flags.h (enum debug_info_type): Remove DWARF_DEBUG.
[gcc.git] / gcc / final.c
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74
75 #ifdef XCOFF_DEBUGGING_INFO
76 #include "xcoffout.h" /* Needed for external data
77 declarations for e.g. AIX 4.x. */
78 #endif
79
80 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
81 #include "dwarf2out.h"
82 #endif
83
84 #ifdef DBX_DEBUGGING_INFO
85 #include "dbxout.h"
86 #endif
87
88 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
89 null default for it to save conditionalization later. */
90 #ifndef CC_STATUS_INIT
91 #define CC_STATUS_INIT
92 #endif
93
94 /* How to start an assembler comment. */
95 #ifndef ASM_COMMENT_START
96 #define ASM_COMMENT_START ";#"
97 #endif
98
99 /* Is the given character a logical line separator for the assembler? */
100 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
101 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C) ((C) == ';')
102 #endif
103
104 #ifndef JUMP_TABLES_IN_TEXT_SECTION
105 #define JUMP_TABLES_IN_TEXT_SECTION 0
106 #endif
107
108 #if defined(READONLY_DATA_SECTION) || defined(READONLY_DATA_SECTION_ASM_OP)
109 #define HAVE_READONLY_DATA_SECTION 1
110 #else
111 #define HAVE_READONLY_DATA_SECTION 0
112 #endif
113
114 /* Bitflags used by final_scan_insn. */
115 #define SEEN_BB 1
116 #define SEEN_NOTE 2
117 #define SEEN_EMITTED 4
118
119 /* Last insn processed by final_scan_insn. */
120 static rtx debug_insn;
121 rtx current_output_insn;
122
123 /* Line number of last NOTE. */
124 static int last_linenum;
125
126 /* Highest line number in current block. */
127 static int high_block_linenum;
128
129 /* Likewise for function. */
130 static int high_function_linenum;
131
132 /* Filename of last NOTE. */
133 static const char *last_filename;
134
135 extern int length_unit_log; /* This is defined in insn-attrtab.c. */
136
137 /* Nonzero while outputting an `asm' with operands.
138 This means that inconsistencies are the user's fault, so don't abort.
139 The precise value is the insn being output, to pass to error_for_asm. */
140 rtx this_is_asm_operands;
141
142 /* Number of operands of this insn, for an `asm' with operands. */
143 static unsigned int insn_noperands;
144
145 /* Compare optimization flag. */
146
147 static rtx last_ignored_compare = 0;
148
149 /* Assign a unique number to each insn that is output.
150 This can be used to generate unique local labels. */
151
152 static int insn_counter = 0;
153
154 #ifdef HAVE_cc0
155 /* This variable contains machine-dependent flags (defined in tm.h)
156 set and examined by output routines
157 that describe how to interpret the condition codes properly. */
158
159 CC_STATUS cc_status;
160
161 /* During output of an insn, this contains a copy of cc_status
162 from before the insn. */
163
164 CC_STATUS cc_prev_status;
165 #endif
166
167 /* Indexed by hardware reg number, is 1 if that register is ever
168 used in the current function.
169
170 In life_analysis, or in stupid_life_analysis, this is set
171 up to record the hard regs used explicitly. Reload adds
172 in the hard regs used for holding pseudo regs. Final uses
173 it to generate the code in the function prologue and epilogue
174 to save and restore registers as needed. */
175
176 char regs_ever_live[FIRST_PSEUDO_REGISTER];
177
178 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an asm.
179 Unlike regs_ever_live, elements of this array corresponding to
180 eliminable regs like the frame pointer are set if an asm sets them. */
181
182 char regs_asm_clobbered[FIRST_PSEUDO_REGISTER];
183
184 /* Nonzero means current function must be given a frame pointer.
185 Initialized in function.c to 0. Set only in reload1.c as per
186 the needs of the function. */
187
188 int frame_pointer_needed;
189
190 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
191
192 static int block_depth;
193
194 /* Nonzero if have enabled APP processing of our assembler output. */
195
196 static int app_on;
197
198 /* If we are outputting an insn sequence, this contains the sequence rtx.
199 Zero otherwise. */
200
201 rtx final_sequence;
202
203 #ifdef ASSEMBLER_DIALECT
204
205 /* Number of the assembler dialect to use, starting at 0. */
206 static int dialect_number;
207 #endif
208
209 #ifdef HAVE_conditional_execution
210 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
211 rtx current_insn_predicate;
212 #endif
213
214 #ifdef HAVE_ATTR_length
215 static int asm_insn_count (rtx);
216 #endif
217 static void profile_function (FILE *);
218 static void profile_after_prologue (FILE *);
219 static bool notice_source_line (rtx);
220 static rtx walk_alter_subreg (rtx *);
221 static void output_asm_name (void);
222 static void output_alternate_entry_point (FILE *, rtx);
223 static tree get_mem_expr_from_op (rtx, int *);
224 static void output_asm_operand_names (rtx *, int *, int);
225 static void output_operand (rtx, int);
226 #ifdef LEAF_REGISTERS
227 static void leaf_renumber_regs (rtx);
228 #endif
229 #ifdef HAVE_cc0
230 static int alter_cond (rtx);
231 #endif
232 #ifndef ADDR_VEC_ALIGN
233 static int final_addr_vec_align (rtx);
234 #endif
235 #ifdef HAVE_ATTR_length
236 static int align_fuzz (rtx, rtx, int, unsigned);
237 #endif
238 \f
239 /* Initialize data in final at the beginning of a compilation. */
240
241 void
242 init_final (const char *filename ATTRIBUTE_UNUSED)
243 {
244 app_on = 0;
245 final_sequence = 0;
246
247 #ifdef ASSEMBLER_DIALECT
248 dialect_number = ASSEMBLER_DIALECT;
249 #endif
250 }
251
252 /* Default target function prologue and epilogue assembler output.
253
254 If not overridden for epilogue code, then the function body itself
255 contains return instructions wherever needed. */
256 void
257 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
258 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
259 {
260 }
261
262 /* Default target hook that outputs nothing to a stream. */
263 void
264 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
265 {
266 }
267
268 /* Enable APP processing of subsequent output.
269 Used before the output from an `asm' statement. */
270
271 void
272 app_enable (void)
273 {
274 if (! app_on)
275 {
276 fputs (ASM_APP_ON, asm_out_file);
277 app_on = 1;
278 }
279 }
280
281 /* Disable APP processing of subsequent output.
282 Called from varasm.c before most kinds of output. */
283
284 void
285 app_disable (void)
286 {
287 if (app_on)
288 {
289 fputs (ASM_APP_OFF, asm_out_file);
290 app_on = 0;
291 }
292 }
293 \f
294 /* Return the number of slots filled in the current
295 delayed branch sequence (we don't count the insn needing the
296 delay slot). Zero if not in a delayed branch sequence. */
297
298 #ifdef DELAY_SLOTS
299 int
300 dbr_sequence_length (void)
301 {
302 if (final_sequence != 0)
303 return XVECLEN (final_sequence, 0) - 1;
304 else
305 return 0;
306 }
307 #endif
308 \f
309 /* The next two pages contain routines used to compute the length of an insn
310 and to shorten branches. */
311
312 /* Arrays for insn lengths, and addresses. The latter is referenced by
313 `insn_current_length'. */
314
315 static int *insn_lengths;
316
317 varray_type insn_addresses_;
318
319 /* Max uid for which the above arrays are valid. */
320 static int insn_lengths_max_uid;
321
322 /* Address of insn being processed. Used by `insn_current_length'. */
323 int insn_current_address;
324
325 /* Address of insn being processed in previous iteration. */
326 int insn_last_address;
327
328 /* known invariant alignment of insn being processed. */
329 int insn_current_align;
330
331 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
332 gives the next following alignment insn that increases the known
333 alignment, or NULL_RTX if there is no such insn.
334 For any alignment obtained this way, we can again index uid_align with
335 its uid to obtain the next following align that in turn increases the
336 alignment, till we reach NULL_RTX; the sequence obtained this way
337 for each insn we'll call the alignment chain of this insn in the following
338 comments. */
339
340 struct label_alignment
341 {
342 short alignment;
343 short max_skip;
344 };
345
346 static rtx *uid_align;
347 static int *uid_shuid;
348 static struct label_alignment *label_align;
349
350 /* Indicate that branch shortening hasn't yet been done. */
351
352 void
353 init_insn_lengths (void)
354 {
355 if (uid_shuid)
356 {
357 free (uid_shuid);
358 uid_shuid = 0;
359 }
360 if (insn_lengths)
361 {
362 free (insn_lengths);
363 insn_lengths = 0;
364 insn_lengths_max_uid = 0;
365 }
366 #ifdef HAVE_ATTR_length
367 INSN_ADDRESSES_FREE ();
368 #endif
369 if (uid_align)
370 {
371 free (uid_align);
372 uid_align = 0;
373 }
374 }
375
376 /* Obtain the current length of an insn. If branch shortening has been done,
377 get its actual length. Otherwise, get its maximum length. */
378
379 int
380 get_attr_length (rtx insn ATTRIBUTE_UNUSED)
381 {
382 #ifdef HAVE_ATTR_length
383 rtx body;
384 int i;
385 int length = 0;
386
387 if (insn_lengths_max_uid > INSN_UID (insn))
388 return insn_lengths[INSN_UID (insn)];
389 else
390 switch (GET_CODE (insn))
391 {
392 case NOTE:
393 case BARRIER:
394 case CODE_LABEL:
395 return 0;
396
397 case CALL_INSN:
398 length = insn_default_length (insn);
399 break;
400
401 case JUMP_INSN:
402 body = PATTERN (insn);
403 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
404 {
405 /* Alignment is machine-dependent and should be handled by
406 ADDR_VEC_ALIGN. */
407 }
408 else
409 length = insn_default_length (insn);
410 break;
411
412 case INSN:
413 body = PATTERN (insn);
414 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
415 return 0;
416
417 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
418 length = asm_insn_count (body) * insn_default_length (insn);
419 else if (GET_CODE (body) == SEQUENCE)
420 for (i = 0; i < XVECLEN (body, 0); i++)
421 length += get_attr_length (XVECEXP (body, 0, i));
422 else
423 length = insn_default_length (insn);
424 break;
425
426 default:
427 break;
428 }
429
430 #ifdef ADJUST_INSN_LENGTH
431 ADJUST_INSN_LENGTH (insn, length);
432 #endif
433 return length;
434 #else /* not HAVE_ATTR_length */
435 return 0;
436 #endif /* not HAVE_ATTR_length */
437 }
438 \f
439 /* Code to handle alignment inside shorten_branches. */
440
441 /* Here is an explanation how the algorithm in align_fuzz can give
442 proper results:
443
444 Call a sequence of instructions beginning with alignment point X
445 and continuing until the next alignment point `block X'. When `X'
446 is used in an expression, it means the alignment value of the
447 alignment point.
448
449 Call the distance between the start of the first insn of block X, and
450 the end of the last insn of block X `IX', for the `inner size of X'.
451 This is clearly the sum of the instruction lengths.
452
453 Likewise with the next alignment-delimited block following X, which we
454 shall call block Y.
455
456 Call the distance between the start of the first insn of block X, and
457 the start of the first insn of block Y `OX', for the `outer size of X'.
458
459 The estimated padding is then OX - IX.
460
461 OX can be safely estimated as
462
463 if (X >= Y)
464 OX = round_up(IX, Y)
465 else
466 OX = round_up(IX, X) + Y - X
467
468 Clearly est(IX) >= real(IX), because that only depends on the
469 instruction lengths, and those being overestimated is a given.
470
471 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
472 we needn't worry about that when thinking about OX.
473
474 When X >= Y, the alignment provided by Y adds no uncertainty factor
475 for branch ranges starting before X, so we can just round what we have.
476 But when X < Y, we don't know anything about the, so to speak,
477 `middle bits', so we have to assume the worst when aligning up from an
478 address mod X to one mod Y, which is Y - X. */
479
480 #ifndef LABEL_ALIGN
481 #define LABEL_ALIGN(LABEL) align_labels_log
482 #endif
483
484 #ifndef LABEL_ALIGN_MAX_SKIP
485 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
486 #endif
487
488 #ifndef LOOP_ALIGN
489 #define LOOP_ALIGN(LABEL) align_loops_log
490 #endif
491
492 #ifndef LOOP_ALIGN_MAX_SKIP
493 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
494 #endif
495
496 #ifndef LABEL_ALIGN_AFTER_BARRIER
497 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
498 #endif
499
500 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
501 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
502 #endif
503
504 #ifndef JUMP_ALIGN
505 #define JUMP_ALIGN(LABEL) align_jumps_log
506 #endif
507
508 #ifndef JUMP_ALIGN_MAX_SKIP
509 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
510 #endif
511
512 #ifndef ADDR_VEC_ALIGN
513 static int
514 final_addr_vec_align (rtx addr_vec)
515 {
516 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
517
518 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
519 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
520 return exact_log2 (align);
521
522 }
523
524 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
525 #endif
526
527 #ifndef INSN_LENGTH_ALIGNMENT
528 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
529 #endif
530
531 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
532
533 static int min_labelno, max_labelno;
534
535 #define LABEL_TO_ALIGNMENT(LABEL) \
536 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
537
538 #define LABEL_TO_MAX_SKIP(LABEL) \
539 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
540
541 /* For the benefit of port specific code do this also as a function. */
542
543 int
544 label_to_alignment (rtx label)
545 {
546 return LABEL_TO_ALIGNMENT (label);
547 }
548
549 #ifdef HAVE_ATTR_length
550 /* The differences in addresses
551 between a branch and its target might grow or shrink depending on
552 the alignment the start insn of the range (the branch for a forward
553 branch or the label for a backward branch) starts out on; if these
554 differences are used naively, they can even oscillate infinitely.
555 We therefore want to compute a 'worst case' address difference that
556 is independent of the alignment the start insn of the range end
557 up on, and that is at least as large as the actual difference.
558 The function align_fuzz calculates the amount we have to add to the
559 naively computed difference, by traversing the part of the alignment
560 chain of the start insn of the range that is in front of the end insn
561 of the range, and considering for each alignment the maximum amount
562 that it might contribute to a size increase.
563
564 For casesi tables, we also want to know worst case minimum amounts of
565 address difference, in case a machine description wants to introduce
566 some common offset that is added to all offsets in a table.
567 For this purpose, align_fuzz with a growth argument of 0 computes the
568 appropriate adjustment. */
569
570 /* Compute the maximum delta by which the difference of the addresses of
571 START and END might grow / shrink due to a different address for start
572 which changes the size of alignment insns between START and END.
