function.h (struct function): Rename to x_stack_check_probe_note.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This is the final pass of the compiler.
24 It looks at the rtl code for a function and outputs assembler code.
25
26 Call `final_start_function' to output the assembler code for function entry,
27 `final' to output assembler code for some RTL code,
28 `final_end_function' to output assembler code for function exit.
29 If a function is compiled in several pieces, each piece is
30 output separately with `final'.
31
32 Some optimizations are also done at this level.
33 Move instructions that were made unnecessary by good register allocation
34 are detected and omitted from the output. (Though most of these
35 are removed by the last jump pass.)
36
37 Instructions to set the condition codes are omitted when it can be
38 seen that the condition codes already had the desired values.
39
40 In some cases it is sufficient if the inherited condition codes
41 have related values, but this may require the following insn
42 (the one that tests the condition codes) to be modified.
43
44 The code for the function prologue and epilogue are generated
45 directly in assembler by the target functions function_prologue and
46 function_epilogue. Those instructions never exist as rtl. */
47
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52
53 #include "tree.h"
54 #include "rtl.h"
55 #include "tm_p.h"
56 #include "regs.h"
57 #include "insn-config.h"
58 #include "insn-attr.h"
59 #include "recog.h"
60 #include "conditions.h"
61 #include "flags.h"
62 #include "real.h"
63 #include "hard-reg-set.h"
64 #include "output.h"
65 #include "except.h"
66 #include "function.h"
67 #include "toplev.h"
68 #include "reload.h"
69 #include "intl.h"
70 #include "basic-block.h"
71 #include "target.h"
72 #include "debug.h"
73 #include "expr.h"
74 #include "cfglayout.h"
75 #include "tree-pass.h"
76 #include "timevar.h"
77 #include "cgraph.h"
78 #include "coverage.h"
79
80 #ifdef XCOFF_DEBUGGING_INFO
81 #include "xcoffout.h" /* Needed for external data
82 declarations for e.g. AIX 4.x. */
83 #endif
84
85 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
86 #include "dwarf2out.h"
87 #endif
88
89 #ifdef DBX_DEBUGGING_INFO
90 #include "dbxout.h"
91 #endif
92
93 #ifdef SDB_DEBUGGING_INFO
94 #include "sdbout.h"
95 #endif
96
97 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
98 null default for it to save conditionalization later. */
99 #ifndef CC_STATUS_INIT
100 #define CC_STATUS_INIT
101 #endif
102
103 /* How to start an assembler comment. */
104 #ifndef ASM_COMMENT_START
105 #define ASM_COMMENT_START ";#"
106 #endif
107
108 /* Is the given character a logical line separator for the assembler? */
109 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
110 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
111 #endif
112
113 #ifndef JUMP_TABLES_IN_TEXT_SECTION
114 #define JUMP_TABLES_IN_TEXT_SECTION 0
115 #endif
116
117 /* Bitflags used by final_scan_insn. */
118 #define SEEN_BB 1
119 #define SEEN_NOTE 2
120 #define SEEN_EMITTED 4
121
122 /* Last insn processed by final_scan_insn. */
123 static rtx debug_insn;
124 rtx current_output_insn;
125
126 /* Line number of last NOTE. */
127 static int last_linenum;
128
129 /* Highest line number in current block. */
130 static int high_block_linenum;
131
132 /* Likewise for function. */
133 static int high_function_linenum;
134
135 /* Filename of last NOTE. */
136 static const char *last_filename;
137
138 /* Whether to force emission of a line note before the next insn. */
139 static bool force_source_line = false;
140
141 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
142
143 /* Nonzero while outputting an `asm' with operands.
144 This means that inconsistencies are the user's fault, so don't die.
145 The precise value is the insn being output, to pass to error_for_asm. */
146 rtx this_is_asm_operands;
147
148 /* Number of operands of this insn, for an `asm' with operands. */
149 static unsigned int insn_noperands;
150
151 /* Compare optimization flag. */
152
153 static rtx last_ignored_compare = 0;
154
155 /* Assign a unique number to each insn that is output.
156 This can be used to generate unique local labels. */
157
158 static int insn_counter = 0;
159
160 #ifdef HAVE_cc0
161 /* This variable contains machine-dependent flags (defined in tm.h)
162 set and examined by output routines
163 that describe how to interpret the condition codes properly. */
164
165 CC_STATUS cc_status;
166
167 /* During output of an insn, this contains a copy of cc_status
168 from before the insn. */
169
170 CC_STATUS cc_prev_status;
171 #endif
172
173 /* Indexed by hardware reg number, is 1 if that register is ever
174 used in the current function.
175
176 In life_analysis, or in stupid_life_analysis, this is set
177 up to record the hard regs used explicitly. Reload adds
178 in the hard regs used for holding pseudo regs. Final uses
179 it to generate the code in the function prologue and epilogue
180 to save and restore registers as needed. */
181
182 char regs_ever_live[FIRST_PSEUDO_REGISTER];
183
184 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
185 Unlike regs_ever_live, elements of this array corresponding to
186 eliminable regs like the frame pointer are set if an asm sets them. */
187
188 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
189
190 /* Nonzero means current function must be given a frame pointer.
191 Initialized in function.c to 0. Set only in reload1.c as per
192 the needs of the function. */
193
194 int frame_pointer_needed;
195
196 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
197
198 static int block_depth;
199
200 /* Nonzero if have enabled APP processing of our assembler output. */
201
202 static int app_on;
203
204 /* If we are outputting an insn sequence, this contains the sequence rtx.
205 Zero otherwise. */
206
207 rtx final_sequence;
208
209 #ifdef ASSEMBLER_DIALECT
210
211 /* Number of the assembler dialect to use, starting at 0. */
212 static int dialect_number;
213 #endif
214
215 #ifdef HAVE_conditional_execution
216 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
217 rtx current_insn_predicate;
218 #endif
219
220 #ifdef HAVE_ATTR_length
221 static int asm_insn_count (rtx);
222 #endif
223 static void profile_function (FILE *);
224 static void profile_after_prologue (FILE *);
225 static bool notice_source_line (rtx);
226 static rtx walk_alter_subreg (rtx *);
227 static void output_asm_name (void);
228 static void output_alternate_entry_point (FILE *, rtx);
229 static tree get_mem_expr_from_op (rtx, int *);
230 static void output_asm_operand_names (rtx *, int *, int);
231 static void output_operand (rtx, int);
232 #ifdef LEAF_REGISTERS
233 static void leaf_renumber_regs (rtx);
234 #endif
235 #ifdef HAVE_cc0
236 static int alter_cond (rtx);
237 #endif
238 #ifndef ADDR_VEC_ALIGN
239 static int final_addr_vec_align (rtx);
240 #endif
241 #ifdef HAVE_ATTR_length
242 static int align_fuzz (rtx, rtx, int, unsigned);
243 #endif
244 \f
245 /* Initialize data in final at the beginning of a compilation. */
246
247 void
248 init_final (const char *filename ATTRIBUTE_UNUSED)
249 {
250 app_on = 0;
251 final_sequence = 0;
252
253 #ifdef ASSEMBLER_DIALECT
254 dialect_number = ASSEMBLER_DIALECT;
255 #endif
256 }
257
258 /* Default target function prologue and epilogue assembler output.
259
260 If not overridden for epilogue code, then the function body itself
261 contains return instructions wherever needed. */
262 void
263 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
264 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Default target hook that outputs nothing to a stream. */
269 void
270 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
271 {
272 }
273
274 /* Enable APP processing of subsequent output.
275 Used before the output from an `asm' statement. */
276
277 void
278 app_enable (void)
279 {
280 if (! app_on)
281 {
282 fputs (ASM_APP_ON, asm_out_file);
283 app_on = 1;
284 }
285 }
286
287 /* Disable APP processing of subsequent output.
288 Called from varasm.c before most kinds of output. */
289
290 void
291 app_disable (void)
292 {
293 if (app_on)
294 {
295 fputs (ASM_APP_OFF, asm_out_file);
296 app_on = 0;
297 }
298 }
299 \f
300 /* Return the number of slots filled in the current
301 delayed branch sequence (we don't count the insn needing the
302 delay slot). Zero if not in a delayed branch sequence. */
303
304 #ifdef DELAY_SLOTS
305 int
306 dbr_sequence_length (void)
307 {
308 if (final_sequence != 0)
309 return XVECLEN (final_sequence, 0) - 1;
310 else
311 return 0;
312 }
313 #endif
314 \f
315 /* The next two pages contain routines used to compute the length of an insn
316 and to shorten branches. */
317
318 /* Arrays for insn lengths, and addresses. The latter is referenced by
319 `insn_current_length'. */
320
321 static int *insn_lengths;
322
323 varray_type insn_addresses_;
324
325 /* Max uid for which the above arrays are valid. */
326 static int insn_lengths_max_uid;
327
328 /* Address of insn being processed. Used by `insn_current_length'. */
329 int insn_current_address;
330
331 /* Address of insn being processed in previous iteration. */
332 int insn_last_address;
333
334 /* known invariant alignment of insn being processed. */
335 int insn_current_align;
336
337 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
338 gives the next following alignment insn that increases the known
339 alignment, or NULL_RTX if there is no such insn.
340 For any alignment obtained this way, we can again index uid_align with
341 its uid to obtain the next following align that in turn increases the
342 alignment, till we reach NULL_RTX; the sequence obtained this way
343 for each insn we'll call the alignment chain of this insn in the following
344 comments. */
345
346 struct label_alignment
347 {
348 short alignment;
349 short max_skip;
350 };
351
352 static rtx *uid_align;
353 static int *uid_shuid;
354 static struct label_alignment *label_align;
355
356 /* Indicate that branch shortening hasn't yet been done. */
357
358 void
359 init_insn_lengths (void)
360 {
361 if (uid_shuid)
362 {
363 free (uid_shuid);
364 uid_shuid = 0;
365 }
366 if (insn_lengths)
367 {
368 free (insn_lengths);
369 insn_lengths = 0;
370 insn_lengths_max_uid = 0;
371 }
372 #ifdef HAVE_ATTR_length
373 INSN_ADDRESSES_FREE ();
374 #endif
375 if (uid_align)
376 {
377 free (uid_align);
378 uid_align = 0;
379 }
380 }
381
382 /* Obtain the current length of an insn. If branch shortening has been done,
383 get its actual length. Otherwise, use FALLBACK_FN to calcualte the
384 length. */
385 static inline int
386 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
387 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
388 {
389 #ifdef HAVE_ATTR_length
390 rtx body;
391 int i;
392 int length = 0;
393
394 if (insn_lengths_max_uid > INSN_UID (insn))
395 return insn_lengths[INSN_UID (insn)];
396 else
397 switch (GET_CODE (insn))
398 {
399 case NOTE:
400 case BARRIER:
401 case CODE_LABEL:
402 return 0;
403
404 case CALL_INSN:
405 length = fallback_fn (insn);
406 break;
407
408 case JUMP_INSN:
409 body = PATTERN (insn);
410 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
411 {
412 /* Alignment is machine-dependent and should be handled by
413 ADDR_VEC_ALIGN. */
414 }
415 else
416 length = fallback_fn (insn);
417 break;
418
419 case INSN:
420 body = PATTERN (insn);
421 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
422 return 0;
423
424 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
425 length = asm_insn_count (body) * fallback_fn (insn);
426 else if (GET_CODE (body) == SEQUENCE)
427 for (i = 0; i < XVECLEN (body, 0); i++)
428 length += get_attr_length (XVECEXP (body, 0, i));
429 else
430 length = fallback_fn (insn);
431 break;
432
433 default:
434 break;
435 }
436
437 #ifdef ADJUST_INSN_LENGTH
438 ADJUST_INSN_LENGTH (insn, length);
439 #endif
440 return length;
441 #else /* not HAVE_ATTR_length */
442 return 0;
443 #define insn_default_length 0
444 #define insn_min_length 0
445 #endif /* not HAVE_ATTR_length */
446 }
447
448 /* Obtain the current length of an insn. If branch shortening has been done,
449 get its actual length. Otherwise, get its maximum length. */
450 int
451 get_attr_length (rtx insn)
452 {
453 return get_attr_length_1 (insn, insn_default_length);
454 }
455
456 /* Obtain the current length of an insn. If branch shortening has been done,
457 get its actual length. Otherwise, get its minimum length. */
458 int
459 get_attr_min_length (rtx insn)
460 {
461 return get_attr_length_1 (insn, insn_min_length);
462 }
463 \f
464 /* Code to handle alignment inside shorten_branches. */
465
466 /* Here is an explanation how the algorithm in align_fuzz can give
467 proper results:
468
469 Call a sequence of instructions beginning with alignment point X
470 and continuing until the next alignment point `block X'. When `X'
471 is used in an expression, it means the alignment value of the
472 alignment point.
473
474 Call the distance between the start of the first insn of block X, and
475 the end of the last insn of block X `IX', for the `inner size of X'.
476 This is clearly the sum of the instruction lengths.
477
478 Likewise with the next alignment-delimited block following X, which we
479 shall call block Y.
480
481 Call the distance between the start of the first insn of block X, and
482 the start of the first insn of block Y `OX', for the `outer size of X'.
483
484 The estimated padding is then OX - IX.
485
486 OX can be safely estimated as
487
488 if (X >= Y)
489 OX = round_up(IX, Y)
490 else
491 OX = round_up(IX, X) + Y - X
492
493 Clearly est(IX) >= real(IX), because that only depends on the
494 instruction lengths, and those being overestimated is a given.
495
496 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
497 we needn't worry about that when thinking about OX.
498
499 When X >= Y, the alignment provided by Y adds no uncertainty factor
500 for branch ranges starting before X, so we can just round what we have.
501 But when X < Y, we don't know anything about the, so to speak,
502 `middle bits', so we have to assume the worst when aligning up from an
503 address mod X to one mod Y, which is Y - X. */
504
505 #ifndef LABEL_ALIGN
506 #define LABEL_ALIGN(LABEL) align_labels_log
507 #endif
508
509 #ifndef LABEL_ALIGN_MAX_SKIP
510 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
511 #endif
512
513 #ifndef LOOP_ALIGN
514 #define LOOP_ALIGN(LABEL) align_loops_log
515 #endif
516
517 #ifndef LOOP_ALIGN_MAX_SKIP
518 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
519 #endif
520
521 #ifndef LABEL_ALIGN_AFTER_BARRIER
522 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
523 #endif
524
525 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
526 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
527 #endif
528
529 #ifndef JUMP_ALIGN
530 #define JUMP_ALIGN(LABEL) align_jumps_log
531 #endif
532
533 #ifndef JUMP_ALIGN_MAX_SKIP
534 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
535 #endif
536
537 #ifndef ADDR_VEC_ALIGN
538 static int
539 final_addr_vec_align (rtx addr_vec)
540 {
541 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
542
543 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
544 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
545 return exact_log2 (align);
546
547 }
548
549 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
550 #endif
551
552 #ifndef INSN_LENGTH_ALIGNMENT
553 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
554 #endif
555
556 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
557
558 static int min_labelno, max_labelno;
559
560 #define LABEL_TO_ALIGNMENT(LABEL) \
561 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
562
563 #define LABEL_TO_MAX_SKIP(LABEL) \
564 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
565
566 /* For the benefit of port specific code do this also as a function. */
567
568 int
569 label_to_alignment (rtx label)
570 {
571 return LABEL_TO_ALIGNMENT (label);
572 }
573
574 #ifdef HAVE_ATTR_length
575 /* The differences in addresses
576 between a branch and its target might grow or shrink depending on
577 the alignment the start insn of the range (the branch for a forward
578 branch or the label for a backward branch) starts out on; if these
579 differences are used naively, they can even oscillate infinitely.
