local-alloc.c (local_alloc): Avoid call of update_equiv_regs when not optimizing.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
344 rtx));
345 static void clear_log_links PARAMS ((sbitmap));
346 \f
347
348 void
349 check_function_return_warnings ()
350 {
351 if (warn_missing_noreturn
352 && !TREE_THIS_VOLATILE (cfun->decl)
353 && EXIT_BLOCK_PTR->pred == NULL
354 && (lang_missing_noreturn_ok_p
355 && !lang_missing_noreturn_ok_p (cfun->decl)))
356 warning ("function might be possible candidate for attribute `noreturn'");
357
358 /* If we have a path to EXIT, then we do return. */
359 if (TREE_THIS_VOLATILE (cfun->decl)
360 && EXIT_BLOCK_PTR->pred != NULL)
361 warning ("`noreturn' function does return");
362
363 /* If the clobber_return_insn appears in some basic block, then we
364 do reach the end without returning a value. */
365 else if (warn_return_type
366 && cfun->x_clobber_return_insn != NULL
367 && EXIT_BLOCK_PTR->pred != NULL)
368 {
369 int max_uid = get_max_uid ();
370
371 /* If clobber_return_insn was excised by jump1, then renumber_insns
372 can make max_uid smaller than the number still recorded in our rtx.
373 That's fine, since this is a quick way of verifying that the insn
374 is no longer in the chain. */
375 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
376 {
377 /* Recompute insn->block mapping, since the initial mapping is
378 set before we delete unreachable blocks. */
379 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
380 warning ("control reaches end of non-void function");
381 }
382 }
383 }
384 \f
385 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
386 note associated with the BLOCK. */
387
388 rtx
389 first_insn_after_basic_block_note (block)
390 basic_block block;
391 {
392 rtx insn;
393
394 /* Get the first instruction in the block. */
395 insn = block->head;
396
397 if (insn == NULL_RTX)
398 return NULL_RTX;
399 if (GET_CODE (insn) == CODE_LABEL)
400 insn = NEXT_INSN (insn);
401 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
402 abort ();
403
404 return NEXT_INSN (insn);
405 }
406 \f
407 /* Perform data flow analysis.
408 F is the first insn of the function; FLAGS is a set of PROP_* flags
409 to be used in accumulating flow info. */
410
411 void
412 life_analysis (f, file, flags)
413 rtx f;
414 FILE *file;
415 int flags;
416 {
417 #ifdef ELIMINABLE_REGS
418 int i;
419 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
420 #endif
421
422 /* Record which registers will be eliminated. We use this in
423 mark_used_regs. */
424
425 CLEAR_HARD_REG_SET (elim_reg_set);
426
427 #ifdef ELIMINABLE_REGS
428 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
429 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
430 #else
431 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
432 #endif
433
434 if (! optimize)
435 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
436
437 /* The post-reload life analysis have (on a global basis) the same
438 registers live as was computed by reload itself. elimination
439 Otherwise offsets and such may be incorrect.
440
441 Reload will make some registers as live even though they do not
442 appear in the rtl.
443
444 We don't want to create new auto-incs after reload, since they
445 are unlikely to be useful and can cause problems with shared
446 stack slots. */
447 if (reload_completed)
448 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
449
450 /* We want alias analysis information for local dead store elimination. */
451 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
452 init_alias_analysis ();
453
454 /* Always remove no-op moves. Do this before other processing so
455 that we don't have to keep re-scanning them. */
456 delete_noop_moves (f);
457
458 /* Some targets can emit simpler epilogues if they know that sp was
459 not ever modified during the function. After reload, of course,
460 we've already emitted the epilogue so there's no sense searching. */
461 if (! reload_completed)
462 notice_stack_pointer_modification (f);
463
464 /* Allocate and zero out data structures that will record the
465 data from lifetime analysis. */
466 allocate_reg_life_data ();
467 allocate_bb_life_data ();
468
469 /* Find the set of registers live on function exit. */
470 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
471
472 /* "Update" life info from zero. It'd be nice to begin the
473 relaxation with just the exit and noreturn blocks, but that set
474 is not immediately handy. */
475
476 if (flags & PROP_REG_INFO)
477 memset (regs_ever_live, 0, sizeof (regs_ever_live));
478 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
479
480 /* Clean up. */
481 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
482 end_alias_analysis ();
483
484 if (file)
485 dump_flow_info (file);
486
487 free_basic_block_vars (1);
488
489 #ifdef ENABLE_CHECKING
490 {
491 rtx insn;
492
493 /* Search for any REG_LABEL notes which reference deleted labels. */
494 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
495 {
496 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
497
498 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
499 abort ();
500 }
501 }
502 #endif
503 /* Removing dead insns should've made jumptables really dead. */
504 delete_dead_jumptables ();
505 }
506
507 /* A subroutine of verify_wide_reg, called through for_each_rtx.
508 Search for REGNO. If found, return 2 if it is not wider than
509 word_mode. */
510
511 static int
512 verify_wide_reg_1 (px, pregno)
513 rtx *px;
514 void *pregno;
515 {
516 rtx x = *px;
517 unsigned int regno = *(int *) pregno;
518
519 if (GET_CODE (x) == REG && REGNO (x) == regno)
520 {
521 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
522 return 2;
523 return 1;
524 }
525 return 0;
526 }
527
528 /* A subroutine of verify_local_live_at_start. Search through insns
529 of BB looking for register REGNO. */
530
531 static void
532 verify_wide_reg (regno, bb)
533 int regno;
534 basic_block bb;
535 {
536 rtx head = bb->head, end = bb->end;
537
538 while (1)
539 {
540 if (INSN_P (head))
541 {
542 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
543 if (r == 1)
544 return;
545 if (r == 2)
546 break;
547 }
548 if (head == end)
549 break;
550 head = NEXT_INSN (head);
551 }
552
553 if (rtl_dump_file)
554 {
555 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
556 dump_bb (bb, rtl_dump_file);
557 }
558 abort ();
559 }
560
561 /* A subroutine of update_life_info. Verify that there are no untoward
562 changes in live_at_start during a local update. */
563
564 static void
565 verify_local_live_at_start (new_live_at_start, bb)
566 regset new_live_at_start;
567 basic_block bb;
568 {
569 if (reload_completed)
570 {
571 /* After reload, there are no pseudos, nor subregs of multi-word
572 registers. The regsets should exactly match. */
573 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
574 {
575 if (rtl_dump_file)
576 {
577 fprintf (rtl_dump_file,
578 "live_at_start mismatch in bb %d, aborting\nNew:\n",
579 bb->index);
580 debug_bitmap_file (rtl_dump_file, new_live_at_start);
581 fputs ("Old:\n", rtl_dump_file);
582 dump_bb (bb, rtl_dump_file);
583 }
584 abort ();
585 }
586 }
587 else
588 {
589 int i;
590
591 /* Find the set of changed registers. */
592 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
593
594 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
595 {
596 /* No registers should die. */
597 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
598 {
599 if (rtl_dump_file)
600 {
601 fprintf (rtl_dump_file,
602 "Register %d died unexpectedly.\n", i);
603 dump_bb (bb, rtl_dump_file);
604 }
605 abort ();
606 }
607
608 /* Verify that the now-live register is wider than word_mode. */
609 verify_wide_reg (i, bb);
610 });
611 }
612 }
613
614 /* Updates life information starting with the basic blocks set in BLOCKS.
615 If BLOCKS is null, consider it to be the universal set.
616
617 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
618 we are only expecting local modifications to basic blocks. If we find
619 extra registers live at the beginning of a block, then we either killed
620 useful data, or we have a broken split that wants data not provided.
621 If we find registers removed from live_at_start, that means we have
622 a broken peephole that is killing a register it shouldn't.
623
624 ??? This is not true in one situation -- when a pre-reload splitter
625 generates subregs of a multi-word pseudo, current life analysis will
626 lose the kill. So we _can_ have a pseudo go live. How irritating.
627
628 Including PROP_REG_INFO does not properly refresh regs_ever_live
629 unless the caller resets it to zero. */
630
631 int
632 update_life_info (blocks, extent, prop_flags)
633 sbitmap blocks;
634 enum update_life_extent extent;
635 int prop_flags;
636 {
637 regset tmp;
638 regset_head tmp_head;
639 int i;
640
641 tmp = INITIALIZE_REG_SET (tmp_head);
642 ndead = 0;
643
644 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
645 ? TV_LIFE_UPDATE : TV_LIFE);
646
647 /* Changes to the CFG are only allowed when
648 doing a global update for the entire CFG. */
649 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
650 && (extent == UPDATE_LIFE_LOCAL || blocks))
651 abort ();
652
653 /* For a global update, we go through the relaxation process again. */
654 if (extent != UPDATE_LIFE_LOCAL)
655 {
656 for ( ; ; )
657 {
658 int changed = 0;
659
660 calculate_global_regs_live (blocks, blocks,
661 prop_flags & (PROP_SCAN_DEAD_CODE
662 | PROP_ALLOW_CFG_CHANGES));
663
664 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
665 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
666 break;
667
668 /* Removing dead code may allow the CFG to be simplified which
669 in turn may allow for further dead code detection / removal. */
670 for (i = n_basic_blocks - 1; i >= 0; --i)
671 {
672 basic_block bb = BASIC_BLOCK (i);
673
674 COPY_REG_SET (tmp, bb->global_live_at_end);
675 changed |= propagate_block (bb, tmp, NULL, NULL,
676 prop_flags & (PROP_SCAN_DEAD_CODE
677 | PROP_KILL_DEAD_CODE));
678 }
679
680 if (! changed || ! cleanup_cfg (CLEANUP_EXPENSIVE))
681 break;
682 }
683
684 /* If asked, remove notes from the blocks we'll update. */
685 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
686 count_or_remove_death_notes (blocks, 1);
687 }
688
689 /* Clear log links in case we are asked to (re)compute them. */
690 if (prop_flags & PROP_LOG_LINKS)
691 clear_log_links (blocks);
692
693 if (blocks)
694 {
695 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
696 {
697 basic_block bb = BASIC_BLOCK (i);
698
699 COPY_REG_SET (tmp, bb->global_live_at_end);
700 propagate_block (bb, tmp, NULL, NULL, prop_flags);
701
702 if (extent == UPDATE_LIFE_LOCAL)
703 verify_local_live_at_start (tmp, bb);
704 });
705 }
706 else
707 {
708 for (i = n_basic_blocks - 1; i >= 0; --i)
709 {
710 basic_block bb = BASIC_BLOCK (i);
711
712 COPY_REG_SET (tmp, bb->global_live_at_end);
713 propagate_block (bb, tmp, NULL, NULL, prop_flags);
714
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
717 }
718 }
719
720 FREE_REG_SET (tmp);
721
722 if (prop_flags & PROP_REG_INFO)
723 {
724 /* The only pseudos that are live at the beginning of the function
725 are those that were not set anywhere in the function. local-alloc
726 doesn't know how to handle these correctly, so mark them as not
727 local to any one basic block. */
728 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
729 FIRST_PSEUDO_REGISTER, i,
730 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
731
732 /* We have a problem with any pseudoreg that lives across the setjmp.
733 ANSI says that if a user variable does not change in value between
734 the setjmp and the longjmp, then the longjmp preserves it. This
735 includes longjmp from a place where the pseudo appears dead.
736 (In principle, the value still exists if it is in scope.)
737 If the pseudo goes in a hard reg, some other value may occupy
738 that hard reg where this pseudo is dead, thus clobbering the pseudo.
739 Conclusion: such a pseudo must not go in a hard reg. */
740 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
741 FIRST_PSEUDO_REGISTER, i,
742 {
743 if (regno_reg_rtx[i] != 0)
744 {
745 REG_LIVE_LENGTH (i) = -1;
746 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
747 }
748 });
749 }
750 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
751 ? TV_LIFE_UPDATE : TV_LIFE);
752 if (ndead && rtl_dump_file)
753 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
754 return ndead;
755 }
756
757 /* Update life information in all blocks where BB_DIRTY is set. */
758
759 int
760 update_life_info_in_dirty_blocks (extent, prop_flags)
761 enum update_life_extent extent;
762 int prop_flags;
763 {
764 sbitmap update_life_blocks = sbitmap_alloc (n_basic_blocks);
765 int block_num;
766 int n = 0;
767 int retval = 0;
768
769 sbitmap_zero (update_life_blocks);
770 for (block_num = 0; block_num < n_basic_blocks; block_num++)
771 if (BASIC_BLOCK (block_num)->flags & BB_DIRTY)
772 {
773 SET_BIT (update_life_blocks, block_num);
774 n++;
775 }
776
777 if (n)
778 retval = update_life_info (update_life_blocks, extent, prop_flags);
779
780 sbitmap_free (update_life_blocks);
781 return retval;
782 }
783
784 /* Free the variables allocated by find_basic_blocks.
785
786 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
787
788 void
789 free_basic_block_vars (keep_head_end_p)
790 int keep_head_end_p;
791 {
792 if (! keep_head_end_p)
793 {
794 if (basic_block_info)
795 {
796 clear_edges ();
797 VARRAY_FREE (basic_block_info);
798 }
799 n_basic_blocks = 0;
800
801 ENTRY_BLOCK_PTR->aux = NULL;
802 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
803 EXIT_BLOCK_PTR->aux = NULL;
804 EXIT_BLOCK_PTR->global_live_at_start = NULL;
805 }
806 }
807
808 /* Delete any insns that copy a register to itself. */
809
810 int
811 delete_noop_moves (f)
812 rtx f ATTRIBUTE_UNUSED;
813 {
814 int i;
815 rtx insn, next;
816 basic_block bb;
817 int nnoops = 0;
818
819 for (i = 0; i < n_basic_blocks; i++)
820 {
821 bb = BASIC_BLOCK (i);
822 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
823 {
824 next = NEXT_INSN (insn);
825 if (INSN_P (insn) && noop_move_p (insn))
826 {
827 rtx note;
828
829 /* If we're about to remove the first insn of a libcall
830 then move the libcall note to the next real insn and
831 update the retval note. */
832 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
833 && XEXP (note, 0) != insn)
834 {
835 rtx new_libcall_insn = next_real_insn (insn);
836 rtx retval_note = find_reg_note (XEXP (note, 0),
837 REG_RETVAL, NULL_RTX);
838 REG_NOTES (new_libcall_insn)
839 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
840 REG_NOTES (new_libcall_insn));
841 XEXP (retval_note, 0) = new_libcall_insn;
842 }
843
844 delete_insn_and_edges (insn);
845 nnoops++;
846 }
847 }
848 }
849 if (nnoops && rtl_dump_file)
850 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
851 return nnoops;
852 }
853
854 /* Delete any jump tables never referenced. We can't delete them at the
855 time of removing tablejump insn as they are referenced by the preceding
856 insns computing the destination, so we delay deleting and garbagecollect
857 them once life information is computed. */
858 void
859 delete_dead_jumptables ()
860 {
861 rtx insn, next;
862 for (insn = get_insns (); insn; insn = next)
863 {
864 next = NEXT_INSN (insn);
865 if (GET_CODE (insn) == CODE_LABEL
866 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
867 && GET_CODE (next) == JUMP_INSN
868 && (GET_CODE (PATTERN (next)) == ADDR_VEC
869 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
870 {
871 if (rtl_dump_file)
872 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
873 delete_insn (NEXT_INSN (insn));
874 delete_insn (insn);
875 next = NEXT_INSN (next);
876 }
877 }
878 }
879
880 /* Determine if the stack pointer is constant over the life of the function.
