tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164 #endif
165 #endif
166
167 /* Nonzero if the second flow pass has completed. */
168 int flow2_completed;
169
170 /* Maximum register number used in this function, plus one. */
171
172 int max_regno;
173
174 /* Indexed by n, giving various register information */
175
176 varray_type reg_n_info;
177
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
180
181 int regset_bytes;
182 int regset_size;
183
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
186
187 regset regs_live_at_setjmp;
188
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
194
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
197
198 static HARD_REG_SET elim_reg_set;
199
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
202 {
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
207
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
211
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
214 };
215
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
218
219 struct propagate_block_info
220 {
221 /* The basic block we're considering. */
222 basic_block bb;
223
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
226
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
229
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
233
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
237
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
241
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
245
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
250
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
254
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
257
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
260
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
265 };
266
267 /* Number of dead insns removed. */
268 static int ndead;
269
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and liferanges are increased same way so liverange of global
277 registers are computed correctly.
278
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
282
283 static int *reg_deaths;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
306
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 \f
333 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
334 note associated with the BLOCK. */
335
336 rtx
337 first_insn_after_basic_block_note (basic_block block)
338 {
339 rtx insn;
340
341 /* Get the first instruction in the block. */
342 insn = BB_HEAD (block);
343
344 if (insn == NULL_RTX)
345 return NULL_RTX;
346 if (GET_CODE (insn) == CODE_LABEL)
347 insn = NEXT_INSN (insn);
348 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
349 abort ();
350
351 return NEXT_INSN (insn);
352 }
353 \f
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
356
357 void
358 life_analysis (FILE *file, int flags)
359 {
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
364
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
367
368 CLEAR_HARD_REG_SET (elim_reg_set);
369
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
376
377
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 bitmap_initialize (&subregs_of_mode, 1);
381 #endif
382
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
385
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
389
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
392
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
398
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
402
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
406
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
412
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
417
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
420
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
424
425 if (flags & PROP_REG_INFO)
426 {
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
429 }
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
432 {
433 free (reg_deaths);
434 reg_deaths = NULL;
435 }
436
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
440
441 if (file)
442 dump_flow_info (file);
443
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
446 }
447
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
451
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
454 {
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
457
458 if (REG_P (x) && REGNO (x) == regno)
459 {
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
463 }
464 return 0;
465 }
466
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
469
470 static void
471 verify_wide_reg (int regno, basic_block bb)
472 {
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
474
475 while (1)
476 {
477 if (INSN_P (head))
478 {
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
484 }
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
488 }
489
490 if (dump_file)
491 {
492 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
493 dump_bb (bb, dump_file, 0);
494 }
495 abort ();
496 }
497
498 /* A subroutine of update_life_info. Verify that there are no untoward
499 changes in live_at_start during a local update. */
500
501 static void
502 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
503 {
504 if (reload_completed)
505 {
506 /* After reload, there are no pseudos, nor subregs of multi-word
507 registers. The regsets should exactly match. */
508 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
509 {
510 if (dump_file)
511 {
512 fprintf (dump_file,
513 "live_at_start mismatch in bb %d, aborting\nNew:\n",
514 bb->index);
515 debug_bitmap_file (dump_file, new_live_at_start);
516 fputs ("Old:\n", dump_file);
517 dump_bb (bb, dump_file, 0);
518 }
519 abort ();
520 }
521 }
522 else
523 {
524 int i;
525
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
528
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
530 {
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
533 {
534 if (dump_file)
535 {
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
539 }
540 abort ();
541 }
542
543 /* Verify that the now-live register is wider than word_mode. */
544 verify_wide_reg (i, bb);
545 });
546 }
547 }
548
549 /* Updates life information starting with the basic blocks set in BLOCKS.
550 If BLOCKS is null, consider it to be the universal set.
551
552 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
553 we are only expecting local modifications to basic blocks. If we find
554 extra registers live at the beginning of a block, then we either killed
555 useful data, or we have a broken split that wants data not provided.
556 If we find registers removed from live_at_start, that means we have
557 a broken peephole that is killing a register it shouldn't.
558
559 ??? This is not true in one situation -- when a pre-reload splitter
560 generates subregs of a multi-word pseudo, current life analysis will
561 lose the kill. So we _can_ have a pseudo go live. How irritating.
562
563 It is also not true when a peephole decides that it doesn't need one
564 or more of the inputs.
565
566 Including PROP_REG_INFO does not properly refresh regs_ever_live
567 unless the caller resets it to zero. */
568
569 int
570 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
571 {
572 regset tmp;
573 regset_head tmp_head;
574 int i;
575 int stabilized_prop_flags = prop_flags;
576 basic_block bb;
577
578 tmp = INITIALIZE_REG_SET (tmp_head);
579 ndead = 0;
580
581 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
582 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
583
584 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
585 ? TV_LIFE_UPDATE : TV_LIFE);
586
587 /* Changes to the CFG are only allowed when
588 doing a global update for the entire CFG. */
589 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
590 && (extent == UPDATE_LIFE_LOCAL || blocks))
591 abort ();
592
593 /* For a global update, we go through the relaxation process again. */
594 if (extent != UPDATE_LIFE_LOCAL)
595 {
596 for ( ; ; )
597 {
598 int changed = 0;
599
600 calculate_global_regs_live (blocks, blocks,
601 prop_flags & (PROP_SCAN_DEAD_CODE
602 | PROP_SCAN_DEAD_STORES
603 | PROP_ALLOW_CFG_CHANGES));
604
605 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
606 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
607 break;
608
609 /* Removing dead code may allow the CFG to be simplified which
610 in turn may allow for further dead code detection / removal. */
611 FOR_EACH_BB_REVERSE (bb)
612 {
613 COPY_REG_SET (tmp, bb->global_live_at_end);
614 changed |= propagate_block (bb, tmp, NULL, NULL,
615 prop_flags & (PROP_SCAN_DEAD_CODE
616 | PROP_SCAN_DEAD_STORES
617 | PROP_KILL_DEAD_CODE));
618 }
619
620 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
621 subsequent propagate_block calls, since removing or acting as
622 removing dead code can affect global register liveness, which
623 is supposed to be finalized for this call after this loop. */
624 stabilized_prop_flags
625 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
626 | PROP_KILL_DEAD_CODE);
627
628 if (! changed)
629 break;
630
631 /* We repeat regardless of what cleanup_cfg says. If there were
632 instructions deleted above, that might have been only a
633 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
634 Further improvement may be possible. */
635 cleanup_cfg (CLEANUP_EXPENSIVE);
636
637 /* Zap the life information from the last round. If we don't
638 do this, we can wind up with registers that no longer appear
639 in the code being marked live at entry. */
640 FOR_EACH_BB (bb)
641 {
642 CLEAR_REG_SET (bb->global_live_at_start);
643 CLEAR_REG_SET (bb->global_live_at_end);
644 }
645 }
646
647 /* If asked, remove notes from the blocks we'll update. */
648 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
649 count_or_remove_death_notes (blocks, 1);
650 }
651
652 /* Clear log links in case we are asked to (re)compute them. */
653 if (prop_flags & PROP_LOG_LINKS)
654 clear_log_links (blocks);
655
656 if (blocks)
657 {
658 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
659 {
660 bb = BASIC_BLOCK (i);
661
662 COPY_REG_SET (tmp, bb->global_live_at_end);
663 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
664
665 if (extent == UPDATE_LIFE_LOCAL)
666 verify_local_live_at_start (tmp, bb);
667 });
668 }
669 else
670 {
671 FOR_EACH_BB_REVERSE (bb)
672 {
673 COPY_REG_SET (tmp, bb->global_live_at_end);
674
675 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
676
677 if (extent == UPDATE_LIFE_LOCAL)
678 verify_local_live_at_start (tmp, bb);
679 }
680 }
681
682 FREE_REG_SET (tmp);
683
684 if (prop_flags & PROP_REG_INFO)
685 {
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i,
692 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
693
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i,
704 {
705 if (regno_reg_rtx[i] != 0)
706 {
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
709 }
710 });
711 }
712 if (reg_deaths)
713 {
714 free (reg_deaths);
715 reg_deaths = NULL;
716 }
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
722 }
723
724 /* Update life information in all blocks where BB_DIRTY is set. */
725
726 int
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
728 {
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
733
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
736 {
737 if (extent == UPDATE_LIFE_LOCAL)
738 {
739 if (bb->flags & BB_DIRTY)
740 {
741 SET_BIT (update_life_blocks, bb->index);
742 n++;
743 }
744 }
745 else
746 {
747 /* ??? Bootstrap with -march=pentium4 fails to terminate
748 with only a partial life update. */
749 SET_BIT (update_life_blocks, bb->index);
750 if (bb->flags & BB_DIRTY)
751 n++;
752 }
753 }
754
755 if (n)
756 retval = update_life_info (update_life_blocks, extent, prop_flags);
757
758 sbitmap_free (update_life_blocks);
759 return retval;
760 }
761
762 /* Free the variables allocated by find_basic_blocks. */
763
764 void
765 free_basic_block_vars (void)
766 {
767 if (basic_block_info)
768 {
769 clear_edges ();
770 basic_block_info = NULL;
771 }
772 n_basic_blocks = 0;
773 last_basic_block = 0;
774
775 ENTRY_BLOCK_PTR->aux = NULL;
776 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
777 EXIT_BLOCK_PTR->aux = NULL;
778 EXIT_BLOCK_PTR->global_live_at_start = NULL;
779 }
780
781 /* Delete any insns that copy a register to itself. */
782
783 int
784 delete_noop_moves (void)
785 {
786 rtx insn, next;
787 basic_block bb;
788 int nnoops = 0;
789
790 FOR_EACH_BB (bb)
791 {
792 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
793 {
794 next = NEXT_INSN (insn);
795 if (INSN_P (insn) && noop_move_p (insn))
796 {
797 rtx note;
798
799 /* If we're about to remove the first insn of a libcall
800 then move the libcall note to the next real insn and
801 update the retval note. */
802 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
803 && XEXP (note, 0) != insn)
804 {
805 rtx new_libcall_insn = next_real_insn (insn);
806 rtx retval_note = find_reg_note (XEXP (note, 0),
807 REG_RETVAL, NULL_RTX);
808 REG_NOTES (new_libcall_insn)
809 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
810 REG_NOTES (new_libcall_insn));
811 XEXP (retval_note, 0) = new_libcall_insn;
812 }
813
814 delete_insn_and_edges (insn);
815 nnoops++;
816 }
817 }
818 }
819 if (nnoops && dump_file)
820 fprintf (dump_file, "deleted %i noop moves", nnoops);
821 return nnoops;
822 }
823
824 /* Delete any jump tables never referenced. We can't delete them at the
825 time of removing tablejump insn as they are referenced by the preceding
826 insns computing the destination, so we delay deleting and garbagecollect
827 them once life information is computed. */
828 void
829 delete_dead_jumptables (void)
830 {
831 rtx insn, next;
832 for (insn = get_insns (); insn; insn = next)
833 {
834 next = NEXT_INSN (insn);
835 if (GET_CODE (insn) == CODE_LABEL
836 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
837 && GET_CODE (next) == JUMP_INSN
838 && (GET_CODE (PATTERN (next)) == ADDR_VEC
839 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
840 {
841 if (dump_file)
842 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
843 delete_insn (NEXT_INSN (insn));
844 delete_insn (insn);
845 next = NEXT_INSN (next);
846 }
847 }
848 }
849
850 /* Determine if the stack pointer is constant over the life of the function.
851 Only useful before prologues have been emitted. */
852
853 static void
854 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
855 void *data ATTRIBUTE_UNUSED)
856 {
857 if (x == stack_pointer_rtx
858 /* The stack pointer is only modified indirectly as the result
859 of a push until later in flow. See the comments in rtl.texi
860 regarding Embedded Side-Effects on Addresses. */
861 || (GET_CODE (x) == MEM
862 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
863 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
864 current_function_sp_is_unchanging = 0;
865 }
866
867 static void
868 notice_stack_pointer_modification (void)
869 {
870 basic_block bb;
871 rtx insn;
872
873 /* Assume that the stack pointer is unchanging if alloca hasn't
874 been used. */
875 current_function_sp_is_unchanging = !current_function_calls_alloca;
876 if (! current_function_sp_is_unchanging)
877 return;
878
879 FOR_EACH_BB (bb)
880 FOR_BB_INSNS (bb, insn)
881 {
882 if (INSN_P (insn))
883 {
884 /* Check if insn modifies the stack pointer. */
885 note_stores (PATTERN (insn),
886 notice_stack_pointer_modification_1,
887 NULL);
888 if (! current_function_sp_is_unchanging)
889 return;
890 }
891 }
892 }
893
894 /* Mark a register in SET. Hard registers in large modes get all
895 of their component registers set as well. */
896
897 static void
898 mark_reg (rtx reg, void *xset)
899 {
900 regset set = (regset) xset;
901 int regno = REGNO (reg);
902
903 if (GET_MODE (reg) == BLKmode)
904 abort ();
905
906 SET_REGNO_REG_SET (set, regno);
907 if (regno < FIRST_PSEUDO_REGISTER)
908 {
909 int n = hard_regno_nregs[regno][GET_MODE (reg)];
910 while (--n > 0)
911 SET_REGNO_REG_SET (set, regno + n);
912 }
913 }
914
915 /* Mark those regs which are needed at the end of the function as live
916 at the end of the last basic block. */
917
918 static void
919 mark_regs_live_at_end (regset set)
920 {
921 unsigned int i;
922
923 /* If exiting needs the right stack value, consider the stack pointer
924 live at the end of the function. */
925 if ((HAVE_epilogue && epilogue_completed)
926 || ! EXIT_IGNORE_STACK
927 || (! FRAME_POINTER_REQUIRED
928 && ! current_function_calls_alloca
929 && flag_omit_frame_pointer)
930 || current_function_sp_is_unchanging)
931 {
932 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
933 }
934
935 /* Mark the frame pointer if needed at the end of the function. If
936 we end up eliminating it, it will be removed from the live list
937 of each basic block by reload. */
938
939 if (! reload_completed || frame_pointer_needed)
940 {
941 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 /* If they are different, also mark the hard frame pointer as live. */
944 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
945 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
946 #endif
947 }
948
949 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
950 /* Many architectures have a GP register even without flag_pic.
