flow.c (life_analysis): Delete obvious no-op moves which use SUBREGs.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 88, 92-96, 1997 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the data flow analysis pass of the compiler.
23 It computes data flow information
24 which tells combine_instructions which insns to consider combining
25 and controls register allocation.
26
27 Additional data flow information that is too bulky to record
28 is generated during the analysis, and is used at that time to
29 create autoincrement and autodecrement addressing.
30
31 The first step is dividing the function into basic blocks.
32 find_basic_blocks does this. Then life_analysis determines
33 where each register is live and where it is dead.
34
35 ** find_basic_blocks **
36
37 find_basic_blocks divides the current function's rtl
38 into basic blocks. It records the beginnings and ends of the
39 basic blocks in the vectors basic_block_head and basic_block_end,
40 and the number of blocks in n_basic_blocks.
41
42 find_basic_blocks also finds any unreachable loops
43 and deletes them.
44
45 ** life_analysis **
46
47 life_analysis is called immediately after find_basic_blocks.
48 It uses the basic block information to determine where each
49 hard or pseudo register is live.
50
51 ** live-register info **
52
53 The information about where each register is live is in two parts:
54 the REG_NOTES of insns, and the vector basic_block_live_at_start.
55
56 basic_block_live_at_start has an element for each basic block,
57 and the element is a bit-vector with a bit for each hard or pseudo
58 register. The bit is 1 if the register is live at the beginning
59 of the basic block.
60
61 Two types of elements can be added to an insn's REG_NOTES.
62 A REG_DEAD note is added to an insn's REG_NOTES for any register
63 that meets both of two conditions: The value in the register is not
64 needed in subsequent insns and the insn does not replace the value in
65 the register (in the case of multi-word hard registers, the value in
66 each register must be replaced by the insn to avoid a REG_DEAD note).
67
68 In the vast majority of cases, an object in a REG_DEAD note will be
69 used somewhere in the insn. The (rare) exception to this is if an
70 insn uses a multi-word hard register and only some of the registers are
71 needed in subsequent insns. In that case, REG_DEAD notes will be
72 provided for those hard registers that are not subsequently needed.
73 Partial REG_DEAD notes of this type do not occur when an insn sets
74 only some of the hard registers used in such a multi-word operand;
75 omitting REG_DEAD notes for objects stored in an insn is optional and
76 the desire to do so does not justify the complexity of the partial
77 REG_DEAD notes.
78
79 REG_UNUSED notes are added for each register that is set by the insn
80 but is unused subsequently (if every register set by the insn is unused
81 and the insn does not reference memory or have some other side-effect,
82 the insn is deleted instead). If only part of a multi-word hard
83 register is used in a subsequent insn, REG_UNUSED notes are made for
84 the parts that will not be used.
85
86 To determine which registers are live after any insn, one can
87 start from the beginning of the basic block and scan insns, noting
88 which registers are set by each insn and which die there.
89
90 ** Other actions of life_analysis **
91
92 life_analysis sets up the LOG_LINKS fields of insns because the
93 information needed to do so is readily available.
94
95 life_analysis deletes insns whose only effect is to store a value
96 that is never used.
97
98 life_analysis notices cases where a reference to a register as
99 a memory address can be combined with a preceding or following
100 incrementation or decrementation of the register. The separate
101 instruction to increment or decrement is deleted and the address
102 is changed to a POST_INC or similar rtx.
103
104 Each time an incrementing or decrementing address is created,
105 a REG_INC element is added to the insn's REG_NOTES list.
106
107 life_analysis fills in certain vectors containing information about
108 register usage: reg_n_refs, reg_n_deaths, reg_n_sets, reg_live_length,
109 reg_n_calls_crosses and reg_basic_block. */
110 \f
111 #include <stdio.h>
112 #include "config.h"
113 #include "rtl.h"
114 #include "basic-block.h"
115 #include "insn-config.h"
116 #include "regs.h"
117 #include "hard-reg-set.h"
118 #include "flags.h"
119 #include "output.h"
120 #include "except.h"
121
122 #include "obstack.h"
123 #define obstack_chunk_alloc xmalloc
124 #define obstack_chunk_free free
125
126 /* List of labels that must never be deleted. */
127 extern rtx forced_labels;
128
129 /* Get the basic block number of an insn.
130 This info should not be expected to remain available
131 after the end of life_analysis. */
132
133 /* This is the limit of the allocated space in the following two arrays. */
134
135 static int max_uid_for_flow;
136
137 #define BLOCK_NUM(INSN) uid_block_number[INSN_UID (INSN)]
138
139 /* This is where the BLOCK_NUM values are really stored.
140 This is set up by find_basic_blocks and used there and in life_analysis,
141 and then freed. */
142
143 static int *uid_block_number;
144
145 /* INSN_VOLATILE (insn) is 1 if the insn refers to anything volatile. */
146
147 #define INSN_VOLATILE(INSN) uid_volatile[INSN_UID (INSN)]
148 static char *uid_volatile;
149
150 /* Number of basic blocks in the current function. */
151
152 int n_basic_blocks;
153
154 /* Maximum register number used in this function, plus one. */
155
156 int max_regno;
157
158 /* Maximum number of SCRATCH rtx's used in any basic block of this
159 function. */
160
161 int max_scratch;
162
163 /* Number of SCRATCH rtx's in the current block. */
164
165 static int num_scratch;
166
167 /* Indexed by n, gives number of basic block that (REG n) is used in.
168 If the value is REG_BLOCK_GLOBAL (-2),
169 it means (REG n) is used in more than one basic block.
170 REG_BLOCK_UNKNOWN (-1) means it hasn't been seen yet so we don't know.
171 This information remains valid for the rest of the compilation
172 of the current function; it is used to control register allocation. */
173
174 int *reg_basic_block;
175
176 /* Indexed by n, gives number of times (REG n) is used or set, each
177 weighted by its loop-depth.
178 This information remains valid for the rest of the compilation
179 of the current function; it is used to control register allocation. */
180
181 int *reg_n_refs;
182
183 /* Indexed by N; says whether a pseudo register N was ever used
184 within a SUBREG that changes the size of the reg. Some machines prohibit
185 such objects to be in certain (usually floating-point) registers. */
186
187 char *reg_changes_size;
188
189 /* Indexed by N, gives number of places register N dies.
190 This information remains valid for the rest of the compilation
191 of the current function; it is used to control register allocation. */
192
193 short *reg_n_deaths;
194
195 /* Indexed by N, gives 1 if that reg is live across any CALL_INSNs.
196 This information remains valid for the rest of the compilation
197 of the current function; it is used to control register allocation. */
198
199 int *reg_n_calls_crossed;
200
201 /* Total number of instructions at which (REG n) is live.
202 The larger this is, the less priority (REG n) gets for
203 allocation in a real register.
204 This information remains valid for the rest of the compilation
205 of the current function; it is used to control register allocation.
206
207 local-alloc.c may alter this number to change the priority.
208
209 Negative values are special.
210 -1 is used to mark a pseudo reg which has a constant or memory equivalent
211 and is used infrequently enough that it should not get a hard register.
212 -2 is used to mark a pseudo reg for a parameter, when a frame pointer
213 is not required. global.c makes an allocno for this but does
214 not try to assign a hard register to it. */
215
216 int *reg_live_length;
217
218 /* Element N is the next insn that uses (hard or pseudo) register number N
219 within the current basic block; or zero, if there is no such insn.
220 This is valid only during the final backward scan in propagate_block. */
221
222 static rtx *reg_next_use;
223
224 /* Size of a regset for the current function,
225 in (1) bytes and (2) elements. */
226
227 int regset_bytes;
228 int regset_size;
229
230 /* Element N is first insn in basic block N.
231 This info lasts until we finish compiling the function. */
232
233 rtx *basic_block_head;
234
235 /* Element N is last insn in basic block N.
236 This info lasts until we finish compiling the function. */
237
238 rtx *basic_block_end;
239
240 /* Element N is a regset describing the registers live
241 at the start of basic block N.
242 This info lasts until we finish compiling the function. */
243
244 regset *basic_block_live_at_start;
245
246 /* Regset of regs live when calls to `setjmp'-like functions happen. */
247
248 regset regs_live_at_setjmp;
249
250 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
251 that have to go in the same hard reg.
252 The first two regs in the list are a pair, and the next two
253 are another pair, etc. */
254 rtx regs_may_share;
255
256 /* Element N is nonzero if control can drop into basic block N
257 from the preceding basic block. Freed after life_analysis. */
258
259 static char *basic_block_drops_in;
260
261 /* Element N is depth within loops of the last insn in basic block number N.
262 Freed after life_analysis. */
263
264 static short *basic_block_loop_depth;
265
266 /* Element N nonzero if basic block N can actually be reached.
267 Vector exists only during find_basic_blocks. */
268
269 static char *block_live_static;
270
271 /* Depth within loops of basic block being scanned for lifetime analysis,
272 plus one. This is the weight attached to references to registers. */
273
274 static int loop_depth;
275
276 /* During propagate_block, this is non-zero if the value of CC0 is live. */
277
278 static int cc0_live;
279
280 /* During propagate_block, this contains the last MEM stored into. It
281 is used to eliminate consecutive stores to the same location. */
282
283 static rtx last_mem_set;
284
285 /* Set of registers that may be eliminable. These are handled specially
286 in updating regs_ever_live. */
287
288 static HARD_REG_SET elim_reg_set;
289
290 /* Forward declarations */
291 static void find_basic_blocks PROTO((rtx, rtx));
292 static int jmp_uses_reg_or_mem PROTO((rtx));
293 static void mark_label_ref PROTO((rtx, rtx, int));
294 static void life_analysis PROTO((rtx, int));
295 void allocate_for_life_analysis PROTO((void));
296 static void init_regset_vector PROTO((regset *, regset, int, int));
297 static void propagate_block PROTO((regset, rtx, rtx, int,
298 regset, int));
299 static rtx flow_delete_insn PROTO((rtx));
300 static int insn_dead_p PROTO((rtx, regset, int));
301 static int libcall_dead_p PROTO((rtx, regset, rtx, rtx));
302 static void mark_set_regs PROTO((regset, regset, rtx,
303 rtx, regset));
304 static void mark_set_1 PROTO((regset, regset, rtx,
305 rtx, regset));
306 static void find_auto_inc PROTO((regset, rtx, rtx));
307 static void mark_used_regs PROTO((regset, regset, rtx, int, rtx));
308 static int try_pre_increment_1 PROTO((rtx));
309 static int try_pre_increment PROTO((rtx, rtx, HOST_WIDE_INT));
310 static rtx find_use_as_address PROTO((rtx, rtx, HOST_WIDE_INT));
311 void dump_flow_info PROTO((FILE *));
312 \f
313 /* Find basic blocks of the current function and perform data flow analysis.
314 F is the first insn of the function and NREGS the number of register numbers
315 in use. */
316
317 void
318 flow_analysis (f, nregs, file)
319 rtx f;
320 int nregs;
321 FILE *file;
322 {
323 register rtx insn;
324 register int i;
325 rtx nonlocal_label_list = nonlocal_label_rtx_list ();
326
327 #ifdef ELIMINABLE_REGS
328 static struct {int from, to; } eliminables[] = ELIMINABLE_REGS;
329 #endif
330
331 /* Record which registers will be eliminated. We use this in
332 mark_used_regs. */
333
334 CLEAR_HARD_REG_SET (elim_reg_set);
335
336 #ifdef ELIMINABLE_REGS
337 for (i = 0; i < sizeof eliminables / sizeof eliminables[0]; i++)
338 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
339 #else
340 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
341 #endif
342
343 /* Count the basic blocks. Also find maximum insn uid value used. */
344
345 {
346 register RTX_CODE prev_code = JUMP_INSN;
347 register RTX_CODE code;
348
349 max_uid_for_flow = 0;
350
351 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
352 {
353 code = GET_CODE (insn);
354 if (INSN_UID (insn) > max_uid_for_flow)
355 max_uid_for_flow = INSN_UID (insn);
356 if (code == CODE_LABEL
357 || (GET_RTX_CLASS (code) == 'i'
358 && (prev_code == JUMP_INSN
359 || (prev_code == CALL_INSN
360 && nonlocal_label_list != 0)
361 || prev_code == BARRIER)))
362 i++;
363
364 if (code == CALL_INSN && find_reg_note (insn, REG_RETVAL, NULL_RTX))
365 code = INSN;
366
367 if (code != NOTE)
368 prev_code = code;
369 }
370 }
371
372 #ifdef AUTO_INC_DEC
373 /* Leave space for insns we make in some cases for auto-inc. These cases
374 are rare, so we don't need too much space. */
375 max_uid_for_flow += max_uid_for_flow / 10;
376 #endif
377
378 /* Allocate some tables that last till end of compiling this function
379 and some needed only in find_basic_blocks and life_analysis. */
380
381 n_basic_blocks = i;
382 basic_block_head = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
383 basic_block_end = (rtx *) oballoc (n_basic_blocks * sizeof (rtx));
384 basic_block_drops_in = (char *) alloca (n_basic_blocks);
385 basic_block_loop_depth = (short *) alloca (n_basic_blocks * sizeof (short));
386 uid_block_number
387 = (int *) alloca ((max_uid_for_flow + 1) * sizeof (int));
388 uid_volatile = (char *) alloca (max_uid_for_flow + 1);
389 bzero (uid_volatile, max_uid_for_flow + 1);
390
391 find_basic_blocks (f, nonlocal_label_list);
392 life_analysis (f, nregs);
393 if (file)
394 dump_flow_info (file);
395
396 basic_block_drops_in = 0;
397 uid_block_number = 0;
398 basic_block_loop_depth = 0;
399 }
400 \f
401 /* Find all basic blocks of the function whose first insn is F.
