flow.c (find_regno_partial): Return register, not the expression the register is in.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170
171 #ifdef HAVE_conditional_execution
172 #ifndef REVERSE_CONDEXEC_PREDICATES_P
173 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
174 #endif
175 #endif
176
177 /* Nonzero if the second flow pass has completed. */
178 int flow2_completed;
179
180 /* Maximum register number used in this function, plus one. */
181
182 int max_regno;
183
184 /* Indexed by n, giving various register information */
185
186 varray_type reg_n_info;
187
188 /* Size of a regset for the current function,
189 in (1) bytes and (2) elements. */
190
191 int regset_bytes;
192 int regset_size;
193
194 /* Regset of regs live when calls to `setjmp'-like functions happen. */
195 /* ??? Does this exist only for the setjmp-clobbered warning message? */
196
197 regset regs_live_at_setjmp;
198
199 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
200 that have to go in the same hard reg.
201 The first two regs in the list are a pair, and the next two
202 are another pair, etc. */
203 rtx regs_may_share;
204
205 /* Callback that determines if it's ok for a function to have no
206 noreturn attribute. */
207 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
208
209 /* Set of registers that may be eliminable. These are handled specially
210 in updating regs_ever_live. */
211
212 static HARD_REG_SET elim_reg_set;
213
214 /* Holds information for tracking conditional register life information. */
215 struct reg_cond_life_info
216 {
217 /* A boolean expression of conditions under which a register is dead. */
218 rtx condition;
219 /* Conditions under which a register is dead at the basic block end. */
220 rtx orig_condition;
221
222 /* A boolean expression of conditions under which a register has been
223 stored into. */
224 rtx stores;
225
226 /* ??? Could store mask of bytes that are dead, so that we could finally
227 track lifetimes of multi-word registers accessed via subregs. */
228 };
229
230 /* For use in communicating between propagate_block and its subroutines.
231 Holds all information needed to compute life and def-use information. */
232
233 struct propagate_block_info
234 {
235 /* The basic block we're considering. */
236 basic_block bb;
237
238 /* Bit N is set if register N is conditionally or unconditionally live. */
239 regset reg_live;
240
241 /* Bit N is set if register N is set this insn. */
242 regset new_set;
243
244 /* Element N is the next insn that uses (hard or pseudo) register N
245 within the current basic block; or zero, if there is no such insn. */
246 rtx *reg_next_use;
247
248 /* Contains a list of all the MEMs we are tracking for dead store
249 elimination. */
250 rtx mem_set_list;
251
252 /* If non-null, record the set of registers set unconditionally in the
253 basic block. */
254 regset local_set;
255
256 /* If non-null, record the set of registers set conditionally in the
257 basic block. */
258 regset cond_local_set;
259
260 #ifdef HAVE_conditional_execution
261 /* Indexed by register number, holds a reg_cond_life_info for each
262 register that is not unconditionally live or dead. */
263 splay_tree reg_cond_dead;
264
265 /* Bit N is set if register N is in an expression in reg_cond_dead. */
266 regset reg_cond_reg;
267 #endif
268
269 /* The length of mem_set_list. */
270 int mem_set_list_len;
271
272 /* Non-zero if the value of CC0 is live. */
273 int cc0_live;
274
275 /* Flags controling the set of information propagate_block collects. */
276 int flags;
277 };
278
279 /* Maximum length of pbi->mem_set_list before we start dropping
280 new elements on the floor. */
281 #define MAX_MEM_SET_LIST_LEN 100
282
283 /* Have print_rtl_and_abort give the same information that fancy_abort
284 does. */
285 #define print_rtl_and_abort() \
286 print_rtl_and_abort_fcn (__FILE__, __LINE__, __FUNCTION__)
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, rtx, rtx));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((basic_block, rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void print_rtl_and_abort_fcn PARAMS ((const char *, int,
339 const char *))
340 ATTRIBUTE_NORETURN;
341
342 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void invalidate_mems_from_autoinc PARAMS ((struct propagate_block_info *,
345 rtx));
346 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
347 rtx));
348 static void delete_dead_jumptables PARAMS ((void));
349 static void clear_log_links PARAMS ((sbitmap));
350 \f
351
352 void
353 check_function_return_warnings ()
354 {
355 if (warn_missing_noreturn
356 && !TREE_THIS_VOLATILE (cfun->decl)
357 && EXIT_BLOCK_PTR->pred == NULL
358 && (lang_missing_noreturn_ok_p
359 && !lang_missing_noreturn_ok_p (cfun->decl)))
360 warning ("function might be possible candidate for attribute `noreturn'");
361
362 /* If we have a path to EXIT, then we do return. */
363 if (TREE_THIS_VOLATILE (cfun->decl)
364 && EXIT_BLOCK_PTR->pred != NULL)
365 warning ("`noreturn' function does return");
366
367 /* If the clobber_return_insn appears in some basic block, then we
368 do reach the end without returning a value. */
369 else if (warn_return_type
370 && cfun->x_clobber_return_insn != NULL
371 && EXIT_BLOCK_PTR->pred != NULL)
372 {
373 int max_uid = get_max_uid ();
374
375 /* If clobber_return_insn was excised by jump1, then renumber_insns
376 can make max_uid smaller than the number still recorded in our rtx.
377 That's fine, since this is a quick way of verifying that the insn
378 is no longer in the chain. */
379 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
380 {
381 /* Recompute insn->block mapping, since the initial mapping is
382 set before we delete unreachable blocks. */
383 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
384 warning ("control reaches end of non-void function");
385 }
386 }
387 }
388 \f
389 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
390 note associated with the BLOCK. */
391
392 rtx
393 first_insn_after_basic_block_note (block)
394 basic_block block;
395 {
396 rtx insn;
397
398 /* Get the first instruction in the block. */
399 insn = block->head;
400
401 if (insn == NULL_RTX)
402 return NULL_RTX;
403 if (GET_CODE (insn) == CODE_LABEL)
404 insn = NEXT_INSN (insn);
405 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
406 abort ();
407
408 return NEXT_INSN (insn);
409 }
410 \f
411 /* Perform data flow analysis.
412 F is the first insn of the function; FLAGS is a set of PROP_* flags
413 to be used in accumulating flow info. */
414
415 void
416 life_analysis (f, file, flags)
417 rtx f;
418 FILE *file;
419 int flags;
420 {
421 #ifdef ELIMINABLE_REGS
422 int i;
423 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
424 #endif
425
426 /* Record which registers will be eliminated. We use this in
427 mark_used_regs. */
428
429 CLEAR_HARD_REG_SET (elim_reg_set);
430
431 #ifdef ELIMINABLE_REGS
432 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
433 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
434 #else
435 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
436 #endif
437
438 if (! optimize)
439 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
440
441 /* The post-reload life analysis have (on a global basis) the same
442 registers live as was computed by reload itself. elimination
443 Otherwise offsets and such may be incorrect.
444
445 Reload will make some registers as live even though they do not
446 appear in the rtl.
447
448 We don't want to create new auto-incs after reload, since they
449 are unlikely to be useful and can cause problems with shared
450 stack slots. */
451 if (reload_completed)
452 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
453
454 /* We want alias analysis information for local dead store elimination. */
455 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
456 init_alias_analysis ();
457
458 /* Always remove no-op moves. Do this before other processing so
459 that we don't have to keep re-scanning them. */
460 delete_noop_moves (f);
461 purge_all_dead_edges (false);
462
463 /* Some targets can emit simpler epilogues if they know that sp was
464 not ever modified during the function. After reload, of course,
465 we've already emitted the epilogue so there's no sense searching. */
466 if (! reload_completed)
467 notice_stack_pointer_modification (f);
468
469 /* Allocate and zero out data structures that will record the
470 data from lifetime analysis. */
471 allocate_reg_life_data ();
472 allocate_bb_life_data ();
473
474 /* Find the set of registers live on function exit. */
475 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
476
477 /* "Update" life info from zero. It'd be nice to begin the
478 relaxation with just the exit and noreturn blocks, but that set
479 is not immediately handy. */
480
481 if (flags & PROP_REG_INFO)
482 memset (regs_ever_live, 0, sizeof (regs_ever_live));
483 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
484
485 /* Clean up. */
486 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
487 end_alias_analysis ();
488
489 if (file)
490 dump_flow_info (file);
491
492 free_basic_block_vars (1);
493
494 #ifdef ENABLE_CHECKING
495 {
496 rtx insn;
497
498 /* Search for any REG_LABEL notes which reference deleted labels. */
499 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
500 {
501 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
502
503 if (inote && GET_CODE (inote) == NOTE_INSN_DELETED_LABEL)
504 abort ();
505 }
506 }
507 #endif
508 /* Removing dead insns should've made jumptables really dead. */
509 delete_dead_jumptables ();
510 }
511
512 /* A subroutine of verify_wide_reg, called through for_each_rtx.
513 Search for REGNO. If found, abort if it is not wider than word_mode. */
514
515 static int
516 verify_wide_reg_1 (px, pregno)
517 rtx *px;
518 void *pregno;
519 {
520 rtx x = *px;
521 unsigned int regno = *(int *) pregno;
522
523 if (GET_CODE (x) == REG && REGNO (x) == regno)
524 {
525 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
526 abort ();
527 return 1;
528 }
529 return 0;
530 }
531
532 /* A subroutine of verify_local_live_at_start. Search through insns
533 between HEAD and END looking for register REGNO. */
534
535 static void
536 verify_wide_reg (regno, head, end)
537 int regno;
538 rtx head, end;
539 {
540 while (1)
541 {
542 if (INSN_P (head)
543 && for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno))
544 return;
545 if (head == end)
546 break;
547 head = NEXT_INSN (head);
548 }
549
550 /* We didn't find the register at all. Something's way screwy. */
551 if (rtl_dump_file)
552 fprintf (rtl_dump_file, "Aborting in verify_wide_reg; reg %d\n", regno);
553 print_rtl_and_abort ();
554 }
555
556 /* A subroutine of update_life_info. Verify that there are no untoward
557 changes in live_at_start during a local update. */
558
559 static void
560 verify_local_live_at_start (new_live_at_start, bb)
561 regset new_live_at_start;
562 basic_block bb;
563 {
564 if (reload_completed)
565 {
566 /* After reload, there are no pseudos, nor subregs of multi-word
567 registers. The regsets should exactly match. */
568 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
569 {
570 if (rtl_dump_file)
571 {
572 fprintf (rtl_dump_file,
573 "live_at_start mismatch in bb %d, aborting\n",
574 bb->index);
575 debug_bitmap_file (rtl_dump_file, bb->global_live_at_start);
576 debug_bitmap_file (rtl_dump_file, new_live_at_start);
577 }
578 print_rtl_and_abort ();
579 }
580 }
581 else
582 {
583 int i;
584
585 /* Find the set of changed registers. */
586 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
587
588 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
589 {
590 /* No registers should die. */
591 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
592 {
593 if (rtl_dump_file)
594 fprintf (rtl_dump_file,
595 "Register %d died unexpectedly in block %d\n", i,
596 bb->index);
597 print_rtl_and_abort ();
598 }
599
600 /* Verify that the now-live register is wider than word_mode. */
601 verify_wide_reg (i, bb->head, bb->end);
602 });
603 }
604 }
605
606 /* Updates life information starting with the basic blocks set in BLOCKS.
607 If BLOCKS is null, consider it to be the universal set.
608
609 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
610 we are only expecting local modifications to basic blocks. If we find
611 extra registers live at the beginning of a block, then we either killed
612 useful data, or we have a broken split that wants data not provided.
613 If we find registers removed from live_at_start, that means we have
614 a broken peephole that is killing a register it shouldn't.
615
616 ??? This is not true in one situation -- when a pre-reload splitter
617 generates subregs of a multi-word pseudo, current life analysis will
618 lose the kill. So we _can_ have a pseudo go live. How irritating.
619
620 Including PROP_REG_INFO does not properly refresh regs_ever_live
621 unless the caller resets it to zero. */
622
623 void
624 update_life_info (blocks, extent, prop_flags)
625 sbitmap blocks;
626 enum update_life_extent extent;
627 int prop_flags;
628 {
629 regset tmp;
630 regset_head tmp_head;
631 int i;
632
633 tmp = INITIALIZE_REG_SET (tmp_head);
634
635 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
636 ? TV_LIFE_UPDATE : TV_LIFE);
637
638 /* Changes to the CFG are only allowed when
639 doing a global update for the entire CFG. */
640 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
641 && (extent == UPDATE_LIFE_LOCAL || blocks))
642 abort ();
643
644 /* Clear log links in case we are asked to (re)compute them. */
645 if (prop_flags & PROP_LOG_LINKS)
646 clear_log_links (blocks);
647
648 /* For a global update, we go through the relaxation process again. */
649 if (extent != UPDATE_LIFE_LOCAL)
650 {
651 for ( ; ; )
652 {
653 int changed = 0;
654
655 calculate_global_regs_live (blocks, blocks,
656 prop_flags & (PROP_SCAN_DEAD_CODE
657 | PROP_ALLOW_CFG_CHANGES));
658
659 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
660 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
661 break;
662
663 /* Removing dead code may allow the CFG to be simplified which
664 in turn may allow for further dead code detection / removal. */
665 for (i = n_basic_blocks - 1; i >= 0; --i)
666 {
667 basic_block bb = BASIC_BLOCK (i);
668
669 COPY_REG_SET (tmp, bb->global_live_at_end);
670 changed |= propagate_block (bb, tmp, NULL, NULL,
671 prop_flags & (PROP_SCAN_DEAD_CODE
672 | PROP_KILL_DEAD_CODE));
673 }
674
675 if (! changed || ! cleanup_cfg (CLEANUP_EXPENSIVE))
676 break;
677 }
678
679 /* If asked, remove notes from the blocks we'll update. */
680 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
681 count_or_remove_death_notes (blocks, 1);
682 }
683
684 if (blocks)
685 {
686 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
687 {
688 basic_block bb = BASIC_BLOCK (i);
689
690 COPY_REG_SET (tmp, bb->global_live_at_end);
691 propagate_block (bb, tmp, NULL, NULL, prop_flags);
692
693 if (extent == UPDATE_LIFE_LOCAL)
694 verify_local_live_at_start (tmp, bb);
695 });
696 }
697 else
698 {
699 for (i = n_basic_blocks - 1; i >= 0; --i)
700 {
701 basic_block bb = BASIC_BLOCK (i);
702
703 COPY_REG_SET (tmp, bb->global_live_at_end);
704 propagate_block (bb, tmp, NULL, NULL, prop_flags);
705
706 if (extent == UPDATE_LIFE_LOCAL)
707 verify_local_live_at_start (tmp, bb);
708 }
709 }
710
711 FREE_REG_SET (tmp);
712
713 if (prop_flags & PROP_REG_INFO)
714 {
715 /* The only pseudos that are live at the beginning of the function
716 are those that were not set anywhere in the function. local-alloc
717 doesn't know how to handle these correctly, so mark them as not
718 local to any one basic block. */
719 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
720 FIRST_PSEUDO_REGISTER, i,
721 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
722
723 /* We have a problem with any pseudoreg that lives across the setjmp.