573 KNOWN_ALIGN_LOG is the alignment known for START.
574 GROWTH should be ~0 if the objective is to compute potential code size
575 increase, and 0 if the objective is to compute potential shrink.
576 The return value is undefined for any other value of GROWTH. */
577
578 static int
579 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
580 {
581 int uid = INSN_UID (start);
582 rtx align_label;
583 int known_align = 1 << known_align_log;
584 int end_shuid = INSN_SHUID (end);
585 int fuzz = 0;
586
587 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
588 {
589 int align_addr, new_align;
590
591 uid = INSN_UID (align_label);
592 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
593 if (uid_shuid[uid] > end_shuid)
594 break;
595 known_align_log = LABEL_TO_ALIGNMENT (align_label);
596 new_align = 1 << known_align_log;
597 if (new_align < known_align)
598 continue;
599 fuzz += (-align_addr ^ growth) & (new_align - known_align);
600 known_align = new_align;
601 }
602 return fuzz;
603 }
604
605 /* Compute a worst-case reference address of a branch so that it
606 can be safely used in the presence of aligned labels. Since the
607 size of the branch itself is unknown, the size of the branch is
608 not included in the range. I.e. for a forward branch, the reference
609 address is the end address of the branch as known from the previous
610 branch shortening pass, minus a value to account for possible size
611 increase due to alignment. For a backward branch, it is the start
612 address of the branch as known from the current pass, plus a value
613 to account for possible size increase due to alignment.
614 NB.: Therefore, the maximum offset allowed for backward branches needs
615 to exclude the branch size. */
616
617 int
618 insn_current_reference_address (rtx branch)
619 {
620 rtx dest, seq;
621 int seq_uid;
622
623 if (! INSN_ADDRESSES_SET_P ())
624 return 0;
625
626 seq = NEXT_INSN (PREV_INSN (branch));
627 seq_uid = INSN_UID (seq);
628 if (!JUMP_P (branch))
629 /* This can happen for example on the PA; the objective is to know the
630 offset to address something in front of the start of the function.
631 Thus, we can treat it like a backward branch.
632 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
633 any alignment we'd encounter, so we skip the call to align_fuzz. */
634 return insn_current_address;
635 dest = JUMP_LABEL (branch);
636
637 /* BRANCH has no proper alignment chain set, so use SEQ.
638 BRANCH also has no INSN_SHUID. */
639 if (INSN_SHUID (seq) < INSN_SHUID (dest))
640 {
641 /* Forward branch. */
642 return (insn_last_address + insn_lengths[seq_uid]
643 - align_fuzz (seq, dest, length_unit_log, ~0));
644 }
645 else
646 {
647 /* Backward branch. */
648 return (insn_current_address
649 + align_fuzz (dest, seq, length_unit_log, ~0));
650 }
651 }
652 #endif /* HAVE_ATTR_length */
653 \f
654 void
655 compute_alignments (void)
656 {
657 int log, max_skip, max_log;
658 basic_block bb;
659
660 if (label_align)
661 {
662 free (label_align);
663 label_align = 0;
664 }
665
666 max_labelno = max_label_num ();
667 min_labelno = get_first_label_num ();
668 label_align = xcalloc (max_labelno - min_labelno + 1,
669 sizeof (struct label_alignment));
670
671 /* If not optimizing or optimizing for size, don't assign any alignments. */
672 if (! optimize || optimize_size)
673 return;
674
675 FOR_EACH_BB (bb)
676 {
677 rtx label = BB_HEAD (bb);
678 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
679 edge e;
680
681 if (!LABEL_P (label)
682 || probably_never_executed_bb_p (bb))
683 continue;
684 max_log = LABEL_ALIGN (label);
685 max_skip = LABEL_ALIGN_MAX_SKIP;
686
687 for (e = bb->pred; e; e = e->pred_next)
688 {
689 if (e->flags & EDGE_FALLTHRU)
690 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
691 else
692 branch_frequency += EDGE_FREQUENCY (e);
693 }
694
695 /* There are two purposes to align block with no fallthru incoming edge:
696 1) to avoid fetch stalls when branch destination is near cache boundary
697 2) to improve cache efficiency in case the previous block is not executed
698 (so it does not need to be in the cache).
699
700 We to catch first case, we align frequently executed blocks.
701 To catch the second, we align blocks that are executed more frequently
702 than the predecessor and the predecessor is likely to not be executed
703 when function is called. */
704
705 if (!has_fallthru
706 && (branch_frequency > BB_FREQ_MAX / 10
707 || (bb->frequency > bb->prev_bb->frequency * 10
708 && (bb->prev_bb->frequency
709 <= ENTRY_BLOCK_PTR->frequency / 2))))
710 {
711 log = JUMP_ALIGN (label);
712 if (max_log < log)
713 {
714 max_log = log;
715 max_skip = JUMP_ALIGN_MAX_SKIP;
716 }
717 }
718 /* In case block is frequent and reached mostly by non-fallthru edge,
719 align it. It is most likely a first block of loop. */
720 if (has_fallthru
721 && maybe_hot_bb_p (bb)
722 && branch_frequency + fallthru_frequency > BB_FREQ_MAX / 10
723 && branch_frequency > fallthru_frequency * 2)
724 {
725 log = LOOP_ALIGN (label);
726 if (max_log < log)
727 {
728 max_log = log;
729 max_skip = LOOP_ALIGN_MAX_SKIP;
730 }
731 }
732 LABEL_TO_ALIGNMENT (label) = max_log;
733 LABEL_TO_MAX_SKIP (label) = max_skip;
734 }
735 }
736 \f
737 /* Make a pass over all insns and compute their actual lengths by shortening
738 any branches of variable length if possible. */
739
740 /* shorten_branches might be called multiple times: for example, the SH
741 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
742 In order to do this, it needs proper length information, which it obtains
743 by calling shorten_branches. This cannot be collapsed with
744 shorten_branches itself into a single pass unless we also want to integrate
745 reorg.c, since the branch splitting exposes new instructions with delay
746 slots. */
747
748 void
749 shorten_branches (rtx first ATTRIBUTE_UNUSED)
750 {
751 rtx insn;
752 int max_uid;
753 int i;
754 int max_log;
755 int max_skip;
756 #ifdef HAVE_ATTR_length
757 #define MAX_CODE_ALIGN 16
758 rtx seq;
759 int something_changed = 1;
760 char *varying_length;
761 rtx body;
762 int uid;
763 rtx align_tab[MAX_CODE_ALIGN];
764
765 #endif
766
767 /* Compute maximum UID and allocate label_align / uid_shuid. */
768 max_uid = get_max_uid ();
769
770 /* Free uid_shuid before reallocating it. */
771 free (uid_shuid);
772
773 uid_shuid = xmalloc (max_uid * sizeof *uid_shuid);
774
775 if (max_labelno != max_label_num ())
776 {
777 int old = max_labelno;
778 int n_labels;
779 int n_old_labels;
780
781 max_labelno = max_label_num ();
782
783 n_labels = max_labelno - min_labelno + 1;
784 n_old_labels = old - min_labelno + 1;
785
786 label_align = xrealloc (label_align,
787 n_labels * sizeof (struct label_alignment));
788
789 /* Range of labels grows monotonically in the function. Abort here
790 means that the initialization of array got lost. */
791 if (n_old_labels > n_labels)
792 abort ();
793
794 memset (label_align + n_old_labels, 0,
795 (n_labels - n_old_labels) * sizeof (struct label_alignment));
796 }
797
798 /* Initialize label_align and set up uid_shuid to be strictly
799 monotonically rising with insn order. */
800 /* We use max_log here to keep track of the maximum alignment we want to
801 impose on the next CODE_LABEL (or the current one if we are processing
802 the CODE_LABEL itself). */
803
804 max_log = 0;
805 max_skip = 0;
806
807 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
808 {
809 int log;
810
811 INSN_SHUID (insn) = i++;
812 if (INSN_P (insn))
813 {
814 /* reorg might make the first insn of a loop being run once only,
815 and delete the label in front of it. Then we want to apply
816 the loop alignment to the new label created by reorg, which
817 is separated by the former loop start insn from the
818 NOTE_INSN_LOOP_BEG. */
819 }
820 else if (LABEL_P (insn))
821 {
822 rtx next;
823
824 /* Merge in alignments computed by compute_alignments. */
825 log = LABEL_TO_ALIGNMENT (insn);
826 if (max_log < log)
827 {
828 max_log = log;
829 max_skip = LABEL_TO_MAX_SKIP (insn);
830 }
831
832 log = LABEL_ALIGN (insn);
833 if (max_log < log)
834 {
835 max_log = log;
836 max_skip = LABEL_ALIGN_MAX_SKIP;
837 }
838 next = NEXT_INSN (insn);
839 /* ADDR_VECs only take room if read-only data goes into the text
840 section. */
841 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
842 if (next && JUMP_P (next))
843 {
844 rtx nextbody = PATTERN (next);
845 if (GET_CODE (nextbody) == ADDR_VEC
846 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
847 {
848 log = ADDR_VEC_ALIGN (next);
849 if (max_log < log)
850 {
851 max_log = log;
852 max_skip = LABEL_ALIGN_MAX_SKIP;
853 }
854 }
855 }
856 LABEL_TO_ALIGNMENT (insn) = max_log;
857 LABEL_TO_MAX_SKIP (insn) = max_skip;
858 max_log = 0;
859 max_skip = 0;
860 }
861 else if (BARRIER_P (insn))
862 {
863 rtx label;
864
865 for (label = insn; label && ! INSN_P (label);
866 label = NEXT_INSN (label))
867 if (LABEL_P (label))
868 {
869 log = LABEL_ALIGN_AFTER_BARRIER (insn);
870 if (max_log < log)
871 {
872 max_log = log;
873 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
874 }
875 break;
876 }
877 }
878 }
879 #ifdef HAVE_ATTR_length
880
881 /* Allocate the rest of the arrays. */
882 insn_lengths = xmalloc (max_uid * sizeof (*insn_lengths));
883 insn_lengths_max_uid = max_uid;
884 /* Syntax errors can lead to labels being outside of the main insn stream.
885 Initialize insn_addresses, so that we get reproducible results. */
886 INSN_ADDRESSES_ALLOC (max_uid);
887
888 varying_length = xcalloc (max_uid, sizeof (char));
889
890 /* Initialize uid_align. We scan instructions
891 from end to start, and keep in align_tab[n] the last seen insn
892 that does an alignment of at least n+1, i.e. the successor
893 in the alignment chain for an insn that does / has a known
894 alignment of n. */
895 uid_align = xcalloc (max_uid, sizeof *uid_align);
896
897 for (i = MAX_CODE_ALIGN; --i >= 0;)
898 align_tab[i] = NULL_RTX;
899 seq = get_last_insn ();
900 for (; seq; seq = PREV_INSN (seq))
901 {
902 int uid = INSN_UID (seq);
903 int log;
904 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
905 uid_align[uid] = align_tab[0];
906 if (log)
907 {
908 /* Found an alignment label. */
909 uid_align[uid] = align_tab[log];
910 for (i = log - 1; i >= 0; i--)
911 align_tab[i] = seq;
912 }
913 }
914 #ifdef CASE_VECTOR_SHORTEN_MODE
915 if (optimize)
916 {
917 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
918 label fields. */
919
920 int min_shuid = INSN_SHUID (get_insns ()) - 1;
921 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
922 int rel;
923
924 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
925 {
926 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
927 int len, i, min, max, insn_shuid;
928 int min_align;
929 addr_diff_vec_flags flags;
930
931 if (!JUMP_P (insn)
932 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
933 continue;
934 pat = PATTERN (insn);
935 len = XVECLEN (pat, 1);
936 if (len <= 0)
937 abort ();
938 min_align = MAX_CODE_ALIGN;
939 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
940 {
941 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
942 int shuid = INSN_SHUID (lab);
943 if (shuid < min)
944 {
945 min = shuid;
946 min_lab = lab;
947 }
948 if (shuid > max)
949 {
950 max = shuid;
951 max_lab = lab;
952 }
953 if (min_align > LABEL_TO_ALIGNMENT (lab))
954 min_align = LABEL_TO_ALIGNMENT (lab);
955 }
956 XEXP (pat, 2) = gen_rtx_LABEL_REF (VOIDmode, min_lab);
957 XEXP (pat, 3) = gen_rtx_LABEL_REF (VOIDmode, max_lab);
958 insn_shuid = INSN_SHUID (insn);
959 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
960 flags.min_align = min_align;
961 flags.base_after_vec = rel > insn_shuid;
962 flags.min_after_vec = min > insn_shuid;
963 flags.max_after_vec = max > insn_shuid;
964 flags.min_after_base = min > rel;
965 flags.max_after_base = max > rel;
966 ADDR_DIFF_VEC_FLAGS (pat) = flags;
967 }
968 }
969 #endif /* CASE_VECTOR_SHORTEN_MODE */
970
971 /* Compute initial lengths, addresses, and varying flags for each insn. */
972 for (insn_current_address = 0, insn = first;
973 insn != 0;
974 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
975 {
976 uid = INSN_UID (insn);
977
978 insn_lengths[uid] = 0;
979
980 if (LABEL_P (insn))
981 {
982 int log = LABEL_TO_ALIGNMENT (insn);
983 if (log)
984 {
985 int align = 1 << log;
986 int new_address = (insn_current_address + align - 1) & -align;
987 insn_lengths[uid] = new_address - insn_current_address;
988 }
989 }
990
991 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
992
993 if (NOTE_P (insn) || BARRIER_P (insn)
994 || LABEL_P (insn))
995 continue;
996 if (INSN_DELETED_P (insn))
997 continue;
998
999 body = PATTERN (insn);
1000 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1001 {
1002 /* This only takes room if read-only data goes into the text
1003 section. */
1004 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1005 insn_lengths[uid] = (XVECLEN (body,
1006 GET_CODE (body) == ADDR_DIFF_VEC)
1007 * GET_MODE_SIZE (GET_MODE (body)));
1008 /* Alignment is handled by ADDR_VEC_ALIGN. */
1009 }
1010 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1011 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1012 else if (GET_CODE (body) == SEQUENCE)
1013 {
1014 int i;
1015 int const_delay_slots;
1016 #ifdef DELAY_SLOTS
1017 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1018 #else
1019 const_delay_slots = 0;
1020 #endif
1021 /* Inside a delay slot sequence, we do not do any branch shortening
1022 if the shortening could change the number of delay slots
1023 of the branch. */
1024 for (i = 0; i < XVECLEN (body, 0); i++)
1025 {
1026 rtx inner_insn = XVECEXP (body, 0, i);
1027 int inner_uid = INSN_UID (inner_insn);
1028 int inner_length;
1029
1030 if (GET_CODE (body) == ASM_INPUT
1031 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1032 inner_length = (asm_insn_count (PATTERN (inner_insn))
1033 * insn_default_length (inner_insn));
1034 else
1035 inner_length = insn_default_length (inner_insn);
1036
1037 insn_lengths[inner_uid] = inner_length;
1038 if (const_delay_slots)
1039 {
1040 if ((varying_length[inner_uid]
1041 = insn_variable_length_p (inner_insn)) != 0)
1042 varying_length[uid] = 1;
1043 INSN_ADDRESSES (inner_uid) = (insn_current_address
1044 + insn_lengths[uid]);
1045 }
1046 else
1047 varying_length[inner_uid] = 0;
1048 insn_lengths[uid] += inner_length;
1049 }
1050 }
1051 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1052 {
1053 insn_lengths[uid] = insn_default_length (insn);
1054 varying_length[uid] = insn_variable_length_p (insn);
1055 }
1056
1057 /* If needed, do any adjustment. */
1058 #ifdef ADJUST_INSN_LENGTH
1059 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1060 if (insn_lengths[uid] < 0)
1061 fatal_insn ("negative insn length", insn);
1062 #endif
1063 }
1064
1065 /* Now loop over all the insns finding varying length insns. For each,
1066 get the current insn length. If it has changed, reflect the change.
