backport: basic-block.h: Include vec.h, errors.h.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
167
168 /* Nonzero if the second flow pass has completed. */
169 int flow2_completed;
170
171 /* Maximum register number used in this function, plus one. */
172
173 int max_regno;
174
175 /* Indexed by n, giving various register information */
176
177 varray_type reg_n_info;
178
179 /* Size of a regset for the current function,
180 in (1) bytes and (2) elements. */
181
182 int regset_bytes;
183 int regset_size;
184
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187
188 regset regs_live_at_setjmp;
189
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
195
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
198
199 static HARD_REG_SET elim_reg_set;
200
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
203 {
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
208
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
212
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
215 };
216
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
219
220 struct propagate_block_info
221 {
222 /* The basic block we're considering. */
223 basic_block bb;
224
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
227
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
230
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
234
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
238
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
242
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
246
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
251
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
255
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
258
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
261
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
266 };
267
268 /* Number of dead insns removed. */
269 static int ndead;
270
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and liferanges are increased same way so liverange of global
278 registers are computed correctly.
279
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
283
284 static int *reg_deaths;
285
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
289
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
307
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
333 \f
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
336
337 rtx
338 first_insn_after_basic_block_note (basic_block block)
339 {
340 rtx insn;
341
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
344
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
350
351 return NEXT_INSN (insn);
352 }
353 \f
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
356
357 void
358 life_analysis (FILE *file, int flags)
359 {
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
364
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
367
368 CLEAR_HARD_REG_SET (elim_reg_set);
369
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
376
377
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
382
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
385
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
389
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
392
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
398
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
402
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
406
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
412
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
417
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
420
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
424
425 if (flags & PROP_REG_INFO)
426 {
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
429 }
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
432 {
433 free (reg_deaths);
434 reg_deaths = NULL;
435 }
436
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
440
441 if (file)
442 dump_flow_info (file);
443
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
446 }
447
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
451
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
454 {
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
457
458 if (REG_P (x) && REGNO (x) == regno)
459 {
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
463 }
464 return 0;
465 }
466
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
469
470 static void
471 verify_wide_reg (int regno, basic_block bb)
472 {
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
474
475 while (1)
476 {
477 if (INSN_P (head))
478 {
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
484 }
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
488 }
489 if (dump_file)
490 {
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
493 }
494 fatal_error ("internal consistency failure");
495 }
496
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
499
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
502 {
503 if (reload_completed)
504 {
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
508 {
509 if (dump_file)
510 {
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
517 }
518 fatal_error ("internal consistency failure");
519 }
520 }
521 else
522 {
523 int i;
524
525 /* Find the set of changed registers. */
526 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
527
528 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
529 {
530 /* No registers should die. */
531 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
532 {
533 if (dump_file)
534 {
535 fprintf (dump_file,
536 "Register %d died unexpectedly.\n", i);
537 dump_bb (bb, dump_file, 0);
538 }
539 fatal_error ("internal consistency failure");
540 }
541 /* Verify that the now-live register is wider than word_mode. */
542 verify_wide_reg (i, bb);
543 });
544 }
545 }
546
547 /* Updates life information starting with the basic blocks set in BLOCKS.
548 If BLOCKS is null, consider it to be the universal set.
549
550 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
551 we are only expecting local modifications to basic blocks. If we find
552 extra registers live at the beginning of a block, then we either killed
553 useful data, or we have a broken split that wants data not provided.
554 If we find registers removed from live_at_start, that means we have
555 a broken peephole that is killing a register it shouldn't.
556
557 ??? This is not true in one situation -- when a pre-reload splitter
558 generates subregs of a multi-word pseudo, current life analysis will
559 lose the kill. So we _can_ have a pseudo go live. How irritating.
560
561 It is also not true when a peephole decides that it doesn't need one
562 or more of the inputs.
563
564 Including PROP_REG_INFO does not properly refresh regs_ever_live
565 unless the caller resets it to zero. */
566
567 int
568 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
569 {
570 regset tmp;
571 regset_head tmp_head;
572 int i;
573 int stabilized_prop_flags = prop_flags;
574 basic_block bb;
575
576 tmp = INITIALIZE_REG_SET (tmp_head);
577 ndead = 0;
578
579 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
580 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
581
582 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
583 ? TV_LIFE_UPDATE : TV_LIFE);
584
585 /* Changes to the CFG are only allowed when
586 doing a global update for the entire CFG. */
587 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
588 || (extent != UPDATE_LIFE_LOCAL && !blocks));
589
590 /* For a global update, we go through the relaxation process again. */
591 if (extent != UPDATE_LIFE_LOCAL)
592 {
593 for ( ; ; )
594 {
595 int changed = 0;
596
597 calculate_global_regs_live (blocks, blocks,
598 prop_flags & (PROP_SCAN_DEAD_CODE
599 | PROP_SCAN_DEAD_STORES
600 | PROP_ALLOW_CFG_CHANGES));
601
602 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
603 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 break;
605
606 /* Removing dead code may allow the CFG to be simplified which
607 in turn may allow for further dead code detection / removal. */
608 FOR_EACH_BB_REVERSE (bb)
609 {
610 COPY_REG_SET (tmp, bb->global_live_at_end);
611 changed |= propagate_block (bb, tmp, NULL, NULL,
612 prop_flags & (PROP_SCAN_DEAD_CODE
613 | PROP_SCAN_DEAD_STORES
614 | PROP_KILL_DEAD_CODE));
615 }
616
617 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
618 subsequent propagate_block calls, since removing or acting as
619 removing dead code can affect global register liveness, which
620 is supposed to be finalized for this call after this loop. */
621 stabilized_prop_flags
622 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
623 | PROP_KILL_DEAD_CODE);
624
625 if (! changed)
626 break;
627
628 /* We repeat regardless of what cleanup_cfg says. If there were
629 instructions deleted above, that might have been only a
630 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
631 Further improvement may be possible. */
632 cleanup_cfg (CLEANUP_EXPENSIVE);
633
634 /* Zap the life information from the last round. If we don't
635 do this, we can wind up with registers that no longer appear
636 in the code being marked live at entry. */
637 FOR_EACH_BB (bb)
638 {
639 CLEAR_REG_SET (bb->global_live_at_start);
640 CLEAR_REG_SET (bb->global_live_at_end);
641 }
642 }
643
644 /* If asked, remove notes from the blocks we'll update. */
645 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
646 count_or_remove_death_notes (blocks, 1);
647 }
648
649 /* Clear log links in case we are asked to (re)compute them. */
650 if (prop_flags & PROP_LOG_LINKS)
651 clear_log_links (blocks);
652
653 if (blocks)
654 {
655 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
656 {
657 bb = BASIC_BLOCK (i);
658
659 COPY_REG_SET (tmp, bb->global_live_at_end);
660 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
661
662 if (extent == UPDATE_LIFE_LOCAL)
663 verify_local_live_at_start (tmp, bb);
664 });
665 }
666 else
667 {
668 FOR_EACH_BB_REVERSE (bb)
669 {
670 COPY_REG_SET (tmp, bb->global_live_at_end);
671
672 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
673
674 if (extent == UPDATE_LIFE_LOCAL)
675 verify_local_live_at_start (tmp, bb);
676 }
677 }
678
679 FREE_REG_SET (tmp);
680
681 if (prop_flags & PROP_REG_INFO)
682 {
683 /* The only pseudos that are live at the beginning of the function
684 are those that were not set anywhere in the function. local-alloc
685 doesn't know how to handle these correctly, so mark them as not
686 local to any one basic block. */
687 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
688 FIRST_PSEUDO_REGISTER, i,
689 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
690
691 /* We have a problem with any pseudoreg that lives across the setjmp.
692 ANSI says that if a user variable does not change in value between
693 the setjmp and the longjmp, then the longjmp preserves it. This
694 includes longjmp from a place where the pseudo appears dead.
695 (In principle, the value still exists if it is in scope.)
696 If the pseudo goes in a hard reg, some other value may occupy
697 that hard reg where this pseudo is dead, thus clobbering the pseudo.
698 Conclusion: such a pseudo must not go in a hard reg. */
699 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
700 FIRST_PSEUDO_REGISTER, i,
701 {
702 if (regno_reg_rtx[i] != 0)
703 {
704 REG_LIVE_LENGTH (i) = -1;
705 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
706 }
707 });
708 }
709 if (reg_deaths)
710 {
711 free (reg_deaths);
712 reg_deaths = NULL;
713 }
714 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
715 ? TV_LIFE_UPDATE : TV_LIFE);
716 if (ndead && dump_file)
717 fprintf (dump_file, "deleted %i dead insns\n", ndead);
718 return ndead;
719 }
720
721 /* Update life information in all blocks where BB_DIRTY is set. */
722
723 int
724 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
725 {
726 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
727 int n = 0;
728 basic_block bb;
729 int retval = 0;
730
731 sbitmap_zero (update_life_blocks);
732 FOR_EACH_BB (bb)
733 {
734 if (extent == UPDATE_LIFE_LOCAL)
735 {
736 if (bb->flags & BB_DIRTY)
737 {
738 SET_BIT (update_life_blocks, bb->index);
739 n++;
740 }
741 }
742 else
743 {
744 /* ??? Bootstrap with -march=pentium4 fails to terminate
745 with only a partial life update. */
746 SET_BIT (update_life_blocks, bb->index);
747 if (bb->flags & BB_DIRTY)
748 n++;
749 }
750 }
751
752 if (n)
753 retval = update_life_info (update_life_blocks, extent, prop_flags);
754
755 sbitmap_free (update_life_blocks);
756 return retval;
757 }
758
759 /* Free the variables allocated by find_basic_blocks. */
760
761 void
762 free_basic_block_vars (void)
763 {
764 if (basic_block_info)
765 {
766 clear_edges ();
767 basic_block_info = NULL;
768 }
769 n_basic_blocks = 0;
770 last_basic_block = 0;
771
772 ENTRY_BLOCK_PTR->aux = NULL;
773 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
774 EXIT_BLOCK_PTR->aux = NULL;
775 EXIT_BLOCK_PTR->global_live_at_start = NULL;
776 }
777
778 /* Delete any insns that copy a register to itself. */
779
780 int
781 delete_noop_moves (void)
782 {
783 rtx insn, next;
784 basic_block bb;
785 int nnoops = 0;
786
787 FOR_EACH_BB (bb)
788 {
789 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
790 {
791 next = NEXT_INSN (insn);
792 if (INSN_P (insn) && noop_move_p (insn))
793 {
794 rtx note;
795
796 /* If we're about to remove the first insn of a libcall
797 then move the libcall note to the next real insn and
798 update the retval note. */
799 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
800 && XEXP (note, 0) != insn)
801 {
802 rtx new_libcall_insn = next_real_insn (insn);
803 rtx retval_note = find_reg_note (XEXP (note, 0),
804 REG_RETVAL, NULL_RTX);
805 REG_NOTES (new_libcall_insn)
806 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
807 REG_NOTES (new_libcall_insn));
808 XEXP (retval_note, 0) = new_libcall_insn;
809 }
810
811 delete_insn_and_edges (insn);
812 nnoops++;
813 }
814 }
815 }
816 if (nnoops && dump_file)
817 fprintf (dump_file, "deleted %i noop moves", nnoops);
818 return nnoops;
819 }
820
821 /* Delete any jump tables never referenced. We can't delete them at the
822 time of removing tablejump insn as they are referenced by the preceding
823 insns computing the destination, so we delay deleting and garbagecollect
824 them once life information is computed. */
825 void
826 delete_dead_jumptables (void)
827 {
828 rtx insn, next;
829 for (insn = get_insns (); insn; insn = next)
830 {
831 next = NEXT_INSN (insn);
832 if (LABEL_P (insn)
833 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
834 && JUMP_P (next)
835 && (GET_CODE (PATTERN (next)) == ADDR_VEC
836 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
837 {
838 if (dump_file)
839 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
840 delete_insn (NEXT_INSN (insn));
841 delete_insn (insn);
842 next = NEXT_INSN (next);
843 }
844 }
845 }
846
847 /* Determine if the stack pointer is constant over the life of the function.
848 Only useful before prologues have been emitted. */
849
850 static void
851 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
852 void *data ATTRIBUTE_UNUSED)
853 {
854 if (x == stack_pointer_rtx
855 /* The stack pointer is only modified indirectly as the result
856 of a push until later in flow. See the comments in rtl.texi
857 regarding Embedded Side-Effects on Addresses. */
858 || (MEM_P (x)
859 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
860 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
861 current_function_sp_is_unchanging = 0;
862 }
863
864 static void
865 notice_stack_pointer_modification (void)
866 {
867 basic_block bb;
868 rtx insn;
869
870 /* Assume that the stack pointer is unchanging if alloca hasn't
871 been used. */
872 current_function_sp_is_unchanging = !current_function_calls_alloca;
873 if (! current_function_sp_is_unchanging)
874 return;
875
876 FOR_EACH_BB (bb)
877 FOR_BB_INSNS (bb, insn)
878 {
879 if (INSN_P (insn))
880 {
881 /* Check if insn modifies the stack pointer. */
882 note_stores (PATTERN (insn),
883 notice_stack_pointer_modification_1,
884 NULL);
885 if (! current_function_sp_is_unchanging)
886 return;
887 }
888 }
889 }
890
891 /* Mark a register in SET. Hard registers in large modes get all
892 of their component registers set as well. */
893
894 static void
895 mark_reg (rtx reg, void *xset)
896 {
897 regset set = (regset) xset;
898 int regno = REGNO (reg);
899
900 gcc_assert (GET_MODE (reg) != BLKmode);
901
902 SET_REGNO_REG_SET (set, regno);
903 if (regno < FIRST_PSEUDO_REGISTER)
904 {
905 int n = hard_regno_nregs[regno][GET_MODE (reg)];
906 while (--n > 0)
907 SET_REGNO_REG_SET (set, regno + n);
908 }
909 }
910
911 /* Mark those regs which are needed at the end of the function as live
912 at the end of the last basic block. */
913
914 static void
915 mark_regs_live_at_end (regset set)
916 {
917 unsigned int i;
918
919 /* If exiting needs the right stack value, consider the stack pointer
920 live at the end of the function. */
921 if ((HAVE_epilogue && epilogue_completed)
922 || ! EXIT_IGNORE_STACK
923 || (! FRAME_POINTER_REQUIRED
924 && ! current_function_calls_alloca
925 && flag_omit_frame_pointer)
926 || current_function_sp_is_unchanging)
927 {
928 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
929 }
930
931 /* Mark the frame pointer if needed at the end of the function. If
932 we end up eliminating it, it will be removed from the live list
933 of each basic block by reload. */
934
935 if (! reload_completed || frame_pointer_needed)
936 {
937 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
938 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
939 /* If they are different, also mark the hard frame pointer as live. */
940 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
941 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
942 #endif
943 }
944
945 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
946 /* Many architectures have a GP register even without flag_pic.