881 Only useful before prologues have been emitted. */
882
883 static void
884 notice_stack_pointer_modification_1 (x, pat, data)
885 rtx x;
886 rtx pat ATTRIBUTE_UNUSED;
887 void *data ATTRIBUTE_UNUSED;
888 {
889 if (x == stack_pointer_rtx
890 /* The stack pointer is only modified indirectly as the result
891 of a push until later in flow. See the comments in rtl.texi
892 regarding Embedded Side-Effects on Addresses. */
893 || (GET_CODE (x) == MEM
894 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
895 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
896 current_function_sp_is_unchanging = 0;
897 }
898
899 static void
900 notice_stack_pointer_modification (f)
901 rtx f;
902 {
903 rtx insn;
904
905 /* Assume that the stack pointer is unchanging if alloca hasn't
906 been used. */
907 current_function_sp_is_unchanging = !current_function_calls_alloca;
908 if (! current_function_sp_is_unchanging)
909 return;
910
911 for (insn = f; insn; insn = NEXT_INSN (insn))
912 {
913 if (INSN_P (insn))
914 {
915 /* Check if insn modifies the stack pointer. */
916 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
917 NULL);
918 if (! current_function_sp_is_unchanging)
919 return;
920 }
921 }
922 }
923
924 /* Mark a register in SET. Hard registers in large modes get all
925 of their component registers set as well. */
926
927 static void
928 mark_reg (reg, xset)
929 rtx reg;
930 void *xset;
931 {
932 regset set = (regset) xset;
933 int regno = REGNO (reg);
934
935 if (GET_MODE (reg) == BLKmode)
936 abort ();
937
938 SET_REGNO_REG_SET (set, regno);
939 if (regno < FIRST_PSEUDO_REGISTER)
940 {
941 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
942 while (--n > 0)
943 SET_REGNO_REG_SET (set, regno + n);
944 }
945 }
946
947 /* Mark those regs which are needed at the end of the function as live
948 at the end of the last basic block. */
949
950 static void
951 mark_regs_live_at_end (set)
952 regset set;
953 {
954 unsigned int i;
955
956 /* If exiting needs the right stack value, consider the stack pointer
957 live at the end of the function. */
958 if ((HAVE_epilogue && reload_completed)
959 || ! EXIT_IGNORE_STACK
960 || (! FRAME_POINTER_REQUIRED
961 && ! current_function_calls_alloca
962 && flag_omit_frame_pointer)
963 || current_function_sp_is_unchanging)
964 {
965 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
966 }
967
968 /* Mark the frame pointer if needed at the end of the function. If
969 we end up eliminating it, it will be removed from the live list
970 of each basic block by reload. */
971
972 if (! reload_completed || frame_pointer_needed)
973 {
974 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
975 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
976 /* If they are different, also mark the hard frame pointer as live. */
977 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
978 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
979 #endif
980 }
981
982 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
983 /* Many architectures have a GP register even without flag_pic.
984 Assume the pic register is not in use, or will be handled by
985 other means, if it is not fixed. */
986 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
987 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
988 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
989 #endif
990
991 /* Mark all global registers, and all registers used by the epilogue
992 as being live at the end of the function since they may be
993 referenced by our caller. */
994 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
995 if (global_regs[i] || EPILOGUE_USES (i))
996 SET_REGNO_REG_SET (set, i);
997
998 if (HAVE_epilogue && reload_completed)
999 {
1000 /* Mark all call-saved registers that we actually used. */
1001 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1002 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1003 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1004 SET_REGNO_REG_SET (set, i);
1005 }
1006
1007 #ifdef EH_RETURN_DATA_REGNO
1008 /* Mark the registers that will contain data for the handler. */
1009 if (reload_completed && current_function_calls_eh_return)
1010 for (i = 0; ; ++i)
1011 {
1012 unsigned regno = EH_RETURN_DATA_REGNO(i);
1013 if (regno == INVALID_REGNUM)
1014 break;
1015 SET_REGNO_REG_SET (set, regno);
1016 }
1017 #endif
1018 #ifdef EH_RETURN_STACKADJ_RTX
1019 if ((! HAVE_epilogue || ! reload_completed)
1020 && current_function_calls_eh_return)
1021 {
1022 rtx tmp = EH_RETURN_STACKADJ_RTX;
1023 if (tmp && REG_P (tmp))
1024 mark_reg (tmp, set);
1025 }
1026 #endif
1027 #ifdef EH_RETURN_HANDLER_RTX
1028 if ((! HAVE_epilogue || ! reload_completed)
1029 && current_function_calls_eh_return)
1030 {
1031 rtx tmp = EH_RETURN_HANDLER_RTX;
1032 if (tmp && REG_P (tmp))
1033 mark_reg (tmp, set);
1034 }
1035 #endif
1036
1037 /* Mark function return value. */
1038 diddle_return_value (mark_reg, set);
1039 }
1040
1041 /* Callback function for for_each_successor_phi. DATA is a regset.
1042 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1043 INSN, in the regset. */
1044
1045 static int
1046 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1047 rtx insn ATTRIBUTE_UNUSED;
1048 int dest_regno ATTRIBUTE_UNUSED;
1049 int src_regno;
1050 void *data;
1051 {
1052 regset live = (regset) data;
1053 SET_REGNO_REG_SET (live, src_regno);
1054 return 0;
1055 }
1056
1057 /* Propagate global life info around the graph of basic blocks. Begin
1058 considering blocks with their corresponding bit set in BLOCKS_IN.
1059 If BLOCKS_IN is null, consider it the universal set.
1060
1061 BLOCKS_OUT is set for every block that was changed. */
1062
1063 static void
1064 calculate_global_regs_live (blocks_in, blocks_out, flags)
1065 sbitmap blocks_in, blocks_out;
1066 int flags;
1067 {
1068 basic_block *queue, *qhead, *qtail, *qend;
1069 regset tmp, new_live_at_end, call_used;
1070 regset_head tmp_head, call_used_head;
1071 regset_head new_live_at_end_head;
1072 int i;
1073
1074 /* Some passes used to forget clear aux field of basic block causing
1075 sick behaviour here. */
1076 #ifdef ENABLE_CHECKING
1077 if (ENTRY_BLOCK_PTR->aux || EXIT_BLOCK_PTR->aux)
1078 abort ();
1079 for (i = 0; i < n_basic_blocks; i++)
1080 if (BASIC_BLOCK (i)->aux)
1081 abort ();
1082 #endif
1083
1084 tmp = INITIALIZE_REG_SET (tmp_head);
1085 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1086 call_used = INITIALIZE_REG_SET (call_used_head);
1087
1088 /* Inconveniently, this is only readily available in hard reg set form. */
1089 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1090 if (call_used_regs[i])
1091 SET_REGNO_REG_SET (call_used, i);
1092
1093 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1094 because the `head == tail' style test for an empty queue doesn't
1095 work with a full queue. */
1096 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1097 qtail = queue;
1098 qhead = qend = queue + n_basic_blocks + 2;
1099
1100 /* Queue the blocks set in the initial mask. Do this in reverse block
1101 number order so that we are more likely for the first round to do
1102 useful work. We use AUX non-null to flag that the block is queued. */
1103 if (blocks_in)
1104 {
1105 /* Clear out the garbage that might be hanging out in bb->aux. */
1106 for (i = n_basic_blocks - 1; i >= 0; --i)
1107 BASIC_BLOCK (i)->aux = NULL;
1108
1109 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
1110 {
1111 basic_block bb = BASIC_BLOCK (i);
1112 *--qhead = bb;
1113 bb->aux = bb;
1114 });
1115 }
1116 else
1117 {
1118 for (i = 0; i < n_basic_blocks; ++i)
1119 {
1120 basic_block bb = BASIC_BLOCK (i);
1121 *--qhead = bb;
1122 bb->aux = bb;
1123 }
1124 }
1125
1126 /* We clean aux when we remove the initially-enqueued bbs, but we
1127 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1128 unconditionally. */
1129 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1130
1131 if (blocks_out)
1132 sbitmap_zero (blocks_out);
1133
1134 /* We work through the queue until there are no more blocks. What
1135 is live at the end of this block is precisely the union of what
1136 is live at the beginning of all its successors. So, we set its
1137 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1138 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1139 this block by walking through the instructions in this block in
1140 reverse order and updating as we go. If that changed
1141 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1142 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1143
1144 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1145 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1146 must either be live at the end of the block, or used within the
1147 block. In the latter case, it will certainly never disappear
1148 from GLOBAL_LIVE_AT_START. In the former case, the register
1149 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1150 for one of the successor blocks. By induction, that cannot
1151 occur. */
1152 while (qhead != qtail)
1153 {
1154 int rescan, changed;
1155 basic_block bb;
1156 edge e;
1157
1158 bb = *qhead++;
1159 if (qhead == qend)
1160 qhead = queue;
1161 bb->aux = NULL;
1162
1163 /* Begin by propagating live_at_start from the successor blocks. */
1164 CLEAR_REG_SET (new_live_at_end);
1165
1166 if (bb->succ)
1167 for (e = bb->succ; e; e = e->succ_next)
1168 {
1169 basic_block sb = e->dest;
1170
1171 /* Call-clobbered registers die across exception and
1172 call edges. */
1173 /* ??? Abnormal call edges ignored for the moment, as this gets
1174 confused by sibling call edges, which crashes reg-stack. */
1175 if (e->flags & EDGE_EH)
1176 {
1177 bitmap_operation (tmp, sb->global_live_at_start,
1178 call_used, BITMAP_AND_COMPL);
1179 IOR_REG_SET (new_live_at_end, tmp);
1180 }
1181 else
1182 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1183
1184 /* If a target saves one register in another (instead of on
1185 the stack) the save register will need to be live for EH. */
1186 if (e->flags & EDGE_EH)
1187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1188 if (EH_USES (i))
1189 SET_REGNO_REG_SET (new_live_at_end, i);
1190 }
1191 else
1192 {
1193 /* This might be a noreturn function that throws. And
1194 even if it isn't, getting the unwind info right helps
1195 debugging. */
1196 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1197 if (EH_USES (i))
1198 SET_REGNO_REG_SET (new_live_at_end, i);
1199 }
1200
1201 /* The all-important stack pointer must always be live. */
1202 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1203
1204 /* Before reload, there are a few registers that must be forced
1205 live everywhere -- which might not already be the case for
1206 blocks within infinite loops. */
1207 if (! reload_completed)
1208 {
1209 /* Any reference to any pseudo before reload is a potential
1210 reference of the frame pointer. */
1211 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1212
1213 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1214 /* Pseudos with argument area equivalences may require
1215 reloading via the argument pointer. */
1216 if (fixed_regs[ARG_POINTER_REGNUM])
1217 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1218 #endif
1219
1220 /* Any constant, or pseudo with constant equivalences, may
1221 require reloading from memory using the pic register. */
1222 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1223 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1224 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1225 }
1226
1227 /* Regs used in phi nodes are not included in
1228 global_live_at_start, since they are live only along a
1229 particular edge. Set those regs that are live because of a
1230 phi node alternative corresponding to this particular block. */
1231 if (in_ssa_form)
1232 for_each_successor_phi (bb, &set_phi_alternative_reg,
1233 new_live_at_end);
1234
1235 if (bb == ENTRY_BLOCK_PTR)
1236 {
1237 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1238 continue;
1239 }
1240
1241 /* On our first pass through this block, we'll go ahead and continue.
1242 Recognize first pass by local_set NULL. On subsequent passes, we
1243 get to skip out early if live_at_end wouldn't have changed. */
1244
1245 if (bb->local_set == NULL)
1246 {
1247 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1248 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1249 rescan = 1;
1250 }
1251 else
1252 {
1253 /* If any bits were removed from live_at_end, we'll have to
1254 rescan the block. This wouldn't be necessary if we had
1255 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1256 local_live is really dependent on live_at_end. */
1257 CLEAR_REG_SET (tmp);
1258 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1259 new_live_at_end, BITMAP_AND_COMPL);
1260
1261 if (! rescan)
1262 {
1263 /* If any of the registers in the new live_at_end set are
1264 conditionally set in this basic block, we must rescan.