724 ANSI says that if a user variable does not change in value between
725 the setjmp and the longjmp, then the longjmp preserves it. This
726 includes longjmp from a place where the pseudo appears dead.
727 (In principle, the value still exists if it is in scope.)
728 If the pseudo goes in a hard reg, some other value may occupy
729 that hard reg where this pseudo is dead, thus clobbering the pseudo.
730 Conclusion: such a pseudo must not go in a hard reg. */
731 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
732 FIRST_PSEUDO_REGISTER, i,
733 {
734 if (regno_reg_rtx[i] != 0)
735 {
736 REG_LIVE_LENGTH (i) = -1;
737 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
738 }
739 });
740 }
741 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
742 ? TV_LIFE_UPDATE : TV_LIFE);
743 }
744
745 /* Free the variables allocated by find_basic_blocks.
746
747 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
748
749 void
750 free_basic_block_vars (keep_head_end_p)
751 int keep_head_end_p;
752 {
753 if (! keep_head_end_p)
754 {
755 if (basic_block_info)
756 {
757 clear_edges ();
758 VARRAY_FREE (basic_block_info);
759 }
760 n_basic_blocks = 0;
761
762 ENTRY_BLOCK_PTR->aux = NULL;
763 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
764 EXIT_BLOCK_PTR->aux = NULL;
765 EXIT_BLOCK_PTR->global_live_at_start = NULL;
766 }
767 }
768
769 /* Delete any insns that copy a register to itself. */
770
771 void
772 delete_noop_moves (f)
773 rtx f ATTRIBUTE_UNUSED;
774 {
775 int i;
776 rtx insn, next;
777 basic_block bb;
778
779 for (i = 0; i < n_basic_blocks; i++)
780 {
781 bb = BASIC_BLOCK (i);
782 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
783 {
784 next = NEXT_INSN (insn);
785 if (INSN_P (insn) && noop_move_p (insn))
786 {
787 rtx note;
788
789 /* If we're about to remove the first insn of a libcall
790 then move the libcall note to the next real insn and
791 update the retval note. */
792 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
793 && XEXP (note, 0) != insn)
794 {
795 rtx new_libcall_insn = next_real_insn (insn);
796 rtx retval_note = find_reg_note (XEXP (note, 0),
797 REG_RETVAL, NULL_RTX);
798 REG_NOTES (new_libcall_insn)
799 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
800 REG_NOTES (new_libcall_insn));
801 XEXP (retval_note, 0) = new_libcall_insn;
802 }
803
804 /* Do not call delete_insn here since that may change
805 the basic block boundaries which upsets some callers. */
806 PUT_CODE (insn, NOTE);
807 NOTE_LINE_NUMBER (insn) = NOTE_INSN_DELETED;
808 NOTE_SOURCE_FILE (insn) = 0;
809 }
810 }
811 }
812 }
813
814 /* Delete any jump tables never referenced. We can't delete them at the
815 time of removing tablejump insn as they are referenced by the preceding
816 insns computing the destination, so we delay deleting and garbagecollect
817 them once life information is computed. */
818 static void
819 delete_dead_jumptables ()
820 {
821 rtx insn, next;
822 for (insn = get_insns (); insn; insn = next)
823 {
824 next = NEXT_INSN (insn);
825 if (GET_CODE (insn) == CODE_LABEL
826 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
827 && GET_CODE (next) == JUMP_INSN
828 && (GET_CODE (PATTERN (next)) == ADDR_VEC
829 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
830 {
831 if (rtl_dump_file)
832 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
833 delete_insn (NEXT_INSN (insn));
834 delete_insn (insn);
835 next = NEXT_INSN (next);
836 }
837 }
838 }
839
840 /* Determine if the stack pointer is constant over the life of the function.
841 Only useful before prologues have been emitted. */
842
843 static void
844 notice_stack_pointer_modification_1 (x, pat, data)
845 rtx x;
846 rtx pat ATTRIBUTE_UNUSED;
847 void *data ATTRIBUTE_UNUSED;
848 {
849 if (x == stack_pointer_rtx
850 /* The stack pointer is only modified indirectly as the result
851 of a push until later in flow. See the comments in rtl.texi
852 regarding Embedded Side-Effects on Addresses. */
853 || (GET_CODE (x) == MEM
854 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
855 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
856 current_function_sp_is_unchanging = 0;
857 }
858
859 static void
860 notice_stack_pointer_modification (f)
861 rtx f;
862 {
863 rtx insn;
864
865 /* Assume that the stack pointer is unchanging if alloca hasn't
866 been used. */
867 current_function_sp_is_unchanging = !current_function_calls_alloca;
868 if (! current_function_sp_is_unchanging)
869 return;
870
871 for (insn = f; insn; insn = NEXT_INSN (insn))
872 {
873 if (INSN_P (insn))
874 {
875 /* Check if insn modifies the stack pointer. */
876 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
877 NULL);
878 if (! current_function_sp_is_unchanging)
879 return;
880 }
881 }
882 }
883
884 /* Mark a register in SET. Hard registers in large modes get all
885 of their component registers set as well. */
886
887 static void
888 mark_reg (reg, xset)
889 rtx reg;
890 void *xset;
891 {
892 regset set = (regset) xset;
893 int regno = REGNO (reg);
894
895 if (GET_MODE (reg) == BLKmode)
896 abort ();
897
898 SET_REGNO_REG_SET (set, regno);
899 if (regno < FIRST_PSEUDO_REGISTER)
900 {
901 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
902 while (--n > 0)
903 SET_REGNO_REG_SET (set, regno + n);
904 }
905 }
906
907 /* Mark those regs which are needed at the end of the function as live
908 at the end of the last basic block. */
909
910 static void
911 mark_regs_live_at_end (set)
912 regset set;
913 {
914 unsigned int i;
915
916 /* If exiting needs the right stack value, consider the stack pointer
917 live at the end of the function. */
918 if ((HAVE_epilogue && reload_completed)
919 || ! EXIT_IGNORE_STACK
920 || (! FRAME_POINTER_REQUIRED
921 && ! current_function_calls_alloca
922 && flag_omit_frame_pointer)
923 || current_function_sp_is_unchanging)
924 {
925 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
926 }
927
928 /* Mark the frame pointer if needed at the end of the function. If
929 we end up eliminating it, it will be removed from the live list
930 of each basic block by reload. */
931
932 if (! reload_completed || frame_pointer_needed)
933 {
934 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
935 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
936 /* If they are different, also mark the hard frame pointer as live. */
937 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
938 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
939 #endif
940 }
941
942 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
943 /* Many architectures have a GP register even without flag_pic.
944 Assume the pic register is not in use, or will be handled by
945 other means, if it is not fixed. */
946 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
947 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
948 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
949 #endif
950
951 /* Mark all global registers, and all registers used by the epilogue
952 as being live at the end of the function since they may be
953 referenced by our caller. */
954 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
955 if (global_regs[i] || EPILOGUE_USES (i))
956 SET_REGNO_REG_SET (set, i);
957
958 if (HAVE_epilogue && reload_completed)
959 {
960 /* Mark all call-saved registers that we actually used. */
961 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
962 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
963 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
964 SET_REGNO_REG_SET (set, i);
965 }
966
967 #ifdef EH_RETURN_DATA_REGNO
968 /* Mark the registers that will contain data for the handler. */
969 if (reload_completed && current_function_calls_eh_return)
970 for (i = 0; ; ++i)
971 {
972 unsigned regno = EH_RETURN_DATA_REGNO(i);
973 if (regno == INVALID_REGNUM)
974 break;
975 SET_REGNO_REG_SET (set, regno);
976 }
977 #endif
978 #ifdef EH_RETURN_STACKADJ_RTX
979 if ((! HAVE_epilogue || ! reload_completed)
980 && current_function_calls_eh_return)
981 {
982 rtx tmp = EH_RETURN_STACKADJ_RTX;
983 if (tmp && REG_P (tmp))
984 mark_reg (tmp, set);
985 }
986 #endif
987 #ifdef EH_RETURN_HANDLER_RTX
988 if ((! HAVE_epilogue || ! reload_completed)
989 && current_function_calls_eh_return)
990 {
991 rtx tmp = EH_RETURN_HANDLER_RTX;
992 if (tmp && REG_P (tmp))
993 mark_reg (tmp, set);
994 }
995 #endif
996
997 /* Mark function return value. */
998 diddle_return_value (mark_reg, set);
999 }
1000
1001 /* Callback function for for_each_successor_phi. DATA is a regset.
1002 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1003 INSN, in the regset. */
1004
1005 static int
1006 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1007 rtx insn ATTRIBUTE_UNUSED;
1008 int dest_regno ATTRIBUTE_UNUSED;
1009 int src_regno;
1010 void *data;
1011 {
1012 regset live = (regset) data;
1013 SET_REGNO_REG_SET (live, src_regno);
1014 return 0;
1015 }
1016
1017 /* Propagate global life info around the graph of basic blocks. Begin
1018 considering blocks with their corresponding bit set in BLOCKS_IN.
1019 If BLOCKS_IN is null, consider it the universal set.
1020
1021 BLOCKS_OUT is set for every block that was changed. */
1022
1023 static void
1024 calculate_global_regs_live (blocks_in, blocks_out, flags)
1025 sbitmap blocks_in, blocks_out;
1026 int flags;
1027 {
1028 basic_block *queue, *qhead, *qtail, *qend;
1029 regset tmp, new_live_at_end, call_used;
1030 regset_head tmp_head, call_used_head;
1031 regset_head new_live_at_end_head;
1032 int i;
1033
1034 tmp = INITIALIZE_REG_SET (tmp_head);
1035 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1036 call_used = INITIALIZE_REG_SET (call_used_head);
1037
1038 /* Inconveniently, this is only redily available in hard reg set form. */
1039 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1040 if (call_used_regs[i])
1041 SET_REGNO_REG_SET (call_used, i);
1042
1043 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1044 because the `head == tail' style test for an empty queue doesn't
1045 work with a full queue. */
1046 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1047 qtail = queue;
1048 qhead = qend = queue + n_basic_blocks + 2;
1049
1050 /* Queue the blocks set in the initial mask. Do this in reverse block
1051 number order so that we are more likely for the first round to do
1052 useful work. We use AUX non-null to flag that the block is queued. */
1053 if (blocks_in)
1054 {
1055 /* Clear out the garbage that might be hanging out in bb->aux. */
1056 for (i = n_basic_blocks - 1; i >= 0; --i)
1057 BASIC_BLOCK (i)->aux = NULL;
1058
1059 EXECUTE_IF_SET_IN_SBITMAP (blocks_in, 0, i,
1060 {
1061 basic_block bb = BASIC_BLOCK (i);
1062 *--qhead = bb;
1063 bb->aux = bb;
1064 });
1065 }
1066 else
1067 {
1068 for (i = 0; i < n_basic_blocks; ++i)
1069 {
1070 basic_block bb = BASIC_BLOCK (i);
1071 *--qhead = bb;
1072 bb->aux = bb;
1073 }
1074 }
1075
1076 if (blocks_out)
1077 sbitmap_zero (blocks_out);
1078
1079 /* We work through the queue until there are no more blocks. What
1080 is live at the end of this block is precisely the union of what
1081 is live at the beginning of all its successors. So, we set its
1082 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1083 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1084 this block by walking through the instructions in this block in
1085 reverse order and updating as we go. If that changed
1086 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1087 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1088
1089 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1090 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1091 must either be live at the end of the block, or used within the
1092 block. In the latter case, it will certainly never disappear
1093 from GLOBAL_LIVE_AT_START. In the former case, the register
1094 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1095 for one of the successor blocks. By induction, that cannot
1096 occur. */
1097 while (qhead != qtail)
1098 {
1099 int rescan, changed;
1100 basic_block bb;
1101 edge e;
1102
1103 bb = *qhead++;
1104 if (qhead == qend)
1105 qhead = queue;
1106 bb->aux = NULL;
1107
1108 /* Begin by propagating live_at_start from the successor blocks. */
1109 CLEAR_REG_SET (new_live_at_end);
1110 for (e = bb->succ; e; e = e->succ_next)
1111 {
1112 basic_block sb = e->dest;
1113
1114 /* Call-clobbered registers die across exception and call edges. */
1115 /* ??? Abnormal call edges ignored for the moment, as this gets
1116 confused by sibling call edges, which crashes reg-stack. */
1117 if (e->flags & EDGE_EH)
1118 {
1119 bitmap_operation (tmp, sb->global_live_at_start,
1120 call_used, BITMAP_AND_COMPL);
1121 IOR_REG_SET (new_live_at_end, tmp);
1122 }
1123 else
1124 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1125 }
1126
1127 /* The all-important stack pointer must always be live. */
1128 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1129
1130 /* Before reload, there are a few registers that must be forced
1131 live everywhere -- which might not already be the case for
1132 blocks within infinite loops. */
1133 if (! reload_completed)
1134 {
1135 /* Any reference to any pseudo before reload is a potential
1136 reference of the frame pointer. */
1137 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1138
1139 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1140 /* Pseudos with argument area equivalences may require
1141 reloading via the argument pointer. */
1142 if (fixed_regs[ARG_POINTER_REGNUM])
1143 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1144 #endif
1145
1146 /* Any constant, or pseudo with constant equivalences, may
1147 require reloading from memory using the pic register. */
1148 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1149 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1150 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1151 }
1152
1153 /* Regs used in phi nodes are not included in
1154 global_live_at_start, since they are live only along a
1155 particular edge. Set those regs that are live because of a
1156 phi node alternative corresponding to this particular block. */
1157 if (in_ssa_form)
1158 for_each_successor_phi (bb, &set_phi_alternative_reg,
1159 new_live_at_end);
1160
1161 if (bb == ENTRY_BLOCK_PTR)
1162 {
1163 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1164 continue;
1165 }
1166
1167 /* On our first pass through this block, we'll go ahead and continue.
1168 Recognize first pass by local_set NULL. On subsequent passes, we
1169 get to skip out early if live_at_end wouldn't have changed. */
1170
1171 if (bb->local_set == NULL)
1172 {
1173 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1174 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1175 rescan = 1;
1176 }
1177 else
1178 {
1179 /* If any bits were removed from live_at_end, we'll have to
1180 rescan the block. This wouldn't be necessary if we had
1181 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1182 local_live is really dependent on live_at_end. */
1183 CLEAR_REG_SET (tmp);
1184 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1185 new_live_at_end, BITMAP_AND_COMPL);
1186
1187 if (! rescan)
1188 {
1189 /* If any of the registers in the new live_at_end set are
1190 conditionally set in this basic block, we must rescan.
