_names (operands, oporder, ops);
3473 if (flag_print_asm_name)
3474 output_asm_name ();
3475
3476 putc ('\n', asm_out_file);
3477 }
3478 \f
3479 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3480
3481 void
3482 output_asm_label (x)
3483 rtx x;
3484 {
3485 char buf[256];
3486
3487 if (GET_CODE (x) == LABEL_REF)
3488 x = XEXP (x, 0);
3489 if (GET_CODE (x) == CODE_LABEL
3490 || (GET_CODE (x) == NOTE
3491 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3492 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3493 else
3494 output_operand_lossage ("`%%l' operand isn't a label");
3495
3496 assemble_name (asm_out_file, buf);
3497 }
3498
3499 /* Print operand X using machine-dependent assembler syntax.
3500 The macro PRINT_OPERAND is defined just to control this function.
3501 CODE is a non-digit that preceded the operand-number in the % spec,
3502 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3503 between the % and the digits.
3504 When CODE is a non-letter, X is 0.
3505
3506 The meanings of the letters are machine-dependent and controlled
3507 by PRINT_OPERAND. */
3508
3509 static void
3510 output_operand (x, code)
3511 rtx x;
3512 int code ATTRIBUTE_UNUSED;
3513 {
3514 if (x && GET_CODE (x) == SUBREG)
3515 x = alter_subreg (&x);
3516
3517 /* If X is a pseudo-register, abort now rather than writing trash to the
3518 assembler file. */
3519
3520 if (x && GET_CODE (x) == REG && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3521 abort ();
3522
3523 PRINT_OPERAND (asm_out_file, x, code);
3524 }
3525
3526 /* Print a memory reference operand for address X
3527 using machine-dependent assembler syntax.
3528 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3529
3530 void
3531 output_address (x)
3532 rtx x;
3533 {
3534 walk_alter_subreg (&x);
3535 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3536 }
3537 \f
3538 /* Print an integer constant expression in assembler syntax.
3539 Addition and subtraction are the only arithmetic
3540 that may appear in these expressions. */
3541
3542 void
3543 output_addr_const (file, x)
3544 FILE *file;
3545 rtx x;
3546 {
3547 char buf[256];
3548
3549 restart:
3550 switch (GET_CODE (x))
3551 {
3552 case PC:
3553 putc ('.', file);
3554 break;
3555
3556 case SYMBOL_REF:
3557 #ifdef ASM_OUTPUT_SYMBOL_REF
3558 ASM_OUTPUT_SYMBOL_REF (file, x);
3559 #else
3560 assemble_name (file, XSTR (x, 0));
3561 #endif
3562 break;
3563
3564 case LABEL_REF:
3565 x = XEXP (x, 0);
3566 /* Fall through. */
3567 case CODE_LABEL:
3568 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3569 #ifdef ASM_OUTPUT_LABEL_REF
3570 ASM_OUTPUT_LABEL_REF (file, buf);
3571 #else
3572 assemble_name (file, buf);
3573 #endif
3574 break;
3575
3576 case CONST_INT:
3577 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3578 break;
3579
3580 case CONST:
3581 /* This used to output parentheses around the expression,
3582 but that does not work on the 386 (either ATT or BSD assembler). */
3583 output_addr_const (file, XEXP (x, 0));
3584 break;
3585
3586 case CONST_DOUBLE:
3587 if (GET_MODE (x) == VOIDmode)
3588 {
3589 /* We can use %d if the number is one word and positive. */
3590 if (CONST_DOUBLE_HIGH (x))
3591 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3592 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3593 else if (CONST_DOUBLE_LOW (x) < 0)