1265 This is because conditional lifetimes at the end of the
1266 block do not just take the live_at_end set into account,
1267 but also the liveness at the start of each successor
1268 block. We can miss changes in those sets if we only
1269 compare the new live_at_end against the previous one. */
1270 CLEAR_REG_SET (tmp);
1271 rescan = bitmap_operation (tmp, new_live_at_end,
1272 bb->cond_local_set, BITMAP_AND);
1273 }
1274
1275 if (! rescan)
1276 {
1277 /* Find the set of changed bits. Take this opportunity
1278 to notice that this set is empty and early out. */
1279 CLEAR_REG_SET (tmp);
1280 changed = bitmap_operation (tmp, bb->global_live_at_end,
1281 new_live_at_end, BITMAP_XOR);
1282 if (! changed)
1283 continue;
1284
1285 /* If any of the changed bits overlap with local_set,
1286 we'll have to rescan the block. Detect overlap by
1287 the AND with ~local_set turning off bits. */
1288 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1289 BITMAP_AND_COMPL);
1290 }
1291 }
1292
1293 /* Let our caller know that BB changed enough to require its
1294 death notes updated. */
1295 if (blocks_out)
1296 SET_BIT (blocks_out, bb->index);
1297
1298 if (! rescan)
1299 {
1300 /* Add to live_at_start the set of all registers in
1301 new_live_at_end that aren't in the old live_at_end. */
1302
1303 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1304 BITMAP_AND_COMPL);
1305 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1306
1307 changed = bitmap_operation (bb->global_live_at_start,
1308 bb->global_live_at_start,
1309 tmp, BITMAP_IOR);
1310 if (! changed)
1311 continue;
1312 }
1313 else
1314 {
1315 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1316
1317 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1318 into live_at_start. */
1319 propagate_block (bb, new_live_at_end, bb->local_set,
1320 bb->cond_local_set, flags);
1321
1322 /* If live_at start didn't change, no need to go farther. */
1323 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1324 continue;
1325
1326 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1327 }
1328
1329 /* Queue all predecessors of BB so that we may re-examine
1330 their live_at_end. */
1331 for (e = bb->pred; e; e = e->pred_next)
1332 {
1333 basic_block pb = e->src;
1334 if (pb->aux == NULL)
1335 {
1336 *qtail++ = pb;
1337 if (qtail == qend)
1338 qtail = queue;
1339 pb->aux = pb;
1340 }
1341 }
1342 }
1343
1344 FREE_REG_SET (tmp);
1345 FREE_REG_SET (new_live_at_end);
1346 FREE_REG_SET (call_used);
1347
1348 if (blocks_out)
1349 {
1350 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1351 {
1352 basic_block bb = BASIC_BLOCK (i);
1353 FREE_REG_SET (bb->local_set);
1354 FREE_REG_SET (bb->cond_local_set);
1355 });
1356 }
1357 else
1358 {
1359 for (i = n_basic_blocks - 1; i >= 0; --i)
1360 {
1361 basic_block bb = BASIC_BLOCK (i);
1362 FREE_REG_SET (bb->local_set);
1363 FREE_REG_SET (bb->cond_local_set);
1364 }
1365 }
1366
1367 free (queue);
1368 }
1369
1370 \f
1371 /* This structure is used to pass parameters to an from the
1372 the function find_regno_partial(). It is used to pass in the
1373 register number we are looking, as well as to return any rtx
1374 we find. */
1375
1376 typedef struct {
1377 unsigned regno_to_find;
1378 rtx retval;
1379 } find_regno_partial_param;
1380
1381
1382 /* Find the rtx for the reg numbers specified in 'data' if it is
1383 part of an expression which only uses part of the register. Return
1384 it in the structure passed in. */
1385 static int
1386 find_regno_partial (ptr, data)
1387 rtx *ptr;
1388 void *data;
1389 {
1390 find_regno_partial_param *param = (find_regno_partial_param *)data;
1391 unsigned reg = param->regno_to_find;
1392 param->retval = NULL_RTX;
1393
1394 if (*ptr == NULL_RTX)
1395 return 0;
1396
1397 switch (GET_CODE (*ptr))
1398 {
1399 case ZERO_EXTRACT:
1400 case SIGN_EXTRACT:
1401 case STRICT_LOW_PART:
1402 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1403 {
1404 param->retval = XEXP (*ptr, 0);
1405 return 1;
1406 }
1407 break;
1408
1409 case SUBREG:
1410 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1411 && REGNO (SUBREG_REG (*ptr)) == reg)
1412 {
1413 param->retval = SUBREG_REG (*ptr);
1414 return 1;
1415 }
1416 break;
1417
1418 default:
1419 break;
1420 }
1421
1422 return 0;
1423 }
1424
1425 /* Process all immediate successors of the entry block looking for pseudo
1426 registers which are live on entry. Find all of those whose first
1427 instance is a partial register reference of some kind, and initialize
1428 them to 0 after the entry block. This will prevent bit sets within
1429 registers whose value is unknown, and may contain some kind of sticky
1430 bits we don't want. */
1431
1432 int
1433 initialize_uninitialized_subregs ()
1434 {
1435 rtx insn;
1436 edge e;
1437 int reg, did_something = 0;
1438 find_regno_partial_param param;
1439
1440 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1441 {
1442 basic_block bb = e->dest;
1443 regset map = bb->global_live_at_start;
1444 EXECUTE_IF_SET_IN_REG_SET (map,
1445 FIRST_PSEUDO_REGISTER, reg,
1446 {
1447 int uid = REGNO_FIRST_UID (reg);
1448 rtx i;
1449
1450 /* Find an insn which mentions the register we are looking for.
1451 Its preferable to have an instance of the register's rtl since
1452 there may be various flags set which we need to duplicate.
1453 If we can't find it, its probably an automatic whose initial
1454 value doesn't matter, or hopefully something we don't care about. */
1455 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1456 ;
1457 if (i != NULL_RTX)
1458 {
1459 /* Found the insn, now get the REG rtx, if we can. */
1460 param.regno_to_find = reg;
1461 for_each_rtx (&i, find_regno_partial, &param);
1462 if (param.retval != NULL_RTX)
1463 {
1464 insn = gen_move_insn (param.retval,
1465 CONST0_RTX (GET_MODE (param.retval)));
1466 insert_insn_on_edge (insn, e);
1467 did_something = 1;
1468 }
1469 }
1470 });
1471 }
1472
1473 if (did_something)
1474 commit_edge_insertions ();
1475 return did_something;
1476 }
1477
1478 \f
1479 /* Subroutines of life analysis. */
1480
1481 /* Allocate the permanent data structures that represent the results
1482 of life analysis. Not static since used also for stupid life analysis. */
1483
1484 void
1485 allocate_bb_life_data ()
1486 {
1487 int i;
1488
1489 for (i = 0; i < n_basic_blocks; i++)
1490 {
1491 basic_block bb = BASIC_BLOCK (i);
1492
1493 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1494 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1495 }
1496
1497 ENTRY_BLOCK_PTR->global_live_at_end
1498 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1499 EXIT_BLOCK_PTR->global_live_at_start
1500 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1501
1502 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1503 }
1504
1505 void
1506 allocate_reg_life_data ()
1507 {
1508 int i;
1509
1510 max_regno = max_reg_num ();
1511
1512 /* Recalculate the register space, in case it has grown. Old style
1513 vector oriented regsets would set regset_{size,bytes} here also. */
1514 allocate_reg_info (max_regno, FALSE, FALSE);
1515
1516 /* Reset all the data we'll collect in propagate_block and its
1517 subroutines. */
1518 for (i = 0; i < max_regno; i++)
1519 {
1520 REG_N_SETS (i) = 0;
1521 REG_N_REFS (i) = 0;
1522 REG_N_DEATHS (i) = 0;
1523 REG_N_CALLS_CROSSED (i) = 0;
1524 REG_LIVE_LENGTH (i) = 0;
1525 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1526 }
1527 }
1528
1529 /* Delete dead instructions for propagate_block. */
1530
1531 static void
1532 propagate_block_delete_insn (insn)
1533 rtx insn;
1534 {
1535 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1536
1537 /* If the insn referred to a label, and that label was attached to
1538 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1539 pretty much mandatory to delete it, because the ADDR_VEC may be
1540 referencing labels that no longer exist.
1541
1542 INSN may reference a deleted label, particularly when a jump
1543 table has been optimized into a direct jump. There's no
1544 real good way to fix up the reference to the deleted label
1545 when the label is deleted, so we just allow it here.
1546
1547 After dead code elimination is complete, we do search for
1548 any REG_LABEL notes which reference deleted labels as a
1549 sanity check. */
1550
1551 if (inote && GET_CODE (inote) == CODE_LABEL)
1552 {
1553 rtx label = XEXP (inote, 0);
1554 rtx next;
1555
1556 /* The label may be forced if it has been put in the constant
1557 pool. If that is the only use we must discard the table
1558 jump following it, but not the label itself. */
1559 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1560 && (next = next_nonnote_insn (label)) != NULL
1561 && GET_CODE (next) == JUMP_INSN
1562 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1563 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1564 {
1565 rtx pat = PATTERN (next);
1566 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1567 int len = XVECLEN (pat, diff_vec_p);
1568 int i;
1569
1570 for (i = 0; i < len; i++)
1571 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1572
1573 delete_insn_and_edges (next);
1574 ndead++;
1575 }
1576 }
1577
1578 delete_insn_and_edges (insn);
1579 ndead++;
1580 }
1581
1582 /* Delete dead libcalls for propagate_block. Return the insn
1583 before the libcall. */
1584
1585 static rtx
1586 propagate_block_delete_libcall ( insn, note)
1587 rtx insn, note;
1588 {
1589 rtx first = XEXP (note, 0);
1590 rtx before = PREV_INSN (first);
1591
1592 delete_insn_chain_and_edges (first, insn);
1593 ndead++;
1594 return before;
1595 }
1596
1597 /* Update the life-status of regs for one insn. Return the previous insn. */
1598
1599 rtx
1600 propagate_one_insn (pbi, insn)
1601 struct propagate_block_info *pbi;
1602 rtx insn;
1603 {
1604 rtx prev = PREV_INSN (insn);
1605 int flags = pbi->flags;
1606 int insn_is_dead = 0;
1607 int libcall_is_dead = 0;
1608 rtx note;
1609 int i;
1610
1611 if (! INSN_P (insn))
1612 return prev;
1613
1614 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1615 if (flags & PROP_SCAN_DEAD_CODE)
1616 {
1617 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1618 libcall_is_dead = (insn_is_dead && note != 0
1619 && libcall_dead_p (pbi, note, insn));
1620 }
1621
1622 /* If an instruction consists of just dead store(s) on final pass,
1623 delete it. */
1624 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1625 {
1626 /* If we're trying to delete a prologue or epilogue instruction
1627 that isn't flagged as possibly being dead, something is wrong.
1628 But if we are keeping the stack pointer depressed, we might well
1629 be deleting insns that are used to compute the amount to update
1630 it by, so they are fine. */
1631 if (reload_completed
1632 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1633 && (TYPE_RETURNS_STACK_DEPRESSED
1634 (TREE_TYPE (current_function_decl))))
1635 && (((HAVE_epilogue || HAVE_prologue)
1636 && prologue_epilogue_contains (insn))
1637 || (HAVE_sibcall_epilogue
1638 && sibcall_epilogue_contains (insn)))
1639 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1640 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1641
1642 /* Record sets. Do this even for dead instructions, since they
1643 would have killed the values if they hadn't been deleted. */
1644 mark_set_regs (pbi, PATTERN (insn), insn);
1645
1646 /* CC0 is now known to be dead. Either this insn used it,
1647 in which case it doesn't anymore, or clobbered it,
1648 so the next insn can't use it. */
1649 pbi->cc0_live = 0;
1650
1651 if (libcall_is_dead)
1652 prev = propagate_block_delete_libcall ( insn, note);
1653 else
1654 propagate_block_delete_insn (insn);
1655
1656 return prev;
1657 }
1658
1659 /* See if this is an increment or decrement that can be merged into
1660 a following memory address. */
1661 #ifdef AUTO_INC_DEC
1662 {
1663 rtx x = single_set (insn);
1664
1665 /* Does this instruction increment or decrement a register? */
1666 if ((flags & PROP_AUTOINC)
1667 && x != 0
1668 && GET_CODE (SET_DEST (x)) == REG
1669 && (GET_CODE (SET_SRC (x)) == PLUS
1670 || GET_CODE (SET_SRC (x)) == MINUS)
1671 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1672 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1673 /* Ok, look for a following memory ref we can combine with.
1674 If one is found, change the memory ref to a PRE_INC
1675 or PRE_DEC, cancel this insn, and return 1.
1676 Return 0 if nothing has been done. */
1677 && try_pre_increment_1 (pbi, insn))
1678 return prev;
1679 }
1680 #endif /* AUTO_INC_DEC */
1681
1682 CLEAR_REG_SET (pbi->new_set);
1683
1684 /* If this is not the final pass, and this insn is copying the value of
1685 a library call and it's dead, don't scan the insns that perform the
1686 library call, so that the call's arguments are not marked live. */
1687 if (libcall_is_dead)
1688 {
1689 /* Record the death of the dest reg. */
1690 mark_set_regs (pbi, PATTERN (insn), insn);
1691
1692 insn = XEXP (note, 0);
1693 return PREV_INSN (insn);
1694 }
1695 else if (GET_CODE (PATTERN (insn)) == SET
1696 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1697 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1698 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1699 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1700 /* We have an insn to pop a constant amount off the stack.
1701 (Such insns use PLUS regardless of the direction of the stack,
1702 and any insn to adjust the stack by a constant is always a pop.)
1703 These insns, if not dead stores, have no effect on life. */
1704 ;
1705 else
1706 {
1707 rtx note;
1708 /* Any regs live at the time of a call instruction must not go
1709 in a register clobbered by calls. Find all regs now live and
1710 record this for them. */
1711
1712 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1713 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1714 { REG_N_CALLS_CROSSED (i)++; });
1715
1716 /* Record sets. Do this even for dead instructions, since they
1717 would have killed the values if they hadn't been deleted. */
1718 mark_set_regs (pbi, PATTERN (insn), insn);
1719
1720 if (GET_CODE (insn) == CALL_INSN)
1721 {
1722 int i;
1723 rtx note, cond;
1724
1725 cond = NULL_RTX;
1726 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1727 cond = COND_EXEC_TEST (PATTERN (insn));
1728
1729 /* Non-constant calls clobber memory. */
1730 if (! CONST_OR_PURE_CALL_P (insn))
1731 {
1732 free_EXPR_LIST_list (&pbi->mem_set_list);
1733 pbi->mem_set_list_len = 0;
1734 }
1735
1736 /* There may be extra registers to be clobbered. */
1737 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1738 note;
1739 note = XEXP (note, 1))
1740 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1741 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1742 cond, insn, pbi->flags);
1743
1744 /* Calls change all call-used and global registers. */
1745 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1746 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1747 {
1748 /* We do not want REG_UNUSED notes for these registers. */
1749 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1750 cond, insn,
1751 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1752 }
1753 }
1754
1755 /* If an insn doesn't use CC0, it becomes dead since we assume
1756 that every insn clobbers it. So show it dead here;
1757 mark_used_regs will set it live if it is referenced. */
1758 pbi->cc0_live = 0;
1759
1760 /* Record uses. */
1761 if (! insn_is_dead)
1762 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1763 if ((flags & PROP_EQUAL_NOTES)
1764 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1765 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1766 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1767
1768 /* Sometimes we may have inserted something before INSN (such as a move)
1769 when we make an auto-inc. So ensure we will scan those insns. */
1770 #ifdef AUTO_INC_DEC
1771 prev = PREV_INSN (insn);
1772 #endif
1773
1774 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1775 {
1776 int i;
1777 rtx note, cond;
1778
1779 cond = NULL_RTX;
1780 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1781 cond = COND_EXEC_TEST (PATTERN (insn));
1782
1783 /* Calls use their arguments. */
1784 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1785 note;
1786 note = XEXP (note, 1))
1787 if (GET_CODE (XEXP (note, 0)) == USE)
1788 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1789 cond, insn);
1790
1791 /* The stack ptr is used (honorarily) by a CALL insn. */
1792 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1793
1794 /* Calls may also reference any of the global registers,
1795 so they are made live. */
1796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1797 if (global_regs[i])
1798 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1799 cond, insn);
1800 }
1801 }
1802
1803 /* On final pass, update counts of how many insns in which each reg
1804 is live. */
1805 if (flags & PROP_REG_INFO)
1806 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1807 { REG_LIVE_LENGTH (i)++; });
1808
1809 return prev;
1810 }
1811
1812 /* Initialize a propagate_block_info struct for public consumption.