947 Assume the pic register is not in use, or will be handled by
948 other means, if it is not fixed. */
949 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
950 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
951 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
952 #endif
953
954 /* Mark all global registers, and all registers used by the epilogue
955 as being live at the end of the function since they may be
956 referenced by our caller. */
957 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
958 if (global_regs[i] || EPILOGUE_USES (i))
959 SET_REGNO_REG_SET (set, i);
960
961 if (HAVE_epilogue && epilogue_completed)
962 {
963 /* Mark all call-saved registers that we actually used. */
964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
965 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
966 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
967 SET_REGNO_REG_SET (set, i);
968 }
969
970 #ifdef EH_RETURN_DATA_REGNO
971 /* Mark the registers that will contain data for the handler. */
972 if (reload_completed && current_function_calls_eh_return)
973 for (i = 0; ; ++i)
974 {
975 unsigned regno = EH_RETURN_DATA_REGNO(i);
976 if (regno == INVALID_REGNUM)
977 break;
978 SET_REGNO_REG_SET (set, regno);
979 }
980 #endif
981 #ifdef EH_RETURN_STACKADJ_RTX
982 if ((! HAVE_epilogue || ! epilogue_completed)
983 && current_function_calls_eh_return)
984 {
985 rtx tmp = EH_RETURN_STACKADJ_RTX;
986 if (tmp && REG_P (tmp))
987 mark_reg (tmp, set);
988 }
989 #endif
990 #ifdef EH_RETURN_HANDLER_RTX
991 if ((! HAVE_epilogue || ! epilogue_completed)
992 && current_function_calls_eh_return)
993 {
994 rtx tmp = EH_RETURN_HANDLER_RTX;
995 if (tmp && REG_P (tmp))
996 mark_reg (tmp, set);
997 }
998 #endif
999
1000 /* Mark function return value. */
1001 diddle_return_value (mark_reg, set);
1002 }
1003
1004 /* Propagate global life info around the graph of basic blocks. Begin
1005 considering blocks with their corresponding bit set in BLOCKS_IN.
1006 If BLOCKS_IN is null, consider it the universal set.
1007
1008 BLOCKS_OUT is set for every block that was changed. */
1009
1010 static void
1011 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1012 {
1013 basic_block *queue, *qhead, *qtail, *qend, bb;
1014 regset tmp, new_live_at_end, invalidated_by_call;
1015 regset_head tmp_head, invalidated_by_call_head;
1016 regset_head new_live_at_end_head;
1017 int i;
1018
1019 /* Some passes used to forget clear aux field of basic block causing
1020 sick behavior here. */
1021 #ifdef ENABLE_CHECKING
1022 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1023 gcc_assert (!bb->aux);
1024 #endif
1025
1026 tmp = INITIALIZE_REG_SET (tmp_head);
1027 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1028 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1029
1030 /* Inconveniently, this is only readily available in hard reg set form. */
1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1032 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1033 SET_REGNO_REG_SET (invalidated_by_call, i);
1034
1035 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1036 because the `head == tail' style test for an empty queue doesn't
1037 work with a full queue. */
1038 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1039 qtail = queue;
1040 qhead = qend = queue + n_basic_blocks + 2;
1041
1042 /* Queue the blocks set in the initial mask. Do this in reverse block
1043 number order so that we are more likely for the first round to do
1044 useful work. We use AUX non-null to flag that the block is queued. */
1045 if (blocks_in)
1046 {
1047 FOR_EACH_BB (bb)
1048 if (TEST_BIT (blocks_in, bb->index))
1049 {
1050 *--qhead = bb;
1051 bb->aux = bb;
1052 }
1053 }
1054 else
1055 {
1056 FOR_EACH_BB (bb)
1057 {
1058 *--qhead = bb;
1059 bb->aux = bb;
1060 }
1061 }
1062
1063 /* We clean aux when we remove the initially-enqueued bbs, but we
1064 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1065 unconditionally. */
1066 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1067
1068 if (blocks_out)
1069 sbitmap_zero (blocks_out);
1070
1071 /* We work through the queue until there are no more blocks. What
1072 is live at the end of this block is precisely the union of what
1073 is live at the beginning of all its successors. So, we set its
1074 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1075 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1076 this block by walking through the instructions in this block in
1077 reverse order and updating as we go. If that changed
1078 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1079 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1080
1081 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1082 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1083 must either be live at the end of the block, or used within the
1084 block. In the latter case, it will certainly never disappear
1085 from GLOBAL_LIVE_AT_START. In the former case, the register
1086 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1087 for one of the successor blocks. By induction, that cannot
1088 occur. */
1089 while (qhead != qtail)
1090 {
1091 int rescan, changed;
1092 basic_block bb;
1093 edge e;
1094 edge_iterator ei;
1095
1096 bb = *qhead++;
1097 if (qhead == qend)
1098 qhead = queue;
1099 bb->aux = NULL;
1100
1101 /* Begin by propagating live_at_start from the successor blocks. */
1102 CLEAR_REG_SET (new_live_at_end);
1103
1104 if (EDGE_COUNT (bb->succs) > 0)
1105 FOR_EACH_EDGE (e, ei, bb->succs)
1106 {
1107 basic_block sb = e->dest;
1108
1109 /* Call-clobbered registers die across exception and
1110 call edges. */
1111 /* ??? Abnormal call edges ignored for the moment, as this gets
1112 confused by sibling call edges, which crashes reg-stack. */
1113 if (e->flags & EDGE_EH)
1114 {
1115 bitmap_operation (tmp, sb->global_live_at_start,
1116 invalidated_by_call, BITMAP_AND_COMPL);
1117 IOR_REG_SET (new_live_at_end, tmp);
1118 }
1119 else
1120 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1121
1122 /* If a target saves one register in another (instead of on
1123 the stack) the save register will need to be live for EH. */
1124 if (e->flags & EDGE_EH)
1125 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1126 if (EH_USES (i))
1127 SET_REGNO_REG_SET (new_live_at_end, i);
1128 }
1129 else
1130 {
1131 /* This might be a noreturn function that throws. And
1132 even if it isn't, getting the unwind info right helps
1133 debugging. */
1134 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1135 if (EH_USES (i))
1136 SET_REGNO_REG_SET (new_live_at_end, i);
1137 }
1138
1139 /* The all-important stack pointer must always be live. */
1140 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1141
1142 /* Before reload, there are a few registers that must be forced
1143 live everywhere -- which might not already be the case for
1144 blocks within infinite loops. */
1145 if (! reload_completed)
1146 {
1147 /* Any reference to any pseudo before reload is a potential
1148 reference of the frame pointer. */
1149 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1150
1151 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1152 /* Pseudos with argument area equivalences may require
1153 reloading via the argument pointer. */
1154 if (fixed_regs[ARG_POINTER_REGNUM])
1155 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1156 #endif
1157
1158 /* Any constant, or pseudo with constant equivalences, may
1159 require reloading from memory using the pic register. */
1160 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1161 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1162 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1163 }
1164
1165 if (bb == ENTRY_BLOCK_PTR)
1166 {
1167 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1168 continue;
1169 }
1170
1171 /* On our first pass through this block, we'll go ahead and continue.
1172 Recognize first pass by local_set NULL. On subsequent passes, we
1173 get to skip out early if live_at_end wouldn't have changed. */
1174
1175 if (bb->local_set == NULL)
1176 {
1177 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1178 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1179 rescan = 1;
1180 }
1181 else
1182 {
1183 /* If any bits were removed from live_at_end, we'll have to
1184 rescan the block. This wouldn't be necessary if we had
1185 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1186 local_live is really dependent on live_at_end. */
1187 CLEAR_REG_SET (tmp);
1188 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1189 new_live_at_end, BITMAP_AND_COMPL);
1190
1191 if (! rescan)
1192 {
1193 /* If any of the registers in the new live_at_end set are
1194 conditionally set in this basic block, we must rescan.
1195 This is because conditional lifetimes at the end of the
1196 block do not just take the live_at_end set into account,
1197 but also the liveness at the start of each successor
1198 block. We can miss changes in those sets if we only
1199 compare the new live_at_end against the previous one. */
1200 CLEAR_REG_SET (tmp);
1201 rescan = bitmap_operation (tmp, new_live_at_end,
1202 bb->cond_local_set, BITMAP_AND);
1203 }
1204
1205 if (! rescan)
1206 {
1207 /* Find the set of changed bits. Take this opportunity
1208 to notice that this set is empty and early out. */
1209 CLEAR_REG_SET (tmp);
1210 changed = bitmap_operation (tmp, bb->global_live_at_end,
1211 new_live_at_end, BITMAP_XOR);
1212 if (! changed)
1213 continue;
1214
1215 /* If any of the changed bits overlap with local_set,
1216 we'll have to rescan the block. Detect overlap by
1217 the AND with ~local_set turning off bits. */
1218 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1219 BITMAP_AND_COMPL);
1220 }
1221 }
1222
1223 /* Let our caller know that BB changed enough to require its
1224 death notes updated. */
1225 if (blocks_out)
1226 SET_BIT (blocks_out, bb->index);
1227
1228 if (! rescan)
1229 {
1230 /* Add to live_at_start the set of all registers in
1231 new_live_at_end that aren't in the old live_at_end. */
1232
1233 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1234 BITMAP_AND_COMPL);
1235 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1236
1237 changed = bitmap_operation (bb->global_live_at_start,
1238 bb->global_live_at_start,
1239 tmp, BITMAP_IOR);
1240 if (! changed)
1241 continue;
1242 }
1243 else
1244 {
1245 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1246
1247 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1248 into live_at_start. */
1249 propagate_block (bb, new_live_at_end, bb->local_set,
1250 bb->cond_local_set, flags);
1251
1252 /* If live_at start didn't change, no need to go farther. */
1253 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1254 continue;
1255
1256 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1257 }
1258
1259 /* Queue all predecessors of BB so that we may re-examine
1260 their live_at_end. */
1261 FOR_EACH_EDGE (e, ei, bb->preds)
1262 {
1263 basic_block pb = e->src;
1264 if (pb->aux == NULL)
1265 {
1266 *qtail++ = pb;
1267 if (qtail == qend)
1268 qtail = queue;
1269 pb->aux = pb;
1270 }
1271 }
1272 }
1273
1274 FREE_REG_SET (tmp);
1275 FREE_REG_SET (new_live_at_end);
1276 FREE_REG_SET (invalidated_by_call);
1277
1278 if (blocks_out)
1279 {
1280 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1281 {
1282 basic_block bb = BASIC_BLOCK (i);
1283 FREE_REG_SET (bb->local_set);
1284 FREE_REG_SET (bb->cond_local_set);
1285 });
1286 }
1287 else
1288 {
1289 FOR_EACH_BB (bb)
1290 {
1291 FREE_REG_SET (bb->local_set);
1292 FREE_REG_SET (bb->cond_local_set);
1293 }
1294 }
1295
1296 free (queue);
1297 }
1298
1299 \f
1300 /* This structure is used to pass parameters to and from the
1301 the function find_regno_partial(). It is used to pass in the
1302 register number we are looking, as well as to return any rtx
1303 we find. */
1304
1305 typedef struct {
1306 unsigned regno_to_find;
1307 rtx retval;
1308 } find_regno_partial_param;
1309
1310
1311 /* Find the rtx for the reg numbers specified in 'data' if it is
1312 part of an expression which only uses part of the register. Return
1313 it in the structure passed in. */
1314 static int
1315 find_regno_partial (rtx *ptr, void *data)
1316 {
1317 find_regno_partial_param *param = (find_regno_partial_param *)data;
1318 unsigned reg = param->regno_to_find;
1319 param->retval = NULL_RTX;
1320
1321 if (*ptr == NULL_RTX)
1322 return 0;
1323
1324 switch (GET_CODE (*ptr))
1325 {
1326 case ZERO_EXTRACT:
1327 case SIGN_EXTRACT:
1328 case STRICT_LOW_PART:
1329 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1330 {
1331 param->retval = XEXP (*ptr, 0);
1332 return 1;
1333 }
1334 break;
1335
1336 case SUBREG:
1337 if (REG_P (SUBREG_REG (*ptr))
1338 && REGNO (SUBREG_REG (*ptr)) == reg)
1339 {
1340 param->retval = SUBREG_REG (*ptr);
1341 return 1;
1342 }
1343 break;
1344
1345 default:
1346 break;
1347 }
1348
1349 return 0;
1350 }
1351
1352 /* Process all immediate successors of the entry block looking for pseudo
1353 registers which are live on entry. Find all of those whose first
1354 instance is a partial register reference of some kind, and initialize
1355 them to 0 after the entry block. This will prevent bit sets within
1356 registers whose value is unknown, and may contain some kind of sticky
1357 bits we don't want. */
1358
1359 int
1360 initialize_uninitialized_subregs (void)
1361 {
1362 rtx insn;
1363 edge e;
1364 int reg, did_something = 0;
1365 find_regno_partial_param param;
1366 edge_iterator ei;
1367
1368 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1369 {
1370 basic_block bb = e->dest;
1371 regset map = bb->global_live_at_start;
1372 EXECUTE_IF_SET_IN_REG_SET (map,
1373 FIRST_PSEUDO_REGISTER, reg,
1374 {
1375 int uid = REGNO_FIRST_UID (reg);
1376 rtx i;
1377
1378 /* Find an insn which mentions the register we are looking for.
1379 Its preferable to have an instance of the register's rtl since
1380 there may be various flags set which we need to duplicate.