1067 When nothing changes for a full pass, we are done. */
1068
1069 while (something_changed)
1070 {
1071 something_changed = 0;
1072 insn_current_align = MAX_CODE_ALIGN - 1;
1073 for (insn_current_address = 0, insn = first;
1074 insn != 0;
1075 insn = NEXT_INSN (insn))
1076 {
1077 int new_length;
1078 #ifdef ADJUST_INSN_LENGTH
1079 int tmp_length;
1080 #endif
1081 int length_align;
1082
1083 uid = INSN_UID (insn);
1084
1085 if (LABEL_P (insn))
1086 {
1087 int log = LABEL_TO_ALIGNMENT (insn);
1088 if (log > insn_current_align)
1089 {
1090 int align = 1 << log;
1091 int new_address= (insn_current_address + align - 1) & -align;
1092 insn_lengths[uid] = new_address - insn_current_address;
1093 insn_current_align = log;
1094 insn_current_address = new_address;
1095 }
1096 else
1097 insn_lengths[uid] = 0;
1098 INSN_ADDRESSES (uid) = insn_current_address;
1099 continue;
1100 }
1101
1102 length_align = INSN_LENGTH_ALIGNMENT (insn);
1103 if (length_align < insn_current_align)
1104 insn_current_align = length_align;
1105
1106 insn_last_address = INSN_ADDRESSES (uid);
1107 INSN_ADDRESSES (uid) = insn_current_address;
1108
1109 #ifdef CASE_VECTOR_SHORTEN_MODE
1110 if (optimize && JUMP_P (insn)
1111 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1112 {
1113 rtx body = PATTERN (insn);
1114 int old_length = insn_lengths[uid];
1115 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1116 rtx min_lab = XEXP (XEXP (body, 2), 0);
1117 rtx max_lab = XEXP (XEXP (body, 3), 0);
1118 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1119 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1120 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1121 rtx prev;
1122 int rel_align = 0;
1123 addr_diff_vec_flags flags;
1124
1125 /* Avoid automatic aggregate initialization. */
1126 flags = ADDR_DIFF_VEC_FLAGS (body);
1127
1128 /* Try to find a known alignment for rel_lab. */
1129 for (prev = rel_lab;
1130 prev
1131 && ! insn_lengths[INSN_UID (prev)]
1132 && ! (varying_length[INSN_UID (prev)] & 1);
1133 prev = PREV_INSN (prev))
1134 if (varying_length[INSN_UID (prev)] & 2)
1135 {
1136 rel_align = LABEL_TO_ALIGNMENT (prev);
1137 break;
1138 }
1139
1140 /* See the comment on addr_diff_vec_flags in rtl.h for the
1141 meaning of the flags values. base: REL_LAB vec: INSN */
1142 /* Anything after INSN has still addresses from the last
1143 pass; adjust these so that they reflect our current
1144 estimate for this pass. */
1145 if (flags.base_after_vec)
1146 rel_addr += insn_current_address - insn_last_address;
1147 if (flags.min_after_vec)
1148 min_addr += insn_current_address - insn_last_address;
1149 if (flags.max_after_vec)
1150 max_addr += insn_current_address - insn_last_address;
1151 /* We want to know the worst case, i.e. lowest possible value
1152 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1153 its offset is positive, and we have to be wary of code shrink;
1154 otherwise, it is negative, and we have to be vary of code
1155 size increase. */
1156 if (flags.min_after_base)
1157 {
1158 /* If INSN is between REL_LAB and MIN_LAB, the size
1159 changes we are about to make can change the alignment
1160 within the observed offset, therefore we have to break
1161 it up into two parts that are independent. */
1162 if (! flags.base_after_vec && flags.min_after_vec)
1163 {
1164 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1165 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1166 }
1167 else
1168 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1169 }
1170 else
1171 {
1172 if (flags.base_after_vec && ! flags.min_after_vec)
1173 {
1174 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1175 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1176 }
1177 else
1178 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1179 }
1180 /* Likewise, determine the highest lowest possible value
1181 for the offset of MAX_LAB. */
1182 if (flags.max_after_base)
1183 {
1184 if (! flags.base_after_vec && flags.max_after_vec)
1185 {
1186 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1187 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1188 }
1189 else
1190 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1191 }
1192 else
1193 {
1194 if (flags.base_after_vec && ! flags.max_after_vec)
1195 {
1196 max_addr += align_fuzz (max_lab, insn, 0, 0);
1197 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1198 }
1199 else
1200 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1201 }
1202 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1203 max_addr - rel_addr,
1204 body));
1205 if (JUMP_TABLES_IN_TEXT_SECTION || !HAVE_READONLY_DATA_SECTION)
1206 {
1207 insn_lengths[uid]
1208 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1209 insn_current_address += insn_lengths[uid];
1210 if (insn_lengths[uid] != old_length)
1211 something_changed = 1;
1212 }
1213
1214 continue;
1215 }
1216 #endif /* CASE_VECTOR_SHORTEN_MODE */
1217
1218 if (! (varying_length[uid]))
1219 {
1220 if (NONJUMP_INSN_P (insn)
1221 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1222 {
1223 int i;
1224
1225 body = PATTERN (insn);
1226 for (i = 0; i < XVECLEN (body, 0); i++)
1227 {
1228 rtx inner_insn = XVECEXP (body, 0, i);
1229 int inner_uid = INSN_UID (inner_insn);
1230
1231 INSN_ADDRESSES (inner_uid) = insn_current_address;
1232
1233 insn_current_address += insn_lengths[inner_uid];
1234 }
1235 }
1236 else
1237 insn_current_address += insn_lengths[uid];
1238
1239 continue;
1240 }
1241
1242 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1243 {
1244 int i;
1245
1246 body = PATTERN (insn);
1247 new_length = 0;
1248 for (i = 0; i < XVECLEN (body, 0); i++)
1249 {
1250 rtx inner_insn = XVECEXP (body, 0, i);
1251 int inner_uid = INSN_UID (inner_insn);
1252 int inner_length;
1253
1254 INSN_ADDRESSES (inner_uid) = insn_current_address;
1255
1256 /* insn_current_length returns 0 for insns with a
1257 non-varying length. */
1258 if (! varying_length[inner_uid])
1259 inner_length = insn_lengths[inner_uid];
1260 else
1261 inner_length = insn_current_length (inner_insn);
1262
1263 if (inner_length != insn_lengths[inner_uid])
1264 {
1265 insn_lengths[inner_uid] = inner_length;
1266 something_changed = 1;
1267 }
1268 insn_current_address += insn_lengths[inner_uid];
1269 new_length += inner_length;
1270 }
1271 }
1272 else
1273 {
1274 new_length = insn_current_length (insn);
1275 insn_current_address += new_length;
1276 }
1277
1278 #ifdef ADJUST_INSN_LENGTH
1279 /* If needed, do any adjustment. */
1280 tmp_length = new_length;
1281 ADJUST_INSN_LENGTH (insn, new_length);
1282 insn_current_address += (new_length - tmp_length);
1283 #endif
1284
1285 if (new_length != insn_lengths[uid])
1286 {
1287 insn_lengths[uid] = new_length;
1288 something_changed = 1;
1289 }
1290 }
1291 /* For a non-optimizing compile, do only a single pass. */
1292 if (!optimize)
1293 break;
1294 }
1295
1296 free (varying_length);
1297
1298 #endif /* HAVE_ATTR_length */
1299 }
1300
1301 #ifdef HAVE_ATTR_length
1302 /* Given the body of an INSN known to be generated by an ASM statement, return
1303 the number of machine instructions likely to be generated for this insn.
1304 This is used to compute its length. */
1305
1306 static int
1307 asm_insn_count (rtx body)
1308 {
1309 const char *template;
1310 int count = 1;
1311
1312 if (GET_CODE (body) == ASM_INPUT)
1313 template = XSTR (body, 0);
1314 else
1315 template = decode_asm_operands (body, NULL, NULL, NULL, NULL);
1316
1317 for (; *template; template++)
1318 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*template) || *template == '\n')
1319 count++;
1320
1321 return count;
1322 }
1323 #endif
1324 \f
1325 /* Output assembler code for the start of a function,
1326 and initialize some of the variables in this file
1327 for the new function. The label for the function and associated
1328 assembler pseudo-ops have already been output in `assemble_start_function'.
1329
1330 FIRST is the first insn of the rtl for the function being compiled.
1331 FILE is the file to write assembler code to.
1332 OPTIMIZE is nonzero if we should eliminate redundant
1333 test and compare insns. */
1334
1335 void
1336 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1337 int optimize ATTRIBUTE_UNUSED)
1338 {
1339 block_depth = 0;
1340
1341 this_is_asm_operands = 0;
1342
1343 last_filename = locator_file (prologue_locator);
1344 last_linenum = locator_line (prologue_locator);
1345
1346 high_block_linenum = high_function_linenum = last_linenum;
1347
1348 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1349
1350 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1351 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1352 dwarf2out_begin_prologue (0, NULL);
1353 #endif
1354
1355 #ifdef LEAF_REG_REMAP
1356 if (current_function_uses_only_leaf_regs)
1357 leaf_renumber_regs (first);
1358 #endif
1359
1360 /* The Sun386i and perhaps other machines don't work right
1361 if the profiling code comes after the prologue. */
1362 #ifdef PROFILE_BEFORE_PROLOGUE
1363 if (current_function_profile)
1364 profile_function (file);
1365 #endif /* PROFILE_BEFORE_PROLOGUE */
1366
1367 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1368 if (dwarf2out_do_frame ())
1369 dwarf2out_frame_debug (NULL_RTX);
1370 #endif
1371
1372 /* If debugging, assign block numbers to all of the blocks in this
1373 function. */
1374 if (write_symbols)
1375 {
1376 remove_unnecessary_notes ();
1377 reemit_insn_block_notes ();
1378 number_blocks (current_function_decl);
1379 /* We never actually put out begin/end notes for the top-level
1380 block in the function. But, conceptually, that block is
1381 always needed. */
1382 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1383 }
1384
1385 /* First output the function prologue: code to set up the stack frame. */
1386 targetm.asm_out.function_prologue (file, get_frame_size ());
1387
1388 /* If the machine represents the prologue as RTL, the profiling code must
1389 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1390 #ifdef HAVE_prologue
1391 if (! HAVE_prologue)
1392 #endif
1393 profile_after_prologue (file);
1394 }
1395
1396 static void
1397 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1398 {
1399 #ifndef PROFILE_BEFORE_PROLOGUE
1400 if (current_function_profile)
1401 profile_function (file);
1402 #endif /* not PROFILE_BEFORE_PROLOGUE */
1403 }
1404
1405 static void
1406 profile_function (FILE *file ATTRIBUTE_UNUSED)
1407 {
1408 #ifndef NO_PROFILE_COUNTERS
1409 # define NO_PROFILE_COUNTERS 0
1410 #endif
1411 #if defined(ASM_OUTPUT_REG_PUSH)
1412 int sval = current_function_returns_struct;
1413 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1414 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1415 int cxt = cfun->static_chain_decl != NULL;
1416 #endif
1417 #endif /* ASM_OUTPUT_REG_PUSH */
1418
1419 if (! NO_PROFILE_COUNTERS)
1420 {
1421 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1422 data_section ();
1423 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1424 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1425 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1426 }
1427
1428 function_section (current_function_decl);
1429
1430 #if defined(ASM_OUTPUT_REG_PUSH)
1431 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1432 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1433 #endif
1434
1435 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1436 if (cxt)
1437 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1438 #else
1439 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1440 if (cxt)
1441 {
1442 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1443 }
1444 #endif
1445 #endif
1446
1447 FUNCTION_PROFILER (file, current_function_funcdef_no);
1448
1449 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1450 if (cxt)
1451 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1452 #else
1453 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1454 if (cxt)
1455 {
1456 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1457 }
1458 #endif
1459 #endif
1460
1461 #if defined(ASM_OUTPUT_REG_PUSH)
1462 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1463 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1464 #endif
1465 }
1466
1467 /* Output assembler code for the end of a function.
1468 For clarity, args are same as those of `final_start_function'
1469 even though not all of them are needed. */
1470
1471 void
1472 final_end_function (void)
1473 {
1474 app_disable ();
1475
1476 (*debug_hooks->end_function) (high_function_linenum);
1477
1478 /* Finally, output the function epilogue:
1479 code to restore the stack frame and return to the caller. */
1480 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1481
1482 /* And debug output. */
1483 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1484
1485 #if defined (DWARF2_UNWIND_INFO)
1486 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1487 && dwarf2out_do_frame ())
1488 dwarf2out_end_epilogue (last_linenum, last_filename);
1489 #endif
1490 }
1491 \f
1492 /* Output assembler code for some insns: all or part of a function.
1493 For description of args, see `final_start_function', above.
1494
1495 PRESCAN is 1 if we are not really outputting,
1496 just scanning as if we were outputting.
1497 Prescanning deletes and rearranges insns just like ordinary output.
1498 PRESCAN is -2 if we are outputting after having prescanned.
1499 In this case, don't try to delete or rearrange insns
1500 because that has already been done.