1813 Note that the structure itself is opaque to this file, but that
1814 the user can use the regsets provided here. */
1815
1816 struct propagate_block_info *
1817 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1818 basic_block bb;
1819 regset live, local_set, cond_local_set;
1820 int flags;
1821 {
1822 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1823
1824 pbi->bb = bb;
1825 pbi->reg_live = live;
1826 pbi->mem_set_list = NULL_RTX;
1827 pbi->mem_set_list_len = 0;
1828 pbi->local_set = local_set;
1829 pbi->cond_local_set = cond_local_set;
1830 pbi->cc0_live = 0;
1831 pbi->flags = flags;
1832
1833 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1834 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1835 else
1836 pbi->reg_next_use = NULL;
1837
1838 pbi->new_set = BITMAP_XMALLOC ();
1839
1840 #ifdef HAVE_conditional_execution
1841 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1842 free_reg_cond_life_info);
1843 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1844
1845 /* If this block ends in a conditional branch, for each register live
1846 from one side of the branch and not the other, record the register
1847 as conditionally dead. */
1848 if (GET_CODE (bb->end) == JUMP_INSN
1849 && any_condjump_p (bb->end))
1850 {
1851 regset_head diff_head;
1852 regset diff = INITIALIZE_REG_SET (diff_head);
1853 basic_block bb_true, bb_false;
1854 rtx cond_true, cond_false, set_src;
1855 int i;
1856
1857 /* Identify the successor blocks. */
1858 bb_true = bb->succ->dest;
1859 if (bb->succ->succ_next != NULL)
1860 {
1861 bb_false = bb->succ->succ_next->dest;
1862
1863 if (bb->succ->flags & EDGE_FALLTHRU)
1864 {
1865 basic_block t = bb_false;
1866 bb_false = bb_true;
1867 bb_true = t;
1868 }
1869 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1870 abort ();
1871 }
1872 else
1873 {
1874 /* This can happen with a conditional jump to the next insn. */
1875 if (JUMP_LABEL (bb->end) != bb_true->head)
1876 abort ();
1877
1878 /* Simplest way to do nothing. */
1879 bb_false = bb_true;
1880 }
1881
1882 /* Extract the condition from the branch. */
1883 set_src = SET_SRC (pc_set (bb->end));
1884 cond_true = XEXP (set_src, 0);
1885 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1886 GET_MODE (cond_true), XEXP (cond_true, 0),
1887 XEXP (cond_true, 1));
1888 if (GET_CODE (XEXP (set_src, 1)) == PC)
1889 {
1890 rtx t = cond_false;
1891 cond_false = cond_true;
1892 cond_true = t;
1893 }
1894
1895 /* Compute which register lead different lives in the successors. */
1896 if (bitmap_operation (diff, bb_true->global_live_at_start,
1897 bb_false->global_live_at_start, BITMAP_XOR))
1898 {
1899 rtx reg = XEXP (cond_true, 0);
1900
1901 if (GET_CODE (reg) == SUBREG)
1902 reg = SUBREG_REG (reg);
1903
1904 if (GET_CODE (reg) != REG)
1905 abort ();
1906
1907 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1908
1909 /* For each such register, mark it conditionally dead. */
1910 EXECUTE_IF_SET_IN_REG_SET
1911 (diff, 0, i,
1912 {
1913 struct reg_cond_life_info *rcli;
1914 rtx cond;
1915
1916 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1917
1918 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1919 cond = cond_false;
1920 else
1921 cond = cond_true;
1922 rcli->condition = cond;
1923 rcli->stores = const0_rtx;
1924 rcli->orig_condition = cond;
1925
1926 splay_tree_insert (pbi->reg_cond_dead, i,
1927 (splay_tree_value) rcli);
1928 });
1929 }
1930
1931 FREE_REG_SET (diff);
1932 }
1933 #endif
1934
1935 /* If this block has no successors, any stores to the frame that aren't
1936 used later in the block are dead. So make a pass over the block
1937 recording any such that are made and show them dead at the end. We do
1938 a very conservative and simple job here. */
1939 if (optimize
1940 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1941 && (TYPE_RETURNS_STACK_DEPRESSED
1942 (TREE_TYPE (current_function_decl))))
1943 && (flags & PROP_SCAN_DEAD_CODE)
1944 && (bb->succ == NULL
1945 || (bb->succ->succ_next == NULL
1946 && bb->succ->dest == EXIT_BLOCK_PTR
1947 && ! current_function_calls_eh_return)))
1948 {
1949 rtx insn, set;
1950 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1951 if (GET_CODE (insn) == INSN
1952 && (set = single_set (insn))
1953 && GET_CODE (SET_DEST (set)) == MEM)
1954 {
1955 rtx mem = SET_DEST (set);
1956 rtx canon_mem = canon_rtx (mem);
1957
1958 /* This optimization is performed by faking a store to the
1959 memory at the end of the block. This doesn't work for
1960 unchanging memories because multiple stores to unchanging
1961 memory is illegal and alias analysis doesn't consider it. */
1962 if (RTX_UNCHANGING_P (canon_mem))
1963 continue;
1964
1965 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1966 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1967 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1968 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1969 add_to_mem_set_list (pbi, canon_mem);
1970 }
1971 }
1972
1973 return pbi;
1974 }
1975
1976 /* Release a propagate_block_info struct. */
1977
1978 void
1979 free_propagate_block_info (pbi)
1980 struct propagate_block_info *pbi;
1981 {
1982 free_EXPR_LIST_list (&pbi->mem_set_list);
1983
1984 BITMAP_XFREE (pbi->new_set);
1985
1986 #ifdef HAVE_conditional_execution
1987 splay_tree_delete (pbi->reg_cond_dead);
1988 BITMAP_XFREE (pbi->reg_cond_reg);
1989 #endif
1990
1991 if (pbi->reg_next_use)
1992 free (pbi->reg_next_use);
1993
1994 free (pbi);
1995 }
1996
1997 /* Compute the registers live at the beginning of a basic block BB from
1998 those live at the end.
1999
2000 When called, REG_LIVE contains those live at the end. On return, it
2001 contains those live at the beginning.
2002
2003 LOCAL_SET, if non-null, will be set with all registers killed
2004 unconditionally by this basic block.
2005 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2006 killed conditionally by this basic block. If there is any unconditional
2007 set of a register, then the corresponding bit will be set in LOCAL_SET
2008 and cleared in COND_LOCAL_SET.
2009 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2010 case, the resulting set will be equal to the union of the two sets that
2011 would otherwise be computed.
2012
2013 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2014
2015 int
2016 propagate_block (bb, live, local_set, cond_local_set, flags)
2017 basic_block bb;
2018 regset live;
2019 regset local_set;
2020 regset cond_local_set;
2021 int flags;
2022 {
2023 struct propagate_block_info *pbi;
2024 rtx insn, prev;
2025 int changed;
2026
2027 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2028
2029 if (flags & PROP_REG_INFO)
2030 {
2031 int i;
2032
2033 /* Process the regs live at the end of the block.
2034 Mark them as not local to any one basic block. */
2035 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2036 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2037 }
2038
2039 /* Scan the block an insn at a time from end to beginning. */
2040
2041 changed = 0;
2042 for (insn = bb->end;; insn = prev)
2043 {
2044 /* If this is a call to `setjmp' et al, warn if any
2045 non-volatile datum is live. */
2046 if ((flags & PROP_REG_INFO)
2047 && GET_CODE (insn) == CALL_INSN
2048 && find_reg_note (insn, REG_SETJMP, NULL))
2049 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2050
2051 prev = propagate_one_insn (pbi, insn);
2052 changed |= NEXT_INSN (prev) != insn;
2053
2054 if (insn == bb->head)
2055 break;
2056 }
2057
2058 free_propagate_block_info (pbi);
2059
2060 return changed;
2061 }
2062 \f
2063 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2064 (SET expressions whose destinations are registers dead after the insn).
2065 NEEDED is the regset that says which regs are alive after the insn.
2066
2067 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2068
2069 If X is the entire body of an insn, NOTES contains the reg notes
2070 pertaining to the insn. */
2071
2072 static int
2073 insn_dead_p (pbi, x, call_ok, notes)
2074 struct propagate_block_info *pbi;
2075 rtx x;
2076 int call_ok;
2077 rtx notes ATTRIBUTE_UNUSED;
2078 {
2079 enum rtx_code code = GET_CODE (x);
2080
2081 #ifdef AUTO_INC_DEC
2082 /* As flow is invoked after combine, we must take existing AUTO_INC
2083 expressions into account. */
2084 for (; notes; notes = XEXP (notes, 1))
2085 {
2086 if (REG_NOTE_KIND (notes) == REG_INC)
2087 {
2088 int regno = REGNO (XEXP (notes, 0));
2089
2090 /* Don't delete insns to set global regs. */
2091 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2092 || REGNO_REG_SET_P (pbi->reg_live, regno))
2093 return 0;
2094 }
2095 }
2096 #endif
2097
2098 /* If setting something that's a reg or part of one,
2099 see if that register's altered value will be live. */
2100
2101 if (code == SET)
2102 {
2103 rtx r = SET_DEST (x);
2104
2105 #ifdef HAVE_cc0
2106 if (GET_CODE (r) == CC0)
2107 return ! pbi->cc0_live;
2108 #endif
2109
2110 /* A SET that is a subroutine call cannot be dead. */
2111 if (GET_CODE (SET_SRC (x)) == CALL)
2112 {
2113 if (! call_ok)
2114 return 0;
2115 }
2116
2117 /* Don't eliminate loads from volatile memory or volatile asms. */
2118 else if (volatile_refs_p (SET_SRC (x)))
2119 return 0;
2120
2121 if (GET_CODE (r) == MEM)
2122 {
2123 rtx temp, canon_r;
2124
2125 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2126 return 0;
2127
2128 canon_r = canon_rtx (r);
2129
2130 /* Walk the set of memory locations we are currently tracking
2131 and see if one is an identical match to this memory location.
2132 If so, this memory write is dead (remember, we're walking
2133 backwards from the end of the block to the start). Since
2134 rtx_equal_p does not check the alias set or flags, we also
2135 must have the potential for them to conflict (anti_dependence). */
2136 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2137 if (anti_dependence (r, XEXP (temp, 0)))
2138 {
2139 rtx mem = XEXP (temp, 0);
2140
2141 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2142 && (GET_MODE_SIZE (GET_MODE (canon_r))
2143 <= GET_MODE_SIZE (GET_MODE (mem))))
2144 return 1;
2145
2146 #ifdef AUTO_INC_DEC
2147 /* Check if memory reference matches an auto increment. Only
2148 post increment/decrement or modify are valid. */
2149 if (GET_MODE (mem) == GET_MODE (r)
2150 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2151 || GET_CODE (XEXP (mem, 0)) == POST_INC
2152 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2153 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2154 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2155 return 1;
2156 #endif
2157 }
2158 }
2159 else
2160 {
2161 while (GET_CODE (r) == SUBREG
2162 || GET_CODE (r) == STRICT_LOW_PART
2163 || GET_CODE (r) == ZERO_EXTRACT)
2164 r = XEXP (r, 0);
2165
2166 if (GET_CODE (r) == REG)
2167 {
2168 int regno = REGNO (r);
2169
2170 /* Obvious. */
2171 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2172 return 0;
2173
2174 /* If this is a hard register, verify that subsequent
2175 words are not needed. */
2176 if (regno < FIRST_PSEUDO_REGISTER)
2177 {
2178 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2179
2180 while (--n > 0)
2181 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2182 return 0;
2183 }
2184
2185 /* Don't delete insns to set global regs. */
2186 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2187 return 0;
2188
2189 /* Make sure insns to set the stack pointer aren't deleted. */
2190 if (regno == STACK_POINTER_REGNUM)
2191 return 0;
2192
2193 /* ??? These bits might be redundant with the force live bits
2194 in calculate_global_regs_live. We would delete from
2195 sequential sets; whether this actually affects real code
2196 for anything but the stack pointer I don't know. */
2197 /* Make sure insns to set the frame pointer aren't deleted. */
2198 if (regno == FRAME_POINTER_REGNUM
2199 && (! reload_completed || frame_pointer_needed))
2200 return 0;
2201 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2202 if (regno == HARD_FRAME_POINTER_REGNUM
2203 && (! reload_completed || frame_pointer_needed))
2204 return 0;
2205 #endif
2206
2207 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2208 /* Make sure insns to set arg pointer are never deleted
2209 (if the arg pointer isn't fixed, there will be a USE
2210 for it, so we can treat it normally). */
2211 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2212 return 0;
2213 #endif
2214
2215 /* Otherwise, the set is dead. */
2216 return 1;
2217 }
2218 }
2219 }
2220
2221 /* If performing several activities, insn is dead if each activity
2222 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2223 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2224 worth keeping. */
2225 else if (code == PARALLEL)
2226 {
2227 int i = XVECLEN (x, 0);
2228
2229 for (i--; i >= 0; i--)
2230 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2231 && GET_CODE (XVECEXP (x, 0, i)) != USE
2232 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2233 return 0;
2234
2235 return 1;
2236 }
2237
2238 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2239 is not necessarily true for hard registers. */
2240 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2241 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2242 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2243 return 1;
2244
2245 /* We do not check other CLOBBER or USE here. An insn consisting of just
2246 a CLOBBER or just a USE should not be deleted. */
2247 return 0;
2248 }
2249
2250 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2251 return 1 if the entire library call is dead.
2252 This is true if INSN copies a register (hard or pseudo)
2253 and if the hard return reg of the call insn is dead.
2254 (The caller should have tested the destination of the SET inside
2255 INSN already for death.)
2256
2257 If this insn doesn't just copy a register, then we don't
2258 have an ordinary libcall. In that case, cse could not have
2259 managed to substitute the source for the dest later on,
2260 so we can assume the libcall is dead.
2261
2262 PBI is the block info giving pseudoregs live before this insn.
2263 NOTE is the REG_RETVAL note of the insn. */
2264
2265 static int
2266 libcall_dead_p (pbi, note, insn)
2267 struct propagate_block_info *pbi;
2268 rtx note;
2269 rtx insn;
2270 {
2271 rtx x = single_set (insn);
2272
2273 if (x)
2274 {
2275 rtx r = SET_SRC (x);
2276
2277 if (GET_CODE (r) == REG)
2278 {
2279 rtx call = XEXP (note, 0);
2280 rtx call_pat;
2281 int i;
2282
2283 /* Find the call insn. */
2284 while (call != insn && GET_CODE (call) != CALL_INSN)
2285 call = NEXT_INSN (call);
2286
2287 /* If there is none, do nothing special,
2288 since ordinary death handling can understand these insns. */
2289 if (call == insn)
2290 return 0;
2291
2292 /* See if the hard reg holding the value is dead.
2293 If this is a PARALLEL, find the call within it. */
2294 call_pat = PATTERN (call);
2295 if (GET_CODE (call_pat) == PARALLEL)
2296 {
2297 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2298 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2299 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2300 break;
2301
2302 /* This may be a library call that is returning a value
2303 via invisible pointer. Do nothing special, since
2304 ordinary death handling can understand these insns. */
2305 if (i < 0)
2306 return 0;
2307
2308 call_pat = XVECEXP (call_pat, 0, i);
2309 }
2310
2311 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2312 }
2313 }
2314 return 1;
2315 }
2316
2317 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2318 live at function entry. Don't count global register variables, variables
2319 in registers that can be used for function arg passing, or variables in
2320 fixed hard registers. */
2321
2322 int
2323 regno_uninitialized (regno)
2324 unsigned int regno;
2325 {
2326 if (n_basic_blocks == 0
2327 || (regno < FIRST_PSEUDO_REGISTER
2328 && (global_regs[regno]
2329 || fixed_regs[regno]
2330 || FUNCTION_ARG_REGNO_P (regno))))
2331 return 0;
2332
2333 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
2334 }
2335
2336 /* 1 if register REGNO was alive at a place where `setjmp' was called
2337 and was set more than once or is an argument.