580 We therefore want to compute a 'worst case' address difference that
581 is independent of the alignment the start insn of the range end
582 up on, and that is at least as large as the actual difference.
583 The function align_fuzz calculates the amount we have to add to the
584 naively computed difference, by traversing the part of the alignment
585 chain of the start insn of the range that is in front of the end insn
586 of the range, and considering for each alignment the maximum amount
587 that it might contribute to a size increase.
588
589 For casesi tables, we also want to know worst case minimum amounts of
590 address difference, in case a machine description wants to introduce
591 some common offset that is added to all offsets in a table.
592 For this purpose, align_fuzz with a growth argument of 0 computes the
593 appropriate adjustment. */
594
595 /* Compute the maximum delta by which the difference of the addresses of
596 START and END might grow / shrink due to a different address for start
597 which changes the size of alignment insns between START and END.
598 KNOWN_ALIGN_LOG is the alignment known for START.
599 GROWTH should be ~0 if the objective is to compute potential code size
600 increase, and 0 if the objective is to compute potential shrink.
601 The return value is undefined for any other value of GROWTH. */
602
603 static int
604 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
605 {
606 int uid = INSN_UID (start);
607 rtx align_label;
608 int known_align = 1 << known_align_log;
609 int end_shuid = INSN_SHUID (end);
610 int fuzz = 0;
611
612 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
613 {
614 int align_addr, new_align;
615
616 uid = INSN_UID (align_label);
617 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
618 if (uid_shuid[uid] > end_shuid)
619 break;
620 known_align_log = LABEL_TO_ALIGNMENT (align_label);
621 new_align = 1 << known_align_log;
622 if (new_align < known_align)
623 continue;
624 fuzz += (-align_addr ^ growth) & (new_align - known_align);
625 known_align = new_align;
626 }
627 return fuzz;
628 }
629
630 /* Compute a worst-case reference address of a branch so that it
631 can be safely used in the presence of aligned labels. Since the
632 size of the branch itself is unknown, the size of the branch is
633 not included in the range. I.e. for a forward branch, the reference
634 address is the end address of the branch as known from the previous
635 branch shortening pass, minus a value to account for possible size
636 increase due to alignment. For a backward branch, it is the start
637 address of the branch as known from the current pass, plus a value
638 to account for possible size increase due to alignment.
639 NB.: Therefore, the maximum offset allowed for backward branches needs
640 to exclude the branch size. */
641
642 int
643 insn_current_reference_address (rtx branch)
644 {
645 rtx dest, seq;
646 int seq_uid;
647
648 if (! INSN_ADDRESSES_SET_P ())
649 return 0;
650
651 seq = NEXT_INSN (PREV_INSN (branch));
652 seq_uid = INSN_UID (seq);
653 if (!JUMP_P (branch))
654 /* This can happen for example on the PA; the objective is to know the
655 offset to address something in front of the start of the function.
656 Thus, we can treat it like a backward branch.
657 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
658 any alignment we'd encounter, so we skip the call to align_fuzz. */
659 return insn_current_address;
660 dest = JUMP_LABEL (branch);
661
662 /* BRANCH has no proper alignment chain set, so use SEQ.
663 BRANCH also has no INSN_SHUID. */
664 if (INSN_SHUID (seq) < INSN_SHUID (dest))
665 {
666 /* Forward branch. */
667 return (insn_last_address + insn_lengths[seq_uid]
668 - align_fuzz (seq, dest, length_unit_log, ~0));
669 }
670 else
671 {
672 /* Backward branch. */
673 return (insn_current_address
674 + align_fuzz (dest, seq, length_unit_log, ~0));
675 }
676 }
677 #endif /* HAVE_ATTR_length */
678 \f
679 /* Compute branch alignments based on frequency information in the
680 CFG. */
681
682 static unsigned int
683 compute_alignments (void)
684 {
685 int log, max_skip, max_log;
686 basic_block bb;
687
688 if (label_align)
689 {
690 free (label_align);
691 label_align = 0;
692 }
693
694 max_labelno = max_label_num ();
695 min_labelno = get_first_label_num ();
696 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
697
698 /* If not optimizing or optimizing for size, don't assign any alignments. */
699 if (! optimize || optimize_size)
700 return 0;
701
702 FOR_EACH_BB (bb)
703 {
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
708
709 if (!LABEL_P (label)
710 || probably_never_executed_bb_p (bb))
711 continue;
712 max_log = LABEL_ALIGN (label);
713 max_skip = LABEL_ALIGN_MAX_SKIP;
714
715 FOR_EACH_EDGE (e, ei, bb->preds)
716 {
717 if (e->flags & EDGE_FALLTHRU)
718 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
719 else
720 branch_frequency += EDGE_FREQUENCY (e);
721 }
722
723 /* There are two purposes to align block with no fallthru incoming edge:
724 1) to avoid fetch stalls when branch destination is near cache boundary
725 2) to improve cache efficiency in case the previous block is not executed
726 (so it does not need to be in the cache).
727
728 We to catch first case, we align frequently executed blocks.
729 To catch the second, we align blocks that are executed more frequently
730 than the predecessor and the predecessor is likely to not be executed
731 when function is called. */
732
733 if (!has_fallthru
734 && (branch_frequency > BB_FREQ_MAX / 10
735 || (bb->frequency > bb->prev_bb->frequency * 10
736 && (bb->prev_bb->frequency
737 <= ENTRY_BLOCK_PTR->frequency / 2))))
738 {
739 log = JUMP_ALIGN (label);
740 if (max_log < log)
741 {
742 max_log = log;
743 max_skip = JUMP_ALIGN_MAX_SKIP;
744 }
745 }
746 /* In case block is frequent and reached mostly by non-fallthru edge,
747 align it. It is most likely a first block of loop. */
748 if (has_fallthru
749 && maybe_hot_bb_p (bb)
750 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
751 && branch_frequency > fallthru_frequency * 2)
752 {
753 log = LOOP_ALIGN (label);
754 if (max_log < log)
755 {
756 max_log = log;
757 max_skip = LOOP_ALIGN_MAX_SKIP;
758 }
759 }
760 LABEL_TO_ALIGNMENT (label) = max_log;
761 LABEL_TO_MAX_SKIP (label) = max_skip;
762 }
763 return 0;
764 }
765
766 struct tree_opt_pass pass_compute_alignments =
767 {
768 NULL, /* name */
769 NULL, /* gate */
770 compute_alignments, /* execute */
771 NULL, /* sub */
772 NULL, /* next */
773 0, /* static_pass_number */
774 0, /* tv_id */
775 0, /* properties_required */
776 0, /* properties_provided */
777 0, /* properties_destroyed */
778 0, /* todo_flags_start */
779 0, /* todo_flags_finish */
780 0 /* letter */
781 };
782
783 \f
784 /* Make a pass over all insns and compute their actual lengths by shortening
785 any branches of variable length if possible. */
786
787 /* shorten_branches might be called multiple times: for example, the SH
788 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
789 In order to do this, it needs proper length information, which it obtains
790 by calling shorten_branches. This cannot be collapsed with
791 shorten_branches itself into a single pass unless we also want to integrate
792 reorg.c, since the branch splitting exposes new instructions with delay
793 slots. */
794
795 void
796 shorten_branches (rtx first ATTRIBUTE_UNUSED)
797 {
798 rtx insn;
799 int max_uid;
800 int i;
801 int max_log;
802 int max_skip;
803 #ifdef HAVE_ATTR_length
804 #define MAX_CODE_ALIGN 16
805 rtx seq;
806 int something_changed = 1;
807 char *varying_length;
808 rtx body;
809 int uid;
810 rtx align_tab[MAX_CODE_ALIGN];
811
812 #endif
813
814 /* Compute maximum UID and allocate label_align / uid_shuid. */
815 max_uid = get_max_uid ();
816
817 /* Free uid_shuid before reallocating it. */
818 free (uid_shuid);
819
820 uid_shuid = XNEWVEC (int, max_uid);
821
822 if (max_labelno != max_label_num ())
823 {
824 int old = max_labelno;
825 int n_labels;
826 int n_old_labels;
827
828 max_labelno = max_label_num ();
829
830 n_labels = max_labelno - min_labelno + 1;
831 n_old_labels = old - min_labelno + 1;
832
833 label_align = xrealloc (label_align,
834 n_labels * sizeof (struct label_alignment));
835
836 /* Range of labels grows monotonically in the function. Failing here
837 means that the initialization of array got lost. */
838 gcc_assert (n_old_labels <= n_labels);
839
840 memset (label_align + n_old_labels, 0,
841 (n_labels - n_old_labels) * sizeof (struct label_alignment));
842 }
843
844 /* Initialize label_align and set up uid_shuid to be strictly
845 monotonically rising with insn order. */
846 /* We use max_log here to keep track of the maximum alignment we want to
847 impose on the next CODE_LABEL (or the current one if we are processing
848 the CODE_LABEL itself). */
849
850 max_log = 0;
851 max_skip = 0;
852
853 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
854 {
855 int log;
856
857 INSN_SHUID (insn) = i++;
858 if (INSN_P (insn))
859 continue;
860
861 if (LABEL_P (insn))
862 {
863 rtx next;
864
865 /* Merge in alignments computed by compute_alignments. */
866 log = LABEL_TO_ALIGNMENT (insn);
867 if (max_log < log)
868 {
869 max_log = log;
870 max_skip = LABEL_TO_MAX_SKIP (insn);
871 }
872
873 log = LABEL_ALIGN (insn);
874 if (max_log < log)
875 {
876 max_log = log;
877 max_skip = LABEL_ALIGN_MAX_SKIP;
878 }
879 next = next_nonnote_insn (insn);
880 /* ADDR_VECs only take room if read-only data goes into the text
881 section. */
882 if (JUMP_TABLES_IN_TEXT_SECTION
883 || readonly_data_section == text_section)
884 if (next && JUMP_P (next))
885 {
886 rtx nextbody = PATTERN (next);
887 if (GET_CODE (nextbody) == ADDR_VEC
888 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
889 {
890 log = ADDR_VEC_ALIGN (next);
891 if (max_log < log)
892 {
893 max_log = log;
894 max_skip = LABEL_ALIGN_MAX_SKIP;
895 }
896 }
897 }
898 LABEL_TO_ALIGNMENT (insn) = max_log;
899 LABEL_TO_MAX_SKIP (insn) = max_skip;
900 max_log = 0;
901 max_skip = 0;
902 }
903 else if (BARRIER_P (insn))
904 {
905 rtx label;
906
907 for (label = insn; label && ! INSN_P (label);
908 label = NEXT_INSN (label))
909 if (LABEL_P (label))
910 {
911 log = LABEL_ALIGN_AFTER_BARRIER (insn);
912 if (max_log < log)
913 {
914 max_log = log;
915 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
916 }
917 break;
918 }
919 }
920 }
921 #ifdef HAVE_ATTR_length
922
923 /* Allocate the rest of the arrays. */
924 insn_lengths = XNEWVEC (int, max_uid);
925 insn_lengths_max_uid = max_uid;
926 /* Syntax errors can lead to labels being outside of the main insn stream.
927 Initialize insn_addresses, so that we get reproducible results. */
928 INSN_ADDRESSES_ALLOC (max_uid);
929
930 varying_length = XCNEWVEC (char, max_uid);
931
932 /* Initialize uid_align. We scan instructions
933 from end to start, and keep in align_tab[n] the last seen insn
934 that does an alignment of at least n+1, i.e. the successor
935 in the alignment chain for an insn that does / has a known
936 alignment of n. */
937 uid_align = XCNEWVEC (rtx, max_uid);
938
939 for (i = MAX_CODE_ALIGN; --i >= 0;)
940 align_tab[i] = NULL_RTX;
941 seq = get_last_insn ();
942 for (; seq; seq = PREV_INSN (seq))
943 {
944 int uid = INSN_UID (seq);
945 int log;
946 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
947 uid_align[uid] = align_tab[0];
948 if (log)
949 {
950 /* Found an alignment label. */
951 uid_align[uid] = align_tab[log];
952 for (i = log - 1; i >= 0; i--)
953 align_tab[i] = seq;
954 }
955 }
956 #ifdef CASE_VECTOR_SHORTEN_MODE
957 if (optimize)
958 {
959 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960 label fields. */
961
962 int min_shuid = INSN_SHUID (get_insns ()) - 1;
963 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964 int rel;
965
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
967 {
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
972
973 if (!JUMP_P (insn)
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
978 gcc_assert (len > 0);
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
981 {
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
985 {
986 min = shuid;
987 min_lab = lab;
988 }
989 if (shuid > max)
990 {
991 max = shuid;
992 max_lab = lab;
993 }
994 if (min_align > LABEL_TO_ALIGNMENT (lab))
995 min_align = LABEL_TO_ALIGNMENT (lab);
996 }
997 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
998 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
999 insn_shuid = INSN_SHUID (insn);
1000 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1001 memset (&flags, 0, sizeof (flags));
1002 flags.min_align = min_align;
1003 flags.base_after_vec = rel > insn_shuid;
1004 flags.min_after_vec = min > insn_shuid;
1005 flags.max_after_vec = max > insn_shuid;
1006 flags.min_after_base = min > rel;
1007 flags.max_after_base = max > rel;
1008 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1009 }
1010 }
1011 #endif /* CASE_VECTOR_SHORTEN_MODE */
1012
1013 /* Compute initial lengths, addresses, and varying flags for each insn. */
1014 for (insn_current_address = 0, insn = first;
1015 insn != 0;
1016 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1017 {
1018 uid = INSN_UID (insn);
1019
1020 insn_lengths[uid] = 0;
1021
1022 if (LABEL_P (insn))
1023 {
1024 int log = LABEL_TO_ALIGNMENT (insn);
1025 if (log)
1026 {
1027 int align = 1 << log;
1028 int new_address = (insn_current_address + align - 1) & -align;
1029 insn_lengths[uid] = new_address - insn_current_address;
1030 }
1031 }
1032
1033 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1034
1035 if (NOTE_P (insn) || BARRIER_P (insn)
1036 || LABEL_P (insn))
1037 continue;
1038 if (INSN_DELETED_P (insn))
1039 continue;
1040
1041 body = PATTERN (insn);
1042 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1043 {
1044 /* This only takes room if read-only data goes into the text
1045 section. */
1046 if (JUMP_TABLES_IN_TEXT_SECTION
1047 || readonly_data_section == text_section)
1048 insn_lengths[uid] = (XVECLEN (body,
1049 GET_CODE (body) == ADDR_DIFF_VEC)
1050 * GET_MODE_SIZE (GET_MODE (body)));
1051 /* Alignment is handled by ADDR_VEC_ALIGN. */
1052 }
1053 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1054 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1055 else if (GET_CODE (body) == SEQUENCE)
1056 {
1057 int i;
1058 int const_delay_slots;
1059 #ifdef DELAY_SLOTS
1060 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1061 #else
1062 const_delay_slots = 0;
1063 #endif
1064 /* Inside a delay slot sequence, we do not do any branch shortening
1065 if the shortening could change the number of delay slots
1066 of the branch. */
1067 for (i = 0; i < XVECLEN (body, 0); i++)
1068 {
1069 rtx inner_insn = XVECEXP (body, 0, i);
1070 int inner_uid = INSN_UID (inner_insn);
1071 int inner_length;
1072
1073 if (GET_CODE (body) == ASM_INPUT
1074 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1075 inner_length = (asm_insn_count (PATTERN (inner_insn))
1076 * insn_default_length (inner_insn));
1077 else
1078 inner_length = insn_default_length (inner_insn);
1079
1080 insn_lengths[inner_uid] = inner_length;
1081 if (const_delay_slots)
1082 {
1083 if ((varying_length[inner_uid]
1084 = insn_variable_length_p (inner_insn)) != 0)
1085 varying_length[uid] = 1;
1086 INSN_ADDRESSES (inner_uid) = (insn_current_address
1087 + insn_lengths[uid]);
1088 }
1089 else
1090 varying_length[inner_uid] = 0;
1091 insn_lengths[uid] += inner_length;
1092 }
1093 }
1094 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1095 {
1096 insn_lengths[uid] = insn_default_length (insn);
1097 varying_length[uid] = insn_variable_length_p (insn);
1098 }
1099
1100 /* If needed, do any adjustment. */
1101 #ifdef ADJUST_INSN_LENGTH
1102 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1103 if (insn_lengths[uid] < 0)
1104 fatal_insn ("negative insn length", insn);
1105 #endif
1106 }
1107
1108 /* Now loop over all the insns finding varying length insns. For each,
1109 get the current insn length. If it has changed, reflect the change.