1501 Prescanning is done only on certain machines. */
1502
1503 void
1504 final (rtx first, FILE *file, int optimize, int prescan)
1505 {
1506 rtx insn;
1507 int max_uid = 0;
1508 int seen = 0;
1509
1510 last_ignored_compare = 0;
1511
1512 #ifdef SDB_DEBUGGING_INFO
1513 /* When producing SDB debugging info, delete troublesome line number
1514 notes from inlined functions in other files as well as duplicate
1515 line number notes. */
1516 if (write_symbols == SDB_DEBUG)
1517 {
1518 rtx last = 0;
1519 for (insn = first; insn; insn = NEXT_INSN (insn))
1520 if (NOTE_P (insn) && NOTE_LINE_NUMBER (insn) > 0)
1521 {
1522 if (last != 0
1523 #ifdef USE_MAPPED_LOCATION
1524 && NOTE_SOURCE_LOCATION (insn) == NOTE_SOURCE_LOCATION (last)
1525 #else
1526 && NOTE_LINE_NUMBER (insn) == NOTE_LINE_NUMBER (last)
1527 && NOTE_SOURCE_FILE (insn) == NOTE_SOURCE_FILE (last)
1528 #endif
1529 )
1530 {
1531 delete_insn (insn); /* Use delete_note. */
1532 continue;
1533 }
1534 last = insn;
1535 }
1536 }
1537 #endif
1538
1539 for (insn = first; insn; insn = NEXT_INSN (insn))
1540 {
1541 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1542 max_uid = INSN_UID (insn);
1543 #ifdef HAVE_cc0
1544 /* If CC tracking across branches is enabled, record the insn which
1545 jumps to each branch only reached from one place. */
1546 if (optimize && JUMP_P (insn))
1547 {
1548 rtx lab = JUMP_LABEL (insn);
1549 if (lab && LABEL_NUSES (lab) == 1)
1550 {
1551 LABEL_REFS (lab) = insn;
1552 }
1553 }
1554 #endif
1555 }
1556
1557 init_recog ();
1558
1559 CC_STATUS_INIT;
1560
1561 /* Output the insns. */
1562 for (insn = NEXT_INSN (first); insn;)
1563 {
1564 #ifdef HAVE_ATTR_length
1565 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1566 {
1567 /* This can be triggered by bugs elsewhere in the compiler if
1568 new insns are created after init_insn_lengths is called. */
1569 if (NOTE_P (insn))
1570 insn_current_address = -1;
1571 else
1572 abort ();
1573 }
1574 else
1575 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1576 #endif /* HAVE_ATTR_length */
1577
1578 insn = final_scan_insn (insn, file, optimize, prescan, 0, &seen);
1579 }
1580 }
1581 \f
1582 const char *
1583 get_insn_template (int code, rtx insn)
1584 {
1585 switch (insn_data[code].output_format)
1586 {
1587 case INSN_OUTPUT_FORMAT_SINGLE:
1588 return insn_data[code].output.single;
1589 case INSN_OUTPUT_FORMAT_MULTI:
1590 return insn_data[code].output.multi[which_alternative];
1591 case INSN_OUTPUT_FORMAT_FUNCTION:
1592 if (insn == NULL)
1593 abort ();
1594 return (*insn_data[code].output.function) (recog_data.operand, insn);
1595
1596 default:
1597 abort ();
1598 }
1599 }
1600
1601 /* Emit the appropriate declaration for an alternate-entry-point
1602 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1603 LABEL_KIND != LABEL_NORMAL.
1604
1605 The case fall-through in this function is intentional. */
1606 static void
1607 output_alternate_entry_point (FILE *file, rtx insn)
1608 {
1609 const char *name = LABEL_NAME (insn);
1610
1611 switch (LABEL_KIND (insn))
1612 {
1613 case LABEL_WEAK_ENTRY:
1614 #ifdef ASM_WEAKEN_LABEL
1615 ASM_WEAKEN_LABEL (file, name);
1616 #endif
1617 case LABEL_GLOBAL_ENTRY:
1618 targetm.asm_out.globalize_label (file, name);
1619 case LABEL_STATIC_ENTRY:
1620 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1621 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1622 #endif
1623 ASM_OUTPUT_LABEL (file, name);
1624 break;
1625
1626 case LABEL_NORMAL:
1627 default:
1628 abort ();
1629 }
1630 }
1631
1632 /* Return boolean indicating if there is a NOTE_INSN_UNLIKELY_EXECUTED_CODE
1633 note in the instruction chain (going forward) between the current
1634 instruction, and the next 'executable' instruction. */
1635
1636 bool
1637 scan_ahead_for_unlikely_executed_note (rtx insn)
1638 {
1639 rtx temp;
1640 int bb_note_count = 0;
1641
1642 for (temp = insn; temp; temp = NEXT_INSN (temp))
1643 {
1644 if (NOTE_P (temp)
1645 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_UNLIKELY_EXECUTED_CODE)
1646 return true;
1647 if (NOTE_P (temp)
1648 && NOTE_LINE_NUMBER (temp) == NOTE_INSN_BASIC_BLOCK)
1649 {
1650 bb_note_count++;
1651 if (bb_note_count > 1)
1652 return false;
1653 }
1654 if (INSN_P (temp))
1655 return false;
1656 }
1657
1658 return false;
1659 }
1660
1661 /* The final scan for one insn, INSN.
1662 Args are same as in `final', except that INSN
1663 is the insn being scanned.
1664 Value returned is the next insn to be scanned.
1665
1666 NOPEEPHOLES is the flag to disallow peephole processing (currently
1667 used for within delayed branch sequence output).
1668
1669 SEEN is used to track the end of the prologue, for emitting
1670 debug information. We force the emission of a line note after
1671 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1672 at the beginning of the second basic block, whichever comes
1673 first. */
1674
1675 rtx
1676 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1677 int prescan, int nopeepholes ATTRIBUTE_UNUSED,
1678 int *seen)
1679 {
1680 #ifdef HAVE_cc0
1681 rtx set;
1682 #endif
1683
1684 insn_counter++;
1685
1686 /* Ignore deleted insns. These can occur when we split insns (due to a
1687 template of "#") while not optimizing. */
1688 if (INSN_DELETED_P (insn))
1689 return NEXT_INSN (insn);
1690
1691 switch (GET_CODE (insn))
1692 {
1693 case NOTE:
1694 if (prescan > 0)
1695 break;
1696
1697 switch (NOTE_LINE_NUMBER (insn))
1698 {
1699 case NOTE_INSN_DELETED:
1700 case NOTE_INSN_LOOP_BEG:
1701 case NOTE_INSN_LOOP_END:
1702 case NOTE_INSN_LOOP_CONT:
1703 case NOTE_INSN_LOOP_VTOP:
1704 case NOTE_INSN_FUNCTION_END:
1705 case NOTE_INSN_REPEATED_LINE_NUMBER:
1706 case NOTE_INSN_EXPECTED_VALUE:
1707 break;
1708
1709 case NOTE_INSN_UNLIKELY_EXECUTED_CODE:
1710
1711 /* The presence of this note indicates that this basic block
1712 belongs in the "cold" section of the .o file. If we are
1713 not already writing to the cold section we need to change
1714 to it. */
1715
1716 unlikely_text_section ();
1717 break;
1718
1719 case NOTE_INSN_BASIC_BLOCK:
1720
1721 /* If we are performing the optimization that partitions
1722 basic blocks into hot & cold sections of the .o file,
1723 then at the start of each new basic block, before
1724 beginning to write code for the basic block, we need to
1725 check to see whether the basic block belongs in the hot
1726 or cold section of the .o file, and change the section we
1727 are writing to appropriately. */
1728
1729 if (flag_reorder_blocks_and_partition
1730 && !scan_ahead_for_unlikely_executed_note (insn))
1731 function_section (current_function_decl);
1732
1733 #ifdef TARGET_UNWIND_INFO
1734 targetm.asm_out.unwind_emit (asm_out_file, insn);
1735 #endif
1736
1737 if (flag_debug_asm)
1738 fprintf (asm_out_file, "\t%s basic block %d\n",
1739 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1740
1741 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1742 {
1743 *seen |= SEEN_EMITTED;
1744 last_filename = NULL;
1745 }
1746 else
1747 *seen |= SEEN_BB;
1748
1749 break;
1750
1751 case NOTE_INSN_EH_REGION_BEG:
1752 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1753 NOTE_EH_HANDLER (insn));
1754 break;
1755
1756 case NOTE_INSN_EH_REGION_END:
1757 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1758 NOTE_EH_HANDLER (insn));
1759 break;
1760
1761 case NOTE_INSN_PROLOGUE_END:
1762 targetm.asm_out.function_end_prologue (file);
1763 profile_after_prologue (file);
1764
1765 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1766 {
1767 *seen |= SEEN_EMITTED;
1768 last_filename = NULL;
1769 }
1770 else
1771 *seen |= SEEN_NOTE;
1772
1773 break;
1774
1775 case NOTE_INSN_EPILOGUE_BEG:
1776 targetm.asm_out.function_begin_epilogue (file);
1777 break;
1778
1779 case NOTE_INSN_FUNCTION_BEG:
1780 app_disable ();
1781 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1782
1783 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1784 {
1785 *seen |= SEEN_EMITTED;
1786 last_filename = NULL;
1787 }
1788 else
1789 *seen |= SEEN_NOTE;
1790
1791 break;
1792
1793 case NOTE_INSN_BLOCK_BEG:
1794 if (debug_info_level == DINFO_LEVEL_NORMAL
1795 || debug_info_level == DINFO_LEVEL_VERBOSE
1796 || write_symbols == DWARF2_DEBUG
1797 || write_symbols == VMS_AND_DWARF2_DEBUG
1798 || write_symbols == VMS_DEBUG)
1799 {
1800 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1801
1802 app_disable ();
1803 ++block_depth;
1804 high_block_linenum = last_linenum;
1805
1806 /* Output debugging info about the symbol-block beginning. */
1807 (*debug_hooks->begin_block) (last_linenum, n);
1808
1809 /* Mark this block as output. */
1810 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1811 }
1812 break;
1813
1814 case NOTE_INSN_BLOCK_END:
1815 if (debug_info_level == DINFO_LEVEL_NORMAL
1816 || debug_info_level == DINFO_LEVEL_VERBOSE
1817 || write_symbols == DWARF2_DEBUG
1818 || write_symbols == VMS_AND_DWARF2_DEBUG
1819 || write_symbols == VMS_DEBUG)
1820 {
1821 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1822
1823 app_disable ();
1824
1825 /* End of a symbol-block. */
1826 --block_depth;
1827 if (block_depth < 0)
1828 abort ();
1829
1830 (*debug_hooks->end_block) (high_block_linenum, n);
1831 }
1832 break;
1833
1834 case NOTE_INSN_DELETED_LABEL:
1835 /* Emit the label. We may have deleted the CODE_LABEL because
1836 the label could be proved to be unreachable, though still
1837 referenced (in the form of having its address taken. */
1838 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1839 break;
1840
1841 case NOTE_INSN_VAR_LOCATION:
1842 (*debug_hooks->var_location) (insn);
1843 break;
1844
1845 case 0:
1846 break;
1847
1848 default:
1849 if (NOTE_LINE_NUMBER (insn) <= 0)
1850 abort ();
1851 break;
1852 }
1853 break;
1854
1855 case BARRIER:
1856 #if defined (DWARF2_UNWIND_INFO)
1857 if (dwarf2out_do_frame ())
1858 dwarf2out_frame_debug (insn);
1859 #endif
1860 break;
1861
1862 case CODE_LABEL:
1863 /* The target port might emit labels in the output function for
1864 some insn, e.g. sh.c output_branchy_insn. */
1865 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1866 {
1867 int align = LABEL_TO_ALIGNMENT (insn);
1868 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1869 int max_skip = LABEL_TO_MAX_SKIP (insn);
1870 #endif
1871
1872 if (align && NEXT_INSN (insn))
1873 {
1874 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1875 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1876 #else
1877 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1878 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
1879 #else
1880 ASM_OUTPUT_ALIGN (file, align);
1881 #endif
1882 #endif
1883 }
1884 }
1885 #ifdef HAVE_cc0
1886 CC_STATUS_INIT;
1887 /* If this label is reached from only one place, set the condition
1888 codes from the instruction just before the branch. */
1889
1890 /* Disabled because some insns set cc_status in the C output code
1891 and NOTICE_UPDATE_CC alone can set incorrect status. */
1892 if (0 /* optimize && LABEL_NUSES (insn) == 1*/)
1893 {
1894 rtx jump = LABEL_REFS (insn);
1895 rtx barrier = prev_nonnote_insn (insn);
1896 rtx prev;
1897 /* If the LABEL_REFS field of this label has been set to point
1898 at a branch, the predecessor of the branch is a regular
1899 insn, and that branch is the only way to reach this label,
1900 set the condition codes based on the branch and its
1901 predecessor. */
1902 if (barrier && BARRIER_P (barrier)
1903 && jump && JUMP_P (jump)
1904 && (prev = prev_nonnote_insn (jump))
1905 && NONJUMP_INSN_P (prev))
1906 {
1907 NOTICE_UPDATE_CC (PATTERN (prev), prev);
1908 NOTICE_UPDATE_CC (PATTERN (jump), jump);
1909 }
1910 }
1911 #endif
1912 if (prescan > 0)
1913 break;
1914
1915 if (LABEL_NAME (insn))
1916 (*debug_hooks->label) (insn);
1917
1918 /* If we are doing the optimization that partitions hot & cold
1919 basic blocks into separate sections of the .o file, we need
1920 to ensure the jump table ends up in the correct section... */
1921
1922 if (flag_reorder_blocks_and_partition
1923 && targetm.have_named_sections)
1924 {
1925 rtx tmp_table, tmp_label;
1926 if (LABEL_P (insn)
1927 && tablejump_p (NEXT_INSN (insn), &tmp_label, &tmp_table))
1928 {
1929 /* Do nothing; Do NOT change the current section. */
1930 }
1931 else if (scan_ahead_for_unlikely_executed_note (insn))
1932 unlikely_text_section ();
1933 else if (in_unlikely_text_section ())
1934 function_section (current_function_decl);
1935 }
1936
1937 if (app_on)
1938 {
1939 fputs (ASM_APP_OFF, file);
1940 app_on = 0;
1941 }
1942 if (NEXT_INSN (insn) != 0
1943 && JUMP_P (NEXT_INSN (insn)))
1944 {
1945 rtx nextbody = PATTERN (NEXT_INSN (insn));
1946
1947 /* If this label is followed by a jump-table,
1948 make sure we put the label in the read-only section. Also
1949 possibly write the label and jump table together. */
1950
1951 if (GET_CODE (nextbody) == ADDR_VEC
1952 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
1953 {
1954 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
1955 /* In this case, the case vector is being moved by the
1956 target, so don't output the label at all. Leave that
1957 to the back end macros. */
1958 #else
1959 if (! JUMP_TABLES_IN_TEXT_SECTION)
1960 {
1961 int log_align;
1962
1963 targetm.asm_out.function_rodata_section (current_function_decl);
1964
1965 #ifdef ADDR_VEC_ALIGN
1966 log_align = ADDR_VEC_ALIGN (NEXT_INSN (insn));
1967 #else
1968 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
1969 #endif
1970 ASM_OUTPUT_ALIGN (file, log_align);
1971 }
1972 else
1973 function_section (current_function_decl);
1974
1975 #ifdef ASM_OUTPUT_CASE_LABEL
1976 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
1977 NEXT_INSN (insn));
1978 #else
1979 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1980 #endif
1981 #endif
1982 break;
1983 }
1984 }
1985 if (LABEL_ALT_ENTRY_P (insn))
1986 output_alternate_entry_point (file, insn);
1987 else
1988 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
1989 break;
1990
1991 default:
1992 {
1993 rtx body = PATTERN (insn);
1994 int insn_code_number;
1995 const char *template;
1996
1997 /* An INSN, JUMP_INSN or CALL_INSN.