2338 Such regs may be clobbered by `longjmp'. */
2339
2340 int
2341 regno_clobbered_at_setjmp (regno)
2342 int regno;
2343 {
2344 if (n_basic_blocks == 0)
2345 return 0;
2346
2347 return ((REG_N_SETS (regno) > 1
2348 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
2349 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2350 }
2351 \f
2352 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2353 maximal list size; look for overlaps in mode and select the largest. */
2354 static void
2355 add_to_mem_set_list (pbi, mem)
2356 struct propagate_block_info *pbi;
2357 rtx mem;
2358 {
2359 rtx i;
2360
2361 /* We don't know how large a BLKmode store is, so we must not
2362 take them into consideration. */
2363 if (GET_MODE (mem) == BLKmode)
2364 return;
2365
2366 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2367 {
2368 rtx e = XEXP (i, 0);
2369 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2370 {
2371 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2372 {
2373 #ifdef AUTO_INC_DEC
2374 /* If we must store a copy of the mem, we can just modify
2375 the mode of the stored copy. */
2376 if (pbi->flags & PROP_AUTOINC)
2377 PUT_MODE (e, GET_MODE (mem));
2378 else
2379 #endif
2380 XEXP (i, 0) = mem;
2381 }
2382 return;
2383 }
2384 }
2385
2386 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2387 {
2388 #ifdef AUTO_INC_DEC
2389 /* Store a copy of mem, otherwise the address may be
2390 scrogged by find_auto_inc. */
2391 if (pbi->flags & PROP_AUTOINC)
2392 mem = shallow_copy_rtx (mem);
2393 #endif
2394 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2395 pbi->mem_set_list_len++;
2396 }
2397 }
2398
2399 /* INSN references memory, possibly using autoincrement addressing modes.
2400 Find any entries on the mem_set_list that need to be invalidated due
2401 to an address change. */
2402
2403 static void
2404 invalidate_mems_from_autoinc (pbi, insn)
2405 struct propagate_block_info *pbi;
2406 rtx insn;
2407 {
2408 rtx note = REG_NOTES (insn);
2409 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2410 if (REG_NOTE_KIND (note) == REG_INC)
2411 invalidate_mems_from_set (pbi, XEXP (note, 0));
2412 }
2413
2414 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2415
2416 static void
2417 invalidate_mems_from_set (pbi, exp)
2418 struct propagate_block_info *pbi;
2419 rtx exp;
2420 {
2421 rtx temp = pbi->mem_set_list;
2422 rtx prev = NULL_RTX;
2423 rtx next;
2424
2425 while (temp)
2426 {
2427 next = XEXP (temp, 1);
2428 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2429 {
2430 /* Splice this entry out of the list. */
2431 if (prev)
2432 XEXP (prev, 1) = next;
2433 else
2434 pbi->mem_set_list = next;
2435 free_EXPR_LIST_node (temp);
2436 pbi->mem_set_list_len--;
2437 }
2438 else
2439 prev = temp;
2440 temp = next;
2441 }
2442 }
2443
2444 /* Process the registers that are set within X. Their bits are set to
2445 1 in the regset DEAD, because they are dead prior to this insn.
2446
2447 If INSN is nonzero, it is the insn being processed.
2448
2449 FLAGS is the set of operations to perform. */
2450
2451 static void
2452 mark_set_regs (pbi, x, insn)
2453 struct propagate_block_info *pbi;
2454 rtx x, insn;
2455 {
2456 rtx cond = NULL_RTX;
2457 rtx link;
2458 enum rtx_code code;
2459
2460 if (insn)
2461 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2462 {
2463 if (REG_NOTE_KIND (link) == REG_INC)
2464 mark_set_1 (pbi, SET, XEXP (link, 0),
2465 (GET_CODE (x) == COND_EXEC
2466 ? COND_EXEC_TEST (x) : NULL_RTX),
2467 insn, pbi->flags);
2468 }
2469 retry:
2470 switch (code = GET_CODE (x))
2471 {
2472 case SET:
2473 case CLOBBER:
2474 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2475 return;
2476
2477 case COND_EXEC:
2478 cond = COND_EXEC_TEST (x);
2479 x = COND_EXEC_CODE (x);
2480 goto retry;
2481
2482 case PARALLEL:
2483 {
2484 int i;
2485
2486 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2487 {
2488 rtx sub = XVECEXP (x, 0, i);
2489 switch (code = GET_CODE (sub))
2490 {
2491 case COND_EXEC:
2492 if (cond != NULL_RTX)
2493 abort ();
2494
2495 cond = COND_EXEC_TEST (sub);
2496 sub = COND_EXEC_CODE (sub);
2497 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2498 break;
2499 /* Fall through. */
2500
2501 case SET:
2502 case CLOBBER:
2503 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2504 break;
2505
2506 default:
2507 break;
2508 }
2509 }
2510 break;
2511 }
2512
2513 default:
2514 break;
2515 }
2516 }
2517
2518 /* Process a single set, which appears in INSN. REG (which may not
2519 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2520 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2521 If the set is conditional (because it appear in a COND_EXEC), COND
2522 will be the condition. */
2523
2524 static void
2525 mark_set_1 (pbi, code, reg, cond, insn, flags)
2526 struct propagate_block_info *pbi;
2527 enum rtx_code code;
2528 rtx reg, cond, insn;
2529 int flags;
2530 {
2531 int regno_first = -1, regno_last = -1;
2532 unsigned long not_dead = 0;
2533 int i;
2534
2535 /* Modifying just one hardware register of a multi-reg value or just a
2536 byte field of a register does not mean the value from before this insn
2537 is now dead. Of course, if it was dead after it's unused now. */
2538
2539 switch (GET_CODE (reg))
2540 {
2541 case PARALLEL:
2542 /* Some targets place small structures in registers for return values of
2543 functions. We have to detect this case specially here to get correct
2544 flow information. */
2545 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2546 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2547 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2548 flags);
2549 return;
2550
2551 case ZERO_EXTRACT:
2552 case SIGN_EXTRACT:
2553 case STRICT_LOW_PART:
2554 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2555 do
2556 reg = XEXP (reg, 0);
2557 while (GET_CODE (reg) == SUBREG
2558 || GET_CODE (reg) == ZERO_EXTRACT
2559 || GET_CODE (reg) == SIGN_EXTRACT
2560 || GET_CODE (reg) == STRICT_LOW_PART);
2561 if (GET_CODE (reg) == MEM)
2562 break;
2563 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2564 /* Fall through. */
2565
2566 case REG:
2567 regno_last = regno_first = REGNO (reg);
2568 if (regno_first < FIRST_PSEUDO_REGISTER)
2569 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2570 break;
2571
2572 case SUBREG:
2573 if (GET_CODE (SUBREG_REG (reg)) == REG)
2574 {
2575 enum machine_mode outer_mode = GET_MODE (reg);
2576 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2577
2578 /* Identify the range of registers affected. This is moderately
2579 tricky for hard registers. See alter_subreg. */
2580
2581 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2582 if (regno_first < FIRST_PSEUDO_REGISTER)
2583 {
2584 regno_first += subreg_regno_offset (regno_first, inner_mode,
2585 SUBREG_BYTE (reg),
2586 outer_mode);
2587 regno_last = (regno_first
2588 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2589
2590 /* Since we've just adjusted the register number ranges, make
2591 sure REG matches. Otherwise some_was_live will be clear
2592 when it shouldn't have been, and we'll create incorrect
2593 REG_UNUSED notes. */
2594 reg = gen_rtx_REG (outer_mode, regno_first);
2595 }
2596 else
2597 {
2598 /* If the number of words in the subreg is less than the number
2599 of words in the full register, we have a well-defined partial
2600 set. Otherwise the high bits are undefined.
2601
2602 This is only really applicable to pseudos, since we just took
2603 care of multi-word hard registers. */
2604 if (((GET_MODE_SIZE (outer_mode)
2605 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2606 < ((GET_MODE_SIZE (inner_mode)
2607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2608 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2609 regno_first);
2610
2611 reg = SUBREG_REG (reg);
2612 }
2613 }
2614 else
2615 reg = SUBREG_REG (reg);
2616 break;
2617
2618 default:
2619 break;
2620 }
2621
2622 /* If this set is a MEM, then it kills any aliased writes.
2623 If this set is a REG, then it kills any MEMs which use the reg. */
2624 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2625 {
2626 if (GET_CODE (reg) == REG)
2627 invalidate_mems_from_set (pbi, reg);
2628
2629 /* If the memory reference had embedded side effects (autoincrement
2630 address modes. Then we may need to kill some entries on the
2631 memory set list. */
2632 if (insn && GET_CODE (reg) == MEM)
2633 invalidate_mems_from_autoinc (pbi, insn);
2634
2635 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2636 /* ??? With more effort we could track conditional memory life. */
2637 && ! cond
2638 /* There are no REG_INC notes for SP, so we can't assume we'll see
2639 everything that invalidates it. To be safe, don't eliminate any
2640 stores though SP; none of them should be redundant anyway. */
2641 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2642 add_to_mem_set_list (pbi, canon_rtx (reg));
2643 }
2644
2645 if (GET_CODE (reg) == REG
2646 && ! (regno_first == FRAME_POINTER_REGNUM
2647 && (! reload_completed || frame_pointer_needed))
2648 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2649 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2650 && (! reload_completed || frame_pointer_needed))
2651 #endif
2652 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2653 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2654 #endif
2655 )
2656 {
2657 int some_was_live = 0, some_was_dead = 0;
2658
2659 for (i = regno_first; i <= regno_last; ++i)
2660 {
2661 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2662 if (pbi->local_set)
2663 {
2664 /* Order of the set operation matters here since both
2665 sets may be the same. */
2666 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2667 if (cond != NULL_RTX
2668 && ! REGNO_REG_SET_P (pbi->local_set, i))
2669 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2670 else
2671 SET_REGNO_REG_SET (pbi->local_set, i);
2672 }
2673 if (code != CLOBBER)
2674 SET_REGNO_REG_SET (pbi->new_set, i);
2675
2676 some_was_live |= needed_regno;
2677 some_was_dead |= ! needed_regno;
2678 }
2679
2680 #ifdef HAVE_conditional_execution
2681 /* Consider conditional death in deciding that the register needs
2682 a death note. */
2683 if (some_was_live && ! not_dead
2684 /* The stack pointer is never dead. Well, not strictly true,
2685 but it's very difficult to tell from here. Hopefully
2686 combine_stack_adjustments will fix up the most egregious
2687 errors. */
2688 && regno_first != STACK_POINTER_REGNUM)
2689 {
2690 for (i = regno_first; i <= regno_last; ++i)
2691 if (! mark_regno_cond_dead (pbi, i, cond))
2692 not_dead |= ((unsigned long) 1) << (i - regno_first);
2693 }
2694 #endif
2695
2696 /* Additional data to record if this is the final pass. */
2697 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2698 | PROP_DEATH_NOTES | PROP_AUTOINC))
2699 {
2700 rtx y;
2701 int blocknum = pbi->bb->index;
2702
2703 y = NULL_RTX;
2704 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2705 {
2706 y = pbi->reg_next_use[regno_first];
2707
2708 /* The next use is no longer next, since a store intervenes. */
2709 for (i = regno_first; i <= regno_last; ++i)
2710 pbi->reg_next_use[i] = 0;
2711 }
2712
2713 if (flags & PROP_REG_INFO)
2714 {
2715 for (i = regno_first; i <= regno_last; ++i)
2716 {
2717 /* Count (weighted) references, stores, etc. This counts a
2718 register twice if it is modified, but that is correct. */
2719 REG_N_SETS (i) += 1;
2720 REG_N_REFS (i) += 1;
2721 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2722
2723 /* The insns where a reg is live are normally counted
2724 elsewhere, but we want the count to include the insn
2725 where the reg is set, and the normal counting mechanism
2726 would not count it. */
2727 REG_LIVE_LENGTH (i) += 1;
2728 }
2729
2730 /* If this is a hard reg, record this function uses the reg. */
2731 if (regno_first < FIRST_PSEUDO_REGISTER)
2732 {
2733 for (i = regno_first; i <= regno_last; i++)
2734 regs_ever_live[i] = 1;
2735 }
2736 else
2737 {
2738 /* Keep track of which basic blocks each reg appears in. */
2739 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2740 REG_BASIC_BLOCK (regno_first) = blocknum;
2741 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2742 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2743 }
2744 }
2745
2746 if (! some_was_dead)
2747 {
2748 if (flags & PROP_LOG_LINKS)
2749 {
2750 /* Make a logical link from the next following insn
2751 that uses this register, back to this insn.
2752 The following insns have already been processed.
2753
2754 We don't build a LOG_LINK for hard registers containing
2755 in ASM_OPERANDs. If these registers get replaced,
2756 we might wind up changing the semantics of the insn,
2757 even if reload can make what appear to be valid
2758 assignments later. */
2759 if (y && (BLOCK_NUM (y) == blocknum)
2760 && (regno_first >= FIRST_PSEUDO_REGISTER
2761 || asm_noperands (PATTERN (y)) < 0))
2762 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2763 }
2764 }
2765 else if (not_dead)
2766 ;
2767 else if (! some_was_live)
2768 {
2769 if (flags & PROP_REG_INFO)
2770 REG_N_DEATHS (regno_first) += 1;
2771
2772 if (flags & PROP_DEATH_NOTES)
2773 {
2774 /* Note that dead stores have already been deleted
2775 when possible. If we get here, we have found a
2776 dead store that cannot be eliminated (because the
2777 same insn does something useful). Indicate this
2778 by marking the reg being set as dying here. */
2779 REG_NOTES (insn)
2780 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2781 }
2782 }
2783 else
2784 {
2785 if (flags & PROP_DEATH_NOTES)
2786 {
2787 /* This is a case where we have a multi-word hard register
2788 and some, but not all, of the words of the register are
2789 needed in subsequent insns. Write REG_UNUSED notes
2790 for those parts that were not needed. This case should
2791 be rare. */
2792
2793 for (i = regno_first; i <= regno_last; ++i)
2794 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2795 REG_NOTES (insn)
2796 = alloc_EXPR_LIST (REG_UNUSED,
2797 gen_rtx_REG (reg_raw_mode[i], i),
2798 REG_NOTES (insn));
2799 }
2800 }
2801 }
2802
2803 /* Mark the register as being dead. */
2804 if (some_was_live
2805 /* The stack pointer is never dead. Well, not strictly true,
2806 but it's very difficult to tell from here. Hopefully
2807 combine_stack_adjustments will fix up the most egregious
2808 errors. */
2809 && regno_first != STACK_POINTER_REGNUM)
2810 {
2811 for (i = regno_first; i <= regno_last; ++i)
2812 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2813 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2814 }
2815 }
2816 else if (GET_CODE (reg) == REG)
2817 {
2818 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2819 pbi->reg_next_use[regno_first] = 0;
2820 }
2821
2822 /* If this is the last pass and this is a SCRATCH, show it will be dying
2823 here and count it. */
2824 else if (GET_CODE (reg) == SCRATCH)
2825 {
2826 if (flags & PROP_DEATH_NOTES)
2827 REG_NOTES (insn)
2828 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2829 }
2830 }
2831 \f
2832 #ifdef HAVE_conditional_execution
2833 /* Mark REGNO conditionally dead.
