alloc-pool.c, [...]: Add missing whitespace before "(".
[gcc.git] / gcc / fixed-value.c
1 /* Fixed-point arithmetic support.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "diagnostic-core.h"
26
27 /* Compare two fixed objects for bitwise identity. */
28
29 bool
30 fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
31 {
32 return (a->mode == b->mode
33 && a->data.high == b->data.high
34 && a->data.low == b->data.low);
35 }
36
37 /* Calculate a hash value. */
38
39 unsigned int
40 fixed_hash (const FIXED_VALUE_TYPE *f)
41 {
42 return (unsigned int) (f->data.low ^ f->data.high);
43 }
44
45 /* Define the enum code for the range of the fixed-point value. */
46 enum fixed_value_range_code {
47 FIXED_OK, /* The value is within the range. */
48 FIXED_UNDERFLOW, /* The value is less than the minimum. */
49 FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal
50 to the maximum plus the epsilon. */
51 FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */
52 };
53
54 /* Check REAL_VALUE against the range of the fixed-point mode.
55 Return FIXED_OK, if it is within the range.
56 FIXED_UNDERFLOW, if it is less than the minimum.
57 FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
58 the maximum plus the epsilon.
59 FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
60
61 static enum fixed_value_range_code
62 check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, enum machine_mode mode)
63 {
64 REAL_VALUE_TYPE max_value, min_value, epsilon_value;
65
66 real_2expN (&max_value, GET_MODE_IBIT (mode), mode);
67 real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), mode);
68
69 if (SIGNED_FIXED_POINT_MODE_P (mode))
70 min_value = real_value_negate (&max_value);
71 else
72 real_from_string (&min_value, "0.0");
73
74 if (real_compare (LT_EXPR, real_value, &min_value))
75 return FIXED_UNDERFLOW;
76 if (real_compare (EQ_EXPR, real_value, &max_value))
77 return FIXED_MAX_EPS;
78 real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
79 if (real_compare (GT_EXPR, real_value, &max_value))
80 return FIXED_GT_MAX_EPS;
81 return FIXED_OK;
82 }
83
84
85 /* Construct a CONST_FIXED from a bit payload and machine mode MODE.
86 The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */
87
88 FIXED_VALUE_TYPE
89 fixed_from_double_int (double_int payload, enum machine_mode mode)
90 {
91 FIXED_VALUE_TYPE value;
92
93 gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
94
95 if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
96 value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
97 else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
98 value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
99 else
100 gcc_unreachable ();
101
102 value.mode = mode;
103
104 return value;
105 }
106
107
108 /* Initialize from a decimal or hexadecimal string. */
109
110 void
111 fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, enum machine_mode mode)
112 {
113 REAL_VALUE_TYPE real_value, fixed_value, base_value;
114 unsigned int fbit;
115 enum fixed_value_range_code temp;
116
117 f->mode = mode;
118 fbit = GET_MODE_FBIT (mode);
119
120 real_from_string (&real_value, str);
121 temp = check_real_for_fixed_mode (&real_value, f->mode);
122 /* We don't want to warn the case when the _Fract value is 1.0. */
123 if (temp == FIXED_UNDERFLOW
124 || temp == FIXED_GT_MAX_EPS
125 || (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
126 warning (OPT_Woverflow,
127 "large fixed-point constant implicitly truncated to fixed-point type");
128 real_2expN (&base_value, fbit, mode);
129 real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
130 real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high,
131 &fixed_value);
132
133 if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
134 {
135 /* From the spec, we need to evaluate 1 to the maximal value. */
136 f->data.low = -1;
137 f->data.high = -1;
138 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
139 + GET_MODE_IBIT (f->mode));
140 }
141 else
142 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
143 + GET_MODE_FBIT (f->mode)
144 + GET_MODE_IBIT (f->mode),
145 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
146 }
147
148 /* Render F as a decimal floating point constant. */
149
150 void
151 fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
152 size_t buf_size)
153 {
154 REAL_VALUE_TYPE real_value, base_value, fixed_value;
155
156 real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), f_orig->mode);
157 real_from_integer (&real_value, VOIDmode, f_orig->data.low, f_orig->data.high,
158 UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode));
159 real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
160 real_to_decimal (str, &fixed_value, buf_size, 0, 1);
161 }
162
163 /* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
164 the machine mode MODE.