1191 This is because conditional lifetimes at the end of the
1192 block do not just take the live_at_end set into account,
1193 but also the liveness at the start of each successor
1194 block. We can miss changes in those sets if we only
1195 compare the new live_at_end against the previous one. */
1196 CLEAR_REG_SET (tmp);
1197 rescan = bitmap_operation (tmp, new_live_at_end,
1198 bb->cond_local_set, BITMAP_AND);
1199 }
1200
1201 if (! rescan)
1202 {
1203 /* Find the set of changed bits. Take this opportunity
1204 to notice that this set is empty and early out. */
1205 CLEAR_REG_SET (tmp);
1206 changed = bitmap_operation (tmp, bb->global_live_at_end,
1207 new_live_at_end, BITMAP_XOR);
1208 if (! changed)
1209 continue;
1210
1211 /* If any of the changed bits overlap with local_set,
1212 we'll have to rescan the block. Detect overlap by
1213 the AND with ~local_set turning off bits. */
1214 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1215 BITMAP_AND_COMPL);
1216 }
1217 }
1218
1219 /* Let our caller know that BB changed enough to require its
1220 death notes updated. */
1221 if (blocks_out)
1222 SET_BIT (blocks_out, bb->index);
1223
1224 if (! rescan)
1225 {
1226 /* Add to live_at_start the set of all registers in
1227 new_live_at_end that aren't in the old live_at_end. */
1228
1229 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1230 BITMAP_AND_COMPL);
1231 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1232
1233 changed = bitmap_operation (bb->global_live_at_start,
1234 bb->global_live_at_start,
1235 tmp, BITMAP_IOR);
1236 if (! changed)
1237 continue;
1238 }
1239 else
1240 {
1241 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1242
1243 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1244 into live_at_start. */
1245 propagate_block (bb, new_live_at_end, bb->local_set,
1246 bb->cond_local_set, flags);
1247
1248 /* If live_at start didn't change, no need to go farther. */
1249 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1250 continue;
1251
1252 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1253 }
1254
1255 /* Queue all predecessors of BB so that we may re-examine
1256 their live_at_end. */
1257 for (e = bb->pred; e; e = e->pred_next)
1258 {
1259 basic_block pb = e->src;
1260 if (pb->aux == NULL)
1261 {
1262 *qtail++ = pb;
1263 if (qtail == qend)
1264 qtail = queue;
1265 pb->aux = pb;
1266 }
1267 }
1268 }
1269
1270 FREE_REG_SET (tmp);
1271 FREE_REG_SET (new_live_at_end);
1272 FREE_REG_SET (call_used);
1273
1274 if (blocks_out)
1275 {
1276 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1277 {
1278 basic_block bb = BASIC_BLOCK (i);
1279 FREE_REG_SET (bb->local_set);
1280 FREE_REG_SET (bb->cond_local_set);
1281 });
1282 }
1283 else
1284 {
1285 for (i = n_basic_blocks - 1; i >= 0; --i)
1286 {
1287 basic_block bb = BASIC_BLOCK (i);
1288 FREE_REG_SET (bb->local_set);
1289 FREE_REG_SET (bb->cond_local_set);
1290 }
1291 }
1292
1293 free (queue);
1294 }
1295
1296 \f
1297 /* This structure is used to pass parameters to an from the
1298 the function find_regno_partial(). It is used to pass in the
1299 register number we are looking, as well as to return any rtx
1300 we find. */
1301
1302 typedef struct {
1303 unsigned regno_to_find;
1304 rtx retval;
1305 } find_regno_partial_param;
1306
1307
1308 /* Find the rtx for the reg numbers specified in 'data' if it is
1309 part of an expression which only uses part of the register. Return
1310 it in the structure passed in. */
1311 static int
1312 find_regno_partial (ptr, data)
1313 rtx *ptr;
1314 void *data;
1315 {
1316 find_regno_partial_param *param = (find_regno_partial_param *)data;
1317 unsigned reg = param->regno_to_find;
1318 param->retval = NULL_RTX;
1319
1320 if (*ptr == NULL_RTX)
1321 return 0;
1322
1323 switch (GET_CODE (*ptr))
1324 {
1325 case ZERO_EXTRACT:
1326 case SIGN_EXTRACT:
1327 case STRICT_LOW_PART:
1328 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1329 {
1330 param->retval = XEXP (*ptr, 0);
1331 return 1;
1332 }
1333 break;
1334
1335 case SUBREG:
1336 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1337 && REGNO (SUBREG_REG (*ptr)) == reg)
1338 {
1339 param->retval = SUBREG_REG (*ptr);
1340 return 1;
1341 }
1342 break;
1343 }
1344
1345 return 0;
1346 }
1347
1348 /* Process all immediate successors of the entry block looking for pseudo
1349 registers which are live on entry. Find all of those whose first
1350 instance is a partial register reference of some kind, and initialize
1351 them to 0 after the entry block. This will prevent bit sets within
1352 registers whose value is unknown, and may contain some kind of sticky
1353 bits we don't want. */
1354
1355 int
1356 initialize_uninitialized_subregs ()
1357 {
1358 rtx insn;
1359 edge e;
1360 int reg, did_something = 0;
1361 find_regno_partial_param param;
1362
1363 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1364 {
1365 basic_block bb = e->dest;
1366 regset map = bb->global_live_at_start;
1367 EXECUTE_IF_SET_IN_REG_SET (map,
1368 FIRST_PSEUDO_REGISTER, reg,
1369 {
1370 int uid = REGNO_FIRST_UID (reg);
1371 rtx i;
1372
1373 /* Find an insn which mentions the register we are looking for.
1374 Its preferable to have an instance of the register's rtl since
1375 there may be various flags set which we need to duplicate.
1376 If we can't find it, its probably an automatic whose initial
1377 value doesnt matter, or hopefully something we dont care about. */
1378 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1379 ;
1380 if (i != NULL_RTX)
1381 {
1382 /* Found the insn, now get the REG rtx, if we can. */
1383 param.regno_to_find = reg;
1384 for_each_rtx (&i, find_regno_partial, &param);
1385 if (param.retval != NULL_RTX)
1386 {
1387 insn = gen_move_insn (param.retval,
1388 CONST0_RTX (GET_MODE (param.retval)));
1389 insert_insn_on_edge (insn, e);
1390 did_something = 1;
1391 }
1392 }
1393 });
1394 }
1395
1396 if (did_something)
1397 commit_edge_insertions ();
1398 return did_something;
1399 }
1400
1401 \f
1402 /* Subroutines of life analysis. */
1403
1404 /* Allocate the permanent data structures that represent the results
1405 of life analysis. Not static since used also for stupid life analysis. */
1406
1407 void
1408 allocate_bb_life_data ()
1409 {
1410 int i;
1411
1412 for (i = 0; i < n_basic_blocks; i++)
1413 {
1414 basic_block bb = BASIC_BLOCK (i);
1415
1416 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1417 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1418 }
1419
1420 ENTRY_BLOCK_PTR->global_live_at_end
1421 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1422 EXIT_BLOCK_PTR->global_live_at_start
1423 = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1424
1425 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1426 }
1427
1428 void
1429 allocate_reg_life_data ()
1430 {
1431 int i;
1432
1433 max_regno = max_reg_num ();
1434
1435 /* Recalculate the register space, in case it has grown. Old style
1436 vector oriented regsets would set regset_{size,bytes} here also. */
1437 allocate_reg_info (max_regno, FALSE, FALSE);
1438
1439 /* Reset all the data we'll collect in propagate_block and its
1440 subroutines. */
1441 for (i = 0; i < max_regno; i++)
1442 {
1443 REG_N_SETS (i) = 0;
1444 REG_N_REFS (i) = 0;
1445 REG_N_DEATHS (i) = 0;
1446 REG_N_CALLS_CROSSED (i) = 0;
1447 REG_LIVE_LENGTH (i) = 0;
1448 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1449 }
1450 }
1451
1452 /* Delete dead instructions for propagate_block. */
1453
1454 static void
1455 propagate_block_delete_insn (bb, insn)
1456 basic_block bb;
1457 rtx insn;
1458 {
1459 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1460 bool purge = false;
1461
1462 /* If the insn referred to a label, and that label was attached to
1463 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1464 pretty much mandatory to delete it, because the ADDR_VEC may be
1465 referencing labels that no longer exist.
1466
1467 INSN may reference a deleted label, particularly when a jump
1468 table has been optimized into a direct jump. There's no
1469 real good way to fix up the reference to the deleted label
1470 when the label is deleted, so we just allow it here.
1471
1472 After dead code elimination is complete, we do search for
1473 any REG_LABEL notes which reference deleted labels as a
1474 sanity check. */
1475
1476 if (inote && GET_CODE (inote) == CODE_LABEL)
1477 {
1478 rtx label = XEXP (inote, 0);
1479 rtx next;
1480
1481 /* The label may be forced if it has been put in the constant
1482 pool. If that is the only use we must discard the table
1483 jump following it, but not the label itself. */
1484 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1485 && (next = next_nonnote_insn (label)) != NULL
1486 && GET_CODE (next) == JUMP_INSN
1487 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1488 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1489 {
1490 rtx pat = PATTERN (next);
1491 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1492 int len = XVECLEN (pat, diff_vec_p);
1493 int i;
1494
1495 for (i = 0; i < len; i++)
1496 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1497
1498 delete_insn (next);
1499 }
1500 }
1501
1502 if (bb->end == insn)
1503 purge = true;
1504 delete_insn (insn);
1505 if (purge)
1506 purge_dead_edges (bb);
1507 }
1508
1509 /* Delete dead libcalls for propagate_block. Return the insn
1510 before the libcall. */
1511
1512 static rtx
1513 propagate_block_delete_libcall ( insn, note)
1514 rtx insn, note;
1515 {
1516 rtx first = XEXP (note, 0);
1517 rtx before = PREV_INSN (first);
1518
1519 delete_insn_chain (first, insn);
1520 return before;
1521 }
1522
1523 /* Update the life-status of regs for one insn. Return the previous insn. */
1524
1525 rtx
1526 propagate_one_insn (pbi, insn)
1527 struct propagate_block_info *pbi;
1528 rtx insn;
1529 {
1530 rtx prev = PREV_INSN (insn);
1531 int flags = pbi->flags;
1532 int insn_is_dead = 0;
1533 int libcall_is_dead = 0;
1534 rtx note;
1535 int i;
1536
1537 if (! INSN_P (insn))
1538 return prev;
1539
1540 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1541 if (flags & PROP_SCAN_DEAD_CODE)
1542 {
1543 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1544 libcall_is_dead = (insn_is_dead && note != 0
1545 && libcall_dead_p (pbi, note, insn));
1546 }
1547
1548 /* If an instruction consists of just dead store(s) on final pass,
1549 delete it. */
1550 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1551 {
1552 /* If we're trying to delete a prologue or epilogue instruction
1553 that isn't flagged as possibly being dead, something is wrong.
1554 But if we are keeping the stack pointer depressed, we might well
1555 be deleting insns that are used to compute the amount to update
1556 it by, so they are fine. */
1557 if (reload_completed
1558 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1559 && (TYPE_RETURNS_STACK_DEPRESSED
1560 (TREE_TYPE (current_function_decl))))
1561 && (((HAVE_epilogue || HAVE_prologue)
1562 && prologue_epilogue_contains (insn))
1563 || (HAVE_sibcall_epilogue
1564 && sibcall_epilogue_contains (insn)))
1565 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1566 abort ();
1567
1568 /* Record sets. Do this even for dead instructions, since they
1569 would have killed the values if they hadn't been deleted. */
1570 mark_set_regs (pbi, PATTERN (insn), insn);
1571
1572 /* CC0 is now known to be dead. Either this insn used it,
1573 in which case it doesn't anymore, or clobbered it,
1574 so the next insn can't use it. */
1575 pbi->cc0_live = 0;
1576
1577 if (libcall_is_dead)
1578 prev = propagate_block_delete_libcall ( insn, note);
1579 else
1580 propagate_block_delete_insn (pbi->bb, insn);
1581
1582 return prev;
1583 }
1584
1585 /* See if this is an increment or decrement that can be merged into
1586 a following memory address. */
1587 #ifdef AUTO_INC_DEC
1588 {
1589 rtx x = single_set (insn);
1590
1591 /* Does this instruction increment or decrement a register? */
1592 if ((flags & PROP_AUTOINC)
1593 && x != 0
1594 && GET_CODE (SET_DEST (x)) == REG
1595 && (GET_CODE (SET_SRC (x)) == PLUS
1596 || GET_CODE (SET_SRC (x)) == MINUS)
1597 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1598 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1599 /* Ok, look for a following memory ref we can combine with.
1600 If one is found, change the memory ref to a PRE_INC
1601 or PRE_DEC, cancel this insn, and return 1.
1602 Return 0 if nothing has been done. */
1603 && try_pre_increment_1 (pbi, insn))
1604 return prev;
1605 }
1606 #endif /* AUTO_INC_DEC */
1607
1608 CLEAR_REG_SET (pbi->new_set);
1609
1610 /* If this is not the final pass, and this insn is copying the value of
1611 a library call and it's dead, don't scan the insns that perform the
1612 library call, so that the call's arguments are not marked live. */
1613 if (libcall_is_dead)
1614 {
1615 /* Record the death of the dest reg. */
1616 mark_set_regs (pbi, PATTERN (insn), insn);
1617
1618 insn = XEXP (note, 0);
1619 return PREV_INSN (insn);
1620 }
1621 else if (GET_CODE (PATTERN (insn)) == SET
1622 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1623 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1624 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1625 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1626 /* We have an insn to pop a constant amount off the stack.
1627 (Such insns use PLUS regardless of the direction of the stack,
1628 and any insn to adjust the stack by a constant is always a pop.)