951 Assume the pic register is not in use, or will be handled by
952 other means, if it is not fixed. */
953 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
954 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
955 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
956 #endif
957
958 /* Mark all global registers, and all registers used by the epilogue
959 as being live at the end of the function since they may be
960 referenced by our caller. */
961 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
962 if (global_regs[i] || EPILOGUE_USES (i))
963 SET_REGNO_REG_SET (set, i);
964
965 if (HAVE_epilogue && epilogue_completed)
966 {
967 /* Mark all call-saved registers that we actually used. */
968 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
969 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
970 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
971 SET_REGNO_REG_SET (set, i);
972 }
973
974 #ifdef EH_RETURN_DATA_REGNO
975 /* Mark the registers that will contain data for the handler. */
976 if (reload_completed && current_function_calls_eh_return)
977 for (i = 0; ; ++i)
978 {
979 unsigned regno = EH_RETURN_DATA_REGNO(i);
980 if (regno == INVALID_REGNUM)
981 break;
982 SET_REGNO_REG_SET (set, regno);
983 }
984 #endif
985 #ifdef EH_RETURN_STACKADJ_RTX
986 if ((! HAVE_epilogue || ! epilogue_completed)
987 && current_function_calls_eh_return)
988 {
989 rtx tmp = EH_RETURN_STACKADJ_RTX;
990 if (tmp && REG_P (tmp))
991 mark_reg (tmp, set);
992 }
993 #endif
994 #ifdef EH_RETURN_HANDLER_RTX
995 if ((! HAVE_epilogue || ! epilogue_completed)
996 && current_function_calls_eh_return)
997 {
998 rtx tmp = EH_RETURN_HANDLER_RTX;
999 if (tmp && REG_P (tmp))
1000 mark_reg (tmp, set);
1001 }
1002 #endif
1003
1004 /* Mark function return value. */
1005 diddle_return_value (mark_reg, set);
1006 }
1007
1008 /* Propagate global life info around the graph of basic blocks. Begin
1009 considering blocks with their corresponding bit set in BLOCKS_IN.
1010 If BLOCKS_IN is null, consider it the universal set.
1011
1012 BLOCKS_OUT is set for every block that was changed. */
1013
1014 static void
1015 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1016 {
1017 basic_block *queue, *qhead, *qtail, *qend, bb;
1018 regset tmp, new_live_at_end, invalidated_by_call;
1019 regset_head tmp_head, invalidated_by_call_head;
1020 regset_head new_live_at_end_head;
1021 int i;
1022
1023 /* Some passes used to forget clear aux field of basic block causing
1024 sick behavior here. */
1025 #ifdef ENABLE_CHECKING
1026 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1027 if (bb->aux)
1028 abort ();
1029 #endif
1030
1031 tmp = INITIALIZE_REG_SET (tmp_head);
1032 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1033 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1034
1035 /* Inconveniently, this is only readily available in hard reg set form. */
1036 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1037 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1038 SET_REGNO_REG_SET (invalidated_by_call, i);
1039
1040 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1041 because the `head == tail' style test for an empty queue doesn't
1042 work with a full queue. */
1043 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1044 qtail = queue;
1045 qhead = qend = queue + n_basic_blocks + 2;
1046
1047 /* Queue the blocks set in the initial mask. Do this in reverse block
1048 number order so that we are more likely for the first round to do
1049 useful work. We use AUX non-null to flag that the block is queued. */
1050 if (blocks_in)
1051 {
1052 FOR_EACH_BB (bb)
1053 if (TEST_BIT (blocks_in, bb->index))
1054 {
1055 *--qhead = bb;
1056 bb->aux = bb;
1057 }
1058 }
1059 else
1060 {
1061 FOR_EACH_BB (bb)
1062 {
1063 *--qhead = bb;
1064 bb->aux = bb;
1065 }
1066 }
1067
1068 /* We clean aux when we remove the initially-enqueued bbs, but we
1069 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1070 unconditionally. */
1071 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1072
1073 if (blocks_out)
1074 sbitmap_zero (blocks_out);
1075
1076 /* We work through the queue until there are no more blocks. What
1077 is live at the end of this block is precisely the union of what
1078 is live at the beginning of all its successors. So, we set its
1079 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1080 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1081 this block by walking through the instructions in this block in
1082 reverse order and updating as we go. If that changed
1083 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1084 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1085
1086 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1087 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1088 must either be live at the end of the block, or used within the
1089 block. In the latter case, it will certainly never disappear
1090 from GLOBAL_LIVE_AT_START. In the former case, the register
1091 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1092 for one of the successor blocks. By induction, that cannot
1093 occur. */
1094 while (qhead != qtail)
1095 {
1096 int rescan, changed;
1097 basic_block bb;
1098 edge e;
1099
1100 bb = *qhead++;
1101 if (qhead == qend)
1102 qhead = queue;
1103 bb->aux = NULL;
1104
1105 /* Begin by propagating live_at_start from the successor blocks. */
1106 CLEAR_REG_SET (new_live_at_end);
1107
1108 if (bb->succ)
1109 for (e = bb->succ; e; e = e->succ_next)
1110 {
1111 basic_block sb = e->dest;
1112
1113 /* Call-clobbered registers die across exception and
1114 call edges. */
1115 /* ??? Abnormal call edges ignored for the moment, as this gets
1116 confused by sibling call edges, which crashes reg-stack. */
1117 if (e->flags & EDGE_EH)
1118 {
1119 bitmap_operation (tmp, sb->global_live_at_start,
1120 invalidated_by_call, BITMAP_AND_COMPL);
1121 IOR_REG_SET (new_live_at_end, tmp);
1122 }
1123 else
1124 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1125
1126 /* If a target saves one register in another (instead of on
1127 the stack) the save register will need to be live for EH. */
1128 if (e->flags & EDGE_EH)
1129 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1130 if (EH_USES (i))
1131 SET_REGNO_REG_SET (new_live_at_end, i);
1132 }
1133 else
1134 {
1135 /* This might be a noreturn function that throws. And
1136 even if it isn't, getting the unwind info right helps
1137 debugging. */
1138 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1139 if (EH_USES (i))
1140 SET_REGNO_REG_SET (new_live_at_end, i);
1141 }
1142
1143 /* The all-important stack pointer must always be live. */
1144 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1145
1146 /* Before reload, there are a few registers that must be forced
1147 live everywhere -- which might not already be the case for
1148 blocks within infinite loops. */
1149 if (! reload_completed)
1150 {
1151 /* Any reference to any pseudo before reload is a potential
1152 reference of the frame pointer. */
1153 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1154
1155 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1156 /* Pseudos with argument area equivalences may require
1157 reloading via the argument pointer. */
1158 if (fixed_regs[ARG_POINTER_REGNUM])
1159 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1160 #endif
1161
1162 /* Any constant, or pseudo with constant equivalences, may
1163 require reloading from memory using the pic register. */
1164 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1165 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1166 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1167 }
1168
1169 if (bb == ENTRY_BLOCK_PTR)
1170 {
1171 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1172 continue;
1173 }
1174
1175 /* On our first pass through this block, we'll go ahead and continue.
1176 Recognize first pass by local_set NULL. On subsequent passes, we
1177 get to skip out early if live_at_end wouldn't have changed. */
1178
1179 if (bb->local_set == NULL)
1180 {
1181 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1182 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1183 rescan = 1;
1184 }
1185 else
1186 {
1187 /* If any bits were removed from live_at_end, we'll have to
1188 rescan the block. This wouldn't be necessary if we had
1189 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1190 local_live is really dependent on live_at_end. */
1191 CLEAR_REG_SET (tmp);
1192 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1193 new_live_at_end, BITMAP_AND_COMPL);
1194
1195 if (! rescan)
1196 {
1197 /* If any of the registers in the new live_at_end set are
1198 conditionally set in this basic block, we must rescan.
1199 This is because conditional lifetimes at the end of the
1200 block do not just take the live_at_end set into account,
1201 but also the liveness at the start of each successor
1202 block. We can miss changes in those sets if we only
1203 compare the new live_at_end against the previous one. */
1204 CLEAR_REG_SET (tmp);
1205 rescan = bitmap_operation (tmp, new_live_at_end,
1206 bb->cond_local_set, BITMAP_AND);
1207 }
1208
1209 if (! rescan)
1210 {
1211 /* Find the set of changed bits. Take this opportunity
1212 to notice that this set is empty and early out. */
1213 CLEAR_REG_SET (tmp);
1214 changed = bitmap_operation (tmp, bb->global_live_at_end,
1215 new_live_at_end, BITMAP_XOR);
1216 if (! changed)
1217 continue;
1218
1219 /* If any of the changed bits overlap with local_set,
1220 we'll have to rescan the block. Detect overlap by
1221 the AND with ~local_set turning off bits. */
1222 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1223 BITMAP_AND_COMPL);
1224 }
1225 }
1226
1227 /* Let our caller know that BB changed enough to require its
1228 death notes updated. */
1229 if (blocks_out)
1230 SET_BIT (blocks_out, bb->index);
1231
1232 if (! rescan)
1233 {
1234 /* Add to live_at_start the set of all registers in
1235 new_live_at_end that aren't in the old live_at_end. */
1236
1237 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1238 BITMAP_AND_COMPL);
1239 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1240
1241 changed = bitmap_operation (bb->global_live_at_start,
1242 bb->global_live_at_start,
1243 tmp, BITMAP_IOR);
1244 if (! changed)
1245 continue;
1246 }
1247 else
1248 {
1249 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1250
1251 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1252 into live_at_start. */
1253 propagate_block (bb, new_live_at_end, bb->local_set,
1254 bb->cond_local_set, flags);
1255
1256 /* If live_at start didn't change, no need to go farther. */
1257 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1258 continue;
1259
1260 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1261 }
1262
1263 /* Queue all predecessors of BB so that we may re-examine
1264 their live_at_end. */
1265 for (e = bb->pred; e; e = e->pred_next)
1266 {
1267 basic_block pb = e->src;
1268 if (pb->aux == NULL)
1269 {
1270 *qtail++ = pb;
1271 if (qtail == qend)
1272 qtail = queue;
1273 pb->aux = pb;
1274 }
1275 }
1276 }
1277
1278 FREE_REG_SET (tmp);
1279 FREE_REG_SET (new_live_at_end);
1280 FREE_REG_SET (invalidated_by_call);
1281
1282 if (blocks_out)
1283 {
1284 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1285 {
1286 basic_block bb = BASIC_BLOCK (i);
1287 FREE_REG_SET (bb->local_set);
1288 FREE_REG_SET (bb->cond_local_set);
1289 });
1290 }
1291 else
1292 {
1293 FOR_EACH_BB (bb)
1294 {
1295 FREE_REG_SET (bb->local_set);
1296 FREE_REG_SET (bb->cond_local_set);
1297 }
1298 }
1299
1300 free (queue);
1301 }
1302
1303 \f
1304 /* This structure is used to pass parameters to and from the
1305 the function find_regno_partial(). It is used to pass in the
1306 register number we are looking, as well as to return any rtx
1307 we find. */
1308
1309 typedef struct {
1310 unsigned regno_to_find;
1311 rtx retval;
1312 } find_regno_partial_param;
1313
1314
1315 /* Find the rtx for the reg numbers specified in 'data' if it is
1316 part of an expression which only uses part of the register. Return
1317 it in the structure passed in. */
1318 static int
1319 find_regno_partial (rtx *ptr, void *data)
1320 {
1321 find_regno_partial_param *param = (find_regno_partial_param *)data;
1322 unsigned reg = param->regno_to_find;
1323 param->retval = NULL_RTX;
1324
1325 if (*ptr == NULL_RTX)
1326 return 0;
1327
1328 switch (GET_CODE (*ptr))
1329 {
1330 case ZERO_EXTRACT:
1331 case SIGN_EXTRACT:
1332 case STRICT_LOW_PART:
1333 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1334 {
1335 param->retval = XEXP (*ptr, 0);
1336 return 1;
1337 }
1338 break;
1339
1340 case SUBREG:
1341 if (REG_P (SUBREG_REG (*ptr))
1342 && REGNO (SUBREG_REG (*ptr)) == reg)
1343 {
1344 param->retval = SUBREG_REG (*ptr);
1345 return 1;
1346 }
1347 break;
1348
1349 default:
1350 break;
1351 }
1352
1353 return 0;
1354 }
1355
1356 /* Process all immediate successors of the entry block looking for pseudo
1357 registers which are live on entry. Find all of those whose first
1358 instance is a partial register reference of some kind, and initialize
1359 them to 0 after the entry block. This will prevent bit sets within
1360 registers whose value is unknown, and may contain some kind of sticky
1361 bits we don't want. */
1362
1363 int
1364 initialize_uninitialized_subregs (void)
1365 {
1366 rtx insn;
1367 edge e;
1368 int reg, did_something = 0;
1369 find_regno_partial_param param;
1370
1371 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1372 {
1373 basic_block bb = e->dest;
1374 regset map = bb->global_live_at_start;
1375 EXECUTE_IF_SET_IN_REG_SET (map,
1376 FIRST_PSEUDO_REGISTER, reg,
1377 {
1378 int uid = REGNO_FIRST_UID (reg);
1379 rtx i;
1380
1381 /* Find an insn which mentions the register we are looking for.
1382 Its preferable to have an instance of the register's rtl since
1383 there may be various flags set which we need to duplicate.
1384 If we can't find it, its probably an automatic whose initial
1385 value doesn't matter, or hopefully something we don't care about. */
1386 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1387 ;
1388 if (i != NULL_RTX)
1389 {
1390 /* Found the insn, now get the REG rtx, if we can. */
1391 param.regno_to_find = reg;
1392 for_each_rtx (&i, find_regno_partial, &param);
1393 if (param.retval != NULL_RTX)
1394 {
1395 start_sequence ();
1396 emit_move_insn (param.retval,
1397 CONST0_RTX (GET_MODE (param.retval)));
1398 insn = get_insns ();
1399 end_sequence ();
1400 insert_insn_on_edge (insn, e);
1401 did_something = 1;
1402 }
1403 }
1404 });
1405 }
1406
1407 if (did_something)
1408 commit_edge_insertions ();
1409 return did_something;
1410 }
1411
1412 \f
1413 /* Subroutines of life analysis. */
1414
1415 /* Allocate the permanent data structures that represent the results
1416 of life analysis. Not static since used also for stupid life analysis. */
1417
1418 void
1419 allocate_bb_life_data (void)
1420 {
1421 basic_block bb;
1422
1423 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1424 {
1425 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1426 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1427 }
1428
1429 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1430 }
1431
1432 void
1433 allocate_reg_life_data (void)
1434 {
1435 int i;
1436
1437 max_regno = max_reg_num ();
1438 if (reg_deaths)
1439 abort ();
1440 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1441
1442 /* Recalculate the register space, in case it has grown. Old style
1443 vector oriented regsets would set regset_{size,bytes} here also. */
1444 allocate_reg_info (max_regno, FALSE, FALSE);
1445
1446 /* Reset all the data we'll collect in propagate_block and its
1447 subroutines. */
1448 for (i = 0; i < max_regno; i++)
1449 {
1450 REG_N_SETS (i) = 0;
1451 REG_N_REFS (i) = 0;
1452 REG_N_DEATHS (i) = 0;
1453 REG_N_CALLS_CROSSED (i) = 0;
1454 REG_LIVE_LENGTH (i) = 0;
1455 REG_FREQ (i) = 0;
1456 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1457 }
1458 }
1459
1460 /* Delete dead instructions for propagate_block. */
1461
1462 static void
1463 propagate_block_delete_insn (rtx insn)
1464 {
1465 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1466
1467 /* If the insn referred to a label, and that label was attached to
1468 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1469 pretty much mandatory to delete it, because the ADDR_VEC may be
1470 referencing labels that no longer exist.