1381 If we can't find it, its probably an automatic whose initial
1382 value doesn't matter, or hopefully something we don't care about. */
1383 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1384 ;
1385 if (i != NULL_RTX)
1386 {
1387 /* Found the insn, now get the REG rtx, if we can. */
1388 param.regno_to_find = reg;
1389 for_each_rtx (&i, find_regno_partial, &param);
1390 if (param.retval != NULL_RTX)
1391 {
1392 start_sequence ();
1393 emit_move_insn (param.retval,
1394 CONST0_RTX (GET_MODE (param.retval)));
1395 insn = get_insns ();
1396 end_sequence ();
1397 insert_insn_on_edge (insn, e);
1398 did_something = 1;
1399 }
1400 }
1401 });
1402 }
1403
1404 if (did_something)
1405 commit_edge_insertions ();
1406 return did_something;
1407 }
1408
1409 \f
1410 /* Subroutines of life analysis. */
1411
1412 /* Allocate the permanent data structures that represent the results
1413 of life analysis. Not static since used also for stupid life analysis. */
1414
1415 void
1416 allocate_bb_life_data (void)
1417 {
1418 basic_block bb;
1419
1420 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1421 {
1422 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1423 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1424 }
1425
1426 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1427 }
1428
1429 void
1430 allocate_reg_life_data (void)
1431 {
1432 int i;
1433
1434 max_regno = max_reg_num ();
1435 gcc_assert (!reg_deaths);
1436 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1437
1438 /* Recalculate the register space, in case it has grown. Old style
1439 vector oriented regsets would set regset_{size,bytes} here also. */
1440 allocate_reg_info (max_regno, FALSE, FALSE);
1441
1442 /* Reset all the data we'll collect in propagate_block and its
1443 subroutines. */
1444 for (i = 0; i < max_regno; i++)
1445 {
1446 REG_N_SETS (i) = 0;
1447 REG_N_REFS (i) = 0;
1448 REG_N_DEATHS (i) = 0;
1449 REG_N_CALLS_CROSSED (i) = 0;
1450 REG_LIVE_LENGTH (i) = 0;
1451 REG_FREQ (i) = 0;
1452 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1453 }
1454 }
1455
1456 /* Delete dead instructions for propagate_block. */
1457
1458 static void
1459 propagate_block_delete_insn (rtx insn)
1460 {
1461 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1462
1463 /* If the insn referred to a label, and that label was attached to
1464 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1465 pretty much mandatory to delete it, because the ADDR_VEC may be
1466 referencing labels that no longer exist.
1467
1468 INSN may reference a deleted label, particularly when a jump
1469 table has been optimized into a direct jump. There's no
1470 real good way to fix up the reference to the deleted label
1471 when the label is deleted, so we just allow it here. */
1472
1473 if (inote && LABEL_P (inote))
1474 {
1475 rtx label = XEXP (inote, 0);
1476 rtx next;
1477
1478 /* The label may be forced if it has been put in the constant
1479 pool. If that is the only use we must discard the table
1480 jump following it, but not the label itself. */
1481 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1482 && (next = next_nonnote_insn (label)) != NULL
1483 && JUMP_P (next)
1484 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1485 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1486 {
1487 rtx pat = PATTERN (next);
1488 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1489 int len = XVECLEN (pat, diff_vec_p);
1490 int i;
1491
1492 for (i = 0; i < len; i++)
1493 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1494
1495 delete_insn_and_edges (next);
1496 ndead++;
1497 }
1498 }
1499
1500 delete_insn_and_edges (insn);
1501 ndead++;
1502 }
1503
1504 /* Delete dead libcalls for propagate_block. Return the insn
1505 before the libcall. */
1506
1507 static rtx
1508 propagate_block_delete_libcall (rtx insn, rtx note)
1509 {
1510 rtx first = XEXP (note, 0);
1511 rtx before = PREV_INSN (first);
1512
1513 delete_insn_chain_and_edges (first, insn);
1514 ndead++;
1515 return before;
1516 }
1517
1518 /* Update the life-status of regs for one insn. Return the previous insn. */
1519
1520 rtx
1521 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1522 {
1523 rtx prev = PREV_INSN (insn);
1524 int flags = pbi->flags;
1525 int insn_is_dead = 0;
1526 int libcall_is_dead = 0;
1527 rtx note;
1528 int i;
1529
1530 if (! INSN_P (insn))
1531 return prev;
1532
1533 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1534 if (flags & PROP_SCAN_DEAD_CODE)
1535 {
1536 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1537 libcall_is_dead = (insn_is_dead && note != 0
1538 && libcall_dead_p (pbi, note, insn));
1539 }
1540
1541 /* If an instruction consists of just dead store(s) on final pass,
1542 delete it. */
1543 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1544 {
1545 /* If we're trying to delete a prologue or epilogue instruction
1546 that isn't flagged as possibly being dead, something is wrong.
1547 But if we are keeping the stack pointer depressed, we might well
1548 be deleting insns that are used to compute the amount to update
1549 it by, so they are fine. */
1550 if (reload_completed
1551 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1552 && (TYPE_RETURNS_STACK_DEPRESSED
1553 (TREE_TYPE (current_function_decl))))
1554 && (((HAVE_epilogue || HAVE_prologue)
1555 && prologue_epilogue_contains (insn))
1556 || (HAVE_sibcall_epilogue
1557 && sibcall_epilogue_contains (insn)))
1558 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1559 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1560
1561 /* Record sets. Do this even for dead instructions, since they
1562 would have killed the values if they hadn't been deleted. */
1563 mark_set_regs (pbi, PATTERN (insn), insn);
1564
1565 /* CC0 is now known to be dead. Either this insn used it,
1566 in which case it doesn't anymore, or clobbered it,
1567 so the next insn can't use it. */
1568 pbi->cc0_live = 0;
1569
1570 if (libcall_is_dead)
1571 prev = propagate_block_delete_libcall ( insn, note);
1572 else
1573 {
1574
1575 /* If INSN contains a RETVAL note and is dead, but the libcall
1576 as a whole is not dead, then we want to remove INSN, but
1577 not the whole libcall sequence.
1578
1579 However, we need to also remove the dangling REG_LIBCALL
1580 note so that we do not have mis-matched LIBCALL/RETVAL
1581 notes. In theory we could find a new location for the
1582 REG_RETVAL note, but it hardly seems worth the effort.
1583
1584 NOTE at this point will be the RETVAL note if it exists. */
1585 if (note)
1586 {
1587 rtx libcall_note;
1588
1589 libcall_note
1590 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1591 remove_note (XEXP (note, 0), libcall_note);
1592 }
1593
1594 /* Similarly if INSN contains a LIBCALL note, remove the
1595 dangling REG_RETVAL note. */
1596 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1597 if (note)
1598 {
1599 rtx retval_note;
1600
1601 retval_note
1602 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1603 remove_note (XEXP (note, 0), retval_note);
1604 }
1605
1606 /* Now delete INSN. */
1607 propagate_block_delete_insn (insn);
1608 }
1609
1610 return prev;
1611 }
1612
1613 /* See if this is an increment or decrement that can be merged into
1614 a following memory address. */
1615 #ifdef AUTO_INC_DEC
1616 {
1617 rtx x = single_set (insn);
1618
1619 /* Does this instruction increment or decrement a register? */
1620 if ((flags & PROP_AUTOINC)
1621 && x != 0
1622 && REG_P (SET_DEST (x))
1623 && (GET_CODE (SET_SRC (x)) == PLUS
1624 || GET_CODE (SET_SRC (x)) == MINUS)
1625 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1626 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1627 /* Ok, look for a following memory ref we can combine with.
1628 If one is found, change the memory ref to a PRE_INC
1629 or PRE_DEC, cancel this insn, and return 1.
1630 Return 0 if nothing has been done. */
1631 && try_pre_increment_1 (pbi, insn))
1632 return prev;
1633 }
1634 #endif /* AUTO_INC_DEC */
1635
1636 CLEAR_REG_SET (pbi->new_set);
1637
1638 /* If this is not the final pass, and this insn is copying the value of
1639 a library call and it's dead, don't scan the insns that perform the
1640 library call, so that the call's arguments are not marked live. */
1641 if (libcall_is_dead)
1642 {
1643 /* Record the death of the dest reg. */
1644 mark_set_regs (pbi, PATTERN (insn), insn);
1645
1646 insn = XEXP (note, 0);
1647 return PREV_INSN (insn);
1648 }
1649 else if (GET_CODE (PATTERN (insn)) == SET
1650 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1651 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1652 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1653 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1654 {
1655 /* We have an insn to pop a constant amount off the stack.
1656 (Such insns use PLUS regardless of the direction of the stack,
1657 and any insn to adjust the stack by a constant is always a pop
1658 or part of a push.)
1659 These insns, if not dead stores, have no effect on life, though
1660 they do have an effect on the memory stores we are tracking. */
1661 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1662 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1663 concludes that the stack pointer is not modified. */
1664 mark_set_regs (pbi, PATTERN (insn), insn);
1665 }
1666 else
1667 {
1668 rtx note;
1669 /* Any regs live at the time of a call instruction must not go
1670 in a register clobbered by calls. Find all regs now live and
1671 record this for them. */
1672
1673 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1674 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1675 { REG_N_CALLS_CROSSED (i)++; });
1676
1677 /* Record sets. Do this even for dead instructions, since they
1678 would have killed the values if they hadn't been deleted. */
1679 mark_set_regs (pbi, PATTERN (insn), insn);
1680
1681 if (CALL_P (insn))
1682 {
1683 regset live_at_end;
1684 bool sibcall_p;
1685 rtx note, cond;
1686 int i;
1687
1688 cond = NULL_RTX;
1689 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1690 cond = COND_EXEC_TEST (PATTERN (insn));
1691
1692 /* Non-constant calls clobber memory, constant calls do not
1693 clobber memory, though they may clobber outgoing arguments
1694 on the stack. */
1695 if (! CONST_OR_PURE_CALL_P (insn))
1696 {
1697 free_EXPR_LIST_list (&pbi->mem_set_list);
1698 pbi->mem_set_list_len = 0;
1699 }
1700 else
1701 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1702
1703 /* There may be extra registers to be clobbered. */
1704 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1705 note;
1706 note = XEXP (note, 1))
1707 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1708 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1709 cond, insn, pbi->flags);
1710
1711 /* Calls change all call-used and global registers; sibcalls do not
1712 clobber anything that must be preserved at end-of-function,
1713 except for return values. */
1714
1715 sibcall_p = SIBLING_CALL_P (insn);
1716 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1718 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1719 && ! (sibcall_p
1720 && REGNO_REG_SET_P (live_at_end, i)
1721 && ! refers_to_regno_p (i, i+1,
1722 current_function_return_rtx,
1723 (rtx *) 0)))
1724 {
1725 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1726 /* We do not want REG_UNUSED notes for these registers. */
1727 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1728 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1729 }
1730 }
1731
1732 /* If an insn doesn't use CC0, it becomes dead since we assume
1733 that every insn clobbers it. So show it dead here;
1734 mark_used_regs will set it live if it is referenced. */
1735 pbi->cc0_live = 0;
1736
1737 /* Record uses. */
1738 if (! insn_is_dead)
1739 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1740 if ((flags & PROP_EQUAL_NOTES)
1741 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1742 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1743 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1744
1745 /* Sometimes we may have inserted something before INSN (such as a move)
1746 when we make an auto-inc. So ensure we will scan those insns. */
1747 #ifdef AUTO_INC_DEC
1748 prev = PREV_INSN (insn);
1749 #endif
1750
1751 if (! insn_is_dead && CALL_P (insn))
1752 {
1753 int i;
1754 rtx note, cond;
1755
1756 cond = NULL_RTX;
1757 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1758 cond = COND_EXEC_TEST (PATTERN (insn));
1759
1760 /* Calls use their arguments, and may clobber memory which
1761 address involves some register. */
1762 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1763 note;
1764 note = XEXP (note, 1))
1765 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1766 of which mark_used_regs knows how to handle. */
1767 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1768
1769 /* The stack ptr is used (honorarily) by a CALL insn. */
1770 if ((flags & PROP_REG_INFO)
1771 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1772 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1773 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1774
1775 /* Calls may also reference any of the global registers,
1776 so they are made live. */
1777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1778 if (global_regs[i])
1779 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1780 }
1781 }
1782
1783 pbi->insn_num++;
1784
1785 return prev;
1786 }
1787
1788 /* Initialize a propagate_block_info struct for public consumption.