1998 First check for special kinds that recog doesn't recognize. */
1999
2000 if (GET_CODE (body) == USE /* These are just declarations. */
2001 || GET_CODE (body) == CLOBBER)
2002 break;
2003
2004 #ifdef HAVE_cc0
2005 {
2006 /* If there is a REG_CC_SETTER note on this insn, it means that
2007 the setting of the condition code was done in the delay slot
2008 of the insn that branched here. So recover the cc status
2009 from the insn that set it. */
2010
2011 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2012 if (note)
2013 {
2014 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2015 cc_prev_status = cc_status;
2016 }
2017 }
2018 #endif
2019
2020 /* Detect insns that are really jump-tables
2021 and output them as such. */
2022
2023 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2024 {
2025 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2026 int vlen, idx;
2027 #endif
2028
2029 if (prescan > 0)
2030 break;
2031
2032 if (app_on)
2033 {
2034 fputs (ASM_APP_OFF, file);
2035 app_on = 0;
2036 }
2037
2038 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2039 if (GET_CODE (body) == ADDR_VEC)
2040 {
2041 #ifdef ASM_OUTPUT_ADDR_VEC
2042 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2043 #else
2044 abort ();
2045 #endif
2046 }
2047 else
2048 {
2049 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2050 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2051 #else
2052 abort ();
2053 #endif
2054 }
2055 #else
2056 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2057 for (idx = 0; idx < vlen; idx++)
2058 {
2059 if (GET_CODE (body) == ADDR_VEC)
2060 {
2061 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2062 ASM_OUTPUT_ADDR_VEC_ELT
2063 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2064 #else
2065 abort ();
2066 #endif
2067 }
2068 else
2069 {
2070 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2071 ASM_OUTPUT_ADDR_DIFF_ELT
2072 (file,
2073 body,
2074 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2075 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2076 #else
2077 abort ();
2078 #endif
2079 }
2080 }
2081 #ifdef ASM_OUTPUT_CASE_END
2082 ASM_OUTPUT_CASE_END (file,
2083 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2084 insn);
2085 #endif
2086 #endif
2087
2088 function_section (current_function_decl);
2089
2090 break;
2091 }
2092 /* Output this line note if it is the first or the last line
2093 note in a row. */
2094 if (notice_source_line (insn))
2095 {
2096 (*debug_hooks->source_line) (last_linenum, last_filename);
2097 }
2098
2099 if (GET_CODE (body) == ASM_INPUT)
2100 {
2101 const char *string = XSTR (body, 0);
2102
2103 /* There's no telling what that did to the condition codes. */
2104 CC_STATUS_INIT;
2105 if (prescan > 0)
2106 break;
2107
2108 if (string[0])
2109 {
2110 if (! app_on)
2111 {
2112 fputs (ASM_APP_ON, file);
2113 app_on = 1;
2114 }
2115 fprintf (asm_out_file, "\t%s\n", string);
2116 }
2117 break;
2118 }
2119
2120 /* Detect `asm' construct with operands. */
2121 if (asm_noperands (body) >= 0)
2122 {
2123 unsigned int noperands = asm_noperands (body);
2124 rtx *ops = alloca (noperands * sizeof (rtx));
2125 const char *string;
2126
2127 /* There's no telling what that did to the condition codes. */
2128 CC_STATUS_INIT;
2129 if (prescan > 0)
2130 break;
2131
2132 /* Get out the operand values. */
2133 string = decode_asm_operands (body, ops, NULL, NULL, NULL);
2134 /* Inhibit aborts on what would otherwise be compiler bugs. */
2135 insn_noperands = noperands;
2136 this_is_asm_operands = insn;
2137
2138 #ifdef FINAL_PRESCAN_INSN
2139 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2140 #endif
2141
2142 /* Output the insn using them. */
2143 if (string[0])
2144 {
2145 if (! app_on)
2146 {
2147 fputs (ASM_APP_ON, file);
2148 app_on = 1;
2149 }
2150 output_asm_insn (string, ops);
2151 }
2152
2153 this_is_asm_operands = 0;
2154 break;
2155 }
2156
2157 if (prescan <= 0 && app_on)
2158 {
2159 fputs (ASM_APP_OFF, file);
2160 app_on = 0;
2161 }
2162
2163 if (GET_CODE (body) == SEQUENCE)
2164 {
2165 /* A delayed-branch sequence */
2166 int i;
2167 rtx next;
2168
2169 if (prescan > 0)
2170 break;
2171 final_sequence = body;
2172
2173 /* Record the delay slots' frame information before the branch.
2174 This is needed for delayed calls: see execute_cfa_program(). */
2175 #if defined (DWARF2_UNWIND_INFO)
2176 if (dwarf2out_do_frame ())
2177 for (i = 1; i < XVECLEN (body, 0); i++)
2178 dwarf2out_frame_debug (XVECEXP (body, 0, i));
2179 #endif
2180
2181 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2182 force the restoration of a comparison that was previously
2183 thought unnecessary. If that happens, cancel this sequence
2184 and cause that insn to be restored. */
2185
2186 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, prescan, 1, seen);
2187 if (next != XVECEXP (body, 0, 1))
2188 {
2189 final_sequence = 0;
2190 return next;
2191 }
2192
2193 for (i = 1; i < XVECLEN (body, 0); i++)
2194 {
2195 rtx insn = XVECEXP (body, 0, i);
2196 rtx next = NEXT_INSN (insn);
2197 /* We loop in case any instruction in a delay slot gets
2198 split. */
2199 do
2200 insn = final_scan_insn (insn, file, 0, prescan, 1, seen);
2201 while (insn != next);
2202 }
2203 #ifdef DBR_OUTPUT_SEQEND
2204 DBR_OUTPUT_SEQEND (file);
2205 #endif
2206 final_sequence = 0;
2207
2208 /* If the insn requiring the delay slot was a CALL_INSN, the
2209 insns in the delay slot are actually executed before the
2210 called function. Hence we don't preserve any CC-setting
2211 actions in these insns and the CC must be marked as being
2212 clobbered by the function. */
2213 if (CALL_P (XVECEXP (body, 0, 0)))
2214 {
2215 CC_STATUS_INIT;
2216 }
2217 break;
2218 }
2219
2220 /* We have a real machine instruction as rtl. */
2221
2222 body = PATTERN (insn);
2223
2224 #ifdef HAVE_cc0
2225 set = single_set (insn);
2226
2227 /* Check for redundant test and compare instructions
2228 (when the condition codes are already set up as desired).
2229 This is done only when optimizing; if not optimizing,
2230 it should be possible for the user to alter a variable
2231 with the debugger in between statements
2232 and the next statement should reexamine the variable
2233 to compute the condition codes. */
2234
2235 if (optimize)
2236 {
2237 if (set
2238 && GET_CODE (SET_DEST (set)) == CC0
2239 && insn != last_ignored_compare)
2240 {
2241 if (GET_CODE (SET_SRC (set)) == SUBREG)
2242 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2243 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2244 {
2245 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2246 XEXP (SET_SRC (set), 0)
2247 = alter_subreg (&XEXP (SET_SRC (set), 0));
2248 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2249 XEXP (SET_SRC (set), 1)
2250 = alter_subreg (&XEXP (SET_SRC (set), 1));
2251 }
2252 if ((cc_status.value1 != 0
2253 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2254 || (cc_status.value2 != 0
2255 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2256 {
2257 /* Don't delete insn if it has an addressing side-effect. */
2258 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2259 /* or if anything in it is volatile. */
2260 && ! volatile_refs_p (PATTERN (insn)))
2261 {
2262 /* We don't really delete the insn; just ignore it. */
2263 last_ignored_compare = insn;
2264 break;
2265 }
2266 }
2267 }
2268 }
2269 #endif
2270
2271 #ifndef STACK_REGS
2272 /* Don't bother outputting obvious no-ops, even without -O.
2273 This optimization is fast and doesn't interfere with debugging.
2274 Don't do this if the insn is in a delay slot, since this
2275 will cause an improper number of delay insns to be written. */
2276 if (final_sequence == 0
2277 && prescan >= 0
2278 && NONJUMP_INSN_P (insn) && GET_CODE (body) == SET
2279 && REG_P (SET_SRC (body))
2280 && REG_P (SET_DEST (body))
2281 && REGNO (SET_SRC (body)) == REGNO (SET_DEST (body)))
2282 break;
2283 #endif
2284
2285 #ifdef HAVE_cc0
2286 /* If this is a conditional branch, maybe modify it
2287 if the cc's are in a nonstandard state
2288 so that it accomplishes the same thing that it would
2289 do straightforwardly if the cc's were set up normally. */
2290
2291 if (cc_status.flags != 0
2292 && JUMP_P (insn)
2293 && GET_CODE (body) == SET
2294 && SET_DEST (body) == pc_rtx
2295 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2296 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2297 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx
2298 /* This is done during prescan; it is not done again
2299 in final scan when prescan has been done. */
2300 && prescan >= 0)
2301 {
2302 /* This function may alter the contents of its argument
2303 and clear some of the cc_status.flags bits.
2304 It may also return 1 meaning condition now always true
2305 or -1 meaning condition now always false
2306 or 2 meaning condition nontrivial but altered. */
2307 int result = alter_cond (XEXP (SET_SRC (body), 0));
2308 /* If condition now has fixed value, replace the IF_THEN_ELSE
2309 with its then-operand or its else-operand. */
2310 if (result == 1)
2311 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2312 if (result == -1)
2313 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2314
2315 /* The jump is now either unconditional or a no-op.
2316 If it has become a no-op, don't try to output it.
2317 (It would not be recognized.) */
2318 if (SET_SRC (body) == pc_rtx)
2319 {
2320 delete_insn (insn);
2321 break;
2322 }
2323 else if (GET_CODE (SET_SRC (body)) == RETURN)
2324 /* Replace (set (pc) (return)) with (return). */
2325 PATTERN (insn) = body = SET_SRC (body);
2326
2327 /* Rerecognize the instruction if it has changed. */
2328 if (result != 0)
2329 INSN_CODE (insn) = -1;
2330 }
2331
2332 /* Make same adjustments to instructions that examine the
2333 condition codes without jumping and instructions that
2334 handle conditional moves (if this machine has either one). */
2335
2336 if (cc_status.flags != 0
2337 && set != 0)
2338 {
2339 rtx cond_rtx, then_rtx, else_rtx;
2340
2341 if (!JUMP_P (insn)
2342 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2343 {
2344 cond_rtx = XEXP (SET_SRC (set), 0);
2345 then_rtx = XEXP (SET_SRC (set), 1);
2346 else_rtx = XEXP (SET_SRC (set), 2);
2347 }
2348 else
2349 {
2350 cond_rtx = SET_SRC (set);
2351 then_rtx = const_true_rtx;
2352 else_rtx = const0_rtx;
2353 }
2354
2355 switch (GET_CODE (cond_rtx))
2356 {
2357 case GTU:
2358 case GT:
2359 case LTU:
2360 case LT:
2361 case GEU:
2362 case GE:
2363 case LEU:
2364 case LE:
2365 case EQ:
2366 case NE:
2367 {
2368 int result;
2369 if (XEXP (cond_rtx, 0) != cc0_rtx)
2370 break;
2371 result = alter_cond (cond_rtx);
2372 if (result == 1)
2373 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2374 else if (result == -1)
2375 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2376 else if (result == 2)
2377 INSN_CODE (insn) = -1;
2378 if (SET_DEST (set) == SET_SRC (set))
2379 delete_insn (insn);
2380 }
2381 break;
2382
2383 default:
2384 break;
2385 }
2386 }
2387
2388 #endif
2389
2390 #ifdef HAVE_peephole
2391 /* Do machine-specific peephole optimizations if desired. */
2392
2393 if (optimize && !flag_no_peephole && !nopeepholes)
2394 {
2395 rtx next = peephole (insn);
2396 /* When peepholing, if there were notes within the peephole,
2397 emit them before the peephole. */
2398 if (next != 0 && next != NEXT_INSN (insn))
2399 {
2400 rtx note, prev = PREV_INSN (insn);
2401
2402 for (note = NEXT_INSN (insn); note != next;
2403 note = NEXT_INSN (note))
2404 final_scan_insn (note, file, optimize, prescan, nopeepholes, seen);
2405
2406 /* In case this is prescan, put the notes
2407 in proper position for later rescan. */
2408 note = NEXT_INSN (insn);
2409 PREV_INSN (note) = prev;
2410 NEXT_INSN (prev) = note;
2411 NEXT_INSN (PREV_INSN (next)) = insn;
2412 PREV_INSN (insn) = PREV_INSN (next);
2413 NEXT_INSN (insn) = next;
2414 PREV_INSN (next) = insn;
2415 }
2416
2417 /* PEEPHOLE might have changed this. */
2418 body = PATTERN (insn);
2419 }
2420 #endif
2421
2422 /* Try to recognize the instruction.
2423 If successful, verify that the operands satisfy the
2424 constraints for the instruction. Crash if they don't,
2425 since `reload' should have changed them so that they do. */
2426
2427 insn_code_number = recog_memoized (insn);
2428 cleanup_subreg_operands (insn);
2429
2430 /* Dump the insn in the assembly for debugging. */
2431 if (flag_dump_rtl_in_asm)
2432 {
2433 print_rtx_head = ASM_COMMENT_START;
2434 print_rtl_single (asm_out_file, insn);
2435 print_rtx_head = "";
2436 }
2437
2438 if (! constrain_operands_cached (1))
2439 fatal_insn_not_found (insn);
2440
2441 /* Some target machines need to prescan each insn before
2442 it is output. */
2443
2444 #ifdef FINAL_PRESCAN_INSN
2445 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2446 #endif
2447
2448 #ifdef HAVE_conditional_execution
2449 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2450 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2451 else
2452 current_insn_predicate = NULL_RTX;
2453 #endif
2454
2455 #ifdef HAVE_cc0
2456 cc_prev_status = cc_status;
2457
2458 /* Update `cc_status' for this instruction.