1471
1472 INSN may reference a deleted label, particularly when a jump
1473 table has been optimized into a direct jump. There's no
1474 real good way to fix up the reference to the deleted label
1475 when the label is deleted, so we just allow it here. */
1476
1477 if (inote && GET_CODE (inote) == CODE_LABEL)
1478 {
1479 rtx label = XEXP (inote, 0);
1480 rtx next;
1481
1482 /* The label may be forced if it has been put in the constant
1483 pool. If that is the only use we must discard the table
1484 jump following it, but not the label itself. */
1485 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1486 && (next = next_nonnote_insn (label)) != NULL
1487 && GET_CODE (next) == JUMP_INSN
1488 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1489 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1490 {
1491 rtx pat = PATTERN (next);
1492 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1493 int len = XVECLEN (pat, diff_vec_p);
1494 int i;
1495
1496 for (i = 0; i < len; i++)
1497 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1498
1499 delete_insn_and_edges (next);
1500 ndead++;
1501 }
1502 }
1503
1504 delete_insn_and_edges (insn);
1505 ndead++;
1506 }
1507
1508 /* Delete dead libcalls for propagate_block. Return the insn
1509 before the libcall. */
1510
1511 static rtx
1512 propagate_block_delete_libcall (rtx insn, rtx note)
1513 {
1514 rtx first = XEXP (note, 0);
1515 rtx before = PREV_INSN (first);
1516
1517 delete_insn_chain_and_edges (first, insn);
1518 ndead++;
1519 return before;
1520 }
1521
1522 /* Update the life-status of regs for one insn. Return the previous insn. */
1523
1524 rtx
1525 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1526 {
1527 rtx prev = PREV_INSN (insn);
1528 int flags = pbi->flags;
1529 int insn_is_dead = 0;
1530 int libcall_is_dead = 0;
1531 rtx note;
1532 int i;
1533
1534 if (! INSN_P (insn))
1535 return prev;
1536
1537 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1538 if (flags & PROP_SCAN_DEAD_CODE)
1539 {
1540 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1541 libcall_is_dead = (insn_is_dead && note != 0
1542 && libcall_dead_p (pbi, note, insn));
1543 }
1544
1545 /* If an instruction consists of just dead store(s) on final pass,
1546 delete it. */
1547 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1548 {
1549 /* If we're trying to delete a prologue or epilogue instruction
1550 that isn't flagged as possibly being dead, something is wrong.
1551 But if we are keeping the stack pointer depressed, we might well
1552 be deleting insns that are used to compute the amount to update
1553 it by, so they are fine. */
1554 if (reload_completed
1555 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1556 && (TYPE_RETURNS_STACK_DEPRESSED
1557 (TREE_TYPE (current_function_decl))))
1558 && (((HAVE_epilogue || HAVE_prologue)
1559 && prologue_epilogue_contains (insn))
1560 || (HAVE_sibcall_epilogue
1561 && sibcall_epilogue_contains (insn)))
1562 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1563 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1564
1565 /* Record sets. Do this even for dead instructions, since they
1566 would have killed the values if they hadn't been deleted. */
1567 mark_set_regs (pbi, PATTERN (insn), insn);
1568
1569 /* CC0 is now known to be dead. Either this insn used it,
1570 in which case it doesn't anymore, or clobbered it,
1571 so the next insn can't use it. */
1572 pbi->cc0_live = 0;
1573
1574 if (libcall_is_dead)
1575 prev = propagate_block_delete_libcall ( insn, note);
1576 else
1577 {
1578
1579 /* If INSN contains a RETVAL note and is dead, but the libcall
1580 as a whole is not dead, then we want to remove INSN, but
1581 not the whole libcall sequence.
1582
1583 However, we need to also remove the dangling REG_LIBCALL
1584 note so that we do not have mis-matched LIBCALL/RETVAL
1585 notes. In theory we could find a new location for the
1586 REG_RETVAL note, but it hardly seems worth the effort.
1587
1588 NOTE at this point will be the RETVAL note if it exists. */
1589 if (note)
1590 {
1591 rtx libcall_note;
1592
1593 libcall_note
1594 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1595 remove_note (XEXP (note, 0), libcall_note);
1596 }
1597
1598 /* Similarly if INSN contains a LIBCALL note, remove the
1599 dangling REG_RETVAL note. */
1600 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1601 if (note)
1602 {
1603 rtx retval_note;
1604
1605 retval_note
1606 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1607 remove_note (XEXP (note, 0), retval_note);
1608 }
1609
1610 /* Now delete INSN. */
1611 propagate_block_delete_insn (insn);
1612 }
1613
1614 return prev;
1615 }
1616
1617 /* See if this is an increment or decrement that can be merged into
1618 a following memory address. */
1619 #ifdef AUTO_INC_DEC
1620 {
1621 rtx x = single_set (insn);
1622
1623 /* Does this instruction increment or decrement a register? */
1624 if ((flags & PROP_AUTOINC)
1625 && x != 0
1626 && REG_P (SET_DEST (x))
1627 && (GET_CODE (SET_SRC (x)) == PLUS
1628 || GET_CODE (SET_SRC (x)) == MINUS)
1629 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1630 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1631 /* Ok, look for a following memory ref we can combine with.
1632 If one is found, change the memory ref to a PRE_INC
1633 or PRE_DEC, cancel this insn, and return 1.
1634 Return 0 if nothing has been done. */
1635 && try_pre_increment_1 (pbi, insn))
1636 return prev;
1637 }
1638 #endif /* AUTO_INC_DEC */
1639
1640 CLEAR_REG_SET (pbi->new_set);
1641
1642 /* If this is not the final pass, and this insn is copying the value of
1643 a library call and it's dead, don't scan the insns that perform the
1644 library call, so that the call's arguments are not marked live. */
1645 if (libcall_is_dead)
1646 {
1647 /* Record the death of the dest reg. */
1648 mark_set_regs (pbi, PATTERN (insn), insn);
1649
1650 insn = XEXP (note, 0);
1651 return PREV_INSN (insn);
1652 }
1653 else if (GET_CODE (PATTERN (insn)) == SET
1654 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1655 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1656 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1657 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1658 {
1659 /* We have an insn to pop a constant amount off the stack.
1660 (Such insns use PLUS regardless of the direction of the stack,
1661 and any insn to adjust the stack by a constant is always a pop
1662 or part of a push.)
1663 These insns, if not dead stores, have no effect on life, though
1664 they do have an effect on the memory stores we are tracking. */
1665 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1666 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1667 concludes that the stack pointer is not modified. */
1668 mark_set_regs (pbi, PATTERN (insn), insn);
1669 }
1670 else
1671 {
1672 rtx note;
1673 /* Any regs live at the time of a call instruction must not go
1674 in a register clobbered by calls. Find all regs now live and
1675 record this for them. */
1676
1677 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1678 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1679 { REG_N_CALLS_CROSSED (i)++; });
1680
1681 /* Record sets. Do this even for dead instructions, since they
1682 would have killed the values if they hadn't been deleted. */
1683 mark_set_regs (pbi, PATTERN (insn), insn);
1684
1685 if (GET_CODE (insn) == CALL_INSN)
1686 {
1687 regset live_at_end;
1688 bool sibcall_p;
1689 rtx note, cond;
1690 int i;
1691
1692 cond = NULL_RTX;
1693 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1694 cond = COND_EXEC_TEST (PATTERN (insn));
1695
1696 /* Non-constant calls clobber memory, constant calls do not
1697 clobber memory, though they may clobber outgoing arguments
1698 on the stack. */
1699 if (! CONST_OR_PURE_CALL_P (insn))
1700 {
1701 free_EXPR_LIST_list (&pbi->mem_set_list);
1702 pbi->mem_set_list_len = 0;
1703 }
1704 else
1705 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1706
1707 /* There may be extra registers to be clobbered. */
1708 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1709 note;
1710 note = XEXP (note, 1))
1711 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1712 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1713 cond, insn, pbi->flags);
1714
1715 /* Calls change all call-used and global registers; sibcalls do not
1716 clobber anything that must be preserved at end-of-function,
1717 except for return values. */
1718
1719 sibcall_p = SIBLING_CALL_P (insn);
1720 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1722 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1723 && ! (sibcall_p
1724 && REGNO_REG_SET_P (live_at_end, i)
1725 && ! refers_to_regno_p (i, i+1,
1726 current_function_return_rtx,
1727 (rtx *) 0)))
1728 {
1729 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1730 /* We do not want REG_UNUSED notes for these registers. */
1731 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1732 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1733 }
1734 }
1735
1736 /* If an insn doesn't use CC0, it becomes dead since we assume
1737 that every insn clobbers it. So show it dead here;
1738 mark_used_regs will set it live if it is referenced. */
1739 pbi->cc0_live = 0;
1740
1741 /* Record uses. */
1742 if (! insn_is_dead)
1743 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1744 if ((flags & PROP_EQUAL_NOTES)
1745 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1746 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1747 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1748
1749 /* Sometimes we may have inserted something before INSN (such as a move)
1750 when we make an auto-inc. So ensure we will scan those insns. */
1751 #ifdef AUTO_INC_DEC
1752 prev = PREV_INSN (insn);
1753 #endif
1754
1755 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1756 {
1757 int i;
1758 rtx note, cond;
1759
1760 cond = NULL_RTX;
1761 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1762 cond = COND_EXEC_TEST (PATTERN (insn));
1763
1764 /* Calls use their arguments, and may clobber memory which
1765 address involves some register. */
1766 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1767 note;
1768 note = XEXP (note, 1))
1769 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1770 of which mark_used_regs knows how to handle. */
1771 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1772
1773 /* The stack ptr is used (honorarily) by a CALL insn. */
1774 if ((flags & PROP_REG_INFO)
1775 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1776 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1777 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1778
1779 /* Calls may also reference any of the global registers,
1780 so they are made live. */
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 if (global_regs[i])
1783 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1784 }
1785 }
1786
1787 pbi->insn_num++;
1788
1789 return prev;
1790 }
1791
1792 /* Initialize a propagate_block_info struct for public consumption.
1793 Note that the structure itself is opaque to this file, but that
1794 the user can use the regsets provided here. */
1795
1796 struct propagate_block_info *
1797 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1798 regset cond_local_set, int flags)
1799 {
1800 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1801
1802 pbi->bb = bb;
1803 pbi->reg_live = live;
1804 pbi->mem_set_list = NULL_RTX;
1805 pbi->mem_set_list_len = 0;
1806 pbi->local_set = local_set;
1807 pbi->cond_local_set = cond_local_set;
1808 pbi->cc0_live = 0;
1809 pbi->flags = flags;
1810 pbi->insn_num = 0;
1811
1812 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1813 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1814 else
1815 pbi->reg_next_use = NULL;
1816
1817 pbi->new_set = BITMAP_XMALLOC ();
1818
1819 #ifdef HAVE_conditional_execution
1820 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1821 free_reg_cond_life_info);
1822 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1823
1824 /* If this block ends in a conditional branch, for each register
1825 live from one side of the branch and not the other, record the
1826 register as conditionally dead. */
1827 if (GET_CODE (BB_END (bb)) == JUMP_INSN
1828 && any_condjump_p (BB_END (bb)))
1829 {
1830 regset_head diff_head;
1831 regset diff = INITIALIZE_REG_SET (diff_head);
1832 basic_block bb_true, bb_false;
1833 int i;
1834
1835 /* Identify the successor blocks. */
1836 bb_true = bb->succ->dest;
1837 if (bb->succ->succ_next != NULL)
1838 {
1839 bb_false = bb->succ->succ_next->dest;
1840
1841 if (bb->succ->flags & EDGE_FALLTHRU)
1842 {
1843 basic_block t = bb_false;
1844 bb_false = bb_true;
1845 bb_true = t;
1846 }
1847 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1848 abort ();
1849 }
1850 else
1851 {
1852 /* This can happen with a conditional jump to the next insn. */
1853 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1854 abort ();
1855
1856 /* Simplest way to do nothing. */
1857 bb_false = bb_true;
1858 }
1859
1860 /* Compute which register lead different lives in the successors. */
1861 if (bitmap_operation (diff, bb_true->global_live_at_start,
1862 bb_false->global_live_at_start, BITMAP_XOR))
1863 {
1864 /* Extract the condition from the branch. */
1865 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1866 rtx cond_true = XEXP (set_src, 0);
1867 rtx reg = XEXP (cond_true, 0);
1868
1869 if (GET_CODE (reg) == SUBREG)
1870 reg = SUBREG_REG (reg);
1871
1872 /* We can only track conditional lifetimes if the condition is
1873 in the form of a comparison of a register against zero.