165 Do not modify *F otherwise.
166 This function assumes the width of double_int is greater than the width
167 of the fixed-point value (the sum of a possible sign bit, possible ibits,
168 and fbits).
169 Return true, if !SAT_P and overflow. */
170
171 static bool
172 fixed_saturate1 (enum machine_mode mode, double_int a, double_int *f,
173 bool sat_p)
174 {
175 bool overflow_p = false;
176 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
177 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
178
179 if (unsigned_p) /* Unsigned type. */
180 {
181 double_int max;
182 max.low = -1;
183 max.high = -1;
184 max = max.zext (i_f_bits);
185 if (a.ugt (max))
186 {
187 if (sat_p)
188 *f = max;
189 else
190 overflow_p = true;
191 }
192 }
193 else /* Signed type. */
194 {
195 double_int max, min;
196 max.high = -1;
197 max.low = -1;
198 max = max.zext (i_f_bits);
199 min.high = 0;
200 min.low = 1;
201 min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
202 min = min.sext (1 + i_f_bits);
203 if (a.sgt (max))
204 {
205 if (sat_p)
206 *f = max;
207 else
208 overflow_p = true;
209 }
210 else if (a.slt (min))
211 {
212 if (sat_p)
213 *f = min;
214 else
215 overflow_p = true;
216 }
217 }
218 return overflow_p;
219 }
220
221 /* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
222 save to *F based on the machine mode MODE.
223 Do not modify *F otherwise.
224 This function assumes the width of two double_int is greater than the width
225 of the fixed-point value (the sum of a possible sign bit, possible ibits,
226 and fbits).
227 Return true, if !SAT_P and overflow. */
228
229 static bool
230 fixed_saturate2 (enum machine_mode mode, double_int a_high, double_int a_low,
231 double_int *f, bool sat_p)
232 {
233 bool overflow_p = false;
234 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
235 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
236
237 if (unsigned_p) /* Unsigned type. */
238 {
239 double_int max_r, max_s;
240 max_r.high = 0;
241 max_r.low = 0;
242 max_s.high = -1;
243 max_s.low = -1;
244 max_s = max_s.zext (i_f_bits);
245 if (a_high.ugt (max_r)
246 || (a_high == max_r &&
247 a_low.ugt (max_s)))
248 {
249 if (sat_p)
250 *f = max_s;
251 else
252 overflow_p = true;
253 }
254 }
255 else /* Signed type. */
256 {
257 double_int max_r, max_s, min_r, min_s;
258 max_r.high = 0;
259 max_r.low = 0;
260 max_s.high = -1;
261 max_s.low = -1;
262 max_s = max_s.zext (i_f_bits);
263 min_r.high = -1;
264 min_r.low = -1;
265 min_s.high = 0;
266 min_s.low = 1;
267 min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
268 min_s = min_s.sext (1 + i_f_bits);
269 if (a_high.sgt (max_r)
270 || (a_high == max_r &&
271 a_low.ugt (max_s)))
272 {
273 if (sat_p)
274 *f = max_s;
275 else
276 overflow_p = true;
277 }
278 else if (a_high.slt (min_r)
279 || (a_high == min_r &&
280 a_low.ult (min_s)))
281 {
282 if (sat_p)
283 *f = min_s;
284 else
285 overflow_p = true;
286 }
287 }
288 return overflow_p;
289 }
290
291 /* Return the sign bit based on I_F_BITS. */
292
293 static inline int
294 get_fixed_sign_bit (double_int a, int i_f_bits)
295 {
296 if (i_f_bits < HOST_BITS_PER_WIDE_INT)
297 return (a.low >> i_f_bits) & 1;
298 else
299 return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
300 }
301
302 /* Calculate F = A + (SUBTRACT_P ? -B : B).