2459 The instruction's output routine may change it further.
2460 If the output routine for a jump insn needs to depend
2461 on the cc status, it should look at cc_prev_status. */
2462
2463 NOTICE_UPDATE_CC (body, insn);
2464 #endif
2465
2466 current_output_insn = debug_insn = insn;
2467
2468 #if defined (DWARF2_UNWIND_INFO)
2469 if (CALL_P (insn) && dwarf2out_do_frame ())
2470 dwarf2out_frame_debug (insn);
2471 #endif
2472
2473 /* Find the proper template for this insn. */
2474 template = get_insn_template (insn_code_number, insn);
2475
2476 /* If the C code returns 0, it means that it is a jump insn
2477 which follows a deleted test insn, and that test insn
2478 needs to be reinserted. */
2479 if (template == 0)
2480 {
2481 rtx prev;
2482
2483 if (prev_nonnote_insn (insn) != last_ignored_compare)
2484 abort ();
2485
2486 /* We have already processed the notes between the setter and
2487 the user. Make sure we don't process them again, this is
2488 particularly important if one of the notes is a block
2489 scope note or an EH note. */
2490 for (prev = insn;
2491 prev != last_ignored_compare;
2492 prev = PREV_INSN (prev))
2493 {
2494 if (NOTE_P (prev))
2495 delete_insn (prev); /* Use delete_note. */
2496 }
2497
2498 return prev;
2499 }
2500
2501 /* If the template is the string "#", it means that this insn must
2502 be split. */
2503 if (template[0] == '#' && template[1] == '\0')
2504 {
2505 rtx new = try_split (body, insn, 0);
2506
2507 /* If we didn't split the insn, go away. */
2508 if (new == insn && PATTERN (new) == body)
2509 fatal_insn ("could not split insn", insn);
2510
2511 #ifdef HAVE_ATTR_length
2512 /* This instruction should have been split in shorten_branches,
2513 to ensure that we would have valid length info for the
2514 splitees. */
2515 abort ();
2516 #endif
2517
2518 return new;
2519 }
2520
2521 if (prescan > 0)
2522 break;
2523
2524 #ifdef TARGET_UNWIND_INFO
2525 /* ??? This will put the directives in the wrong place if
2526 get_insn_template outputs assembly directly. However calling it
2527 before get_insn_template breaks if the insns is split. */
2528 targetm.asm_out.unwind_emit (asm_out_file, insn);
2529 #endif
2530
2531 /* Output assembler code from the template. */
2532 output_asm_insn (template, recog_data.operand);
2533
2534 /* If necessary, report the effect that the instruction has on
2535 the unwind info. We've already done this for delay slots
2536 and call instructions. */
2537 #if defined (DWARF2_UNWIND_INFO)
2538 if (NONJUMP_INSN_P (insn)
2539 #if !defined (HAVE_prologue)
2540 && !ACCUMULATE_OUTGOING_ARGS
2541 #endif
2542 && final_sequence == 0
2543 && dwarf2out_do_frame ())
2544 dwarf2out_frame_debug (insn);
2545 #endif
2546
2547 current_output_insn = debug_insn = 0;
2548 }
2549 }
2550 return NEXT_INSN (insn);
2551 }
2552 \f
2553 /* Output debugging info to the assembler file FILE
2554 based on the NOTE-insn INSN, assumed to be a line number. */
2555
2556 static bool
2557 notice_source_line (rtx insn)
2558 {
2559 const char *filename = insn_file (insn);
2560 int linenum = insn_line (insn);
2561
2562 if (filename && (filename != last_filename || last_linenum != linenum))
2563 {
2564 last_filename = filename;
2565 last_linenum = linenum;
2566 high_block_linenum = MAX (last_linenum, high_block_linenum);
2567 high_function_linenum = MAX (last_linenum, high_function_linenum);
2568 return true;
2569 }
2570 return false;
2571 }
2572 \f
2573 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2574 directly to the desired hard register. */
2575
2576 void
2577 cleanup_subreg_operands (rtx insn)
2578 {
2579 int i;
2580 extract_insn_cached (insn);
2581 for (i = 0; i < recog_data.n_operands; i++)
2582 {
2583 /* The following test cannot use recog_data.operand when testing
2584 for a SUBREG: the underlying object might have been changed
2585 already if we are inside a match_operator expression that
2586 matches the else clause. Instead we test the underlying
2587 expression directly. */
2588 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2589 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2590 else if (GET_CODE (recog_data.operand[i]) == PLUS
2591 || GET_CODE (recog_data.operand[i]) == MULT
2592 || MEM_P (recog_data.operand[i]))
2593 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i]);
2594 }
2595
2596 for (i = 0; i < recog_data.n_dups; i++)
2597 {
2598 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2599 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2600 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2601 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2602 || MEM_P (*recog_data.dup_loc[i]))
2603 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i]);
2604 }
2605 }
2606
2607 /* If X is a SUBREG, replace it with a REG or a MEM,
2608 based on the thing it is a subreg of. */
2609
2610 rtx
2611 alter_subreg (rtx *xp)
2612 {
2613 rtx x = *xp;
2614 rtx y = SUBREG_REG (x);
2615
2616 /* simplify_subreg does not remove subreg from volatile references.
2617 We are required to. */
2618 if (MEM_P (y))
2619 *xp = adjust_address (y, GET_MODE (x), SUBREG_BYTE (x));
2620 else
2621 {
2622 rtx new = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2623 SUBREG_BYTE (x));
2624
2625 if (new != 0)
2626 *xp = new;
2627 /* Simplify_subreg can't handle some REG cases, but we have to. */
2628 else if (REG_P (y))
2629 {
2630 unsigned int regno = subreg_hard_regno (x, 1);
2631 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, SUBREG_BYTE (x));
2632 }
2633 else
2634 abort ();
2635 }
2636
2637 return *xp;
2638 }
2639
2640 /* Do alter_subreg on all the SUBREGs contained in X. */
2641
2642 static rtx
2643 walk_alter_subreg (rtx *xp)
2644 {
2645 rtx x = *xp;
2646 switch (GET_CODE (x))
2647 {
2648 case PLUS:
2649 case MULT:
2650 case AND:
2651 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2652 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1));
2653 break;
2654
2655 case MEM:
2656 case ZERO_EXTEND:
2657 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0));
2658 break;
2659
2660 case SUBREG:
2661 return alter_subreg (xp);
2662
2663 default:
2664 break;
2665 }
2666
2667 return *xp;
2668 }
2669 \f
2670 #ifdef HAVE_cc0
2671
2672 /* Given BODY, the body of a jump instruction, alter the jump condition
2673 as required by the bits that are set in cc_status.flags.
2674 Not all of the bits there can be handled at this level in all cases.
2675
2676 The value is normally 0.
2677 1 means that the condition has become always true.
2678 -1 means that the condition has become always false.
2679 2 means that COND has been altered. */
2680
2681 static int
2682 alter_cond (rtx cond)
2683 {
2684 int value = 0;
2685
2686 if (cc_status.flags & CC_REVERSED)
2687 {
2688 value = 2;
2689 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2690 }
2691
2692 if (cc_status.flags & CC_INVERTED)
2693 {
2694 value = 2;
2695 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2696 }
2697
2698 if (cc_status.flags & CC_NOT_POSITIVE)
2699 switch (GET_CODE (cond))
2700 {
2701 case LE:
2702 case LEU:
2703 case GEU:
2704 /* Jump becomes unconditional. */
2705 return 1;
2706
2707 case GT:
2708 case GTU:
2709 case LTU:
2710 /* Jump becomes no-op. */
2711 return -1;
2712
2713 case GE:
2714 PUT_CODE (cond, EQ);
2715 value = 2;
2716 break;
2717
2718 case LT:
2719 PUT_CODE (cond, NE);
2720 value = 2;
2721 break;
2722
2723 default:
2724 break;
2725 }
2726
2727 if (cc_status.flags & CC_NOT_NEGATIVE)
2728 switch (GET_CODE (cond))
2729 {
2730 case GE:
2731 case GEU:
2732 /* Jump becomes unconditional. */
2733 return 1;
2734
2735 case LT:
2736 case LTU:
2737 /* Jump becomes no-op. */
2738 return -1;
2739
2740 case LE:
2741 case LEU:
2742 PUT_CODE (cond, EQ);
2743 value = 2;
2744 break;
2745
2746 case GT:
2747 case GTU:
2748 PUT_CODE (cond, NE);
2749 value = 2;
2750 break;
2751
2752 default:
2753 break;
2754 }
2755
2756 if (cc_status.flags & CC_NO_OVERFLOW)
2757 switch (GET_CODE (cond))
2758 {
2759 case GEU:
2760 /* Jump becomes unconditional. */
2761 return 1;
2762
2763 case LEU:
2764 PUT_CODE (cond, EQ);
2765 value = 2;
2766 break;
2767
2768 case GTU:
2769 PUT_CODE (cond, NE);
2770 value = 2;
2771 break;
2772
2773 case LTU:
2774 /* Jump becomes no-op. */
2775 return -1;
2776
2777 default:
2778 break;
2779 }
2780
2781 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2782 switch (GET_CODE (cond))
2783 {
2784 default:
2785 abort ();
2786
2787 case NE:
2788 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2789 value = 2;
2790 break;
2791
2792 case EQ:
2793 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2794 value = 2;
2795 break;
2796 }
2797
2798 if (cc_status.flags & CC_NOT_SIGNED)
2799 /* The flags are valid if signed condition operators are converted
2800 to unsigned. */
2801 switch (GET_CODE (cond))
2802 {
2803 case LE:
2804 PUT_CODE (cond, LEU);
2805 value = 2;
2806 break;
2807
2808 case LT:
2809 PUT_CODE (cond, LTU);
2810 value = 2;
2811 break;
2812
2813 case GT:
2814 PUT_CODE (cond, GTU);
2815 value = 2;
2816 break;
2817
2818 case GE:
2819 PUT_CODE (cond, GEU);
2820 value = 2;
2821 break;
2822
2823 default:
2824 break;
2825 }
2826
2827 return value;
2828 }
2829 #endif
2830 \f
2831 /* Report inconsistency between the assembler template and the operands.
2832 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2833
2834 void
2835 output_operand_lossage (const char *msgid, ...)
2836 {
2837 char *fmt_string;
2838 char *new_message;
2839 const char *pfx_str;
2840 va_list ap;
2841
2842 va_start (ap, msgid);
2843
2844 pfx_str = this_is_asm_operands ? _("invalid `asm': ") : "output_operand: ";
2845 asprintf (&fmt_string, "%s%s", pfx_str, _(msgid));
2846 vasprintf (&new_message, fmt_string, ap);
2847
2848 if (this_is_asm_operands)
2849 error_for_asm (this_is_asm_operands, "%s", new_message);
2850 else
2851 internal_error ("%s", new_message);
2852
2853 free (fmt_string);
2854 free (new_message);
2855 va_end (ap);
2856 }
2857 \f
2858 /* Output of assembler code from a template, and its subroutines. */
2859
2860 /* Annotate the assembly with a comment describing the pattern and
2861 alternative used. */
2862
2863 static void
2864 output_asm_name (void)
2865 {
2866 if (debug_insn)
2867 {
2868 int num = INSN_CODE (debug_insn);
2869 fprintf (asm_out_file, "\t%s %d\t%s",
2870 ASM_COMMENT_START, INSN_UID (debug_insn),
2871 insn_data[num].name);
2872 if (insn_data[num].n_alternatives > 1)
2873 fprintf (asm_out_file, "/%d", which_alternative + 1);
2874 #ifdef HAVE_ATTR_length
2875 fprintf (asm_out_file, "\t[length = %d]",
2876 get_attr_length (debug_insn));
2877 #endif
2878 /* Clear this so only the first assembler insn
2879 of any rtl insn will get the special comment for -dp. */
2880 debug_insn = 0;
2881 }
2882 }
2883
2884 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
2885 or its address, return that expr . Set *PADDRESSP to 1 if the expr
2886 corresponds to the address of the object and 0 if to the object. */
2887
2888 static tree
2889 get_mem_expr_from_op (rtx op, int *paddressp)
2890 {
2891 tree expr;
2892 int inner_addressp;
2893
2894 *paddressp = 0;
2895
2896 if (REG_P (op))
2897 return REG_EXPR (op);
2898 else if (!MEM_P (op))
2899 return 0;
2900
2901 if (MEM_EXPR (op) != 0)
2902 return MEM_EXPR (op);
2903
2904 /* Otherwise we have an address, so indicate it and look at the address. */
2905 *paddressp = 1;
2906 op = XEXP (op, 0);
2907
2908 /* First check if we have a decl for the address, then look at the right side
2909 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
2910 But don't allow the address to itself be indirect. */
2911 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
2912 return expr;
2913 else if (GET_CODE (op) == PLUS
2914 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
2915 return expr;
2916
2917 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
2918 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
2919 op = XEXP (op, 0);
2920
2921 expr = get_mem_expr_from_op (op, &inner_addressp);
2922 return inner_addressp ? 0 : expr;
2923 }
2924
2925 /* Output operand names for assembler instructions. OPERANDS is the
2926 operand vector, OPORDER is the order to write the operands, and NOPS
2927 is the number of operands to write. */
2928
2929 static void
2930 output_asm_operand_names (rtx *operands, int *oporder, int nops)
2931 {
2932 int wrote = 0;
2933 int i;
2934
2935 for (i = 0; i < nops; i++)
2936 {
2937 int addressp;
2938 rtx op = operands[oporder[i]];
2939 tree expr = get_mem_expr_from_op (op, &addressp);
2940
2941 fprintf (asm_out_file, "%c%s",
2942 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
2943 wrote = 1;
2944 if (expr)
2945 {
2946 fprintf (asm_out_file, "%s",
2947 addressp ? "*" : "");
2948 print_mem_expr (asm_out_file, expr);
2949 wrote = 1;
2950 }
2951 else if (REG_P (op) && ORIGINAL_REGNO (op)
2952 && ORIGINAL_REGNO (op) != REGNO (op))
2953 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
2954 }
2955 }
2956
2957 /* Output text from TEMPLATE to the assembler output file,
2958 obeying %-directions to substitute operands taken from
2959 the vector OPERANDS.