402 Store the correct data in the tables that describe the basic blocks,
403 set up the chains of references for each CODE_LABEL, and
404 delete any entire basic blocks that cannot be reached.
405
406 NONLOCAL_LABEL_LIST is the same local variable from flow_analysis. */
407
408 static void
409 find_basic_blocks (f, nonlocal_label_list)
410 rtx f, nonlocal_label_list;
411 {
412 register rtx insn;
413 register int i;
414 register char *block_live = (char *) alloca (n_basic_blocks);
415 register char *block_marked = (char *) alloca (n_basic_blocks);
416 /* List of label_refs to all labels whose addresses are taken
417 and used as data. */
418 rtx label_value_list;
419 rtx x, note;
420 enum rtx_code prev_code, code;
421 int depth, pass;
422
423 pass = 1;
424 restart:
425
426 label_value_list = 0;
427 block_live_static = block_live;
428 bzero (block_live, n_basic_blocks);
429 bzero (block_marked, n_basic_blocks);
430
431 /* Initialize with just block 0 reachable and no blocks marked. */
432 if (n_basic_blocks > 0)
433 block_live[0] = 1;
434
435 /* Initialize the ref chain of each label to 0. Record where all the
436 blocks start and end and their depth in loops. For each insn, record
437 the block it is in. Also mark as reachable any blocks headed by labels
438 that must not be deleted. */
439
440 for (insn = f, i = -1, prev_code = JUMP_INSN, depth = 1;
441 insn; insn = NEXT_INSN (insn))
442 {
443 code = GET_CODE (insn);
444 if (code == NOTE)
445 {
446 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
447 depth++;
448 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
449 depth--;
450 }
451
452 /* A basic block starts at label, or after something that can jump. */
453 else if (code == CODE_LABEL
454 || (GET_RTX_CLASS (code) == 'i'
455 && (prev_code == JUMP_INSN
456 || (prev_code == CALL_INSN
457 && nonlocal_label_list != 0
458 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
459 || prev_code == BARRIER)))
460 {
461 basic_block_head[++i] = insn;
462 basic_block_end[i] = insn;
463 basic_block_loop_depth[i] = depth;
464
465 if (code == CODE_LABEL)
466 {
467 LABEL_REFS (insn) = insn;
468 /* Any label that cannot be deleted
469 is considered to start a reachable block. */
470 if (LABEL_PRESERVE_P (insn))
471 block_live[i] = 1;
472 }
473 }
474
475 else if (GET_RTX_CLASS (code) == 'i')
476 {
477 basic_block_end[i] = insn;
478 basic_block_loop_depth[i] = depth;
479 }
480
481 if (GET_RTX_CLASS (code) == 'i')
482 {
483 /* Make a list of all labels referred to other than by jumps. */
484 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
485 if (REG_NOTE_KIND (note) == REG_LABEL)
486 label_value_list = gen_rtx (EXPR_LIST, VOIDmode, XEXP (note, 0),
487 label_value_list);
488 }
489
490 BLOCK_NUM (insn) = i;
491
492 if (code != NOTE)
493 prev_code = code;
494 }
495
496 /* During the second pass, `n_basic_blocks' is only an upper bound.
497 Only perform the sanity check for the first pass, and on the second
498 pass ensure `n_basic_blocks' is set to the correct value. */
499 if (pass == 1 && i + 1 != n_basic_blocks)
500 abort ();
501 n_basic_blocks = i + 1;
502
503 /* Don't delete the labels (in this function)
504 that are referenced by non-jump instructions. */
505
506 for (x = label_value_list; x; x = XEXP (x, 1))
507 if (! LABEL_REF_NONLOCAL_P (x))
508 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
509
510 for (x = forced_labels; x; x = XEXP (x, 1))
511 if (! LABEL_REF_NONLOCAL_P (x))
512 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
513
514 for (x = exception_handler_labels; x; x = XEXP (x, 1))
515 block_live[BLOCK_NUM (XEXP (x, 0))] = 1;
516
517 /* Record which basic blocks control can drop in to. */
518
519 for (i = 0; i < n_basic_blocks; i++)
520 {
521 for (insn = PREV_INSN (basic_block_head[i]);
522 insn && GET_CODE (insn) == NOTE; insn = PREV_INSN (insn))
523 ;
524
525 basic_block_drops_in[i] = insn && GET_CODE (insn) != BARRIER;
526 }
527
528 /* Now find which basic blocks can actually be reached
529 and put all jump insns' LABEL_REFS onto the ref-chains
530 of their target labels. */
531
532 if (n_basic_blocks > 0)
533 {
534 int something_marked = 1;
535 int deleted;
536
537 /* Find all indirect jump insns and mark them as possibly jumping to all
538 the labels whose addresses are explicitly used. This is because,
539 when there are computed gotos, we can't tell which labels they jump
540 to, of all the possibilities.
541
542 Tablejumps and casesi insns are OK and we can recognize them by
543 a (use (label_ref)). */
544
545 for (insn = f; insn; insn = NEXT_INSN (insn))
546 if (GET_CODE (insn) == JUMP_INSN)
547 {
548 rtx pat = PATTERN (insn);
549 int computed_jump = 0;
550
551 if (GET_CODE (pat) == PARALLEL)
552 {
553 int len = XVECLEN (pat, 0);
554 int has_use_labelref = 0;
555
556 for (i = len - 1; i >= 0; i--)
557 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
558 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
559 == LABEL_REF))
560 has_use_labelref = 1;
561
562 if (! has_use_labelref)
563 for (i = len - 1; i >= 0; i--)
564 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
565 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
566 && jmp_uses_reg_or_mem (SET_SRC (XVECEXP (pat, 0, i))))
567 computed_jump = 1;
568 }
569 else if (GET_CODE (pat) == SET
570 && SET_DEST (pat) == pc_rtx
571 && jmp_uses_reg_or_mem (SET_SRC (pat)))
572 computed_jump = 1;
573
574 if (computed_jump)
575 {
576 for (x = label_value_list; x; x = XEXP (x, 1))
577 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
578 insn, 0);
579
580 for (x = forced_labels; x; x = XEXP (x, 1))
581 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
582 insn, 0);
583 }
584 }
585
586 /* Find all call insns and mark them as possibly jumping
587 to all the nonlocal goto handler labels. */
588
589 for (insn = f; insn; insn = NEXT_INSN (insn))
590 if (GET_CODE (insn) == CALL_INSN
591 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
592 {
593 for (x = nonlocal_label_list; x; x = XEXP (x, 1))
594 mark_label_ref (gen_rtx (LABEL_REF, VOIDmode, XEXP (x, 0)),
595 insn, 0);
596
597 /* ??? This could be made smarter:
598 in some cases it's possible to tell that certain
599 calls will not do a nonlocal goto.
600
601 For example, if the nested functions that do the
602 nonlocal gotos do not have their addresses taken, then
603 only calls to those functions or to other nested
604 functions that use them could possibly do nonlocal
605 gotos. */
606 }
607
608 /* Pass over all blocks, marking each block that is reachable
609 and has not yet been marked.
610 Keep doing this until, in one pass, no blocks have been marked.
611 Then blocks_live and blocks_marked are identical and correct.
612 In addition, all jumps actually reachable have been marked. */
613
614 while (something_marked)
615 {
616 something_marked = 0;
617 for (i = 0; i < n_basic_blocks; i++)
618 if (block_live[i] && !block_marked[i])
619 {
620 block_marked[i] = 1;
621 something_marked = 1;
622 if (i + 1 < n_basic_blocks && basic_block_drops_in[i + 1])
623 block_live[i + 1] = 1;
624 insn = basic_block_end[i];
625 if (GET_CODE (insn) == JUMP_INSN)
626 mark_label_ref (PATTERN (insn), insn, 0);
627 }
628 }
629
630 /* ??? See if we have a "live" basic block that is not reachable.
631 This can happen if it is headed by a label that is preserved or
632 in one of the label lists, but no call or computed jump is in
633 the loop. It's not clear if we can delete the block or not,
634 but don't for now. However, we will mess up register status if
635 it remains unreachable, so add a fake reachability from the
636 previous block. */
637
638 for (i = 1; i < n_basic_blocks; i++)
639 if (block_live[i] && ! basic_block_drops_in[i]
640 && GET_CODE (basic_block_head[i]) == CODE_LABEL
641 && LABEL_REFS (basic_block_head[i]) == basic_block_head[i])
642 basic_block_drops_in[i] = 1;
643
644 /* Now delete the code for any basic blocks that can't be reached.
645 They can occur because jump_optimize does not recognize
646 unreachable loops as unreachable. */
647
648 deleted = 0;
649 for (i = 0; i < n_basic_blocks; i++)
650 if (!block_live[i])
651 {
652 deleted++;
653
654 /* Delete the insns in a (non-live) block. We physically delete
655 every non-note insn except the start and end (so
656 basic_block_head/end needn't be updated), we turn the latter
657 into NOTE_INSN_DELETED notes.
658 We use to "delete" the insns by turning them into notes, but
659 we may be deleting lots of insns that subsequent passes would
660 otherwise have to process. Secondly, lots of deleted blocks in
661 a row can really slow down propagate_block since it will
662 otherwise process insn-turned-notes multiple times when it
663 looks for loop begin/end notes. */
664 if (basic_block_head[i] != basic_block_end[i])
665 {
666 /* It would be quicker to delete all of these with a single
667 unchaining, rather than one at a time, but we need to keep
668 the NOTE's. */
669 insn = NEXT_INSN (basic_block_head[i]);
670 while (insn != basic_block_end[i])
671 {
672 if (GET_CODE (insn) == BARRIER)
673 abort ();
674 else if (GET_CODE (insn) != NOTE)
675 insn = flow_delete_insn (insn);
676 else
677 insn = NEXT_INSN (insn);
678 }
679 }
680 insn = basic_block_head[i];
681 if (GET_CODE (insn) != NOTE)
682 {
683 /* Turn the head into a deleted insn note. */
684 if (GET_CODE (insn) == BARRIER)
685 abort ();
686 PUT_CODE (insn, NOTE);
687 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
688 NOTE_SOURCE_FILE (insn) = 0;
689 }
690 insn = basic_block_end[i];
691 if (GET_CODE (insn) != NOTE)
692 {
693 /* Turn the tail into a deleted insn note. */
694 if (GET_CODE (insn) == BARRIER)
695 abort ();
696 PUT_CODE (insn, NOTE);
697 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
698 NOTE_SOURCE_FILE (insn) = 0;
699 }
700 /* BARRIERs are between basic blocks, not part of one.
701 Delete a BARRIER if the preceding jump is deleted.
702 We cannot alter a BARRIER into a NOTE
703 because it is too short; but we can really delete
704 it because it is not part of a basic block. */
705 if (NEXT_INSN (insn) != 0
706 && GET_CODE (NEXT_INSN (insn)) == BARRIER)
707 delete_insn (NEXT_INSN (insn));
708
709 /* Each time we delete some basic blocks,
710 see if there is a jump around them that is
711 being turned into a no-op. If so, delete it. */
712
713 if (block_live[i - 1])
714 {
715 register int j;
716 for (j = i + 1; j < n_basic_blocks; j++)
717 if (block_live[j])
718 {
719 rtx label;
720 insn = basic_block_end[i - 1];
721 if (GET_CODE (insn) == JUMP_INSN
722 /* An unconditional jump is the only possibility
723 we must check for, since a conditional one
724 would make these blocks live. */
725 && simplejump_p (insn)
726 && (label = XEXP (SET_SRC (PATTERN (insn)), 0), 1)
727 && INSN_UID (label) != 0
728 && BLOCK_NUM (label) == j)
729 {
730 PUT_CODE (insn, NOTE);
731 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
732 NOTE_SOURCE_FILE (insn) = 0;
733 if (GET_CODE (NEXT_INSN (insn)) != BARRIER)
734 abort ();
735 delete_insn (NEXT_INSN (insn));
736 }
737 break;
738 }
739 }
740 }
741
742 /* There are pathological cases where one function calling hundreds of
743 nested inline functions can generate lots and lots of unreachable
744 blocks that jump can't delete. Since we don't use sparse matrices
745 a lot of memory will be needed to compile such functions.
746 Implementing sparse matrices is a fair bit of work and it is not
747 clear that they win more than they lose (we don't want to
748 unnecessarily slow down compilation of normal code). By making
749 another pass for the pathological case, we can greatly speed up
750 their compilation without hurting normal code. This works because
751 all the insns in the unreachable blocks have either been deleted or
752 turned into notes.