1110 When nothing changes for a full pass, we are done. */
1111
1112 while (something_changed)
1113 {
1114 something_changed = 0;
1115 insn_current_align = MAX_CODE_ALIGN - 1;
1116 for (insn_current_address = 0, insn = first;
1117 insn != 0;
1118 insn = NEXT_INSN (insn))
1119 {
1120 int new_length;
1121 #ifdef ADJUST_INSN_LENGTH
1122 int tmp_length;
1123 #endif
1124 int length_align;
1125
1126 uid = INSN_UID (insn);
1127
1128 if (LABEL_P (insn))
1129 {
1130 int log = LABEL_TO_ALIGNMENT (insn);
1131 if (log > insn_current_align)
1132 {
1133 int align = 1 << log;
1134 int new_address= (insn_current_address + align - 1) & -align;
1135 insn_lengths[uid] = new_address - insn_current_address;
1136 insn_current_align = log;
1137 insn_current_address = new_address;
1138 }
1139 else
1140 insn_lengths[uid] = 0;
1141 INSN_ADDRESSES (uid) = insn_current_address;
1142 continue;
1143 }
1144
1145 length_align = INSN_LENGTH_ALIGNMENT (insn);
1146 if (length_align < insn_current_align)
1147 insn_current_align = length_align;
1148
1149 insn_last_address = INSN_ADDRESSES (uid);
1150 INSN_ADDRESSES (uid) = insn_current_address;
1151
1152 #ifdef CASE_VECTOR_SHORTEN_MODE
1153 if (optimize && JUMP_P (insn)
1154 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1155 {
1156 rtx body = PATTERN (insn);
1157 int old_length = insn_lengths[uid];
1158 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1159 rtx min_lab = XEXP (XEXP (body, 2), 0);
1160 rtx max_lab = XEXP (XEXP (body, 3), 0);
1161 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1162 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1163 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1164 rtx prev;
1165 int rel_align = 0;
1166 addr_diff_vec_flags flags;
1167
1168 /* Avoid automatic aggregate initialization. */
1169 flags = ADDR_DIFF_VEC_FLAGS (body);
1170
1171 /* Try to find a known alignment for rel_lab. */
1172 for (prev = rel_lab;
1173 prev
1174 && ! insn_lengths[INSN_UID (prev)]
1175 && ! (varying_length[INSN_UID (prev)] & 1);
1176 prev = PREV_INSN (prev))
1177 if (varying_length[INSN_UID (prev)] & 2)
1178 {
1179 rel_align = LABEL_TO_ALIGNMENT (prev);
1180 break;
1181 }
1182
1183 /* See the comment on addr_diff_vec_flags in rtl.h for the
1184 meaning of the flags values. base: REL_LAB vec: INSN */
1185 /* Anything after INSN has still addresses from the last
1186 pass; adjust these so that they reflect our current
1187 estimate for this pass. */
1188 if (flags.base_after_vec)
1189 rel_addr += insn_current_address - insn_last_address;
1190 if (flags.min_after_vec)
1191 min_addr += insn_current_address - insn_last_address;
1192 if (flags.max_after_vec)
1193 max_addr += insn_current_address - insn_last_address;
1194 /* We want to know the worst case, i.e. lowest possible value
1195 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1196 its offset is positive, and we have to be wary of code shrink;
1197 otherwise, it is negative, and we have to be vary of code
1198 size increase. */
1199 if (flags.min_after_base)
1200 {
1201 /* If INSN is between REL_LAB and MIN_LAB, the size
1202 changes we are about to make can change the alignment
1203 within the observed offset, therefore we have to break
1204 it up into two parts that are independent. */
1205 if (! flags.base_after_vec && flags.min_after_vec)
1206 {
1207 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1208 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1209 }
1210 else
1211 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1212 }
1213 else
1214 {
1215 if (flags.base_after_vec && ! flags.min_after_vec)
1216 {
1217 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1218 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1219 }
1220 else
1221 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1222 }
1223 /* Likewise, determine the highest lowest possible value
1224 for the offset of MAX_LAB. */
1225 if (flags.max_after_base)
1226 {
1227 if (! flags.base_after_vec && flags.max_after_vec)
1228 {
1229 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1230 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1231 }
1232 else
1233 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1234 }
1235 else
1236 {
1237 if (flags.base_after_vec && ! flags.max_after_vec)
1238 {
1239 max_addr += align_fuzz (max_lab, insn, 0, 0);
1240 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1241 }
1242 else
1243 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1244 }
1245 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1246 max_addr - rel_addr,
1247 body));
1248 if (JUMP_TABLES_IN_TEXT_SECTION
1249 || readonly_data_section == text_section)
1250 {
1251 insn_lengths[uid]
1252 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1253 insn_current_address += insn_lengths[uid];
1254 if (insn_lengths[uid] != old_length)
1255 something_changed = 1;
1256 }
1257
1258 continue;
1259 }
1260 #endif /* CASE_VECTOR_SHORTEN_MODE */
1261
1262 if (! (varying_length[uid]))
1263 {
1264 if (NONJUMP_INSN_P (insn)
1265 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1266 {
1267 int i;
1268
1269 body = PATTERN (insn);
1270 for (i = 0; i < XVECLEN (body, 0); i++)
1271 {
1272 rtx inner_insn = XVECEXP (body, 0, i);
1273 int inner_uid = INSN_UID (inner_insn);
1274
1275 INSN_ADDRESSES (inner_uid) = insn_current_address;
1276
1277 insn_current_address += insn_lengths[inner_uid];
1278 }
1279 }
1280 else
1281 insn_current_address += insn_lengths[uid];
1282
1283 continue;
1284 }
1285
1286 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1287 {
1288 int i;
1289
1290 body = PATTERN (insn);
1291 new_length = 0;
1292 for (i = 0; i < XVECLEN (body, 0); i++)
1293 {
1294 rtx inner_insn = XVECEXP (body, 0, i);
1295 int inner_uid = INSN_UID (inner_insn);
1296 int inner_length;
1297
1298 INSN_ADDRESSES (inner_uid) = insn_current_address;
1299
1300 /* insn_current_length returns 0 for insns with a
1301 non-varying length. */
1302 if (! varying_length[inner_uid])
1303 inner_length = insn_lengths[inner_uid];
1304 else
1305 inner_length = insn_current_length (inner_insn);
1306
1307 if (inner_length != insn_lengths[inner_uid])
1308 {
1309 insn_lengths[inner_uid] = inner_length;
1310 something_changed = 1;
1311 }
1312 insn_current_address += insn_lengths[inner_uid];
1313 new_length += inner_length;
1314 }
1315 }
1316 else
1317 {
1318 new_length = insn_current_length (insn);
1319 insn_current_address += new_length;
1320 }
1321
1322 #ifdef ADJUST_INSN_LENGTH
1323 /* If needed, do any adjustment. */
1324 tmp_length = new_length;
1325 ADJUST_INSN_LENGTH (insn, new_length);
1326 insn_current_address += (new_length - tmp_length);
1327 #endif
1328
1329 if (new_length != insn_lengths[uid])
1330 {
1331 insn_lengths[uid] = new_length;
1332 something_changed = 1;
1333 }
1334 }
1335 /* For a non-optimizing compile, do only a single pass. */
1336 if (!optimize)
1337 break;
1338 }
1339
1340 free (varying_length);
1341
1342 #endif /* HAVE_ATTR_length */
1343 }
1344
1345 #ifdef HAVE_ATTR_length
1346 /* Given the body of an INSN known to be generated by an ASM statement, return
1347 the number of machine instructions likely to be generated for this insn.
1348 This is used to compute its length. */
1349
1350 static int
1351 asm_insn_count (rtx body)
1352 {
1353 const char *template;
1354 int count = 1;
1355
1356 if (GET_CODE (body) == ASM_INPUT)
1357 template = XSTR (body, 0);
1358 else
1359 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1360
1361 for (; *template; template++)
1362 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1363 count++;
1364
1365 return count;
1366 }
1367 #endif
1368 \f
1369 /* Output assembler code for the start of a function,
1370 and initialize some of the variables in this file
1371 for the new function. The label for the function and associated
1372 assembler pseudo-ops have already been output in `assemble_start_function'.
1373
1374 FIRST is the first insn of the rtl for the function being compiled.
1375 FILE is the file to write assembler code to.
1376 OPTIMIZE is nonzero if we should eliminate redundant
1377 test and compare insns. */
1378
1379 void
1380 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1381 int optimize ATTRIBUTE_UNUSED)
1382 {
1383 block_depth = 0;
1384
1385 this_is_asm_operands = 0;
1386
1387 last_filename = locator_file (prologue_locator);
1388 last_linenum = locator_line (prologue_locator);
1389
1390 high_block_linenum = high_function_linenum = last_linenum;
1391
1392 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1393
1394 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1395 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1396 dwarf2out_begin_prologue (0, NULL);
1397 #endif
1398
1399 #ifdef LEAF_REG_REMAP
1400 if (current_function_uses_only_leaf_regs)
1401 leaf_renumber_regs (first);
1402 #endif
1403
1404 /* The Sun386i and perhaps other machines don't work right
1405 if the profiling code comes after the prologue. */
1406 #ifdef PROFILE_BEFORE_PROLOGUE
1407 if (current_function_profile)
1408 profile_function (file);
1409 #endif /* PROFILE_BEFORE_PROLOGUE */
1410
1411 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1412 if (dwarf2out_do_frame ())
1413 dwarf2out_frame_debug (NULL_RTX, false);
1414 #endif
1415
1416 /* If debugging, assign block numbers to all of the blocks in this
1417 function. */
1418 if (write_symbols)
1419 {
1420 reemit_insn_block_notes ();
1421 number_blocks (current_function_decl);
1422 /* We never actually put out begin/end notes for the top-level
1423 block in the function. But, conceptually, that block is
1424 always needed. */
1425 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1426 }
1427
1428 /* First output the function prologue: code to set up the stack frame. */
1429 targetm.asm_out.function_prologue (file, get_frame_size ());
1430
1431 /* If the machine represents the prologue as RTL, the profiling code must
1432 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1433 #ifdef HAVE_prologue
1434 if (! HAVE_prologue)
1435 #endif
1436 profile_after_prologue (file);
1437 }
1438
1439 static void
1440 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1441 {
1442 #ifndef PROFILE_BEFORE_PROLOGUE
1443 if (current_function_profile)
1444 profile_function (file);
1445 #endif /* not PROFILE_BEFORE_PROLOGUE */
1446 }
1447
1448 static void
1449 profile_function (FILE *file ATTRIBUTE_UNUSED)
1450 {
1451 #ifndef NO_PROFILE_COUNTERS
1452 # define NO_PROFILE_COUNTERS 0
1453 #endif
1454 #if defined(ASM_OUTPUT_REG_PUSH)
1455 int sval = current_function_returns_struct;
1456 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1457 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1458 int cxt = cfun->static_chain_decl != NULL;
1459 #endif
1460 #endif /* ASM_OUTPUT_REG_PUSH */
1461
1462 if (! NO_PROFILE_COUNTERS)
1463 {
1464 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1465 switch_to_section (data_section);
1466 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1467 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1468 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1469 }
1470
1471 switch_to_section (current_function_section ());
1472
1473 #if defined(ASM_OUTPUT_REG_PUSH)
1474 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1475 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1476 #endif
1477
1478 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1479 if (cxt)
1480 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1481 #else
1482 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1483 if (cxt)
1484 {
1485 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1486 }
1487 #endif
1488 #endif
1489
1490 FUNCTION_PROFILER (file, current_function_funcdef_no);
1491
1492 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1493 if (cxt)
1494 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1495 #else
1496 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1497 if (cxt)
1498 {
1499 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1500 }
1501 #endif
1502 #endif
1503
1504 #if defined(ASM_OUTPUT_REG_PUSH)
1505 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1506 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1507 #endif
1508 }
1509
1510 /* Output assembler code for the end of a function.
1511 For clarity, args are same as those of `final_start_function'
1512 even though not all of them are needed. */
1513
1514 void
1515 final_end_function (void)
1516 {
1517 app_disable ();
1518
1519 (*debug_hooks->end_function) (high_function_linenum);
1520
1521 /* Finally, output the function epilogue:
1522 code to restore the stack frame and return to the caller. */
1523 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1524
1525 /* And debug output. */
1526 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1527
1528 #if defined (DWARF2_UNWIND_INFO)
1529 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1530 && dwarf2out_do_frame ())
1531 dwarf2out_end_epilogue (last_linenum, last_filename);
1532 #endif
1533 }
1534 \f
1535 /* Output assembler code for some insns: all or part of a function.