1874 If the condition is more complex than that, then it is safe
1875 not to record any information. */
1876 if (REG_P (reg)
1877 && XEXP (cond_true, 1) == const0_rtx)
1878 {
1879 rtx cond_false
1880 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1881 GET_MODE (cond_true), XEXP (cond_true, 0),
1882 XEXP (cond_true, 1));
1883 if (GET_CODE (XEXP (set_src, 1)) == PC)
1884 {
1885 rtx t = cond_false;
1886 cond_false = cond_true;
1887 cond_true = t;
1888 }
1889
1890 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1891
1892 /* For each such register, mark it conditionally dead. */
1893 EXECUTE_IF_SET_IN_REG_SET
1894 (diff, 0, i,
1895 {
1896 struct reg_cond_life_info *rcli;
1897 rtx cond;
1898
1899 rcli = xmalloc (sizeof (*rcli));
1900
1901 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1902 cond = cond_false;
1903 else
1904 cond = cond_true;
1905 rcli->condition = cond;
1906 rcli->stores = const0_rtx;
1907 rcli->orig_condition = cond;
1908
1909 splay_tree_insert (pbi->reg_cond_dead, i,
1910 (splay_tree_value) rcli);
1911 });
1912 }
1913 }
1914
1915 FREE_REG_SET (diff);
1916 }
1917 #endif
1918
1919 /* If this block has no successors, any stores to the frame that aren't
1920 used later in the block are dead. So make a pass over the block
1921 recording any such that are made and show them dead at the end. We do
1922 a very conservative and simple job here. */
1923 if (optimize
1924 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1925 && (TYPE_RETURNS_STACK_DEPRESSED
1926 (TREE_TYPE (current_function_decl))))
1927 && (flags & PROP_SCAN_DEAD_STORES)
1928 && (bb->succ == NULL
1929 || (bb->succ->succ_next == NULL
1930 && bb->succ->dest == EXIT_BLOCK_PTR
1931 && ! current_function_calls_eh_return)))
1932 {
1933 rtx insn, set;
1934 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1935 if (GET_CODE (insn) == INSN
1936 && (set = single_set (insn))
1937 && GET_CODE (SET_DEST (set)) == MEM)
1938 {
1939 rtx mem = SET_DEST (set);
1940 rtx canon_mem = canon_rtx (mem);
1941
1942 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1943 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1944 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1945 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1946 add_to_mem_set_list (pbi, canon_mem);
1947 }
1948 }
1949
1950 return pbi;
1951 }
1952
1953 /* Release a propagate_block_info struct. */
1954
1955 void
1956 free_propagate_block_info (struct propagate_block_info *pbi)
1957 {
1958 free_EXPR_LIST_list (&pbi->mem_set_list);
1959
1960 BITMAP_XFREE (pbi->new_set);
1961
1962 #ifdef HAVE_conditional_execution
1963 splay_tree_delete (pbi->reg_cond_dead);
1964 BITMAP_XFREE (pbi->reg_cond_reg);
1965 #endif
1966
1967 if (pbi->flags & PROP_REG_INFO)
1968 {
1969 int num = pbi->insn_num;
1970 int i;
1971
1972 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1973 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
1974 reg_deaths[i] = 0;
1975 });
1976 }
1977 if (pbi->reg_next_use)
1978 free (pbi->reg_next_use);
1979
1980 free (pbi);
1981 }
1982
1983 /* Compute the registers live at the beginning of a basic block BB from
1984 those live at the end.
1985
1986 When called, REG_LIVE contains those live at the end. On return, it
1987 contains those live at the beginning.
1988
1989 LOCAL_SET, if non-null, will be set with all registers killed
1990 unconditionally by this basic block.
1991 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1992 killed conditionally by this basic block. If there is any unconditional
1993 set of a register, then the corresponding bit will be set in LOCAL_SET
1994 and cleared in COND_LOCAL_SET.
1995 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1996 case, the resulting set will be equal to the union of the two sets that
1997 would otherwise be computed.
1998
1999 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2000
2001 int
2002 propagate_block (basic_block bb, regset live, regset local_set,
2003 regset cond_local_set, int flags)
2004 {
2005 struct propagate_block_info *pbi;
2006 rtx insn, prev;
2007 int changed;
2008
2009 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2010
2011 if (flags & PROP_REG_INFO)
2012 {
2013 int i;
2014
2015 /* Process the regs live at the end of the block.
2016 Mark them as not local to any one basic block. */
2017 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2018 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2019 }
2020
2021 /* Scan the block an insn at a time from end to beginning. */
2022
2023 changed = 0;
2024 for (insn = BB_END (bb); ; insn = prev)
2025 {
2026 /* If this is a call to `setjmp' et al, warn if any
2027 non-volatile datum is live. */
2028 if ((flags & PROP_REG_INFO)
2029 && GET_CODE (insn) == CALL_INSN
2030 && find_reg_note (insn, REG_SETJMP, NULL))
2031 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2032
2033 prev = propagate_one_insn (pbi, insn);
2034 if (!prev)
2035 changed |= insn != get_insns ();
2036 else
2037 changed |= NEXT_INSN (prev) != insn;
2038
2039 if (insn == BB_HEAD (bb))
2040 break;
2041 }
2042
2043 free_propagate_block_info (pbi);
2044
2045 return changed;
2046 }
2047 \f
2048 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2049 (SET expressions whose destinations are registers dead after the insn).
2050 NEEDED is the regset that says which regs are alive after the insn.
2051
2052 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2053
2054 If X is the entire body of an insn, NOTES contains the reg notes
2055 pertaining to the insn. */
2056
2057 static int
2058 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2059 rtx notes ATTRIBUTE_UNUSED)
2060 {
2061 enum rtx_code code = GET_CODE (x);
2062
2063 /* Don't eliminate insns that may trap. */
2064 if (flag_non_call_exceptions && may_trap_p (x))
2065 return 0;
2066
2067 #ifdef AUTO_INC_DEC
2068 /* As flow is invoked after combine, we must take existing AUTO_INC
2069 expressions into account. */
2070 for (; notes; notes = XEXP (notes, 1))
2071 {
2072 if (REG_NOTE_KIND (notes) == REG_INC)
2073 {
2074 int regno = REGNO (XEXP (notes, 0));
2075
2076 /* Don't delete insns to set global regs. */
2077 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2078 || REGNO_REG_SET_P (pbi->reg_live, regno))
2079 return 0;
2080 }
2081 }
2082 #endif
2083
2084 /* If setting something that's a reg or part of one,
2085 see if that register's altered value will be live. */
2086
2087 if (code == SET)
2088 {
2089 rtx r = SET_DEST (x);
2090
2091 #ifdef HAVE_cc0
2092 if (GET_CODE (r) == CC0)
2093 return ! pbi->cc0_live;
2094 #endif
2095
2096 /* A SET that is a subroutine call cannot be dead. */
2097 if (GET_CODE (SET_SRC (x)) == CALL)
2098 {
2099 if (! call_ok)
2100 return 0;
2101 }
2102
2103 /* Don't eliminate loads from volatile memory or volatile asms. */
2104 else if (volatile_refs_p (SET_SRC (x)))
2105 return 0;
2106
2107 if (GET_CODE (r) == MEM)
2108 {
2109 rtx temp, canon_r;
2110
2111 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2112 return 0;
2113
2114 canon_r = canon_rtx (r);
2115
2116 /* Walk the set of memory locations we are currently tracking
2117 and see if one is an identical match to this memory location.
2118 If so, this memory write is dead (remember, we're walking
2119 backwards from the end of the block to the start). Since
2120 rtx_equal_p does not check the alias set or flags, we also
2121 must have the potential for them to conflict (anti_dependence). */
2122 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2123 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2124 {
2125 rtx mem = XEXP (temp, 0);
2126
2127 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2128 && (GET_MODE_SIZE (GET_MODE (canon_r))
2129 <= GET_MODE_SIZE (GET_MODE (mem))))
2130 return 1;
2131
2132 #ifdef AUTO_INC_DEC
2133 /* Check if memory reference matches an auto increment. Only
2134 post increment/decrement or modify are valid. */
2135 if (GET_MODE (mem) == GET_MODE (r)
2136 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2137 || GET_CODE (XEXP (mem, 0)) == POST_INC
2138 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2139 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2140 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2141 return 1;
2142 #endif
2143 }
2144 }
2145 else
2146 {
2147 while (GET_CODE (r) == SUBREG
2148 || GET_CODE (r) == STRICT_LOW_PART
2149 || GET_CODE (r) == ZERO_EXTRACT)
2150 r = XEXP (r, 0);
2151
2152 if (REG_P (r))
2153 {
2154 int regno = REGNO (r);
2155
2156 /* Obvious. */
2157 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2158 return 0;
2159
2160 /* If this is a hard register, verify that subsequent
2161 words are not needed. */
2162 if (regno < FIRST_PSEUDO_REGISTER)
2163 {
2164 int n = hard_regno_nregs[regno][GET_MODE (r)];
2165
2166 while (--n > 0)
2167 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2168 return 0;
2169 }
2170
2171 /* Don't delete insns to set global regs. */
2172 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2173 return 0;
2174
2175 /* Make sure insns to set the stack pointer aren't deleted. */
2176 if (regno == STACK_POINTER_REGNUM)
2177 return 0;
2178
2179 /* ??? These bits might be redundant with the force live bits
2180 in calculate_global_regs_live. We would delete from
2181 sequential sets; whether this actually affects real code
2182 for anything but the stack pointer I don't know. */
2183 /* Make sure insns to set the frame pointer aren't deleted. */
2184 if (regno == FRAME_POINTER_REGNUM
2185 && (! reload_completed || frame_pointer_needed))
2186 return 0;
2187 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2188 if (regno == HARD_FRAME_POINTER_REGNUM
2189 && (! reload_completed || frame_pointer_needed))
2190 return 0;
2191 #endif
2192
2193 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2194 /* Make sure insns to set arg pointer are never deleted
2195 (if the arg pointer isn't fixed, there will be a USE
2196 for it, so we can treat it normally). */
2197 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2198 return 0;
2199 #endif
2200
2201 /* Otherwise, the set is dead. */
2202 return 1;
2203 }
2204 }
2205 }
2206
2207 /* If performing several activities, insn is dead if each activity
2208 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2209 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2210 worth keeping. */
2211 else if (code == PARALLEL)
2212 {
2213 int i = XVECLEN (x, 0);
2214
2215 for (i--; i >= 0; i--)
2216 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2217 && GET_CODE (XVECEXP (x, 0, i)) != USE
2218 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2219 return 0;
2220
2221 return 1;
2222 }
2223
2224 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2225 is not necessarily true for hard registers until after reload. */
2226 else if (code == CLOBBER)
2227 {
2228 if (REG_P (XEXP (x, 0))
2229 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2230 || reload_completed)
2231 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2232 return 1;
2233 }
2234
2235 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2236 Instances where it is still used are either (1) temporary and the USE
2237 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2238 or (3) hiding bugs elsewhere that are not properly representing data
2239 flow. */
2240
2241 return 0;
2242 }
2243
2244 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2245 return 1 if the entire library call is dead.
2246 This is true if INSN copies a register (hard or pseudo)
2247 and if the hard return reg of the call insn is dead.
2248 (The caller should have tested the destination of the SET inside
2249 INSN already for death.)
2250
2251 If this insn doesn't just copy a register, then we don't
2252 have an ordinary libcall. In that case, cse could not have
2253 managed to substitute the source for the dest later on,
2254 so we can assume the libcall is dead.
2255
2256 PBI is the block info giving pseudoregs live before this insn.
2257 NOTE is the REG_RETVAL note of the insn. */
2258
2259 static int
2260 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2261 {
2262 rtx x = single_set (insn);
2263
2264 if (x)
2265 {
2266 rtx r = SET_SRC (x);
2267
2268 if (REG_P (r))
2269 {
2270 rtx call = XEXP (note, 0);
2271 rtx call_pat;
2272 int i;
2273
2274 /* Find the call insn. */
2275 while (call != insn && GET_CODE (call) != CALL_INSN)
2276 call = NEXT_INSN (call);
2277
2278 /* If there is none, do nothing special,
2279 since ordinary death handling can understand these insns. */
2280 if (call == insn)
2281 return 0;
2282
2283 /* See if the hard reg holding the value is dead.
2284 If this is a PARALLEL, find the call within it. */
2285 call_pat = PATTERN (call);
2286 if (GET_CODE (call_pat) == PARALLEL)
2287 {
2288 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2289 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2290 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2291 break;
2292
2293 /* This may be a library call that is returning a value
2294 via invisible pointer. Do nothing special, since
2295 ordinary death handling can understand these insns. */
2296 if (i < 0)
2297 return 0;
2298
2299 call_pat = XVECEXP (call_pat, 0, i);
2300 }
2301
2302 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2303 }
2304 }
2305 return 1;
2306 }
2307
2308 /* 1 if register REGNO was alive at a place where `setjmp' was called
2309 and was set more than once or is an argument.
2310 Such regs may be clobbered by `longjmp'. */
2311
2312 int
2313 regno_clobbered_at_setjmp (int regno)
2314 {
2315 if (n_basic_blocks == 0)
2316 return 0;
2317
2318 return ((REG_N_SETS (regno) > 1
2319 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2320 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2321 }
2322 \f
2323 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2324 maximal list size; look for overlaps in mode and select the largest. */
2325 static void
2326 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2327 {
2328 rtx i;
2329
2330 /* We don't know how large a BLKmode store is, so we must not
2331 take them into consideration. */
2332 if (GET_MODE (mem) == BLKmode)
2333 return;
2334
2335 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2336 {
2337 rtx e = XEXP (i, 0);
2338 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2339 {
2340 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2341 {
2342 #ifdef AUTO_INC_DEC
2343 /* If we must store a copy of the mem, we can just modify
2344 the mode of the stored copy. */
2345 if (pbi->flags & PROP_AUTOINC)
2346 PUT_MODE (e, GET_MODE (mem));
2347 else
2348 #endif
2349 XEXP (i, 0) = mem;
2350 }
2351 return;
2352 }
2353 }
2354
2355 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2356 {
2357 #ifdef AUTO_INC_DEC
2358 /* Store a copy of mem, otherwise the address may be
2359 scrogged by find_auto_inc. */
2360 if (pbi->flags & PROP_AUTOINC)
2361 mem = shallow_copy_rtx (mem);
2362 #endif
2363 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2364 pbi->mem_set_list_len++;
2365 }
2366 }
2367
2368 /* INSN references memory, possibly using autoincrement addressing modes.
2369 Find any entries on the mem_set_list that need to be invalidated due
2370 to an address change. */
2371
2372 static int
2373 invalidate_mems_from_autoinc (rtx *px, void *data)
2374 {
2375 rtx x = *px;
2376 struct propagate_block_info *pbi = data;
2377
2378 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2379 {
2380 invalidate_mems_from_set (pbi, XEXP (x, 0));
2381 return -1;
2382 }
2383
2384 return 0;
2385 }
2386
2387 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2388
2389 static void
2390 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2391 {
2392 rtx temp = pbi->mem_set_list;
2393 rtx prev = NULL_RTX;
2394 rtx next;
2395
2396 while (temp)
2397 {
2398 next = XEXP (temp, 1);
2399 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2400 {
2401 /* Splice this entry out of the list. */
2402 if (prev)
2403 XEXP (prev, 1) = next;
2404 else
2405 pbi->mem_set_list = next;
2406 free_EXPR_LIST_node (temp);
2407 pbi->mem_set_list_len--;
2408 }
2409 else
2410 prev = temp;
2411 temp = next;
2412 }
2413 }
2414
2415 /* Process the registers that are set within X. Their bits are set to
2416 1 in the regset DEAD, because they are dead prior to this insn.