1629 These insns, if not dead stores, have no effect on life. */
1630 ;
1631 else
1632 {
1633 /* Any regs live at the time of a call instruction must not go
1634 in a register clobbered by calls. Find all regs now live and
1635 record this for them. */
1636
1637 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1638 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1639 { REG_N_CALLS_CROSSED (i)++; });
1640
1641 /* Record sets. Do this even for dead instructions, since they
1642 would have killed the values if they hadn't been deleted. */
1643 mark_set_regs (pbi, PATTERN (insn), insn);
1644
1645 if (GET_CODE (insn) == CALL_INSN)
1646 {
1647 int i;
1648 rtx note, cond;
1649
1650 cond = NULL_RTX;
1651 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1652 cond = COND_EXEC_TEST (PATTERN (insn));
1653
1654 /* Non-constant calls clobber memory. */
1655 if (! CONST_OR_PURE_CALL_P (insn))
1656 {
1657 free_EXPR_LIST_list (&pbi->mem_set_list);
1658 pbi->mem_set_list_len = 0;
1659 }
1660
1661 /* There may be extra registers to be clobbered. */
1662 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1663 note;
1664 note = XEXP (note, 1))
1665 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1666 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1667 cond, insn, pbi->flags);
1668
1669 /* Calls change all call-used and global registers. */
1670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1671 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1672 {
1673 /* We do not want REG_UNUSED notes for these registers. */
1674 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1675 cond, insn,
1676 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1677 }
1678 }
1679
1680 /* If an insn doesn't use CC0, it becomes dead since we assume
1681 that every insn clobbers it. So show it dead here;
1682 mark_used_regs will set it live if it is referenced. */
1683 pbi->cc0_live = 0;
1684
1685 /* Record uses. */
1686 if (! insn_is_dead)
1687 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1688
1689 /* Sometimes we may have inserted something before INSN (such as a move)
1690 when we make an auto-inc. So ensure we will scan those insns. */
1691 #ifdef AUTO_INC_DEC
1692 prev = PREV_INSN (insn);
1693 #endif
1694
1695 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1696 {
1697 int i;
1698 rtx note, cond;
1699
1700 cond = NULL_RTX;
1701 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1702 cond = COND_EXEC_TEST (PATTERN (insn));
1703
1704 /* Calls use their arguments. */
1705 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1706 note;
1707 note = XEXP (note, 1))
1708 if (GET_CODE (XEXP (note, 0)) == USE)
1709 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1710 cond, insn);
1711
1712 /* The stack ptr is used (honorarily) by a CALL insn. */
1713 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1714
1715 /* Calls may also reference any of the global registers,
1716 so they are made live. */
1717 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1718 if (global_regs[i])
1719 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1720 cond, insn);
1721 }
1722 }
1723
1724 /* On final pass, update counts of how many insns in which each reg
1725 is live. */
1726 if (flags & PROP_REG_INFO)
1727 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1728 { REG_LIVE_LENGTH (i)++; });
1729
1730 return prev;
1731 }
1732
1733 /* Initialize a propagate_block_info struct for public consumption.
1734 Note that the structure itself is opaque to this file, but that
1735 the user can use the regsets provided here. */
1736
1737 struct propagate_block_info *
1738 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1739 basic_block bb;
1740 regset live, local_set, cond_local_set;
1741 int flags;
1742 {
1743 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1744
1745 pbi->bb = bb;
1746 pbi->reg_live = live;
1747 pbi->mem_set_list = NULL_RTX;
1748 pbi->mem_set_list_len = 0;
1749 pbi->local_set = local_set;
1750 pbi->cond_local_set = cond_local_set;
1751 pbi->cc0_live = 0;
1752 pbi->flags = flags;
1753
1754 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1755 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1756 else
1757 pbi->reg_next_use = NULL;
1758
1759 pbi->new_set = BITMAP_XMALLOC ();
1760
1761 #ifdef HAVE_conditional_execution
1762 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1763 free_reg_cond_life_info);
1764 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1765
1766 /* If this block ends in a conditional branch, for each register live
1767 from one side of the branch and not the other, record the register
1768 as conditionally dead. */
1769 if (GET_CODE (bb->end) == JUMP_INSN
1770 && any_condjump_p (bb->end))
1771 {
1772 regset_head diff_head;
1773 regset diff = INITIALIZE_REG_SET (diff_head);
1774 basic_block bb_true, bb_false;
1775 rtx cond_true, cond_false, set_src;
1776 int i;
1777
1778 /* Identify the successor blocks. */
1779 bb_true = bb->succ->dest;
1780 if (bb->succ->succ_next != NULL)
1781 {
1782 bb_false = bb->succ->succ_next->dest;
1783
1784 if (bb->succ->flags & EDGE_FALLTHRU)
1785 {
1786 basic_block t = bb_false;
1787 bb_false = bb_true;
1788 bb_true = t;
1789 }
1790 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1791 abort ();
1792 }
1793 else
1794 {
1795 /* This can happen with a conditional jump to the next insn. */
1796 if (JUMP_LABEL (bb->end) != bb_true->head)
1797 abort ();
1798
1799 /* Simplest way to do nothing. */
1800 bb_false = bb_true;
1801 }
1802
1803 /* Extract the condition from the branch. */
1804 set_src = SET_SRC (pc_set (bb->end));
1805 cond_true = XEXP (set_src, 0);
1806 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1807 GET_MODE (cond_true), XEXP (cond_true, 0),
1808 XEXP (cond_true, 1));
1809 if (GET_CODE (XEXP (set_src, 1)) == PC)
1810 {
1811 rtx t = cond_false;
1812 cond_false = cond_true;
1813 cond_true = t;
1814 }
1815
1816 /* Compute which register lead different lives in the successors. */
1817 if (bitmap_operation (diff, bb_true->global_live_at_start,
1818 bb_false->global_live_at_start, BITMAP_XOR))
1819 {
1820 rtx reg = XEXP (cond_true, 0);
1821
1822 if (GET_CODE (reg) == SUBREG)
1823 reg = SUBREG_REG (reg);
1824
1825 if (GET_CODE (reg) != REG)
1826 abort ();
1827
1828 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1829
1830 /* For each such register, mark it conditionally dead. */
1831 EXECUTE_IF_SET_IN_REG_SET
1832 (diff, 0, i,
1833 {
1834 struct reg_cond_life_info *rcli;
1835 rtx cond;
1836
1837 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1838
1839 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1840 cond = cond_false;
1841 else
1842 cond = cond_true;
1843 rcli->condition = cond;
1844 rcli->stores = const0_rtx;
1845 rcli->orig_condition = cond;
1846
1847 splay_tree_insert (pbi->reg_cond_dead, i,
1848 (splay_tree_value) rcli);
1849 });
1850 }
1851
1852 FREE_REG_SET (diff);
1853 }
1854 #endif
1855
1856 /* If this block has no successors, any stores to the frame that aren't
1857 used later in the block are dead. So make a pass over the block
1858 recording any such that are made and show them dead at the end. We do
1859 a very conservative and simple job here. */
1860 if (optimize
1861 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1862 && (TYPE_RETURNS_STACK_DEPRESSED
1863 (TREE_TYPE (current_function_decl))))
1864 && (flags & PROP_SCAN_DEAD_CODE)
1865 && (bb->succ == NULL
1866 || (bb->succ->succ_next == NULL
1867 && bb->succ->dest == EXIT_BLOCK_PTR
1868 && ! current_function_calls_eh_return)))
1869 {
1870 rtx insn, set;
1871 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1872 if (GET_CODE (insn) == INSN
1873 && (set = single_set (insn))
1874 && GET_CODE (SET_DEST (set)) == MEM)
1875 {
1876 rtx mem = SET_DEST (set);
1877 rtx canon_mem = canon_rtx (mem);
1878
1879 /* This optimization is performed by faking a store to the
1880 memory at the end of the block. This doesn't work for
1881 unchanging memories because multiple stores to unchanging
1882 memory is illegal and alias analysis doesn't consider it. */
1883 if (RTX_UNCHANGING_P (canon_mem))
1884 continue;
1885
1886 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1887 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1888 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1889 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1890 add_to_mem_set_list (pbi, canon_mem);
1891 }
1892 }
1893
1894 return pbi;
1895 }
1896
1897 /* Release a propagate_block_info struct. */
1898
1899 void
1900 free_propagate_block_info (pbi)
1901 struct propagate_block_info *pbi;
1902 {
1903 free_EXPR_LIST_list (&pbi->mem_set_list);
1904
1905 BITMAP_XFREE (pbi->new_set);
1906
1907 #ifdef HAVE_conditional_execution
1908 splay_tree_delete (pbi->reg_cond_dead);
1909 BITMAP_XFREE (pbi->reg_cond_reg);
1910 #endif
1911
1912 if (pbi->reg_next_use)
1913 free (pbi->reg_next_use);
1914
1915 free (pbi);
1916 }
1917
1918 /* Compute the registers live at the beginning of a basic block BB from
1919 those live at the end.
1920
1921 When called, REG_LIVE contains those live at the end. On return, it
1922 contains those live at the beginning.
1923
1924 LOCAL_SET, if non-null, will be set with all registers killed
1925 unconditionally by this basic block.
1926 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1927 killed conditionally by this basic block. If there is any unconditional
1928 set of a register, then the corresponding bit will be set in LOCAL_SET
1929 and cleared in COND_LOCAL_SET.
1930 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1931 case, the resulting set will be equal to the union of the two sets that
1932 would otherwise be computed.
1933
1934 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
1935
1936 int
1937 propagate_block (bb, live, local_set, cond_local_set, flags)
1938 basic_block bb;
1939 regset live;
1940 regset local_set;
1941 regset cond_local_set;
1942 int flags;
1943 {
1944 struct propagate_block_info *pbi;
1945 rtx insn, prev;
1946 int changed;
1947
1948 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
1949
1950 if (flags & PROP_REG_INFO)
1951 {
1952 int i;
1953
1954 /* Process the regs live at the end of the block.
1955 Mark them as not local to any one basic block. */
1956 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
1957 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
1958 }
1959
1960 /* Scan the block an insn at a time from end to beginning. */
1961
1962 changed = 0;
1963 for (insn = bb->end;; insn = prev)
1964 {
1965 /* If this is a call to `setjmp' et al, warn if any
1966 non-volatile datum is live. */
1967 if ((flags & PROP_REG_INFO)
1968 && GET_CODE (insn) == CALL_INSN
1969 && find_reg_note (insn, REG_SETJMP, NULL))
1970 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
1971
1972 prev = propagate_one_insn (pbi, insn);
1973 changed |= NEXT_INSN (prev) != insn;
1974
1975 if (insn == bb->head)
1976 break;
1977 }
1978
1979 free_propagate_block_info (pbi);
1980
1981 return changed;
1982 }
1983 \f
1984 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
1985 (SET expressions whose destinations are registers dead after the insn).
1986 NEEDED is the regset that says which regs are alive after the insn.
1987
1988 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
1989
1990 If X is the entire body of an insn, NOTES contains the reg notes
1991 pertaining to the insn. */
1992
1993 static int
1994 insn_dead_p (pbi, x, call_ok, notes)
1995 struct propagate_block_info *pbi;
1996 rtx x;
1997 int call_ok;
1998 rtx notes ATTRIBUTE_UNUSED;
1999 {
2000 enum rtx_code code = GET_CODE (x);
2001
2002 #ifdef AUTO_INC_DEC
2003 /* As flow is invoked after combine, we must take existing AUTO_INC
2004 expressions into account. */
2005 for (; notes; notes = XEXP (notes, 1))
2006 {
2007 if (REG_NOTE_KIND (notes) == REG_INC)
2008 {
2009 int regno = REGNO (XEXP (notes, 0));
2010
2011 /* Don't delete insns to set global regs. */
2012 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2013 || REGNO_REG_SET_P (pbi->reg_live, regno))
2014 return 0;
2015 }
2016 }
2017 #endif
2018
2019 /* If setting something that's a reg or part of one,
2020 see if that register's altered value will be live. */
2021
2022 if (code == SET)
2023 {
2024 rtx r = SET_DEST (x);
2025
2026 #ifdef HAVE_cc0
2027 if (GET_CODE (r) == CC0)
2028 return ! pbi->cc0_live;
2029 #endif
2030
2031 /* A SET that is a subroutine call cannot be dead. */
2032 if (GET_CODE (SET_SRC (x)) == CALL)
2033 {
2034 if (! call_ok)
2035 return 0;
2036 }
2037
2038 /* Don't eliminate loads from volatile memory or volatile asms. */
2039 else if (volatile_refs_p (SET_SRC (x)))
2040 return 0;
2041
2042 if (GET_CODE (r) == MEM)
2043 {
2044 rtx temp, canon_r;
2045
2046 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2047 return 0;
2048
2049 canon_r = canon_rtx (r);
2050
2051 /* Walk the set of memory locations we are currently tracking
2052 and see if one is an identical match to this memory location.
2053 If so, this memory write is dead (remember, we're walking
2054 backwards from the end of the block to the start). Since
2055 rtx_equal_p does not check the alias set or flags, we also
2056 must have the potential for them to conflict (anti_dependence). */
2057 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2058 if (anti_dependence (r, XEXP (temp, 0)))
2059 {
2060 rtx mem = XEXP (temp, 0);
2061
2062 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2063 && (GET_MODE_SIZE (GET_MODE (canon_r))
2064 <= GET_MODE_SIZE (GET_MODE (mem))))
2065 return 1;
2066
2067 #ifdef AUTO_INC_DEC
2068 /* Check if memory reference matches an auto increment. Only
2069 post increment/decrement or modify are valid. */
2070 if (GET_MODE (mem) == GET_MODE (r)
2071 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2072 || GET_CODE (XEXP (mem, 0)) == POST_INC
2073 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2074 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2075 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2076 return 1;
2077 #endif
2078 }
2079 }
2080 else
2081 {
2082 while (GET_CODE (r) == SUBREG
2083 || GET_CODE (r) == STRICT_LOW_PART
2084 || GET_CODE (r) == ZERO_EXTRACT)
2085 r = XEXP (r, 0);
2086
2087 if (GET_CODE (r) == REG)
2088 {
2089 int regno = REGNO (r);
2090
2091 /* Obvious. */
2092 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2093 return 0;
2094
2095 /* If this is a hard register, verify that subsequent
2096 words are not needed. */
2097 if (regno < FIRST_PSEUDO_REGISTER)
2098 {
2099 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2100
2101 while (--n > 0)
2102 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2103 return 0;
2104 }
2105
2106 /* Don't delete insns to set global regs. */
2107 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2108 return 0;
2109
2110 /* Make sure insns to set the stack pointer aren't deleted. */
2111 if (regno == STACK_POINTER_REGNUM)
2112 return 0;
2113
2114 /* ??? These bits might be redundant with the force live bits
2115 in calculate_global_regs_live. We would delete from
2116 sequential sets; whether this actually affects real code
2117 for anything but the stack pointer I don't know. */
2118 /* Make sure insns to set the frame pointer aren't deleted. */
2119 if (regno == FRAME_POINTER_REGNUM
2120 && (! reload_completed || frame_pointer_needed))
2121 return 0;
2122 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2123 if (regno == HARD_FRAME_POINTER_REGNUM
2124 && (! reload_completed || frame_pointer_needed))
2125 return 0;
2126 #endif
2127
2128 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2129 /* Make sure insns to set arg pointer are never deleted
2130 (if the arg pointer isn't fixed, there will be a USE
2131 for it, so we can treat it normally). */
2132 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2133 return 0;
2134 #endif
2135
2136 /* Otherwise, the set is dead. */
2137 return 1;
2138 }
2139 }
2140 }
2141
2142 /* If performing several activities, insn is dead if each activity
2143 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2144 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2145 worth keeping. */
2146 else if (code == PARALLEL)
2147 {
2148 int i = XVECLEN (x, 0);
2149
2150 for (i--; i >= 0; i--)
2151 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2152 && GET_CODE (XVECEXP (x, 0, i)) != USE
2153 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2154 return 0;
2155
2156 return 1;
2157 }
2158
2159 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2160 is not necessarily true for hard registers. */
2161 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2162 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2163 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2164 return 1;
2165
2166 /* We do not check other CLOBBER or USE here. An insn consisting of just
2167 a CLOBBER or just a USE should not be deleted. */
2168 return 0;
2169 }
2170
2171 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2172 return 1 if the entire library call is dead.