1536 For description of args, see `final_start_function', above. */
1537
1538 void
1539 final (rtx first, FILE *file, int optimize)
1540 {
1541 rtx insn;
1542 int max_uid = 0;
1543 int seen = 0;
1544
1545 last_ignored_compare = 0;
1546
1547 #ifdef SDB_DEBUGGING_INFO
1548 /* When producing SDB debugging info, delete troublesome line number
1549 notes from inlined functions in other files as well as duplicate
1550 line number notes. */
1551 if (write_symbols == SDB_DEBUG)
1552 {
1553 rtx last = 0;
1554 for (insn = first; insn; insn = NEXT_INSN (insn))
1555 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1556 {
1557 if (last != 0
1558 #ifdef USE_MAPPED_LOCATION
1559 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1560 #else
1561 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1562 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1563 #endif
1564 )
1565 {
1566 delete_insn (insn); /* Use delete_note. */
1567 continue;
1568 }
1569 last = insn;
1570 }
1571 }
1572 #endif
1573
1574 for (insn = first; insn; insn = NEXT_INSN (insn))
1575 {
1576 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1577 max_uid = INSN_UID (insn);
1578 #ifdef HAVE_cc0
1579 /* If CC tracking across branches is enabled, record the insn which
1580 jumps to each branch only reached from one place. */
1581 if (optimize && JUMP_P (insn))
1582 {
1583 rtx lab = JUMP_LABEL (insn);
1584 if (lab && LABEL_NUSES (lab) == 1)
1585 {
1586 LABEL_REFS (lab) = insn;
1587 }
1588 }
1589 #endif
1590 }
1591
1592 init_recog ();
1593
1594 CC_STATUS_INIT;
1595
1596 /* Output the insns. */
1597 for (insn = NEXT_INSN (first); insn;)
1598 {
1599 #ifdef HAVE_ATTR_length
1600 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1601 {
1602 /* This can be triggered by bugs elsewhere in the compiler if
1603 new insns are created after init_insn_lengths is called. */
1604 gcc_assert (NOTE_P (insn));
1605 insn_current_address = -1;
1606 }
1607 else
1608 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1609 #endif /* HAVE_ATTR_length */
1610
1611 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1612 }
1613 }
1614 \f
1615 const char *
1616 get_insn_template (int code, rtx insn)
1617 {
1618 switch (insn_data[code].output_format)
1619 {
1620 case INSN_OUTPUT_FORMAT_SINGLE:
1621 return insn_data[code].output.single;
1622 case INSN_OUTPUT_FORMAT_MULTI:
1623 return insn_data[code].output.multi[which_alternative];
1624 case INSN_OUTPUT_FORMAT_FUNCTION:
1625 gcc_assert (insn);
1626 return (*insn_data[code].output.function) (recog_data.operand, insn);
1627
1628 default:
1629 gcc_unreachable ();
1630 }
1631 }
1632
1633 /* Emit the appropriate declaration for an alternate-entry-point
1634 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1635 LABEL_KIND != LABEL_NORMAL.
1636
1637 The case fall-through in this function is intentional. */
1638 static void
1639 output_alternate_entry_point (FILE *file, rtx insn)
1640 {
1641 const char *name = LABEL_NAME (insn);
1642
1643 switch (LABEL_KIND (insn))
1644 {
1645 case LABEL_WEAK_ENTRY:
1646 #ifdef ASM_WEAKEN_LABEL
1647 ASM_WEAKEN_LABEL (file, name);
1648 #endif
1649 case LABEL_GLOBAL_ENTRY:
1650 targetm.asm_out.globalize_label (file, name);
1651 case LABEL_STATIC_ENTRY:
1652 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1653 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1654 #endif
1655 ASM_OUTPUT_LABEL (file, name);
1656 break;
1657
1658 case LABEL_NORMAL:
1659 default:
1660 gcc_unreachable ();
1661 }
1662 }
1663
1664 /* The final scan for one insn, INSN.
1665 Args are same as in `final', except that INSN
1666 is the insn being scanned.
1667 Value returned is the next insn to be scanned.
1668
1669 NOPEEPHOLES is the flag to disallow peephole processing (currently
1670 used for within delayed branch sequence output).
1671
1672 SEEN is used to track the end of the prologue, for emitting
1673 debug information. We force the emission of a line note after
1674 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1675 at the beginning of the second basic block, whichever comes
1676 first. */
1677
1678 rtx
1679 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1680 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1681 {
1682 #ifdef HAVE_cc0
1683 rtx set;
1684 #endif
1685 rtx next;
1686
1687 insn_counter++;
1688
1689 /* Ignore deleted insns. These can occur when we split insns (due to a
1690 template of "#") while not optimizing. */
1691 if (INSN_DELETED_P (insn))
1692 return NEXT_INSN (insn);
1693
1694 switch (GET_CODE (insn))
1695 {
1696 case NOTE:
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_FUNCTION_END:
1703 case NOTE_INSN_REPEATED_LINE_NUMBER:
1704 case NOTE_INSN_EXPECTED_VALUE:
1705 break;
1706
1707 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1708 in_cold_section_p = !in_cold_section_p;
1709 (*debug_hooks->switch_text_section) ();
1710 switch_to_section (current_function_section ());
1711 break;
1712
1713 case NOTE_INSN_BASIC_BLOCK:
1714
1715 #ifdef TARGET_UNWIND_INFO
1716 targetm.asm_out.unwind_emit (asm_out_file, insn);
1717 #endif
1718
1719 if (flag_debug_asm)
1720 fprintf (asm_out_file, "\t%s basic block %d\n",
1721 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1722
1723 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1724 {
1725 *seen |= SEEN_EMITTED;
1726 force_source_line = true;
1727 }
1728 else
1729 *seen |= SEEN_BB;
1730
1731 break;
1732
1733 case NOTE_INSN_EH_REGION_BEG:
1734 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1735 NOTE_EH_HANDLER (insn));
1736 break;
1737
1738 case NOTE_INSN_EH_REGION_END:
1739 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1740 NOTE_EH_HANDLER (insn));
1741 break;
1742
1743 case NOTE_INSN_PROLOGUE_END:
1744 targetm.asm_out.function_end_prologue (file);
1745 profile_after_prologue (file);
1746
1747 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1748 {
1749 *seen |= SEEN_EMITTED;
1750 force_source_line = true;
1751 }
1752 else
1753 *seen |= SEEN_NOTE;
1754
1755 break;
1756
1757 case NOTE_INSN_EPILOGUE_BEG:
1758 targetm.asm_out.function_begin_epilogue (file);
1759 break;
1760
1761 case NOTE_INSN_FUNCTION_BEG:
1762 app_disable ();
1763 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1764
1765 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1766 {
1767 *seen |= SEEN_EMITTED;
1768 force_source_line = true;
1769 }
1770 else
1771 *seen |= SEEN_NOTE;
1772
1773 break;
1774
1775 case NOTE_INSN_BLOCK_BEG:
1776 if (debug_info_level == DINFO_LEVEL_NORMAL
1777 || debug_info_level == DINFO_LEVEL_VERBOSE
1778 || write_symbols == DWARF2_DEBUG
1779 || write_symbols == VMS_AND_DWARF2_DEBUG
1780 || write_symbols == VMS_DEBUG)
1781 {
1782 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1783
1784 app_disable ();
1785 ++block_depth;
1786 high_block_linenum = last_linenum;
1787
1788 /* Output debugging info about the symbol-block beginning. */
1789 (*debug_hooks->begin_block) (last_linenum, n);
1790
1791 /* Mark this block as output. */
1792 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1793 }
1794 break;
1795
1796 case NOTE_INSN_BLOCK_END:
1797 if (debug_info_level == DINFO_LEVEL_NORMAL
1798 || debug_info_level == DINFO_LEVEL_VERBOSE
1799 || write_symbols == DWARF2_DEBUG
1800 || write_symbols == VMS_AND_DWARF2_DEBUG
1801 || write_symbols == VMS_DEBUG)
1802 {
1803 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1804
1805 app_disable ();
1806
1807 /* End of a symbol-block. */
1808 --block_depth;
1809 gcc_assert (block_depth >= 0);
1810
1811 (*debug_hooks->end_block) (high_block_linenum, n);
1812 }
1813 break;
1814
1815 case NOTE_INSN_DELETED_LABEL:
1816 /* Emit the label. We may have deleted the CODE_LABEL because
1817 the label could be proved to be unreachable, though still
1818 referenced (in the form of having its address taken. */
1819 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1820 break;
1821
1822 case NOTE_INSN_VAR_LOCATION:
1823 (*debug_hooks->var_location) (insn);
1824 break;
1825
1826 case 0:
1827 break;
1828
1829 default:
1830 gcc_assert (NOTE_LINE_NUMBER (insn) > 0);
1831 break;
1832 }
1833 break;
1834
1835 case BARRIER:
1836 #if defined (DWARF2_UNWIND_INFO)
1837 if (dwarf2out_do_frame ())
1838 dwarf2out_frame_debug (insn, false);
1839 #endif
1840 break;
1841
1842 case CODE_LABEL:
1843 /* The target port might emit labels in the output function for
1844 some insn, e.g. sh.c output_branchy_insn. */
1845 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1846 {
1847 int align = LABEL_TO_ALIGNMENT (insn);
1848 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1849 int max_skip = LABEL_TO_MAX_SKIP (insn);
1850 #endif
1851
1852 if (align && NEXT_INSN (insn))
1853 {
1854 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1855 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1856 #else
1857 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1858 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1859 #else
1860 ASM_OUTPUT_ALIGN (file, align);
1861 #endif
1862 #endif
1863 }
1864 }
1865 #ifdef HAVE_cc0
1866 CC_STATUS_INIT;
1867 /* If this label is reached from only one place, set the condition
1868 codes from the instruction just before the branch. */
1869
1870 /* Disabled because some insns set cc_status in the C output code
1871 and NOTICE_UPDATE_CC alone can set incorrect status. */
1872 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1873 {
1874 rtx jump = LABEL_REFS (insn);
1875 rtx barrier = prev_nonnote_insn (insn);
1876 rtx prev;
1877 /* If the LABEL_REFS field of this label has been set to point
1878 at a branch, the predecessor of the branch is a regular
1879 insn, and that branch is the only way to reach this label,
1880 set the condition codes based on the branch and its
1881 predecessor. */
1882 if (barrier && BARRIER_P (barrier)
1883 && jump && JUMP_P (jump)
1884 && (prev = prev_nonnote_insn (jump))
1885 && NONJUMP_INSN_P (prev))
1886 {
1887 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1888 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1889 }
1890 }
1891 #endif
1892
1893 if (LABEL_NAME (insn))
1894 (*debug_hooks->label) (insn);
1895
1896 if (app_on)
1897 {
1898 fputs (ASM_APP_OFF, file);
1899 app_on = 0;
1900 }
1901
1902 next = next_nonnote_insn (insn);
1903 if (next != 0 && JUMP_P (next))
1904 {
1905 rtx nextbody = PATTERN (next);
1906
1907 /* If this label is followed by a jump-table,
1908 make sure we put the label in the read-only section. Also
1909 possibly write the label and jump table together. */
1910
1911 if (GET_CODE (nextbody) == ADDR_VEC
1912 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1913 {
1914 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1915 /* In this case, the case vector is being moved by the
1916 target, so don't output the label at all. Leave that
1917 to the back end macros. */
1918 #else
1919 if (! JUMP_TABLES_IN_TEXT_SECTION)
1920 {
1921 int log_align;
1922
1923 switch_to_section (targetm.asm_out.function_rodata_section
1924 (current_function_decl));
1925
1926 #ifdef ADDR_VEC_ALIGN
1927 log_align = ADDR_VEC_ALIGN (next);
1928 #else
1929 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1930 #endif
1931 ASM_OUTPUT_ALIGN (file, log_align);
1932 }
1933 else
1934 switch_to_section (current_function_section ());
1935
1936 #ifdef ASM_OUTPUT_CASE_LABEL
1937 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1938 next);
1939 #else
1940 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1941 #endif
1942 #endif
1943 break;
1944 }
1945 }
1946 if (LABEL_ALT_ENTRY_P (insn))
1947 output_alternate_entry_point (file, insn);
1948 else
1949 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1950 break;
1951
1952 default:
1953 {
1954 rtx body = PATTERN (insn);
1955 int insn_code_number;
1956 const char *template;
1957
1958 /* An INSN, JUMP_INSN or CALL_INSN.
1959 First check for special kinds that recog doesn't recognize. */
1960
1961 if (GET_CODE (body) == USE /* These are just declarations. */
1962 || GET_CODE (body) == CLOBBER)
1963 break;
1964
1965 #ifdef HAVE_cc0
1966 {
1967 /* If there is a REG_CC_SETTER note on this insn, it means that
1968 the setting of the condition code was done in the delay slot
1969 of the insn that branched here. So recover the cc status
1970 from the insn that set it. */
1971
1972 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
1973 if (note)
1974 {
1975 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
1976 cc_prev_status = cc_status;
1977 }
1978 }
1979 #endif
1980
1981 /* Detect insns that are really jump-tables
1982 and output them as such. */
1983
1984 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1985 {
1986 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
1987 int vlen, idx;
1988 #endif
1989
1990 if (! JUMP_TABLES_IN_TEXT_SECTION)
1991 switch_to_section (targetm.asm_out.function_rodata_section
1992 (current_function_decl));
1993 else
1994 switch_to_section (current_function_section ());
1995
1996 if (app_on)
1997 {
1998 fputs (ASM_APP_OFF, file);
1999 app_on = 0;
2000 }
2001
2002 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2003 if (GET_CODE (body) == ADDR_VEC)
2004 {
2005 #ifdef ASM_OUTPUT_ADDR_VEC
2006 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2007 #else
2008 gcc_unreachable ();
2009 #endif
2010 }
2011 else
2012 {
2013 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2014 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2015 #else
2016 gcc_unreachable ();
2017 #endif
2018 }
2019 #else
2020 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2021 for (idx = 0; idx < vlen; idx++)
2022 {
2023 if (GET_CODE (body) == ADDR_VEC)
2024 {
2025 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2026 ASM_OUTPUT_ADDR_VEC_ELT
2027 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2028 #else
2029 gcc_unreachable ();
2030 #endif
2031 }
2032 else
2033 {
2034 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2035 ASM_OUTPUT_ADDR_DIFF_ELT
2036 (file,
2037 body,
2038 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2039 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2040 #else
2041 gcc_unreachable ();
2042 #endif
2043 }
2044 }
2045 #ifdef ASM_OUTPUT_CASE_END
2046 ASM_OUTPUT_CASE_END (file,
2047 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2048 insn);
2049 #endif
2050 #endif
2051
2052 switch_to_section (current_function_section ());
2053
2054 break;
2055 }
2056 /* Output this line note if it is the first or the last line
2057 note in a row. */
2058 if (notice_source_line (insn))
2059 {
2060 (*debug_hooks->source_line) (last_linenum, last_filename);
2061 }
2062
2063 if (GET_CODE (body) == ASM_INPUT)
2064 {
2065 const char *string = XSTR (body, 0);
2066
2067 /* There's no telling what that did to the condition codes. */
2068 CC_STATUS_INIT;
2069
2070 if (string[0])
2071 {
2072 if (! app_on)
2073 {
2074 fputs (ASM_APP_ON, file);
2075 app_on = 1;
2076 }
2077 fprintf (asm_out_file, "\t%s\n", string);
2078 }
2079 break;
2080 }
2081
2082 /* Detect `asm' construct with operands. */
2083 if (asm_noperands (body) >= 0)
2084 {
2085 unsigned int noperands = asm_noperands (body);
2086 rtx *ops = alloca (noperands * sizeof (rtx));
2087 const char *string;
2088
2089 /* There's no telling what that did to the condition codes. */
2090 CC_STATUS_INIT;
2091
2092 /* Get out the operand values. */
2093 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2094 /* Inhibit dieing on what would otherwise be compiler bugs. */
2095 insn_noperands = noperands;
2096 this_is_asm_operands = insn;
2097
2098 #ifdef FINAL_PRESCAN_INSN
2099 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2100 #endif
2101
2102 /* Output the insn using them. */
2103 if (string[0])
2104 {
2105 if (! app_on)
2106 {
2107 fputs (ASM_APP_ON, file);
2108 app_on = 1;
2109 }
2110 output_asm_insn (string, ops);
2111 }
2112
2113 this_is_asm_operands = 0;
2114 break;
2115 }
2116
2117 if (app_on)
2118 {
2119 fputs (ASM_APP_OFF, file);
2120 app_on = 0;
2121 }
2122
2123 if (GET_CODE (body) == SEQUENCE)
2124 {
2125 /* A delayed-branch sequence */
2126 int i;
2127
2128 final_sequence = body;
2129
2130 /* Record the delay slots' frame information before the branch.