1789 Note that the structure itself is opaque to this file, but that
1790 the user can use the regsets provided here. */
1791
1792 struct propagate_block_info *
1793 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1794 regset cond_local_set, int flags)
1795 {
1796 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1797
1798 pbi->bb = bb;
1799 pbi->reg_live = live;
1800 pbi->mem_set_list = NULL_RTX;
1801 pbi->mem_set_list_len = 0;
1802 pbi->local_set = local_set;
1803 pbi->cond_local_set = cond_local_set;
1804 pbi->cc0_live = 0;
1805 pbi->flags = flags;
1806 pbi->insn_num = 0;
1807
1808 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1809 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1810 else
1811 pbi->reg_next_use = NULL;
1812
1813 pbi->new_set = BITMAP_XMALLOC ();
1814
1815 #ifdef HAVE_conditional_execution
1816 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1817 free_reg_cond_life_info);
1818 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1819
1820 /* If this block ends in a conditional branch, for each register
1821 live from one side of the branch and not the other, record the
1822 register as conditionally dead. */
1823 if (JUMP_P (BB_END (bb))
1824 && any_condjump_p (BB_END (bb)))
1825 {
1826 regset_head diff_head;
1827 regset diff = INITIALIZE_REG_SET (diff_head);
1828 basic_block bb_true, bb_false;
1829 int i;
1830
1831 /* Identify the successor blocks. */
1832 bb_true = EDGE_SUCC (bb, 0)->dest;
1833 if (EDGE_COUNT (bb->succs) > 1)
1834 {
1835 bb_false = EDGE_SUCC (bb, 1)->dest;
1836
1837 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1838 {
1839 basic_block t = bb_false;
1840 bb_false = bb_true;
1841 bb_true = t;
1842 }
1843 else
1844 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1845 }
1846 else
1847 {
1848 /* This can happen with a conditional jump to the next insn. */
1849 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1850
1851 /* Simplest way to do nothing. */
1852 bb_false = bb_true;
1853 }
1854
1855 /* Compute which register lead different lives in the successors. */
1856 if (bitmap_operation (diff, bb_true->global_live_at_start,
1857 bb_false->global_live_at_start, BITMAP_XOR))
1858 {
1859 /* Extract the condition from the branch. */
1860 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1861 rtx cond_true = XEXP (set_src, 0);
1862 rtx reg = XEXP (cond_true, 0);
1863 enum rtx_code inv_cond;
1864
1865 if (GET_CODE (reg) == SUBREG)
1866 reg = SUBREG_REG (reg);
1867
1868 /* We can only track conditional lifetimes if the condition is
1869 in the form of a reversible comparison of a register against
1870 zero. If the condition is more complex than that, then it is
1871 safe not to record any information. */
1872 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
1873 if (inv_cond != UNKNOWN
1874 && REG_P (reg)
1875 && XEXP (cond_true, 1) == const0_rtx)
1876 {
1877 rtx cond_false
1878 = gen_rtx_fmt_ee (inv_cond,
1879 GET_MODE (cond_true), XEXP (cond_true, 0),
1880 XEXP (cond_true, 1));
1881 if (GET_CODE (XEXP (set_src, 1)) == PC)
1882 {
1883 rtx t = cond_false;
1884 cond_false = cond_true;
1885 cond_true = t;
1886 }
1887
1888 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1889
1890 /* For each such register, mark it conditionally dead. */
1891 EXECUTE_IF_SET_IN_REG_SET
1892 (diff, 0, i,
1893 {
1894 struct reg_cond_life_info *rcli;
1895 rtx cond;
1896
1897 rcli = xmalloc (sizeof (*rcli));
1898
1899 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1900 cond = cond_false;
1901 else
1902 cond = cond_true;
1903 rcli->condition = cond;
1904 rcli->stores = const0_rtx;
1905 rcli->orig_condition = cond;
1906
1907 splay_tree_insert (pbi->reg_cond_dead, i,
1908 (splay_tree_value) rcli);
1909 });
1910 }
1911 }
1912
1913 FREE_REG_SET (diff);
1914 }
1915 #endif
1916
1917 /* If this block has no successors, any stores to the frame that aren't
1918 used later in the block are dead. So make a pass over the block
1919 recording any such that are made and show them dead at the end. We do
1920 a very conservative and simple job here. */
1921 if (optimize
1922 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1923 && (TYPE_RETURNS_STACK_DEPRESSED
1924 (TREE_TYPE (current_function_decl))))
1925 && (flags & PROP_SCAN_DEAD_STORES)
1926 && (EDGE_COUNT (bb->succs) == 0
1927 || (EDGE_COUNT (bb->succs) == 1
1928 && EDGE_SUCC (bb, 0)->dest == EXIT_BLOCK_PTR
1929 && ! current_function_calls_eh_return)))
1930 {
1931 rtx insn, set;
1932 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1933 if (NONJUMP_INSN_P (insn)
1934 && (set = single_set (insn))
1935 && MEM_P (SET_DEST (set)))
1936 {
1937 rtx mem = SET_DEST (set);
1938 rtx canon_mem = canon_rtx (mem);
1939
1940 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1941 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1942 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1943 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1944 add_to_mem_set_list (pbi, canon_mem);
1945 }
1946 }
1947
1948 return pbi;
1949 }
1950
1951 /* Release a propagate_block_info struct. */
1952
1953 void
1954 free_propagate_block_info (struct propagate_block_info *pbi)
1955 {
1956 free_EXPR_LIST_list (&pbi->mem_set_list);
1957
1958 BITMAP_XFREE (pbi->new_set);
1959
1960 #ifdef HAVE_conditional_execution
1961 splay_tree_delete (pbi->reg_cond_dead);
1962 BITMAP_XFREE (pbi->reg_cond_reg);
1963 #endif
1964
1965 if (pbi->flags & PROP_REG_INFO)
1966 {
1967 int num = pbi->insn_num;
1968 int i;
1969
1970 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1971 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
1972 reg_deaths[i] = 0;
1973 });
1974 }
1975 if (pbi->reg_next_use)
1976 free (pbi->reg_next_use);
1977
1978 free (pbi);
1979 }
1980
1981 /* Compute the registers live at the beginning of a basic block BB from
1982 those live at the end.
1983
1984 When called, REG_LIVE contains those live at the end. On return, it
1985 contains those live at the beginning.
1986
1987 LOCAL_SET, if non-null, will be set with all registers killed
1988 unconditionally by this basic block.
1989 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1990 killed conditionally by this basic block. If there is any unconditional
1991 set of a register, then the corresponding bit will be set in LOCAL_SET
1992 and cleared in COND_LOCAL_SET.
1993 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1994 case, the resulting set will be equal to the union of the two sets that
1995 would otherwise be computed.
1996
1997 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
1998
1999 int
2000 propagate_block (basic_block bb, regset live, regset local_set,
2001 regset cond_local_set, int flags)
2002 {
2003 struct propagate_block_info *pbi;
2004 rtx insn, prev;
2005 int changed;
2006
2007 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2008
2009 if (flags & PROP_REG_INFO)
2010 {
2011 int i;
2012
2013 /* Process the regs live at the end of the block.
2014 Mark them as not local to any one basic block. */
2015 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2016 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2017 }
2018
2019 /* Scan the block an insn at a time from end to beginning. */
2020
2021 changed = 0;
2022 for (insn = BB_END (bb); ; insn = prev)
2023 {
2024 /* If this is a call to `setjmp' et al, warn if any
2025 non-volatile datum is live. */
2026 if ((flags & PROP_REG_INFO)
2027 && CALL_P (insn)
2028 && find_reg_note (insn, REG_SETJMP, NULL))
2029 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2030
2031 prev = propagate_one_insn (pbi, insn);
2032 if (!prev)
2033 changed |= insn != get_insns ();
2034 else
2035 changed |= NEXT_INSN (prev) != insn;
2036
2037 if (insn == BB_HEAD (bb))
2038 break;
2039 }
2040
2041 free_propagate_block_info (pbi);
2042
2043 return changed;
2044 }
2045 \f
2046 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2047 (SET expressions whose destinations are registers dead after the insn).
2048 NEEDED is the regset that says which regs are alive after the insn.
2049
2050 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2051
2052 If X is the entire body of an insn, NOTES contains the reg notes
2053 pertaining to the insn. */
2054
2055 static int
2056 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2057 rtx notes ATTRIBUTE_UNUSED)
2058 {
2059 enum rtx_code code = GET_CODE (x);
2060
2061 /* Don't eliminate insns that may trap. */
2062 if (flag_non_call_exceptions && may_trap_p (x))
2063 return 0;
2064
2065 #ifdef AUTO_INC_DEC
2066 /* As flow is invoked after combine, we must take existing AUTO_INC
2067 expressions into account. */
2068 for (; notes; notes = XEXP (notes, 1))
2069 {
2070 if (REG_NOTE_KIND (notes) == REG_INC)
2071 {
2072 int regno = REGNO (XEXP (notes, 0));
2073
2074 /* Don't delete insns to set global regs. */
2075 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2076 || REGNO_REG_SET_P (pbi->reg_live, regno))
2077 return 0;
2078 }
2079 }
2080 #endif
2081
2082 /* If setting something that's a reg or part of one,
2083 see if that register's altered value will be live. */
2084
2085 if (code == SET)
2086 {
2087 rtx r = SET_DEST (x);
2088
2089 #ifdef HAVE_cc0
2090 if (GET_CODE (r) == CC0)
2091 return ! pbi->cc0_live;
2092 #endif
2093
2094 /* A SET that is a subroutine call cannot be dead. */
2095 if (GET_CODE (SET_SRC (x)) == CALL)
2096 {
2097 if (! call_ok)
2098 return 0;
2099 }
2100
2101 /* Don't eliminate loads from volatile memory or volatile asms. */
2102 else if (volatile_refs_p (SET_SRC (x)))
2103 return 0;
2104
2105 if (MEM_P (r))
2106 {
2107 rtx temp, canon_r;
2108
2109 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2110 return 0;
2111
2112 canon_r = canon_rtx (r);
2113
2114 /* Walk the set of memory locations we are currently tracking
2115 and see if one is an identical match to this memory location.
2116 If so, this memory write is dead (remember, we're walking
2117 backwards from the end of the block to the start). Since
2118 rtx_equal_p does not check the alias set or flags, we also
2119 must have the potential for them to conflict (anti_dependence). */
2120 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2121 if (anti_dependence (r, XEXP (temp, 0)))
2122 {
2123 rtx mem = XEXP (temp, 0);
2124
2125 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2126 && (GET_MODE_SIZE (GET_MODE (canon_r))
2127 <= GET_MODE_SIZE (GET_MODE (mem))))
2128 return 1;
2129
2130 #ifdef AUTO_INC_DEC
2131 /* Check if memory reference matches an auto increment. Only
2132 post increment/decrement or modify are valid. */
2133 if (GET_MODE (mem) == GET_MODE (r)
2134 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2135 || GET_CODE (XEXP (mem, 0)) == POST_INC
2136 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2137 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2138 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2139 return 1;
2140 #endif
2141 }
2142 }
2143 else
2144 {
2145 while (GET_CODE (r) == SUBREG
2146 || GET_CODE (r) == STRICT_LOW_PART
2147 || GET_CODE (r) == ZERO_EXTRACT)
2148 r = XEXP (r, 0);
2149
2150 if (REG_P (r))
2151 {
2152 int regno = REGNO (r);
2153
2154 /* Obvious. */
2155 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2156 return 0;
2157
2158 /* If this is a hard register, verify that subsequent
2159 words are not needed. */
2160 if (regno < FIRST_PSEUDO_REGISTER)
2161 {
2162 int n = hard_regno_nregs[regno][GET_MODE (r)];
2163
2164 while (--n > 0)
2165 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2166 return 0;
2167 }
2168
2169 /* Don't delete insns to set global regs. */
2170 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2171 return 0;
2172
2173 /* Make sure insns to set the stack pointer aren't deleted. */
2174 if (regno == STACK_POINTER_REGNUM)
2175 return 0;
2176
2177 /* ??? These bits might be redundant with the force live bits
2178 in calculate_global_regs_live. We would delete from
2179 sequential sets; whether this actually affects real code
2180 for anything but the stack pointer I don't know. */
2181 /* Make sure insns to set the frame pointer aren't deleted. */
2182 if (regno == FRAME_POINTER_REGNUM
2183 && (! reload_completed || frame_pointer_needed))
2184 return 0;
2185 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2186 if (regno == HARD_FRAME_POINTER_REGNUM
2187 && (! reload_completed || frame_pointer_needed))
2188 return 0;
2189 #endif
2190
2191 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2192 /* Make sure insns to set arg pointer are never deleted
2193 (if the arg pointer isn't fixed, there will be a USE
2194 for it, so we can treat it normally). */
2195 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2196 return 0;
2197 #endif
2198
2199 /* Otherwise, the set is dead. */
2200 return 1;
2201 }
2202 }
2203 }
2204
2205 /* If performing several activities, insn is dead if each activity
2206 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2207 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2208 worth keeping. */
2209 else if (code == PARALLEL)
2210 {
2211 int i = XVECLEN (x, 0);
2212
2213 for (i--; i >= 0; i--)
2214 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2215 && GET_CODE (XVECEXP (x, 0, i)) != USE
2216 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2217 return 0;
2218
2219 return 1;
2220 }
2221
2222 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2223 is not necessarily true for hard registers until after reload. */
2224 else if (code == CLOBBER)
2225 {
2226 if (REG_P (XEXP (x, 0))
2227 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2228 || reload_completed)
2229 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2230 return 1;
2231 }
2232
2233 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2234 Instances where it is still used are either (1) temporary and the USE
2235 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2236 or (3) hiding bugs elsewhere that are not properly representing data
2237 flow. */
2238
2239 return 0;
2240 }
2241
2242 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2243 return 1 if the entire library call is dead.
2244 This is true if INSN copies a register (hard or pseudo)
2245 and if the hard return reg of the call insn is dead.
2246 (The caller should have tested the destination of the SET inside
2247 INSN already for death.)
2248
2249 If this insn doesn't just copy a register, then we don't
2250 have an ordinary libcall. In that case, cse could not have
2251 managed to substitute the source for the dest later on,
2252 so we can assume the libcall is dead.
2253
2254 PBI is the block info giving pseudoregs live before this insn.
2255 NOTE is the REG_RETVAL note of the insn. */
2256
2257 static int
2258 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2259 {
2260 rtx x = single_set (insn);
2261
2262 if (x)
2263 {
2264 rtx r = SET_SRC (x);
2265
2266 if (REG_P (r))
2267 {
2268 rtx call = XEXP (note, 0);
2269 rtx call_pat;
2270 int i;
2271
2272 /* Find the call insn. */
2273 while (call != insn && !CALL_P (call))
2274 call = NEXT_INSN (call);
2275
2276 /* If there is none, do nothing special,
2277 since ordinary death handling can understand these insns. */
2278 if (call == insn)
2279 return 0;
2280
2281 /* See if the hard reg holding the value is dead.
2282 If this is a PARALLEL, find the call within it. */
2283 call_pat = PATTERN (call);
2284 if (GET_CODE (call_pat) == PARALLEL)
2285 {
2286 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2287 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2288 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2289 break;
2290
2291 /* This may be a library call that is returning a value
2292 via invisible pointer. Do nothing special, since
2293 ordinary death handling can understand these insns. */
2294 if (i < 0)
2295 return 0;
2296
2297 call_pat = XVECEXP (call_pat, 0, i);
2298 }
2299
2300 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2301 }
2302 }
2303 return 1;
2304 }
2305
2306 /* 1 if register REGNO was alive at a place where `setjmp' was called
2307 and was set more than once or is an argument.
2308 Such regs may be clobbered by `longjmp'. */
2309
2310 int
2311 regno_clobbered_at_setjmp (int regno)
2312 {
2313 if (n_basic_blocks == 0)
2314 return 0;
2315
2316 return ((REG_N_SETS (regno) > 1
2317 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2318 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2319 }
2320 \f
2321 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2322 maximal list size; look for overlaps in mode and select the largest. */
2323 static void
2324 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2325 {
2326 rtx i;
2327
2328 /* We don't know how large a BLKmode store is, so we must not
2329 take them into consideration. */
2330 if (GET_MODE (mem) == BLKmode)
2331 return;
2332
2333 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2334 {
2335 rtx e = XEXP (i, 0);
2336 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2337 {
2338 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2339 {
2340 #ifdef AUTO_INC_DEC
2341 /* If we must store a copy of the mem, we can just modify
2342 the mode of the stored copy. */
2343 if (pbi->flags & PROP_AUTOINC)
2344 PUT_MODE (e, GET_MODE (mem));
2345 else
2346 #endif
2347 XEXP (i, 0) = mem;
2348 }
2349 return;
2350 }
2351 }
2352
2353 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2354 {
2355 #ifdef AUTO_INC_DEC
2356 /* Store a copy of mem, otherwise the address may be
2357 scrogged by find_auto_inc. */
2358 if (pbi->flags & PROP_AUTOINC)
2359 mem = shallow_copy_rtx (mem);
2360 #endif
2361 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2362 pbi->mem_set_list_len++;
2363 }
2364 }
2365
2366 /* INSN references memory, possibly using autoincrement addressing modes.