3594 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3595 else
3596 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3597 }
3598 else
3599 /* We can't handle floating point constants;
3600 PRINT_OPERAND must handle them. */
3601 output_operand_lossage ("floating constant misused");
3602 break;
3603
3604 case PLUS:
3605 /* Some assemblers need integer constants to appear last (eg masm). */
3606 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3607 {
3608 output_addr_const (file, XEXP (x, 1));
3609 if (INTVAL (XEXP (x, 0)) >= 0)
3610 fprintf (file, "+");
3611 output_addr_const (file, XEXP (x, 0));
3612 }
3613 else
3614 {
3615 output_addr_const (file, XEXP (x, 0));
3616 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3617 || INTVAL (XEXP (x, 1)) >= 0)
3618 fprintf (file, "+");
3619 output_addr_const (file, XEXP (x, 1));
3620 }
3621 break;
3622
3623 case MINUS:
3624 /* Avoid outputting things like x-x or x+5-x,
3625 since some assemblers can't handle that. */
3626 x = simplify_subtraction (x);
3627 if (GET_CODE (x) != MINUS)
3628 goto restart;
3629
3630 output_addr_const (file, XEXP (x, 0));
3631 fprintf (file, "-");
3632 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3633 || GET_CODE (XEXP (x, 1)) == PC
3634 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3635 output_addr_const (file, XEXP (x, 1));
3636 else
3637 {
3638 fputs (targetm.asm_out.open_paren, file);
3639 output_addr_const (file, XEXP (x, 1));
3640 fputs (targetm.asm_out.close_paren, file);
3641 }
3642 break;
3643
3644 case ZERO_EXTEND:
3645 case SIGN_EXTEND:
3646 case SUBREG:
3647 output_addr_const (file, XEXP (x, 0));
3648 break;
3649
3650 default:
3651 #ifdef OUTPUT_ADDR_CONST_EXTRA
3652 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3653 break;
3654
3655 fail:
3656 #endif
3657 output_operand_lossage ("invalid expression as operand");
3658 }
3659 }
3660 \f
3661 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3662 %R prints the value of REGISTER_PREFIX.
3663 %L prints the value of LOCAL_LABEL_PREFIX.
3664 %U prints the value of USER_LABEL_PREFIX.
3665 %I prints the value of IMMEDIATE_PREFIX.
3666 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3667 Also supported are %d, %x, %s, %e, %f, %g and %%.
3668
3669 We handle alternate assembler dialects here, just like output_asm_insn. */
3670
3671 void
3672 asm_fprintf VPARAMS ((FILE *file, const char *p, ...))
3673 {
3674 char buf[10];
3675 char *q, c;
3676
3677 VA_OPEN (argptr, p);
3678 VA_FIXEDARG (argptr, FILE *, file);
3679 VA_FIXEDARG (argptr, const char *, p);
3680
3681 buf[0] = '%';
3682
3683 while ((c = *p++))
3684 switch (c)
3685 {
3686 #ifdef ASSEMBLER_DIALECT
3687 case '{':
3688 {
3689 int i;
3690
3691 /* If we want the first dialect, do nothing. Otherwise, skip
3692 DIALECT_NUMBER of strings ending with '|'. */
3693 for (i = 0; i < dialect_number; i++)
3694 {
3695 while (*p && *p++ != '|')
3696 ;
3697
3698 if (*p == '|')
3699 p++;
3700 }
3701 }
3702 break;
3703
3704 case '|':
3705 /* Skip to close brace. */
3706 while (*p && *p++ != '}')
3707 ;
3708 break;
3709
3710 case '}':
3711 break;
3712 #endif
3713
3714 case '%':
3715 c = *p++;
3716 q = &buf[1];
3717 while (ISDIGIT (c) || c == '.')