753 Note that we're talking about reducing memory usage by 10's of
754 megabytes and reducing compilation time by several minutes. */
755 /* ??? The choice of when to make another pass is a bit arbitrary,
756 and was derived from empirical data. */
757 if (pass == 1
758 && deleted > 200)
759 {
760 pass++;
761 n_basic_blocks -= deleted;
762 /* `n_basic_blocks' may not be correct at this point: two previously
763 separate blocks may now be merged. That's ok though as we
764 recalculate it during the second pass. It certainly can't be
765 any larger than the current value. */
766 goto restart;
767 }
768 }
769 }
770 \f
771 /* Subroutines of find_basic_blocks. */
772
773 /* Return 1 if X, the SRC_SRC of SET of (pc) contain a REG or MEM that is
774 not in the constant pool and not in the condition of an IF_THEN_ELSE. */
775
776 static int
777 jmp_uses_reg_or_mem (x)
778 rtx x;
779 {
780 enum rtx_code code = GET_CODE (x);
781 int i, j;
782 char *fmt;
783
784 switch (code)
785 {
786 case CONST:
787 case LABEL_REF:
788 case PC:
789 return 0;
790
791 case REG:
792 return 1;
793
794 case MEM:
795 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
796 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
797
798 case IF_THEN_ELSE:
799 return (jmp_uses_reg_or_mem (XEXP (x, 1))
800 || jmp_uses_reg_or_mem (XEXP (x, 2)));
801
802 case PLUS: case MINUS: case MULT:
803 return (jmp_uses_reg_or_mem (XEXP (x, 0))
804 || jmp_uses_reg_or_mem (XEXP (x, 1)));
805 }
806
807 fmt = GET_RTX_FORMAT (code);
808 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
809 {
810 if (fmt[i] == 'e'
811 && jmp_uses_reg_or_mem (XEXP (x, i)))
812 return 1;
813
814 if (fmt[i] == 'E')
815 for (j = 0; j < XVECLEN (x, i); j++)
816 if (jmp_uses_reg_or_mem (XVECEXP (x, i, j)))
817 return 1;
818 }
819
820 return 0;
821 }
822
823 /* Check expression X for label references;
824 if one is found, add INSN to the label's chain of references.
825
826 CHECKDUP means check for and avoid creating duplicate references
827 from the same insn. Such duplicates do no serious harm but
828 can slow life analysis. CHECKDUP is set only when duplicates
829 are likely. */
830
831 static void
832 mark_label_ref (x, insn, checkdup)
833 rtx x, insn;
834 int checkdup;
835 {
836 register RTX_CODE code;
837 register int i;
838 register char *fmt;
839
840 /* We can be called with NULL when scanning label_value_list. */
841 if (x == 0)
842 return;
843
844 code = GET_CODE (x);
845 if (code == LABEL_REF)
846 {
847 register rtx label = XEXP (x, 0);
848 register rtx y;
849 if (GET_CODE (label) != CODE_LABEL)
850 abort ();
851 /* If the label was never emitted, this insn is junk,
852 but avoid a crash trying to refer to BLOCK_NUM (label).
853 This can happen as a result of a syntax error
854 and a diagnostic has already been printed. */
855 if (INSN_UID (label) == 0)
856 return;
857 CONTAINING_INSN (x) = insn;
858 /* if CHECKDUP is set, check for duplicate ref from same insn
859 and don't insert. */
860 if (checkdup)
861 for (y = LABEL_REFS (label); y != label; y = LABEL_NEXTREF (y))
862 if (CONTAINING_INSN (y) == insn)
863 return;
864 LABEL_NEXTREF (x) = LABEL_REFS (label);
865 LABEL_REFS (label) = x;
866 block_live_static[BLOCK_NUM (label)] = 1;
867 return;
868 }
869
870 fmt = GET_RTX_FORMAT (code);
871 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
872 {
873 if (fmt[i] == 'e')
874 mark_label_ref (XEXP (x, i), insn, 0);
875 if (fmt[i] == 'E')
876 {
877 register int j;
878 for (j = 0; j < XVECLEN (x, i); j++)
879 mark_label_ref (XVECEXP (x, i, j), insn, 1);
880 }
881 }
882 }
883
884 /* Delete INSN by patching it out.
885 Return the next insn. */
886
887 static rtx
888 flow_delete_insn (insn)
889 rtx insn;
890 {
891 /* ??? For the moment we assume we don't have to watch for NULLs here
892 since the start/end of basic blocks aren't deleted like this. */
893 NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
894 PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
895 return NEXT_INSN (insn);
896 }
897 \f
898 /* Determine which registers are live at the start of each
899 basic block of the function whose first insn is F.
900 NREGS is the number of registers used in F.
901 We allocate the vector basic_block_live_at_start
902 and the regsets that it points to, and fill them with the data.
903 regset_size and regset_bytes are also set here. */
904
905 static void
906 life_analysis (f, nregs)
907 rtx f;
908 int nregs;
909 {
910 register regset tem;
911 int first_pass;
912 int changed;
913 /* For each basic block, a bitmask of regs
914 live on exit from the block. */
915 regset *basic_block_live_at_end;
916 /* For each basic block, a bitmask of regs
917 live on entry to a successor-block of this block.
918 If this does not match basic_block_live_at_end,
919 that must be updated, and the block must be rescanned. */
920 regset *basic_block_new_live_at_end;
921 /* For each basic block, a bitmask of regs
922 whose liveness at the end of the basic block
923 can make a difference in which regs are live on entry to the block.
924 These are the regs that are set within the basic block,
925 possibly excluding those that are used after they are set. */
926 regset *basic_block_significant;
927 register int i;
928 rtx insn;
929
930 struct obstack flow_obstack;
931
932 gcc_obstack_init (&flow_obstack);
933
934 max_regno = nregs;
935
936 bzero (regs_ever_live, sizeof regs_ever_live);
937
938 /* Allocate and zero out many data structures
939 that will record the data from lifetime analysis. */
940
941 allocate_for_life_analysis ();
942
943 reg_next_use = (rtx *) alloca (nregs * sizeof (rtx));
944 bzero ((char *) reg_next_use, nregs * sizeof (rtx));
945
946 /* Set up several regset-vectors used internally within this function.
947 Their meanings are documented above, with their declarations. */
948
949 basic_block_live_at_end
950 = (regset *) alloca (n_basic_blocks * sizeof (regset));
951
952 /* Don't use alloca since that leads to a crash rather than an error message
953 if there isn't enough space.
954 Don't use oballoc since we may need to allocate other things during
955 this function on the temporary obstack. */
956 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
957 bzero ((char *) tem, n_basic_blocks * regset_bytes);
958 init_regset_vector (basic_block_live_at_end, tem,
959 n_basic_blocks, regset_bytes);
960
961 basic_block_new_live_at_end
962 = (regset *) alloca (n_basic_blocks * sizeof (regset));
963 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
964 bzero ((char *) tem, n_basic_blocks * regset_bytes);
965 init_regset_vector (basic_block_new_live_at_end, tem,
966 n_basic_blocks, regset_bytes);
967
968 basic_block_significant
969 = (regset *) alloca (n_basic_blocks * sizeof (regset));
970 tem = (regset) obstack_alloc (&flow_obstack, n_basic_blocks * regset_bytes);
971 bzero ((char *) tem, n_basic_blocks * regset_bytes);
972 init_regset_vector (basic_block_significant, tem,
973 n_basic_blocks, regset_bytes);
974
975 /* Record which insns refer to any volatile memory
976 or for any reason can't be deleted just because they are dead stores.
977 Also, delete any insns that copy a register to itself. */
978
979 for (insn = f; insn; insn = NEXT_INSN (insn))
980 {
981 enum rtx_code code1 = GET_CODE (insn);
982 if (code1 == CALL_INSN)
983 INSN_VOLATILE (insn) = 1;
984 else if (code1 == INSN || code1 == JUMP_INSN)
985 {
986 /* Delete (in effect) any obvious no-op moves. */
987 if (GET_CODE (PATTERN (insn)) == SET
988 && GET_CODE (SET_DEST (PATTERN (insn))) == REG
989 && GET_CODE (SET_SRC (PATTERN (insn))) == REG
990 && REGNO (SET_DEST (PATTERN (insn))) ==
991 REGNO (SET_SRC (PATTERN (insn)))
992 /* Insns carrying these notes are useful later on. */
993 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
994 {
995 PUT_CODE (insn, NOTE);
996 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
997 NOTE_SOURCE_FILE (insn) = 0;
998 }
999 /* Delete (in effect) any obvious no-op moves. */
1000 else if (GET_CODE (PATTERN (insn)) == SET
1001 && GET_CODE (SET_DEST (PATTERN (insn))) == SUBREG
1002 && GET_CODE (SUBREG_REG (SET_DEST (PATTERN (insn)))) == REG
1003 && GET_CODE (SET_SRC (PATTERN (insn))) == SUBREG
1004 && GET_CODE (SUBREG_REG (SET_SRC (PATTERN (insn)))) == REG
1005 && REGNO (SUBREG_REG (SET_DEST (PATTERN (insn)))) ==
1006 REGNO (SUBREG_REG (SET_SRC (PATTERN (insn))))
1007 && SUBREG_WORD (SET_DEST (PATTERN (insn))) ==
1008 SUBREG_WORD (SET_SRC (PATTERN (insn)))
1009 /* Insns carrying these notes are useful later on. */
1010 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1011 {
1012 PUT_CODE (insn, NOTE);
1013 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1014 NOTE_SOURCE_FILE (insn) = 0;
1015 }
1016 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1017 {
1018 /* If nothing but SETs of registers to themselves,
1019 this insn can also be deleted. */
1020 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1021 {
1022 rtx tem = XVECEXP (PATTERN (insn), 0, i);
1023
1024 if (GET_CODE (tem) == USE
1025 || GET_CODE (tem) == CLOBBER)
1026 continue;
1027
1028 if (GET_CODE (tem) != SET
1029 || GET_CODE (SET_DEST (tem)) != REG
1030 || GET_CODE (SET_SRC (tem)) != REG
1031 || REGNO (SET_DEST (tem)) != REGNO (SET_SRC (tem)))
1032 break;
1033 }
1034
1035 if (i == XVECLEN (PATTERN (insn), 0)
1036 /* Insns carrying these notes are useful later on. */
1037 && ! find_reg_note (insn, REG_EQUAL, NULL_RTX))
1038 {
1039 PUT_CODE (insn, NOTE);
1040 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1041 NOTE_SOURCE_FILE (insn) = 0;
1042 }
1043 else
1044 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1045 }
1046 else if (GET_CODE (PATTERN (insn)) != USE)
1047 INSN_VOLATILE (insn) = volatile_refs_p (PATTERN (insn));
1048 /* A SET that makes space on the stack cannot be dead.
1049 (Such SETs occur only for allocating variable-size data,
1050 so they will always have a PLUS or MINUS according to the
1051 direction of stack growth.)
1052 Even if this function never uses this stack pointer value,
1053 signal handlers do! */
1054 else if (code1 == INSN && GET_CODE (PATTERN (insn)) == SET
1055 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1056 #ifdef STACK_GROWS_DOWNWARD
1057 && GET_CODE (SET_SRC (PATTERN (insn))) == MINUS
1058 #else
1059 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1060 #endif
1061 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx)
1062 INSN_VOLATILE (insn) = 1;
1063 }
1064 }
1065
1066 if (n_basic_blocks > 0)
1067 #ifdef EXIT_IGNORE_STACK
1068 if (! EXIT_IGNORE_STACK
1069 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
1070 #endif
1071 {
1072 /* If exiting needs the right stack value,
1073 consider the stack pointer live at the end of the function. */
1074 basic_block_live_at_end[n_basic_blocks - 1]
1075 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1076 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1077 basic_block_new_live_at_end[n_basic_blocks - 1]
1078 [STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1079 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
1080 }
1081
1082 /* Mark the frame pointer is needed at the end of the function. If
1083 we end up eliminating it, it will be removed from the live list
1084 of each basic block by reload. */
1085
1086 if (n_basic_blocks > 0)
1087 {
1088 basic_block_live_at_end[n_basic_blocks - 1]
1089 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1090 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1091 basic_block_new_live_at_end[n_basic_blocks - 1]
1092 [FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1093 |= (REGSET_ELT_TYPE) 1 << (FRAME_POINTER_REGNUM % REGSET_ELT_BITS);
1094 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1095 /* If they are different, also mark the hard frame pointer as live */
1096 basic_block_live_at_end[n_basic_blocks - 1]
1097 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1098 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1099 % REGSET_ELT_BITS);
1100 basic_block_new_live_at_end[n_basic_blocks - 1]
1101 [HARD_FRAME_POINTER_REGNUM / REGSET_ELT_BITS]
1102 |= (REGSET_ELT_TYPE) 1 << (HARD_FRAME_POINTER_REGNUM
1103 % REGSET_ELT_BITS);
1104 #endif
1105 }
1106
1107 /* Mark all global registers and all registers used by the epilogue
1108 as being live at the end of the function since they may be
1109 referenced by our caller. */
1110
1111 if (n_basic_blocks > 0)
1112 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1113 if (global_regs[i]
1114 #ifdef EPILOGUE_USES
1115 || EPILOGUE_USES (i)
1116 #endif
1117 )
1118 {
1119 basic_block_live_at_end[n_basic_blocks - 1]
1120 [i / REGSET_ELT_BITS]
1121 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1122 basic_block_new_live_at_end[n_basic_blocks - 1]
1123 [i / REGSET_ELT_BITS]
1124 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
1125 }
1126
1127 /* Propagate life info through the basic blocks
1128 around the graph of basic blocks.
1129
1130 This is a relaxation process: each time a new register
1131 is live at the end of the basic block, we must scan the block
1132 to determine which registers are, as a consequence, live at the beginning
1133 of that block. These registers must then be marked live at the ends
1134 of all the blocks that can transfer control to that block.
1135 The process continues until it reaches a fixed point. */
1136
1137 first_pass = 1;
1138 changed = 1;
1139 while (changed)
1140 {
1141 changed = 0;
1142 for (i = n_basic_blocks - 1; i >= 0; i--)
1143 {
1144 int consider = first_pass;
1145 int must_rescan = first_pass;
1146 register int j;
1147
1148 if (!first_pass)
1149 {
1150 /* Set CONSIDER if this block needs thinking about at all
1151 (that is, if the regs live now at the end of it
1152 are not the same as were live at the end of it when
1153 we last thought about it).