303 If SAT_P, saturate the result to the max or the min.
304 Return true, if !SAT_P and overflow. */
305
306 static bool
307 do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
308 const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
309 {
310 bool overflow_p = false;
311 bool unsigned_p;
312 double_int temp;
313 int i_f_bits;
314
315 /* This was a conditional expression but it triggered a bug in
316 Sun C 5.5. */
317 if (subtract_p)
318 temp = -b->data;
319 else
320 temp = b->data;
321
322 unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
323 i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
324 f->mode = a->mode;
325 f->data = a->data + temp;
326 if (unsigned_p) /* Unsigned type. */
327 {
328 if (subtract_p) /* Unsigned subtraction. */
329 {
330 if (a->data.ult (b->data))
331 {
332 if (sat_p)
333 {
334 f->data.high = 0;
335 f->data.low = 0;
336 }
337 else
338 overflow_p = true;
339 }
340 }
341 else /* Unsigned addition. */
342 {
343 f->data = f->data.zext (i_f_bits);
344 if (f->data.ult (a->data)
345 || f->data.ult (b->data))
346 {
347 if (sat_p)
348 {
349 f->data.high = -1;
350 f->data.low = -1;
351 }
352 else
353 overflow_p = true;
354 }
355 }
356 }
357 else /* Signed type. */
358 {
359 if ((!subtract_p
360 && (get_fixed_sign_bit (a->data, i_f_bits)
361 == get_fixed_sign_bit (b->data, i_f_bits))
362 && (get_fixed_sign_bit (a->data, i_f_bits)
363 != get_fixed_sign_bit (f->data, i_f_bits)))
364 || (subtract_p
365 && (get_fixed_sign_bit (a->data, i_f_bits)
366 != get_fixed_sign_bit (b->data, i_f_bits))
367 && (get_fixed_sign_bit (a->data, i_f_bits)
368 != get_fixed_sign_bit (f->data, i_f_bits))))
369 {
370 if (sat_p)
371 {
372 f->data.low = 1;
373 f->data.high = 0;
374 f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
375 if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
376 {
377 --f->data;
378 }
379 }
380 else
381 overflow_p = true;
382 }
383 }
384 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
385 return overflow_p;
386 }
387
388 /* Calculate F = A * B.
389 If SAT_P, saturate the result to the max or the min.
390 Return true, if !SAT_P and overflow. */
391
392 static bool
393 do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
394 const FIXED_VALUE_TYPE *b, bool sat_p)
395 {
396 bool overflow_p = false;
397 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
398 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
399 f->mode = a->mode;
400 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
401 {
402 f->data = a->data * b->data;
403 f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
404 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
405 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
406 }
407 else
408 {
409 /* The result of multiplication expands to two double_int. */
410 double_int a_high, a_low, b_high, b_low;
411 double_int high_high, high_low, low_high, low_low;
412 double_int r, s, temp1, temp2;
413 int carry = 0;
414
415 /* Decompose a and b to four double_int. */
416 a_high.low = a->data.high;
417 a_high.high = 0;
418 a_low.low = a->data.low;
419 a_low.high = 0;
420 b_high.low = b->data.high;
421 b_high.high = 0;
422 b_low.low = b->data.low;
423 b_low.high = 0;
424
425 /* Perform four multiplications. */
426 low_low = a_low * b_low;
427 low_high = a_low * b_high;
428 high_low = a_high * b_low;
429 high_high = a_high * b_high;
430
431 /* Accumulate four results to {r, s}. */
432 temp1.high = high_low.low;
433 temp1.low = 0;
434 s = low_low + temp1;
435 if (s.ult (low_low)
436 || s.ult (temp1))
437 carry ++; /* Carry */
438 temp1.high = s.high;
439 temp1.low = s.low;
440 temp2.high = low_high.low;
441 temp2.low = 0;
442 s = temp1 + temp2;
443 if (s.ult (temp1)
444 || s.ult (temp2))
445 carry ++; /* Carry */
446
447 temp1.low = high_low.high;
448 temp1.high = 0;
449 r = high_high + temp1;
450 temp1.low = low_high.high;
451 temp1.high = 0;
452 r += temp1;
453 temp1.low = carry;
454 temp1.high = 0;
455 r += temp1;
456
457 /* We need to subtract b from r, if a < 0. */
458 if (!unsigned_p && a->data.high < 0)
459 r -= b->data;
460 /* We need to subtract a from r, if b < 0. */
461 if (!unsigned_p && b->data.high < 0)
462 r -= a->data;
463
464 /* Shift right the result by FBIT. */
465 if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
466 {
467 s.low = r.low;
468 s.high = r.high;
469 if (unsigned_p)
470 {
471 r.low = 0;
472 r.high = 0;
473 }
474 else
475 {
476 r.low = -1;
477 r.high = -1;
478 }
479 f->data.low = s.low;
480 f->data.high = s.high;
481 }
482 else
483 {
484 s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
485 f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
486 - GET_MODE_FBIT (f->mode)),
487 HOST_BITS_PER_DOUBLE_INT);
488 f->data.low = f->data.low | s.low;
489 f->data.high = f->data.high | s.high;
490 s.low = f->data.low;
491 s.high = f->data.high;
492 r = r.lshift (-GET_MODE_FBIT (f->mode),
493 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
494 }
495
496 overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
497 }
498
499 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
500 return overflow_p;
501 }
502
503 /* Calculate F = A / B.