2960
2961 %N (for N a digit) means print operand N in usual manner.
2962 %lN means require operand N to be a CODE_LABEL or LABEL_REF
2963 and print the label name with no punctuation.
2964 %cN means require operand N to be a constant
2965 and print the constant expression with no punctuation.
2966 %aN means expect operand N to be a memory address
2967 (not a memory reference!) and print a reference
2968 to that address.
2969 %nN means expect operand N to be a constant
2970 and print a constant expression for minus the value
2971 of the operand, with no other punctuation. */
2972
2973 void
2974 output_asm_insn (const char *template, rtx *operands)
2975 {
2976 const char *p;
2977 int c;
2978 #ifdef ASSEMBLER_DIALECT
2979 int dialect = 0;
2980 #endif
2981 int oporder[MAX_RECOG_OPERANDS];
2982 char opoutput[MAX_RECOG_OPERANDS];
2983 int ops = 0;
2984
2985 /* An insn may return a null string template
2986 in a case where no assembler code is needed. */
2987 if (*template == 0)
2988 return;
2989
2990 memset (opoutput, 0, sizeof opoutput);
2991 p = template;
2992 putc ('\t', asm_out_file);
2993
2994 #ifdef ASM_OUTPUT_OPCODE
2995 ASM_OUTPUT_OPCODE (asm_out_file, p);
2996 #endif
2997
2998 while ((c = *p++))
2999 switch (c)
3000 {
3001 case '\n':
3002 if (flag_verbose_asm)
3003 output_asm_operand_names (operands, oporder, ops);
3004 if (flag_print_asm_name)
3005 output_asm_name ();
3006
3007 ops = 0;
3008 memset (opoutput, 0, sizeof opoutput);
3009
3010 putc (c, asm_out_file);
3011 #ifdef ASM_OUTPUT_OPCODE
3012 while ((c = *p) == '\t')
3013 {
3014 putc (c, asm_out_file);
3015 p++;
3016 }
3017 ASM_OUTPUT_OPCODE (asm_out_file, p);
3018 #endif
3019 break;
3020
3021 #ifdef ASSEMBLER_DIALECT
3022 case '{':
3023 {
3024 int i;
3025
3026 if (dialect)
3027 output_operand_lossage ("nested assembly dialect alternatives");
3028 else
3029 dialect = 1;
3030
3031 /* If we want the first dialect, do nothing. Otherwise, skip
3032 DIALECT_NUMBER of strings ending with '|'. */
3033 for (i = 0; i < dialect_number; i++)
3034 {
3035 while (*p && *p != '}' && *p++ != '|')
3036 ;
3037 if (*p == '}')
3038 break;
3039 if (*p == '|')
3040 p++;
3041 }
3042
3043 if (*p == '\0')
3044 output_operand_lossage ("unterminated assembly dialect alternative");
3045 }
3046 break;
3047
3048 case '|':
3049 if (dialect)
3050 {
3051 /* Skip to close brace. */
3052 do
3053 {
3054 if (*p == '\0')
3055 {
3056 output_operand_lossage ("unterminated assembly dialect alternative");
3057 break;
3058 }
3059 }
3060 while (*p++ != '}');
3061 dialect = 0;
3062 }
3063 else
3064 putc (c, asm_out_file);
3065 break;
3066
3067 case '}':
3068 if (! dialect)
3069 putc (c, asm_out_file);
3070 dialect = 0;
3071 break;
3072 #endif
3073
3074 case '%':
3075 /* %% outputs a single %. */
3076 if (*p == '%')
3077 {
3078 p++;
3079 putc (c, asm_out_file);
3080 }
3081 /* %= outputs a number which is unique to each insn in the entire
3082 compilation. This is useful for making local labels that are
3083 referred to more than once in a given insn. */
3084 else if (*p == '=')
3085 {
3086 p++;
3087 fprintf (asm_out_file, "%d", insn_counter);
3088 }
3089 /* % followed by a letter and some digits
3090 outputs an operand in a special way depending on the letter.
3091 Letters `acln' are implemented directly.
3092 Other letters are passed to `output_operand' so that
3093 the PRINT_OPERAND macro can define them. */
3094 else if (ISALPHA (*p))
3095 {
3096 int letter = *p++;
3097 c = atoi (p);
3098
3099 if (! ISDIGIT (*p))
3100 output_operand_lossage ("operand number missing after %%-letter");
3101 else if (this_is_asm_operands
3102 && (c < 0 || (unsigned int) c >= insn_noperands))
3103 output_operand_lossage ("operand number out of range");
3104 else if (letter == 'l')
3105 output_asm_label (operands[c]);
3106 else if (letter == 'a')
3107 output_address (operands[c]);
3108 else if (letter == 'c')
3109 {
3110 if (CONSTANT_ADDRESS_P (operands[c]))
3111 output_addr_const (asm_out_file, operands[c]);
3112 else
3113 output_operand (operands[c], 'c');
3114 }
3115 else if (letter == 'n')
3116 {
3117 if (GET_CODE (operands[c]) == CONST_INT)
3118 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3119 - INTVAL (operands[c]));
3120 else
3121 {
3122 putc ('-', asm_out_file);
3123 output_addr_const (asm_out_file, operands[c]);
3124 }
3125 }
3126 else
3127 output_operand (operands[c], letter);
3128
3129 if (!opoutput[c])
3130 oporder[ops++] = c;
3131 opoutput[c] = 1;
3132
3133 while (ISDIGIT (c = *p))
3134 p++;
3135 }
3136 /* % followed by a digit outputs an operand the default way. */
3137 else if (ISDIGIT (*p))
3138 {
3139 c = atoi (p);
3140 if (this_is_asm_operands
3141 && (c < 0 || (unsigned int) c >= insn_noperands))
3142 output_operand_lossage ("operand number out of range");
3143 else
3144 output_operand (operands[c], 0);
3145
3146 if (!opoutput[c])
3147 oporder[ops++] = c;
3148 opoutput[c] = 1;
3149
3150 while (ISDIGIT (c = *p))
3151 p++;
3152 }
3153 /* % followed by punctuation: output something for that
3154 punctuation character alone, with no operand.
3155 The PRINT_OPERAND macro decides what is actually done. */
3156 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3157 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3158 output_operand (NULL_RTX, *p++);
3159 #endif
3160 else
3161 output_operand_lossage ("invalid %%-code");
3162 break;
3163
3164 default:
3165 putc (c, asm_out_file);
3166 }
3167
3168 /* Write out the variable names for operands, if we know them. */
3169 if (flag_verbose_asm)
3170 output_asm_operand_names (operands, oporder, ops);
3171 if (flag_print_asm_name)
3172 output_asm_name ();
3173
3174 putc ('\n', asm_out_file);
3175 }
3176 \f
3177 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3178
3179 void
3180 output_asm_label (rtx x)
3181 {
3182 char buf[256];
3183
3184 if (GET_CODE (x) == LABEL_REF)
3185 x = XEXP (x, 0);
3186 if (LABEL_P (x)
3187 || (NOTE_P (x)
3188 && NOTE_LINE_NUMBER (x) == NOTE_INSN_DELETED_LABEL))
3189 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3190 else
3191 output_operand_lossage ("`%%l' operand isn't a label");
3192
3193 assemble_name (asm_out_file, buf);
3194 }
3195
3196 /* Print operand X using machine-dependent assembler syntax.
3197 The macro PRINT_OPERAND is defined just to control this function.
3198 CODE is a non-digit that preceded the operand-number in the % spec,
3199 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3200 between the % and the digits.
3201 When CODE is a non-letter, X is 0.
3202
3203 The meanings of the letters are machine-dependent and controlled
3204 by PRINT_OPERAND. */
3205
3206 static void
3207 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3208 {
3209 if (x && GET_CODE (x) == SUBREG)
3210 x = alter_subreg (&x);
3211
3212 /* If X is a pseudo-register, abort now rather than writing trash to the
3213 assembler file. */
3214
3215 if (x && REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER)
3216 abort ();
3217
3218 PRINT_OPERAND (asm_out_file, x, code);
3219 }
3220
3221 /* Print a memory reference operand for address X
3222 using machine-dependent assembler syntax.
3223 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3224
3225 void
3226 output_address (rtx x)
3227 {
3228 walk_alter_subreg (&x);
3229 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3230 }
3231 \f
3232 /* Print an integer constant expression in assembler syntax.
3233 Addition and subtraction are the only arithmetic
3234 that may appear in these expressions. */
3235
3236 void
3237 output_addr_const (FILE *file, rtx x)
3238 {
3239 char buf[256];
3240
3241 restart:
3242 switch (GET_CODE (x))
3243 {
3244 case PC:
3245 putc ('.', file);
3246 break;
3247
3248 case SYMBOL_REF:
3249 if (SYMBOL_REF_DECL (x))
3250 mark_decl_referenced (SYMBOL_REF_DECL (x));
3251 #ifdef ASM_OUTPUT_SYMBOL_REF
3252 ASM_OUTPUT_SYMBOL_REF (file, x);
3253 #else
3254 assemble_name (file, XSTR (x, 0));
3255 #endif
3256 break;
3257
3258 case LABEL_REF:
3259 x = XEXP (x, 0);
3260 /* Fall through. */
3261 case CODE_LABEL:
3262 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3263 #ifdef ASM_OUTPUT_LABEL_REF
3264 ASM_OUTPUT_LABEL_REF (file, buf);
3265 #else
3266 assemble_name (file, buf);
3267 #endif
3268 break;
3269
3270 case CONST_INT:
3271 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3272 break;
3273
3274 case CONST:
3275 /* This used to output parentheses around the expression,
3276 but that does not work on the 386 (either ATT or BSD assembler). */
3277 output_addr_const (file, XEXP (x, 0));
3278 break;
3279
3280 case CONST_DOUBLE:
3281 if (GET_MODE (x) == VOIDmode)
3282 {
3283 /* We can use %d if the number is one word and positive. */
3284 if (CONST_DOUBLE_HIGH (x))
3285 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3286 CONST_DOUBLE_HIGH (x), CONST_DOUBLE_LOW (x));
3287 else if (CONST_DOUBLE_LOW (x) < 0)
3288 fprintf (file, HOST_WIDE_INT_PRINT_HEX, CONST_DOUBLE_LOW (x));
3289 else
3290 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3291 }
3292 else
3293 /* We can't handle floating point constants;
3294 PRINT_OPERAND must handle them. */
3295 output_operand_lossage ("floating constant misused");
3296 break;
3297
3298 case PLUS:
3299 /* Some assemblers need integer constants to appear last (eg masm). */
3300 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3301 {
3302 output_addr_const (file, XEXP (x, 1));
3303 if (INTVAL (XEXP (x, 0)) >= 0)
3304 fprintf (file, "+");
3305 output_addr_const (file, XEXP (x, 0));
3306 }
3307 else
3308 {
3309 output_addr_const (file, XEXP (x, 0));
3310 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3311 || INTVAL (XEXP (x, 1)) >= 0)
3312 fprintf (file, "+");
3313 output_addr_const (file, XEXP (x, 1));
3314 }
3315 break;
3316
3317 case MINUS:
3318 /* Avoid outputting things like x-x or x+5-x,
3319 since some assemblers can't handle that. */
3320 x = simplify_subtraction (x);
3321 if (GET_CODE (x) != MINUS)
3322 goto restart;
3323
3324 output_addr_const (file, XEXP (x, 0));
3325 fprintf (file, "-");
3326 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3327 || GET_CODE (XEXP (x, 1)) == PC
3328 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3329 output_addr_const (file, XEXP (x, 1));
3330 else
3331 {
3332 fputs (targetm.asm_out.open_paren, file);
3333 output_addr_const (file, XEXP (x, 1));
3334 fputs (targetm.asm_out.close_paren, file);
3335 }
3336 break;
3337
3338 case ZERO_EXTEND:
3339 case SIGN_EXTEND:
3340 case SUBREG:
3341 output_addr_const (file, XEXP (x, 0));
3342 break;
3343
3344 default:
3345 #ifdef OUTPUT_ADDR_CONST_EXTRA
3346 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3347 break;
3348
3349 fail:
3350 #endif
3351 output_operand_lossage ("invalid expression as operand");
3352 }
3353 }
3354 \f
3355 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3356 %R prints the value of REGISTER_PREFIX.
3357 %L prints the value of LOCAL_LABEL_PREFIX.
3358 %U prints the value of USER_LABEL_PREFIX.
3359 %I prints the value of IMMEDIATE_PREFIX.
3360 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3361 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3362
3363 We handle alternate assembler dialects here, just like output_asm_insn. */
3364
3365 void
3366 asm_fprintf (FILE *file, const char *p, ...)
3367 {
3368 char buf[10];
3369 char *q, c;
3370 va_list argptr;
3371
3372 va_start (argptr, p);
3373
3374 buf[0] = '%';
3375
3376 while ((c = *p++))
3377 switch (c)
3378 {
3379 #ifdef ASSEMBLER_DIALECT
3380 case '{':
3381 {
3382 int i;
3383
3384 /* If we want the first dialect, do nothing. Otherwise, skip
3385 DIALECT_NUMBER of strings ending with '|'. */
3386 for (i = 0; i < dialect_number; i++)
3387 {
3388 while (*p && *p++ != '|')
3389 ;
3390
3391 if (*p == '|')
3392 p++;
3393 }
3394 }
3395 break;
3396
3397 case '|':
3398 /* Skip to close brace. */
3399 while (*p && *p++ != '}')
3400 ;
3401 break;
3402
3403 case '}':
3404 break;
3405 #endif
3406
3407 case '%':
3408 c = *p++;
3409 q = &buf[1];
3410 while (strchr ("-+ #0", c))
3411 {
3412 *q++ = c;
3413 c = *p++;
3414 }
3415 while (ISDIGIT (c) || c == '.')