2367 Find any entries on the mem_set_list that need to be invalidated due
2368 to an address change. */
2369
2370 static int
2371 invalidate_mems_from_autoinc (rtx *px, void *data)
2372 {
2373 rtx x = *px;
2374 struct propagate_block_info *pbi = data;
2375
2376 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2377 {
2378 invalidate_mems_from_set (pbi, XEXP (x, 0));
2379 return -1;
2380 }
2381
2382 return 0;
2383 }
2384
2385 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2386
2387 static void
2388 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2389 {
2390 rtx temp = pbi->mem_set_list;
2391 rtx prev = NULL_RTX;
2392 rtx next;
2393
2394 while (temp)
2395 {
2396 next = XEXP (temp, 1);
2397 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2398 {
2399 /* Splice this entry out of the list. */
2400 if (prev)
2401 XEXP (prev, 1) = next;
2402 else
2403 pbi->mem_set_list = next;
2404 free_EXPR_LIST_node (temp);
2405 pbi->mem_set_list_len--;
2406 }
2407 else
2408 prev = temp;
2409 temp = next;
2410 }
2411 }
2412
2413 /* Process the registers that are set within X. Their bits are set to
2414 1 in the regset DEAD, because they are dead prior to this insn.
2415
2416 If INSN is nonzero, it is the insn being processed.
2417
2418 FLAGS is the set of operations to perform. */
2419
2420 static void
2421 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2422 {
2423 rtx cond = NULL_RTX;
2424 rtx link;
2425 enum rtx_code code;
2426 int flags = pbi->flags;
2427
2428 if (insn)
2429 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2430 {
2431 if (REG_NOTE_KIND (link) == REG_INC)
2432 mark_set_1 (pbi, SET, XEXP (link, 0),
2433 (GET_CODE (x) == COND_EXEC
2434 ? COND_EXEC_TEST (x) : NULL_RTX),
2435 insn, flags);
2436 }
2437 retry:
2438 switch (code = GET_CODE (x))
2439 {
2440 case SET:
2441 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2442 flags |= PROP_ASM_SCAN;
2443 /* Fall through */
2444 case CLOBBER:
2445 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2446 return;
2447
2448 case COND_EXEC:
2449 cond = COND_EXEC_TEST (x);
2450 x = COND_EXEC_CODE (x);
2451 goto retry;
2452
2453 case PARALLEL:
2454 {
2455 int i;
2456
2457 /* We must scan forwards. If we have an asm, we need to set
2458 the PROP_ASM_SCAN flag before scanning the clobbers. */
2459 for (i = 0; i < XVECLEN (x, 0); i++)
2460 {
2461 rtx sub = XVECEXP (x, 0, i);
2462 switch (code = GET_CODE (sub))
2463 {
2464 case COND_EXEC:
2465 gcc_assert (!cond);
2466
2467 cond = COND_EXEC_TEST (sub);
2468 sub = COND_EXEC_CODE (sub);
2469 if (GET_CODE (sub) == SET)
2470 goto mark_set;
2471 if (GET_CODE (sub) == CLOBBER)
2472 goto mark_clob;
2473 break;
2474
2475 case SET:
2476 mark_set:
2477 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2478 flags |= PROP_ASM_SCAN;
2479 /* Fall through */
2480 case CLOBBER:
2481 mark_clob:
2482 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2483 break;
2484
2485 case ASM_OPERANDS:
2486 flags |= PROP_ASM_SCAN;
2487 break;
2488
2489 default:
2490 break;
2491 }
2492 }
2493 break;
2494 }
2495
2496 default:
2497 break;
2498 }
2499 }
2500
2501 /* Process a single set, which appears in INSN. REG (which may not
2502 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2503 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2504 If the set is conditional (because it appear in a COND_EXEC), COND
2505 will be the condition. */
2506
2507 static void
2508 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2509 {
2510 int regno_first = -1, regno_last = -1;
2511 unsigned long not_dead = 0;
2512 int i;
2513
2514 /* Modifying just one hardware register of a multi-reg value or just a
2515 byte field of a register does not mean the value from before this insn
2516 is now dead. Of course, if it was dead after it's unused now. */
2517
2518 switch (GET_CODE (reg))
2519 {
2520 case PARALLEL:
2521 /* Some targets place small structures in registers for return values of
2522 functions. We have to detect this case specially here to get correct
2523 flow information. */
2524 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2525 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2526 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2527 flags);
2528 return;
2529
2530 case ZERO_EXTRACT:
2531 case SIGN_EXTRACT:
2532 case STRICT_LOW_PART:
2533 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2534 do
2535 reg = XEXP (reg, 0);
2536 while (GET_CODE (reg) == SUBREG
2537 || GET_CODE (reg) == ZERO_EXTRACT
2538 || GET_CODE (reg) == SIGN_EXTRACT
2539 || GET_CODE (reg) == STRICT_LOW_PART);
2540 if (MEM_P (reg))
2541 break;
2542 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2543 /* Fall through. */
2544
2545 case REG:
2546 regno_last = regno_first = REGNO (reg);
2547 if (regno_first < FIRST_PSEUDO_REGISTER)
2548 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2549 break;
2550
2551 case SUBREG:
2552 if (REG_P (SUBREG_REG (reg)))
2553 {
2554 enum machine_mode outer_mode = GET_MODE (reg);
2555 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2556
2557 /* Identify the range of registers affected. This is moderately
2558 tricky for hard registers. See alter_subreg. */
2559
2560 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2561 if (regno_first < FIRST_PSEUDO_REGISTER)
2562 {
2563 regno_first += subreg_regno_offset (regno_first, inner_mode,
2564 SUBREG_BYTE (reg),
2565 outer_mode);
2566 regno_last = (regno_first
2567 + hard_regno_nregs[regno_first][outer_mode] - 1);
2568
2569 /* Since we've just adjusted the register number ranges, make
2570 sure REG matches. Otherwise some_was_live will be clear
2571 when it shouldn't have been, and we'll create incorrect
2572 REG_UNUSED notes. */
2573 reg = gen_rtx_REG (outer_mode, regno_first);
2574 }
2575 else
2576 {
2577 /* If the number of words in the subreg is less than the number
2578 of words in the full register, we have a well-defined partial
2579 set. Otherwise the high bits are undefined.
2580
2581 This is only really applicable to pseudos, since we just took
2582 care of multi-word hard registers. */
2583 if (((GET_MODE_SIZE (outer_mode)
2584 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2585 < ((GET_MODE_SIZE (inner_mode)
2586 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2587 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2588 regno_first);
2589
2590 reg = SUBREG_REG (reg);
2591 }
2592 }
2593 else
2594 reg = SUBREG_REG (reg);
2595 break;
2596
2597 default:
2598 break;
2599 }
2600
2601 /* If this set is a MEM, then it kills any aliased writes.
2602 If this set is a REG, then it kills any MEMs which use the reg. */
2603 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2604 {
2605 if (REG_P (reg))
2606 invalidate_mems_from_set (pbi, reg);
2607
2608 /* If the memory reference had embedded side effects (autoincrement
2609 address modes. Then we may need to kill some entries on the
2610 memory set list. */
2611 if (insn && MEM_P (reg))
2612 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2613
2614 if (MEM_P (reg) && ! side_effects_p (reg)
2615 /* ??? With more effort we could track conditional memory life. */
2616 && ! cond)
2617 add_to_mem_set_list (pbi, canon_rtx (reg));
2618 }
2619
2620 if (REG_P (reg)
2621 && ! (regno_first == FRAME_POINTER_REGNUM
2622 && (! reload_completed || frame_pointer_needed))
2623 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2624 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2625 && (! reload_completed || frame_pointer_needed))
2626 #endif
2627 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2628 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2629 #endif
2630 )
2631 {
2632 int some_was_live = 0, some_was_dead = 0;
2633
2634 for (i = regno_first; i <= regno_last; ++i)
2635 {
2636 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2637 if (pbi->local_set)
2638 {
2639 /* Order of the set operation matters here since both
2640 sets may be the same. */
2641 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2642 if (cond != NULL_RTX
2643 && ! REGNO_REG_SET_P (pbi->local_set, i))
2644 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2645 else
2646 SET_REGNO_REG_SET (pbi->local_set, i);
2647 }
2648 if (code != CLOBBER)
2649 SET_REGNO_REG_SET (pbi->new_set, i);
2650
2651 some_was_live |= needed_regno;
2652 some_was_dead |= ! needed_regno;
2653 }
2654
2655 #ifdef HAVE_conditional_execution
2656 /* Consider conditional death in deciding that the register needs
2657 a death note. */
2658 if (some_was_live && ! not_dead
2659 /* The stack pointer is never dead. Well, not strictly true,
2660 but it's very difficult to tell from here. Hopefully
2661 combine_stack_adjustments will fix up the most egregious
2662 errors. */
2663 && regno_first != STACK_POINTER_REGNUM)
2664 {
2665 for (i = regno_first; i <= regno_last; ++i)
2666 if (! mark_regno_cond_dead (pbi, i, cond))
2667 not_dead |= ((unsigned long) 1) << (i - regno_first);
2668 }
2669 #endif
2670
2671 /* Additional data to record if this is the final pass. */
2672 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2673 | PROP_DEATH_NOTES | PROP_AUTOINC))
2674 {
2675 rtx y;
2676 int blocknum = pbi->bb->index;
2677
2678 y = NULL_RTX;
2679 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2680 {
2681 y = pbi->reg_next_use[regno_first];
2682
2683 /* The next use is no longer next, since a store intervenes. */
2684 for (i = regno_first; i <= regno_last; ++i)
2685 pbi->reg_next_use[i] = 0;
2686 }
2687
2688 if (flags & PROP_REG_INFO)
2689 {
2690 for (i = regno_first; i <= regno_last; ++i)
2691 {
2692 /* Count (weighted) references, stores, etc. This counts a
2693 register twice if it is modified, but that is correct. */
2694 REG_N_SETS (i) += 1;
2695 REG_N_REFS (i) += 1;
2696 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2697
2698 /* The insns where a reg is live are normally counted
2699 elsewhere, but we want the count to include the insn
2700 where the reg is set, and the normal counting mechanism
2701 would not count it. */
2702 REG_LIVE_LENGTH (i) += 1;
2703 }
2704
2705 /* If this is a hard reg, record this function uses the reg. */
2706 if (regno_first < FIRST_PSEUDO_REGISTER)
2707 {
2708 for (i = regno_first; i <= regno_last; i++)
2709 regs_ever_live[i] = 1;
2710 if (flags & PROP_ASM_SCAN)
2711 for (i = regno_first; i <= regno_last; i++)
2712 regs_asm_clobbered[i] = 1;
2713 }
2714 else
2715 {
2716 /* Keep track of which basic blocks each reg appears in. */
2717 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2718 REG_BASIC_BLOCK (regno_first) = blocknum;
2719 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2720 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2721 }
2722 }
2723
2724 if (! some_was_dead)
2725 {
2726 if (flags & PROP_LOG_LINKS)
2727 {
2728 /* Make a logical link from the next following insn
2729 that uses this register, back to this insn.
2730 The following insns have already been processed.
2731
2732 We don't build a LOG_LINK for hard registers containing
2733 in ASM_OPERANDs. If these registers get replaced,
2734 we might wind up changing the semantics of the insn,
2735 even if reload can make what appear to be valid
2736 assignments later.
2737
2738 We don't build a LOG_LINK for global registers to
2739 or from a function call. We don't want to let
2740 combine think that it knows what is going on with
2741 global registers. */
2742 if (y && (BLOCK_NUM (y) == blocknum)
2743 && (regno_first >= FIRST_PSEUDO_REGISTER
2744 || (asm_noperands (PATTERN (y)) < 0
2745 && ! ((CALL_P (insn)
2746 || CALL_P (y))
2747 && global_regs[regno_first]))))
2748 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2749 }
2750 }
2751 else if (not_dead)
2752 ;
2753 else if (! some_was_live)
2754 {
2755 if (flags & PROP_REG_INFO)
2756 REG_N_DEATHS (regno_first) += 1;
2757
2758 if (flags & PROP_DEATH_NOTES)
2759 {
2760 /* Note that dead stores have already been deleted
2761 when possible. If we get here, we have found a
2762 dead store that cannot be eliminated (because the
2763 same insn does something useful). Indicate this
2764 by marking the reg being set as dying here. */
2765 REG_NOTES (insn)
2766 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2767 }
2768 }
2769 else
2770 {
2771 if (flags & PROP_DEATH_NOTES)
2772 {
2773 /* This is a case where we have a multi-word hard register
2774 and some, but not all, of the words of the register are
2775 needed in subsequent insns. Write REG_UNUSED notes
2776 for those parts that were not needed. This case should
2777 be rare. */
2778
2779 for (i = regno_first; i <= regno_last; ++i)
2780 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2781 REG_NOTES (insn)
2782 = alloc_EXPR_LIST (REG_UNUSED,
2783 regno_reg_rtx[i],
2784 REG_NOTES (insn));
2785 }
2786 }
2787 }
2788
2789 /* Mark the register as being dead. */
2790 if (some_was_live
2791 /* The stack pointer is never dead. Well, not strictly true,
2792 but it's very difficult to tell from here. Hopefully
2793 combine_stack_adjustments will fix up the most egregious
2794 errors. */
2795 && regno_first != STACK_POINTER_REGNUM)
2796 {
2797 for (i = regno_first; i <= regno_last; ++i)
2798 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2799 {
2800 if ((pbi->flags & PROP_REG_INFO)
2801 && REGNO_REG_SET_P (pbi->reg_live, i))
2802 {
2803 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2804 reg_deaths[i] = 0;
2805 }
2806 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2807 }
2808 }
2809 }
2810 else if (REG_P (reg))
2811 {
2812 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2813 pbi->reg_next_use[regno_first] = 0;
2814
2815 if ((flags & PROP_REG_INFO) != 0
2816 && (flags & PROP_ASM_SCAN) != 0
2817 && regno_first < FIRST_PSEUDO_REGISTER)
2818 {
2819 for (i = regno_first; i <= regno_last; i++)
2820 regs_asm_clobbered[i] = 1;
2821 }
2822 }
2823
2824 /* If this is the last pass and this is a SCRATCH, show it will be dying
2825 here and count it. */
2826 else if (GET_CODE (reg) == SCRATCH)
2827 {
2828 if (flags & PROP_DEATH_NOTES)
2829 REG_NOTES (insn)
2830 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2831 }
2832 }
2833 \f
2834 #ifdef HAVE_conditional_execution
2835 /* Mark REGNO conditionally dead.