2417
2418 If INSN is nonzero, it is the insn being processed.
2419
2420 FLAGS is the set of operations to perform. */
2421
2422 static void
2423 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2424 {
2425 rtx cond = NULL_RTX;
2426 rtx link;
2427 enum rtx_code code;
2428 int flags = pbi->flags;
2429
2430 if (insn)
2431 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2432 {
2433 if (REG_NOTE_KIND (link) == REG_INC)
2434 mark_set_1 (pbi, SET, XEXP (link, 0),
2435 (GET_CODE (x) == COND_EXEC
2436 ? COND_EXEC_TEST (x) : NULL_RTX),
2437 insn, flags);
2438 }
2439 retry:
2440 switch (code = GET_CODE (x))
2441 {
2442 case SET:
2443 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2444 flags |= PROP_ASM_SCAN;
2445 /* Fall through */
2446 case CLOBBER:
2447 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2448 return;
2449
2450 case COND_EXEC:
2451 cond = COND_EXEC_TEST (x);
2452 x = COND_EXEC_CODE (x);
2453 goto retry;
2454
2455 case PARALLEL:
2456 {
2457 int i;
2458
2459 /* We must scan forwards. If we have an asm, we need to set
2460 the PROP_ASM_SCAN flag before scanning the clobbers. */
2461 for (i = 0; i < XVECLEN (x, 0); i++)
2462 {
2463 rtx sub = XVECEXP (x, 0, i);
2464 switch (code = GET_CODE (sub))
2465 {
2466 case COND_EXEC:
2467 if (cond != NULL_RTX)
2468 abort ();
2469
2470 cond = COND_EXEC_TEST (sub);
2471 sub = COND_EXEC_CODE (sub);
2472 if (GET_CODE (sub) == SET)
2473 goto mark_set;
2474 if (GET_CODE (sub) == CLOBBER)
2475 goto mark_clob;
2476 break;
2477
2478 case SET:
2479 mark_set:
2480 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2481 flags |= PROP_ASM_SCAN;
2482 /* Fall through */
2483 case CLOBBER:
2484 mark_clob:
2485 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2486 break;
2487
2488 case ASM_OPERANDS:
2489 flags |= PROP_ASM_SCAN;
2490 break;
2491
2492 default:
2493 break;
2494 }
2495 }
2496 break;
2497 }
2498
2499 default:
2500 break;
2501 }
2502 }
2503
2504 /* Process a single set, which appears in INSN. REG (which may not
2505 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2506 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2507 If the set is conditional (because it appear in a COND_EXEC), COND
2508 will be the condition. */
2509
2510 static void
2511 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2512 {
2513 int regno_first = -1, regno_last = -1;
2514 unsigned long not_dead = 0;
2515 int i;
2516
2517 /* Modifying just one hardware register of a multi-reg value or just a
2518 byte field of a register does not mean the value from before this insn
2519 is now dead. Of course, if it was dead after it's unused now. */
2520
2521 switch (GET_CODE (reg))
2522 {
2523 case PARALLEL:
2524 /* Some targets place small structures in registers for return values of
2525 functions. We have to detect this case specially here to get correct
2526 flow information. */
2527 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2528 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2529 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2530 flags);
2531 return;
2532
2533 case ZERO_EXTRACT:
2534 case SIGN_EXTRACT:
2535 case STRICT_LOW_PART:
2536 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2537 do
2538 reg = XEXP (reg, 0);
2539 while (GET_CODE (reg) == SUBREG
2540 || GET_CODE (reg) == ZERO_EXTRACT
2541 || GET_CODE (reg) == SIGN_EXTRACT
2542 || GET_CODE (reg) == STRICT_LOW_PART);
2543 if (GET_CODE (reg) == MEM)
2544 break;
2545 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2546 /* Fall through. */
2547
2548 case REG:
2549 regno_last = regno_first = REGNO (reg);
2550 if (regno_first < FIRST_PSEUDO_REGISTER)
2551 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2552 break;
2553
2554 case SUBREG:
2555 if (REG_P (SUBREG_REG (reg)))
2556 {
2557 enum machine_mode outer_mode = GET_MODE (reg);
2558 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2559
2560 /* Identify the range of registers affected. This is moderately
2561 tricky for hard registers. See alter_subreg. */
2562
2563 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2564 if (regno_first < FIRST_PSEUDO_REGISTER)
2565 {
2566 regno_first += subreg_regno_offset (regno_first, inner_mode,
2567 SUBREG_BYTE (reg),
2568 outer_mode);
2569 regno_last = (regno_first
2570 + hard_regno_nregs[regno_first][outer_mode] - 1);
2571
2572 /* Since we've just adjusted the register number ranges, make
2573 sure REG matches. Otherwise some_was_live will be clear
2574 when it shouldn't have been, and we'll create incorrect
2575 REG_UNUSED notes. */
2576 reg = gen_rtx_REG (outer_mode, regno_first);
2577 }
2578 else
2579 {
2580 /* If the number of words in the subreg is less than the number
2581 of words in the full register, we have a well-defined partial
2582 set. Otherwise the high bits are undefined.
2583
2584 This is only really applicable to pseudos, since we just took
2585 care of multi-word hard registers. */
2586 if (((GET_MODE_SIZE (outer_mode)
2587 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2588 < ((GET_MODE_SIZE (inner_mode)
2589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2590 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2591 regno_first);
2592
2593 reg = SUBREG_REG (reg);
2594 }
2595 }
2596 else
2597 reg = SUBREG_REG (reg);
2598 break;
2599
2600 default:
2601 break;
2602 }
2603
2604 /* If this set is a MEM, then it kills any aliased writes.
2605 If this set is a REG, then it kills any MEMs which use the reg. */
2606 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2607 {
2608 if (REG_P (reg))
2609 invalidate_mems_from_set (pbi, reg);
2610
2611 /* If the memory reference had embedded side effects (autoincrement
2612 address modes. Then we may need to kill some entries on the
2613 memory set list. */
2614 if (insn && GET_CODE (reg) == MEM)
2615 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2616
2617 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2618 /* ??? With more effort we could track conditional memory life. */
2619 && ! cond)
2620 add_to_mem_set_list (pbi, canon_rtx (reg));
2621 }
2622
2623 if (REG_P (reg)
2624 && ! (regno_first == FRAME_POINTER_REGNUM
2625 && (! reload_completed || frame_pointer_needed))
2626 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2627 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2628 && (! reload_completed || frame_pointer_needed))
2629 #endif
2630 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2631 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2632 #endif
2633 )
2634 {
2635 int some_was_live = 0, some_was_dead = 0;
2636
2637 for (i = regno_first; i <= regno_last; ++i)
2638 {
2639 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2640 if (pbi->local_set)
2641 {
2642 /* Order of the set operation matters here since both
2643 sets may be the same. */
2644 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2645 if (cond != NULL_RTX
2646 && ! REGNO_REG_SET_P (pbi->local_set, i))
2647 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2648 else
2649 SET_REGNO_REG_SET (pbi->local_set, i);
2650 }
2651 if (code != CLOBBER)
2652 SET_REGNO_REG_SET (pbi->new_set, i);
2653
2654 some_was_live |= needed_regno;
2655 some_was_dead |= ! needed_regno;
2656 }
2657
2658 #ifdef HAVE_conditional_execution
2659 /* Consider conditional death in deciding that the register needs
2660 a death note. */
2661 if (some_was_live && ! not_dead
2662 /* The stack pointer is never dead. Well, not strictly true,
2663 but it's very difficult to tell from here. Hopefully
2664 combine_stack_adjustments will fix up the most egregious
2665 errors. */
2666 && regno_first != STACK_POINTER_REGNUM)
2667 {
2668 for (i = regno_first; i <= regno_last; ++i)
2669 if (! mark_regno_cond_dead (pbi, i, cond))
2670 not_dead |= ((unsigned long) 1) << (i - regno_first);
2671 }
2672 #endif
2673
2674 /* Additional data to record if this is the final pass. */
2675 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2676 | PROP_DEATH_NOTES | PROP_AUTOINC))
2677 {
2678 rtx y;
2679 int blocknum = pbi->bb->index;
2680
2681 y = NULL_RTX;
2682 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2683 {
2684 y = pbi->reg_next_use[regno_first];
2685
2686 /* The next use is no longer next, since a store intervenes. */
2687 for (i = regno_first; i <= regno_last; ++i)
2688 pbi->reg_next_use[i] = 0;
2689 }
2690
2691 if (flags & PROP_REG_INFO)
2692 {
2693 for (i = regno_first; i <= regno_last; ++i)
2694 {
2695 /* Count (weighted) references, stores, etc. This counts a
2696 register twice if it is modified, but that is correct. */
2697 REG_N_SETS (i) += 1;
2698 REG_N_REFS (i) += 1;
2699 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2700
2701 /* The insns where a reg is live are normally counted
2702 elsewhere, but we want the count to include the insn
2703 where the reg is set, and the normal counting mechanism
2704 would not count it. */
2705 REG_LIVE_LENGTH (i) += 1;
2706 }
2707
2708 /* If this is a hard reg, record this function uses the reg. */
2709 if (regno_first < FIRST_PSEUDO_REGISTER)
2710 {
2711 for (i = regno_first; i <= regno_last; i++)
2712 regs_ever_live[i] = 1;
2713 if (flags & PROP_ASM_SCAN)
2714 for (i = regno_first; i <= regno_last; i++)
2715 regs_asm_clobbered[i] = 1;
2716 }
2717 else
2718 {
2719 /* Keep track of which basic blocks each reg appears in. */
2720 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2721 REG_BASIC_BLOCK (regno_first) = blocknum;
2722 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2723 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2724 }
2725 }
2726
2727 if (! some_was_dead)
2728 {
2729 if (flags & PROP_LOG_LINKS)
2730 {
2731 /* Make a logical link from the next following insn
2732 that uses this register, back to this insn.
2733 The following insns have already been processed.
2734
2735 We don't build a LOG_LINK for hard registers containing
2736 in ASM_OPERANDs. If these registers get replaced,
2737 we might wind up changing the semantics of the insn,
2738 even if reload can make what appear to be valid
2739 assignments later.
2740
2741 We don't build a LOG_LINK for global registers to
2742 or from a function call. We don't want to let
2743 combine think that it knows what is going on with
2744 global registers. */
2745 if (y && (BLOCK_NUM (y) == blocknum)
2746 && (regno_first >= FIRST_PSEUDO_REGISTER
2747 || (asm_noperands (PATTERN (y)) < 0
2748 && ! ((GET_CODE (insn) == CALL_INSN
2749 || GET_CODE (y) == CALL_INSN)
2750 && global_regs[regno_first]))))
2751 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2752 }
2753 }
2754 else if (not_dead)
2755 ;
2756 else if (! some_was_live)
2757 {
2758 if (flags & PROP_REG_INFO)
2759 REG_N_DEATHS (regno_first) += 1;
2760
2761 if (flags & PROP_DEATH_NOTES)
2762 {
2763 /* Note that dead stores have already been deleted
2764 when possible. If we get here, we have found a
2765 dead store that cannot be eliminated (because the
2766 same insn does something useful). Indicate this
2767 by marking the reg being set as dying here. */
2768 REG_NOTES (insn)
2769 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2770 }
2771 }
2772 else
2773 {
2774 if (flags & PROP_DEATH_NOTES)
2775 {
2776 /* This is a case where we have a multi-word hard register
2777 and some, but not all, of the words of the register are
2778 needed in subsequent insns. Write REG_UNUSED notes
2779 for those parts that were not needed. This case should
2780 be rare. */
2781
2782 for (i = regno_first; i <= regno_last; ++i)
2783 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2784 REG_NOTES (insn)
2785 = alloc_EXPR_LIST (REG_UNUSED,
2786 regno_reg_rtx[i],
2787 REG_NOTES (insn));
2788 }
2789 }
2790 }
2791
2792 /* Mark the register as being dead. */
2793 if (some_was_live
2794 /* The stack pointer is never dead. Well, not strictly true,
2795 but it's very difficult to tell from here. Hopefully
2796 combine_stack_adjustments will fix up the most egregious
2797 errors. */
2798 && regno_first != STACK_POINTER_REGNUM)
2799 {
2800 for (i = regno_first; i <= regno_last; ++i)
2801 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2802 {
2803 if ((pbi->flags & PROP_REG_INFO)
2804 && REGNO_REG_SET_P (pbi->reg_live, i))
2805 {
2806 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2807 reg_deaths[i] = 0;
2808 }
2809 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2810 }
2811 }
2812 }
2813 else if (REG_P (reg))
2814 {
2815 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2816 pbi->reg_next_use[regno_first] = 0;
2817
2818 if ((flags & PROP_REG_INFO) != 0
2819 && (flags & PROP_ASM_SCAN) != 0
2820 && regno_first < FIRST_PSEUDO_REGISTER)
2821 {
2822 for (i = regno_first; i <= regno_last; i++)
2823 regs_asm_clobbered[i] = 1;
2824 }
2825 }
2826
2827 /* If this is the last pass and this is a SCRATCH, show it will be dying
2828 here and count it. */
2829 else if (GET_CODE (reg) == SCRATCH)
2830 {
2831 if (flags & PROP_DEATH_NOTES)
2832 REG_NOTES (insn)
2833 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2834 }
2835 }
2836 \f
2837 #ifdef HAVE_conditional_execution
2838 /* Mark REGNO conditionally dead.
2839 Return true if the register is now unconditionally dead. */
2840
2841 static int
2842 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2843 {
2844 /* If this is a store to a predicate register, the value of the
2845 predicate is changing, we don't know that the predicate as seen
2846 before is the same as that seen after. Flush all dependent
2847 conditions from reg_cond_dead. This will make all such
2848 conditionally live registers unconditionally live. */
2849 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2850 flush_reg_cond_reg (pbi, regno);
2851
2852 /* If this is an unconditional store, remove any conditional
2853 life that may have existed. */
2854 if (cond == NULL_RTX)
2855 splay_tree_remove (pbi->reg_cond_dead, regno);
2856 else
2857 {
2858 splay_tree_node node;
2859 struct reg_cond_life_info *rcli;
2860 rtx ncond;
2861
2862 /* Otherwise this is a conditional set. Record that fact.
2863 It may have been conditionally used, or there may be a
2864 subsequent set with a complimentary condition. */
2865
2866 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2867 if (node == NULL)
2868 {
2869 /* The register was unconditionally live previously.