504 If SAT_P, saturate the result to the max or the min.
505 Return true, if !SAT_P and overflow. */
506
507 static bool
508 do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
509 const FIXED_VALUE_TYPE *b, bool sat_p)
510 {
511 bool overflow_p = false;
512 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
513 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
514 f->mode = a->mode;
515 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
516 {
517 f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
518 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
519 f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
520 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
521 }
522 else
523 {
524 double_int pos_a, pos_b, r, s;
525 double_int quo_r, quo_s, mod, temp;
526 int num_of_neg = 0;
527 int i;
528
529 /* If a < 0, negate a. */
530 if (!unsigned_p && a->data.high < 0)
531 {
532 pos_a = -a->data;
533 num_of_neg ++;
534 }
535 else
536 pos_a = a->data;
537
538 /* If b < 0, negate b. */
539 if (!unsigned_p && b->data.high < 0)
540 {
541 pos_b = -b->data;
542 num_of_neg ++;
543 }
544 else
545 pos_b = b->data;
546
547 /* Left shift pos_a to {r, s} by FBIT. */
548 if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
549 {
550 r = pos_a;
551 s.high = 0;
552 s.low = 0;
553 }
554 else
555 {
556 s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
557 r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
558 - GET_MODE_FBIT (f->mode)),
559 HOST_BITS_PER_DOUBLE_INT);
560 }
561
562 /* Divide r by pos_b to quo_r. The remainder is in mod. */
563 quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
564 quo_s = double_int_zero;
565
566 for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
567 {
568 /* Record the leftmost bit of mod. */
569 int leftmost_mod = (mod.high < 0);
570
571 /* Shift left mod by 1 bit. */
572 mod = mod.lshift (1);
573
574 /* Test the leftmost bit of s to add to mod. */
575 if (s.high < 0)
576 mod.low += 1;
577
578 /* Shift left quo_s by 1 bit. */
579 quo_s = quo_s.lshift (1);
580
581 /* Try to calculate (mod - pos_b). */
582 temp = mod - pos_b;
583
584 if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
585 {
586 quo_s.low += 1;
587 mod = temp;
588 }
589
590 /* Shift left s by 1 bit. */
591 s = s.lshift (1);
592
593 }
594
595 if (num_of_neg == 1)
596 {
597 quo_s = -quo_s;
598 if (quo_s.high == 0 && quo_s.low == 0)
599 quo_r = -quo_r;
600 else
601 {
602 quo_r.low = ~quo_r.low;
603 quo_r.high = ~quo_r.high;
604 }
605 }
606
607 f->data = quo_s;
608 overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
609 }
610
611 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
612 return overflow_p;
613 }
614
615 /* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B.
616 If SAT_P, saturate the result to the max or the min.
617 Return true, if !SAT_P and overflow. */
618
619 static bool
620 do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
621 const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
622 {
623 bool overflow_p = false;
624 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
625 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
626 f->mode = a->mode;
627
628 if (b->data.low == 0)
629 {
630 f->data = a->data;
631 return overflow_p;
632 }
633
634 if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
635 {
636 f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
637 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
638 if (left_p) /* Only left shift saturates. */
639 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
640 }
641 else /* We need two double_int to store the left-shift result. */
642 {
643 double_int temp_high, temp_low;
644 if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
645 {
646 temp_high = a->data;
647 temp_low.high = 0;
648 temp_low.low = 0;
649 }
650 else
651 {
652 temp_low = a->data.lshift (b->data.low,
653 HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
654 /* Logical shift right to temp_high. */
655 temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
656 HOST_BITS_PER_DOUBLE_INT);
657 }
658 if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */
659 temp_high = temp_high.ext (b->data.low, unsigned_p);
660 f->data = temp_low;
661 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
662 sat_p);
663 }
664 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
665 return overflow_p;
666 }
667
668 /* Calculate F = -A.