2836 Return true if the register is now unconditionally dead. */
2837
2838 static int
2839 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2840 {
2841 /* If this is a store to a predicate register, the value of the
2842 predicate is changing, we don't know that the predicate as seen
2843 before is the same as that seen after. Flush all dependent
2844 conditions from reg_cond_dead. This will make all such
2845 conditionally live registers unconditionally live. */
2846 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2847 flush_reg_cond_reg (pbi, regno);
2848
2849 /* If this is an unconditional store, remove any conditional
2850 life that may have existed. */
2851 if (cond == NULL_RTX)
2852 splay_tree_remove (pbi->reg_cond_dead, regno);
2853 else
2854 {
2855 splay_tree_node node;
2856 struct reg_cond_life_info *rcli;
2857 rtx ncond;
2858
2859 /* Otherwise this is a conditional set. Record that fact.
2860 It may have been conditionally used, or there may be a
2861 subsequent set with a complimentary condition. */
2862
2863 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2864 if (node == NULL)
2865 {
2866 /* The register was unconditionally live previously.
2867 Record the current condition as the condition under
2868 which it is dead. */
2869 rcli = xmalloc (sizeof (*rcli));
2870 rcli->condition = cond;
2871 rcli->stores = cond;
2872 rcli->orig_condition = const0_rtx;
2873 splay_tree_insert (pbi->reg_cond_dead, regno,
2874 (splay_tree_value) rcli);
2875
2876 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2877
2878 /* Not unconditionally dead. */
2879 return 0;
2880 }
2881 else
2882 {
2883 /* The register was conditionally live previously.
2884 Add the new condition to the old. */
2885 rcli = (struct reg_cond_life_info *) node->value;
2886 ncond = rcli->condition;
2887 ncond = ior_reg_cond (ncond, cond, 1);
2888 if (rcli->stores == const0_rtx)
2889 rcli->stores = cond;
2890 else if (rcli->stores != const1_rtx)
2891 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2892
2893 /* If the register is now unconditionally dead, remove the entry
2894 in the splay_tree. A register is unconditionally dead if the
2895 dead condition ncond is true. A register is also unconditionally
2896 dead if the sum of all conditional stores is an unconditional
2897 store (stores is true), and the dead condition is identically the
2898 same as the original dead condition initialized at the end of
2899 the block. This is a pointer compare, not an rtx_equal_p
2900 compare. */
2901 if (ncond == const1_rtx
2902 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2903 splay_tree_remove (pbi->reg_cond_dead, regno);
2904 else
2905 {
2906 rcli->condition = ncond;
2907
2908 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2909
2910 /* Not unconditionally dead. */
2911 return 0;
2912 }
2913 }
2914 }
2915
2916 return 1;
2917 }
2918
2919 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2920
2921 static void
2922 free_reg_cond_life_info (splay_tree_value value)
2923 {
2924 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2925 free (rcli);
2926 }
2927
2928 /* Helper function for flush_reg_cond_reg. */
2929
2930 static int
2931 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2932 {
2933 struct reg_cond_life_info *rcli;
2934 int *xdata = (int *) data;
2935 unsigned int regno = xdata[0];
2936
2937 /* Don't need to search if last flushed value was farther on in
2938 the in-order traversal. */
2939 if (xdata[1] >= (int) node->key)
2940 return 0;
2941
2942 /* Splice out portions of the expression that refer to regno. */
2943 rcli = (struct reg_cond_life_info *) node->value;
2944 rcli->condition = elim_reg_cond (rcli->condition, regno);
2945 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2946 rcli->stores = elim_reg_cond (rcli->stores, regno);
2947
2948 /* If the entire condition is now false, signal the node to be removed. */
2949 if (rcli->condition == const0_rtx)
2950 {
2951 xdata[1] = node->key;
2952 return -1;
2953 }
2954 else
2955 gcc_assert (rcli->condition != const1_rtx);
2956
2957 return 0;
2958 }
2959
2960 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2961
2962 static void
2963 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2964 {
2965 int pair[2];
2966
2967 pair[0] = regno;
2968 pair[1] = -1;
2969 while (splay_tree_foreach (pbi->reg_cond_dead,
2970 flush_reg_cond_reg_1, pair) == -1)
2971 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2972
2973 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2974 }
2975
2976 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2977 For ior/and, the ADD flag determines whether we want to add the new
2978 condition X to the old one unconditionally. If it is zero, we will
2979 only return a new expression if X allows us to simplify part of
2980 OLD, otherwise we return NULL to the caller.
2981 If ADD is nonzero, we will return a new condition in all cases. The
2982 toplevel caller of one of these functions should always pass 1 for
2983 ADD. */
2984
2985 static rtx
2986 ior_reg_cond (rtx old, rtx x, int add)
2987 {
2988 rtx op0, op1;
2989
2990 if (COMPARISON_P (old))
2991 {
2992 if (COMPARISON_P (x)
2993 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
2994 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2995 return const1_rtx;
2996 if (GET_CODE (x) == GET_CODE (old)
2997 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2998 return old;
2999 if (! add)
3000 return NULL;
3001 return gen_rtx_IOR (0, old, x);
3002 }
3003
3004 switch (GET_CODE (old))
3005 {
3006 case IOR:
3007 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3008 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3009 if (op0 != NULL || op1 != NULL)
3010 {
3011 if (op0 == const0_rtx)
3012 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3013 if (op1 == const0_rtx)
3014 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3015 if (op0 == const1_rtx || op1 == const1_rtx)
3016 return const1_rtx;
3017 if (op0 == NULL)
3018 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3019 else if (rtx_equal_p (x, op0))
3020 /* (x | A) | x ~ (x | A). */
3021 return old;
3022 if (op1 == NULL)
3023 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3024 else if (rtx_equal_p (x, op1))
3025 /* (A | x) | x ~ (A | x). */
3026 return old;
3027 return gen_rtx_IOR (0, op0, op1);
3028 }
3029 if (! add)
3030 return NULL;
3031 return gen_rtx_IOR (0, old, x);
3032
3033 case AND:
3034 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3035 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3036 if (op0 != NULL || op1 != NULL)
3037 {
3038 if (op0 == const1_rtx)
3039 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3040 if (op1 == const1_rtx)
3041 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3042 if (op0 == const0_rtx || op1 == const0_rtx)
3043 return const0_rtx;
3044 if (op0 == NULL)
3045 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3046 else if (rtx_equal_p (x, op0))
3047 /* (x & A) | x ~ x. */
3048 return op0;
3049 if (op1 == NULL)
3050 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3051 else if (rtx_equal_p (x, op1))
3052 /* (A & x) | x ~ x. */
3053 return op1;
3054 return gen_rtx_AND (0, op0, op1);
3055 }
3056 if (! add)
3057 return NULL;
3058 return gen_rtx_IOR (0, old, x);
3059
3060 case NOT:
3061 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3062 if (op0 != NULL)
3063 return not_reg_cond (op0);
3064 if (! add)
3065 return NULL;
3066 return gen_rtx_IOR (0, old, x);
3067
3068 default:
3069 gcc_unreachable ();
3070 }
3071 }
3072
3073 static rtx
3074 not_reg_cond (rtx x)
3075 {
3076 if (x == const0_rtx)
3077 return const1_rtx;
3078 else if (x == const1_rtx)
3079 return const0_rtx;
3080 if (GET_CODE (x) == NOT)
3081 return XEXP (x, 0);
3082 if (COMPARISON_P (x)
3083 && REG_P (XEXP (x, 0)))
3084 {
3085 gcc_assert (XEXP (x, 1) == const0_rtx);
3086
3087 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3088 VOIDmode, XEXP (x, 0), const0_rtx);
3089 }
3090 return gen_rtx_NOT (0, x);
3091 }
3092
3093 static rtx
3094 and_reg_cond (rtx old, rtx x, int add)
3095 {
3096 rtx op0, op1;
3097
3098 if (COMPARISON_P (old))
3099 {
3100 if (COMPARISON_P (x)
3101 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3102 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3103 return const0_rtx;
3104 if (GET_CODE (x) == GET_CODE (old)
3105 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3106 return old;
3107 if (! add)
3108 return NULL;
3109 return gen_rtx_AND (0, old, x);
3110 }
3111
3112 switch (GET_CODE (old))
3113 {
3114 case IOR:
3115 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3116 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3117 if (op0 != NULL || op1 != NULL)
3118 {
3119 if (op0 == const0_rtx)
3120 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3121 if (op1 == const0_rtx)
3122 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3123 if (op0 == const1_rtx || op1 == const1_rtx)
3124 return const1_rtx;
3125 if (op0 == NULL)
3126 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3127 else if (rtx_equal_p (x, op0))
3128 /* (x | A) & x ~ x. */
3129 return op0;
3130 if (op1 == NULL)
3131 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3132 else if (rtx_equal_p (x, op1))
3133 /* (A | x) & x ~ x. */
3134 return op1;
3135 return gen_rtx_IOR (0, op0, op1);
3136 }
3137 if (! add)
3138 return NULL;
3139 return gen_rtx_AND (0, old, x);
3140
3141 case AND:
3142 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3143 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3144 if (op0 != NULL || op1 != NULL)
3145 {
3146 if (op0 == const1_rtx)
3147 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3148 if (op1 == const1_rtx)
3149 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3150 if (op0 == const0_rtx || op1 == const0_rtx)
3151 return const0_rtx;
3152 if (op0 == NULL)
3153 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3154 else if (rtx_equal_p (x, op0))
3155 /* (x & A) & x ~ (x & A). */
3156 return old;
3157 if (op1 == NULL)
3158 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3159 else if (rtx_equal_p (x, op1))
3160 /* (A & x) & x ~ (A & x). */
3161 return old;
3162 return gen_rtx_AND (0, op0, op1);
3163 }
3164 if (! add)
3165 return NULL;
3166 return gen_rtx_AND (0, old, x);
3167
3168 case NOT:
3169 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3170 if (op0 != NULL)
3171 return not_reg_cond (op0);
3172 if (! add)
3173 return NULL;
3174 return gen_rtx_AND (0, old, x);
3175
3176 default:
3177 gcc_unreachable ();
3178 }
3179 }
3180
3181 /* Given a condition X, remove references to reg REGNO and return the
3182 new condition. The removal will be done so that all conditions
3183 involving REGNO are considered to evaluate to false. This function
3184 is used when the value of REGNO changes. */
3185
3186 static rtx
3187 elim_reg_cond (rtx x, unsigned int regno)
3188 {
3189 rtx op0, op1;
3190
3191 if (COMPARISON_P (x))
3192 {
3193 if (REGNO (XEXP (x, 0)) == regno)
3194 return const0_rtx;
3195 return x;
3196 }
3197
3198 switch (GET_CODE (x))
3199 {
3200 case AND:
3201 op0 = elim_reg_cond (XEXP (x, 0), regno);
3202 op1 = elim_reg_cond (XEXP (x, 1), regno);
3203 if (op0 == const0_rtx || op1 == const0_rtx)
3204 return const0_rtx;
3205 if (op0 == const1_rtx)
3206 return op1;
3207 if (op1 == const1_rtx)
3208 return op0;
3209 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3210 return x;
3211 return gen_rtx_AND (0, op0, op1);
3212
3213 case IOR:
3214 op0 = elim_reg_cond (XEXP (x, 0), regno);
3215 op1 = elim_reg_cond (XEXP (x, 1), regno);
3216 if (op0 == const1_rtx || op1 == const1_rtx)
3217 return const1_rtx;
3218 if (op0 == const0_rtx)
3219 return op1;
3220 if (op1 == const0_rtx)
3221 return op0;
3222 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3223 return x;
3224 return gen_rtx_IOR (0, op0, op1);
3225
3226 case NOT:
3227 op0 = elim_reg_cond (XEXP (x, 0), regno);
3228 if (op0 == const0_rtx)
3229 return const1_rtx;
3230 if (op0 == const1_rtx)
3231 return const0_rtx;
3232 if (op0 != XEXP (x, 0))
3233 return not_reg_cond (op0);
3234 return x;
3235
3236 default:
3237 gcc_unreachable ();
3238 }
3239 }
3240 #endif /* HAVE_conditional_execution */
3241 \f
3242 #ifdef AUTO_INC_DEC
3243
3244 /* Try to substitute the auto-inc expression INC as the address inside
3245 MEM which occurs in INSN. Currently, the address of MEM is an expression
3246 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3247 that has a single set whose source is a PLUS of INCR_REG and something
3248 else. */
3249
3250 static void
3251 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3252 rtx mem, rtx incr, rtx incr_reg)
3253 {
3254 int regno = REGNO (incr_reg);
3255 rtx set = single_set (incr);
3256 rtx q = SET_DEST (set);
3257 rtx y = SET_SRC (set);
3258 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3259 int changed;
3260
3261 /* Make sure this reg appears only once in this insn. */
3262 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3263 return;
3264
3265 if (dead_or_set_p (incr, incr_reg)
3266 /* Mustn't autoinc an eliminable register. */
3267 && (regno >= FIRST_PSEUDO_REGISTER
3268 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3269 {
3270 /* This is the simple case. Try to make the auto-inc. If
3271 we can't, we are done. Otherwise, we will do any
3272 needed updates below. */
3273 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3274 return;
3275 }
3276 else if (REG_P (q)
3277 /* PREV_INSN used here to check the semi-open interval
3278 [insn,incr). */
3279 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3280 /* We must also check for sets of q as q may be
3281 a call clobbered hard register and there may
3282 be a call between PREV_INSN (insn) and incr. */
3283 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3284 {
3285 /* We have *p followed sometime later by q = p+size.
3286 Both p and q must be live afterward,
3287 and q is not used between INSN and its assignment.
3288 Change it to q = p, ...*q..., q = q+size.
3289 Then fall into the usual case. */
3290 rtx insns, temp;
3291
3292 start_sequence ();
3293 emit_move_insn (q, incr_reg);
3294 insns = get_insns ();
3295 end_sequence ();
3296
3297 /* If we can't make the auto-inc, or can't make the
3298 replacement into Y, exit. There's no point in making
3299 the change below if we can't do the auto-inc and doing
3300 so is not correct in the pre-inc case. */
3301
3302 XEXP (inc, 0) = q;
3303 validate_change (insn, &XEXP (mem, 0), inc, 1);
3304 validate_change (incr, &XEXP (y, opnum), q, 1);
3305 if (! apply_change_group ())
3306 return;
3307
3308 /* We now know we'll be doing this change, so emit the
3309 new insn(s) and do the updates. */
3310 emit_insn_before (insns, insn);
3311
3312 if (BB_HEAD (pbi->bb) == insn)
3313 BB_HEAD (pbi->bb) = insns;
3314
3315 /* INCR will become a NOTE and INSN won't contain a
3316 use of INCR_REG. If a use of INCR_REG was just placed in
3317 the insn before INSN, make that the next use.