2131 This is needed for delayed calls: see execute_cfa_program(). */
2132 #if defined (DWARF2_UNWIND_INFO)
2133 if (dwarf2out_do_frame ())
2134 for (i = 1; i < XVECLEN (body, 0); i++)
2135 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2136 #endif
2137
2138 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2139 force the restoration of a comparison that was previously
2140 thought unnecessary. If that happens, cancel this sequence
2141 and cause that insn to be restored. */
2142
2143 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2144 if (next != XVECEXP (body, 0, 1))
2145 {
2146 final_sequence = 0;
2147 return next;
2148 }
2149
2150 for (i = 1; i < XVECLEN (body, 0); i++)
2151 {
2152 rtx insn = XVECEXP (body, 0, i);
2153 rtx next = NEXT_INSN (insn);
2154 /* We loop in case any instruction in a delay slot gets
2155 split. */
2156 do
2157 insn = final_scan_insn (insn, file, 0, 1, seen);
2158 while (insn != next);
2159 }
2160 #ifdef DBR_OUTPUT_SEQEND
2161 DBR_OUTPUT_SEQEND (file);
2162 #endif
2163 final_sequence = 0;
2164
2165 /* If the insn requiring the delay slot was a CALL_INSN, the
2166 insns in the delay slot are actually executed before the
2167 called function. Hence we don't preserve any CC-setting
2168 actions in these insns and the CC must be marked as being
2169 clobbered by the function. */
2170 if (CALL_P (XVECEXP (body, 0, 0)))
2171 {
2172 CC_STATUS_INIT;
2173 }
2174 break;
2175 }
2176
2177 /* We have a real machine instruction as rtl. */
2178
2179 body = PATTERN (insn);
2180
2181 #ifdef HAVE_cc0
2182 set = single_set (insn);
2183
2184 /* Check for redundant test and compare instructions
2185 (when the condition codes are already set up as desired).
2186 This is done only when optimizing; if not optimizing,
2187 it should be possible for the user to alter a variable
2188 with the debugger in between statements
2189 and the next statement should reexamine the variable
2190 to compute the condition codes. */
2191
2192 if (optimize)
2193 {
2194 if (set
2195 && GET_CODE (SET_DEST (set)) == CC0
2196 && insn != last_ignored_compare)
2197 {
2198 if (GET_CODE (SET_SRC (set)) == SUBREG)
2199 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2200 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2201 {
2202 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2203 XEXP (SET_SRC (set), 0)
2204 = alter_subreg (&XEXP (SET_SRC (set), 0));
2205 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2206 XEXP (SET_SRC (set), 1)
2207 = alter_subreg (&XEXP (SET_SRC (set), 1));
2208 }
2209 if ((cc_status.value1 != 0
2210 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2211 || (cc_status.value2 != 0
2212 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2213 {
2214 /* Don't delete insn if it has an addressing side-effect. */
2215 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2216 /* or if anything in it is volatile. */
2217 && ! volatile_refs_p (PATTERN (insn)))
2218 {
2219 /* We don't really delete the insn; just ignore it. */
2220 last_ignored_compare = insn;
2221 break;
2222 }
2223 }
2224 }
2225 }
2226 #endif
2227
2228 #ifdef HAVE_cc0
2229 /* If this is a conditional branch, maybe modify it
2230 if the cc's are in a nonstandard state
2231 so that it accomplishes the same thing that it would
2232 do straightforwardly if the cc's were set up normally. */
2233
2234 if (cc_status.flags != 0
2235 && JUMP_P (insn)
2236 && GET_CODE (body) == SET
2237 && SET_DEST (body) == pc_rtx
2238 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2239 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2240 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2241 {
2242 /* This function may alter the contents of its argument
2243 and clear some of the cc_status.flags bits.
2244 It may also return 1 meaning condition now always true
2245 or -1 meaning condition now always false
2246 or 2 meaning condition nontrivial but altered. */
2247 int result = alter_cond (XEXP (SET_SRC (body), 0));
2248 /* If condition now has fixed value, replace the IF_THEN_ELSE
2249 with its then-operand or its else-operand. */
2250 if (result == 1)
2251 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2252 if (result == -1)
2253 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2254
2255 /* The jump is now either unconditional or a no-op.
2256 If it has become a no-op, don't try to output it.
2257 (It would not be recognized.) */
2258 if (SET_SRC (body) == pc_rtx)
2259 {
2260 delete_insn (insn);
2261 break;
2262 }
2263 else if (GET_CODE (SET_SRC (body)) == RETURN)
2264 /* Replace (set (pc) (return)) with (return). */
2265 PATTERN (insn) = body = SET_SRC (body);
2266
2267 /* Rerecognize the instruction if it has changed. */
2268 if (result != 0)
2269 INSN_CODE (insn) = -1;
2270 }
2271
2272 /* Make same adjustments to instructions that examine the
2273 condition codes without jumping and instructions that
2274 handle conditional moves (if this machine has either one). */
2275
2276 if (cc_status.flags != 0
2277 && set != 0)
2278 {
2279 rtx cond_rtx, then_rtx, else_rtx;
2280
2281 if (!JUMP_P (insn)
2282 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2283 {
2284 cond_rtx = XEXP (SET_SRC (set), 0);
2285 then_rtx = XEXP (SET_SRC (set), 1);
2286 else_rtx = XEXP (SET_SRC (set), 2);
2287 }
2288 else
2289 {
2290 cond_rtx = SET_SRC (set);
2291 then_rtx = const_true_rtx;
2292 else_rtx = const0_rtx;
2293 }
2294
2295 switch (GET_CODE (cond_rtx))
2296 {
2297 case GTU:
2298 case GT:
2299 case LTU:
2300 case LT:
2301 case GEU:
2302 case GE:
2303 case LEU:
2304 case LE:
2305 case EQ:
2306 case NE:
2307 {
2308 int result;
2309 if (XEXP (cond_rtx, 0) != cc0_rtx)
2310 break;
2311 result = alter_cond (cond_rtx);
2312 if (result == 1)
2313 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2314 else if (result == -1)
2315 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2316 else if (result == 2)
2317 INSN_CODE (insn) = -1;
2318 if (SET_DEST (set) == SET_SRC (set))
2319 delete_insn (insn);
2320 }
2321 break;
2322
2323 default:
2324 break;
2325 }
2326 }
2327
2328 #endif
2329
2330 #ifdef HAVE_peephole
2331 /* Do machine-specific peephole optimizations if desired. */
2332
2333 if (optimize && !flag_no_peephole && !nopeepholes)
2334 {
2335 rtx next = peephole (insn);
2336 /* When peepholing, if there were notes within the peephole,
2337 emit them before the peephole. */
2338 if (next != 0 && next != NEXT_INSN (insn))
2339 {
2340 rtx note, prev = PREV_INSN (insn);
2341
2342 for (note = NEXT_INSN (insn); note != next;
2343 note = NEXT_INSN (note))
2344 final_scan_insn (note, file, optimize, nopeepholes, seen);
2345
2346 /* Put the notes in the proper position for a later
2347 rescan. For example, the SH target can do this
2348 when generating a far jump in a delayed branch
2349 sequence. */
2350 note = NEXT_INSN (insn);
2351 PREV_INSN (note) = prev;
2352 NEXT_INSN (prev) = note;
2353 NEXT_INSN (PREV_INSN (next)) = insn;
2354 PREV_INSN (insn) = PREV_INSN (next);
2355 NEXT_INSN (insn) = next;
2356 PREV_INSN (next) = insn;
2357 }
2358
2359 /* PEEPHOLE might have changed this. */
2360 body = PATTERN (insn);
2361 }
2362 #endif
2363
2364 /* Try to recognize the instruction.
2365 If successful, verify that the operands satisfy the
2366 constraints for the instruction. Crash if they don't,
2367 since `reload' should have changed them so that they do. */
2368
2369 insn_code_number = recog_memoized (insn);
2370 cleanup_subreg_operands (insn);
2371
2372 /* Dump the insn in the assembly for debugging. */
2373 if (flag_dump_rtl_in_asm)
2374 {
2375 print_rtx_head = ASM_COMMENT_START;
2376 print_rtl_single (asm_out_file, insn);
2377 print_rtx_head = "";
2378 }
2379
2380 if (! constrain_operands_cached (1))
2381 fatal_insn_not_found (insn);
2382
2383 /* Some target machines need to prescan each insn before
2384 it is output. */
2385
2386 #ifdef FINAL_PRESCAN_INSN
2387 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2388 #endif
2389
2390 #ifdef HAVE_conditional_execution
2391 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2392 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2393 else
2394 current_insn_predicate = NULL_RTX;
2395 #endif
2396
2397 #ifdef HAVE_cc0
2398 cc_prev_status = cc_status;
2399
2400 /* Update `cc_status' for this instruction.
2401 The instruction's output routine may change it further.
2402 If the output routine for a jump insn needs to depend
2403 on the cc status, it should look at cc_prev_status. */
2404
2405 NOTICE_UPDATE_CC (body, insn);
2406 #endif
2407
2408 current_output_insn = debug_insn = insn;
2409
2410 #if defined (DWARF2_UNWIND_INFO)
2411 if (CALL_P (insn) && dwarf2out_do_frame ())
2412 dwarf2out_frame_debug (insn, false);
2413 #endif
2414
2415 /* Find the proper template for this insn. */
2416 template = get_insn_template (insn_code_number, insn);
2417
2418 /* If the C code returns 0, it means that it is a jump insn
2419 which follows a deleted test insn, and that test insn
2420 needs to be reinserted. */
2421 if (template == 0)
2422 {
2423 rtx prev;
2424
2425 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2426
2427 /* We have already processed the notes between the setter and
2428 the user. Make sure we don't process them again, this is
2429 particularly important if one of the notes is a block
2430 scope note or an EH note. */
2431 for (prev = insn;
2432 prev != last_ignored_compare;
2433 prev = PREV_INSN (prev))
2434 {
2435 if (NOTE_P (prev))
2436 delete_insn (prev); /* Use delete_note. */
2437 }
2438
2439 return prev;
2440 }
2441
2442 /* If the template is the string "#", it means that this insn must
2443 be split. */
2444 if (template[0] == '#' && template[1] == '\0')
2445 {
2446 rtx new = try_split (body, insn, 0);
2447
2448 /* If we didn't split the insn, go away. */
2449 if (new == insn && PATTERN (new) == body)
2450 fatal_insn ("could not split insn", insn);
2451
2452 #ifdef HAVE_ATTR_length
2453 /* This instruction should have been split in shorten_branches,
2454 to ensure that we would have valid length info for the
2455 splitees. */
2456 gcc_unreachable ();
2457 #endif
2458
2459 return new;
2460 }
2461
2462 #ifdef TARGET_UNWIND_INFO
2463 /* ??? This will put the directives in the wrong place if
2464 get_insn_template outputs assembly directly. However calling it
2465 before get_insn_template breaks if the insns is split. */
2466 targetm.asm_out.unwind_emit (asm_out_file, insn);
2467 #endif
2468
2469 /* Output assembler code from the template. */
2470 output_asm_insn (template, recog_data.operand);
2471
2472 /* If necessary, report the effect that the instruction has on
2473 the unwind info. We've already done this for delay slots
2474 and call instructions. */
2475 #if defined (DWARF2_UNWIND_INFO)
2476 if (final_sequence == 0
2477 #if !defined (HAVE_prologue)
2478 && !ACCUMULATE_OUTGOING_ARGS
2479 #endif
2480 && dwarf2out_do_frame ())
2481 dwarf2out_frame_debug (insn, true);
2482 #endif
2483
2484 current_output_insn = debug_insn = 0;
2485 }
2486 }
2487 return NEXT_INSN (insn);
2488 }
2489 \f
2490 /* Return whether a source line note needs to be emitted before INSN. */
2491
2492 static bool
2493 notice_source_line (rtx insn)
2494 {
2495 const char *filename = insn_file (insn);
2496 int linenum = insn_line (insn);
2497
2498 if (filename
2499 && (force_source_line
2500 || filename != last_filename
2501 || last_linenum != linenum))
2502 {
2503 force_source_line = false;
2504 last_filename = filename;
2505 last_linenum = linenum;
2506 high_block_linenum = MAX (last_linenum, high_block_linenum);
2507 high_function_linenum = MAX (last_linenum, high_function_linenum);
2508 return true;
2509 }
2510 return false;
2511 }
2512 \f
2513 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2514 directly to the desired hard register. */
2515
2516 void
2517 cleanup_subreg_operands (rtx insn)
2518 {
2519 int i;
2520 extract_insn_cached (insn);
2521 for (i = 0; i < recog_data.n_operands; i++)
2522 {
2523 /* The following test cannot use recog_data.operand when testing
2524 for a SUBREG: the underlying object might have been changed
2525 already if we are inside a match_operator expression that
2526 matches the else clause. Instead we test the underlying
2527 expression directly. */
2528 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2529 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2530 else if (GET_CODE (recog_data.operand[i]) == PLUS
2531 || GET_CODE (recog_data.operand[i]) == MULT
2532 || MEM_P (recog_data.operand[i]))
2533 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2534 }
2535
2536 for (i = 0; i < recog_data.n_dups; i++)
2537 {
2538 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2539 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2540 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2541 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2542 || MEM_P (*recog_data.dup_loc[i]))
2543 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2544 }
2545 }
2546
2547 /* If X is a SUBREG, replace it with a REG or a MEM,
2548 based on the thing it is a subreg of. */
2549
2550 rtx
2551 alter_subreg (rtx *xp)
2552 {
2553 rtx x = *xp;
2554 rtx y = SUBREG_REG (x);
2555
2556 /* simplify_subreg does not remove subreg from volatile references.