669 If SAT_P, saturate the result to the max or the min.
670 Return true, if !SAT_P and overflow. */
671
672 static bool
673 do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
674 {
675 bool overflow_p = false;
676 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
677 int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
678 f->mode = a->mode;
679 f->data = -a->data;
680 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
681
682 if (unsigned_p) /* Unsigned type. */
683 {
684 if (f->data.low != 0 || f->data.high != 0)
685 {
686 if (sat_p)
687 {
688 f->data.low = 0;
689 f->data.high = 0;
690 }
691 else
692 overflow_p = true;
693 }
694 }
695 else /* Signed type. */
696 {
697 if (!(f->data.high == 0 && f->data.low == 0)
698 && f->data.high == a->data.high && f->data.low == a->data.low )
699 {
700 if (sat_p)
701 {
702 /* Saturate to the maximum by subtracting f->data by one. */
703 f->data.low = -1;
704 f->data.high = -1;
705 f->data = f->data.zext (i_f_bits);
706 }
707 else
708 overflow_p = true;
709 }
710 }
711 return overflow_p;
712 }
713
714 /* Perform the binary or unary operation described by CODE.
715 Note that OP0 and OP1 must have the same mode for binary operators.
716 For a unary operation, leave OP1 NULL.
717 Return true, if !SAT_P and overflow. */
718
719 bool
720 fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
721 const FIXED_VALUE_TYPE *op1, bool sat_p)
722 {
723 switch (icode)
724 {
725 case NEGATE_EXPR:
726 return do_fixed_neg (f, op0, sat_p);
727 break;
728
729 case PLUS_EXPR:
730 gcc_assert (op0->mode == op1->mode);
731 return do_fixed_add (f, op0, op1, false, sat_p);
732 break;
733
734 case MINUS_EXPR:
735 gcc_assert (op0->mode == op1->mode);
736 return do_fixed_add (f, op0, op1, true, sat_p);
737 break;
738
739 case MULT_EXPR:
740 gcc_assert (op0->mode == op1->mode);
741 return do_fixed_multiply (f, op0, op1, sat_p);
742 break;
743
744 case TRUNC_DIV_EXPR:
745 gcc_assert (op0->mode == op1->mode);
746 return do_fixed_divide (f, op0, op1, sat_p);
747 break;
748
749 case LSHIFT_EXPR:
750 return do_fixed_shift (f, op0, op1, true, sat_p);
751 break;
752
753 case RSHIFT_EXPR:
754 return do_fixed_shift (f, op0, op1, false, sat_p);
755 break;
756
757 default:
758 gcc_unreachable ();
759 }
760 return false;
761 }
762
763 /* Compare fixed-point values by tree_code.
764 Note that OP0 and OP1 must have the same mode. */
765
766 bool
767 fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
768 const FIXED_VALUE_TYPE *op1)
769 {
770 enum tree_code code = (enum tree_code) icode;
771 gcc_assert (op0->mode == op1->mode);
772
773 switch (code)
774 {
775 case NE_EXPR:
776 return op0->data != op1->data;
777
778 case EQ_EXPR:
779 return op0->data == op1->data;
780
781 case LT_EXPR:
782 return op0->data.cmp (op1->data,
783 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
784
785 case LE_EXPR:
786 return op0->data.cmp (op1->data,
787 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
788
789 case GT_EXPR:
790 return op0->data.cmp (op1->data,
791 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
792
793 case GE_EXPR:
794 return op0->data.cmp (op1->data,
795 UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
796
797 default:
798 gcc_unreachable ();
799 }
800 }
801
802 /* Extend or truncate to a new mode.