2173 This is true if INSN copies a register (hard or pseudo)
2174 and if the hard return reg of the call insn is dead.
2175 (The caller should have tested the destination of the SET inside
2176 INSN already for death.)
2177
2178 If this insn doesn't just copy a register, then we don't
2179 have an ordinary libcall. In that case, cse could not have
2180 managed to substitute the source for the dest later on,
2181 so we can assume the libcall is dead.
2182
2183 PBI is the block info giving pseudoregs live before this insn.
2184 NOTE is the REG_RETVAL note of the insn. */
2185
2186 static int
2187 libcall_dead_p (pbi, note, insn)
2188 struct propagate_block_info *pbi;
2189 rtx note;
2190 rtx insn;
2191 {
2192 rtx x = single_set (insn);
2193
2194 if (x)
2195 {
2196 rtx r = SET_SRC (x);
2197
2198 if (GET_CODE (r) == REG)
2199 {
2200 rtx call = XEXP (note, 0);
2201 rtx call_pat;
2202 int i;
2203
2204 /* Find the call insn. */
2205 while (call != insn && GET_CODE (call) != CALL_INSN)
2206 call = NEXT_INSN (call);
2207
2208 /* If there is none, do nothing special,
2209 since ordinary death handling can understand these insns. */
2210 if (call == insn)
2211 return 0;
2212
2213 /* See if the hard reg holding the value is dead.
2214 If this is a PARALLEL, find the call within it. */
2215 call_pat = PATTERN (call);
2216 if (GET_CODE (call_pat) == PARALLEL)
2217 {
2218 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2219 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2220 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2221 break;
2222
2223 /* This may be a library call that is returning a value
2224 via invisible pointer. Do nothing special, since
2225 ordinary death handling can understand these insns. */
2226 if (i < 0)
2227 return 0;
2228
2229 call_pat = XVECEXP (call_pat, 0, i);
2230 }
2231
2232 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2233 }
2234 }
2235 return 1;
2236 }
2237
2238 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2239 live at function entry. Don't count global register variables, variables
2240 in registers that can be used for function arg passing, or variables in
2241 fixed hard registers. */
2242
2243 int
2244 regno_uninitialized (regno)
2245 int regno;
2246 {
2247 if (n_basic_blocks == 0
2248 || (regno < FIRST_PSEUDO_REGISTER
2249 && (global_regs[regno]
2250 || fixed_regs[regno]
2251 || FUNCTION_ARG_REGNO_P (regno))))
2252 return 0;
2253
2254 return REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno);
2255 }
2256
2257 /* 1 if register REGNO was alive at a place where `setjmp' was called
2258 and was set more than once or is an argument.
2259 Such regs may be clobbered by `longjmp'. */
2260
2261 int
2262 regno_clobbered_at_setjmp (regno)
2263 int regno;
2264 {
2265 if (n_basic_blocks == 0)
2266 return 0;
2267
2268 return ((REG_N_SETS (regno) > 1
2269 || REGNO_REG_SET_P (BASIC_BLOCK (0)->global_live_at_start, regno))
2270 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2271 }
2272 \f
2273 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2274 maximal list size; look for overlaps in mode and select the largest. */
2275 static void
2276 add_to_mem_set_list (pbi, mem)
2277 struct propagate_block_info *pbi;
2278 rtx mem;
2279 {
2280 rtx i;
2281
2282 /* We don't know how large a BLKmode store is, so we must not
2283 take them into consideration. */
2284 if (GET_MODE (mem) == BLKmode)
2285 return;
2286
2287 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2288 {
2289 rtx e = XEXP (i, 0);
2290 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2291 {
2292 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2293 {
2294 #ifdef AUTO_INC_DEC
2295 /* If we must store a copy of the mem, we can just modify
2296 the mode of the stored copy. */
2297 if (pbi->flags & PROP_AUTOINC)
2298 PUT_MODE (e, GET_MODE (mem));
2299 else
2300 #endif
2301 XEXP (i, 0) = mem;
2302 }
2303 return;
2304 }
2305 }
2306
2307 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2308 {
2309 #ifdef AUTO_INC_DEC
2310 /* Store a copy of mem, otherwise the address may be
2311 scrogged by find_auto_inc. */
2312 if (pbi->flags & PROP_AUTOINC)
2313 mem = shallow_copy_rtx (mem);
2314 #endif
2315 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2316 pbi->mem_set_list_len++;
2317 }
2318 }
2319
2320 /* INSN references memory, possibly using autoincrement addressing modes.
2321 Find any entries on the mem_set_list that need to be invalidated due
2322 to an address change. */
2323
2324 static void
2325 invalidate_mems_from_autoinc (pbi, insn)
2326 struct propagate_block_info *pbi;
2327 rtx insn;
2328 {
2329 rtx note = REG_NOTES (insn);
2330 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2331 if (REG_NOTE_KIND (note) == REG_INC)
2332 invalidate_mems_from_set (pbi, XEXP (note, 0));
2333 }
2334
2335 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2336
2337 static void
2338 invalidate_mems_from_set (pbi, exp)
2339 struct propagate_block_info *pbi;
2340 rtx exp;
2341 {
2342 rtx temp = pbi->mem_set_list;
2343 rtx prev = NULL_RTX;
2344 rtx next;
2345
2346 while (temp)
2347 {
2348 next = XEXP (temp, 1);
2349 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2350 {
2351 /* Splice this entry out of the list. */
2352 if (prev)
2353 XEXP (prev, 1) = next;
2354 else
2355 pbi->mem_set_list = next;
2356 free_EXPR_LIST_node (temp);
2357 pbi->mem_set_list_len--;
2358 }
2359 else
2360 prev = temp;
2361 temp = next;
2362 }
2363 }
2364
2365 /* Process the registers that are set within X. Their bits are set to
2366 1 in the regset DEAD, because they are dead prior to this insn.
2367
2368 If INSN is nonzero, it is the insn being processed.
2369
2370 FLAGS is the set of operations to perform. */
2371
2372 static void
2373 mark_set_regs (pbi, x, insn)
2374 struct propagate_block_info *pbi;
2375 rtx x, insn;
2376 {
2377 rtx cond = NULL_RTX;
2378 rtx link;
2379 enum rtx_code code;
2380
2381 if (insn)
2382 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2383 {
2384 if (REG_NOTE_KIND (link) == REG_INC)
2385 mark_set_1 (pbi, SET, XEXP (link, 0),
2386 (GET_CODE (x) == COND_EXEC
2387 ? COND_EXEC_TEST (x) : NULL_RTX),
2388 insn, pbi->flags);
2389 }
2390 retry:
2391 switch (code = GET_CODE (x))
2392 {
2393 case SET:
2394 case CLOBBER:
2395 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2396 return;
2397
2398 case COND_EXEC:
2399 cond = COND_EXEC_TEST (x);
2400 x = COND_EXEC_CODE (x);
2401 goto retry;
2402
2403 case PARALLEL:
2404 {
2405 int i;
2406
2407 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2408 {
2409 rtx sub = XVECEXP (x, 0, i);
2410 switch (code = GET_CODE (sub))
2411 {
2412 case COND_EXEC:
2413 if (cond != NULL_RTX)
2414 abort ();
2415
2416 cond = COND_EXEC_TEST (sub);
2417 sub = COND_EXEC_CODE (sub);
2418 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2419 break;
2420 /* Fall through. */
2421
2422 case SET:
2423 case CLOBBER:
2424 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2425 break;
2426
2427 default:
2428 break;
2429 }
2430 }
2431 break;
2432 }
2433
2434 default:
2435 break;
2436 }
2437 }
2438
2439 /* Process a single set, which appears in INSN. REG (which may not
2440 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2441 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2442 If the set is conditional (because it appear in a COND_EXEC), COND
2443 will be the condition. */
2444
2445 static void
2446 mark_set_1 (pbi, code, reg, cond, insn, flags)
2447 struct propagate_block_info *pbi;
2448 enum rtx_code code;
2449 rtx reg, cond, insn;
2450 int flags;
2451 {
2452 int regno_first = -1, regno_last = -1;
2453 unsigned long not_dead = 0;
2454 int i;
2455
2456 /* Modifying just one hardware register of a multi-reg value or just a
2457 byte field of a register does not mean the value from before this insn
2458 is now dead. Of course, if it was dead after it's unused now. */
2459
2460 switch (GET_CODE (reg))
2461 {
2462 case PARALLEL:
2463 /* Some targets place small structures in registers for return values of
2464 functions. We have to detect this case specially here to get correct
2465 flow information. */
2466 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2467 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2468 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2469 flags);
2470 return;
2471
2472 case ZERO_EXTRACT:
2473 case SIGN_EXTRACT:
2474 case STRICT_LOW_PART:
2475 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2476 do
2477 reg = XEXP (reg, 0);
2478 while (GET_CODE (reg) == SUBREG
2479 || GET_CODE (reg) == ZERO_EXTRACT
2480 || GET_CODE (reg) == SIGN_EXTRACT
2481 || GET_CODE (reg) == STRICT_LOW_PART);
2482 if (GET_CODE (reg) == MEM)
2483 break;
2484 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2485 /* Fall through. */
2486
2487 case REG:
2488 regno_last = regno_first = REGNO (reg);
2489 if (regno_first < FIRST_PSEUDO_REGISTER)
2490 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2491 break;
2492
2493 case SUBREG:
2494 if (GET_CODE (SUBREG_REG (reg)) == REG)
2495 {
2496 enum machine_mode outer_mode = GET_MODE (reg);
2497 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2498
2499 /* Identify the range of registers affected. This is moderately
2500 tricky for hard registers. See alter_subreg. */
2501
2502 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2503 if (regno_first < FIRST_PSEUDO_REGISTER)
2504 {
2505 regno_first += subreg_regno_offset (regno_first, inner_mode,
2506 SUBREG_BYTE (reg),
2507 outer_mode);
2508 regno_last = (regno_first
2509 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2510
2511 /* Since we've just adjusted the register number ranges, make
2512 sure REG matches. Otherwise some_was_live will be clear
2513 when it shouldn't have been, and we'll create incorrect
2514 REG_UNUSED notes. */
2515 reg = gen_rtx_REG (outer_mode, regno_first);
2516 }
2517 else
2518 {
2519 /* If the number of words in the subreg is less than the number
2520 of words in the full register, we have a well-defined partial
2521 set. Otherwise the high bits are undefined.
2522
2523 This is only really applicable to pseudos, since we just took
2524 care of multi-word hard registers. */
2525 if (((GET_MODE_SIZE (outer_mode)
2526 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2527 < ((GET_MODE_SIZE (inner_mode)
2528 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2529 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2530 regno_first);
2531
2532 reg = SUBREG_REG (reg);
2533 }
2534 }
2535 else
2536 reg = SUBREG_REG (reg);
2537 break;
2538
2539 default:
2540 break;
2541 }
2542
2543 /* If this set is a MEM, then it kills any aliased writes.
2544 If this set is a REG, then it kills any MEMs which use the reg. */
2545 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
2546 {
2547 if (GET_CODE (reg) == REG)
2548 invalidate_mems_from_set (pbi, reg);
2549
2550 /* If the memory reference had embedded side effects (autoincrement
2551 address modes. Then we may need to kill some entries on the
2552 memory set list. */
2553 if (insn && GET_CODE (reg) == MEM)
2554 invalidate_mems_from_autoinc (pbi, insn);
2555
2556 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2557 /* ??? With more effort we could track conditional memory life. */
2558 && ! cond
2559 /* There are no REG_INC notes for SP, so we can't assume we'll see
2560 everything that invalidates it. To be safe, don't eliminate any
2561 stores though SP; none of them should be redundant anyway. */
2562 && ! reg_mentioned_p (stack_pointer_rtx, reg))
2563 add_to_mem_set_list (pbi, canon_rtx (reg));
2564 }
2565
2566 if (GET_CODE (reg) == REG
2567 && ! (regno_first == FRAME_POINTER_REGNUM
2568 && (! reload_completed || frame_pointer_needed))
2569 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2570 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2571 && (! reload_completed || frame_pointer_needed))
2572 #endif
2573 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2574 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2575 #endif
2576 )
2577 {
2578 int some_was_live = 0, some_was_dead = 0;
2579
2580 for (i = regno_first; i <= regno_last; ++i)
2581 {
2582 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2583 if (pbi->local_set)
2584 {
2585 /* Order of the set operation matters here since both
2586 sets may be the same. */
2587 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2588 if (cond != NULL_RTX
2589 && ! REGNO_REG_SET_P (pbi->local_set, i))
2590 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2591 else
2592 SET_REGNO_REG_SET (pbi->local_set, i);
2593 }
2594 if (code != CLOBBER)
2595 SET_REGNO_REG_SET (pbi->new_set, i);
2596
2597 some_was_live |= needed_regno;
2598 some_was_dead |= ! needed_regno;
2599 }
2600
2601 #ifdef HAVE_conditional_execution
2602 /* Consider conditional death in deciding that the register needs
2603 a death note. */
2604 if (some_was_live && ! not_dead
2605 /* The stack pointer is never dead. Well, not strictly true,
2606 but it's very difficult to tell from here. Hopefully
2607 combine_stack_adjustments will fix up the most egregious
2608 errors. */
2609 && regno_first != STACK_POINTER_REGNUM)
2610 {
2611 for (i = regno_first; i <= regno_last; ++i)
2612 if (! mark_regno_cond_dead (pbi, i, cond))
2613 not_dead |= ((unsigned long) 1) << (i - regno_first);
2614 }
2615 #endif
2616
2617 /* Additional data to record if this is the final pass. */
2618 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2619 | PROP_DEATH_NOTES | PROP_AUTOINC))
2620 {
2621 rtx y;
2622 int blocknum = pbi->bb->index;
2623
2624 y = NULL_RTX;
2625 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2626 {
2627 y = pbi->reg_next_use[regno_first];
2628
2629 /* The next use is no longer next, since a store intervenes. */
2630 for (i = regno_first; i <= regno_last; ++i)
2631 pbi->reg_next_use[i] = 0;
2632 }
2633
2634 if (flags & PROP_REG_INFO)
2635 {
2636 for (i = regno_first; i <= regno_last; ++i)
2637 {
2638 /* Count (weighted) references, stores, etc. This counts a
2639 register twice if it is modified, but that is correct. */
2640 REG_N_SETS (i) += 1;
2641 REG_N_REFS (i) += 1;
2642 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2643
2644 /* The insns where a reg is live are normally counted
2645 elsewhere, but we want the count to include the insn
2646 where the reg is set, and the normal counting mechanism
2647 would not count it. */
2648 REG_LIVE_LENGTH (i) += 1;
2649 }
2650
2651 /* If this is a hard reg, record this function uses the reg. */
2652 if (regno_first < FIRST_PSEUDO_REGISTER)
2653 {
2654 for (i = regno_first; i <= regno_last; i++)
2655 regs_ever_live[i] = 1;
2656 }
2657 else
2658 {
2659 /* Keep track of which basic blocks each reg appears in. */
2660 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2661 REG_BASIC_BLOCK (regno_first) = blocknum;
2662 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2663 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2664 }
2665 }
2666
2667 if (! some_was_dead)
2668 {
2669 if (flags & PROP_LOG_LINKS)
2670 {
2671 /* Make a logical link from the next following insn
2672 that uses this register, back to this insn.