2557 We are required to. */
2558 if (MEM_P (y))
2559 {
2560 int offset = SUBREG_BYTE (x);
2561
2562 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2563 contains 0 instead of the proper offset. See simplify_subreg. */
2564 if (offset == 0
2565 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2566 {
2567 int difference = GET_MODE_SIZE (GET_MODE (y))
2568 - GET_MODE_SIZE (GET_MODE (x));
2569 if (WORDS_BIG_ENDIAN)
2570 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2571 if (BYTES_BIG_ENDIAN)
2572 offset += difference % UNITS_PER_WORD;
2573 }
2574
2575 *xp = adjust_address (y, GET_MODE (x), offset);
2576 }
2577 else
2578 {
2579 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2580 SUBREG_BYTE (x));
2581
2582 if (new != 0)
2583 *xp = new;
2584 else if (REG_P (y))
2585 {
2586 /* Simplify_subreg can't handle some REG cases, but we have to. */
2587 unsigned int regno = subreg_regno (x);
2588 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2589 }
2590 }
2591
2592 return *xp;
2593 }
2594
2595 /* Do alter_subreg on all the SUBREGs contained in X. */
2596
2597 static rtx
2598 walk_alter_subreg (rtx *xp)
2599 {
2600 rtx x = *xp;
2601 switch (GET_CODE (x))
2602 {
2603 case PLUS:
2604 case MULT:
2605 case AND:
2606 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2607 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2608 break;
2609
2610 case MEM:
2611 case ZERO_EXTEND:
2612 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2613 break;
2614
2615 case SUBREG:
2616 return alter_subreg (xp);
2617
2618 default:
2619 break;
2620 }
2621
2622 return *xp;
2623 }
2624 \f
2625 #ifdef HAVE_cc0
2626
2627 /* Given BODY, the body of a jump instruction, alter the jump condition
2628 as required by the bits that are set in cc_status.flags.
2629 Not all of the bits there can be handled at this level in all cases.
2630
2631 The value is normally 0.
2632 1 means that the condition has become always true.
2633 -1 means that the condition has become always false.
2634 2 means that COND has been altered. */
2635
2636 static int
2637 alter_cond (rtx cond)
2638 {
2639 int value = 0;
2640
2641 if (cc_status.flags & CC_REVERSED)
2642 {
2643 value = 2;
2644 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2645 }
2646
2647 if (cc_status.flags & CC_INVERTED)
2648 {
2649 value = 2;
2650 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2651 }
2652
2653 if (cc_status.flags & CC_NOT_POSITIVE)
2654 switch (GET_CODE (cond))
2655 {
2656 case LE:
2657 case LEU:
2658 case GEU:
2659 /* Jump becomes unconditional. */
2660 return 1;
2661
2662 case GT:
2663 case GTU:
2664 case LTU:
2665 /* Jump becomes no-op. */
2666 return -1;
2667
2668 case GE:
2669 PUT_CODE (cond, EQ);
2670 value = 2;
2671 break;
2672
2673 case LT:
2674 PUT_CODE (cond, NE);
2675 value = 2;
2676 break;
2677
2678 default:
2679 break;
2680 }
2681
2682 if (cc_status.flags & CC_NOT_NEGATIVE)
2683 switch (GET_CODE (cond))
2684 {
2685 case GE:
2686 case GEU:
2687 /* Jump becomes unconditional. */
2688 return 1;
2689
2690 case LT:
2691 case LTU:
2692 /* Jump becomes no-op. */
2693 return -1;
2694
2695 case LE:
2696 case LEU:
2697 PUT_CODE (cond, EQ);
2698 value = 2;
2699 break;
2700
2701 case GT:
2702 case GTU:
2703 PUT_CODE (cond, NE);
2704 value = 2;
2705 break;
2706
2707 default:
2708 break;
2709 }
2710
2711 if (cc_status.flags & CC_NO_OVERFLOW)
2712 switch (GET_CODE (cond))
2713 {
2714 case GEU:
2715 /* Jump becomes unconditional. */
2716 return 1;
2717
2718 case LEU:
2719 PUT_CODE (cond, EQ);
2720 value = 2;
2721 break;
2722
2723 case GTU:
2724 PUT_CODE (cond, NE);
2725 value = 2;
2726 break;
2727
2728 case LTU:
2729 /* Jump becomes no-op. */
2730 return -1;
2731
2732 default:
2733 break;
2734 }
2735
2736 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2737 switch (GET_CODE (cond))
2738 {
2739 default:
2740 gcc_unreachable ();
2741
2742 case NE:
2743 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2744 value = 2;
2745 break;
2746
2747 case EQ:
2748 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2749 value = 2;
2750 break;
2751 }
2752
2753 if (cc_status.flags & CC_NOT_SIGNED)
2754 /* The flags are valid if signed condition operators are converted
2755 to unsigned. */
2756 switch (GET_CODE (cond))
2757 {
2758 case LE:
2759 PUT_CODE (cond, LEU);
2760 value = 2;
2761 break;
2762
2763 case LT:
2764 PUT_CODE (cond, LTU);
2765 value = 2;
2766 break;
2767
2768 case GT:
2769 PUT_CODE (cond, GTU);
2770 value = 2;
2771 break;
2772
2773 case GE:
2774 PUT_CODE (cond, GEU);
2775 value = 2;
2776 break;
2777
2778 default:
2779 break;
2780 }
2781
2782 return value;
2783 }
2784 #endif
2785 \f
2786 /* Report inconsistency between the assembler template and the operands.
2787 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2788
2789 void
2790 output_operand_lossage (const char *cmsgid, ...)
2791 {
2792 char *fmt_string;
2793 char *new_message;
2794 const char *pfx_str;
2795 va_list ap;
2796
2797 va_start (ap, cmsgid);
2798
2799 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2800 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2801 vasprintf (&new_message, fmt_string, ap);
2802
2803 if (this_is_asm_operands)
2804 error_for_asm (this_is_asm_operands, "%s", new_message);
2805 else
2806 internal_error ("%s", new_message);
2807
2808 free (fmt_string);
2809 free (new_message);
2810 va_end (ap);
2811 }
2812 \f
2813 /* Output of assembler code from a template, and its subroutines. */
2814
2815 /* Annotate the assembly with a comment describing the pattern and
2816 alternative used. */
2817
2818 static void
2819 output_asm_name (void)
2820 {
2821 if (debug_insn)
2822 {
2823 int num = INSN_CODE (debug_insn);
2824 fprintf (asm_out_file, "\t%s %d\t%s",
2825 ASM_COMMENT_START, INSN_UID (debug_insn),
2826 insn_data[num].name);
2827 if (insn_data[num].n_alternatives > 1)
2828 fprintf (asm_out_file, "/%d", which_alternative + 1);
2829 #ifdef HAVE_ATTR_length
2830 fprintf (asm_out_file, "\t[length = %d]",
2831 get_attr_length (debug_insn));
2832 #endif
2833 /* Clear this so only the first assembler insn
2834 of any rtl insn will get the special comment for -dp. */
2835 debug_insn = 0;
2836 }
2837 }
2838
2839 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2840 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2841 corresponds to the address of the object and 0 if to the object. */
2842
2843 static tree
2844 get_mem_expr_from_op (rtx op, int *paddressp)
2845 {
2846 tree expr;
2847 int inner_addressp;
2848
2849 *paddressp = 0;
2850
2851 if (REG_P (op))
2852 return REG_EXPR (op);
2853 else if (!MEM_P (op))
2854 return 0;
2855
2856 if (MEM_EXPR (op) != 0)
2857 return MEM_EXPR (op);
2858
2859 /* Otherwise we have an address, so indicate it and look at the address. */
2860 *paddressp = 1;
2861 op = XEXP (op, 0);
2862
2863 /* First check if we have a decl for the address, then look at the right side
2864 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2865 But don't allow the address to itself be indirect. */
2866 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2867 return expr;
2868 else if (GET_CODE (op) == PLUS
2869 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2870 return expr;
2871
2872 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2873 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2874 op = XEXP (op, 0);
2875
2876 expr = get_mem_expr_from_op (op, &inner_addressp);
2877 return inner_addressp ? 0 : expr;
2878 }
2879
2880 /* Output operand names for assembler instructions. OPERANDS is the
2881 operand vector, OPORDER is the order to write the operands, and NOPS
2882 is the number of operands to write. */
2883
2884 static void
2885 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2886 {
2887 int wrote = 0;
2888 int i;
2889
2890 for (i = 0; i < nops; i++)
2891 {
2892 int addressp;
2893 rtx op = operands[oporder[i]];
2894 tree expr = get_mem_expr_from_op (op, &addressp);
2895
2896 fprintf (asm_out_file, "%c%s",
2897 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2898 wrote = 1;
2899 if (expr)
2900 {
2901 fprintf (asm_out_file, "%s",
2902 addressp ? "*" : "");
2903 print_mem_expr (asm_out_file, expr);
2904 wrote = 1;
2905 }
2906 else if (REG_P (op) && ORIGINAL_REGNO (op)
2907 && ORIGINAL_REGNO (op) != REGNO (op))
2908 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2909 }
2910 }
2911
2912 /* Output text from TEMPLATE to the assembler output file,
2913 obeying %-directions to substitute operands taken from
2914 the vector OPERANDS.
2915
2916 %N (for N a digit) means print operand N in usual manner.
2917 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2918 and print the label name with no punctuation.
2919 %cN means require operand N to be a constant
2920 and print the constant expression with no punctuation.
2921 %aN means expect operand N to be a memory address
2922 (not a memory reference!) and print a reference
2923 to that address.
2924 %nN means expect operand N to be a constant
2925 and print a constant expression for minus the value
2926 of the operand, with no other punctuation. */
2927
2928 void
2929 output_asm_insn (const char *template, rtx *operands)
2930 {
2931 const char *p;
2932 int c;
2933 #ifdef ASSEMBLER_DIALECT
2934 int dialect = 0;
2935 #endif
2936 int oporder[MAX_RECOG_OPERANDS];
2937 char opoutput[MAX_RECOG_OPERANDS];
2938 int ops = 0;
2939
2940 /* An insn may return a null string template
2941 in a case where no assembler code is needed. */
2942 if (*template == 0)
2943 return;
2944
2945 memset (opoutput, 0, sizeof opoutput);
2946 p = template;
2947 putc ('\t', asm_out_file);
2948
2949 #ifdef ASM_OUTPUT_OPCODE
2950 ASM_OUTPUT_OPCODE (asm_out_file, p);
2951 #endif
2952
2953 while ((c = *p++))
2954 switch (c)
2955 {
2956 case '\n':
2957 if (flag_verbose_asm)
2958 output_asm_operand_names (operands, oporder, ops);
2959 if (flag_print_asm_name)
2960 output_asm_name ();
2961
2962 ops = 0;
2963 memset (opoutput, 0, sizeof opoutput);
2964
2965 putc (c, asm_out_file);
2966 #ifdef ASM_OUTPUT_OPCODE
2967 while ((c = *p) == '\t')
2968 {
2969 putc (c, asm_out_file);
2970 p++;
2971 }
2972 ASM_OUTPUT_OPCODE (asm_out_file, p);
2973 #endif
2974 break;
2975
2976 #ifdef ASSEMBLER_DIALECT
2977 case '{':
2978 {
2979 int i;
2980
2981 if (dialect)
2982 output_operand_lossage ("nested assembly dialect alternatives");
2983 else
2984 dialect = 1;
2985
2986 /* If we want the first dialect, do nothing. Otherwise, skip
2987 DIALECT_NUMBER of strings ending with '|'. */
2988 for (i = 0; i < dialect_number; i++)
2989 {
2990 while (*p && *p != '}' && *p++ != '|')
2991 ;
2992 if (*p == '}')
2993 break;
2994 if (*p == '|')
2995 p++;
2996 }
2997
2998 if (*p == '\0')
2999 output_operand_lossage ("unterminated assembly dialect alternative");
3000 }
3001 break;
3002
3003 case '|':
3004 if (dialect)
3005 {
3006 /* Skip to close brace. */
3007 do
3008 {
3009 if (*p == '\0')
3010 {
3011 output_operand_lossage ("unterminated assembly dialect alternative");
3012 break;
3013 }
3014 }
3015 while (*p++ != '}');
3016 dialect = 0;
3017 }
3018 else
3019 putc (c, asm_out_file);
3020 break;
3021
3022 case '}':
3023 if (! dialect)
3024 putc (c, asm_out_file);
3025 dialect = 0;
3026 break;
3027 #endif
3028
3029 case '%':
3030 /* %% outputs a single %. */
3031 if (*p == '%')
3032 {
3033 p++;
3034 putc (c, asm_out_file);
3035 }
3036 /* %= outputs a number which is unique to each insn in the entire
3037 compilation. This is useful for making local labels that are
3038 referred to more than once in a given insn. */
3039 else if (*p == '=')
3040 {
3041 p++;
3042 fprintf (asm_out_file, "%d", insn_counter);
3043 }
3044 /* % followed by a letter and some digits
3045 outputs an operand in a special way depending on the letter.
3046 Letters `acln' are implemented directly.
3047 Other letters are passed to `output_operand' so that
3048 the PRINT_OPERAND macro can define them. */
3049 else if (ISALPHA (*p))
3050 {
3051 int letter = *p++;
3052 unsigned long opnum;
3053 char *endptr;
3054
3055 opnum = strtoul (p, &endptr, 10);
3056
3057 if (endptr == p)
3058 output_operand_lossage ("operand number missing "
3059 "after %%-letter");
3060 else if (this_is_asm_operands && opnum >= insn_noperands)
3061 output_operand_lossage ("operand number out of range");
3062 else if (letter == 'l')
3063 output_asm_label (operands[opnum]);
3064 else if (letter == 'a')
3065 output_address (operands[opnum]);
3066 else if (letter == 'c')
3067 {
3068 if (CONSTANT_ADDRESS_P (operands[opnum]))
3069 output_addr_const (asm_out_file, operands[opnum]);
3070 else
3071 output_operand (operands[opnum], 'c');
3072 }
3073 else if (letter == 'n')
3074 {
3075 if (GET_CODE (operands[opnum]) == CONST_INT)
3076 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3077 - INTVAL (operands[opnum]));
3078 else
3079 {
3080 putc ('-', asm_out_file);
3081 output_addr_const (asm_out_file, operands[opnum]);
3082 }
3083 }
3084 else
3085 output_operand (operands[opnum], letter);
3086
3087 if (!opoutput[opnum])
3088 oporder[ops++] = opnum;
3089 opoutput[opnum] = 1;
3090
3091 p = endptr;
3092 c = *p;
3093 }
3094 /* % followed by a digit outputs an operand the default way. */
3095 else if (ISDIGIT (*p))
3096 {
3097 unsigned long opnum;
3098 char *endptr;
3099
3100 opnum = strtoul (p, &endptr, 10);
3101 if (this_is_asm_operands && opnum >= insn_noperands)
3102 output_operand_lossage ("operand number out of range");
3103 else
3104 output_operand (operands[opnum], 0);
3105
3106 if (!opoutput[opnum])
3107 oporder[ops++] = opnum;
3108 opoutput[opnum] = 1;
3109
3110 p = endptr;
3111 c = *p;
3112 }
3113 /* % followed by punctuation: output something for that
3114 punctuation character alone, with no operand.