2870 Record the current condition as the condition under
2871 which it is dead. */
2872 rcli = xmalloc (sizeof (*rcli));
2873 rcli->condition = cond;
2874 rcli->stores = cond;
2875 rcli->orig_condition = const0_rtx;
2876 splay_tree_insert (pbi->reg_cond_dead, regno,
2877 (splay_tree_value) rcli);
2878
2879 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2880
2881 /* Not unconditionally dead. */
2882 return 0;
2883 }
2884 else
2885 {
2886 /* The register was conditionally live previously.
2887 Add the new condition to the old. */
2888 rcli = (struct reg_cond_life_info *) node->value;
2889 ncond = rcli->condition;
2890 ncond = ior_reg_cond (ncond, cond, 1);
2891 if (rcli->stores == const0_rtx)
2892 rcli->stores = cond;
2893 else if (rcli->stores != const1_rtx)
2894 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2895
2896 /* If the register is now unconditionally dead, remove the entry
2897 in the splay_tree. A register is unconditionally dead if the
2898 dead condition ncond is true. A register is also unconditionally
2899 dead if the sum of all conditional stores is an unconditional
2900 store (stores is true), and the dead condition is identically the
2901 same as the original dead condition initialized at the end of
2902 the block. This is a pointer compare, not an rtx_equal_p
2903 compare. */
2904 if (ncond == const1_rtx
2905 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2906 splay_tree_remove (pbi->reg_cond_dead, regno);
2907 else
2908 {
2909 rcli->condition = ncond;
2910
2911 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2912
2913 /* Not unconditionally dead. */
2914 return 0;
2915 }
2916 }
2917 }
2918
2919 return 1;
2920 }
2921
2922 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2923
2924 static void
2925 free_reg_cond_life_info (splay_tree_value value)
2926 {
2927 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2928 free (rcli);
2929 }
2930
2931 /* Helper function for flush_reg_cond_reg. */
2932
2933 static int
2934 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2935 {
2936 struct reg_cond_life_info *rcli;
2937 int *xdata = (int *) data;
2938 unsigned int regno = xdata[0];
2939
2940 /* Don't need to search if last flushed value was farther on in
2941 the in-order traversal. */
2942 if (xdata[1] >= (int) node->key)
2943 return 0;
2944
2945 /* Splice out portions of the expression that refer to regno. */
2946 rcli = (struct reg_cond_life_info *) node->value;
2947 rcli->condition = elim_reg_cond (rcli->condition, regno);
2948 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2949 rcli->stores = elim_reg_cond (rcli->stores, regno);
2950
2951 /* If the entire condition is now false, signal the node to be removed. */
2952 if (rcli->condition == const0_rtx)
2953 {
2954 xdata[1] = node->key;
2955 return -1;
2956 }
2957 else if (rcli->condition == const1_rtx)
2958 abort ();
2959
2960 return 0;
2961 }
2962
2963 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2964
2965 static void
2966 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2967 {
2968 int pair[2];
2969
2970 pair[0] = regno;
2971 pair[1] = -1;
2972 while (splay_tree_foreach (pbi->reg_cond_dead,
2973 flush_reg_cond_reg_1, pair) == -1)
2974 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2975
2976 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2977 }
2978
2979 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2980 For ior/and, the ADD flag determines whether we want to add the new
2981 condition X to the old one unconditionally. If it is zero, we will
2982 only return a new expression if X allows us to simplify part of
2983 OLD, otherwise we return NULL to the caller.
2984 If ADD is nonzero, we will return a new condition in all cases. The
2985 toplevel caller of one of these functions should always pass 1 for
2986 ADD. */
2987
2988 static rtx
2989 ior_reg_cond (rtx old, rtx x, int add)
2990 {
2991 rtx op0, op1;
2992
2993 if (COMPARISON_P (old))
2994 {
2995 if (COMPARISON_P (x)
2996 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2997 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2998 return const1_rtx;
2999 if (GET_CODE (x) == GET_CODE (old)
3000 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3001 return old;
3002 if (! add)
3003 return NULL;
3004 return gen_rtx_IOR (0, old, x);
3005 }
3006
3007 switch (GET_CODE (old))
3008 {
3009 case IOR:
3010 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3011 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3012 if (op0 != NULL || op1 != NULL)
3013 {
3014 if (op0 == const0_rtx)
3015 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3016 if (op1 == const0_rtx)
3017 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3018 if (op0 == const1_rtx || op1 == const1_rtx)
3019 return const1_rtx;
3020 if (op0 == NULL)
3021 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3022 else if (rtx_equal_p (x, op0))
3023 /* (x | A) | x ~ (x | A). */
3024 return old;
3025 if (op1 == NULL)
3026 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3027 else if (rtx_equal_p (x, op1))
3028 /* (A | x) | x ~ (A | x). */
3029 return old;
3030 return gen_rtx_IOR (0, op0, op1);
3031 }
3032 if (! add)
3033 return NULL;
3034 return gen_rtx_IOR (0, old, x);
3035
3036 case AND:
3037 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3038 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3039 if (op0 != NULL || op1 != NULL)
3040 {
3041 if (op0 == const1_rtx)
3042 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3043 if (op1 == const1_rtx)
3044 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3045 if (op0 == const0_rtx || op1 == const0_rtx)
3046 return const0_rtx;
3047 if (op0 == NULL)
3048 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3049 else if (rtx_equal_p (x, op0))
3050 /* (x & A) | x ~ x. */
3051 return op0;
3052 if (op1 == NULL)
3053 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3054 else if (rtx_equal_p (x, op1))
3055 /* (A & x) | x ~ x. */
3056 return op1;
3057 return gen_rtx_AND (0, op0, op1);
3058 }
3059 if (! add)
3060 return NULL;
3061 return gen_rtx_IOR (0, old, x);
3062
3063 case NOT:
3064 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3065 if (op0 != NULL)
3066 return not_reg_cond (op0);
3067 if (! add)
3068 return NULL;
3069 return gen_rtx_IOR (0, old, x);
3070
3071 default:
3072 abort ();
3073 }
3074 }
3075
3076 static rtx
3077 not_reg_cond (rtx x)
3078 {
3079 enum rtx_code x_code;
3080
3081 if (x == const0_rtx)
3082 return const1_rtx;
3083 else if (x == const1_rtx)
3084 return const0_rtx;
3085 x_code = GET_CODE (x);
3086 if (x_code == NOT)
3087 return XEXP (x, 0);
3088 if (COMPARISON_P (x)
3089 && REG_P (XEXP (x, 0)))
3090 {
3091 if (XEXP (x, 1) != const0_rtx)
3092 abort ();
3093
3094 return gen_rtx_fmt_ee (reverse_condition (x_code),
3095 VOIDmode, XEXP (x, 0), const0_rtx);
3096 }
3097 return gen_rtx_NOT (0, x);
3098 }
3099
3100 static rtx
3101 and_reg_cond (rtx old, rtx x, int add)
3102 {
3103 rtx op0, op1;
3104
3105 if (COMPARISON_P (old))
3106 {
3107 if (COMPARISON_P (x)
3108 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3109 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3110 return const0_rtx;
3111 if (GET_CODE (x) == GET_CODE (old)
3112 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3113 return old;
3114 if (! add)
3115 return NULL;
3116 return gen_rtx_AND (0, old, x);
3117 }
3118
3119 switch (GET_CODE (old))
3120 {
3121 case IOR:
3122 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3123 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3124 if (op0 != NULL || op1 != NULL)
3125 {
3126 if (op0 == const0_rtx)
3127 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3128 if (op1 == const0_rtx)
3129 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3130 if (op0 == const1_rtx || op1 == const1_rtx)
3131 return const1_rtx;
3132 if (op0 == NULL)
3133 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3134 else if (rtx_equal_p (x, op0))
3135 /* (x | A) & x ~ x. */
3136 return op0;
3137 if (op1 == NULL)
3138 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3139 else if (rtx_equal_p (x, op1))
3140 /* (A | x) & x ~ x. */
3141 return op1;
3142 return gen_rtx_IOR (0, op0, op1);
3143 }
3144 if (! add)
3145 return NULL;
3146 return gen_rtx_AND (0, old, x);
3147
3148 case AND:
3149 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3150 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3151 if (op0 != NULL || op1 != NULL)
3152 {
3153 if (op0 == const1_rtx)
3154 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3155 if (op1 == const1_rtx)
3156 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3157 if (op0 == const0_rtx || op1 == const0_rtx)
3158 return const0_rtx;
3159 if (op0 == NULL)
3160 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3161 else if (rtx_equal_p (x, op0))
3162 /* (x & A) & x ~ (x & A). */
3163 return old;
3164 if (op1 == NULL)
3165 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3166 else if (rtx_equal_p (x, op1))
3167 /* (A & x) & x ~ (A & x). */
3168 return old;
3169 return gen_rtx_AND (0, op0, op1);
3170 }
3171 if (! add)
3172 return NULL;
3173 return gen_rtx_AND (0, old, x);
3174
3175 case NOT:
3176 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3177 if (op0 != NULL)
3178 return not_reg_cond (op0);
3179 if (! add)
3180 return NULL;
3181 return gen_rtx_AND (0, old, x);
3182
3183 default:
3184 abort ();
3185 }
3186 }
3187
3188 /* Given a condition X, remove references to reg REGNO and return the
3189 new condition. The removal will be done so that all conditions
3190 involving REGNO are considered to evaluate to false. This function
3191 is used when the value of REGNO changes. */
3192
3193 static rtx
3194 elim_reg_cond (rtx x, unsigned int regno)
3195 {
3196 rtx op0, op1;
3197
3198 if (COMPARISON_P (x))
3199 {
3200 if (REGNO (XEXP (x, 0)) == regno)
3201 return const0_rtx;
3202 return x;
3203 }
3204
3205 switch (GET_CODE (x))
3206 {
3207 case AND:
3208 op0 = elim_reg_cond (XEXP (x, 0), regno);
3209 op1 = elim_reg_cond (XEXP (x, 1), regno);
3210 if (op0 == const0_rtx || op1 == const0_rtx)
3211 return const0_rtx;
3212 if (op0 == const1_rtx)
3213 return op1;
3214 if (op1 == const1_rtx)
3215 return op0;
3216 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3217 return x;
3218 return gen_rtx_AND (0, op0, op1);
3219
3220 case IOR:
3221 op0 = elim_reg_cond (XEXP (x, 0), regno);
3222 op1 = elim_reg_cond (XEXP (x, 1), regno);
3223 if (op0 == const1_rtx || op1 == const1_rtx)
3224 return const1_rtx;
3225 if (op0 == const0_rtx)
3226 return op1;
3227 if (op1 == const0_rtx)
3228 return op0;
3229 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3230 return x;
3231 return gen_rtx_IOR (0, op0, op1);
3232
3233 case NOT:
3234 op0 = elim_reg_cond (XEXP (x, 0), regno);
3235 if (op0 == const0_rtx)
3236 return const1_rtx;
3237 if (op0 == const1_rtx)
3238 return const0_rtx;
3239 if (op0 != XEXP (x, 0))
3240 return not_reg_cond (op0);
3241 return x;
3242
3243 default:
3244 abort ();
3245 }
3246 }
3247 #endif /* HAVE_conditional_execution */
3248 \f
3249 #ifdef AUTO_INC_DEC
3250
3251 /* Try to substitute the auto-inc expression INC as the address inside
3252 MEM which occurs in INSN. Currently, the address of MEM is an expression
3253 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3254 that has a single set whose source is a PLUS of INCR_REG and something
3255 else. */
3256
3257 static void
3258 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3259 rtx mem, rtx incr, rtx incr_reg)
3260 {
3261 int regno = REGNO (incr_reg);
3262 rtx set = single_set (incr);
3263 rtx q = SET_DEST (set);
3264 rtx y = SET_SRC (set);
3265 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3266
3267 /* Make sure this reg appears only once in this insn. */
3268 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3269 return;
3270
3271 if (dead_or_set_p (incr, incr_reg)
3272 /* Mustn't autoinc an eliminable register. */
3273 && (regno >= FIRST_PSEUDO_REGISTER
3274 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3275 {
3276 /* This is the simple case. Try to make the auto-inc. If
3277 we can't, we are done. Otherwise, we will do any
3278 needed updates below. */
3279 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3280 return;
3281 }
3282 else if (REG_P (q)
3283 /* PREV_INSN used here to check the semi-open interval
3284 [insn,incr). */
3285 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3286 /* We must also check for sets of q as q may be
3287 a call clobbered hard register and there may
3288 be a call between PREV_INSN (insn) and incr. */
3289 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3290 {
3291 /* We have *p followed sometime later by q = p+size.
3292 Both p and q must be live afterward,
3293 and q is not used between INSN and its assignment.
3294 Change it to q = p, ...*q..., q = q+size.
3295 Then fall into the usual case. */
3296 rtx insns, temp;
3297
3298 start_sequence ();
3299 emit_move_insn (q, incr_reg);
3300 insns = get_insns ();
3301 end_sequence ();
3302
3303 /* If we can't make the auto-inc, or can't make the
3304 replacement into Y, exit. There's no point in making
3305 the change below if we can't do the auto-inc and doing
3306 so is not correct in the pre-inc case. */
3307
3308 XEXP (inc, 0) = q;
3309 validate_change (insn, &XEXP (mem, 0), inc, 1);
3310 validate_change (incr, &XEXP (y, opnum), q, 1);
3311 if (! apply_change_group ())
3312 return;
3313
3314 /* We now know we'll be doing this change, so emit the
3315 new insn(s) and do the updates. */
3316 emit_insn_before (insns, insn);
3317
3318 if (BB_HEAD (pbi->bb) == insn)
3319 BB_HEAD (pbi->bb) = insns;
3320
3321 /* INCR will become a NOTE and INSN won't contain a
3322 use of INCR_REG. If a use of INCR_REG was just placed in
3323 the insn before INSN, make that the next use.