3718 {
3719 *q++ = c;
3720 c = *p++;
3721 }
3722 switch (c)
3723 {
3724 case '%':
3725 fprintf (file, "%%");
3726 break;
3727
3728 case 'd': case 'i': case 'u':
3729 case 'x': case 'p': case 'X':
3730 case 'o':
3731 *q++ = c;
3732 *q = 0;
3733 fprintf (file, buf, va_arg (argptr, int));
3734 break;
3735
3736 case 'w':
3737 /* This is a prefix to the 'd', 'i', 'u', 'x', 'p', and 'X' cases,
3738 but we do not check for those cases. It means that the value
3739 is a HOST_WIDE_INT, which may be either `int' or `long'. */
3740
3741 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_INT
3742 #else
3743 #if HOST_BITS_PER_WIDE_INT == HOST_BITS_PER_LONG
3744 *q++ = 'l';
3745 #else
3746 *q++ = 'l';
3747 *q++ = 'l';
3748 #endif
3749 #endif
3750
3751 *q++ = *p++;
3752 *q = 0;
3753 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3754 break;
3755
3756 case 'l':
3757 *q++ = c;
3758 *q++ = *p++;
3759 *q = 0;
3760 fprintf (file, buf, va_arg (argptr, long));
3761 break;
3762
3763 case 'e':
3764 case 'f':
3765 case 'g':
3766 *q++ = c;
3767 *q = 0;
3768 fprintf (file, buf, va_arg (argptr, double));
3769 break;
3770
3771 case 's':
3772 *q++ = c;
3773 *q = 0;
3774 fprintf (file, buf, va_arg (argptr, char *));
3775 break;
3776
3777 case 'O':
3778 #ifdef ASM_OUTPUT_OPCODE
3779 ASM_OUTPUT_OPCODE (asm_out_file, p);
3780 #endif
3781 break;
3782
3783 case 'R':
3784 #ifdef REGISTER_PREFIX
3785 fprintf (file, "%s", REGISTER_PREFIX);
3786 #endif
3787 break;
3788
3789 case 'I':
3790 #ifdef IMMEDIATE_PREFIX
3791 fprintf (file, "%s", IMMEDIATE_PREFIX);
3792 #endif
3793 break;
3794
3795 case 'L':
3796 #ifdef LOCAL_LABEL_PREFIX
3797 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3798 #endif
3799 break;
3800
3801 case 'U':
3802 fputs (user_label_prefix, file);
3803 break;
3804
3805 #ifdef ASM_FPRINTF_EXTENSIONS
3806 /* Upper case letters are reserved for general use by asm_fprintf
3807 and so are not available to target specific code. In order to
3808 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3809 they are defined here. As they get turned into real extensions
3810 to asm_fprintf they should be removed from this list. */
3811 case 'A': case 'B': case 'C': case 'D': case 'E':
3812 case 'F': case 'G': case 'H': case 'J': case 'K':
3813 case 'M': case 'N': case 'P': case 'Q': case 'S':
3814 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3815 break;
3816
3817 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3818 #endif
3819 default:
3820 abort ();
3821 }
3822 break;
3823
3824 default:
3825 fputc (c, file);
3826 }
3827 VA_CLOSE (argptr);
3828 }
3829 \f
3830 /* Split up a CONST_DOUBLE or integer constant rtx
3831 into two rtx's for single words,
3832 storing in *FIRST the word that comes first in memory in the target
3833 and in *SECOND the other. */
3834
3835 void
3836 split_double (value, first, second)
3837 rtx value;
3838 rtx *first, *second;
3839 {
3840 if (GET_CODE (value) == CONST_INT)
3841 {
3842 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3843 {
3844 /* In this case the CONST_INT holds both target words.
3845 Extract the bits from it into two word-sized pieces.
3846 Sign extend each half to HOST_WIDE_INT. */
3847 unsigned HOST_WIDE_INT low, high;
3848 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3849
3850 /* Set sign_bit to the most significant bit of a word. */
3851 sign_bit = 1;
3852 sign_bit <<= BITS_PER_WORD - 1;
3853
3854 /* Set mask so that all bits of the word are set. We could
3855 have used 1 << BITS_PER_WORD instead of basing the
3856 calculation on sign_bit. However, on machines where
3857 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3858 compiler warning, even though the code would never be
3859 executed. */
3860 mask = sign_bit << 1;
3861 mask--;
3862
3863 /* Set sign_extend as any remaining bits. */
3864 sign_extend = ~mask;
3865
3866 /* Pick the lower word and sign-extend it. */
3867 low = INTVAL (value);
3868 low &= mask;
3869 if (low & sign_bit)
3870 low |= sign_extend;
3871
3872 /* Pick the higher word, shifted to the least significant
3873 bits, and sign-extend it. */
3874 high = INTVAL (value);
3875 high >>= BITS_PER_WORD - 1;
3876 high >>= 1;
3877 high &= mask;
3878 if (high & sign_bit)
3879 high |= sign_extend;
3880
3881 /* Store the words in the target machine order. */
3882 if (WORDS_BIG_ENDIAN)
3883 {
3884 *first = GEN_INT (high);
3885 *second = GEN_INT (low);
3886 }
3887 else
3888 {
3889 *first = GEN_INT (low);
3890 *second = GEN_INT (high);
3891 }
3892 }
3893 else
3894 {
3895 /* The rule for using CONST_INT for a wider mode
3896 is that we regard the value as signed.