3115 The PRINT_OPERAND macro decides what is actually done. */
3116 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3117 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3118 output_operand (NULL_RTX, *p++);
3119 #endif
3120 else
3121 output_operand_lossage ("invalid %%-code");
3122 break;
3123
3124 default:
3125 putc (c, asm_out_file);
3126 }
3127
3128 /* Write out the variable names for operands, if we know them. */
3129 if (flag_verbose_asm)
3130 output_asm_operand_names (operands, oporder, ops);
3131 if (flag_print_asm_name)
3132 output_asm_name ();
3133
3134 putc ('\n', asm_out_file);
3135 }
3136 \f
3137 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3138
3139 void
3140 output_asm_label (rtx x)
3141 {
3142 char buf[256];
3143
3144 if (GET_CODE (x) == LABEL_REF)
3145 x = XEXP (x, 0);
3146 if (LABEL_P (x)
3147 || (NOTE_P (x)
3148 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3149 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3150 else
3151 output_operand_lossage ("'%%l' operand isn't a label");
3152
3153 assemble_name (asm_out_file, buf);
3154 }
3155
3156 /* Print operand X using machine-dependent assembler syntax.
3157 The macro PRINT_OPERAND is defined just to control this function.
3158 CODE is a non-digit that preceded the operand-number in the % spec,
3159 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3160 between the % and the digits.
3161 When CODE is a non-letter, X is 0.
3162
3163 The meanings of the letters are machine-dependent and controlled
3164 by PRINT_OPERAND. */
3165
3166 static void
3167 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3168 {
3169 if (x && GET_CODE (x) == SUBREG)
3170 x = alter_subreg (&x);
3171
3172 /* X must not be a pseudo reg. */
3173 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3174
3175 PRINT_OPERAND (asm_out_file, x, code);
3176 }
3177
3178 /* Print a memory reference operand for address X
3179 using machine-dependent assembler syntax.
3180 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3181
3182 void
3183 output_address (rtx x)
3184 {
3185 walk_alter_subreg (&x);
3186 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3187 }
3188 \f
3189 /* Print an integer constant expression in assembler syntax.
3190 Addition and subtraction are the only arithmetic
3191 that may appear in these expressions. */
3192
3193 void
3194 output_addr_const (FILE *file, rtx x)
3195 {
3196 char buf[256];
3197
3198 restart:
3199 switch (GET_CODE (x))
3200 {
3201 case PC:
3202 putc ('.', file);
3203 break;
3204
3205 case SYMBOL_REF:
3206 if (SYMBOL_REF_DECL (x))
3207 mark_decl_referenced (SYMBOL_REF_DECL (x));
3208 #ifdef ASM_OUTPUT_SYMBOL_REF
3209 ASM_OUTPUT_SYMBOL_REF (file, x);
3210 #else
3211 assemble_name (file, XSTR (x, 0));
3212 #endif
3213 break;
3214
3215 case LABEL_REF:
3216 x = XEXP (x, 0);
3217 /* Fall through. */
3218 case CODE_LABEL:
3219 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3220 #ifdef ASM_OUTPUT_LABEL_REF
3221 ASM_OUTPUT_LABEL_REF (file, buf);
3222 #else
3223 assemble_name (file, buf);
3224 #endif
3225 break;
3226
3227 case CONST_INT:
3228 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3229 break;
3230
3231 case CONST:
3232 /* This used to output parentheses around the expression,
3233 but that does not work on the 386 (either ATT or BSD assembler). */
3234 output_addr_const (file, XEXP (x, 0));
3235 break;
3236
3237 case CONST_DOUBLE:
3238 if (GET_MODE (x) == VOIDmode)
3239 {
3240 /* We can use %d if the number is one word and positive. */
3241 if (CONST_DOUBLE_HIGH (x))
3242 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3243 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3244 else if (CONST_DOUBLE_LOW (x) < 0)
3245 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3246 else
3247 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3248 }
3249 else
3250 /* We can't handle floating point constants;
3251 PRINT_OPERAND must handle them. */
3252 output_operand_lossage ("floating constant misused");
3253 break;
3254
3255 case PLUS:
3256 /* Some assemblers need integer constants to appear last (eg masm). */
3257 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3258 {
3259 output_addr_const (file, XEXP (x, 1));
3260 if (INTVAL (XEXP (x, 0)) >= 0)
3261 fprintf (file, "+");
3262 output_addr_const (file, XEXP (x, 0));
3263 }
3264 else
3265 {
3266 output_addr_const (file, XEXP (x, 0));
3267 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3268 || INTVAL (XEXP (x, 1)) >= 0)
3269 fprintf (file, "+");
3270 output_addr_const (file, XEXP (x, 1));
3271 }
3272 break;
3273
3274 case MINUS:
3275 /* Avoid outputting things like x-x or x+5-x,
3276 since some assemblers can't handle that. */
3277 x = simplify_subtraction (x);
3278 if (GET_CODE (x) != MINUS)
3279 goto restart;
3280
3281 output_addr_const (file, XEXP (x, 0));
3282 fprintf (file, "-");
3283 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3284 || GET_CODE (XEXP (x, 1)) == PC
3285 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3286 output_addr_const (file, XEXP (x, 1));
3287 else
3288 {
3289 fputs (targetm.asm_out.open_paren, file);
3290 output_addr_const (file, XEXP (x, 1));
3291 fputs (targetm.asm_out.close_paren, file);
3292 }
3293 break;
3294
3295 case ZERO_EXTEND:
3296 case SIGN_EXTEND:
3297 case SUBREG:
3298 output_addr_const (file, XEXP (x, 0));
3299 break;
3300
3301 default:
3302 #ifdef OUTPUT_ADDR_CONST_EXTRA
3303 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3304 break;
3305
3306 fail:
3307 #endif
3308 output_operand_lossage ("invalid expression as operand");
3309 }
3310 }
3311 \f
3312 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3313 %R prints the value of REGISTER_PREFIX.
3314 %L prints the value of LOCAL_LABEL_PREFIX.
3315 %U prints the value of USER_LABEL_PREFIX.
3316 %I prints the value of IMMEDIATE_PREFIX.
3317 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3318 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3319
3320 We handle alternate assembler dialects here, just like output_asm_insn. */
3321
3322 void
3323 asm_fprintf (FILE *file, const char *p, ...)
3324 {
3325 char buf[10];
3326 char *q, c;
3327 va_list argptr;
3328
3329 va_start (argptr, p);
3330
3331 buf[0] = '%';
3332
3333 while ((c = *p++))
3334 switch (c)
3335 {
3336 #ifdef ASSEMBLER_DIALECT
3337 case '{':
3338 {
3339 int i;
3340
3341 /* If we want the first dialect, do nothing. Otherwise, skip
3342 DIALECT_NUMBER of strings ending with '|'. */
3343 for (i = 0; i < dialect_number; i++)
3344 {
3345 while (*p && *p++ != '|')
3346 ;
3347
3348 if (*p == '|')
3349 p++;
3350 }
3351 }
3352 break;
3353
3354 case '|':
3355 /* Skip to close brace. */
3356 while (*p && *p++ != '}')
3357 ;
3358 break;
3359
3360 case '}':
3361 break;
3362 #endif
3363
3364 case '%':
3365 c = *p++;
3366 q = &buf[1];
3367 while (strchr ("-+ #0", c))
3368 {
3369 *q++ = c;
3370 c = *p++;
3371 }
3372 while (ISDIGIT (c) || c == '.')
3373 {
3374 *q++ = c;
3375 c = *p++;
3376 }
3377 switch (c)
3378 {
3379 case '%':
3380 putc ('%', file);
3381 break;
3382
3383 case 'd': case 'i': case 'u':
3384 case 'x': case 'X': case 'o':
3385 case 'c':
3386 *q++ = c;
3387 *q = 0;
3388 fprintf (file, buf, va_arg (argptr, int));
3389 break;
3390
3391 case 'w':
3392 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3393 'o' cases, but we do not check for those cases. It
3394 means that the value is a HOST_WIDE_INT, which may be
3395 either `long' or `long long'. */
3396 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3397 q += strlen (HOST_WIDE_INT_PRINT);
3398 *q++ = *p++;
3399 *q = 0;
3400 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3401 break;
3402
3403 case 'l':
3404 *q++ = c;
3405 #ifdef HAVE_LONG_LONG
3406 if (*p == 'l')
3407 {
3408 *q++ = *p++;
3409 *q++ = *p++;
3410 *q = 0;
3411 fprintf (file, buf, va_arg (argptr, long long));
3412 }
3413 else
3414 #endif
3415 {
3416 *q++ = *p++;
3417 *q = 0;
3418 fprintf (file, buf, va_arg (argptr, long));
3419 }
3420
3421 break;
3422
3423 case 's':
3424 *q++ = c;
3425 *q = 0;
3426 fprintf (file, buf, va_arg (argptr, char *));
3427 break;
3428
3429 case 'O':
3430 #ifdef ASM_OUTPUT_OPCODE
3431 ASM_OUTPUT_OPCODE (asm_out_file, p);
3432 #endif
3433 break;
3434
3435 case 'R':
3436 #ifdef REGISTER_PREFIX
3437 fprintf (file, "%s", REGISTER_PREFIX);
3438 #endif
3439 break;
3440
3441 case 'I':
3442 #ifdef IMMEDIATE_PREFIX
3443 fprintf (file, "%s", IMMEDIATE_PREFIX);
3444 #endif
3445 break;
3446
3447 case 'L':
3448 #ifdef LOCAL_LABEL_PREFIX
3449 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3450 #endif
3451 break;
3452
3453 case 'U':
3454 fputs (user_label_prefix, file);
3455 break;
3456
3457 #ifdef ASM_FPRINTF_EXTENSIONS
3458 /* Uppercase letters are reserved for general use by asm_fprintf
3459 and so are not available to target specific code. In order to
3460 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3461 they are defined here. As they get turned into real extensions
3462 to asm_fprintf they should be removed from this list. */
3463 case 'A': case 'B': case 'C': case 'D': case 'E':
3464 case 'F': case 'G': case 'H': case 'J': case 'K':
3465 case 'M': case 'N': case 'P': case 'Q': case 'S':
3466 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3467 break;
3468
3469 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3470 #endif
3471 default:
3472 gcc_unreachable ();
3473 }
3474 break;
3475
3476 default:
3477 putc (c, file);
3478 }
3479 va_end (argptr);
3480 }
3481 \f
3482 /* Split up a CONST_DOUBLE or integer constant rtx
3483 into two rtx's for single words,
3484 storing in *FIRST the word that comes first in memory in the target
3485 and in *SECOND the other. */
3486
3487 void
3488 split_double (rtx value, rtx *first, rtx *second)
3489 {
3490 if (GET_CODE (value) == CONST_INT)
3491 {
3492 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3493 {
3494 /* In this case the CONST_INT holds both target words.
3495 Extract the bits from it into two word-sized pieces.
3496 Sign extend each half to HOST_WIDE_INT. */
3497 unsigned HOST_WIDE_INT low, high;
3498 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3499
3500 /* Set sign_bit to the most significant bit of a word. */
3501 sign_bit = 1;
3502 sign_bit <<= BITS_PER_WORD - 1;
3503
3504 /* Set mask so that all bits of the word are set. We could
3505 have used 1 << BITS_PER_WORD instead of basing the
3506 calculation on sign_bit. However, on machines where
3507 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3508 compiler warning, even though the code would never be
3509 executed. */
3510 mask = sign_bit << 1;
3511 mask--;
3512
3513 /* Set sign_extend as any remaining bits. */
3514 sign_extend = ~mask;
3515
3516 /* Pick the lower word and sign-extend it. */
3517 low = INTVAL (value);
3518 low &= mask;
3519 if (low & sign_bit)
3520 low |= sign_extend;
3521
3522 /* Pick the higher word, shifted to the least significant
3523 bits, and sign-extend it. */
3524 high = INTVAL (value);
3525 high >>= BITS_PER_WORD - 1;
3526 high >>= 1;
3527 high &= mask;
3528 if (high & sign_bit)
3529 high |= sign_extend;
3530
3531 /* Store the words in the target machine order. */
3532 if (WORDS_BIG_ENDIAN)
3533 {
3534 *first = GEN_INT (high);
3535 *second = GEN_INT (low);
3536 }
3537 else
3538 {
3539 *first = GEN_INT (low);
3540 *second = GEN_INT (high);
3541 }
3542 }
3543 else
3544 {
3545 /* The rule for using CONST_INT for a wider mode
3546 is that we regard the value as signed.
3547 So sign-extend it. */
3548 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3549 if (WORDS_BIG_ENDIAN)
3550 {
3551 *first = high;
3552 *second = value;
3553 }
3554 else
3555 {
3556 *first = value;
3557 *second = high;
3558 }
3559 }
3560 }
3561 else if (GET_CODE (value) != CONST_DOUBLE)
3562 {
3563 if (WORDS_BIG_ENDIAN)
3564 {
3565 *first = const0_rtx;
3566 *second = value;
3567 }
3568 else
3569 {
3570 *first = value;
3571 *second = const0_rtx;
3572 }
3573 }
3574 else if (GET_MODE (value) == VOIDmode
3575 /* This is the old way we did CONST_DOUBLE integers. */
3576 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3577 {
3578 /* In an integer, the words are defined as most and least significant.