1154 Set must_rescan if it needs to be thought about
1155 instruction by instruction (that is, if any additional
1156 reg that is live at the end now but was not live there before
1157 is one of the significant regs of this basic block). */
1158
1159 for (j = 0; j < regset_size; j++)
1160 {
1161 register REGSET_ELT_TYPE x
1162 = (basic_block_new_live_at_end[i][j]
1163 & ~basic_block_live_at_end[i][j]);
1164 if (x)
1165 consider = 1;
1166 if (x & basic_block_significant[i][j])
1167 {
1168 must_rescan = 1;
1169 consider = 1;
1170 break;
1171 }
1172 }
1173
1174 if (! consider)
1175 continue;
1176 }
1177
1178 /* The live_at_start of this block may be changing,
1179 so another pass will be required after this one. */
1180 changed = 1;
1181
1182 if (! must_rescan)
1183 {
1184 /* No complete rescan needed;
1185 just record those variables newly known live at end
1186 as live at start as well. */
1187 for (j = 0; j < regset_size; j++)
1188 {
1189 register REGSET_ELT_TYPE x
1190 = (basic_block_new_live_at_end[i][j]
1191 & ~basic_block_live_at_end[i][j]);
1192 basic_block_live_at_start[i][j] |= x;
1193 basic_block_live_at_end[i][j] |= x;
1194 }
1195 }
1196 else
1197 {
1198 /* Update the basic_block_live_at_start
1199 by propagation backwards through the block. */
1200 bcopy ((char *) basic_block_new_live_at_end[i],
1201 (char *) basic_block_live_at_end[i], regset_bytes);
1202 bcopy ((char *) basic_block_live_at_end[i],
1203 (char *) basic_block_live_at_start[i], regset_bytes);
1204 propagate_block (basic_block_live_at_start[i],
1205 basic_block_head[i], basic_block_end[i], 0,
1206 first_pass ? basic_block_significant[i]
1207 : (regset) 0,
1208 i);
1209 }
1210
1211 {
1212 register rtx jump, head;
1213
1214 /* Update the basic_block_new_live_at_end's of the block
1215 that falls through into this one (if any). */
1216 head = basic_block_head[i];
1217 if (basic_block_drops_in[i])
1218 {
1219 register int j;
1220 for (j = 0; j < regset_size; j++)
1221 basic_block_new_live_at_end[i-1][j]
1222 |= basic_block_live_at_start[i][j];
1223 }
1224
1225 /* Update the basic_block_new_live_at_end's of
1226 all the blocks that jump to this one. */
1227 if (GET_CODE (head) == CODE_LABEL)
1228 for (jump = LABEL_REFS (head);
1229 jump != head;
1230 jump = LABEL_NEXTREF (jump))
1231 {
1232 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
1233 register int j;
1234 for (j = 0; j < regset_size; j++)
1235 basic_block_new_live_at_end[from_block][j]
1236 |= basic_block_live_at_start[i][j];
1237 }
1238 }
1239 #ifdef USE_C_ALLOCA
1240 alloca (0);
1241 #endif
1242 }
1243 first_pass = 0;
1244 }
1245
1246 /* The only pseudos that are live at the beginning of the function are
1247 those that were not set anywhere in the function. local-alloc doesn't
1248 know how to handle these correctly, so mark them as not local to any
1249 one basic block. */
1250
1251 if (n_basic_blocks > 0)
1252 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1253 if (basic_block_live_at_start[0][i / REGSET_ELT_BITS]
1254 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1255 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1256
1257 /* Now the life information is accurate.
1258 Make one more pass over each basic block
1259 to delete dead stores, create autoincrement addressing
1260 and record how many times each register is used, is set, or dies.
1261
1262 To save time, we operate directly in basic_block_live_at_end[i],
1263 thus destroying it (in fact, converting it into a copy of
1264 basic_block_live_at_start[i]). This is ok now because
1265 basic_block_live_at_end[i] is no longer used past this point. */
1266
1267 max_scratch = 0;
1268
1269 for (i = 0; i < n_basic_blocks; i++)
1270 {
1271 propagate_block (basic_block_live_at_end[i],
1272 basic_block_head[i], basic_block_end[i], 1,
1273 (regset) 0, i);
1274 #ifdef USE_C_ALLOCA
1275 alloca (0);
1276 #endif
1277 }
1278
1279 #if 0
1280 /* Something live during a setjmp should not be put in a register
1281 on certain machines which restore regs from stack frames
1282 rather than from the jmpbuf.
1283 But we don't need to do this for the user's variables, since
1284 ANSI says only volatile variables need this. */
1285 #ifdef LONGJMP_RESTORE_FROM_STACK
1286 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1287 if (regs_live_at_setjmp[i / REGSET_ELT_BITS]
1288 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS))
1289 && regno_reg_rtx[i] != 0 && ! REG_USERVAR_P (regno_reg_rtx[i]))
1290 {
1291 reg_live_length[i] = -1;
1292 reg_basic_block[i] = -1;
1293 }
1294 #endif
1295 #endif
1296
1297 /* We have a problem with any pseudoreg that
1298 lives across the setjmp. ANSI says that if a
1299 user variable does not change in value
1300 between the setjmp and the longjmp, then the longjmp preserves it.
1301 This includes longjmp from a place where the pseudo appears dead.
1302 (In principle, the value still exists if it is in scope.)
1303 If the pseudo goes in a hard reg, some other value may occupy
1304 that hard reg where this pseudo is dead, thus clobbering the pseudo.
1305 Conclusion: such a pseudo must not go in a hard reg. */
1306 for (i = FIRST_PSEUDO_REGISTER; i < nregs; i++)
1307 if ((regs_live_at_setjmp[i / REGSET_ELT_BITS]
1308 & ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS)))
1309 && regno_reg_rtx[i] != 0)
1310 {
1311 reg_live_length[i] = -1;
1312 reg_basic_block[i] = -1;
1313 }
1314
1315 obstack_free (&flow_obstack, NULL_PTR);
1316 }
1317 \f
1318 /* Subroutines of life analysis. */
1319
1320 /* Allocate the permanent data structures that represent the results
1321 of life analysis. Not static since used also for stupid life analysis. */
1322
1323 void
1324 allocate_for_life_analysis ()
1325 {
1326 register int i;
1327 register regset tem;
1328
1329 regset_size = ((max_regno + REGSET_ELT_BITS - 1) / REGSET_ELT_BITS);
1330 regset_bytes = regset_size * sizeof (*(regset) 0);
1331
1332 reg_n_refs = (int *) oballoc (max_regno * sizeof (int));
1333 bzero ((char *) reg_n_refs, max_regno * sizeof (int));
1334
1335 reg_n_sets = (short *) oballoc (max_regno * sizeof (short));
1336 bzero ((char *) reg_n_sets, max_regno * sizeof (short));
1337
1338 reg_n_deaths = (short *) oballoc (max_regno * sizeof (short));
1339 bzero ((char *) reg_n_deaths, max_regno * sizeof (short));
1340
1341 reg_changes_size = (char *) oballoc (max_regno * sizeof (char));
1342 bzero (reg_changes_size, max_regno * sizeof (char));;
1343
1344 reg_live_length = (int *) oballoc (max_regno * sizeof (int));
1345 bzero ((char *) reg_live_length, max_regno * sizeof (int));
1346
1347 reg_n_calls_crossed = (int *) oballoc (max_regno * sizeof (int));
1348 bzero ((char *) reg_n_calls_crossed, max_regno * sizeof (int));
1349
1350 reg_basic_block = (int *) oballoc (max_regno * sizeof (int));
1351 for (i = 0; i < max_regno; i++)
1352 reg_basic_block[i] = REG_BLOCK_UNKNOWN;
1353
1354 basic_block_live_at_start
1355 = (regset *) oballoc (n_basic_blocks * sizeof (regset));
1356 tem = (regset) oballoc (n_basic_blocks * regset_bytes);
1357 bzero ((char *) tem, n_basic_blocks * regset_bytes);
1358 init_regset_vector (basic_block_live_at_start, tem,
1359 n_basic_blocks, regset_bytes);
1360
1361 regs_live_at_setjmp = (regset) oballoc (regset_bytes);
1362 bzero ((char *) regs_live_at_setjmp, regset_bytes);
1363 }
1364
1365 /* Make each element of VECTOR point at a regset,
1366 taking the space for all those regsets from SPACE.
1367 SPACE is of type regset, but it is really as long as NELTS regsets.
1368 BYTES_PER_ELT is the number of bytes in one regset. */
1369
1370 static void
1371 init_regset_vector (vector, space, nelts, bytes_per_elt)
1372 regset *vector;
1373 regset space;
1374 int nelts;
1375 int bytes_per_elt;
1376 {
1377 register int i;
1378 register regset p = space;
1379
1380 for (i = 0; i < nelts; i++)
1381 {
1382 vector[i] = p;
1383 p += bytes_per_elt / sizeof (*p);
1384 }
1385 }
1386
1387 /* Compute the registers live at the beginning of a basic block
1388 from those live at the end.
1389
1390 When called, OLD contains those live at the end.
1391 On return, it contains those live at the beginning.
1392 FIRST and LAST are the first and last insns of the basic block.
1393
1394 FINAL is nonzero if we are doing the final pass which is not
1395 for computing the life info (since that has already been done)
1396 but for acting on it. On this pass, we delete dead stores,
1397 set up the logical links and dead-variables lists of instructions,
1398 and merge instructions for autoincrement and autodecrement addresses.
1399
1400 SIGNIFICANT is nonzero only the first time for each basic block.
1401 If it is nonzero, it points to a regset in which we store
1402 a 1 for each register that is set within the block.
1403
1404 BNUM is the number of the basic block. */
1405
1406 static void
1407 propagate_block (old, first, last, final, significant, bnum)
1408 register regset old;
1409 rtx first;
1410 rtx last;
1411 int final;
1412 regset significant;
1413 int bnum;
1414 {
1415 register rtx insn;
1416 rtx prev;
1417 regset live;
1418 regset dead;
1419
1420 /* The following variables are used only if FINAL is nonzero. */
1421 /* This vector gets one element for each reg that has been live
1422 at any point in the basic block that has been scanned so far.
1423 SOMETIMES_MAX says how many elements are in use so far.
1424 In each element, OFFSET is the byte-number within a regset
1425 for the register described by the element, and BIT is a mask
1426 for that register's bit within the byte. */
1427 register struct sometimes { short offset; short bit; } *regs_sometimes_live;
1428 int sometimes_max = 0;
1429 /* This regset has 1 for each reg that we have seen live so far.
1430 It and REGS_SOMETIMES_LIVE are updated together. */
1431 regset maxlive;
1432
1433 /* The loop depth may change in the middle of a basic block. Since we
1434 scan from end to beginning, we start with the depth at the end of the
1435 current basic block, and adjust as we pass ends and starts of loops. */
1436 loop_depth = basic_block_loop_depth[bnum];
1437
1438 dead = (regset) alloca (regset_bytes);
1439 live = (regset) alloca (regset_bytes);
1440
1441 cc0_live = 0;
1442 last_mem_set = 0;
1443
1444 /* Include any notes at the end of the block in the scan.
1445 This is in case the block ends with a call to setjmp. */
1446
1447 while (NEXT_INSN (last) != 0 && GET_CODE (NEXT_INSN (last)) == NOTE)
1448 {
1449 /* Look for loop boundaries, we are going forward here. */
1450 last = NEXT_INSN (last);
1451 if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_BEG)
1452 loop_depth++;
1453 else if (NOTE_LINE_NUMBER (last) == NOTE_INSN_LOOP_END)
1454 loop_depth--;
1455 }
1456
1457 if (final)
1458 {
1459 register int i, offset;
1460 REGSET_ELT_TYPE bit;
1461
1462 num_scratch = 0;
1463 maxlive = (regset) alloca (regset_bytes);
1464 bcopy ((char *) old, (char *) maxlive, regset_bytes);
1465 regs_sometimes_live
1466 = (struct sometimes *) alloca (max_regno * sizeof (struct sometimes));
1467
1468 /* Process the regs live at the end of the block.
1469 Enter them in MAXLIVE and REGS_SOMETIMES_LIVE.
1470 Also mark them as not local to any one basic block. */
1471
1472 for (offset = 0, i = 0; offset < regset_size; offset++)
1473 for (bit = 1; bit; bit <<= 1, i++)
1474 {
1475 if (i == max_regno)
1476 break;
1477 if (old[offset] & bit)
1478 {
1479 reg_basic_block[i] = REG_BLOCK_GLOBAL;
1480 regs_sometimes_live[sometimes_max].offset = offset;
1481 regs_sometimes_live[sometimes_max].bit = i % REGSET_ELT_BITS;
1482 sometimes_max++;
1483 }
1484 }
1485 }
1486
1487 /* Scan the block an insn at a time from end to beginning. */
1488
1489 for (insn = last; ; insn = prev)
1490 {
1491 prev = PREV_INSN (insn);
1492
1493 if (GET_CODE (insn) == NOTE)
1494 {
1495 /* Look for loop boundaries, remembering that we are going
1496 backwards. */
1497 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_END)
1498 loop_depth++;
1499 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_LOOP_BEG)
1500 loop_depth--;
1501
1502 /* If we have LOOP_DEPTH == 0, there has been a bookkeeping error.