2834 Return true if the register is now unconditionally dead. */
2835
2836 static int
2837 mark_regno_cond_dead (pbi, regno, cond)
2838 struct propagate_block_info *pbi;
2839 int regno;
2840 rtx cond;
2841 {
2842 /* If this is a store to a predicate register, the value of the
2843 predicate is changing, we don't know that the predicate as seen
2844 before is the same as that seen after. Flush all dependent
2845 conditions from reg_cond_dead. This will make all such
2846 conditionally live registers unconditionally live. */
2847 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2848 flush_reg_cond_reg (pbi, regno);
2849
2850 /* If this is an unconditional store, remove any conditional
2851 life that may have existed. */
2852 if (cond == NULL_RTX)
2853 splay_tree_remove (pbi->reg_cond_dead, regno);
2854 else
2855 {
2856 splay_tree_node node;
2857 struct reg_cond_life_info *rcli;
2858 rtx ncond;
2859
2860 /* Otherwise this is a conditional set. Record that fact.
2861 It may have been conditionally used, or there may be a
2862 subsequent set with a complimentary condition. */
2863
2864 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2865 if (node == NULL)
2866 {
2867 /* The register was unconditionally live previously.
2868 Record the current condition as the condition under
2869 which it is dead. */
2870 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2871 rcli->condition = cond;
2872 rcli->stores = cond;
2873 rcli->orig_condition = const0_rtx;
2874 splay_tree_insert (pbi->reg_cond_dead, regno,
2875 (splay_tree_value) rcli);
2876
2877 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2878
2879 /* Not unconditionally dead. */
2880 return 0;
2881 }
2882 else
2883 {
2884 /* The register was conditionally live previously.
2885 Add the new condition to the old. */
2886 rcli = (struct reg_cond_life_info *) node->value;
2887 ncond = rcli->condition;
2888 ncond = ior_reg_cond (ncond, cond, 1);
2889 if (rcli->stores == const0_rtx)
2890 rcli->stores = cond;
2891 else if (rcli->stores != const1_rtx)
2892 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2893
2894 /* If the register is now unconditionally dead, remove the entry
2895 in the splay_tree. A register is unconditionally dead if the
2896 dead condition ncond is true. A register is also unconditionally
2897 dead if the sum of all conditional stores is an unconditional
2898 store (stores is true), and the dead condition is identically the
2899 same as the original dead condition initialized at the end of
2900 the block. This is a pointer compare, not an rtx_equal_p
2901 compare. */
2902 if (ncond == const1_rtx
2903 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2904 splay_tree_remove (pbi->reg_cond_dead, regno);
2905 else
2906 {
2907 rcli->condition = ncond;
2908
2909 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2910
2911 /* Not unconditionally dead. */
2912 return 0;
2913 }
2914 }
2915 }
2916
2917 return 1;
2918 }
2919
2920 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2921
2922 static void
2923 free_reg_cond_life_info (value)
2924 splay_tree_value value;
2925 {
2926 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2927 free (rcli);
2928 }
2929
2930 /* Helper function for flush_reg_cond_reg. */
2931
2932 static int
2933 flush_reg_cond_reg_1 (node, data)
2934 splay_tree_node node;
2935 void *data;
2936 {
2937 struct reg_cond_life_info *rcli;
2938 int *xdata = (int *) data;
2939 unsigned int regno = xdata[0];
2940
2941 /* Don't need to search if last flushed value was farther on in
2942 the in-order traversal. */
2943 if (xdata[1] >= (int) node->key)
2944 return 0;
2945
2946 /* Splice out portions of the expression that refer to regno. */
2947 rcli = (struct reg_cond_life_info *) node->value;
2948 rcli->condition = elim_reg_cond (rcli->condition, regno);
2949 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2950 rcli->stores = elim_reg_cond (rcli->stores, regno);
2951
2952 /* If the entire condition is now false, signal the node to be removed. */
2953 if (rcli->condition == const0_rtx)
2954 {
2955 xdata[1] = node->key;
2956 return -1;
2957 }
2958 else if (rcli->condition == const1_rtx)
2959 abort ();
2960
2961 return 0;
2962 }
2963
2964 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2965
2966 static void
2967 flush_reg_cond_reg (pbi, regno)
2968 struct propagate_block_info *pbi;
2969 int regno;
2970 {
2971 int pair[2];
2972
2973 pair[0] = regno;
2974 pair[1] = -1;
2975 while (splay_tree_foreach (pbi->reg_cond_dead,
2976 flush_reg_cond_reg_1, pair) == -1)
2977 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2978
2979 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2980 }
2981
2982 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2983 For ior/and, the ADD flag determines whether we want to add the new
2984 condition X to the old one unconditionally. If it is zero, we will
2985 only return a new expression if X allows us to simplify part of
2986 OLD, otherwise we return NULL to the caller.
2987 If ADD is nonzero, we will return a new condition in all cases. The
2988 toplevel caller of one of these functions should always pass 1 for
2989 ADD. */
2990
2991 static rtx
2992 ior_reg_cond (old, x, add)
2993 rtx old, x;
2994 int add;
2995 {
2996 rtx op0, op1;
2997
2998 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2999 {
3000 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3001 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3002 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3003 return const1_rtx;
3004 if (GET_CODE (x) == GET_CODE (old)
3005 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3006 return old;
3007 if (! add)
3008 return NULL;
3009 return gen_rtx_IOR (0, old, x);
3010 }
3011
3012 switch (GET_CODE (old))
3013 {
3014 case IOR:
3015 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3016 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3017 if (op0 != NULL || op1 != NULL)
3018 {
3019 if (op0 == const0_rtx)
3020 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3021 if (op1 == const0_rtx)
3022 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3023 if (op0 == const1_rtx || op1 == const1_rtx)
3024 return const1_rtx;
3025 if (op0 == NULL)
3026 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3027 else if (rtx_equal_p (x, op0))
3028 /* (x | A) | x ~ (x | A). */
3029 return old;
3030 if (op1 == NULL)
3031 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3032 else if (rtx_equal_p (x, op1))
3033 /* (A | x) | x ~ (A | x). */
3034 return old;
3035 return gen_rtx_IOR (0, op0, op1);
3036 }
3037 if (! add)
3038 return NULL;
3039 return gen_rtx_IOR (0, old, x);
3040
3041 case AND:
3042 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3043 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3044 if (op0 != NULL || op1 != NULL)
3045 {
3046 if (op0 == const1_rtx)
3047 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3048 if (op1 == const1_rtx)
3049 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3050 if (op0 == const0_rtx || op1 == const0_rtx)
3051 return const0_rtx;
3052 if (op0 == NULL)
3053 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3054 else if (rtx_equal_p (x, op0))
3055 /* (x & A) | x ~ x. */
3056 return op0;
3057 if (op1 == NULL)
3058 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3059 else if (rtx_equal_p (x, op1))
3060 /* (A & x) | x ~ x. */
3061 return op1;
3062 return gen_rtx_AND (0, op0, op1);
3063 }
3064 if (! add)
3065 return NULL;
3066 return gen_rtx_IOR (0, old, x);
3067
3068 case NOT:
3069 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3070 if (op0 != NULL)
3071 return not_reg_cond (op0);
3072 if (! add)
3073 return NULL;
3074 return gen_rtx_IOR (0, old, x);
3075
3076 default:
3077 abort ();
3078 }
3079 }
3080
3081 static rtx
3082 not_reg_cond (x)
3083 rtx x;
3084 {
3085 enum rtx_code x_code;
3086
3087 if (x == const0_rtx)
3088 return const1_rtx;
3089 else if (x == const1_rtx)
3090 return const0_rtx;
3091 x_code = GET_CODE (x);
3092 if (x_code == NOT)
3093 return XEXP (x, 0);
3094 if (GET_RTX_CLASS (x_code) == '<'
3095 && GET_CODE (XEXP (x, 0)) == REG)
3096 {
3097 if (XEXP (x, 1) != const0_rtx)
3098 abort ();
3099
3100 return gen_rtx_fmt_ee (reverse_condition (x_code),
3101 VOIDmode, XEXP (x, 0), const0_rtx);
3102 }
3103 return gen_rtx_NOT (0, x);
3104 }
3105
3106 static rtx
3107 and_reg_cond (old, x, add)
3108 rtx old, x;
3109 int add;
3110 {
3111 rtx op0, op1;
3112
3113 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3114 {
3115 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3116 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3117 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3118 return const0_rtx;
3119 if (GET_CODE (x) == GET_CODE (old)
3120 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3121 return old;
3122 if (! add)
3123 return NULL;
3124 return gen_rtx_AND (0, old, x);
3125 }
3126
3127 switch (GET_CODE (old))
3128 {
3129 case IOR:
3130 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3131 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3132 if (op0 != NULL || op1 != NULL)
3133 {
3134 if (op0 == const0_rtx)
3135 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3136 if (op1 == const0_rtx)
3137 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3138 if (op0 == const1_rtx || op1 == const1_rtx)
3139 return const1_rtx;
3140 if (op0 == NULL)
3141 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3142 else if (rtx_equal_p (x, op0))
3143 /* (x | A) & x ~ x. */
3144 return op0;
3145 if (op1 == NULL)
3146 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3147 else if (rtx_equal_p (x, op1))
3148 /* (A | x) & x ~ x. */
3149 return op1;
3150 return gen_rtx_IOR (0, op0, op1);
3151 }
3152 if (! add)
3153 return NULL;
3154 return gen_rtx_AND (0, old, x);
3155
3156 case AND:
3157 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3158 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3159 if (op0 != NULL || op1 != NULL)
3160 {
3161 if (op0 == const1_rtx)
3162 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3163 if (op1 == const1_rtx)
3164 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3165 if (op0 == const0_rtx || op1 == const0_rtx)
3166 return const0_rtx;
3167 if (op0 == NULL)
3168 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3169 else if (rtx_equal_p (x, op0))
3170 /* (x & A) & x ~ (x & A). */
3171 return old;
3172 if (op1 == NULL)
3173 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3174 else if (rtx_equal_p (x, op1))
3175 /* (A & x) & x ~ (A & x). */
3176 return old;
3177 return gen_rtx_AND (0, op0, op1);
3178 }
3179 if (! add)
3180 return NULL;
3181 return gen_rtx_AND (0, old, x);
3182
3183 case NOT:
3184 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3185 if (op0 != NULL)
3186 return not_reg_cond (op0);
3187 if (! add)
3188 return NULL;
3189 return gen_rtx_AND (0, old, x);
3190
3191 default:
3192 abort ();
3193 }
3194 }
3195
3196 /* Given a condition X, remove references to reg REGNO and return the
3197 new condition. The removal will be done so that all conditions
3198 involving REGNO are considered to evaluate to false. This function
3199 is used when the value of REGNO changes. */
3200
3201 static rtx
3202 elim_reg_cond (x, regno)
3203 rtx x;
3204 unsigned int regno;
3205 {
3206 rtx op0, op1;
3207
3208 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3209 {
3210 if (REGNO (XEXP (x, 0)) == regno)
3211 return const0_rtx;
3212 return x;
3213 }
3214
3215 switch (GET_CODE (x))
3216 {
3217 case AND:
3218 op0 = elim_reg_cond (XEXP (x, 0), regno);
3219 op1 = elim_reg_cond (XEXP (x, 1), regno);
3220 if (op0 == const0_rtx || op1 == const0_rtx)
3221 return const0_rtx;
3222 if (op0 == const1_rtx)
3223 return op1;
3224 if (op1 == const1_rtx)
3225 return op0;
3226 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3227 return x;
3228 return gen_rtx_AND (0, op0, op1);
3229
3230 case IOR:
3231 op0 = elim_reg_cond (XEXP (x, 0), regno);
3232 op1 = elim_reg_cond (XEXP (x, 1), regno);
3233 if (op0 == const1_rtx || op1 == const1_rtx)
3234 return const1_rtx;
3235 if (op0 == const0_rtx)
3236 return op1;
3237 if (op1 == const0_rtx)
3238 return op0;
3239 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3240 return x;
3241 return gen_rtx_IOR (0, op0, op1);
3242
3243 case NOT:
3244 op0 = elim_reg_cond (XEXP (x, 0), regno);
3245 if (op0 == const0_rtx)
3246 return const1_rtx;
3247 if (op0 == const1_rtx)
3248 return const0_rtx;
3249 if (op0 != XEXP (x, 0))
3250 return not_reg_cond (op0);
3251 return x;
3252
3253 default:
3254 abort ();
3255 }
3256 }
3257 #endif /* HAVE_conditional_execution */
3258 \f
3259 #ifdef AUTO_INC_DEC
3260
3261 /* Try to substitute the auto-inc expression INC as the address inside
3262 MEM which occurs in INSN. Currently, the address of MEM is an expression
3263 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3264 that has a single set whose source is a PLUS of INCR_REG and something
3265 else. */
3266
3267 static void
3268 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3269 struct propagate_block_info *pbi;
3270 rtx inc, insn, mem, incr, incr_reg;
3271 {
3272 int regno = REGNO (incr_reg);
3273 rtx set = single_set (incr);
3274 rtx q = SET_DEST (set);
3275 rtx y = SET_SRC (set);
3276 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3277
3278 /* Make sure this reg appears only once in this insn. */
3279 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3280 return;
3281
3282 if (dead_or_set_p (incr, incr_reg)
3283 /* Mustn't autoinc an eliminable register. */
3284 && (regno >= FIRST_PSEUDO_REGISTER
3285 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3286 {
3287 /* This is the simple case. Try to make the auto-inc. If
3288 we can't, we are done. Otherwise, we will do any
3289 needed updates below. */
3290 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3291 return;
3292 }
3293 else if (GET_CODE (q) == REG
3294 /* PREV_INSN used here to check the semi-open interval
3295 [insn,incr). */
3296 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3297 /* We must also check for sets of q as q may be
3298 a call clobbered hard register and there may
3299 be a call between PREV_INSN (insn) and incr. */
3300 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3301 {
3302 /* We have *p followed sometime later by q = p+size.
3303 Both p and q must be live afterward,
3304 and q is not used between INSN and its assignment.
3305 Change it to q = p, ...*q..., q = q+size.
3306 Then fall into the usual case. */
3307 rtx insns, temp;
3308
3309 start_sequence ();
3310 emit_move_insn (q, incr_reg);
3311 insns = get_insns ();
3312 end_sequence ();
3313
3314 /* If we can't make the auto-inc, or can't make the
3315 replacement into Y, exit. There's no point in making
3316 the change below if we can't do the auto-inc and doing
3317 so is not correct in the pre-inc case. */
3318
3319 XEXP (inc, 0) = q;
3320 validate_change (insn, &XEXP (mem, 0), inc, 1);
3321 validate_change (incr, &XEXP (y, opnum), q, 1);
3322 if (! apply_change_group ())
3323 return;
3324
3325 /* We now know we'll be doing this change, so emit the
3326 new insn(s) and do the updates. */
3327 emit_insns_before (insns, insn);
3328
3329 if (pbi->bb->head == insn)
3330 pbi->bb->head = insns;
3331
3332 /* INCR will become a NOTE and INSN won't contain a
3333 use of INCR_REG. If a use of INCR_REG was just placed in
3334 the insn before INSN, make that the next use.