3324 Otherwise, invalidate it. */
3325 if (GET_CODE (PREV_INSN (insn)) == INSN
3326 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3327 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3328 pbi->reg_next_use[regno] = PREV_INSN (insn);
3329 else
3330 pbi->reg_next_use[regno] = 0;
3331
3332 incr_reg = q;
3333 regno = REGNO (q);
3334
3335 if ((pbi->flags & PROP_REG_INFO)
3336 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3337 reg_deaths[regno] = pbi->insn_num;
3338
3339 /* REGNO is now used in INCR which is below INSN, but
3340 it previously wasn't live here. If we don't mark
3341 it as live, we'll put a REG_DEAD note for it
3342 on this insn, which is incorrect. */
3343 SET_REGNO_REG_SET (pbi->reg_live, regno);
3344
3345 /* If there are any calls between INSN and INCR, show
3346 that REGNO now crosses them. */
3347 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3348 if (GET_CODE (temp) == CALL_INSN)
3349 REG_N_CALLS_CROSSED (regno)++;
3350
3351 /* Invalidate alias info for Q since we just changed its value. */
3352 clear_reg_alias_info (q);
3353 }
3354 else
3355 return;
3356
3357 /* If we haven't returned, it means we were able to make the
3358 auto-inc, so update the status. First, record that this insn
3359 has an implicit side effect. */
3360
3361 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3362
3363 /* Modify the old increment-insn to simply copy
3364 the already-incremented value of our register. */
3365 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3366 abort ();
3367
3368 /* If that makes it a no-op (copying the register into itself) delete
3369 it so it won't appear to be a "use" and a "set" of this
3370 register. */
3371 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3372 {
3373 /* If the original source was dead, it's dead now. */
3374 rtx note;
3375
3376 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3377 {
3378 remove_note (incr, note);
3379 if (XEXP (note, 0) != incr_reg)
3380 {
3381 unsigned int regno = REGNO (XEXP (note, 0));
3382
3383 if ((pbi->flags & PROP_REG_INFO)
3384 && REGNO_REG_SET_P (pbi->reg_live, regno))
3385 {
3386 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3387 reg_deaths[regno] = 0;
3388 }
3389 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3390 }
3391 }
3392
3393 PUT_CODE (incr, NOTE);
3394 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3395 NOTE_SOURCE_FILE (incr) = 0;
3396 }
3397
3398 if (regno >= FIRST_PSEUDO_REGISTER)
3399 {
3400 /* Count an extra reference to the reg. When a reg is
3401 incremented, spilling it is worse, so we want to make
3402 that less likely. */
3403 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3404
3405 /* Count the increment as a setting of the register,
3406 even though it isn't a SET in rtl. */
3407 REG_N_SETS (regno)++;
3408 }
3409 }
3410
3411 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3412 reference. */
3413
3414 static void
3415 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3416 {
3417 rtx addr = XEXP (x, 0);
3418 HOST_WIDE_INT offset = 0;
3419 rtx set, y, incr, inc_val;
3420 int regno;
3421 int size = GET_MODE_SIZE (GET_MODE (x));
3422
3423 if (GET_CODE (insn) == JUMP_INSN)
3424 return;
3425
3426 /* Here we detect use of an index register which might be good for
3427 postincrement, postdecrement, preincrement, or predecrement. */
3428
3429 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3430 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3431
3432 if (!REG_P (addr))
3433 return;
3434
3435 regno = REGNO (addr);
3436
3437 /* Is the next use an increment that might make auto-increment? */
3438 incr = pbi->reg_next_use[regno];
3439 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3440 return;
3441 set = single_set (incr);
3442 if (set == 0 || GET_CODE (set) != SET)
3443 return;
3444 y = SET_SRC (set);
3445
3446 if (GET_CODE (y) != PLUS)
3447 return;
3448
3449 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3450 inc_val = XEXP (y, 1);
3451 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3452 inc_val = XEXP (y, 0);
3453 else
3454 return;
3455
3456 if (GET_CODE (inc_val) == CONST_INT)
3457 {
3458 if (HAVE_POST_INCREMENT
3459 && (INTVAL (inc_val) == size && offset == 0))
3460 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3461 incr, addr);
3462 else if (HAVE_POST_DECREMENT
3463 && (INTVAL (inc_val) == -size && offset == 0))
3464 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3465 incr, addr);
3466 else if (HAVE_PRE_INCREMENT
3467 && (INTVAL (inc_val) == size && offset == size))
3468 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3469 incr, addr);
3470 else if (HAVE_PRE_DECREMENT
3471 && (INTVAL (inc_val) == -size && offset == -size))
3472 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3473 incr, addr);
3474 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3476 gen_rtx_PLUS (Pmode,
3477 addr,
3478 inc_val)),
3479 insn, x, incr, addr);
3480 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3481 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3482 gen_rtx_PLUS (Pmode,
3483 addr,
3484 inc_val)),
3485 insn, x, incr, addr);
3486 }
3487 else if (REG_P (inc_val)
3488 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3489 NEXT_INSN (incr)))
3490
3491 {
3492 if (HAVE_POST_MODIFY_REG && offset == 0)
3493 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3494 gen_rtx_PLUS (Pmode,
3495 addr,
3496 inc_val)),
3497 insn, x, incr, addr);
3498 }
3499 }
3500
3501 #endif /* AUTO_INC_DEC */
3502 \f
3503 static void
3504 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3505 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3506 {
3507 unsigned int regno_first, regno_last, i;
3508 int some_was_live, some_was_dead, some_not_set;
3509
3510 regno_last = regno_first = REGNO (reg);
3511 if (regno_first < FIRST_PSEUDO_REGISTER)
3512 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3513
3514 /* Find out if any of this register is live after this instruction. */
3515 some_was_live = some_was_dead = 0;
3516 for (i = regno_first; i <= regno_last; ++i)
3517 {
3518 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3519 some_was_live |= needed_regno;
3520 some_was_dead |= ! needed_regno;
3521 }
3522
3523 /* Find out if any of the register was set this insn. */
3524 some_not_set = 0;
3525 for (i = regno_first; i <= regno_last; ++i)
3526 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3527
3528 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3529 {
3530 /* Record where each reg is used, so when the reg is set we know
3531 the next insn that uses it. */
3532 pbi->reg_next_use[regno_first] = insn;
3533 }
3534
3535 if (pbi->flags & PROP_REG_INFO)
3536 {
3537 if (regno_first < FIRST_PSEUDO_REGISTER)
3538 {
3539 /* If this is a register we are going to try to eliminate,
3540 don't mark it live here. If we are successful in
3541 eliminating it, it need not be live unless it is used for
3542 pseudos, in which case it will have been set live when it
3543 was allocated to the pseudos. If the register will not
3544 be eliminated, reload will set it live at that point.
3545
3546 Otherwise, record that this function uses this register. */
3547 /* ??? The PPC backend tries to "eliminate" on the pic
3548 register to itself. This should be fixed. In the mean
3549 time, hack around it. */
3550
3551 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3552 && (regno_first == FRAME_POINTER_REGNUM
3553 || regno_first == ARG_POINTER_REGNUM)))
3554 for (i = regno_first; i <= regno_last; ++i)
3555 regs_ever_live[i] = 1;
3556 }
3557 else
3558 {
3559 /* Keep track of which basic block each reg appears in. */
3560
3561 int blocknum = pbi->bb->index;
3562 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3563 REG_BASIC_BLOCK (regno_first) = blocknum;
3564 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3565 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3566
3567 /* Count (weighted) number of uses of each reg. */
3568 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3569 REG_N_REFS (regno_first)++;
3570 }
3571 for (i = regno_first; i <= regno_last; ++i)
3572 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3573 {
3574 #ifdef ENABLE_CHECKING
3575 if (reg_deaths[i])
3576 abort ();
3577 #endif
3578 reg_deaths[i] = pbi->insn_num;
3579 }
3580 }
3581
3582 /* Record and count the insns in which a reg dies. If it is used in
3583 this insn and was dead below the insn then it dies in this insn.
3584 If it was set in this insn, we do not make a REG_DEAD note;
3585 likewise if we already made such a note. */
3586 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3587 && some_was_dead
3588 && some_not_set)
3589 {
3590 /* Check for the case where the register dying partially
3591 overlaps the register set by this insn. */
3592 if (regno_first != regno_last)
3593 for (i = regno_first; i <= regno_last; ++i)
3594 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3595
3596 /* If none of the words in X is needed, make a REG_DEAD note.
3597 Otherwise, we must make partial REG_DEAD notes. */
3598 if (! some_was_live)
3599 {
3600 if ((pbi->flags & PROP_DEATH_NOTES)
3601 && ! find_regno_note (insn, REG_DEAD, regno_first))
3602 REG_NOTES (insn)
3603 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3604
3605 if (pbi->flags & PROP_REG_INFO)
3606 REG_N_DEATHS (regno_first)++;
3607 }
3608 else
3609 {
3610 /* Don't make a REG_DEAD note for a part of a register
3611 that is set in the insn. */
3612 for (i = regno_first; i <= regno_last; ++i)
3613 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3614 && ! dead_or_set_regno_p (insn, i))
3615 REG_NOTES (insn)
3616 = alloc_EXPR_LIST (REG_DEAD,
3617 regno_reg_rtx[i],
3618 REG_NOTES (insn));
3619 }
3620 }
3621
3622 /* Mark the register as being live. */
3623 for (i = regno_first; i <= regno_last; ++i)
3624 {
3625 #ifdef HAVE_conditional_execution
3626 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3627 #endif
3628
3629 SET_REGNO_REG_SET (pbi->reg_live, i);
3630
3631 #ifdef HAVE_conditional_execution
3632 /* If this is a conditional use, record that fact. If it is later
3633 conditionally set, we'll know to kill the register. */
3634 if (cond != NULL_RTX)
3635 {
3636 splay_tree_node node;
3637 struct reg_cond_life_info *rcli;
3638 rtx ncond;
3639
3640 if (this_was_live)
3641 {
3642 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3643 if (node == NULL)
3644 {
3645 /* The register was unconditionally live previously.
3646 No need to do anything. */
3647 }
3648 else
3649 {
3650 /* The register was conditionally live previously.
3651 Subtract the new life cond from the old death cond. */
3652 rcli = (struct reg_cond_life_info *) node->value;
3653 ncond = rcli->condition;
3654 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3655
3656 /* If the register is now unconditionally live,
3657 remove the entry in the splay_tree. */
3658 if (ncond == const0_rtx)
3659 splay_tree_remove (pbi->reg_cond_dead, i);
3660 else
3661 {
3662 rcli->condition = ncond;
3663 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3664 REGNO (XEXP (cond, 0)));
3665 }
3666 }
3667 }
3668 else
3669 {
3670 /* The register was not previously live at all. Record
3671 the condition under which it is still dead. */
3672 rcli = xmalloc (sizeof (*rcli));
3673 rcli->condition = not_reg_cond (cond);
3674 rcli->stores = const0_rtx;
3675 rcli->orig_condition = const0_rtx;
3676 splay_tree_insert (pbi->reg_cond_dead, i,
3677 (splay_tree_value) rcli);
3678
3679 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3680 }
3681 }
3682 else if (this_was_live)
3683 {
3684 /* The register may have been conditionally live previously, but
3685 is now unconditionally live. Remove it from the conditionally
3686 dead list, so that a conditional set won't cause us to think
3687 it dead. */
3688 splay_tree_remove (pbi->reg_cond_dead, i);
3689 }
3690 #endif
3691 }
3692 }
3693
3694 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3695 This is done assuming the registers needed from X are those that
3696 have 1-bits in PBI->REG_LIVE.
3697
3698 INSN is the containing instruction. If INSN is dead, this function
3699 is not called. */
3700
3701 static void
3702 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3703 {
3704 RTX_CODE code;
3705 int regno;
3706 int flags = pbi->flags;
3707
3708 retry:
3709 if (!x)
3710 return;
3711 code = GET_CODE (x);
3712 switch (code)
3713 {
3714 case LABEL_REF:
3715 case SYMBOL_REF:
3716 case CONST_INT:
3717 case CONST:
3718 case CONST_DOUBLE:
3719 case CONST_VECTOR:
3720 case PC:
3721 case ADDR_VEC:
3722 case ADDR_DIFF_VEC:
3723 return;
3724
3725 #ifdef HAVE_cc0
3726 case CC0:
3727 pbi->cc0_live = 1;
3728 return;
3729 #endif
3730
3731 case CLOBBER:
3732 /* If we are clobbering a MEM, mark any registers inside the address
3733 as being used. */
3734 if (GET_CODE (XEXP (x, 0)) == MEM)
3735 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3736 return;
3737
3738 case MEM:
3739 /* Don't bother watching stores to mems if this is not the
3740 final pass. We'll not be deleting dead stores this round. */
3741 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3742 {
3743 /* Invalidate the data for the last MEM stored, but only if MEM is
3744 something that can be stored into. */
3745 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3746 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3747 /* Needn't clear the memory set list. */
3748 ;
3749 else
3750 {
3751 rtx temp = pbi->mem_set_list;
3752 rtx prev = NULL_RTX;
3753 rtx next;
3754
3755 while (temp)
3756 {
3757 next = XEXP (temp, 1);
3758 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3759 {
3760 /* Splice temp out of the list. */
3761 if (prev)
3762 XEXP (prev, 1) = next;
3763 else
3764 pbi->mem_set_list = next;
3765 free_EXPR_LIST_node (temp);
3766 pbi->mem_set_list_len--;
3767 }
3768 else
3769 prev = temp;
3770 temp = next;
3771 }
3772 }
3773
3774 /* If the memory reference had embedded side effects (autoincrement
3775 address modes. Then we may need to kill some entries on the
3776 memory set list. */
3777 if (insn)
3778 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3779 }
3780
3781 #ifdef AUTO_INC_DEC
3782 if (flags & PROP_AUTOINC)
3783 find_auto_inc (pbi, x, insn);
3784 #endif
3785 break;
3786
3787 case SUBREG:
3788 #ifdef CANNOT_CHANGE_MODE_CLASS
3789 if ((flags & PROP_REG_INFO)
3790 && REG_P (SUBREG_REG (x))
3791 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3792 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3793 * MAX_MACHINE_MODE
3794 + GET_MODE (x));
3795 #endif
3796
3797 /* While we're here, optimize this case. */
3798 x = SUBREG_REG (x);
3799 if (!REG_P (x))
3800 goto retry;
3801 /* Fall through. */
3802
3803 case REG:
3804 /* See a register other than being set => mark it as needed. */
3805 mark_used_reg (pbi, x, cond, insn);
3806 return;
3807
3808 case SET:
3809 {
3810 rtx testreg = SET_DEST (x);
3811 int mark_dest = 0;
3812
3813 /* If storing into MEM, don't show it as being used. But do
3814 show the address as being used. */
3815 if (GET_CODE (testreg) == MEM)
3816 {
3817 #ifdef AUTO_INC_DEC
3818 if (flags & PROP_AUTOINC)
3819 find_auto_inc (pbi, testreg, insn);
3820 #endif
3821 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3822 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3823 return;
3824 }
3825
3826 /* Storing in STRICT_LOW_PART is like storing in a reg
3827 in that this SET might be dead, so ignore it in TESTREG.