1503 Abort now rather than setting register status incorrectly. */
1504 if (loop_depth == 0)
1505 abort ();
1506
1507 /* If this is a call to `setjmp' et al,
1508 warn if any non-volatile datum is live. */
1509
1510 if (final && NOTE_LINE_NUMBER (insn) == NOTE_INSN_SETJMP)
1511 {
1512 int i;
1513 for (i = 0; i < regset_size; i++)
1514 regs_live_at_setjmp[i] |= old[i];
1515 }
1516 }
1517
1518 /* Update the life-status of regs for this insn.
1519 First DEAD gets which regs are set in this insn
1520 then LIVE gets which regs are used in this insn.
1521 Then the regs live before the insn
1522 are those live after, with DEAD regs turned off,
1523 and then LIVE regs turned on. */
1524
1525 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i')
1526 {
1527 register int i;
1528 rtx note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1529 int insn_is_dead
1530 = (insn_dead_p (PATTERN (insn), old, 0)
1531 /* Don't delete something that refers to volatile storage! */
1532 && ! INSN_VOLATILE (insn));
1533 int libcall_is_dead
1534 = (insn_is_dead && note != 0
1535 && libcall_dead_p (PATTERN (insn), old, note, insn));
1536
1537 /* If an instruction consists of just dead store(s) on final pass,
1538 "delete" it by turning it into a NOTE of type NOTE_INSN_DELETED.
1539 We could really delete it with delete_insn, but that
1540 can cause trouble for first or last insn in a basic block. */
1541 if (final && insn_is_dead)
1542 {
1543 PUT_CODE (insn, NOTE);
1544 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
1545 NOTE_SOURCE_FILE (insn) = 0;
1546
1547 /* CC0 is now known to be dead. Either this insn used it,
1548 in which case it doesn't anymore, or clobbered it,
1549 so the next insn can't use it. */
1550 cc0_live = 0;
1551
1552 /* If this insn is copying the return value from a library call,
1553 delete the entire library call. */
1554 if (libcall_is_dead)
1555 {
1556 rtx first = XEXP (note, 0);
1557 rtx p = insn;
1558 while (INSN_DELETED_P (first))
1559 first = NEXT_INSN (first);
1560 while (p != first)
1561 {
1562 p = PREV_INSN (p);
1563 PUT_CODE (p, NOTE);
1564 NOTE_LINE_NUMBER (p) = NOTE_INSN_DELETED;
1565 NOTE_SOURCE_FILE (p) = 0;
1566 }
1567 }
1568 goto flushed;
1569 }
1570
1571 for (i = 0; i < regset_size; i++)
1572 {
1573 dead[i] = 0; /* Faster than bzero here */
1574 live[i] = 0; /* since regset_size is usually small */
1575 }
1576
1577 /* See if this is an increment or decrement that can be
1578 merged into a following memory address. */
1579 #ifdef AUTO_INC_DEC
1580 {
1581 register rtx x = PATTERN (insn);
1582 /* Does this instruction increment or decrement a register? */
1583 if (final && GET_CODE (x) == SET
1584 && GET_CODE (SET_DEST (x)) == REG
1585 && (GET_CODE (SET_SRC (x)) == PLUS
1586 || GET_CODE (SET_SRC (x)) == MINUS)
1587 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1588 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1589 /* Ok, look for a following memory ref we can combine with.
1590 If one is found, change the memory ref to a PRE_INC
1591 or PRE_DEC, cancel this insn, and return 1.
1592 Return 0 if nothing has been done. */
1593 && try_pre_increment_1 (insn))
1594 goto flushed;
1595 }
1596 #endif /* AUTO_INC_DEC */
1597
1598 /* If this is not the final pass, and this insn is copying the
1599 value of a library call and it's dead, don't scan the
1600 insns that perform the library call, so that the call's
1601 arguments are not marked live. */
1602 if (libcall_is_dead)
1603 {
1604 /* Mark the dest reg as `significant'. */
1605 mark_set_regs (old, dead, PATTERN (insn), NULL_RTX, significant);
1606
1607 insn = XEXP (note, 0);
1608 prev = PREV_INSN (insn);
1609 }
1610 else if (GET_CODE (PATTERN (insn)) == SET
1611 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1612 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1613 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1614 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1615 /* We have an insn to pop a constant amount off the stack.
1616 (Such insns use PLUS regardless of the direction of the stack,
1617 and any insn to adjust the stack by a constant is always a pop.)
1618 These insns, if not dead stores, have no effect on life. */
1619 ;
1620 else
1621 {
1622 /* LIVE gets the regs used in INSN;
1623 DEAD gets those set by it. Dead insns don't make anything
1624 live. */
1625
1626 mark_set_regs (old, dead, PATTERN (insn),
1627 final ? insn : NULL_RTX, significant);
1628
1629 /* If an insn doesn't use CC0, it becomes dead since we
1630 assume that every insn clobbers it. So show it dead here;
1631 mark_used_regs will set it live if it is referenced. */
1632 cc0_live = 0;
1633
1634 if (! insn_is_dead)
1635 mark_used_regs (old, live, PATTERN (insn), final, insn);
1636
1637 /* Sometimes we may have inserted something before INSN (such as
1638 a move) when we make an auto-inc. So ensure we will scan
1639 those insns. */
1640 #ifdef AUTO_INC_DEC
1641 prev = PREV_INSN (insn);
1642 #endif
1643
1644 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1645 {
1646 register int i;
1647
1648 rtx note;
1649
1650 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1651 note;
1652 note = XEXP (note, 1))
1653 if (GET_CODE (XEXP (note, 0)) == USE)
1654 mark_used_regs (old, live, SET_DEST (XEXP (note, 0)),
1655 final, insn);
1656
1657 /* Each call clobbers all call-clobbered regs that are not
1658 global or fixed. Note that the function-value reg is a
1659 call-clobbered reg, and mark_set_regs has already had
1660 a chance to handle it. */
1661
1662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1663 if (call_used_regs[i] && ! global_regs[i]
1664 && ! fixed_regs[i])
1665 dead[i / REGSET_ELT_BITS]
1666 |= ((REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS));
1667
1668 /* The stack ptr is used (honorarily) by a CALL insn. */
1669 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
1670 |= ((REGSET_ELT_TYPE) 1
1671 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS));
1672
1673 /* Calls may also reference any of the global registers,
1674 so they are made live. */
1675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1676 if (global_regs[i])
1677 mark_used_regs (old, live,
1678 gen_rtx (REG, reg_raw_mode[i], i),
1679 final, insn);
1680
1681 /* Calls also clobber memory. */
1682 last_mem_set = 0;
1683 }
1684
1685 /* Update OLD for the registers used or set. */
1686 for (i = 0; i < regset_size; i++)
1687 {
1688 old[i] &= ~dead[i];
1689 old[i] |= live[i];
1690 }
1691
1692 if (GET_CODE (insn) == CALL_INSN && final)
1693 {
1694 /* Any regs live at the time of a call instruction
1695 must not go in a register clobbered by calls.
1696 Find all regs now live and record this for them. */
1697
1698 register struct sometimes *p = regs_sometimes_live;
1699
1700 for (i = 0; i < sometimes_max; i++, p++)
1701 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1702 reg_n_calls_crossed[p->offset * REGSET_ELT_BITS + p->bit]+= 1;
1703 }
1704 }
1705
1706 /* On final pass, add any additional sometimes-live regs
1707 into MAXLIVE and REGS_SOMETIMES_LIVE.
1708 Also update counts of how many insns each reg is live at. */
1709
1710 if (final)
1711 {
1712 for (i = 0; i < regset_size; i++)
1713 {
1714 register REGSET_ELT_TYPE diff = live[i] & ~maxlive[i];
1715
1716 if (diff)
1717 {
1718 register int regno;
1719 maxlive[i] |= diff;
1720 for (regno = 0; diff && regno < REGSET_ELT_BITS; regno++)
1721 if (diff & ((REGSET_ELT_TYPE) 1 << regno))
1722 {
1723 regs_sometimes_live[sometimes_max].offset = i;
1724 regs_sometimes_live[sometimes_max].bit = regno;
1725 diff &= ~ ((REGSET_ELT_TYPE) 1 << regno);
1726 sometimes_max++;
1727 }
1728 }
1729 }
1730
1731 {
1732 register struct sometimes *p = regs_sometimes_live;
1733 for (i = 0; i < sometimes_max; i++, p++)
1734 {
1735 if (old[p->offset] & ((REGSET_ELT_TYPE) 1 << p->bit))
1736 reg_live_length[p->offset * REGSET_ELT_BITS + p->bit]++;
1737 }
1738 }
1739 }
1740 }
1741 flushed: ;
1742 if (insn == first)
1743 break;
1744 }
1745
1746 if (num_scratch > max_scratch)
1747 max_scratch = num_scratch;
1748 }
1749 \f
1750 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1751 (SET expressions whose destinations are registers dead after the insn).
1752 NEEDED is the regset that says which regs are alive after the insn.
1753
1754 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL. */
1755
1756 static int
1757 insn_dead_p (x, needed, call_ok)
1758 rtx x;
1759 regset needed;
1760 int call_ok;
1761 {
1762 register RTX_CODE code = GET_CODE (x);
1763 /* If setting something that's a reg or part of one,
1764 see if that register's altered value will be live. */
1765
1766 if (code == SET)
1767 {
1768 register rtx r = SET_DEST (x);
1769 /* A SET that is a subroutine call cannot be dead. */
1770 if (! call_ok && GET_CODE (SET_SRC (x)) == CALL)
1771 return 0;
1772
1773 #ifdef HAVE_cc0
1774 if (GET_CODE (r) == CC0)
1775 return ! cc0_live;
1776 #endif
1777
1778 if (GET_CODE (r) == MEM && last_mem_set && ! MEM_VOLATILE_P (r)
1779 && rtx_equal_p (r, last_mem_set))
1780 return 1;
1781
1782 while (GET_CODE (r) == SUBREG
1783 || GET_CODE (r) == STRICT_LOW_PART
1784 || GET_CODE (r) == ZERO_EXTRACT
1785 || GET_CODE (r) == SIGN_EXTRACT)
1786 r = SUBREG_REG (r);
1787
1788 if (GET_CODE (r) == REG)
1789 {
1790 register int regno = REGNO (r);
1791 register int offset = regno / REGSET_ELT_BITS;
1792 register REGSET_ELT_TYPE bit
1793 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
1794
1795 /* Don't delete insns to set global regs. */
1796 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1797 /* Make sure insns to set frame pointer aren't deleted. */
1798 || regno == FRAME_POINTER_REGNUM
1799 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1800 || regno == HARD_FRAME_POINTER_REGNUM
1801 #endif
1802 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1803 /* Make sure insns to set arg pointer are never deleted
1804 (if the arg pointer isn't fixed, there will be a USE for
1805 it, so we can treat it normally). */
1806 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
1807 #endif
1808 || (needed[offset] & bit) != 0)
1809 return 0;
1810
1811 /* If this is a hard register, verify that subsequent words are
1812 not needed. */
1813 if (regno < FIRST_PSEUDO_REGISTER)
1814 {
1815 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
1816
1817 while (--n > 0)
1818 if ((needed[(regno + n) / REGSET_ELT_BITS]
1819 & ((REGSET_ELT_TYPE) 1
1820 << ((regno + n) % REGSET_ELT_BITS))) != 0)
1821 return 0;
1822 }
1823
1824 return 1;
1825 }
1826 }
1827 /* If performing several activities,
1828 insn is dead if each activity is individually dead.
1829 Also, CLOBBERs and USEs can be ignored; a CLOBBER or USE
1830 that's inside a PARALLEL doesn't make the insn worth keeping. */
1831 else if (code == PARALLEL)
1832 {
1833 register int i = XVECLEN (x, 0);
1834 for (i--; i >= 0; i--)
1835 {
1836 rtx elt = XVECEXP (x, 0, i);
1837 if (!insn_dead_p (elt, needed, call_ok)
1838 && GET_CODE (elt) != CLOBBER
1839 && GET_CODE (elt) != USE)
1840 return 0;
1841 }
1842 return 1;
1843 }
1844 /* We do not check CLOBBER or USE here.
1845 An insn consisting of just a CLOBBER or just a USE
1846 should not be deleted. */
1847 return 0;
1848 }
1849
1850 /* If X is the pattern of the last insn in a libcall, and assuming X is dead,
1851 return 1 if the entire library call is dead.
1852 This is true if X copies a register (hard or pseudo)
1853 and if the hard return reg of the call insn is dead.
1854 (The caller should have tested the destination of X already for death.)
1855
1856 If this insn doesn't just copy a register, then we don't
1857 have an ordinary libcall. In that case, cse could not have
1858 managed to substitute the source for the dest later on,
1859 so we can assume the libcall is dead.
1860
1861 NEEDED is the bit vector of pseudoregs live before this insn.
1862 NOTE is the REG_RETVAL note of the insn. INSN is the insn itself. */
1863
1864 static int
1865 libcall_dead_p (x, needed, note, insn)
1866 rtx x;
1867 regset needed;
1868 rtx note;
1869 rtx insn;
1870 {
1871 register RTX_CODE code = GET_CODE (x);
1872
1873 if (code == SET)
1874 {
1875 register rtx r = SET_SRC (x);
1876 if (GET_CODE (r) == REG)
1877 {
1878 rtx call = XEXP (note, 0);
1879 register int i;
1880
1881 /* Find the call insn. */
1882 while (call != insn && GET_CODE (call) != CALL_INSN)
1883 call = NEXT_INSN (call);
1884
1885 /* If there is none, do nothing special,
1886 since ordinary death handling can understand these insns. */
1887 if (call == insn)
1888 return 0;
1889
1890 /* See if the hard reg holding the value is dead.