3579 So order them by the target's convention. */
3580 if (WORDS_BIG_ENDIAN)
3581 {
3582 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3583 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3584 }
3585 else
3586 {
3587 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3588 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3589 }
3590 }
3591 else
3592 {
3593 REAL_VALUE_TYPE r;
3594 long l[2];
3595 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3596
3597 /* Note, this converts the REAL_VALUE_TYPE to the target's
3598 format, splits up the floating point double and outputs
3599 exactly 32 bits of it into each of l[0] and l[1] --
3600 not necessarily BITS_PER_WORD bits. */
3601 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3602
3603 /* If 32 bits is an entire word for the target, but not for the host,
3604 then sign-extend on the host so that the number will look the same
3605 way on the host that it would on the target. See for instance
3606 simplify_unary_operation. The #if is needed to avoid compiler
3607 warnings. */
3608
3609 #if HOST_BITS_PER_LONG > 32
3610 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3611 {
3612 if (l[0] & ((long) 1 << 31))
3613 l[0] |= ((long) (-1) << 32);
3614 if (l[1] & ((long) 1 << 31))
3615 l[1] |= ((long) (-1) << 32);
3616 }
3617 #endif
3618
3619 *first = GEN_INT (l[0]);
3620 *second = GEN_INT (l[1]);
3621 }
3622 }
3623 \f
3624 /* Return nonzero if this function has no function calls. */
3625
3626 int
3627 leaf_function_p (void)
3628 {
3629 rtx insn;
3630 rtx link;
3631
3632 if (current_function_profile || profile_arc_flag)
3633 return 0;
3634
3635 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3636 {
3637 if (CALL_P (insn)
3638 && ! SIBLING_CALL_P (insn))
3639 return 0;
3640 if (NONJUMP_INSN_P (insn)
3641 && GET_CODE (PATTERN (insn)) == SEQUENCE
3642 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3643 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3644 return 0;
3645 }
3646 for (link = current_function_epilogue_delay_list;
3647 link;
3648 link = XEXP (link, 1))
3649 {
3650 insn = XEXP (link, 0);
3651
3652 if (CALL_P (insn)
3653 && ! SIBLING_CALL_P (insn))
3654 return 0;
3655 if (NONJUMP_INSN_P (insn)
3656 && GET_CODE (PATTERN (insn)) == SEQUENCE
3657 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3658 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3659 return 0;
3660 }
3661
3662 return 1;
3663 }
3664
3665 /* Return 1 if branch is a forward branch.
3666 Uses insn_shuid array, so it works only in the final pass. May be used by
3667 output templates to customary add branch prediction hints.
3668 */
3669 int
3670 final_forward_branch_p (rtx insn)
3671 {
3672 int insn_id, label_id;
3673
3674 gcc_assert (uid_shuid);
3675 insn_id = INSN_SHUID (insn);
3676 label_id = INSN_SHUID (JUMP_LABEL (insn));
3677 /* We've hit some insns that does not have id information available. */
3678 gcc_assert (insn_id && label_id);
3679 return insn_id < label_id;
3680 }
3681
3682 /* On some machines, a function with no call insns
3683 can run faster if it doesn't create its own register window.
3684 When output, the leaf function should use only the "output"
3685 registers. Ordinarily, the function would be compiled to use
3686 the "input" registers to find its arguments; it is a candidate
3687 for leaf treatment if it uses only the "input" registers.
3688 Leaf function treatment means renumbering so the function
3689 uses the "output" registers instead. */
3690
3691 #ifdef LEAF_REGISTERS
3692
3693 /* Return 1 if this function uses only the registers that can be
3694 safely renumbered. */
3695
3696 int
3697 only_leaf_regs_used (void)
3698 {
3699 int i;
3700 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3701
3702 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3703 if ((regs_ever_live[i] || global_regs[i])
3704 && ! permitted_reg_in_leaf_functions[i])
3705 return 0;
3706
3707 if (current_function_uses_pic_offset_table
3708 && pic_offset_table_rtx != 0
3709 && REG_P (pic_offset_table_rtx)
3710 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3711 return 0;
3712
3713 return 1;
3714 }
3715
3716 /* Scan all instructions and renumber all registers into those
3717 available in leaf functions. */
3718
3719 static void
3720 leaf_renumber_regs (rtx first)
3721 {
3722 rtx insn;
3723
3724 /* Renumber only the actual patterns.
3725 The reg-notes can contain frame pointer refs,
3726 and renumbering them could crash, and should not be needed. */
3727 for (insn = first; insn; insn = NEXT_INSN (insn))
3728 if (INSN_P (insn))
3729 leaf_renumber_regs_insn (PATTERN (insn));
3730 for (insn = current_function_epilogue_delay_list;
3731 insn;
3732 insn = XEXP (insn, 1))
3733 if (INSN_P (XEXP (insn, 0)))
3734 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3735 }
3736
3737 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3738 available in leaf functions. */
3739
3740 void
3741 leaf_renumber_regs_insn (rtx in_rtx)
3742 {
3743 int i, j;
3744 const char *format_ptr;
3745
3746 if (in_rtx == 0)
3747 return;
3748
3749 /* Renumber all input-registers into output-registers.
3750 renumbered_regs would be 1 for an output-register;
3751 they */
3752
3753 if (REG_P (in_rtx))
3754 {
3755 int newreg;
3756
3757 /* Don't renumber the same reg twice. */
3758 if (in_rtx->used)
3759 return;
3760
3761 newreg = REGNO (in_rtx);
3762 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3763 to reach here as part of a REG_NOTE. */
3764 if (newreg >= FIRST_PSEUDO_REGISTER)
3765 {
3766 in_rtx->used = 1;
3767 return;
3768 }
3769 newreg = LEAF_REG_REMAP (newreg);
3770 gcc_assert (newreg >= 0);
3771 regs_ever_live[REGNO (in_rtx)] = 0;
3772 regs_ever_live[newreg] = 1;
3773 REGNO (in_rtx) = newreg;
3774 in_rtx->used = 1;
3775 }
3776
3777 if (INSN_P (in_rtx))
3778 {
3779 /* Inside a SEQUENCE, we find insns.
3780 Renumber just the patterns of these insns,
3781 just as we do for the top-level insns. */
3782 leaf_renumber_regs_insn (PATTERN (in_rtx));
3783 return;
3784 }
3785
3786 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3787
3788 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3789 switch (*format_ptr++)
3790 {
3791 case 'e':
3792 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3793 break;
3794
3795 case 'E':
3796 if (NULL != XVEC (in_rtx, i))
3797 {
3798 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3799 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3800 }
3801 break;
3802
3803 case 'S':
3804 case 's':
3805 case '0':
3806 case 'i':
3807 case 'w':
3808 case 'n':
3809 case 'u':
3810 break;
3811
3812 default:
3813 gcc_unreachable ();
3814 }
3815 }
3816 #endif
3817
3818
3819 /* When -gused is used, emit debug info for only used symbols. But in
3820 addition to the standard intercepted debug_hooks there are some direct
3821 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3822 Those routines may also be called from a higher level intercepted routine. So
3823 to prevent recording data for an inner call to one of these for an intercept,
3824 we maintain an intercept nesting counter (debug_nesting). We only save the
3825 intercepted arguments if the nesting is 1. */
3826 int debug_nesting = 0;
3827
3828 static tree *symbol_queue;
3829 int symbol_queue_index = 0;
3830 static int symbol_queue_size = 0;
3831
3832 /* Generate the symbols for any queued up type symbols we encountered
3833 while generating the type info for some originally used symbol.
3834 This might generate additional entries in the queue. Only when
3835 the nesting depth goes to 0 is this routine called. */
3836
3837 void
3838 debug_flush_symbol_queue (void)
3839 {
3840 int i;
3841
3842 /* Make sure that additionally queued items are not flushed
3843 prematurely. */
3844
3845 ++debug_nesting;
3846
3847 for (i = 0; i < symbol_queue_index; ++i)
3848 {
3849 /* If we pushed queued symbols then such symbols are must be
3850 output no matter what anyone else says. Specifically,
3851 we need to make sure dbxout_symbol() thinks the symbol was
3852 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3853 which may be set for outside reasons. */
3854 int saved_tree_used = TREE_USED (symbol_queue[i]);
3855 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3856 TREE_USED (symbol_queue[i]) = 1;
3857 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3858
3859 #ifdef DBX_DEBUGGING_INFO
3860 dbxout_symbol (symbol_queue[i], 0);
3861 #endif
3862
3863 TREE_USED (symbol_queue[i]) = saved_tree_used;
3864 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3865 }
3866
3867 symbol_queue_index = 0;
3868 --debug_nesting;
3869 }
3870
3871 /* Queue a type symbol needed as part of the definition of a decl
3872 symbol. These symbols are generated when debug_flush_symbol_queue()
3873 is called. */
3874
3875 void
3876 debug_queue_symbol (tree decl)
3877 {
3878 if (symbol_queue_index >= symbol_queue_size)
3879 {
3880 symbol_queue_size += 10;
3881 symbol_queue = xrealloc (symbol_queue,
3882 symbol_queue_size * sizeof (tree));
3883 }
3884
3885 symbol_queue[symbol_queue_index++] = decl;
3886 }
3887
3888 /* Free symbol queue. */
3889 void
3890 debug_free_queue (void)
3891 {
3892 if (symbol_queue)
3893 {
3894 free (symbol_queue);
3895 symbol_queue = NULL;
3896 symbol_queue_size = 0;
3897 }
3898 }
3899 \f
3900 /* Turn the RTL into assembly. */
3901 static unsigned int
3902 rest_of_handle_final (void)
3903 {
3904 rtx x;
3905 const char *fnname;
3906
3907 /* Get the function's name, as described by its RTL. This may be
3908 different from the DECL_NAME name used in the source file. */
3909
3910 x = DECL_RTL (current_function_decl);
3911 gcc_assert (MEM_P (x));
3912 x = XEXP (x, 0);
3913 gcc_assert (GET_CODE (x) == SYMBOL_REF);
3914 fnname = XSTR (x, 0);
3915
3916 assemble_start_function (current_function_decl, fnname);
3917 final_start_function (get_insns (), asm_out_file, optimize);
3918 final (get_insns (), asm_out_file, optimize);
3919 final_end_function ();
3920
3921 #ifdef TARGET_UNWIND_INFO
3922 /* ??? The IA-64 ".handlerdata" directive must be issued before
3923 the ".endp" directive that closes the procedure descriptor. */
3924 output_function_exception_table ();
3925 #endif
3926
3927 assemble_end_function (current_function_decl, fnname);
3928
3929 #ifndef TARGET_UNWIND_INFO
3930 /* Otherwise, it feels unclean to switch sections in the middle. */
3931 output_function_exception_table ();
3932 #endif
3933
3934 user_defined_section_attribute = false;
3935
3936 if (! quiet_flag)
3937 fflush (asm_out_file);
3938
3939 /* Release all memory allocated by flow. */
3940 free_basic_block_vars ();
3941
3942 /* Write DBX symbols if requested. */
3943
3944 /* Note that for those inline functions where we don't initially
3945 know for certain that we will be generating an out-of-line copy,
3946 the first invocation of this routine (rest_of_compilation) will
3947 skip over this code by doing a `goto exit_rest_of_compilation;'.
3948 Later on, wrapup_global_declarations will (indirectly) call
3949 rest_of_compilation again for those inline functions that need
3950 to have out-of-line copies generated. During that call, we
3951 *will* be routed past here. */
3952
3953 timevar_push (TV_SYMOUT);
3954 (*debug_hooks->function_decl) (current_function_decl);
3955 timevar_pop (TV_SYMOUT);
3956 return 0;
3957 }
3958
3959 struct tree_opt_pass pass_final =
3960 {
3961 NULL, /* name */
3962 NULL, /* gate */
3963 rest_of_handle_final, /* execute */
3964 NULL, /* sub */
3965 NULL, /* next */
3966 0, /* static_pass_number */
3967 TV_FINAL, /* tv_id */
3968 0, /* properties_required */
3969 0, /* properties_provided */
3970 0, /* properties_destroyed */
3971 0, /* todo_flags_start */
3972 TODO_ggc_collect, /* todo_flags_finish */
3973 0 /* letter */
3974 };
3975
3976
3977 static unsigned int
3978 rest_of_handle_shorten_branches (void)
3979 {
3980 /* Shorten branches. */
3981 shorten_branches (get_insns ());
3982 return 0;
3983 }
3984
3985 struct tree_opt_pass pass_shorten_branches =
3986 {
3987 "shorten", /* name */
3988 NULL, /* gate */
3989 rest_of_handle_shorten_branches, /* execute */
3990 NULL, /* sub */
3991 NULL, /* next */
3992 0, /* static_pass_number */
3993 TV_FINAL, /* tv_id */
3994 0, /* properties_required */
3995 0, /* properties_provided */
3996 0, /* properties_destroyed */
3997 0, /* todo_flags_start */
3998 TODO_dump_func, /* todo_flags_finish */
3999 0 /* letter */
4000 };
4001
4002
4003 static unsigned int
4004 rest_of_clean_state (void)
4005 {
4006 rtx insn, next;
4007
4008 /* It is very important to decompose the RTL instruction chain here:
4009 debug information keeps pointing into CODE_LABEL insns inside the function
4010 body. If these remain pointing to the other insns, we end up preserving
4011 whole RTL chain and attached detailed debug info in memory. */
4012 for (insn = get_insns (); insn; insn = next)
4013 {
4014 next = NEXT_INSN (insn);
4015 NEXT_INSN (insn) = NULL;
4016 PREV_INSN (insn) = NULL;
4017 }
4018
4019 /* In case the function was not output,
4020 don't leave any temporary anonymous types
4021 queued up for sdb output. */
4022 #ifdef SDB_DEBUGGING_INFO
4023 if (write_symbols == SDB_DEBUG)
4024 sdbout_types (NULL_TREE);
4025 #endif
4026
4027 reload_completed = 0;
4028 epilogue_completed = 0;
4029 flow2_completed = 0;
4030 no_new_pseudos = 0;
4031
4032 /* Clear out the insn_length contents now that they are no
4033 longer valid. */
4034 init_insn_lengths ();
4035
4036 /* Show no temporary slots allocated. */
4037 init_temp_slots ();
4038
4039 free_basic_block_vars ();
4040 free_bb_for_insn ();
4041
4042
4043 if (targetm.binds_local_p (current_function_decl))
4044 {
4045 int pref = cfun->preferred_stack_boundary;
4046 if (cfun->stack_alignment_needed > cfun->preferred_stack_boundary)
4047 pref = cfun->stack_alignment_needed;
4048 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4049 = pref;
4050 }
4051
4052 /* Make sure volatile mem refs aren't considered valid operands for
4053 arithmetic insns. We must call this here if this is a nested inline
4054 function, since the above code leaves us in the init_recog state,
4055 and the function context push/pop code does not save/restore volatile_ok.
4056
4057 ??? Maybe it isn't necessary for expand_start_function to call this
4058 anymore if we do it here? */
4059
4060 init_recog_no_volatile ();
4061
4062 /* We're done with this function. Free up memory if we can. */
4063 free_after_parsing (cfun);
4064 free_after_compilation (cfun);
4065 return 0;
4066 }
4067
4068 struct tree_opt_pass pass_clean_state =
4069 {
4070 NULL, /* name */
4071 NULL, /* gate */
4072 rest_of_clean_state, /* execute */
4073 NULL, /* sub */
4074 NULL, /* next */
4075 0, /* static_pass_number */
4076 TV_FINAL, /* tv_id */
4077 0, /* properties_required */
4078 0, /* properties_provided */
4079 PROP_rtl, /* properties_destroyed */
4080 0, /* todo_flags_start */
4081 0, /* todo_flags_finish */
4082 0 /* letter */
4083 };
4084