2673 The following insns have already been processed.
2674
2675 We don't build a LOG_LINK for hard registers containing
2676 in ASM_OPERANDs. If these registers get replaced,
2677 we might wind up changing the semantics of the insn,
2678 even if reload can make what appear to be valid
2679 assignments later. */
2680 if (y && (BLOCK_NUM (y) == blocknum)
2681 && (regno_first >= FIRST_PSEUDO_REGISTER
2682 || asm_noperands (PATTERN (y)) < 0))
2683 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2684 }
2685 }
2686 else if (not_dead)
2687 ;
2688 else if (! some_was_live)
2689 {
2690 if (flags & PROP_REG_INFO)
2691 REG_N_DEATHS (regno_first) += 1;
2692
2693 if (flags & PROP_DEATH_NOTES)
2694 {
2695 /* Note that dead stores have already been deleted
2696 when possible. If we get here, we have found a
2697 dead store that cannot be eliminated (because the
2698 same insn does something useful). Indicate this
2699 by marking the reg being set as dying here. */
2700 REG_NOTES (insn)
2701 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2702 }
2703 }
2704 else
2705 {
2706 if (flags & PROP_DEATH_NOTES)
2707 {
2708 /* This is a case where we have a multi-word hard register
2709 and some, but not all, of the words of the register are
2710 needed in subsequent insns. Write REG_UNUSED notes
2711 for those parts that were not needed. This case should
2712 be rare. */
2713
2714 for (i = regno_first; i <= regno_last; ++i)
2715 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2716 REG_NOTES (insn)
2717 = alloc_EXPR_LIST (REG_UNUSED,
2718 gen_rtx_REG (reg_raw_mode[i], i),
2719 REG_NOTES (insn));
2720 }
2721 }
2722 }
2723
2724 /* Mark the register as being dead. */
2725 if (some_was_live
2726 /* The stack pointer is never dead. Well, not strictly true,
2727 but it's very difficult to tell from here. Hopefully
2728 combine_stack_adjustments will fix up the most egregious
2729 errors. */
2730 && regno_first != STACK_POINTER_REGNUM)
2731 {
2732 for (i = regno_first; i <= regno_last; ++i)
2733 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2734 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2735 }
2736 }
2737 else if (GET_CODE (reg) == REG)
2738 {
2739 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2740 pbi->reg_next_use[regno_first] = 0;
2741 }
2742
2743 /* If this is the last pass and this is a SCRATCH, show it will be dying
2744 here and count it. */
2745 else if (GET_CODE (reg) == SCRATCH)
2746 {
2747 if (flags & PROP_DEATH_NOTES)
2748 REG_NOTES (insn)
2749 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2750 }
2751 }
2752 \f
2753 #ifdef HAVE_conditional_execution
2754 /* Mark REGNO conditionally dead.
2755 Return true if the register is now unconditionally dead. */
2756
2757 static int
2758 mark_regno_cond_dead (pbi, regno, cond)
2759 struct propagate_block_info *pbi;
2760 int regno;
2761 rtx cond;
2762 {
2763 /* If this is a store to a predicate register, the value of the
2764 predicate is changing, we don't know that the predicate as seen
2765 before is the same as that seen after. Flush all dependent
2766 conditions from reg_cond_dead. This will make all such
2767 conditionally live registers unconditionally live. */
2768 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2769 flush_reg_cond_reg (pbi, regno);
2770
2771 /* If this is an unconditional store, remove any conditional
2772 life that may have existed. */
2773 if (cond == NULL_RTX)
2774 splay_tree_remove (pbi->reg_cond_dead, regno);
2775 else
2776 {
2777 splay_tree_node node;
2778 struct reg_cond_life_info *rcli;
2779 rtx ncond;
2780
2781 /* Otherwise this is a conditional set. Record that fact.
2782 It may have been conditionally used, or there may be a
2783 subsequent set with a complimentary condition. */
2784
2785 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2786 if (node == NULL)
2787 {
2788 /* The register was unconditionally live previously.
2789 Record the current condition as the condition under
2790 which it is dead. */
2791 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2792 rcli->condition = cond;
2793 rcli->stores = cond;
2794 rcli->orig_condition = const0_rtx;
2795 splay_tree_insert (pbi->reg_cond_dead, regno,
2796 (splay_tree_value) rcli);
2797
2798 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2799
2800 /* Not unconditionaly dead. */
2801 return 0;
2802 }
2803 else
2804 {
2805 /* The register was conditionally live previously.
2806 Add the new condition to the old. */
2807 rcli = (struct reg_cond_life_info *) node->value;
2808 ncond = rcli->condition;
2809 ncond = ior_reg_cond (ncond, cond, 1);
2810 if (rcli->stores == const0_rtx)
2811 rcli->stores = cond;
2812 else if (rcli->stores != const1_rtx)
2813 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2814
2815 /* If the register is now unconditionally dead, remove the entry
2816 in the splay_tree. A register is unconditionally dead if the
2817 dead condition ncond is true. A register is also unconditionally
2818 dead if the sum of all conditional stores is an unconditional
2819 store (stores is true), and the dead condition is identically the
2820 same as the original dead condition initialized at the end of
2821 the block. This is a pointer compare, not an rtx_equal_p
2822 compare. */
2823 if (ncond == const1_rtx
2824 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2825 splay_tree_remove (pbi->reg_cond_dead, regno);
2826 else
2827 {
2828 rcli->condition = ncond;
2829
2830 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2831
2832 /* Not unconditionaly dead. */
2833 return 0;
2834 }
2835 }
2836 }
2837
2838 return 1;
2839 }
2840
2841 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2842
2843 static void
2844 free_reg_cond_life_info (value)
2845 splay_tree_value value;
2846 {
2847 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2848 free (rcli);
2849 }
2850
2851 /* Helper function for flush_reg_cond_reg. */
2852
2853 static int
2854 flush_reg_cond_reg_1 (node, data)
2855 splay_tree_node node;
2856 void *data;
2857 {
2858 struct reg_cond_life_info *rcli;
2859 int *xdata = (int *) data;
2860 unsigned int regno = xdata[0];
2861
2862 /* Don't need to search if last flushed value was farther on in
2863 the in-order traversal. */
2864 if (xdata[1] >= (int) node->key)
2865 return 0;
2866
2867 /* Splice out portions of the expression that refer to regno. */
2868 rcli = (struct reg_cond_life_info *) node->value;
2869 rcli->condition = elim_reg_cond (rcli->condition, regno);
2870 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2871 rcli->stores = elim_reg_cond (rcli->stores, regno);
2872
2873 /* If the entire condition is now false, signal the node to be removed. */
2874 if (rcli->condition == const0_rtx)
2875 {
2876 xdata[1] = node->key;
2877 return -1;
2878 }
2879 else if (rcli->condition == const1_rtx)
2880 abort ();
2881
2882 return 0;
2883 }
2884
2885 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2886
2887 static void
2888 flush_reg_cond_reg (pbi, regno)
2889 struct propagate_block_info *pbi;
2890 int regno;
2891 {
2892 int pair[2];
2893
2894 pair[0] = regno;
2895 pair[1] = -1;
2896 while (splay_tree_foreach (pbi->reg_cond_dead,
2897 flush_reg_cond_reg_1, pair) == -1)
2898 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2899
2900 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2901 }
2902
2903 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2904 For ior/and, the ADD flag determines whether we want to add the new
2905 condition X to the old one unconditionally. If it is zero, we will
2906 only return a new expression if X allows us to simplify part of
2907 OLD, otherwise we return NULL to the caller.
2908 If ADD is nonzero, we will return a new condition in all cases. The
2909 toplevel caller of one of these functions should always pass 1 for
2910 ADD. */
2911
2912 static rtx
2913 ior_reg_cond (old, x, add)
2914 rtx old, x;
2915 int add;
2916 {
2917 rtx op0, op1;
2918
2919 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2920 {
2921 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2922 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2923 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2924 return const1_rtx;
2925 if (GET_CODE (x) == GET_CODE (old)
2926 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2927 return old;
2928 if (! add)
2929 return NULL;
2930 return gen_rtx_IOR (0, old, x);
2931 }
2932
2933 switch (GET_CODE (old))
2934 {
2935 case IOR:
2936 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2937 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2938 if (op0 != NULL || op1 != NULL)
2939 {
2940 if (op0 == const0_rtx)
2941 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
2942 if (op1 == const0_rtx)
2943 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
2944 if (op0 == const1_rtx || op1 == const1_rtx)
2945 return const1_rtx;
2946 if (op0 == NULL)
2947 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
2948 else if (rtx_equal_p (x, op0))
2949 /* (x | A) | x ~ (x | A). */
2950 return old;
2951 if (op1 == NULL)
2952 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
2953 else if (rtx_equal_p (x, op1))
2954 /* (A | x) | x ~ (A | x). */
2955 return old;
2956 return gen_rtx_IOR (0, op0, op1);
2957 }
2958 if (! add)
2959 return NULL;
2960 return gen_rtx_IOR (0, old, x);
2961
2962 case AND:
2963 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
2964 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
2965 if (op0 != NULL || op1 != NULL)
2966 {
2967 if (op0 == const1_rtx)
2968 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
2969 if (op1 == const1_rtx)
2970 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
2971 if (op0 == const0_rtx || op1 == const0_rtx)
2972 return const0_rtx;
2973 if (op0 == NULL)
2974 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
2975 else if (rtx_equal_p (x, op0))
2976 /* (x & A) | x ~ x. */
2977 return op0;
2978 if (op1 == NULL)
2979 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
2980 else if (rtx_equal_p (x, op1))
2981 /* (A & x) | x ~ x. */
2982 return op1;
2983 return gen_rtx_AND (0, op0, op1);
2984 }
2985 if (! add)
2986 return NULL;
2987 return gen_rtx_IOR (0, old, x);
2988
2989 case NOT:
2990 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
2991 if (op0 != NULL)
2992 return not_reg_cond (op0);
2993 if (! add)
2994 return NULL;
2995 return gen_rtx_IOR (0, old, x);
2996
2997 default:
2998 abort ();
2999 }
3000 }
3001
3002 static rtx
3003 not_reg_cond (x)
3004 rtx x;
3005 {
3006 enum rtx_code x_code;
3007
3008 if (x == const0_rtx)
3009 return const1_rtx;
3010 else if (x == const1_rtx)
3011 return const0_rtx;
3012 x_code = GET_CODE (x);
3013 if (x_code == NOT)
3014 return XEXP (x, 0);
3015 if (GET_RTX_CLASS (x_code) == '<'
3016 && GET_CODE (XEXP (x, 0)) == REG)
3017 {
3018 if (XEXP (x, 1) != const0_rtx)
3019 abort ();
3020
3021 return gen_rtx_fmt_ee (reverse_condition (x_code),
3022 VOIDmode, XEXP (x, 0), const0_rtx);
3023 }
3024 return gen_rtx_NOT (0, x);
3025 }
3026
3027 static rtx
3028 and_reg_cond (old, x, add)
3029 rtx old, x;
3030 int add;
3031 {
3032 rtx op0, op1;
3033
3034 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3035 {
3036 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3037 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3038 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3039 return const0_rtx;
3040 if (GET_CODE (x) == GET_CODE (old)
3041 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3042 return old;
3043 if (! add)
3044 return NULL;
3045 return gen_rtx_AND (0, old, x);
3046 }
3047
3048 switch (GET_CODE (old))
3049 {
3050 case IOR:
3051 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3052 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3053 if (op0 != NULL || op1 != NULL)
3054 {
3055 if (op0 == const0_rtx)
3056 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3057 if (op1 == const0_rtx)
3058 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3059 if (op0 == const1_rtx || op1 == const1_rtx)
3060 return const1_rtx;
3061 if (op0 == NULL)
3062 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3063 else if (rtx_equal_p (x, op0))
3064 /* (x | A) & x ~ x. */
3065 return op0;
3066 if (op1 == NULL)
3067 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3068 else if (rtx_equal_p (x, op1))
3069 /* (A | x) & x ~ x. */
3070 return op1;
3071 return gen_rtx_IOR (0, op0, op1);
3072 }
3073 if (! add)
3074 return NULL;
3075 return gen_rtx_AND (0, old, x);
3076
3077 case AND:
3078 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3079 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3080 if (op0 != NULL || op1 != NULL)
3081 {
3082 if (op0 == const1_rtx)
3083 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3084 if (op1 == const1_rtx)
3085 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3086 if (op0 == const0_rtx || op1 == const0_rtx)
3087 return const0_rtx;
3088 if (op0 == NULL)
3089 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3090 else if (rtx_equal_p (x, op0))
3091 /* (x & A) & x ~ (x & A). */
3092 return old;
3093 if (op1 == NULL)
3094 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3095 else if (rtx_equal_p (x, op1))
3096 /* (A & x) & x ~ (A & x). */
3097 return old;
3098 return gen_rtx_AND (0, op0, op1);
3099 }
3100 if (! add)
3101 return NULL;
3102 return gen_rtx_AND (0, old, x);
3103
3104 case NOT:
3105 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3106 if (op0 != NULL)
3107 return not_reg_cond (op0);
3108 if (! add)
3109 return NULL;
3110 return gen_rtx_AND (0, old, x);
3111
3112 default:
3113 abort ();
3114 }
3115 }
3116
3117 /* Given a condition X, remove references to reg REGNO and return the
3118 new condition. The removal will be done so that all conditions
3119 involving REGNO are considered to evaluate to false. This function
3120 is used when the value of REGNO changes. */
3121
3122 static rtx
3123 elim_reg_cond (x, regno)
3124 rtx x;
3125 unsigned int regno;
3126 {
3127 rtx op0, op1;
3128
3129 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3130 {
3131 if (REGNO (XEXP (x, 0)) == regno)
3132 return const0_rtx;
3133 return x;
3134 }
3135
3136 switch (GET_CODE (x))
3137 {
3138 case AND:
3139 op0 = elim_reg_cond (XEXP (x, 0), regno);
3140 op1 = elim_reg_cond (XEXP (x, 1), regno);
3141 if (op0 == const0_rtx || op1 == const0_rtx)
3142 return const0_rtx;
3143 if (op0 == const1_rtx)
3144 return op1;
3145 if (op1 == const1_rtx)
3146 return op0;
3147 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3148 return x;
3149 return gen_rtx_AND (0, op0, op1);
3150
3151 case IOR:
3152 op0 = elim_reg_cond (XEXP (x, 0), regno);
3153 op1 = elim_reg_cond (XEXP (x, 1), regno);
3154 if (op0 == const1_rtx || op1 == const1_rtx)
3155 return const1_rtx;
3156 if (op0 == const0_rtx)
3157 return op1;
3158 if (op1 == const0_rtx)
3159 return op0;
3160 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3161 return x;
3162 return gen_rtx_IOR (0, op0, op1);
3163
3164 case NOT:
3165 op0 = elim_reg_cond (XEXP (x, 0), regno);
3166 if (op0 == const0_rtx)
3167 return const1_rtx;
3168 if (op0 == const1_rtx)
3169 return const0_rtx;
3170 if (op0 != XEXP (x, 0))
3171 return not_reg_cond (op0);
3172 return x;
3173
3174 default:
3175 abort ();
3176 }
3177 }
3178 #endif /* HAVE_conditional_execution */
3179 \f
3180 #ifdef AUTO_INC_DEC
3181
3182 /* Try to substitute the auto-inc expression INC as the address inside
3183 MEM which occurs in INSN. Currently, the address of MEM is an expression
3184 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3185 that has a single set whose source is a PLUS of INCR_REG and something
3186 else. */
3187
3188 static void
3189 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3190 struct propagate_block_info *pbi;
3191 rtx inc, insn, mem, incr, incr_reg;
3192 {
3193 int regno = REGNO (incr_reg);
3194 rtx set = single_set (incr);
3195 rtx q = SET_DEST (set);
3196 rtx y = SET_SRC (set);
3197 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3198
3199 /* Make sure this reg appears only once in this insn. */
3200 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3201 return;
3202
3203 if (dead_or_set_p (incr, incr_reg)
3204 /* Mustn't autoinc an eliminable register. */
3205 && (regno >= FIRST_PSEUDO_REGISTER
3206 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3207 {
3208 /* This is the simple case. Try to make the auto-inc. If
3209 we can't, we are done. Otherwise, we will do any
3210 needed updates below. */
3211 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3212 return;
3213 }
3214 else if (GET_CODE (q) == REG
3215 /* PREV_INSN used here to check the semi-open interval
3216 [insn,incr). */
3217 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3218 /* We must also check for sets of q as q may be
3219 a call clobbered hard register and there may
3220 be a call between PREV_INSN (insn) and incr. */
3221 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3222 {
3223 /* We have *p followed sometime later by q = p+size.