1891 If this is a PARALLEL, find the call within it. */
1892 call = PATTERN (call);
1893 if (GET_CODE (call) == PARALLEL)
1894 {
1895 for (i = XVECLEN (call, 0) - 1; i >= 0; i--)
1896 if (GET_CODE (XVECEXP (call, 0, i)) == SET
1897 && GET_CODE (SET_SRC (XVECEXP (call, 0, i))) == CALL)
1898 break;
1899
1900 /* This may be a library call that is returning a value
1901 via invisible pointer. Do nothing special, since
1902 ordinary death handling can understand these insns. */
1903 if (i < 0)
1904 return 0;
1905
1906 call = XVECEXP (call, 0, i);
1907 }
1908
1909 return insn_dead_p (call, needed, 1);
1910 }
1911 }
1912 return 1;
1913 }
1914
1915 /* Return 1 if register REGNO was used before it was set.
1916 In other words, if it is live at function entry.
1917 Don't count global register variables or variables in registers
1918 that can be used for function arg passing, though. */
1919
1920 int
1921 regno_uninitialized (regno)
1922 int regno;
1923 {
1924 if (n_basic_blocks == 0
1925 || (regno < FIRST_PSEUDO_REGISTER
1926 && (global_regs[regno] || FUNCTION_ARG_REGNO_P (regno))))
1927 return 0;
1928
1929 return (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1930 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS)));
1931 }
1932
1933 /* 1 if register REGNO was alive at a place where `setjmp' was called
1934 and was set more than once or is an argument.
1935 Such regs may be clobbered by `longjmp'. */
1936
1937 int
1938 regno_clobbered_at_setjmp (regno)
1939 int regno;
1940 {
1941 if (n_basic_blocks == 0)
1942 return 0;
1943
1944 return ((reg_n_sets[regno] > 1
1945 || (basic_block_live_at_start[0][regno / REGSET_ELT_BITS]
1946 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))))
1947 && (regs_live_at_setjmp[regno / REGSET_ELT_BITS]
1948 & ((REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS))));
1949 }
1950 \f
1951 /* Process the registers that are set within X.
1952 Their bits are set to 1 in the regset DEAD,
1953 because they are dead prior to this insn.
1954
1955 If INSN is nonzero, it is the insn being processed
1956 and the fact that it is nonzero implies this is the FINAL pass
1957 in propagate_block. In this case, various info about register
1958 usage is stored, LOG_LINKS fields of insns are set up. */
1959
1960 static void
1961 mark_set_regs (needed, dead, x, insn, significant)
1962 regset needed;
1963 regset dead;
1964 rtx x;
1965 rtx insn;
1966 regset significant;
1967 {
1968 register RTX_CODE code = GET_CODE (x);
1969
1970 if (code == SET || code == CLOBBER)
1971 mark_set_1 (needed, dead, x, insn, significant);
1972 else if (code == PARALLEL)
1973 {
1974 register int i;
1975 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1976 {
1977 code = GET_CODE (XVECEXP (x, 0, i));
1978 if (code == SET || code == CLOBBER)
1979 mark_set_1 (needed, dead, XVECEXP (x, 0, i), insn, significant);
1980 }
1981 }
1982 }
1983
1984 /* Process a single SET rtx, X. */
1985
1986 static void
1987 mark_set_1 (needed, dead, x, insn, significant)
1988 regset needed;
1989 regset dead;
1990 rtx x;
1991 rtx insn;
1992 regset significant;
1993 {
1994 register int regno;
1995 register rtx reg = SET_DEST (x);
1996
1997 /* Modifying just one hardware register of a multi-reg value
1998 or just a byte field of a register
1999 does not mean the value from before this insn is now dead.
2000 But it does mean liveness of that register at the end of the block
2001 is significant.
2002
2003 Within mark_set_1, however, we treat it as if the register is
2004 indeed modified. mark_used_regs will, however, also treat this
2005 register as being used. Thus, we treat these insns as setting a
2006 new value for the register as a function of its old value. This
2007 cases LOG_LINKS to be made appropriately and this will help combine. */
2008
2009 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
2010 || GET_CODE (reg) == SIGN_EXTRACT
2011 || GET_CODE (reg) == STRICT_LOW_PART)
2012 reg = XEXP (reg, 0);
2013
2014 /* If we are writing into memory or into a register mentioned in the
2015 address of the last thing stored into memory, show we don't know
2016 what the last store was. If we are writing memory, save the address
2017 unless it is volatile. */
2018 if (GET_CODE (reg) == MEM
2019 || (GET_CODE (reg) == REG
2020 && last_mem_set != 0 && reg_overlap_mentioned_p (reg, last_mem_set)))
2021 last_mem_set = 0;
2022
2023 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2024 /* There are no REG_INC notes for SP, so we can't assume we'll see
2025 everything that invalidates it. To be safe, don't eliminate any
2026 stores though SP; none of them should be redundant anyway. */
2027 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2028 last_mem_set = reg;
2029
2030 if (GET_CODE (reg) == REG
2031 && (regno = REGNO (reg), regno != FRAME_POINTER_REGNUM)
2032 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2033 && regno != HARD_FRAME_POINTER_REGNUM
2034 #endif
2035 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2036 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2037 #endif
2038 && ! (regno < FIRST_PSEUDO_REGISTER && global_regs[regno]))
2039 /* && regno != STACK_POINTER_REGNUM) -- let's try without this. */
2040 {
2041 register int offset = regno / REGSET_ELT_BITS;
2042 register REGSET_ELT_TYPE bit
2043 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2044 REGSET_ELT_TYPE some_needed = (needed[offset] & bit);
2045 REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
2046
2047 /* Mark it as a significant register for this basic block. */
2048 if (significant)
2049 significant[offset] |= bit;
2050
2051 /* Mark it as as dead before this insn. */
2052 dead[offset] |= bit;
2053
2054 /* A hard reg in a wide mode may really be multiple registers.
2055 If so, mark all of them just like the first. */
2056 if (regno < FIRST_PSEUDO_REGISTER)
2057 {
2058 int n;
2059
2060 /* Nothing below is needed for the stack pointer; get out asap.
2061 Eg, log links aren't needed, since combine won't use them. */
2062 if (regno == STACK_POINTER_REGNUM)
2063 return;
2064
2065 n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
2066 while (--n > 0)
2067 {
2068 REGSET_ELT_TYPE n_bit
2069 = (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2070
2071 if (significant)
2072 significant[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2073
2074 dead[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2075 some_needed
2076 |= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
2077 some_not_needed
2078 |= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
2079 }
2080 }
2081 /* Additional data to record if this is the final pass. */
2082 if (insn)
2083 {
2084 register rtx y = reg_next_use[regno];
2085 register int blocknum = BLOCK_NUM (insn);
2086
2087 /* If this is a hard reg, record this function uses the reg. */
2088
2089 if (regno < FIRST_PSEUDO_REGISTER)
2090 {
2091 register int i;
2092 int endregno = regno + HARD_REGNO_NREGS (regno, GET_MODE (reg));
2093
2094 for (i = regno; i < endregno; i++)
2095 {
2096 /* The next use is no longer "next", since a store
2097 intervenes. */
2098 reg_next_use[i] = 0;
2099
2100 regs_ever_live[i] = 1;
2101 reg_n_sets[i]++;
2102 }
2103 }
2104 else
2105 {
2106 /* The next use is no longer "next", since a store
2107 intervenes. */
2108 reg_next_use[regno] = 0;
2109
2110 /* Keep track of which basic blocks each reg appears in. */
2111
2112 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2113 reg_basic_block[regno] = blocknum;
2114 else if (reg_basic_block[regno] != blocknum)
2115 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2116
2117 /* Count (weighted) references, stores, etc. This counts a
2118 register twice if it is modified, but that is correct. */
2119 reg_n_sets[regno]++;
2120
2121 reg_n_refs[regno] += loop_depth;
2122
2123 /* The insns where a reg is live are normally counted
2124 elsewhere, but we want the count to include the insn
2125 where the reg is set, and the normal counting mechanism
2126 would not count it. */
2127 reg_live_length[regno]++;
2128 }
2129
2130 if (! some_not_needed)
2131 {
2132 /* Make a logical link from the next following insn
2133 that uses this register, back to this insn.
2134 The following insns have already been processed.
2135
2136 We don't build a LOG_LINK for hard registers containing
2137 in ASM_OPERANDs. If these registers get replaced,
2138 we might wind up changing the semantics of the insn,
2139 even if reload can make what appear to be valid assignments
2140 later. */
2141 if (y && (BLOCK_NUM (y) == blocknum)
2142 && (regno >= FIRST_PSEUDO_REGISTER
2143 || asm_noperands (PATTERN (y)) < 0))
2144 LOG_LINKS (y)
2145 = gen_rtx (INSN_LIST, VOIDmode, insn, LOG_LINKS (y));
2146 }
2147 else if (! some_needed)
2148 {
2149 /* Note that dead stores have already been deleted when possible
2150 If we get here, we have found a dead store that cannot
2151 be eliminated (because the same insn does something useful).
2152 Indicate this by marking the reg being set as dying here. */
2153 REG_NOTES (insn)
2154 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2155 reg_n_deaths[REGNO (reg)]++;
2156 }
2157 else
2158 {
2159 /* This is a case where we have a multi-word hard register
2160 and some, but not all, of the words of the register are
2161 needed in subsequent insns. Write REG_UNUSED notes
2162 for those parts that were not needed. This case should
2163 be rare. */
2164
2165 int i;
2166
2167 for (i = HARD_REGNO_NREGS (regno, GET_MODE (reg)) - 1;
2168 i >= 0; i--)
2169 if ((needed[(regno + i) / REGSET_ELT_BITS]
2170 & ((REGSET_ELT_TYPE) 1
2171 << ((regno + i) % REGSET_ELT_BITS))) == 0)
2172 REG_NOTES (insn)
2173 = gen_rtx (EXPR_LIST, REG_UNUSED,
2174 gen_rtx (REG, reg_raw_mode[regno + i],
2175 regno + i),
2176 REG_NOTES (insn));
2177 }
2178 }
2179 }
2180 else if (GET_CODE (reg) == REG)
2181 reg_next_use[regno] = 0;
2182
2183 /* If this is the last pass and this is a SCRATCH, show it will be dying
2184 here and count it. */
2185 else if (GET_CODE (reg) == SCRATCH && insn != 0)
2186 {
2187 REG_NOTES (insn)
2188 = gen_rtx (EXPR_LIST, REG_UNUSED, reg, REG_NOTES (insn));
2189 num_scratch++;
2190 }
2191 }
2192 \f
2193 #ifdef AUTO_INC_DEC
2194
2195 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
2196 reference. */
2197
2198 static void
2199 find_auto_inc (needed, x, insn)
2200 regset needed;
2201 rtx x;
2202 rtx insn;
2203 {
2204 rtx addr = XEXP (x, 0);
2205 HOST_WIDE_INT offset = 0;
2206 rtx set;
2207
2208 /* Here we detect use of an index register which might be good for
2209 postincrement, postdecrement, preincrement, or predecrement. */
2210
2211 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
2212 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
2213
2214 if (GET_CODE (addr) == REG)
2215 {
2216 register rtx y;
2217 register int size = GET_MODE_SIZE (GET_MODE (x));
2218 rtx use;
2219 rtx incr;
2220 int regno = REGNO (addr);
2221
2222 /* Is the next use an increment that might make auto-increment? */
2223 if ((incr = reg_next_use[regno]) != 0
2224 && (set = single_set (incr)) != 0
2225 && GET_CODE (set) == SET
2226 && BLOCK_NUM (incr) == BLOCK_NUM (insn)
2227 /* Can't add side effects to jumps; if reg is spilled and
2228 reloaded, there's no way to store back the altered value. */
2229 && GET_CODE (insn) != JUMP_INSN
2230 && (y = SET_SRC (set), GET_CODE (y) == PLUS)
2231 && XEXP (y, 0) == addr
2232 && GET_CODE (XEXP (y, 1)) == CONST_INT
2233 && (0
2234 #ifdef HAVE_POST_INCREMENT
2235 || (INTVAL (XEXP (y, 1)) == size && offset == 0)
2236 #endif
2237 #ifdef HAVE_POST_DECREMENT
2238 || (INTVAL (XEXP (y, 1)) == - size && offset == 0)
2239 #endif
2240 #ifdef HAVE_PRE_INCREMENT
2241 || (INTVAL (XEXP (y, 1)) == size && offset == size)
2242 #endif
2243 #ifdef HAVE_PRE_DECREMENT
2244 || (INTVAL (XEXP (y, 1)) == - size && offset == - size)
2245 #endif
2246 )
2247 /* Make sure this reg appears only once in this insn. */
2248 && (use = find_use_as_address (PATTERN (insn), addr, offset),
2249 use != 0 && use != (rtx) 1))
2250 {
2251 rtx q = SET_DEST (set);
2252 enum rtx_code inc_code = (INTVAL (XEXP (y, 1)) == size
2253 ? (offset ? PRE_INC : POST_INC)
2254 : (offset ? PRE_DEC : POST_DEC));
2255
2256 if (dead_or_set_p (incr, addr))
2257 {
2258 /* This is the simple case. Try to make the auto-inc. If
2259 we can't, we are done. Otherwise, we will do any
2260 needed updates below. */
2261 if (! validate_change (insn, &XEXP (x, 0),
2262 gen_rtx (inc_code, Pmode, addr),
2263 0))
2264 return;
2265 }
2266 else if (GET_CODE (q) == REG
2267 /* PREV_INSN used here to check the semi-open interval
2268 [insn,incr). */
2269 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
2270 /* We must also check for sets of q as q may be
2271 a call clobbered hard register and there may
2272 be a call between PREV_INSN (insn) and incr. */
2273 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
2274 {
2275 /* We have *p followed sometime later by q = p+size.