3416 {
3417 *q++ = c;
3418 c = *p++;
3419 }
3420 switch (c)
3421 {
3422 case '%':
3423 putc ('%', file);
3424 break;
3425
3426 case 'd': case 'i': case 'u':
3427 case 'x': case 'X': case 'o':
3428 case 'c':
3429 *q++ = c;
3430 *q = 0;
3431 fprintf (file, buf, va_arg (argptr, int));
3432 break;
3433
3434 case 'w':
3435 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3436 'o' cases, but we do not check for those cases. It
3437 means that the value is a HOST_WIDE_INT, which may be
3438 either `long' or `long long'. */
3439 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3440 q += strlen (HOST_WIDE_INT_PRINT);
3441 *q++ = *p++;
3442 *q = 0;
3443 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3444 break;
3445
3446 case 'l':
3447 *q++ = c;
3448 #ifdef HAVE_LONG_LONG
3449 if (*p == 'l')
3450 {
3451 *q++ = *p++;
3452 *q++ = *p++;
3453 *q = 0;
3454 fprintf (file, buf, va_arg (argptr, long long));
3455 }
3456 else
3457 #endif
3458 {
3459 *q++ = *p++;
3460 *q = 0;
3461 fprintf (file, buf, va_arg (argptr, long));
3462 }
3463
3464 break;
3465
3466 case 's':
3467 *q++ = c;
3468 *q = 0;
3469 fprintf (file, buf, va_arg (argptr, char *));
3470 break;
3471
3472 case 'O':
3473 #ifdef ASM_OUTPUT_OPCODE
3474 ASM_OUTPUT_OPCODE (asm_out_file, p);
3475 #endif
3476 break;
3477
3478 case 'R':
3479 #ifdef REGISTER_PREFIX
3480 fprintf (file, "%s", REGISTER_PREFIX);
3481 #endif
3482 break;
3483
3484 case 'I':
3485 #ifdef IMMEDIATE_PREFIX
3486 fprintf (file, "%s", IMMEDIATE_PREFIX);
3487 #endif
3488 break;
3489
3490 case 'L':
3491 #ifdef LOCAL_LABEL_PREFIX
3492 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3493 #endif
3494 break;
3495
3496 case 'U':
3497 fputs (user_label_prefix, file);
3498 break;
3499
3500 #ifdef ASM_FPRINTF_EXTENSIONS
3501 /* Uppercase letters are reserved for general use by asm_fprintf
3502 and so are not available to target specific code. In order to
3503 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3504 they are defined here. As they get turned into real extensions
3505 to asm_fprintf they should be removed from this list. */
3506 case 'A': case 'B': case 'C': case 'D': case 'E':
3507 case 'F': case 'G': case 'H': case 'J': case 'K':
3508 case 'M': case 'N': case 'P': case 'Q': case 'S':
3509 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3510 break;
3511
3512 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3513 #endif
3514 default:
3515 abort ();
3516 }
3517 break;
3518
3519 default:
3520 putc (c, file);
3521 }
3522 va_end (argptr);
3523 }
3524 \f
3525 /* Split up a CONST_DOUBLE or integer constant rtx
3526 into two rtx's for single words,
3527 storing in *FIRST the word that comes first in memory in the target
3528 and in *SECOND the other. */
3529
3530 void
3531 split_double (rtx value, rtx *first, rtx *second)
3532 {
3533 if (GET_CODE (value) == CONST_INT)
3534 {
3535 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3536 {
3537 /* In this case the CONST_INT holds both target words.
3538 Extract the bits from it into two word-sized pieces.
3539 Sign extend each half to HOST_WIDE_INT. */
3540 unsigned HOST_WIDE_INT low, high;
3541 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3542
3543 /* Set sign_bit to the most significant bit of a word. */
3544 sign_bit = 1;
3545 sign_bit <<= BITS_PER_WORD - 1;
3546
3547 /* Set mask so that all bits of the word are set. We could
3548 have used 1 << BITS_PER_WORD instead of basing the
3549 calculation on sign_bit. However, on machines where
3550 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3551 compiler warning, even though the code would never be
3552 executed. */
3553 mask = sign_bit << 1;
3554 mask--;
3555
3556 /* Set sign_extend as any remaining bits. */
3557 sign_extend = ~mask;
3558
3559 /* Pick the lower word and sign-extend it. */
3560 low = INTVAL (value);
3561 low &= mask;
3562 if (low & sign_bit)
3563 low |= sign_extend;
3564
3565 /* Pick the higher word, shifted to the least significant
3566 bits, and sign-extend it. */
3567 high = INTVAL (value);
3568 high >>= BITS_PER_WORD - 1;
3569 high >>= 1;
3570 high &= mask;
3571 if (high & sign_bit)
3572 high |= sign_extend;
3573
3574 /* Store the words in the target machine order. */
3575 if (WORDS_BIG_ENDIAN)
3576 {
3577 *first = GEN_INT (high);
3578 *second = GEN_INT (low);
3579 }
3580 else
3581 {
3582 *first = GEN_INT (low);
3583 *second = GEN_INT (high);
3584 }
3585 }
3586 else
3587 {
3588 /* The rule for using CONST_INT for a wider mode
3589 is that we regard the value as signed.
3590 So sign-extend it. */
3591 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3592 if (WORDS_BIG_ENDIAN)
3593 {
3594 *first = high;
3595 *second = value;
3596 }
3597 else
3598 {
3599 *first = value;
3600 *second = high;
3601 }
3602 }
3603 }
3604 else if (GET_CODE (value) != CONST_DOUBLE)
3605 {
3606 if (WORDS_BIG_ENDIAN)
3607 {
3608 *first = const0_rtx;
3609 *second = value;
3610 }
3611 else
3612 {
3613 *first = value;
3614 *second = const0_rtx;
3615 }
3616 }
3617 else if (GET_MODE (value) == VOIDmode
3618 /* This is the old way we did CONST_DOUBLE integers. */
3619 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3620 {
3621 /* In an integer, the words are defined as most and least significant.
3622 So order them by the target's convention. */
3623 if (WORDS_BIG_ENDIAN)
3624 {
3625 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3626 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3627 }
3628 else
3629 {
3630 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3631 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3632 }
3633 }
3634 else
3635 {
3636 REAL_VALUE_TYPE r;
3637 long l[2];
3638 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3639
3640 /* Note, this converts the REAL_VALUE_TYPE to the target's
3641 format, splits up the floating point double and outputs
3642 exactly 32 bits of it into each of l[0] and l[1] --
3643 not necessarily BITS_PER_WORD bits. */
3644 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3645
3646 /* If 32 bits is an entire word for the target, but not for the host,
3647 then sign-extend on the host so that the number will look the same
3648 way on the host that it would on the target. See for instance
3649 simplify_unary_operation. The #if is needed to avoid compiler
3650 warnings. */
3651
3652 #if HOST_BITS_PER_LONG > 32
3653 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3654 {
3655 if (l[0] & ((long) 1 << 31))
3656 l[0] |= ((long) (-1) << 32);
3657 if (l[1] & ((long) 1 << 31))
3658 l[1] |= ((long) (-1) << 32);
3659 }
3660 #endif
3661
3662 *first = GEN_INT (l[0]);
3663 *second = GEN_INT (l[1]);
3664 }
3665 }
3666 \f
3667 /* Return nonzero if this function has no function calls. */
3668
3669 int
3670 leaf_function_p (void)
3671 {
3672 rtx insn;
3673 rtx link;
3674
3675 if (current_function_profile || profile_arc_flag)
3676 return 0;
3677
3678 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3679 {
3680 if (CALL_P (insn)
3681 && ! SIBLING_CALL_P (insn))
3682 return 0;
3683 if (NONJUMP_INSN_P (insn)
3684 && GET_CODE (PATTERN (insn)) == SEQUENCE
3685 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3686 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3687 return 0;
3688 }
3689 for (link = current_function_epilogue_delay_list;
3690 link;
3691 link = XEXP (link, 1))
3692 {
3693 insn = XEXP (link, 0);
3694
3695 if (CALL_P (insn)
3696 && ! SIBLING_CALL_P (insn))
3697 return 0;
3698 if (NONJUMP_INSN_P (insn)
3699 && GET_CODE (PATTERN (insn)) == SEQUENCE
3700 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3701 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3702 return 0;
3703 }
3704
3705 return 1;
3706 }
3707
3708 /* Return 1 if branch is a forward branch.
3709 Uses insn_shuid array, so it works only in the final pass. May be used by
3710 output templates to customary add branch prediction hints.
3711 */
3712 int
3713 final_forward_branch_p (rtx insn)
3714 {
3715 int insn_id, label_id;
3716 if (!uid_shuid)
3717 abort ();
3718 insn_id = INSN_SHUID (insn);
3719 label_id = INSN_SHUID (JUMP_LABEL (insn));
3720 /* We've hit some insns that does not have id information available. */
3721 if (!insn_id || !label_id)
3722 abort ();
3723 return insn_id < label_id;
3724 }
3725
3726 /* On some machines, a function with no call insns
3727 can run faster if it doesn't create its own register window.
3728 When output, the leaf function should use only the "output"
3729 registers. Ordinarily, the function would be compiled to use
3730 the "input" registers to find its arguments; it is a candidate
3731 for leaf treatment if it uses only the "input" registers.
3732 Leaf function treatment means renumbering so the function
3733 uses the "output" registers instead. */
3734
3735 #ifdef LEAF_REGISTERS
3736
3737 /* Return 1 if this function uses only the registers that can be
3738 safely renumbered. */
3739
3740 int
3741 only_leaf_regs_used (void)
3742 {
3743 int i;
3744 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3745
3746 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3747 if ((regs_ever_live[i] || global_regs[i])
3748 && ! permitted_reg_in_leaf_functions[i])
3749 return 0;
3750
3751 if (current_function_uses_pic_offset_table
3752 && pic_offset_table_rtx != 0
3753 && REG_P (pic_offset_table_rtx)
3754 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3755 return 0;
3756
3757 return 1;
3758 }
3759
3760 /* Scan all instructions and renumber all registers into those
3761 available in leaf functions. */
3762
3763 static void
3764 leaf_renumber_regs (rtx first)
3765 {
3766 rtx insn;
3767
3768 /* Renumber only the actual patterns.
3769 The reg-notes can contain frame pointer refs,
3770 and renumbering them could crash, and should not be needed. */
3771 for (insn = first; insn; insn = NEXT_INSN (insn))
3772 if (INSN_P (insn))
3773 leaf_renumber_regs_insn (PATTERN (insn));
3774 for (insn = current_function_epilogue_delay_list;
3775 insn;
3776 insn = XEXP (insn, 1))
3777 if (INSN_P (XEXP (insn, 0)))
3778 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3779 }
3780
3781 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3782 available in leaf functions. */
3783
3784 void
3785 leaf_renumber_regs_insn (rtx in_rtx)
3786 {
3787 int i, j;
3788 const char *format_ptr;
3789
3790 if (in_rtx == 0)
3791 return;
3792
3793 /* Renumber all input-registers into output-registers.
3794 renumbered_regs would be 1 for an output-register;
3795 they */
3796
3797 if (REG_P (in_rtx))
3798 {
3799 int newreg;
3800
3801 /* Don't renumber the same reg twice. */
3802 if (in_rtx->used)
3803 return;
3804
3805 newreg = REGNO (in_rtx);
3806 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
3807 to reach here as part of a REG_NOTE. */
3808 if (newreg >= FIRST_PSEUDO_REGISTER)
3809 {
3810 in_rtx->used = 1;
3811 return;
3812 }
3813 newreg = LEAF_REG_REMAP (newreg);
3814 if (newreg < 0)
3815 abort ();
3816 regs_ever_live[REGNO (in_rtx)] = 0;
3817 regs_ever_live[newreg] = 1;
3818 REGNO (in_rtx) = newreg;
3819 in_rtx->used = 1;
3820 }
3821
3822 if (INSN_P (in_rtx))
3823 {
3824 /* Inside a SEQUENCE, we find insns.
3825 Renumber just the patterns of these insns,
3826 just as we do for the top-level insns. */
3827 leaf_renumber_regs_insn (PATTERN (in_rtx));
3828 return;
3829 }
3830
3831 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
3832
3833 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
3834 switch (*format_ptr++)
3835 {
3836 case 'e':
3837 leaf_renumber_regs_insn (XEXP (in_rtx, i));
3838 break;
3839
3840 case 'E':
3841 if (NULL != XVEC (in_rtx, i))
3842 {
3843 for (j = 0; j < XVECLEN (in_rtx, i); j++)
3844 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
3845 }
3846 break;
3847
3848 case 'S':
3849 case 's':
3850 case '0':
3851 case 'i':
3852 case 'w':
3853 case 'n':
3854 case 'u':
3855 break;
3856
3857 default:
3858 abort ();
3859 }
3860 }
3861 #endif
3862
3863
3864 /* When -gused is used, emit debug info for only used symbols. But in
3865 addition to the standard intercepted debug_hooks there are some direct
3866 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
3867 Those routines may also be called from a higher level intercepted routine. So
3868 to prevent recording data for an inner call to one of these for an intercept,
3869 we maintain an intercept nesting counter (debug_nesting). We only save the
3870 intercepted arguments if the nesting is 1. */
3871 int debug_nesting = 0;
3872
3873 static tree *symbol_queue;
3874 int symbol_queue_index = 0;
3875 static int symbol_queue_size = 0;
3876
3877 /* Generate the symbols for any queued up type symbols we encountered
3878 while generating the type info for some originally used symbol.
3879 This might generate additional entries in the queue. Only when
3880 the nesting depth goes to 0 is this routine called. */
3881
3882 void
3883 debug_flush_symbol_queue (void)
3884 {
3885 int i;
3886
3887 /* Make sure that additionally queued items are not flushed
3888 prematurely. */
3889
3890 ++debug_nesting;
3891
3892 for (i = 0; i < symbol_queue_index; ++i)
3893 {
3894 /* If we pushed queued symbols then such symbols are must be
3895 output no matter what anyone else says. Specifically,
3896 we need to make sure dbxout_symbol() thinks the symbol was
3897 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
3898 which may be set for outside reasons. */
3899 int saved_tree_used = TREE_USED (symbol_queue[i]);
3900 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
3901 TREE_USED (symbol_queue[i]) = 1;
3902 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
3903
3904 #ifdef DBX_DEBUGGING_INFO
3905 dbxout_symbol (symbol_queue[i], 0);
3906 #endif
3907
3908 TREE_USED (symbol_queue[i]) = saved_tree_used;
3909 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
3910 }
3911
3912 symbol_queue_index = 0;
3913 --debug_nesting;
3914 }
3915
3916 /* Queue a type symbol needed as part of the definition of a decl
3917 symbol. These symbols are generated when debug_flush_symbol_queue()
3918 is called. */
3919
3920 void
3921 debug_queue_symbol (tree decl)
3922 {
3923 if (symbol_queue_index >= symbol_queue_size)
3924 {
3925 symbol_queue_size += 10;
3926 symbol_queue = xrealloc (symbol_queue,
3927 symbol_queue_size * sizeof (tree));
3928 }
3929
3930 symbol_queue[symbol_queue_index++] = decl;
3931 }
3932
3933 /* Free symbol queue. */
3934 void
3935 debug_free_queue (void)
3936 {
3937 if (symbol_queue)
3938 {
3939 free (symbol_queue);
3940 symbol_queue = NULL;
3941 symbol_queue_size = 0;
3942 }
3943 }