3335 Otherwise, invalidate it. */
3336 if (GET_CODE (PREV_INSN (insn)) == INSN
3337 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3338 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3339 pbi->reg_next_use[regno] = PREV_INSN (insn);
3340 else
3341 pbi->reg_next_use[regno] = 0;
3342
3343 incr_reg = q;
3344 regno = REGNO (q);
3345
3346 /* REGNO is now used in INCR which is below INSN, but
3347 it previously wasn't live here. If we don't mark
3348 it as live, we'll put a REG_DEAD note for it
3349 on this insn, which is incorrect. */
3350 SET_REGNO_REG_SET (pbi->reg_live, regno);
3351
3352 /* If there are any calls between INSN and INCR, show
3353 that REGNO now crosses them. */
3354 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3355 if (GET_CODE (temp) == CALL_INSN)
3356 REG_N_CALLS_CROSSED (regno)++;
3357
3358 /* Invalidate alias info for Q since we just changed its value. */
3359 clear_reg_alias_info (q);
3360 }
3361 else
3362 return;
3363
3364 /* If we haven't returned, it means we were able to make the
3365 auto-inc, so update the status. First, record that this insn
3366 has an implicit side effect. */
3367
3368 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3369
3370 /* Modify the old increment-insn to simply copy
3371 the already-incremented value of our register. */
3372 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3373 abort ();
3374
3375 /* If that makes it a no-op (copying the register into itself) delete
3376 it so it won't appear to be a "use" and a "set" of this
3377 register. */
3378 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3379 {
3380 /* If the original source was dead, it's dead now. */
3381 rtx note;
3382
3383 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3384 {
3385 remove_note (incr, note);
3386 if (XEXP (note, 0) != incr_reg)
3387 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3388 }
3389
3390 PUT_CODE (incr, NOTE);
3391 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3392 NOTE_SOURCE_FILE (incr) = 0;
3393 }
3394
3395 if (regno >= FIRST_PSEUDO_REGISTER)
3396 {
3397 /* Count an extra reference to the reg. When a reg is
3398 incremented, spilling it is worse, so we want to make
3399 that less likely. */
3400 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3401
3402 /* Count the increment as a setting of the register,
3403 even though it isn't a SET in rtl. */
3404 REG_N_SETS (regno)++;
3405 }
3406 }
3407
3408 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3409 reference. */
3410
3411 static void
3412 find_auto_inc (pbi, x, insn)
3413 struct propagate_block_info *pbi;
3414 rtx x;
3415 rtx insn;
3416 {
3417 rtx addr = XEXP (x, 0);
3418 HOST_WIDE_INT offset = 0;
3419 rtx set, y, incr, inc_val;
3420 int regno;
3421 int size = GET_MODE_SIZE (GET_MODE (x));
3422
3423 if (GET_CODE (insn) == JUMP_INSN)
3424 return;
3425
3426 /* Here we detect use of an index register which might be good for
3427 postincrement, postdecrement, preincrement, or predecrement. */
3428
3429 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3430 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3431
3432 if (GET_CODE (addr) != REG)
3433 return;
3434
3435 regno = REGNO (addr);
3436
3437 /* Is the next use an increment that might make auto-increment? */
3438 incr = pbi->reg_next_use[regno];
3439 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3440 return;
3441 set = single_set (incr);
3442 if (set == 0 || GET_CODE (set) != SET)
3443 return;
3444 y = SET_SRC (set);
3445
3446 if (GET_CODE (y) != PLUS)
3447 return;
3448
3449 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3450 inc_val = XEXP (y, 1);
3451 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3452 inc_val = XEXP (y, 0);
3453 else
3454 return;
3455
3456 if (GET_CODE (inc_val) == CONST_INT)
3457 {
3458 if (HAVE_POST_INCREMENT
3459 && (INTVAL (inc_val) == size && offset == 0))
3460 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3461 incr, addr);
3462 else if (HAVE_POST_DECREMENT
3463 && (INTVAL (inc_val) == -size && offset == 0))
3464 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3465 incr, addr);
3466 else if (HAVE_PRE_INCREMENT
3467 && (INTVAL (inc_val) == size && offset == size))
3468 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3469 incr, addr);
3470 else if (HAVE_PRE_DECREMENT
3471 && (INTVAL (inc_val) == -size && offset == -size))
3472 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3473 incr, addr);
3474 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3476 gen_rtx_PLUS (Pmode,
3477 addr,
3478 inc_val)),
3479 insn, x, incr, addr);
3480 }
3481 else if (GET_CODE (inc_val) == REG
3482 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3483 NEXT_INSN (incr)))
3484
3485 {
3486 if (HAVE_POST_MODIFY_REG && offset == 0)
3487 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3488 gen_rtx_PLUS (Pmode,
3489 addr,
3490 inc_val)),
3491 insn, x, incr, addr);
3492 }
3493 }
3494
3495 #endif /* AUTO_INC_DEC */
3496 \f
3497 static void
3498 mark_used_reg (pbi, reg, cond, insn)
3499 struct propagate_block_info *pbi;
3500 rtx reg;
3501 rtx cond ATTRIBUTE_UNUSED;
3502 rtx insn;
3503 {
3504 unsigned int regno_first, regno_last, i;
3505 int some_was_live, some_was_dead, some_not_set;
3506
3507 regno_last = regno_first = REGNO (reg);
3508 if (regno_first < FIRST_PSEUDO_REGISTER)
3509 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3510
3511 /* Find out if any of this register is live after this instruction. */
3512 some_was_live = some_was_dead = 0;
3513 for (i = regno_first; i <= regno_last; ++i)
3514 {
3515 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3516 some_was_live |= needed_regno;
3517 some_was_dead |= ! needed_regno;
3518 }
3519
3520 /* Find out if any of the register was set this insn. */
3521 some_not_set = 0;
3522 for (i = regno_first; i <= regno_last; ++i)
3523 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3524
3525 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3526 {
3527 /* Record where each reg is used, so when the reg is set we know
3528 the next insn that uses it. */
3529 pbi->reg_next_use[regno_first] = insn;
3530 }
3531
3532 if (pbi->flags & PROP_REG_INFO)
3533 {
3534 if (regno_first < FIRST_PSEUDO_REGISTER)
3535 {
3536 /* If this is a register we are going to try to eliminate,
3537 don't mark it live here. If we are successful in
3538 eliminating it, it need not be live unless it is used for
3539 pseudos, in which case it will have been set live when it
3540 was allocated to the pseudos. If the register will not
3541 be eliminated, reload will set it live at that point.
3542
3543 Otherwise, record that this function uses this register. */
3544 /* ??? The PPC backend tries to "eliminate" on the pic
3545 register to itself. This should be fixed. In the mean
3546 time, hack around it. */
3547
3548 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3549 && (regno_first == FRAME_POINTER_REGNUM
3550 || regno_first == ARG_POINTER_REGNUM)))
3551 for (i = regno_first; i <= regno_last; ++i)
3552 regs_ever_live[i] = 1;
3553 }
3554 else
3555 {
3556 /* Keep track of which basic block each reg appears in. */
3557
3558 int blocknum = pbi->bb->index;
3559 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3560 REG_BASIC_BLOCK (regno_first) = blocknum;
3561 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3562 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3563
3564 /* Count (weighted) number of uses of each reg. */
3565 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3566 REG_N_REFS (regno_first)++;
3567 }
3568 }
3569
3570 /* Record and count the insns in which a reg dies. If it is used in
3571 this insn and was dead below the insn then it dies in this insn.
3572 If it was set in this insn, we do not make a REG_DEAD note;
3573 likewise if we already made such a note. */
3574 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3575 && some_was_dead
3576 && some_not_set)
3577 {
3578 /* Check for the case where the register dying partially
3579 overlaps the register set by this insn. */
3580 if (regno_first != regno_last)
3581 for (i = regno_first; i <= regno_last; ++i)
3582 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3583
3584 /* If none of the words in X is needed, make a REG_DEAD note.
3585 Otherwise, we must make partial REG_DEAD notes. */
3586 if (! some_was_live)
3587 {
3588 if ((pbi->flags & PROP_DEATH_NOTES)
3589 && ! find_regno_note (insn, REG_DEAD, regno_first))
3590 REG_NOTES (insn)
3591 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3592
3593 if (pbi->flags & PROP_REG_INFO)
3594 REG_N_DEATHS (regno_first)++;
3595 }
3596 else
3597 {
3598 /* Don't make a REG_DEAD note for a part of a register
3599 that is set in the insn. */
3600 for (i = regno_first; i <= regno_last; ++i)
3601 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3602 && ! dead_or_set_regno_p (insn, i))
3603 REG_NOTES (insn)
3604 = alloc_EXPR_LIST (REG_DEAD,
3605 gen_rtx_REG (reg_raw_mode[i], i),
3606 REG_NOTES (insn));
3607 }
3608 }
3609
3610 /* Mark the register as being live. */
3611 for (i = regno_first; i <= regno_last; ++i)
3612 {
3613 SET_REGNO_REG_SET (pbi->reg_live, i);
3614
3615 #ifdef HAVE_conditional_execution
3616 /* If this is a conditional use, record that fact. If it is later
3617 conditionally set, we'll know to kill the register. */
3618 if (cond != NULL_RTX)
3619 {
3620 splay_tree_node node;
3621 struct reg_cond_life_info *rcli;
3622 rtx ncond;
3623
3624 if (some_was_live)
3625 {
3626 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3627 if (node == NULL)
3628 {
3629 /* The register was unconditionally live previously.
3630 No need to do anything. */
3631 }
3632 else
3633 {
3634 /* The register was conditionally live previously.
3635 Subtract the new life cond from the old death cond. */
3636 rcli = (struct reg_cond_life_info *) node->value;
3637 ncond = rcli->condition;
3638 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3639
3640 /* If the register is now unconditionally live,
3641 remove the entry in the splay_tree. */
3642 if (ncond == const0_rtx)
3643 splay_tree_remove (pbi->reg_cond_dead, i);
3644 else
3645 {
3646 rcli->condition = ncond;
3647 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3648 REGNO (XEXP (cond, 0)));
3649 }
3650 }
3651 }
3652 else
3653 {
3654 /* The register was not previously live at all. Record
3655 the condition under which it is still dead. */
3656 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3657 rcli->condition = not_reg_cond (cond);
3658 rcli->stores = const0_rtx;
3659 rcli->orig_condition = const0_rtx;
3660 splay_tree_insert (pbi->reg_cond_dead, i,
3661 (splay_tree_value) rcli);
3662
3663 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3664 }
3665 }
3666 else if (some_was_live)
3667 {
3668 /* The register may have been conditionally live previously, but
3669 is now unconditionally live. Remove it from the conditionally
3670 dead list, so that a conditional set won't cause us to think
3671 it dead. */
3672 splay_tree_remove (pbi->reg_cond_dead, i);
3673 }
3674 #endif
3675 }
3676 }
3677
3678 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3679 This is done assuming the registers needed from X are those that
3680 have 1-bits in PBI->REG_LIVE.
3681
3682 INSN is the containing instruction. If INSN is dead, this function
3683 is not called. */
3684
3685 static void
3686 mark_used_regs (pbi, x, cond, insn)
3687 struct propagate_block_info *pbi;
3688 rtx x, cond, insn;
3689 {
3690 RTX_CODE code;
3691 int regno;
3692 int flags = pbi->flags;
3693
3694 retry:
3695 if (!x)
3696 return;
3697 code = GET_CODE (x);
3698 switch (code)
3699 {
3700 case LABEL_REF:
3701 case SYMBOL_REF:
3702 case CONST_INT:
3703 case CONST:
3704 case CONST_DOUBLE:
3705 case CONST_VECTOR:
3706 case PC:
3707 case ADDR_VEC:
3708 case ADDR_DIFF_VEC:
3709 return;
3710
3711 #ifdef HAVE_cc0
3712 case CC0:
3713 pbi->cc0_live = 1;
3714 return;
3715 #endif
3716
3717 case CLOBBER:
3718 /* If we are clobbering a MEM, mark any registers inside the address
3719 as being used. */
3720 if (GET_CODE (XEXP (x, 0)) == MEM)
3721 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3722 return;
3723
3724 case MEM:
3725 /* Don't bother watching stores to mems if this is not the
3726 final pass. We'll not be deleting dead stores this round. */
3727 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3728 {
3729 /* Invalidate the data for the last MEM stored, but only if MEM is
3730 something that can be stored into. */
3731 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3732 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3733 /* Needn't clear the memory set list. */
3734 ;
3735 else
3736 {
3737 rtx temp = pbi->mem_set_list;
3738 rtx prev = NULL_RTX;
3739 rtx next;
3740
3741 while (temp)
3742 {
3743 next = XEXP (temp, 1);
3744 if (anti_dependence (XEXP (temp, 0), x))
3745 {
3746 /* Splice temp out of the list. */
3747 if (prev)
3748 XEXP (prev, 1) = next;
3749 else
3750 pbi->mem_set_list = next;
3751 free_EXPR_LIST_node (temp);
3752 pbi->mem_set_list_len--;
3753 }
3754 else
3755 prev = temp;
3756 temp = next;
3757 }
3758 }
3759
3760 /* If the memory reference had embedded side effects (autoincrement
3761 address modes. Then we may need to kill some entries on the
3762 memory set list. */
3763 if (insn)
3764 invalidate_mems_from_autoinc (pbi, insn);
3765 }
3766
3767 #ifdef AUTO_INC_DEC
3768 if (flags & PROP_AUTOINC)
3769 find_auto_inc (pbi, x, insn);
3770 #endif
3771 break;
3772
3773 case SUBREG:
3774 #ifdef CLASS_CANNOT_CHANGE_MODE
3775 if (GET_CODE (SUBREG_REG (x)) == REG
3776 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3777 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3778 GET_MODE (SUBREG_REG (x))))
3779 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3780 #endif
3781
3782 /* While we're here, optimize this case. */
3783 x = SUBREG_REG (x);
3784 if (GET_CODE (x) != REG)
3785 goto retry;
3786 /* Fall through. */
3787
3788 case REG:
3789 /* See a register other than being set => mark it as needed. */
3790 mark_used_reg (pbi, x, cond, insn);
3791 return;
3792
3793 case SET:
3794 {
3795 rtx testreg = SET_DEST (x);
3796 int mark_dest = 0;
3797
3798 /* If storing into MEM, don't show it as being used. But do
3799 show the address as being used. */
3800 if (GET_CODE (testreg) == MEM)
3801 {
3802 #ifdef AUTO_INC_DEC
3803 if (flags & PROP_AUTOINC)
3804 find_auto_inc (pbi, testreg, insn);
3805 #endif
3806 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3807 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3808 return;
3809 }
3810
3811 /* Storing in STRICT_LOW_PART is like storing in a reg
3812 in that this SET might be dead, so ignore it in TESTREG.