2276 Both p and q must be live afterward,
2277 and q is not used between INSN and it's assignment.
2278 Change it to q = p, ...*q..., q = q+size.
2279 Then fall into the usual case. */
2280 rtx insns, temp;
2281
2282 start_sequence ();
2283 emit_move_insn (q, addr);
2284 insns = get_insns ();
2285 end_sequence ();
2286
2287 /* If anything in INSNS have UID's that don't fit within the
2288 extra space we allocate earlier, we can't make this auto-inc.
2289 This should never happen. */
2290 for (temp = insns; temp; temp = NEXT_INSN (temp))
2291 {
2292 if (INSN_UID (temp) > max_uid_for_flow)
2293 return;
2294 BLOCK_NUM (temp) = BLOCK_NUM (insn);
2295 }
2296
2297 /* If we can't make the auto-inc, or can't make the
2298 replacement into Y, exit. There's no point in making
2299 the change below if we can't do the auto-inc and doing
2300 so is not correct in the pre-inc case. */
2301
2302 validate_change (insn, &XEXP (x, 0),
2303 gen_rtx (inc_code, Pmode, q),
2304 1);
2305 validate_change (incr, &XEXP (y, 0), q, 1);
2306 if (! apply_change_group ())
2307 return;
2308
2309 /* We now know we'll be doing this change, so emit the
2310 new insn(s) and do the updates. */
2311 emit_insns_before (insns, insn);
2312
2313 if (basic_block_head[BLOCK_NUM (insn)] == insn)
2314 basic_block_head[BLOCK_NUM (insn)] = insns;
2315
2316 /* INCR will become a NOTE and INSN won't contain a
2317 use of ADDR. If a use of ADDR was just placed in
2318 the insn before INSN, make that the next use.
2319 Otherwise, invalidate it. */
2320 if (GET_CODE (PREV_INSN (insn)) == INSN
2321 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
2322 && SET_SRC (PATTERN (PREV_INSN (insn))) == addr)
2323 reg_next_use[regno] = PREV_INSN (insn);
2324 else
2325 reg_next_use[regno] = 0;
2326
2327 addr = q;
2328 regno = REGNO (q);
2329
2330 /* REGNO is now used in INCR which is below INSN, but
2331 it previously wasn't live here. If we don't mark
2332 it as needed, we'll put a REG_DEAD note for it
2333 on this insn, which is incorrect. */
2334 needed[regno / REGSET_ELT_BITS]
2335 |= (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2336
2337 /* If there are any calls between INSN and INCR, show
2338 that REGNO now crosses them. */
2339 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
2340 if (GET_CODE (temp) == CALL_INSN)
2341 reg_n_calls_crossed[regno]++;
2342 }
2343 else
2344 return;
2345
2346 /* If we haven't returned, it means we were able to make the
2347 auto-inc, so update the status. First, record that this insn
2348 has an implicit side effect. */
2349
2350 REG_NOTES (insn)
2351 = gen_rtx (EXPR_LIST, REG_INC, addr, REG_NOTES (insn));
2352
2353 /* Modify the old increment-insn to simply copy
2354 the already-incremented value of our register. */
2355 if (! validate_change (incr, &SET_SRC (set), addr, 0))
2356 abort ();
2357
2358 /* If that makes it a no-op (copying the register into itself) delete
2359 it so it won't appear to be a "use" and a "set" of this
2360 register. */
2361 if (SET_DEST (set) == addr)
2362 {
2363 PUT_CODE (incr, NOTE);
2364 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
2365 NOTE_SOURCE_FILE (incr) = 0;
2366 }
2367
2368 if (regno >= FIRST_PSEUDO_REGISTER)
2369 {
2370 /* Count an extra reference to the reg. When a reg is
2371 incremented, spilling it is worse, so we want to make
2372 that less likely. */
2373 reg_n_refs[regno] += loop_depth;
2374
2375 /* Count the increment as a setting of the register,
2376 even though it isn't a SET in rtl. */
2377 reg_n_sets[regno]++;
2378 }
2379 }
2380 }
2381 }
2382 #endif /* AUTO_INC_DEC */
2383 \f
2384 /* Scan expression X and store a 1-bit in LIVE for each reg it uses.
2385 This is done assuming the registers needed from X
2386 are those that have 1-bits in NEEDED.
2387
2388 On the final pass, FINAL is 1. This means try for autoincrement
2389 and count the uses and deaths of each pseudo-reg.
2390
2391 INSN is the containing instruction. If INSN is dead, this function is not
2392 called. */
2393
2394 static void
2395 mark_used_regs (needed, live, x, final, insn)
2396 regset needed;
2397 regset live;
2398 rtx x;
2399 int final;
2400 rtx insn;
2401 {
2402 register RTX_CODE code;
2403 register int regno;
2404 int i;
2405
2406 retry:
2407 code = GET_CODE (x);
2408 switch (code)
2409 {
2410 case LABEL_REF:
2411 case SYMBOL_REF:
2412 case CONST_INT:
2413 case CONST:
2414 case CONST_DOUBLE:
2415 case PC:
2416 case ADDR_VEC:
2417 case ADDR_DIFF_VEC:
2418 case ASM_INPUT:
2419 return;
2420
2421 #ifdef HAVE_cc0
2422 case CC0:
2423 cc0_live = 1;
2424 return;
2425 #endif
2426
2427 case CLOBBER:
2428 /* If we are clobbering a MEM, mark any registers inside the address
2429 as being used. */
2430 if (GET_CODE (XEXP (x, 0)) == MEM)
2431 mark_used_regs (needed, live, XEXP (XEXP (x, 0), 0), final, insn);
2432 return;
2433
2434 case MEM:
2435 /* Invalidate the data for the last MEM stored. We could do this only
2436 if the addresses conflict, but this doesn't seem worthwhile. */
2437 last_mem_set = 0;
2438
2439 #ifdef AUTO_INC_DEC
2440 if (final)
2441 find_auto_inc (needed, x, insn);
2442 #endif
2443 break;
2444
2445 case SUBREG:
2446 if (GET_CODE (SUBREG_REG (x)) == REG
2447 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
2448 && (GET_MODE_SIZE (GET_MODE (x))
2449 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
2450 reg_changes_size[REGNO (SUBREG_REG (x))] = 1;
2451
2452 /* While we're here, optimize this case. */
2453 x = SUBREG_REG (x);
2454
2455 /* In case the SUBREG is not of a register, don't optimize */
2456 if (GET_CODE (x) != REG)
2457 {
2458 mark_used_regs (needed, live, x, final, insn);
2459 return;
2460 }
2461
2462 /* ... fall through ... */
2463
2464 case REG:
2465 /* See a register other than being set
2466 => mark it as needed. */
2467
2468 regno = REGNO (x);
2469 {
2470 register int offset = regno / REGSET_ELT_BITS;
2471 register REGSET_ELT_TYPE bit
2472 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
2473 REGSET_ELT_TYPE some_needed = needed[offset] & bit;
2474 REGSET_ELT_TYPE some_not_needed = (~ needed[offset]) & bit;
2475
2476 live[offset] |= bit;
2477
2478 /* A hard reg in a wide mode may really be multiple registers.
2479 If so, mark all of them just like the first. */
2480 if (regno < FIRST_PSEUDO_REGISTER)
2481 {
2482 int n;
2483
2484 /* For stack ptr or fixed arg pointer,
2485 nothing below can be necessary, so waste no more time. */
2486 if (regno == STACK_POINTER_REGNUM
2487 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2488 || regno == HARD_FRAME_POINTER_REGNUM
2489 #endif
2490 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2491 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2492 #endif
2493 || regno == FRAME_POINTER_REGNUM)
2494 {
2495 /* If this is a register we are going to try to eliminate,
2496 don't mark it live here. If we are successful in
2497 eliminating it, it need not be live unless it is used for
2498 pseudos, in which case it will have been set live when
2499 it was allocated to the pseudos. If the register will not
2500 be eliminated, reload will set it live at that point. */
2501
2502 if (! TEST_HARD_REG_BIT (elim_reg_set, regno))
2503 regs_ever_live[regno] = 1;
2504 return;
2505 }
2506 /* No death notes for global register variables;
2507 their values are live after this function exits. */
2508 if (global_regs[regno])
2509 {
2510 if (final)
2511 reg_next_use[regno] = insn;
2512 return;
2513 }
2514
2515 n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2516 while (--n > 0)
2517 {
2518 REGSET_ELT_TYPE n_bit
2519 = (REGSET_ELT_TYPE) 1 << ((regno + n) % REGSET_ELT_BITS);
2520
2521 live[(regno + n) / REGSET_ELT_BITS] |= n_bit;
2522 some_needed |= (needed[(regno + n) / REGSET_ELT_BITS] & n_bit);
2523 some_not_needed
2524 |= ((~ needed[(regno + n) / REGSET_ELT_BITS]) & n_bit);
2525 }
2526 }
2527 if (final)
2528 {
2529 /* Record where each reg is used, so when the reg
2530 is set we know the next insn that uses it. */
2531
2532 reg_next_use[regno] = insn;
2533
2534 if (regno < FIRST_PSEUDO_REGISTER)
2535 {
2536 /* If a hard reg is being used,
2537 record that this function does use it. */
2538
2539 i = HARD_REGNO_NREGS (regno, GET_MODE (x));
2540 if (i == 0)
2541 i = 1;
2542 do
2543 regs_ever_live[regno + --i] = 1;
2544 while (i > 0);
2545 }
2546 else
2547 {
2548 /* Keep track of which basic block each reg appears in. */
2549
2550 register int blocknum = BLOCK_NUM (insn);
2551
2552 if (reg_basic_block[regno] == REG_BLOCK_UNKNOWN)
2553 reg_basic_block[regno] = blocknum;
2554 else if (reg_basic_block[regno] != blocknum)
2555 reg_basic_block[regno] = REG_BLOCK_GLOBAL;
2556
2557 /* Count (weighted) number of uses of each reg. */
2558
2559 reg_n_refs[regno] += loop_depth;
2560 }
2561
2562 /* Record and count the insns in which a reg dies.
2563 If it is used in this insn and was dead below the insn
2564 then it dies in this insn. If it was set in this insn,
2565 we do not make a REG_DEAD note; likewise if we already
2566 made such a note. */
2567
2568 if (some_not_needed
2569 && ! dead_or_set_p (insn, x)
2570 #if 0
2571 && (regno >= FIRST_PSEUDO_REGISTER || ! fixed_regs[regno])
2572 #endif
2573 )
2574 {
2575 /* Check for the case where the register dying partially
2576 overlaps the register set by this insn. */
2577 if (regno < FIRST_PSEUDO_REGISTER
2578 && HARD_REGNO_NREGS (regno, GET_MODE (x)) > 1)
2579 {
2580 int n = HARD_REGNO_NREGS (regno, GET_MODE (x));
2581 while (--n >= 0)
2582 some_needed |= dead_or_set_regno_p (insn, regno + n);
2583 }
2584
2585 /* If none of the words in X is needed, make a REG_DEAD
2586 note. Otherwise, we must make partial REG_DEAD notes. */
2587 if (! some_needed)
2588 {
2589 REG_NOTES (insn)
2590 = gen_rtx (EXPR_LIST, REG_DEAD, x, REG_NOTES (insn));
2591 reg_n_deaths[regno]++;
2592 }
2593 else
2594 {
2595 int i;
2596
2597 /* Don't make a REG_DEAD note for a part of a register
2598 that is set in the insn. */
2599
2600 for (i = HARD_REGNO_NREGS (regno, GET_MODE (x)) - 1;
2601 i >= 0; i--)
2602 if ((needed[(regno + i) / REGSET_ELT_BITS]
2603 & ((REGSET_ELT_TYPE) 1
2604 << ((regno + i) % REGSET_ELT_BITS))) == 0
2605 && ! dead_or_set_regno_p (insn, regno + i))
2606 REG_NOTES (insn)
2607 = gen_rtx (EXPR_LIST, REG_DEAD,
2608 gen_rtx (REG, reg_raw_mode[regno + i],
2609 regno + i),
2610 REG_NOTES (insn));
2611 }
2612 }
2613 }
2614 }
2615 return;
2616
2617 case SET:
2618 {
2619 register rtx testreg = SET_DEST (x);
2620 int mark_dest = 0;
2621
2622 /* If storing into MEM, don't show it as being used. But do
2623 show the address as being used. */
2624 if (GET_CODE (testreg) == MEM)
2625 {
2626 #ifdef AUTO_INC_DEC
2627 if (final)
2628 find_auto_inc (needed, testreg, insn);
2629 #endif
2630 mark_used_regs (needed, live, XEXP (testreg, 0), final, insn);
2631 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2632 return;
2633 }
2634
2635 /* Storing in STRICT_LOW_PART is like storing in a reg
2636 in that this SET might be dead, so ignore it in TESTREG.
2637 but in some other ways it is like using the reg.