3897 So sign-extend it. */
3898 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3899 if (WORDS_BIG_ENDIAN)
3900 {
3901 *first = high;
3902 *second = value;
3903 }
3904 else
3905 {
3906 *first = value;
3907 *second = high;
3908 }
3909 }
3910 }
3911 else if (GET_CODE (value) != CONST_DOUBLE)
3912 {
3913 if (WORDS_BIG_ENDIAN)
3914 {
3915 *first = const0_rtx;
3916 *second = value;
3917 }
3918 else
3919 {
3920 *first = value;
3921 *second = const0_rtx;
3922 }
3923 }
3924 else if (GET_MODE (value) == VOIDmode
3925 /* This is the old way we did CONST_DOUBLE integers. */
3926 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3927 {
3928 /* In an integer, the words are defined as most and least significant.
3929 So order them by the target's convention. */
3930 if (WORDS_BIG_ENDIAN)
3931 {
3932 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3933 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3934 }
3935 else
3936 {
3937 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3938 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3939 }
3940 }
3941 else
3942 {
3943 REAL_VALUE_TYPE r;
3944 long l[2];
3945 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3946
3947 /* Note, this converts the REAL_VALUE_TYPE to the target's
3948 format, splits up the floating point double and outputs
3949 exactly 32 bits of it into each of l[0] and l[1] --
3950 not necessarily BITS_PER_WORD bits. */
3951 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3952
3953 /* If 32 bits is an entire word for the target, but not for the host,
3954 then sign-extend on the host so that the number will look the same
3955 way on the host that it would on the target. See for instance
3956 simplify_unary_operation. The #if is needed to avoid compiler
3957 warnings. */
3958
3959 #if HOST_BITS_PER_LONG > 32
3960 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3961 {
3962 if (l[0] & ((long) 1 << 31))
3963 l[0] |= ((long) (-1) << 32);
3964 if (l[1] & ((long) 1 << 31))
3965 l[1] |= ((long) (-1) << 32);
3966 }
3967 #endif
3968
3969 *first = GEN_INT ((HOST_WIDE_INT) l[0]);
3970 *second = GEN_INT ((HOST_WIDE_INT) l[1]);
3971 }
3972 }
3973 \f
3974 /* Return nonzero if this function has no function calls. */
3975
3976 int
3977 leaf_function_p ()
3978 {
3979 rtx insn;
3980 rtx link;
3981
3982 if (current_function_profile || profile_arc_flag)
3983 return 0;
3984
3985 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3986 {
3987 if (GET_CODE (insn) == CALL_INSN
3988 && ! SIBLING_CALL_P (insn))
3989 return 0;
3990 if (GET_CODE (insn) == INSN
3991 && GET_CODE (PATTERN (insn)) == SEQUENCE
3992 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
3993 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3994 return 0;
3995 }
3996 for (link = current_function_epilogue_delay_list;
3997 link;
3998 link = XEXP (link, 1))
3999 {
4000 insn = XEXP (link, 0);
4001
4002 if (GET_CODE (insn) == CALL_INSN
4003 && ! SIBLING_CALL_P (insn))
4004 return 0;
4005 if (GET_CODE (insn) == INSN
4006 && GET_CODE (PATTERN (insn)) == SEQUENCE
4007 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == CALL_INSN
4008 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4009 return 0;
4010 }
4011
4012 return 1;
4013 }
4014
4015 /* Return 1 if branch is an forward branch.
4016 Uses insn_shuid array, so it works only in the final pass. May be used by
4017 output templates to customary add branch prediction hints.