803 If SAT_P, saturate the result to the max or the min.
804 Return true, if !SAT_P and overflow. */
805
806 bool
807 fixed_convert (FIXED_VALUE_TYPE *f, enum machine_mode mode,
808 const FIXED_VALUE_TYPE *a, bool sat_p)
809 {
810 bool overflow_p = false;
811 if (mode == a->mode)
812 {
813 *f = *a;
814 return overflow_p;
815 }
816
817 if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
818 {
819 /* Left shift a to temp_high, temp_low based on a->mode. */
820 double_int temp_high, temp_low;
821 int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
822 temp_low = a->data.lshift (amount,
823 HOST_BITS_PER_DOUBLE_INT,
824 SIGNED_FIXED_POINT_MODE_P (a->mode));
825 /* Logical shift right to temp_high. */
826 temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
827 HOST_BITS_PER_DOUBLE_INT);
828 if (SIGNED_FIXED_POINT_MODE_P (a->mode)
829 && a->data.high < 0) /* Signed-extend temp_high. */
830 temp_high = temp_high.sext (amount);
831 f->mode = mode;
832 f->data = temp_low;
833 if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
834 SIGNED_FIXED_POINT_MODE_P (f->mode))
835 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
836 sat_p);
837 else
838 {
839 /* Take care of the cases when converting between signed and
840 unsigned. */
841 if (SIGNED_FIXED_POINT_MODE_P (a->mode))
842 {
843 /* Signed -> Unsigned. */
844 if (a->data.high < 0)
845 {
846 if (sat_p)
847 {
848 f->data.low = 0; /* Set to zero. */
849 f->data.high = 0; /* Set to zero. */
850 }
851 else
852 overflow_p = true;
853 }
854 else
855 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
856 &f->data, sat_p);
857 }
858 else
859 {
860 /* Unsigned -> Signed. */
861 if (temp_high.high < 0)
862 {
863 if (sat_p)
864 {
865 /* Set to maximum. */
866 f->data.low = -1; /* Set to all ones. */
867 f->data.high = -1; /* Set to all ones. */
868 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
869 + GET_MODE_IBIT (f->mode));
870 /* Clear the sign. */
871 }
872 else
873 overflow_p = true;
874 }
875 else
876 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
877 &f->data, sat_p);
878 }
879 }
880 }
881 else
882 {
883 /* Right shift a to temp based on a->mode. */
884 double_int temp;
885 temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
886 HOST_BITS_PER_DOUBLE_INT,
887 SIGNED_FIXED_POINT_MODE_P (a->mode));
888 f->mode = mode;
889 f->data = temp;
890 if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
891 SIGNED_FIXED_POINT_MODE_P (f->mode))
892 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
893 else
894 {
895 /* Take care of the cases when converting between signed and
896 unsigned. */
897 if (SIGNED_FIXED_POINT_MODE_P (a->mode))
898 {
899 /* Signed -> Unsigned. */
900 if (a->data.high < 0)
901 {
902 if (sat_p)
903 {
904 f->data.low = 0; /* Set to zero. */
905 f->data.high = 0; /* Set to zero. */
906 }
907 else
908 overflow_p = true;
909 }
910 else
911 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
912 sat_p);
913 }
914 else
915 {
916 /* Unsigned -> Signed. */
917 if (temp.high < 0)
918 {
919 if (sat_p)
920 {
921 /* Set to maximum. */
922 f->data.low = -1; /* Set to all ones. */
923 f->data.high = -1; /* Set to all ones. */
924 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
925 + GET_MODE_IBIT (f->mode));
926 /* Clear the sign. */
927 }
928 else
929 overflow_p = true;
930 }
931 else
932 overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
933 sat_p);
934 }
935 }
936 }
937
938 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
939 + GET_MODE_FBIT (f->mode)
940 + GET_MODE_IBIT (f->mode),
941 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
942 return overflow_p;
943 }
944
945 /* Convert to a new fixed-point mode from an integer.