3318 Otherwise, invalidate it. */
3319 if (NONJUMP_INSN_P (PREV_INSN (insn))
3320 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3321 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3322 pbi->reg_next_use[regno] = PREV_INSN (insn);
3323 else
3324 pbi->reg_next_use[regno] = 0;
3325
3326 incr_reg = q;
3327 regno = REGNO (q);
3328
3329 if ((pbi->flags & PROP_REG_INFO)
3330 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3331 reg_deaths[regno] = pbi->insn_num;
3332
3333 /* REGNO is now used in INCR which is below INSN, but
3334 it previously wasn't live here. If we don't mark
3335 it as live, we'll put a REG_DEAD note for it
3336 on this insn, which is incorrect. */
3337 SET_REGNO_REG_SET (pbi->reg_live, regno);
3338
3339 /* If there are any calls between INSN and INCR, show
3340 that REGNO now crosses them. */
3341 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3342 if (CALL_P (temp))
3343 REG_N_CALLS_CROSSED (regno)++;
3344
3345 /* Invalidate alias info for Q since we just changed its value. */
3346 clear_reg_alias_info (q);
3347 }
3348 else
3349 return;
3350
3351 /* If we haven't returned, it means we were able to make the
3352 auto-inc, so update the status. First, record that this insn
3353 has an implicit side effect. */
3354
3355 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3356
3357 /* Modify the old increment-insn to simply copy
3358 the already-incremented value of our register. */
3359 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3360 gcc_assert (changed);
3361
3362 /* If that makes it a no-op (copying the register into itself) delete
3363 it so it won't appear to be a "use" and a "set" of this
3364 register. */
3365 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3366 {
3367 /* If the original source was dead, it's dead now. */
3368 rtx note;
3369
3370 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3371 {
3372 remove_note (incr, note);
3373 if (XEXP (note, 0) != incr_reg)
3374 {
3375 unsigned int regno = REGNO (XEXP (note, 0));
3376
3377 if ((pbi->flags & PROP_REG_INFO)
3378 && REGNO_REG_SET_P (pbi->reg_live, regno))
3379 {
3380 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3381 reg_deaths[regno] = 0;
3382 }
3383 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3384 }
3385 }
3386
3387 SET_INSN_DELETED (incr);
3388 }
3389
3390 if (regno >= FIRST_PSEUDO_REGISTER)
3391 {
3392 /* Count an extra reference to the reg. When a reg is
3393 incremented, spilling it is worse, so we want to make
3394 that less likely. */
3395 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3396
3397 /* Count the increment as a setting of the register,
3398 even though it isn't a SET in rtl. */
3399 REG_N_SETS (regno)++;
3400 }
3401 }
3402
3403 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3404 reference. */
3405
3406 static void
3407 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3408 {
3409 rtx addr = XEXP (x, 0);
3410 HOST_WIDE_INT offset = 0;
3411 rtx set, y, incr, inc_val;
3412 int regno;
3413 int size = GET_MODE_SIZE (GET_MODE (x));
3414
3415 if (JUMP_P (insn))
3416 return;
3417
3418 /* Here we detect use of an index register which might be good for
3419 postincrement, postdecrement, preincrement, or predecrement. */
3420
3421 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3422 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3423
3424 if (!REG_P (addr))
3425 return;
3426
3427 regno = REGNO (addr);
3428
3429 /* Is the next use an increment that might make auto-increment? */
3430 incr = pbi->reg_next_use[regno];
3431 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3432 return;
3433 set = single_set (incr);
3434 if (set == 0 || GET_CODE (set) != SET)
3435 return;
3436 y = SET_SRC (set);
3437
3438 if (GET_CODE (y) != PLUS)
3439 return;
3440
3441 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3442 inc_val = XEXP (y, 1);
3443 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3444 inc_val = XEXP (y, 0);
3445 else
3446 return;
3447
3448 if (GET_CODE (inc_val) == CONST_INT)
3449 {
3450 if (HAVE_POST_INCREMENT
3451 && (INTVAL (inc_val) == size && offset == 0))
3452 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3453 incr, addr);
3454 else if (HAVE_POST_DECREMENT
3455 && (INTVAL (inc_val) == -size && offset == 0))
3456 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3457 incr, addr);
3458 else if (HAVE_PRE_INCREMENT
3459 && (INTVAL (inc_val) == size && offset == size))
3460 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3461 incr, addr);
3462 else if (HAVE_PRE_DECREMENT
3463 && (INTVAL (inc_val) == -size && offset == -size))
3464 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3465 incr, addr);
3466 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3467 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3468 gen_rtx_PLUS (Pmode,
3469 addr,
3470 inc_val)),
3471 insn, x, incr, addr);
3472 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3473 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3474 gen_rtx_PLUS (Pmode,
3475 addr,
3476 inc_val)),
3477 insn, x, incr, addr);
3478 }
3479 else if (REG_P (inc_val)
3480 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3481 NEXT_INSN (incr)))
3482
3483 {
3484 if (HAVE_POST_MODIFY_REG && offset == 0)
3485 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3486 gen_rtx_PLUS (Pmode,
3487 addr,
3488 inc_val)),
3489 insn, x, incr, addr);
3490 }
3491 }
3492
3493 #endif /* AUTO_INC_DEC */
3494 \f
3495 static void
3496 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3497 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3498 {
3499 unsigned int regno_first, regno_last, i;
3500 int some_was_live, some_was_dead, some_not_set;
3501
3502 regno_last = regno_first = REGNO (reg);
3503 if (regno_first < FIRST_PSEUDO_REGISTER)
3504 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3505
3506 /* Find out if any of this register is live after this instruction. */
3507 some_was_live = some_was_dead = 0;
3508 for (i = regno_first; i <= regno_last; ++i)
3509 {
3510 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3511 some_was_live |= needed_regno;
3512 some_was_dead |= ! needed_regno;
3513 }
3514
3515 /* Find out if any of the register was set this insn. */
3516 some_not_set = 0;
3517 for (i = regno_first; i <= regno_last; ++i)
3518 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3519
3520 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3521 {
3522 /* Record where each reg is used, so when the reg is set we know
3523 the next insn that uses it. */
3524 pbi->reg_next_use[regno_first] = insn;
3525 }
3526
3527 if (pbi->flags & PROP_REG_INFO)
3528 {
3529 if (regno_first < FIRST_PSEUDO_REGISTER)
3530 {
3531 /* If this is a register we are going to try to eliminate,
3532 don't mark it live here. If we are successful in
3533 eliminating it, it need not be live unless it is used for
3534 pseudos, in which case it will have been set live when it
3535 was allocated to the pseudos. If the register will not
3536 be eliminated, reload will set it live at that point.
3537
3538 Otherwise, record that this function uses this register. */
3539 /* ??? The PPC backend tries to "eliminate" on the pic
3540 register to itself. This should be fixed. In the mean
3541 time, hack around it. */
3542
3543 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3544 && (regno_first == FRAME_POINTER_REGNUM
3545 || regno_first == ARG_POINTER_REGNUM)))
3546 for (i = regno_first; i <= regno_last; ++i)
3547 regs_ever_live[i] = 1;
3548 }
3549 else
3550 {
3551 /* Keep track of which basic block each reg appears in. */
3552
3553 int blocknum = pbi->bb->index;
3554 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3555 REG_BASIC_BLOCK (regno_first) = blocknum;
3556 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3557 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3558
3559 /* Count (weighted) number of uses of each reg. */
3560 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3561 REG_N_REFS (regno_first)++;
3562 }
3563 for (i = regno_first; i <= regno_last; ++i)
3564 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3565 {
3566 gcc_assert (!reg_deaths[i]);
3567 reg_deaths[i] = pbi->insn_num;
3568 }
3569 }
3570
3571 /* Record and count the insns in which a reg dies. If it is used in
3572 this insn and was dead below the insn then it dies in this insn.
3573 If it was set in this insn, we do not make a REG_DEAD note;
3574 likewise if we already made such a note. */
3575 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3576 && some_was_dead
3577 && some_not_set)
3578 {
3579 /* Check for the case where the register dying partially
3580 overlaps the register set by this insn. */
3581 if (regno_first != regno_last)
3582 for (i = regno_first; i <= regno_last; ++i)
3583 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3584
3585 /* If none of the words in X is needed, make a REG_DEAD note.
3586 Otherwise, we must make partial REG_DEAD notes. */
3587 if (! some_was_live)
3588 {
3589 if ((pbi->flags & PROP_DEATH_NOTES)
3590 && ! find_regno_note (insn, REG_DEAD, regno_first))
3591 REG_NOTES (insn)
3592 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3593
3594 if (pbi->flags & PROP_REG_INFO)
3595 REG_N_DEATHS (regno_first)++;
3596 }
3597 else
3598 {
3599 /* Don't make a REG_DEAD note for a part of a register
3600 that is set in the insn. */
3601 for (i = regno_first; i <= regno_last; ++i)
3602 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3603 && ! dead_or_set_regno_p (insn, i))
3604 REG_NOTES (insn)
3605 = alloc_EXPR_LIST (REG_DEAD,
3606 regno_reg_rtx[i],
3607 REG_NOTES (insn));
3608 }
3609 }
3610
3611 /* Mark the register as being live. */
3612 for (i = regno_first; i <= regno_last; ++i)
3613 {
3614 #ifdef HAVE_conditional_execution
3615 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3616 #endif
3617
3618 SET_REGNO_REG_SET (pbi->reg_live, i);
3619
3620 #ifdef HAVE_conditional_execution
3621 /* If this is a conditional use, record that fact. If it is later
3622 conditionally set, we'll know to kill the register. */
3623 if (cond != NULL_RTX)
3624 {
3625 splay_tree_node node;
3626 struct reg_cond_life_info *rcli;
3627 rtx ncond;
3628
3629 if (this_was_live)
3630 {
3631 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3632 if (node == NULL)
3633 {
3634 /* The register was unconditionally live previously.
3635 No need to do anything. */
3636 }
3637 else
3638 {
3639 /* The register was conditionally live previously.
3640 Subtract the new life cond from the old death cond. */
3641 rcli = (struct reg_cond_life_info *) node->value;
3642 ncond = rcli->condition;
3643 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3644
3645 /* If the register is now unconditionally live,
3646 remove the entry in the splay_tree. */
3647 if (ncond == const0_rtx)
3648 splay_tree_remove (pbi->reg_cond_dead, i);
3649 else
3650 {
3651 rcli->condition = ncond;
3652 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3653 REGNO (XEXP (cond, 0)));
3654 }
3655 }
3656 }
3657 else
3658 {
3659 /* The register was not previously live at all. Record
3660 the condition under which it is still dead. */
3661 rcli = xmalloc (sizeof (*rcli));
3662 rcli->condition = not_reg_cond (cond);
3663 rcli->stores = const0_rtx;
3664 rcli->orig_condition = const0_rtx;
3665 splay_tree_insert (pbi->reg_cond_dead, i,
3666 (splay_tree_value) rcli);
3667
3668 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3669 }
3670 }
3671 else if (this_was_live)
3672 {
3673 /* The register may have been conditionally live previously, but
3674 is now unconditionally live. Remove it from the conditionally
3675 dead list, so that a conditional set won't cause us to think
3676 it dead. */
3677 splay_tree_remove (pbi->reg_cond_dead, i);
3678 }
3679 #endif
3680 }
3681 }
3682
3683 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3684 This is done assuming the registers needed from X are those that
3685 have 1-bits in PBI->REG_LIVE.
3686
3687 INSN is the containing instruction. If INSN is dead, this function
3688 is not called. */
3689
3690 static void
3691 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3692 {
3693 RTX_CODE code;
3694 int regno;
3695 int flags = pbi->flags;
3696
3697 retry:
3698 if (!x)
3699 return;
3700 code = GET_CODE (x);
3701 switch (code)
3702 {
3703 case LABEL_REF:
3704 case SYMBOL_REF:
3705 case CONST_INT:
3706 case CONST:
3707 case CONST_DOUBLE:
3708 case CONST_VECTOR:
3709 case PC:
3710 case ADDR_VEC:
3711 case ADDR_DIFF_VEC:
3712 return;
3713
3714 #ifdef HAVE_cc0
3715 case CC0:
3716 pbi->cc0_live = 1;
3717 return;
3718 #endif
3719
3720 case CLOBBER:
3721 /* If we are clobbering a MEM, mark any registers inside the address
3722 as being used. */
3723 if (MEM_P (XEXP (x, 0)))
3724 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3725 return;
3726
3727 case MEM:
3728 /* Don't bother watching stores to mems if this is not the
3729 final pass. We'll not be deleting dead stores this round. */
3730 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3731 {
3732 /* Invalidate the data for the last MEM stored, but only if MEM is
3733 something that can be stored into. */
3734 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3735 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3736 /* Needn't clear the memory set list. */
3737 ;
3738 else
3739 {
3740 rtx temp = pbi->mem_set_list;
3741 rtx prev = NULL_RTX;
3742 rtx next;
3743
3744 while (temp)
3745 {
3746 next = XEXP (temp, 1);
3747 if (anti_dependence (XEXP (temp, 0), x))
3748 {
3749 /* Splice temp out of the list. */
3750 if (prev)
3751 XEXP (prev, 1) = next;
3752 else
3753 pbi->mem_set_list = next;
3754 free_EXPR_LIST_node (temp);
3755 pbi->mem_set_list_len--;
3756 }
3757 else
3758 prev = temp;
3759 temp = next;
3760 }
3761 }
3762
3763 /* If the memory reference had embedded side effects (autoincrement
3764 address modes. Then we may need to kill some entries on the
3765 memory set list. */
3766 if (insn)
3767 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3768 }
3769
3770 #ifdef AUTO_INC_DEC
3771 if (flags & PROP_AUTOINC)
3772 find_auto_inc (pbi, x, insn);
3773 #endif
3774 break;
3775
3776 case SUBREG:
3777 #ifdef CANNOT_CHANGE_MODE_CLASS
3778 if (flags & PROP_REG_INFO)
3779 record_subregs_of_mode (x);
3780 #endif
3781
3782 /* While we're here, optimize this case. */
3783 x = SUBREG_REG (x);
3784 if (!REG_P (x))
3785 goto retry;
3786 /* Fall through. */
3787
3788 case REG:
3789 /* See a register other than being set => mark it as needed. */
3790 mark_used_reg (pbi, x, cond, insn);
3791 return;
3792
3793 case SET:
3794 {
3795 rtx testreg = SET_DEST (x);
3796 int mark_dest = 0;
3797
3798 /* If storing into MEM, don't show it as being used. But do
3799 show the address as being used. */
3800 if (MEM_P (testreg))
3801 {
3802 #ifdef AUTO_INC_DEC
3803 if (flags & PROP_AUTOINC)
3804 find_auto_inc (pbi, testreg, insn);
3805 #endif
3806 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3807 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3808 return;
3809 }
3810
3811 /* Storing in STRICT_LOW_PART is like storing in a reg
3812 in that this SET might be dead, so ignore it in TESTREG.