4018 */
4019 int
4020 final_forward_branch_p (insn)
4021 rtx insn;
4022 {
4023 int insn_id, label_id;
4024 if (!uid_shuid)
4025 abort ();
4026 insn_id = INSN_SHUID (insn);
4027 label_id = INSN_SHUID (JUMP_LABEL (insn));
4028 /* We've hit some insns that does not have id information available. */
4029 if (!insn_id || !label_id)
4030 abort ();
4031 return insn_id < label_id;
4032 }
4033
4034 /* On some machines, a function with no call insns
4035 can run faster if it doesn't create its own register window.
4036 When output, the leaf function should use only the "output"
4037 registers. Ordinarily, the function would be compiled to use
4038 the "input" registers to find its arguments; it is a candidate
4039 for leaf treatment if it uses only the "input" registers.
4040 Leaf function treatment means renumbering so the function
4041 uses the "output" registers instead. */
4042
4043 #ifdef LEAF_REGISTERS
4044
4045 /* Return 1 if this function uses only the registers that can be
4046 safely renumbered. */
4047
4048 int
4049 only_leaf_regs_used ()
4050 {
4051 int i;
4052 char *permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4053
4054 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4055 if ((regs_ever_live[i] || global_regs[i])
4056 && ! permitted_reg_in_leaf_functions[i])
4057 return 0;
4058
4059 if (current_function_uses_pic_offset_table
4060 && pic_offset_table_rtx != 0
4061 && GET_CODE (pic_offset_table_rtx) == REG
4062 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4063 return 0;
4064
4065 return 1;
4066 }
4067
4068 /* Scan all instructions and renumber all registers into those
4069 available in leaf functions. */
4070
4071 static void
4072 leaf_renumber_regs (first)
4073 rtx first;
4074 {
4075 rtx insn;
4076
4077 /* Renumber only the actual patterns.
4078 The reg-notes can contain frame pointer refs,
4079 and renumbering them could crash, and should not be needed. */
4080 for (insn = first; insn; insn = NEXT_INSN (insn))
4081 if (INSN_P (insn))
4082 leaf_renumber_regs_insn (PATTERN (insn));
4083 for (insn = current_function_epilogue_delay_list;
4084 insn;
4085 insn = XEXP (insn, 1))
4086 if (INSN_P (XEXP (insn, 0)))
4087 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
4088 }
4089
4090 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4091 available in leaf functions. */
4092
4093 void
4094 leaf_renumber_regs_insn (in_rtx)
4095 rtx in_rtx;
4096 {
4097 int i, j;
4098 const char *format_ptr;
4099
4100 if (in_rtx == 0)
4101 return;
4102
4103 /* Renumber all input-registers into output-registers.
4104 renumbered_regs would be 1 for an output-register;
4105 they */
4106
4107 if (GET_CODE (in_rtx) == REG)
4108 {
4109 int newreg;
4110
4111 /* Don't renumber the same reg twice. */
4112 if (in_rtx->used)
4113 return;
4114
4115 newreg = REGNO (in_rtx);
4116 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4117 to reach here as part of a REG_NOTE. */
4118 if (newreg >= FIRST_PSEUDO_REGISTER)
4119 {
4120 in_rtx->used = 1;
4121 return;
4122 }
4123 newreg = LEAF_REG_REMAP (newreg);
4124 if (newreg < 0)
4125 abort ();
4126 regs_ever_live[REGNO (in_rtx)] = 0;
4127 regs_ever_live[newreg] = 1;
4128 REGNO (in_rtx) = newreg;
4129 in_rtx->used = 1;
4130 }
4131
4132 if (INSN_P (in_rtx))
4133 {
4134 /* Inside a SEQUENCE, we find insns.
4135 Renumber just the patterns of these insns,
4136 just as we do for the top-level insns. */
4137 leaf_renumber_regs_insn (PATTERN (in_rtx));
4138 return;
4139 }
4140
4141 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4142
4143 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4144 switch (*format_ptr++)
4145 {
4146 case 'e':
4147 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4148 break;
4149
4150 case 'E':
4151 if (NULL != XVEC (in_rtx, i))
4152 {
4153 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4154 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4155 }
4156 break;
4157
4158 case 'S':
4159 case 's':
4160 case '0':
4161 case 'i':
4162 case 'w':
4163 case 'n':
4164 case 'u':
4165 break;
4166
4167 default:
4168 abort ();
4169 }
4170 }
4171 #endif