946 If UNSIGNED_P, this integer is unsigned.
947 If SAT_P, saturate the result to the max or the min.
948 Return true, if !SAT_P and overflow. */
949
950 bool
951 fixed_convert_from_int (FIXED_VALUE_TYPE *f, enum machine_mode mode,
952 double_int a, bool unsigned_p, bool sat_p)
953 {
954 bool overflow_p = false;
955 /* Left shift a to temp_high, temp_low. */
956 double_int temp_high, temp_low;
957 int amount = GET_MODE_FBIT (mode);
958 if (amount == HOST_BITS_PER_DOUBLE_INT)
959 {
960 temp_high = a;
961 temp_low.low = 0;
962 temp_low.high = 0;
963 }
964 else
965 {
966 temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
967
968 /* Logical shift right to temp_high. */
969 temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
970 HOST_BITS_PER_DOUBLE_INT);
971 }
972 if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */
973 temp_high = temp_high.sext (amount);
974
975 f->mode = mode;
976 f->data = temp_low;
977
978 if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
979 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
980 sat_p);
981 else
982 {
983 /* Take care of the cases when converting between signed and unsigned. */
984 if (!unsigned_p)
985 {
986 /* Signed -> Unsigned. */
987 if (a.high < 0)
988 {
989 if (sat_p)
990 {
991 f->data.low = 0; /* Set to zero. */
992 f->data.high = 0; /* Set to zero. */
993 }
994 else
995 overflow_p = true;
996 }
997 else
998 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
999 &f->data, sat_p);
1000 }
1001 else
1002 {
1003 /* Unsigned -> Signed. */
1004 if (temp_high.high < 0)
1005 {
1006 if (sat_p)
1007 {
1008 /* Set to maximum. */
1009 f->data.low = -1; /* Set to all ones. */
1010 f->data.high = -1; /* Set to all ones. */
1011 f->data = f->data.zext (GET_MODE_FBIT (f->mode)
1012 + GET_MODE_IBIT (f->mode));
1013 /* Clear the sign. */
1014 }
1015 else
1016 overflow_p = true;
1017 }
1018 else
1019 overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
1020 &f->data, sat_p);
1021 }
1022 }
1023 f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
1024 + GET_MODE_FBIT (f->mode)
1025 + GET_MODE_IBIT (f->mode),
1026 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1027 return overflow_p;
1028 }
1029
1030 /* Convert to a new fixed-point mode from a real.
1031 If SAT_P, saturate the result to the max or the min.
1032 Return true, if !SAT_P and overflow. */
1033
1034 bool
1035 fixed_convert_from_real (FIXED_VALUE_TYPE *f, enum machine_mode mode,
1036 const REAL_VALUE_TYPE *a, bool sat_p)
1037 {
1038 bool overflow_p = false;
1039 REAL_VALUE_TYPE real_value, fixed_value, base_value;
1040 bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
1041 int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
1042 unsigned int fbit = GET_MODE_FBIT (mode);
1043 enum fixed_value_range_code temp;
1044
1045 real_value = *a;
1046 f->mode = mode;
1047 real_2expN (&base_value, fbit, mode);
1048 real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
1049 real_to_integer2 ((HOST_WIDE_INT *)&f->data.low, &f->data.high, &fixed_value);
1050 temp = check_real_for_fixed_mode (&real_value, mode);
1051 if (temp == FIXED_UNDERFLOW) /* Minimum. */
1052 {
1053 if (sat_p)
1054 {
1055 if (unsigned_p)
1056 {
1057 f->data.low = 0;
1058 f->data.high = 0;
1059 }
1060 else
1061 {
1062 f->data.low = 1;
1063 f->data.high = 0;
1064 f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
1065 f->data = f->data.sext (1 + i_f_bits);
1066 }
1067 }
1068 else
1069 overflow_p = true;
1070 }
1071 else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */
1072 {
1073 if (sat_p)
1074 {
1075 f->data.low = -1;
1076 f->data.high = -1;
1077 f->data = f->data.zext (i_f_bits);
1078 }
1079 else
1080 overflow_p = true;
1081 }
1082 f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
1083 return overflow_p;
1084 }
1085
1086 /* Convert to a new real mode from a fixed-point. */
1087
1088 void
1089 real_convert_from_fixed (REAL_VALUE_TYPE *r, enum machine_mode mode,
1090 const FIXED_VALUE_TYPE *f)
1091 {
1092 REAL_VALUE_TYPE base_value, fixed_value, real_value;
1093
1094 real_2expN (&base_value, GET_MODE_FBIT (f->mode), f->mode);
1095 real_from_integer (&fixed_value, VOIDmode, f->data.low, f->data.high,
1096 UNSIGNED_FIXED_POINT_MODE_P (f->mode));
1097 real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
1098 real_convert (r, mode, &real_value);
1099 }
1100
1101 /* Determine whether a fixed-point value F is negative. */
1102
1103 bool
1104 fixed_isneg (const FIXED_VALUE_TYPE *f)
1105 {
1106 if (SIGNED_FIXED_POINT_MODE_P (f->mode))
1107 {
1108 int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
1109 int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
1110 if (sign_bit == 1)
1111 return true;
1112 }
1113
1114 return false;
1115 }