3828 but in some other ways it is like using the reg.
3829
3830 Storing in a SUBREG or a bit field is like storing the entire
3831 register in that if the register's value is not used
3832 then this SET is not needed. */
3833 while (GET_CODE (testreg) == STRICT_LOW_PART
3834 || GET_CODE (testreg) == ZERO_EXTRACT
3835 || GET_CODE (testreg) == SIGN_EXTRACT
3836 || GET_CODE (testreg) == SUBREG)
3837 {
3838 #ifdef CANNOT_CHANGE_MODE_CLASS
3839 if ((flags & PROP_REG_INFO)
3840 && GET_CODE (testreg) == SUBREG
3841 && REG_P (SUBREG_REG (testreg))
3842 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3843 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3844 * MAX_MACHINE_MODE
3845 + GET_MODE (testreg));
3846 #endif
3847
3848 /* Modifying a single register in an alternate mode
3849 does not use any of the old value. But these other
3850 ways of storing in a register do use the old value. */
3851 if (GET_CODE (testreg) == SUBREG
3852 && !((REG_BYTES (SUBREG_REG (testreg))
3853 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3854 > (REG_BYTES (testreg)
3855 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3856 ;
3857 else
3858 mark_dest = 1;
3859
3860 testreg = XEXP (testreg, 0);
3861 }
3862
3863 /* If this is a store into a register or group of registers,
3864 recursively scan the value being stored. */
3865
3866 if ((GET_CODE (testreg) == PARALLEL
3867 && GET_MODE (testreg) == BLKmode)
3868 || (REG_P (testreg)
3869 && (regno = REGNO (testreg),
3870 ! (regno == FRAME_POINTER_REGNUM
3871 && (! reload_completed || frame_pointer_needed)))
3872 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3873 && ! (regno == HARD_FRAME_POINTER_REGNUM
3874 && (! reload_completed || frame_pointer_needed))
3875 #endif
3876 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3877 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3878 #endif
3879 ))
3880 {
3881 if (mark_dest)
3882 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3883 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3884 return;
3885 }
3886 }
3887 break;
3888
3889 case ASM_OPERANDS:
3890 case UNSPEC_VOLATILE:
3891 case TRAP_IF:
3892 case ASM_INPUT:
3893 {
3894 /* Traditional and volatile asm instructions must be considered to use
3895 and clobber all hard registers, all pseudo-registers and all of
3896 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3897
3898 Consider for instance a volatile asm that changes the fpu rounding
3899 mode. An insn should not be moved across this even if it only uses
3900 pseudo-regs because it might give an incorrectly rounded result.
3901
3902 ?!? Unfortunately, marking all hard registers as live causes massive
3903 problems for the register allocator and marking all pseudos as live
3904 creates mountains of uninitialized variable warnings.
3905
3906 So for now, just clear the memory set list and mark any regs
3907 we can find in ASM_OPERANDS as used. */
3908 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3909 {
3910 free_EXPR_LIST_list (&pbi->mem_set_list);
3911 pbi->mem_set_list_len = 0;
3912 }
3913
3914 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3915 We can not just fall through here since then we would be confused
3916 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3917 traditional asms unlike their normal usage. */
3918 if (code == ASM_OPERANDS)
3919 {
3920 int j;
3921
3922 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3923 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3924 }
3925 break;
3926 }
3927
3928 case COND_EXEC:
3929 if (cond != NULL_RTX)
3930 abort ();
3931
3932 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3933
3934 cond = COND_EXEC_TEST (x);
3935 x = COND_EXEC_CODE (x);
3936 goto retry;
3937
3938 default:
3939 break;
3940 }
3941
3942 /* Recursively scan the operands of this expression. */
3943
3944 {
3945 const char * const fmt = GET_RTX_FORMAT (code);
3946 int i;
3947
3948 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3949 {
3950 if (fmt[i] == 'e')
3951 {
3952 /* Tail recursive case: save a function call level. */
3953 if (i == 0)
3954 {
3955 x = XEXP (x, 0);
3956 goto retry;
3957 }
3958 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3959 }
3960 else if (fmt[i] == 'E')
3961 {
3962 int j;
3963 for (j = 0; j < XVECLEN (x, i); j++)
3964 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3965 }
3966 }
3967 }
3968 }
3969 \f
3970 #ifdef AUTO_INC_DEC
3971
3972 static int
3973 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3974 {
3975 /* Find the next use of this reg. If in same basic block,
3976 make it do pre-increment or pre-decrement if appropriate. */
3977 rtx x = single_set (insn);
3978 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3979 * INTVAL (XEXP (SET_SRC (x), 1)));
3980 int regno = REGNO (SET_DEST (x));
3981 rtx y = pbi->reg_next_use[regno];
3982 if (y != 0
3983 && SET_DEST (x) != stack_pointer_rtx
3984 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3985 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3986 mode would be better. */
3987 && ! dead_or_set_p (y, SET_DEST (x))
3988 && try_pre_increment (y, SET_DEST (x), amount))
3989 {
3990 /* We have found a suitable auto-increment and already changed
3991 insn Y to do it. So flush this increment instruction. */
3992 propagate_block_delete_insn (insn);
3993
3994 /* Count a reference to this reg for the increment insn we are
3995 deleting. When a reg is incremented, spilling it is worse,
3996 so we want to make that less likely. */
3997 if (regno >= FIRST_PSEUDO_REGISTER)
3998 {
3999 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4000 REG_N_SETS (regno)++;
4001 }
4002
4003 /* Flush any remembered memories depending on the value of
4004 the incremented register. */
4005 invalidate_mems_from_set (pbi, SET_DEST (x));
4006
4007 return 1;
4008 }
4009 return 0;
4010 }
4011
4012 /* Try to change INSN so that it does pre-increment or pre-decrement
4013 addressing on register REG in order to add AMOUNT to REG.
4014 AMOUNT is negative for pre-decrement.
4015 Returns 1 if the change could be made.
4016 This checks all about the validity of the result of modifying INSN. */
4017
4018 static int
4019 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4020 {
4021 rtx use;
4022
4023 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4024 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4025 int pre_ok = 0;
4026 /* Nonzero if we can try to make a post-increment or post-decrement.
4027 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4028 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4029 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4030 int post_ok = 0;
4031
4032 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4033 int do_post = 0;
4034
4035 /* From the sign of increment, see which possibilities are conceivable
4036 on this target machine. */
4037 if (HAVE_PRE_INCREMENT && amount > 0)
4038 pre_ok = 1;
4039 if (HAVE_POST_INCREMENT && amount > 0)
4040 post_ok = 1;
4041
4042 if (HAVE_PRE_DECREMENT && amount < 0)
4043 pre_ok = 1;
4044 if (HAVE_POST_DECREMENT && amount < 0)
4045 post_ok = 1;
4046
4047 if (! (pre_ok || post_ok))
4048 return 0;
4049
4050 /* It is not safe to add a side effect to a jump insn
4051 because if the incremented register is spilled and must be reloaded
4052 there would be no way to store the incremented value back in memory. */
4053
4054 if (GET_CODE (insn) == JUMP_INSN)
4055 return 0;
4056
4057 use = 0;
4058 if (pre_ok)
4059 use = find_use_as_address (PATTERN (insn), reg, 0);
4060 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4061 {
4062 use = find_use_as_address (PATTERN (insn), reg, -amount);
4063 do_post = 1;
4064 }
4065
4066 if (use == 0 || use == (rtx) (size_t) 1)
4067 return 0;
4068
4069 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4070 return 0;
4071
4072 /* See if this combination of instruction and addressing mode exists. */
4073 if (! validate_change (insn, &XEXP (use, 0),
4074 gen_rtx_fmt_e (amount > 0
4075 ? (do_post ? POST_INC : PRE_INC)
4076 : (do_post ? POST_DEC : PRE_DEC),
4077 Pmode, reg), 0))
4078 return 0;
4079
4080 /* Record that this insn now has an implicit side effect on X. */
4081 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4082 return 1;
4083 }
4084
4085 #endif /* AUTO_INC_DEC */
4086 \f
4087 /* Find the place in the rtx X where REG is used as a memory address.
4088 Return the MEM rtx that so uses it.
4089 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4090 (plus REG (const_int PLUSCONST)).
4091
4092 If such an address does not appear, return 0.
4093 If REG appears more than once, or is used other than in such an address,
4094 return (rtx) 1. */
4095
4096 rtx
4097 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4098 {
4099 enum rtx_code code = GET_CODE (x);
4100 const char * const fmt = GET_RTX_FORMAT (code);
4101 int i;
4102 rtx value = 0;
4103 rtx tem;
4104
4105 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4106 return x;
4107
4108 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4109 && XEXP (XEXP (x, 0), 0) == reg
4110 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4111 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4112 return x;
4113
4114 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4115 {
4116 /* If REG occurs inside a MEM used in a bit-field reference,
4117 that is unacceptable. */
4118 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4119 return (rtx) (size_t) 1;
4120 }
4121
4122 if (x == reg)
4123 return (rtx) (size_t) 1;
4124
4125 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4126 {
4127 if (fmt[i] == 'e')
4128 {
4129 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4130 if (value == 0)
4131 value = tem;
4132 else if (tem != 0)
4133 return (rtx) (size_t) 1;
4134 }
4135 else if (fmt[i] == 'E')
4136 {
4137 int j;
4138 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4139 {
4140 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4141 if (value == 0)
4142 value = tem;
4143 else if (tem != 0)
4144 return (rtx) (size_t) 1;
4145 }
4146 }
4147 }
4148
4149 return value;
4150 }
4151 \f
4152 /* Write information about registers and basic blocks into FILE.
4153 This is part of making a debugging dump. */
4154
4155 void
4156 dump_regset (regset r, FILE *outf)
4157 {
4158 int i;
4159 if (r == NULL)
4160 {
4161 fputs (" (nil)", outf);
4162 return;
4163 }
4164
4165 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4166 {
4167 fprintf (outf, " %d", i);
4168 if (i < FIRST_PSEUDO_REGISTER)
4169 fprintf (outf, " [%s]",
4170 reg_names[i]);
4171 });
4172 }
4173
4174 /* Print a human-readable representation of R on the standard error
4175 stream. This function is designed to be used from within the
4176 debugger. */
4177
4178 void
4179 debug_regset (regset r)
4180 {
4181 dump_regset (r, stderr);
4182 putc ('\n', stderr);
4183 }
4184
4185 /* Recompute register set/reference counts immediately prior to register
4186 allocation.
4187
4188 This avoids problems with set/reference counts changing to/from values
4189 which have special meanings to the register allocators.
4190
4191 Additionally, the reference counts are the primary component used by the
4192 register allocators to prioritize pseudos for allocation to hard regs.
4193 More accurate reference counts generally lead to better register allocation.
4194
4195 F is the first insn to be scanned.
4196
4197 LOOP_STEP denotes how much loop_depth should be incremented per
4198 loop nesting level in order to increase the ref count more for
4199 references in a loop.
4200
4201 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4202 possibly other information which is used by the register allocators. */
4203
4204 void
4205 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4206 {
4207 allocate_reg_life_data ();
4208 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4209 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4210 solve this update the DEATH_NOTES here. */
4211 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4212 }
4213
4214 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4215 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4216 of the number of registers that died. */
4217
4218 int
4219 count_or_remove_death_notes (sbitmap blocks, int kill)
4220 {
4221 int count = 0;
4222 int i;
4223 basic_block bb;
4224
4225 /* This used to be a loop over all the blocks with a membership test
4226 inside the loop. That can be amazingly expensive on a large CFG
4227 when only a small number of bits are set in BLOCKs (for example,
4228 the calls from the scheduler typically have very few bits set).
4229
4230 For extra credit, someone should convert BLOCKS to a bitmap rather
4231 than an sbitmap. */
4232 if (blocks)
4233 {
4234 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4235 {
4236 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4237 });
4238 }
4239 else
4240 {
4241 FOR_EACH_BB (bb)
4242 {
4243 count += count_or_remove_death_notes_bb (bb, kill);
4244 }
4245 }
4246
4247 return count;
4248 }
4249
4250 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4251 block BB. Returns a count of the number of registers that died. */
4252
4253 static int
4254 count_or_remove_death_notes_bb (basic_block bb, int kill)
4255 {
4256 int count = 0;
4257 rtx insn;
4258
4259 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4260 {
4261 if (INSN_P (insn))
4262 {
4263 rtx *pprev = &REG_NOTES (insn);
4264 rtx link = *pprev;
4265
4266 while (link)
4267 {
4268 switch (REG_NOTE_KIND (link))
4269 {
4270 case REG_DEAD:
4271 if (REG_P (XEXP (link, 0)))
4272 {
4273 rtx reg = XEXP (link, 0);
4274 int n;
4275
4276 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4277 n = 1;
4278 else
4279 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4280 count += n;
4281 }
4282
4283 /* Fall through. */
4284
4285 case REG_UNUSED:
4286 if (kill)
4287 {
4288 rtx next = XEXP (link, 1);
4289 free_EXPR_LIST_node (link);
4290 *pprev = link = next;
4291 break;
4292 }
4293 /* Fall through. */
4294
4295 default:
4296 pprev = &XEXP (link, 1);
4297 link = *pprev;
4298 break;
4299 }
4300 }
4301 }
4302
4303 if (insn == BB_END (bb))
4304 break;
4305 }
4306
4307 return count;
4308 }
4309
4310 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4311 if blocks is NULL. */
4312
4313 static void
4314 clear_log_links (sbitmap blocks)
4315 {
4316 rtx insn;
4317 int i;
4318
4319 if (!blocks)
4320 {
4321 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4322 if (INSN_P (insn))
4323 free_INSN_LIST_list (&LOG_LINKS (insn));
4324 }
4325 else
4326 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4327 {
4328 basic_block bb = BASIC_BLOCK (i);
4329
4330 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4331 insn = NEXT_INSN (insn))
4332 if (INSN_P (insn))
4333 free_INSN_LIST_list (&LOG_LINKS (insn));
4334 });
4335 }
4336
4337 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4338 correspond to the hard registers, if any, set in that map. This
4339 could be done far more efficiently by having all sorts of special-cases
4340 with moving single words, but probably isn't worth the trouble. */
4341
4342 void
4343 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4344 {
4345 int i;
4346
4347 EXECUTE_IF_SET_IN_BITMAP
4348 (from, 0, i,
4349 {
4350 if (i >= FIRST_PSEUDO_REGISTER)
4351 return;
4352 SET_HARD_REG_BIT (*to, i);
4353 });
4354 }