3813 but in some other ways it is like using the reg.
3814
3815 Storing in a SUBREG or a bit field is like storing the entire
3816 register in that if the register's value is not used
3817 then this SET is not needed. */
3818 while (GET_CODE (testreg) == STRICT_LOW_PART
3819 || GET_CODE (testreg) == ZERO_EXTRACT
3820 || GET_CODE (testreg) == SIGN_EXTRACT
3821 || GET_CODE (testreg) == SUBREG)
3822 {
3823 #ifdef CLASS_CANNOT_CHANGE_MODE
3824 if (GET_CODE (testreg) == SUBREG
3825 && GET_CODE (SUBREG_REG (testreg)) == REG
3826 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3827 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3828 GET_MODE (testreg)))
3829 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3830 #endif
3831
3832 /* Modifying a single register in an alternate mode
3833 does not use any of the old value. But these other
3834 ways of storing in a register do use the old value. */
3835 if (GET_CODE (testreg) == SUBREG
3836 && !((REG_BYTES (SUBREG_REG (testreg))
3837 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3838 > (REG_BYTES (testreg)
3839 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3840 ;
3841 else
3842 mark_dest = 1;
3843
3844 testreg = XEXP (testreg, 0);
3845 }
3846
3847 /* If this is a store into a register or group of registers,
3848 recursively scan the value being stored. */
3849
3850 if ((GET_CODE (testreg) == PARALLEL
3851 && GET_MODE (testreg) == BLKmode)
3852 || (GET_CODE (testreg) == REG
3853 && (regno = REGNO (testreg),
3854 ! (regno == FRAME_POINTER_REGNUM
3855 && (! reload_completed || frame_pointer_needed)))
3856 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3857 && ! (regno == HARD_FRAME_POINTER_REGNUM
3858 && (! reload_completed || frame_pointer_needed))
3859 #endif
3860 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3861 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3862 #endif
3863 ))
3864 {
3865 if (mark_dest)
3866 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3867 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3868 return;
3869 }
3870 }
3871 break;
3872
3873 case ASM_OPERANDS:
3874 case UNSPEC_VOLATILE:
3875 case TRAP_IF:
3876 case ASM_INPUT:
3877 {
3878 /* Traditional and volatile asm instructions must be considered to use
3879 and clobber all hard registers, all pseudo-registers and all of
3880 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3881
3882 Consider for instance a volatile asm that changes the fpu rounding
3883 mode. An insn should not be moved across this even if it only uses
3884 pseudo-regs because it might give an incorrectly rounded result.
3885
3886 ?!? Unfortunately, marking all hard registers as live causes massive
3887 problems for the register allocator and marking all pseudos as live
3888 creates mountains of uninitialized variable warnings.
3889
3890 So for now, just clear the memory set list and mark any regs
3891 we can find in ASM_OPERANDS as used. */
3892 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3893 {
3894 free_EXPR_LIST_list (&pbi->mem_set_list);
3895 pbi->mem_set_list_len = 0;
3896 }
3897
3898 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3899 We can not just fall through here since then we would be confused
3900 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3901 traditional asms unlike their normal usage. */
3902 if (code == ASM_OPERANDS)
3903 {
3904 int j;
3905
3906 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3907 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3908 }
3909 break;
3910 }
3911
3912 case COND_EXEC:
3913 if (cond != NULL_RTX)
3914 abort ();
3915
3916 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3917
3918 cond = COND_EXEC_TEST (x);
3919 x = COND_EXEC_CODE (x);
3920 goto retry;
3921
3922 case PHI:
3923 /* We _do_not_ want to scan operands of phi nodes. Operands of
3924 a phi function are evaluated only when control reaches this
3925 block along a particular edge. Therefore, regs that appear
3926 as arguments to phi should not be added to the global live at
3927 start. */
3928 return;
3929
3930 default:
3931 break;
3932 }
3933
3934 /* Recursively scan the operands of this expression. */
3935
3936 {
3937 const char * const fmt = GET_RTX_FORMAT (code);
3938 int i;
3939
3940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3941 {
3942 if (fmt[i] == 'e')
3943 {
3944 /* Tail recursive case: save a function call level. */
3945 if (i == 0)
3946 {
3947 x = XEXP (x, 0);
3948 goto retry;
3949 }
3950 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3951 }
3952 else if (fmt[i] == 'E')
3953 {
3954 int j;
3955 for (j = 0; j < XVECLEN (x, i); j++)
3956 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3957 }
3958 }
3959 }
3960 }
3961 \f
3962 #ifdef AUTO_INC_DEC
3963
3964 static int
3965 try_pre_increment_1 (pbi, insn)
3966 struct propagate_block_info *pbi;
3967 rtx insn;
3968 {
3969 /* Find the next use of this reg. If in same basic block,
3970 make it do pre-increment or pre-decrement if appropriate. */
3971 rtx x = single_set (insn);
3972 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3973 * INTVAL (XEXP (SET_SRC (x), 1)));
3974 int regno = REGNO (SET_DEST (x));
3975 rtx y = pbi->reg_next_use[regno];
3976 if (y != 0
3977 && SET_DEST (x) != stack_pointer_rtx
3978 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3979 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3980 mode would be better. */
3981 && ! dead_or_set_p (y, SET_DEST (x))
3982 && try_pre_increment (y, SET_DEST (x), amount))
3983 {
3984 /* We have found a suitable auto-increment and already changed
3985 insn Y to do it. So flush this increment instruction. */
3986 propagate_block_delete_insn (insn);
3987
3988 /* Count a reference to this reg for the increment insn we are
3989 deleting. When a reg is incremented, spilling it is worse,
3990 so we want to make that less likely. */
3991 if (regno >= FIRST_PSEUDO_REGISTER)
3992 {
3993 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3994 REG_N_SETS (regno)++;
3995 }
3996
3997 /* Flush any remembered memories depending on the value of
3998 the incremented register. */
3999 invalidate_mems_from_set (pbi, SET_DEST (x));
4000
4001 return 1;
4002 }
4003 return 0;
4004 }
4005
4006 /* Try to change INSN so that it does pre-increment or pre-decrement
4007 addressing on register REG in order to add AMOUNT to REG.
4008 AMOUNT is negative for pre-decrement.
4009 Returns 1 if the change could be made.
4010 This checks all about the validity of the result of modifying INSN. */
4011
4012 static int
4013 try_pre_increment (insn, reg, amount)
4014 rtx insn, reg;
4015 HOST_WIDE_INT amount;
4016 {
4017 rtx use;
4018
4019 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4020 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4021 int pre_ok = 0;
4022 /* Nonzero if we can try to make a post-increment or post-decrement.
4023 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4024 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4025 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4026 int post_ok = 0;
4027
4028 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4029 int do_post = 0;
4030
4031 /* From the sign of increment, see which possibilities are conceivable
4032 on this target machine. */
4033 if (HAVE_PRE_INCREMENT && amount > 0)
4034 pre_ok = 1;
4035 if (HAVE_POST_INCREMENT && amount > 0)
4036 post_ok = 1;
4037
4038 if (HAVE_PRE_DECREMENT && amount < 0)
4039 pre_ok = 1;
4040 if (HAVE_POST_DECREMENT && amount < 0)
4041 post_ok = 1;
4042
4043 if (! (pre_ok || post_ok))
4044 return 0;
4045
4046 /* It is not safe to add a side effect to a jump insn
4047 because if the incremented register is spilled and must be reloaded
4048 there would be no way to store the incremented value back in memory. */
4049
4050 if (GET_CODE (insn) == JUMP_INSN)
4051 return 0;
4052
4053 use = 0;
4054 if (pre_ok)
4055 use = find_use_as_address (PATTERN (insn), reg, 0);
4056 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4057 {
4058 use = find_use_as_address (PATTERN (insn), reg, -amount);
4059 do_post = 1;
4060 }
4061
4062 if (use == 0 || use == (rtx) (size_t) 1)
4063 return 0;
4064
4065 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4066 return 0;
4067
4068 /* See if this combination of instruction and addressing mode exists. */
4069 if (! validate_change (insn, &XEXP (use, 0),
4070 gen_rtx_fmt_e (amount > 0
4071 ? (do_post ? POST_INC : PRE_INC)
4072 : (do_post ? POST_DEC : PRE_DEC),
4073 Pmode, reg), 0))
4074 return 0;
4075
4076 /* Record that this insn now has an implicit side effect on X. */
4077 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4078 return 1;
4079 }
4080
4081 #endif /* AUTO_INC_DEC */
4082 \f
4083 /* Find the place in the rtx X where REG is used as a memory address.
4084 Return the MEM rtx that so uses it.
4085 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4086 (plus REG (const_int PLUSCONST)).
4087
4088 If such an address does not appear, return 0.
4089 If REG appears more than once, or is used other than in such an address,
4090 return (rtx) 1. */
4091
4092 rtx
4093 find_use_as_address (x, reg, plusconst)
4094 rtx x;
4095 rtx reg;
4096 HOST_WIDE_INT plusconst;
4097 {
4098 enum rtx_code code = GET_CODE (x);
4099 const char * const fmt = GET_RTX_FORMAT (code);
4100 int i;
4101 rtx value = 0;
4102 rtx tem;
4103
4104 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4105 return x;
4106
4107 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4108 && XEXP (XEXP (x, 0), 0) == reg
4109 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4110 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4111 return x;
4112
4113 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4114 {
4115 /* If REG occurs inside a MEM used in a bit-field reference,
4116 that is unacceptable. */
4117 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4118 return (rtx) (size_t) 1;
4119 }
4120
4121 if (x == reg)
4122 return (rtx) (size_t) 1;
4123
4124 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4125 {
4126 if (fmt[i] == 'e')
4127 {
4128 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4129 if (value == 0)
4130 value = tem;
4131 else if (tem != 0)
4132 return (rtx) (size_t) 1;
4133 }
4134 else if (fmt[i] == 'E')
4135 {
4136 int j;
4137 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4138 {
4139 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4140 if (value == 0)
4141 value = tem;
4142 else if (tem != 0)
4143 return (rtx) (size_t) 1;
4144 }
4145 }
4146 }
4147
4148 return value;
4149 }
4150 \f
4151 /* Write information about registers and basic blocks into FILE.
4152 This is part of making a debugging dump. */
4153
4154 void
4155 dump_regset (r, outf)
4156 regset r;
4157 FILE *outf;
4158 {
4159 int i;
4160 if (r == NULL)
4161 {
4162 fputs (" (nil)", outf);
4163 return;
4164 }
4165
4166 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4167 {
4168 fprintf (outf, " %d", i);
4169 if (i < FIRST_PSEUDO_REGISTER)
4170 fprintf (outf, " [%s]",
4171 reg_names[i]);
4172 });
4173 }
4174
4175 /* Print a human-reaable representation of R on the standard error
4176 stream. This function is designed to be used from within the
4177 debugger. */
4178
4179 void
4180 debug_regset (r)
4181 regset r;
4182 {
4183 dump_regset (r, stderr);
4184 putc ('\n', stderr);
4185 }
4186
4187 /* Recompute register set/reference counts immediately prior to register
4188 allocation.
4189
4190 This avoids problems with set/reference counts changing to/from values
4191 which have special meanings to the register allocators.
4192
4193 Additionally, the reference counts are the primary component used by the
4194 register allocators to prioritize pseudos for allocation to hard regs.
4195 More accurate reference counts generally lead to better register allocation.
4196
4197 F is the first insn to be scanned.
4198
4199 LOOP_STEP denotes how much loop_depth should be incremented per
4200 loop nesting level in order to increase the ref count more for
4201 references in a loop.
4202
4203 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4204 possibly other information which is used by the register allocators. */
4205
4206 void
4207 recompute_reg_usage (f, loop_step)
4208 rtx f ATTRIBUTE_UNUSED;
4209 int loop_step ATTRIBUTE_UNUSED;
4210 {
4211 allocate_reg_life_data ();
4212 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4213 }
4214
4215 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4216 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4217 of the number of registers that died. */
4218
4219 int
4220 count_or_remove_death_notes (blocks, kill)
4221 sbitmap blocks;
4222 int kill;
4223 {
4224 int i, count = 0;
4225
4226 for (i = n_basic_blocks - 1; i >= 0; --i)
4227 {
4228 basic_block bb;
4229 rtx insn;
4230
4231 if (blocks && ! TEST_BIT (blocks, i))
4232 continue;
4233
4234 bb = BASIC_BLOCK (i);
4235
4236 for (insn = bb->head;; insn = NEXT_INSN (insn))
4237 {
4238 if (INSN_P (insn))
4239 {
4240 rtx *pprev = &REG_NOTES (insn);
4241 rtx link = *pprev;
4242
4243 while (link)
4244 {
4245 switch (REG_NOTE_KIND (link))
4246 {
4247 case REG_DEAD:
4248 if (GET_CODE (XEXP (link, 0)) == REG)
4249 {
4250 rtx reg = XEXP (link, 0);
4251 int n;
4252
4253 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4254 n = 1;
4255 else
4256 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4257 count += n;
4258 }
4259 /* Fall through. */
4260
4261 case REG_UNUSED:
4262 if (kill)
4263 {
4264 rtx next = XEXP (link, 1);
4265 free_EXPR_LIST_node (link);
4266 *pprev = link = next;
4267 break;
4268 }
4269 /* Fall through. */
4270
4271 default:
4272 pprev = &XEXP (link, 1);
4273 link = *pprev;
4274 break;
4275 }
4276 }
4277 }
4278
4279 if (insn == bb->end)
4280 break;
4281 }
4282 }
4283
4284 return count;
4285 }
4286 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4287 if blocks is NULL. */
4288
4289 static void
4290 clear_log_links (blocks)
4291 sbitmap blocks;
4292 {
4293 rtx insn;
4294 int i;
4295
4296 if (!blocks)
4297 {
4298 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4299 if (INSN_P (insn))
4300 free_INSN_LIST_list (&LOG_LINKS (insn));
4301 }
4302 else
4303 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4304 {
4305 basic_block bb = BASIC_BLOCK (i);
4306
4307 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4308 insn = NEXT_INSN (insn))
4309 if (INSN_P (insn))
4310 free_INSN_LIST_list (&LOG_LINKS (insn));
4311 });
4312 }
4313
4314 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4315 correspond to the hard registers, if any, set in that map. This
4316 could be done far more efficiently by having all sorts of special-cases
4317 with moving single words, but probably isn't worth the trouble. */
4318
4319 void
4320 reg_set_to_hard_reg_set (to, from)
4321 HARD_REG_SET *to;
4322 bitmap from;
4323 {
4324 int i;
4325
4326 EXECUTE_IF_SET_IN_BITMAP
4327 (from, 0, i,
4328 {
4329 if (i >= FIRST_PSEUDO_REGISTER)
4330 return;
4331 SET_HARD_REG_BIT (*to, i);
4332 });
4333 }