3224 Both p and q must be live afterward,
3225 and q is not used between INSN and its assignment.
3226 Change it to q = p, ...*q..., q = q+size.
3227 Then fall into the usual case. */
3228 rtx insns, temp;
3229
3230 start_sequence ();
3231 emit_move_insn (q, incr_reg);
3232 insns = get_insns ();
3233 end_sequence ();
3234
3235 /* If we can't make the auto-inc, or can't make the
3236 replacement into Y, exit. There's no point in making
3237 the change below if we can't do the auto-inc and doing
3238 so is not correct in the pre-inc case. */
3239
3240 XEXP (inc, 0) = q;
3241 validate_change (insn, &XEXP (mem, 0), inc, 1);
3242 validate_change (incr, &XEXP (y, opnum), q, 1);
3243 if (! apply_change_group ())
3244 return;
3245
3246 /* We now know we'll be doing this change, so emit the
3247 new insn(s) and do the updates. */
3248 emit_insns_before (insns, insn);
3249
3250 if (pbi->bb->head == insn)
3251 pbi->bb->head = insns;
3252
3253 /* INCR will become a NOTE and INSN won't contain a
3254 use of INCR_REG. If a use of INCR_REG was just placed in
3255 the insn before INSN, make that the next use.
3256 Otherwise, invalidate it. */
3257 if (GET_CODE (PREV_INSN (insn)) == INSN
3258 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3259 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3260 pbi->reg_next_use[regno] = PREV_INSN (insn);
3261 else
3262 pbi->reg_next_use[regno] = 0;
3263
3264 incr_reg = q;
3265 regno = REGNO (q);
3266
3267 /* REGNO is now used in INCR which is below INSN, but
3268 it previously wasn't live here. If we don't mark
3269 it as live, we'll put a REG_DEAD note for it
3270 on this insn, which is incorrect. */
3271 SET_REGNO_REG_SET (pbi->reg_live, regno);
3272
3273 /* If there are any calls between INSN and INCR, show
3274 that REGNO now crosses them. */
3275 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3276 if (GET_CODE (temp) == CALL_INSN)
3277 REG_N_CALLS_CROSSED (regno)++;
3278
3279 /* Invalidate alias info for Q since we just changed its value. */
3280 clear_reg_alias_info (q);
3281 }
3282 else
3283 return;
3284
3285 /* If we haven't returned, it means we were able to make the
3286 auto-inc, so update the status. First, record that this insn
3287 has an implicit side effect. */
3288
3289 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3290
3291 /* Modify the old increment-insn to simply copy
3292 the already-incremented value of our register. */
3293 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3294 abort ();
3295
3296 /* If that makes it a no-op (copying the register into itself) delete
3297 it so it won't appear to be a "use" and a "set" of this
3298 register. */
3299 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3300 {
3301 /* If the original source was dead, it's dead now. */
3302 rtx note;
3303
3304 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3305 {
3306 remove_note (incr, note);
3307 if (XEXP (note, 0) != incr_reg)
3308 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3309 }
3310
3311 PUT_CODE (incr, NOTE);
3312 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3313 NOTE_SOURCE_FILE (incr) = 0;
3314 }
3315
3316 if (regno >= FIRST_PSEUDO_REGISTER)
3317 {
3318 /* Count an extra reference to the reg. When a reg is
3319 incremented, spilling it is worse, so we want to make
3320 that less likely. */
3321 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3322
3323 /* Count the increment as a setting of the register,
3324 even though it isn't a SET in rtl. */
3325 REG_N_SETS (regno)++;
3326 }
3327 }
3328
3329 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3330 reference. */
3331
3332 static void
3333 find_auto_inc (pbi, x, insn)
3334 struct propagate_block_info *pbi;
3335 rtx x;
3336 rtx insn;
3337 {
3338 rtx addr = XEXP (x, 0);
3339 HOST_WIDE_INT offset = 0;
3340 rtx set, y, incr, inc_val;
3341 int regno;
3342 int size = GET_MODE_SIZE (GET_MODE (x));
3343
3344 if (GET_CODE (insn) == JUMP_INSN)
3345 return;
3346
3347 /* Here we detect use of an index register which might be good for
3348 postincrement, postdecrement, preincrement, or predecrement. */
3349
3350 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3351 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3352
3353 if (GET_CODE (addr) != REG)
3354 return;
3355
3356 regno = REGNO (addr);
3357
3358 /* Is the next use an increment that might make auto-increment? */
3359 incr = pbi->reg_next_use[regno];
3360 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3361 return;
3362 set = single_set (incr);
3363 if (set == 0 || GET_CODE (set) != SET)
3364 return;
3365 y = SET_SRC (set);
3366
3367 if (GET_CODE (y) != PLUS)
3368 return;
3369
3370 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3371 inc_val = XEXP (y, 1);
3372 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3373 inc_val = XEXP (y, 0);
3374 else
3375 return;
3376
3377 if (GET_CODE (inc_val) == CONST_INT)
3378 {
3379 if (HAVE_POST_INCREMENT
3380 && (INTVAL (inc_val) == size && offset == 0))
3381 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3382 incr, addr);
3383 else if (HAVE_POST_DECREMENT
3384 && (INTVAL (inc_val) == -size && offset == 0))
3385 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3386 incr, addr);
3387 else if (HAVE_PRE_INCREMENT
3388 && (INTVAL (inc_val) == size && offset == size))
3389 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3390 incr, addr);
3391 else if (HAVE_PRE_DECREMENT
3392 && (INTVAL (inc_val) == -size && offset == -size))
3393 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3394 incr, addr);
3395 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3396 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3397 gen_rtx_PLUS (Pmode,
3398 addr,
3399 inc_val)),
3400 insn, x, incr, addr);
3401 }
3402 else if (GET_CODE (inc_val) == REG
3403 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3404 NEXT_INSN (incr)))
3405
3406 {
3407 if (HAVE_POST_MODIFY_REG && offset == 0)
3408 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3409 gen_rtx_PLUS (Pmode,
3410 addr,
3411 inc_val)),
3412 insn, x, incr, addr);
3413 }
3414 }
3415
3416 #endif /* AUTO_INC_DEC */
3417 \f
3418 static void
3419 mark_used_reg (pbi, reg, cond, insn)
3420 struct propagate_block_info *pbi;
3421 rtx reg;
3422 rtx cond ATTRIBUTE_UNUSED;
3423 rtx insn;
3424 {
3425 unsigned int regno_first, regno_last, i;
3426 int some_was_live, some_was_dead, some_not_set;
3427
3428 regno_last = regno_first = REGNO (reg);
3429 if (regno_first < FIRST_PSEUDO_REGISTER)
3430 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3431
3432 /* Find out if any of this register is live after this instruction. */
3433 some_was_live = some_was_dead = 0;
3434 for (i = regno_first; i <= regno_last; ++i)
3435 {
3436 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3437 some_was_live |= needed_regno;
3438 some_was_dead |= ! needed_regno;
3439 }
3440
3441 /* Find out if any of the register was set this insn. */
3442 some_not_set = 0;
3443 for (i = regno_first; i <= regno_last; ++i)
3444 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3445
3446 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3447 {
3448 /* Record where each reg is used, so when the reg is set we know
3449 the next insn that uses it. */
3450 pbi->reg_next_use[regno_first] = insn;
3451 }
3452
3453 if (pbi->flags & PROP_REG_INFO)
3454 {
3455 if (regno_first < FIRST_PSEUDO_REGISTER)
3456 {
3457 /* If this is a register we are going to try to eliminate,
3458 don't mark it live here. If we are successful in
3459 eliminating it, it need not be live unless it is used for
3460 pseudos, in which case it will have been set live when it
3461 was allocated to the pseudos. If the register will not
3462 be eliminated, reload will set it live at that point.
3463
3464 Otherwise, record that this function uses this register. */
3465 /* ??? The PPC backend tries to "eliminate" on the pic
3466 register to itself. This should be fixed. In the mean
3467 time, hack around it. */
3468
3469 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3470 && (regno_first == FRAME_POINTER_REGNUM
3471 || regno_first == ARG_POINTER_REGNUM)))
3472 for (i = regno_first; i <= regno_last; ++i)
3473 regs_ever_live[i] = 1;
3474 }
3475 else
3476 {
3477 /* Keep track of which basic block each reg appears in. */
3478
3479 int blocknum = pbi->bb->index;
3480 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3481 REG_BASIC_BLOCK (regno_first) = blocknum;
3482 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3483 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3484
3485 /* Count (weighted) number of uses of each reg. */
3486 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3487 REG_N_REFS (regno_first)++;
3488 }
3489 }
3490
3491 /* Record and count the insns in which a reg dies. If it is used in
3492 this insn and was dead below the insn then it dies in this insn.
3493 If it was set in this insn, we do not make a REG_DEAD note;
3494 likewise if we already made such a note. */
3495 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3496 && some_was_dead
3497 && some_not_set)
3498 {
3499 /* Check for the case where the register dying partially
3500 overlaps the register set by this insn. */
3501 if (regno_first != regno_last)
3502 for (i = regno_first; i <= regno_last; ++i)
3503 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3504
3505 /* If none of the words in X is needed, make a REG_DEAD note.
3506 Otherwise, we must make partial REG_DEAD notes. */
3507 if (! some_was_live)
3508 {
3509 if ((pbi->flags & PROP_DEATH_NOTES)
3510 && ! find_regno_note (insn, REG_DEAD, regno_first))
3511 REG_NOTES (insn)
3512 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3513
3514 if (pbi->flags & PROP_REG_INFO)
3515 REG_N_DEATHS (regno_first)++;
3516 }
3517 else
3518 {
3519 /* Don't make a REG_DEAD note for a part of a register
3520 that is set in the insn. */
3521 for (i = regno_first; i <= regno_last; ++i)
3522 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3523 && ! dead_or_set_regno_p (insn, i))
3524 REG_NOTES (insn)
3525 = alloc_EXPR_LIST (REG_DEAD,
3526 gen_rtx_REG (reg_raw_mode[i], i),
3527 REG_NOTES (insn));
3528 }
3529 }
3530
3531 /* Mark the register as being live. */
3532 for (i = regno_first; i <= regno_last; ++i)
3533 {
3534 SET_REGNO_REG_SET (pbi->reg_live, i);
3535
3536 #ifdef HAVE_conditional_execution
3537 /* If this is a conditional use, record that fact. If it is later
3538 conditionally set, we'll know to kill the register. */
3539 if (cond != NULL_RTX)
3540 {
3541 splay_tree_node node;
3542 struct reg_cond_life_info *rcli;
3543 rtx ncond;
3544
3545 if (some_was_live)
3546 {
3547 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3548 if (node == NULL)
3549 {
3550 /* The register was unconditionally live previously.
3551 No need to do anything. */
3552 }
3553 else
3554 {
3555 /* The register was conditionally live previously.
3556 Subtract the new life cond from the old death cond. */
3557 rcli = (struct reg_cond_life_info *) node->value;
3558 ncond = rcli->condition;
3559 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3560
3561 /* If the register is now unconditionally live,
3562 remove the entry in the splay_tree. */
3563 if (ncond == const0_rtx)
3564 splay_tree_remove (pbi->reg_cond_dead, i);
3565 else
3566 {
3567 rcli->condition = ncond;
3568 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3569 REGNO (XEXP (cond, 0)));
3570 }
3571 }
3572 }
3573 else
3574 {
3575 /* The register was not previously live at all. Record
3576 the condition under which it is still dead. */
3577 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3578 rcli->condition = not_reg_cond (cond);
3579 rcli->stores = const0_rtx;
3580 rcli->orig_condition = const0_rtx;
3581 splay_tree_insert (pbi->reg_cond_dead, i,
3582 (splay_tree_value) rcli);
3583
3584 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3585 }
3586 }
3587 else if (some_was_live)
3588 {
3589 /* The register may have been conditionally live previously, but
3590 is now unconditionally live. Remove it from the conditionally
3591 dead list, so that a conditional set won't cause us to think
3592 it dead. */
3593 splay_tree_remove (pbi->reg_cond_dead, i);
3594 }
3595 #endif
3596 }
3597 }
3598
3599 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3600 This is done assuming the registers needed from X are those that
3601 have 1-bits in PBI->REG_LIVE.