2638
2639 Storing in a SUBREG or a bit field is like storing the entire
2640 register in that if the register's value is not used
2641 then this SET is not needed. */
2642 while (GET_CODE (testreg) == STRICT_LOW_PART
2643 || GET_CODE (testreg) == ZERO_EXTRACT
2644 || GET_CODE (testreg) == SIGN_EXTRACT
2645 || GET_CODE (testreg) == SUBREG)
2646 {
2647 if (GET_CODE (testreg) == SUBREG
2648 && GET_CODE (SUBREG_REG (testreg)) == REG
2649 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
2650 && (GET_MODE_SIZE (GET_MODE (testreg))
2651 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (testreg)))))
2652 reg_changes_size[REGNO (SUBREG_REG (testreg))] = 1;
2653
2654 /* Modifying a single register in an alternate mode
2655 does not use any of the old value. But these other
2656 ways of storing in a register do use the old value. */
2657 if (GET_CODE (testreg) == SUBREG
2658 && !(REG_SIZE (SUBREG_REG (testreg)) > REG_SIZE (testreg)))
2659 ;
2660 else
2661 mark_dest = 1;
2662
2663 testreg = XEXP (testreg, 0);
2664 }
2665
2666 /* If this is a store into a register,
2667 recursively scan the value being stored. */
2668
2669 if (GET_CODE (testreg) == REG
2670 && (regno = REGNO (testreg), regno != FRAME_POINTER_REGNUM)
2671 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2672 && regno != HARD_FRAME_POINTER_REGNUM
2673 #endif
2674 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2675 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2676 #endif
2677 )
2678 /* We used to exclude global_regs here, but that seems wrong.
2679 Storing in them is like storing in mem. */
2680 {
2681 mark_used_regs (needed, live, SET_SRC (x), final, insn);
2682 if (mark_dest)
2683 mark_used_regs (needed, live, SET_DEST (x), final, insn);
2684 return;
2685 }
2686 }
2687 break;
2688
2689 case RETURN:
2690 /* If exiting needs the right stack value, consider this insn as
2691 using the stack pointer. In any event, consider it as using
2692 all global registers and all registers used by return. */
2693
2694 #ifdef EXIT_IGNORE_STACK
2695 if (! EXIT_IGNORE_STACK
2696 || (! FRAME_POINTER_REQUIRED && flag_omit_frame_pointer))
2697 #endif
2698 live[STACK_POINTER_REGNUM / REGSET_ELT_BITS]
2699 |= (REGSET_ELT_TYPE) 1 << (STACK_POINTER_REGNUM % REGSET_ELT_BITS);
2700
2701 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2702 if (global_regs[i]
2703 #ifdef EPILOGUE_USES
2704 || EPILOGUE_USES (i)
2705 #endif
2706 )
2707 live[i / REGSET_ELT_BITS]
2708 |= (REGSET_ELT_TYPE) 1 << (i % REGSET_ELT_BITS);
2709 break;
2710 }
2711
2712 /* Recursively scan the operands of this expression. */
2713
2714 {
2715 register char *fmt = GET_RTX_FORMAT (code);
2716 register int i;
2717
2718 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2719 {
2720 if (fmt[i] == 'e')
2721 {
2722 /* Tail recursive case: save a function call level. */
2723 if (i == 0)
2724 {
2725 x = XEXP (x, 0);
2726 goto retry;
2727 }
2728 mark_used_regs (needed, live, XEXP (x, i), final, insn);
2729 }
2730 else if (fmt[i] == 'E')
2731 {
2732 register int j;
2733 for (j = 0; j < XVECLEN (x, i); j++)
2734 mark_used_regs (needed, live, XVECEXP (x, i, j), final, insn);
2735 }
2736 }
2737 }
2738 }
2739 \f
2740 #ifdef AUTO_INC_DEC
2741
2742 static int
2743 try_pre_increment_1 (insn)
2744 rtx insn;
2745 {
2746 /* Find the next use of this reg. If in same basic block,
2747 make it do pre-increment or pre-decrement if appropriate. */
2748 rtx x = PATTERN (insn);
2749 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
2750 * INTVAL (XEXP (SET_SRC (x), 1)));
2751 int regno = REGNO (SET_DEST (x));
2752 rtx y = reg_next_use[regno];
2753 if (y != 0
2754 && BLOCK_NUM (y) == BLOCK_NUM (insn)
2755 /* Don't do this if the reg dies, or gets set in y; a standard addressing
2756 mode would be better. */
2757 && ! dead_or_set_p (y, SET_DEST (x))
2758 && try_pre_increment (y, SET_DEST (PATTERN (insn)),
2759 amount))
2760 {
2761 /* We have found a suitable auto-increment
2762 and already changed insn Y to do it.
2763 So flush this increment-instruction. */
2764 PUT_CODE (insn, NOTE);
2765 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
2766 NOTE_SOURCE_FILE (insn) = 0;
2767 /* Count a reference to this reg for the increment
2768 insn we are deleting. When a reg is incremented.
2769 spilling it is worse, so we want to make that
2770 less likely. */
2771 if (regno >= FIRST_PSEUDO_REGISTER)
2772 {
2773 reg_n_refs[regno] += loop_depth;
2774 reg_n_sets[regno]++;
2775 }
2776 return 1;
2777 }
2778 return 0;
2779 }
2780
2781 /* Try to change INSN so that it does pre-increment or pre-decrement
2782 addressing on register REG in order to add AMOUNT to REG.
2783 AMOUNT is negative for pre-decrement.
2784 Returns 1 if the change could be made.
2785 This checks all about the validity of the result of modifying INSN. */
2786
2787 static int
2788 try_pre_increment (insn, reg, amount)
2789 rtx insn, reg;
2790 HOST_WIDE_INT amount;
2791 {
2792 register rtx use;
2793
2794 /* Nonzero if we can try to make a pre-increment or pre-decrement.
2795 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
2796 int pre_ok = 0;
2797 /* Nonzero if we can try to make a post-increment or post-decrement.
2798 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
2799 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
2800 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
2801 int post_ok = 0;
2802
2803 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
2804 int do_post = 0;
2805
2806 /* From the sign of increment, see which possibilities are conceivable
2807 on this target machine. */
2808 #ifdef HAVE_PRE_INCREMENT
2809 if (amount > 0)
2810 pre_ok = 1;
2811 #endif
2812 #ifdef HAVE_POST_INCREMENT
2813 if (amount > 0)
2814 post_ok = 1;
2815 #endif
2816
2817 #ifdef HAVE_PRE_DECREMENT
2818 if (amount < 0)
2819 pre_ok = 1;
2820 #endif
2821 #ifdef HAVE_POST_DECREMENT
2822 if (amount < 0)
2823 post_ok = 1;
2824 #endif
2825
2826 if (! (pre_ok || post_ok))
2827 return 0;
2828
2829 /* It is not safe to add a side effect to a jump insn
2830 because if the incremented register is spilled and must be reloaded
2831 there would be no way to store the incremented value back in memory. */
2832
2833 if (GET_CODE (insn) == JUMP_INSN)
2834 return 0;
2835
2836 use = 0;
2837 if (pre_ok)
2838 use = find_use_as_address (PATTERN (insn), reg, 0);
2839 if (post_ok && (use == 0 || use == (rtx) 1))
2840 {
2841 use = find_use_as_address (PATTERN (insn), reg, -amount);
2842 do_post = 1;
2843 }
2844
2845 if (use == 0 || use == (rtx) 1)
2846 return 0;
2847
2848 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
2849 return 0;
2850
2851 /* See if this combination of instruction and addressing mode exists. */
2852 if (! validate_change (insn, &XEXP (use, 0),
2853 gen_rtx (amount > 0
2854 ? (do_post ? POST_INC : PRE_INC)
2855 : (do_post ? POST_DEC : PRE_DEC),
2856 Pmode, reg), 0))
2857 return 0;
2858
2859 /* Record that this insn now has an implicit side effect on X. */
2860 REG_NOTES (insn) = gen_rtx (EXPR_LIST, REG_INC, reg, REG_NOTES (insn));
2861 return 1;
2862 }
2863
2864 #endif /* AUTO_INC_DEC */
2865 \f
2866 /* Find the place in the rtx X where REG is used as a memory address.
2867 Return the MEM rtx that so uses it.
2868 If PLUSCONST is nonzero, search instead for a memory address equivalent to
2869 (plus REG (const_int PLUSCONST)).
2870
2871 If such an address does not appear, return 0.
2872 If REG appears more than once, or is used other than in such an address,
2873 return (rtx)1. */
2874
2875 static rtx
2876 find_use_as_address (x, reg, plusconst)
2877 register rtx x;
2878 rtx reg;
2879 HOST_WIDE_INT plusconst;
2880 {
2881 enum rtx_code code = GET_CODE (x);
2882 char *fmt = GET_RTX_FORMAT (code);
2883 register int i;
2884 register rtx value = 0;
2885 register rtx tem;
2886
2887 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
2888 return x;
2889
2890 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
2891 && XEXP (XEXP (x, 0), 0) == reg
2892 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
2893 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
2894 return x;
2895
2896 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
2897 {
2898 /* If REG occurs inside a MEM used in a bit-field reference,
2899 that is unacceptable. */
2900 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
2901 return (rtx) (HOST_WIDE_INT) 1;
2902 }
2903
2904 if (x == reg)
2905 return (rtx) (HOST_WIDE_INT) 1;
2906
2907 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2908 {
2909 if (fmt[i] == 'e')
2910 {
2911 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
2912 if (value == 0)
2913 value = tem;
2914 else if (tem != 0)
2915 return (rtx) (HOST_WIDE_INT) 1;
2916 }
2917 if (fmt[i] == 'E')
2918 {
2919 register int j;
2920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2921 {
2922 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
2923 if (value == 0)
2924 value = tem;
2925 else if (tem != 0)
2926 return (rtx) (HOST_WIDE_INT) 1;
2927 }
2928 }
2929 }
2930
2931 return value;
2932 }
2933 \f
2934 /* Write information about registers and basic blocks into FILE.
2935 This is part of making a debugging dump. */
2936
2937 void
2938 dump_flow_info (file)
2939 FILE *file;
2940 {
2941 register int i;
2942 static char *reg_class_names[] = REG_CLASS_NAMES;
2943
2944 fprintf (file, "%d registers.\n", max_regno);
2945
2946 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
2947 if (reg_n_refs[i])
2948 {
2949 enum reg_class class, altclass;
2950 fprintf (file, "\nRegister %d used %d times across %d insns",
2951 i, reg_n_refs[i], reg_live_length[i]);
2952 if (reg_basic_block[i] >= 0)
2953 fprintf (file, " in block %d", reg_basic_block[i]);
2954 if (reg_n_deaths[i] != 1)
2955 fprintf (file, "; dies in %d places", reg_n_deaths[i]);
2956 if (reg_n_calls_crossed[i] == 1)
2957 fprintf (file, "; crosses 1 call");
2958 else if (reg_n_calls_crossed[i])
2959 fprintf (file, "; crosses %d calls", reg_n_calls_crossed[i]);
2960 if (PSEUDO_REGNO_BYTES (i) != UNITS_PER_WORD)
2961 fprintf (file, "; %d bytes", PSEUDO_REGNO_BYTES (i));
2962 class = reg_preferred_class (i);
2963 altclass = reg_alternate_class (i);
2964 if (class != GENERAL_REGS || altclass != ALL_REGS)
2965 {
2966 if (altclass == ALL_REGS || class == ALL_REGS)
2967 fprintf (file, "; pref %s", reg_class_names[(int) class]);
2968 else if (altclass == NO_REGS)
2969 fprintf (file, "; %s or none", reg_class_names[(int) class]);
2970 else
2971 fprintf (file, "; pref %s, else %s",
2972 reg_class_names[(int) class],
2973 reg_class_names[(int) altclass]);
2974 }
2975 if (REGNO_POINTER_FLAG (i))
2976 fprintf (file, "; pointer");
2977 fprintf (file, ".\n");
2978 }
2979 fprintf (file, "\n%d basic blocks.\n", n_basic_blocks);
2980 for (i = 0; i < n_basic_blocks; i++)
2981 {
2982 register rtx head, jump;
2983 register int regno;
2984 fprintf (file, "\nBasic block %d: first insn %d, last %d.\n",
2985 i,
2986 INSN_UID (basic_block_head[i]),
2987 INSN_UID (basic_block_end[i]));
2988 /* The control flow graph's storage is freed
2989 now when flow_analysis returns.
2990 Don't try to print it if it is gone. */
2991 if (basic_block_drops_in)
2992 {
2993 fprintf (file, "Reached from blocks: ");
2994 head = basic_block_head[i];
2995 if (GET_CODE (head) == CODE_LABEL)
2996 for (jump = LABEL_REFS (head);
2997 jump != head;
2998 jump = LABEL_NEXTREF (jump))
2999 {
3000 register int from_block = BLOCK_NUM (CONTAINING_INSN (jump));
3001 fprintf (file, " %d", from_block);
3002 }
3003 if (basic_block_drops_in[i])
3004 fprintf (file, " previous");
3005 }
3006 fprintf (file, "\nRegisters live at start:");
3007 for (regno = 0; regno < max_regno; regno++)
3008 {
3009 register int offset = regno / REGSET_ELT_BITS;
3010 register REGSET_ELT_TYPE bit
3011 = (REGSET_ELT_TYPE) 1 << (regno % REGSET_ELT_BITS);
3012 if (basic_block_live_at_start[i][offset] & bit)
3013 fprintf (file, " %d", regno);
3014 }
3015 fprintf (file, "\n");
3016 }
3017 fprintf (file, "\n");
3018 }