3813 but in some other ways it is like using the reg.
3814
3815 Storing in a SUBREG or a bit field is like storing the entire
3816 register in that if the register's value is not used
3817 then this SET is not needed. */
3818 while (GET_CODE (testreg) == STRICT_LOW_PART
3819 || GET_CODE (testreg) == ZERO_EXTRACT
3820 || GET_CODE (testreg) == SIGN_EXTRACT
3821 || GET_CODE (testreg) == SUBREG)
3822 {
3823 #ifdef CANNOT_CHANGE_MODE_CLASS
3824 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3825 record_subregs_of_mode (testreg);
3826 #endif
3827
3828 /* Modifying a single register in an alternate mode
3829 does not use any of the old value. But these other
3830 ways of storing in a register do use the old value. */
3831 if (GET_CODE (testreg) == SUBREG
3832 && !((REG_BYTES (SUBREG_REG (testreg))
3833 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3834 > (REG_BYTES (testreg)
3835 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3836 ;
3837 else
3838 mark_dest = 1;
3839
3840 testreg = XEXP (testreg, 0);
3841 }
3842
3843 /* If this is a store into a register or group of registers,
3844 recursively scan the value being stored. */
3845
3846 if ((GET_CODE (testreg) == PARALLEL
3847 && GET_MODE (testreg) == BLKmode)
3848 || (REG_P (testreg)
3849 && (regno = REGNO (testreg),
3850 ! (regno == FRAME_POINTER_REGNUM
3851 && (! reload_completed || frame_pointer_needed)))
3852 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3853 && ! (regno == HARD_FRAME_POINTER_REGNUM
3854 && (! reload_completed || frame_pointer_needed))
3855 #endif
3856 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3857 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3858 #endif
3859 ))
3860 {
3861 if (mark_dest)
3862 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3863 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3864 return;
3865 }
3866 }
3867 break;
3868
3869 case ASM_OPERANDS:
3870 case UNSPEC_VOLATILE:
3871 case TRAP_IF:
3872 case ASM_INPUT:
3873 {
3874 /* Traditional and volatile asm instructions must be considered to use
3875 and clobber all hard registers, all pseudo-registers and all of
3876 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3877
3878 Consider for instance a volatile asm that changes the fpu rounding
3879 mode. An insn should not be moved across this even if it only uses
3880 pseudo-regs because it might give an incorrectly rounded result.
3881
3882 ?!? Unfortunately, marking all hard registers as live causes massive
3883 problems for the register allocator and marking all pseudos as live
3884 creates mountains of uninitialized variable warnings.
3885
3886 So for now, just clear the memory set list and mark any regs
3887 we can find in ASM_OPERANDS as used. */
3888 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3889 {
3890 free_EXPR_LIST_list (&pbi->mem_set_list);
3891 pbi->mem_set_list_len = 0;
3892 }
3893
3894 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3895 We can not just fall through here since then we would be confused
3896 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3897 traditional asms unlike their normal usage. */
3898 if (code == ASM_OPERANDS)
3899 {
3900 int j;
3901
3902 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3903 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3904 }
3905 break;
3906 }
3907
3908 case COND_EXEC:
3909 gcc_assert (!cond);
3910
3911 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3912
3913 cond = COND_EXEC_TEST (x);
3914 x = COND_EXEC_CODE (x);
3915 goto retry;
3916
3917 default:
3918 break;
3919 }
3920
3921 /* Recursively scan the operands of this expression. */
3922
3923 {
3924 const char * const fmt = GET_RTX_FORMAT (code);
3925 int i;
3926
3927 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3928 {
3929 if (fmt[i] == 'e')
3930 {
3931 /* Tail recursive case: save a function call level. */
3932 if (i == 0)
3933 {
3934 x = XEXP (x, 0);
3935 goto retry;
3936 }
3937 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3938 }
3939 else if (fmt[i] == 'E')
3940 {
3941 int j;
3942 for (j = 0; j < XVECLEN (x, i); j++)
3943 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3944 }
3945 }
3946 }
3947 }
3948 \f
3949 #ifdef AUTO_INC_DEC
3950
3951 static int
3952 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3953 {
3954 /* Find the next use of this reg. If in same basic block,
3955 make it do pre-increment or pre-decrement if appropriate. */
3956 rtx x = single_set (insn);
3957 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3958 * INTVAL (XEXP (SET_SRC (x), 1)));
3959 int regno = REGNO (SET_DEST (x));
3960 rtx y = pbi->reg_next_use[regno];
3961 if (y != 0
3962 && SET_DEST (x) != stack_pointer_rtx
3963 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3964 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3965 mode would be better. */
3966 && ! dead_or_set_p (y, SET_DEST (x))
3967 && try_pre_increment (y, SET_DEST (x), amount))
3968 {
3969 /* We have found a suitable auto-increment and already changed
3970 insn Y to do it. So flush this increment instruction. */
3971 propagate_block_delete_insn (insn);
3972
3973 /* Count a reference to this reg for the increment insn we are
3974 deleting. When a reg is incremented, spilling it is worse,
3975 so we want to make that less likely. */
3976 if (regno >= FIRST_PSEUDO_REGISTER)
3977 {
3978 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3979 REG_N_SETS (regno)++;
3980 }
3981
3982 /* Flush any remembered memories depending on the value of
3983 the incremented register. */
3984 invalidate_mems_from_set (pbi, SET_DEST (x));
3985
3986 return 1;
3987 }
3988 return 0;
3989 }
3990
3991 /* Try to change INSN so that it does pre-increment or pre-decrement
3992 addressing on register REG in order to add AMOUNT to REG.
3993 AMOUNT is negative for pre-decrement.
3994 Returns 1 if the change could be made.
3995 This checks all about the validity of the result of modifying INSN. */
3996
3997 static int
3998 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
3999 {
4000 rtx use;
4001
4002 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4003 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4004 int pre_ok = 0;
4005 /* Nonzero if we can try to make a post-increment or post-decrement.
4006 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4007 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4008 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4009 int post_ok = 0;
4010
4011 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4012 int do_post = 0;
4013
4014 /* From the sign of increment, see which possibilities are conceivable
4015 on this target machine. */
4016 if (HAVE_PRE_INCREMENT && amount > 0)
4017 pre_ok = 1;
4018 if (HAVE_POST_INCREMENT && amount > 0)
4019 post_ok = 1;
4020
4021 if (HAVE_PRE_DECREMENT && amount < 0)
4022 pre_ok = 1;
4023 if (HAVE_POST_DECREMENT && amount < 0)
4024 post_ok = 1;
4025
4026 if (! (pre_ok || post_ok))
4027 return 0;
4028
4029 /* It is not safe to add a side effect to a jump insn
4030 because if the incremented register is spilled and must be reloaded
4031 there would be no way to store the incremented value back in memory. */
4032
4033 if (JUMP_P (insn))
4034 return 0;
4035
4036 use = 0;
4037 if (pre_ok)
4038 use = find_use_as_address (PATTERN (insn), reg, 0);
4039 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4040 {
4041 use = find_use_as_address (PATTERN (insn), reg, -amount);
4042 do_post = 1;
4043 }
4044
4045 if (use == 0 || use == (rtx) (size_t) 1)
4046 return 0;
4047
4048 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4049 return 0;
4050
4051 /* See if this combination of instruction and addressing mode exists. */
4052 if (! validate_change (insn, &XEXP (use, 0),
4053 gen_rtx_fmt_e (amount > 0
4054 ? (do_post ? POST_INC : PRE_INC)
4055 : (do_post ? POST_DEC : PRE_DEC),
4056 Pmode, reg), 0))
4057 return 0;
4058
4059 /* Record that this insn now has an implicit side effect on X. */
4060 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4061 return 1;
4062 }
4063
4064 #endif /* AUTO_INC_DEC */
4065 \f
4066 /* Find the place in the rtx X where REG is used as a memory address.
4067 Return the MEM rtx that so uses it.
4068 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4069 (plus REG (const_int PLUSCONST)).
4070
4071 If such an address does not appear, return 0.
4072 If REG appears more than once, or is used other than in such an address,
4073 return (rtx) 1. */
4074
4075 rtx
4076 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4077 {
4078 enum rtx_code code = GET_CODE (x);
4079 const char * const fmt = GET_RTX_FORMAT (code);
4080 int i;
4081 rtx value = 0;
4082 rtx tem;
4083
4084 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4085 return x;
4086
4087 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4088 && XEXP (XEXP (x, 0), 0) == reg
4089 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4090 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4091 return x;
4092
4093 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4094 {
4095 /* If REG occurs inside a MEM used in a bit-field reference,
4096 that is unacceptable. */
4097 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4098 return (rtx) (size_t) 1;
4099 }
4100
4101 if (x == reg)
4102 return (rtx) (size_t) 1;
4103
4104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4105 {
4106 if (fmt[i] == 'e')
4107 {
4108 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4109 if (value == 0)
4110 value = tem;
4111 else if (tem != 0)
4112 return (rtx) (size_t) 1;
4113 }
4114 else if (fmt[i] == 'E')
4115 {
4116 int j;
4117 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4118 {
4119 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4120 if (value == 0)
4121 value = tem;
4122 else if (tem != 0)
4123 return (rtx) (size_t) 1;
4124 }
4125 }
4126 }
4127
4128 return value;
4129 }
4130 \f
4131 /* Write information about registers and basic blocks into FILE.
4132 This is part of making a debugging dump. */
4133
4134 void
4135 dump_regset (regset r, FILE *outf)
4136 {
4137 int i;
4138 if (r == NULL)
4139 {
4140 fputs (" (nil)", outf);
4141 return;
4142 }
4143
4144 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4145 {
4146 fprintf (outf, " %d", i);
4147 if (i < FIRST_PSEUDO_REGISTER)
4148 fprintf (outf, " [%s]",
4149 reg_names[i]);
4150 });
4151 }
4152
4153 /* Print a human-readable representation of R on the standard error
4154 stream. This function is designed to be used from within the
4155 debugger. */
4156
4157 void
4158 debug_regset (regset r)
4159 {
4160 dump_regset (r, stderr);
4161 putc ('\n', stderr);
4162 }
4163
4164 /* Recompute register set/reference counts immediately prior to register
4165 allocation.
4166
4167 This avoids problems with set/reference counts changing to/from values
4168 which have special meanings to the register allocators.
4169
4170 Additionally, the reference counts are the primary component used by the
4171 register allocators to prioritize pseudos for allocation to hard regs.
4172 More accurate reference counts generally lead to better register allocation.
4173
4174 F is the first insn to be scanned.
4175
4176 LOOP_STEP denotes how much loop_depth should be incremented per
4177 loop nesting level in order to increase the ref count more for
4178 references in a loop.
4179
4180 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4181 possibly other information which is used by the register allocators. */
4182
4183 void
4184 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4185 {
4186 allocate_reg_life_data ();
4187 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4188 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4189 solve this update the DEATH_NOTES here. */
4190 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4191 }
4192
4193 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4194 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4195 of the number of registers that died. */
4196
4197 int
4198 count_or_remove_death_notes (sbitmap blocks, int kill)
4199 {
4200 int count = 0;
4201 int i;
4202 basic_block bb;
4203
4204 /* This used to be a loop over all the blocks with a membership test
4205 inside the loop. That can be amazingly expensive on a large CFG
4206 when only a small number of bits are set in BLOCKs (for example,
4207 the calls from the scheduler typically have very few bits set).
4208
4209 For extra credit, someone should convert BLOCKS to a bitmap rather
4210 than an sbitmap. */
4211 if (blocks)
4212 {
4213 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4214 {
4215 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4216 });
4217 }
4218 else
4219 {
4220 FOR_EACH_BB (bb)
4221 {
4222 count += count_or_remove_death_notes_bb (bb, kill);
4223 }
4224 }
4225
4226 return count;
4227 }
4228
4229 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4230 block BB. Returns a count of the number of registers that died. */
4231
4232 static int
4233 count_or_remove_death_notes_bb (basic_block bb, int kill)
4234 {
4235 int count = 0;
4236 rtx insn;
4237
4238 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4239 {
4240 if (INSN_P (insn))
4241 {
4242 rtx *pprev = &REG_NOTES (insn);
4243 rtx link = *pprev;
4244
4245 while (link)
4246 {
4247 switch (REG_NOTE_KIND (link))
4248 {
4249 case REG_DEAD:
4250 if (REG_P (XEXP (link, 0)))
4251 {
4252 rtx reg = XEXP (link, 0);
4253 int n;
4254
4255 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4256 n = 1;
4257 else
4258 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4259 count += n;
4260 }
4261
4262 /* Fall through. */
4263
4264 case REG_UNUSED:
4265 if (kill)
4266 {
4267 rtx next = XEXP (link, 1);
4268 free_EXPR_LIST_node (link);
4269 *pprev = link = next;
4270 break;
4271 }
4272 /* Fall through. */
4273
4274 default:
4275 pprev = &XEXP (link, 1);
4276 link = *pprev;
4277 break;
4278 }
4279 }
4280 }
4281
4282 if (insn == BB_END (bb))
4283 break;
4284 }
4285
4286 return count;
4287 }
4288
4289 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4290 if blocks is NULL. */
4291
4292 static void
4293 clear_log_links (sbitmap blocks)
4294 {
4295 rtx insn;
4296 int i;
4297
4298 if (!blocks)
4299 {
4300 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4301 if (INSN_P (insn))
4302 free_INSN_LIST_list (&LOG_LINKS (insn));
4303 }
4304 else
4305 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4306 {
4307 basic_block bb = BASIC_BLOCK (i);
4308
4309 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4310 insn = NEXT_INSN (insn))
4311 if (INSN_P (insn))
4312 free_INSN_LIST_list (&LOG_LINKS (insn));
4313 });
4314 }
4315
4316 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4317 correspond to the hard registers, if any, set in that map. This
4318 could be done far more efficiently by having all sorts of special-cases
4319 with moving single words, but probably isn't worth the trouble. */
4320
4321 void
4322 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4323 {
4324 int i;
4325 bitmap_iterator bi;
4326
4327 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4328 {
4329 if (i >= FIRST_PSEUDO_REGISTER)
4330 return;
4331 SET_HARD_REG_BIT (*to, i);
4332 }
4333 }