3602
3603 INSN is the containing instruction. If INSN is dead, this function
3604 is not called. */
3605
3606 static void
3607 mark_used_regs (pbi, x, cond, insn)
3608 struct propagate_block_info *pbi;
3609 rtx x, cond, insn;
3610 {
3611 RTX_CODE code;
3612 int regno;
3613 int flags = pbi->flags;
3614
3615 retry:
3616 code = GET_CODE (x);
3617 switch (code)
3618 {
3619 case LABEL_REF:
3620 case SYMBOL_REF:
3621 case CONST_INT:
3622 case CONST:
3623 case CONST_DOUBLE:
3624 case PC:
3625 case ADDR_VEC:
3626 case ADDR_DIFF_VEC:
3627 return;
3628
3629 #ifdef HAVE_cc0
3630 case CC0:
3631 pbi->cc0_live = 1;
3632 return;
3633 #endif
3634
3635 case CLOBBER:
3636 /* If we are clobbering a MEM, mark any registers inside the address
3637 as being used. */
3638 if (GET_CODE (XEXP (x, 0)) == MEM)
3639 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3640 return;
3641
3642 case MEM:
3643 /* Don't bother watching stores to mems if this is not the
3644 final pass. We'll not be deleting dead stores this round. */
3645 if (optimize && (flags & PROP_SCAN_DEAD_CODE))
3646 {
3647 /* Invalidate the data for the last MEM stored, but only if MEM is
3648 something that can be stored into. */
3649 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3650 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3651 /* Needn't clear the memory set list. */
3652 ;
3653 else
3654 {
3655 rtx temp = pbi->mem_set_list;
3656 rtx prev = NULL_RTX;
3657 rtx next;
3658
3659 while (temp)
3660 {
3661 next = XEXP (temp, 1);
3662 if (anti_dependence (XEXP (temp, 0), x))
3663 {
3664 /* Splice temp out of the list. */
3665 if (prev)
3666 XEXP (prev, 1) = next;
3667 else
3668 pbi->mem_set_list = next;
3669 free_EXPR_LIST_node (temp);
3670 pbi->mem_set_list_len--;
3671 }
3672 else
3673 prev = temp;
3674 temp = next;
3675 }
3676 }
3677
3678 /* If the memory reference had embedded side effects (autoincrement
3679 address modes. Then we may need to kill some entries on the
3680 memory set list. */
3681 if (insn)
3682 invalidate_mems_from_autoinc (pbi, insn);
3683 }
3684
3685 #ifdef AUTO_INC_DEC
3686 if (flags & PROP_AUTOINC)
3687 find_auto_inc (pbi, x, insn);
3688 #endif
3689 break;
3690
3691 case SUBREG:
3692 #ifdef CLASS_CANNOT_CHANGE_MODE
3693 if (GET_CODE (SUBREG_REG (x)) == REG
3694 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3695 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3696 GET_MODE (SUBREG_REG (x))))
3697 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3698 #endif
3699
3700 /* While we're here, optimize this case. */
3701 x = SUBREG_REG (x);
3702 if (GET_CODE (x) != REG)
3703 goto retry;
3704 /* Fall through. */
3705
3706 case REG:
3707 /* See a register other than being set => mark it as needed. */
3708 mark_used_reg (pbi, x, cond, insn);
3709 return;
3710
3711 case SET:
3712 {
3713 rtx testreg = SET_DEST (x);
3714 int mark_dest = 0;
3715
3716 /* If storing into MEM, don't show it as being used. But do
3717 show the address as being used. */
3718 if (GET_CODE (testreg) == MEM)
3719 {
3720 #ifdef AUTO_INC_DEC
3721 if (flags & PROP_AUTOINC)
3722 find_auto_inc (pbi, testreg, insn);
3723 #endif
3724 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3725 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3726 return;
3727 }
3728
3729 /* Storing in STRICT_LOW_PART is like storing in a reg
3730 in that this SET might be dead, so ignore it in TESTREG.
3731 but in some other ways it is like using the reg.
3732
3733 Storing in a SUBREG or a bit field is like storing the entire
3734 register in that if the register's value is not used
3735 then this SET is not needed. */
3736 while (GET_CODE (testreg) == STRICT_LOW_PART
3737 || GET_CODE (testreg) == ZERO_EXTRACT
3738 || GET_CODE (testreg) == SIGN_EXTRACT
3739 || GET_CODE (testreg) == SUBREG)
3740 {
3741 #ifdef CLASS_CANNOT_CHANGE_MODE
3742 if (GET_CODE (testreg) == SUBREG
3743 && GET_CODE (SUBREG_REG (testreg)) == REG
3744 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3745 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3746 GET_MODE (testreg)))
3747 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3748 #endif
3749
3750 /* Modifying a single register in an alternate mode
3751 does not use any of the old value. But these other
3752 ways of storing in a register do use the old value. */
3753 if (GET_CODE (testreg) == SUBREG
3754 && !((REG_BYTES (SUBREG_REG (testreg))
3755 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3756 > (REG_BYTES (testreg)
3757 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3758 ;
3759 else
3760 mark_dest = 1;
3761
3762 testreg = XEXP (testreg, 0);
3763 }
3764
3765 /* If this is a store into a register or group of registers,
3766 recursively scan the value being stored. */
3767
3768 if ((GET_CODE (testreg) == PARALLEL
3769 && GET_MODE (testreg) == BLKmode)
3770 || (GET_CODE (testreg) == REG
3771 && (regno = REGNO (testreg),
3772 ! (regno == FRAME_POINTER_REGNUM
3773 && (! reload_completed || frame_pointer_needed)))
3774 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3775 && ! (regno == HARD_FRAME_POINTER_REGNUM
3776 && (! reload_completed || frame_pointer_needed))
3777 #endif
3778 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3779 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3780 #endif
3781 ))
3782 {
3783 if (mark_dest)
3784 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3785 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3786 return;
3787 }
3788 }
3789 break;
3790
3791 case ASM_OPERANDS:
3792 case UNSPEC_VOLATILE:
3793 case TRAP_IF:
3794 case ASM_INPUT:
3795 {
3796 /* Traditional and volatile asm instructions must be considered to use
3797 and clobber all hard registers, all pseudo-registers and all of
3798 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3799
3800 Consider for instance a volatile asm that changes the fpu rounding
3801 mode. An insn should not be moved across this even if it only uses
3802 pseudo-regs because it might give an incorrectly rounded result.
3803
3804 ?!? Unfortunately, marking all hard registers as live causes massive
3805 problems for the register allocator and marking all pseudos as live
3806 creates mountains of uninitialized variable warnings.
3807
3808 So for now, just clear the memory set list and mark any regs
3809 we can find in ASM_OPERANDS as used. */
3810 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3811 {
3812 free_EXPR_LIST_list (&pbi->mem_set_list);
3813 pbi->mem_set_list_len = 0;
3814 }
3815
3816 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3817 We can not just fall through here since then we would be confused
3818 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3819 traditional asms unlike their normal usage. */
3820 if (code == ASM_OPERANDS)
3821 {
3822 int j;
3823
3824 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3825 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3826 }
3827 break;
3828 }
3829
3830 case COND_EXEC:
3831 if (cond != NULL_RTX)
3832 abort ();
3833
3834 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3835
3836 cond = COND_EXEC_TEST (x);
3837 x = COND_EXEC_CODE (x);
3838 goto retry;
3839
3840 case PHI:
3841 /* We _do_not_ want to scan operands of phi nodes. Operands of
3842 a phi function are evaluated only when control reaches this
3843 block along a particular edge. Therefore, regs that appear
3844 as arguments to phi should not be added to the global live at
3845 start. */
3846 return;
3847
3848 default:
3849 break;
3850 }
3851
3852 /* Recursively scan the operands of this expression. */
3853
3854 {
3855 const char * const fmt = GET_RTX_FORMAT (code);
3856 int i;
3857
3858 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3859 {
3860 if (fmt[i] == 'e')
3861 {
3862 /* Tail recursive case: save a function call level. */
3863 if (i == 0)
3864 {
3865 x = XEXP (x, 0);
3866 goto retry;
3867 }
3868 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3869 }
3870 else if (fmt[i] == 'E')
3871 {
3872 int j;
3873 for (j = 0; j < XVECLEN (x, i); j++)
3874 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3875 }
3876 }
3877 }
3878 }
3879 \f
3880 #ifdef AUTO_INC_DEC
3881
3882 static int
3883 try_pre_increment_1 (pbi, insn)
3884 struct propagate_block_info *pbi;
3885 rtx insn;
3886 {
3887 /* Find the next use of this reg. If in same basic block,
3888 make it do pre-increment or pre-decrement if appropriate. */
3889 rtx x = single_set (insn);
3890 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3891 * INTVAL (XEXP (SET_SRC (x), 1)));
3892 int regno = REGNO (SET_DEST (x));
3893 rtx y = pbi->reg_next_use[regno];
3894 if (y != 0
3895 && SET_DEST (x) != stack_pointer_rtx
3896 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3897 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3898 mode would be better. */
3899 && ! dead_or_set_p (y, SET_DEST (x))
3900 && try_pre_increment (y, SET_DEST (x), amount))
3901 {
3902 /* We have found a suitable auto-increment and already changed
3903 insn Y to do it. So flush this increment instruction. */
3904 propagate_block_delete_insn (pbi->bb, insn);
3905
3906 /* Count a reference to this reg for the increment insn we are
3907 deleting. When a reg is incremented, spilling it is worse,
3908 so we want to make that less likely. */
3909 if (regno >= FIRST_PSEUDO_REGISTER)
3910 {
3911 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3912 REG_N_SETS (regno)++;
3913 }
3914
3915 /* Flush any remembered memories depending on the value of
3916 the incremented register. */
3917 invalidate_mems_from_set (pbi, SET_DEST (x));
3918
3919 return 1;
3920 }
3921 return 0;
3922 }
3923
3924 /* Try to change INSN so that it does pre-increment or pre-decrement
3925 addressing on register REG in order to add AMOUNT to REG.
3926 AMOUNT is negative for pre-decrement.
3927 Returns 1 if the change could be made.
3928 This checks all about the validity of the result of modifying INSN. */
3929
3930 static int
3931 try_pre_increment (insn, reg, amount)
3932 rtx insn, reg;
3933 HOST_WIDE_INT amount;
3934 {
3935 rtx use;
3936
3937 /* Nonzero if we can try to make a pre-increment or pre-decrement.
3938 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
3939 int pre_ok = 0;
3940 /* Nonzero if we can try to make a post-increment or post-decrement.
3941 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
3942 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
3943 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
3944 int post_ok = 0;
3945
3946 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
3947 int do_post = 0;
3948
3949 /* From the sign of increment, see which possibilities are conceivable
3950 on this target machine. */
3951 if (HAVE_PRE_INCREMENT && amount > 0)
3952 pre_ok = 1;
3953 if (HAVE_POST_INCREMENT && amount > 0)
3954 post_ok = 1;
3955
3956 if (HAVE_PRE_DECREMENT && amount < 0)
3957 pre_ok = 1;
3958 if (HAVE_POST_DECREMENT && amount < 0)
3959 post_ok = 1;
3960
3961 if (! (pre_ok || post_ok))
3962 return 0;
3963
3964 /* It is not safe to add a side effect to a jump insn
3965 because if the incremented register is spilled and must be reloaded
3966 there would be no way to store the incremented value back in memory. */
3967
3968 if (GET_CODE (insn) == JUMP_INSN)
3969 return 0;
3970
3971 use = 0;
3972 if (pre_ok)
3973 use = find_use_as_address (PATTERN (insn), reg, 0);
3974 if (post_ok && (use == 0 || use == (rtx) 1))
3975 {
3976 use = find_use_as_address (PATTERN (insn), reg, -amount);
3977 do_post = 1;
3978 }
3979
3980 if (use == 0 || use == (rtx) 1)
3981 return 0;
3982
3983 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
3984 return 0;
3985
3986 /* See if this combination of instruction and addressing mode exists. */
3987 if (! validate_change (insn, &XEXP (use, 0),
3988 gen_rtx_fmt_e (amount > 0
3989 ? (do_post ? POST_INC : PRE_INC)
3990 : (do_post ? POST_DEC : PRE_DEC),
3991 Pmode, reg), 0))
3992 return 0;
3993
3994 /* Record that this insn now has an implicit side effect on X. */
3995 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
3996 return 1;
3997 }
3998
3999 #endif /* AUTO_INC_DEC */
4000 \f
4001 /* Find the place in the rtx X where REG is used as a memory address.
4002 Return the MEM rtx that so uses it.
4003 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4004 (plus REG (const_int PLUSCONST)).
4005
4006 If such an address does not appear, return 0.
4007 If REG appears more than once, or is used other than in such an address,
4008 return (rtx)1. */
4009
4010 rtx
4011 find_use_as_address (x, reg, plusconst)
4012 rtx x;
4013 rtx reg;
4014 HOST_WIDE_INT plusconst;
4015 {
4016 enum rtx_code code = GET_CODE (x);
4017 const char * const fmt = GET_RTX_FORMAT (code);
4018 int i;
4019 rtx value = 0;
4020 rtx tem;
4021
4022 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4023 return x;
4024
4025 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4026 && XEXP (XEXP (x, 0), 0) == reg
4027 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4028 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4029 return x;
4030
4031 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4032 {
4033 /* If REG occurs inside a MEM used in a bit-field reference,
4034 that is unacceptable. */
4035 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4036 return (rtx) (HOST_WIDE_INT) 1;
4037 }
4038
4039 if (x == reg)
4040 return (rtx) (HOST_WIDE_INT) 1;
4041
4042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4043 {
4044 if (fmt[i] == 'e')
4045 {
4046 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4047 if (value == 0)
4048 value = tem;
4049 else if (tem != 0)
4050 return (rtx) (HOST_WIDE_INT) 1;
4051 }
4052 else if (fmt[i] == 'E')
4053 {
4054 int j;
4055 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4056 {
4057 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4058 if (value == 0)
4059 value = tem;
4060 else if (tem != 0)
4061 return (rtx) (HOST_WIDE_INT) 1;
4062 }
4063 }
4064 }
4065
4066 return value;
4067 }
4068 \f
4069 /* Write information about registers and basic blocks into FILE.
4070 This is part of making a debugging dump. */
4071
4072 void
4073 dump_regset (r, outf)
4074 regset r;
4075 FILE *outf;
4076 {
4077 int i;
4078 if (r == NULL)
4079 {
4080 fputs (" (nil)", outf);
4081 return;
4082 }
4083
4084 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4085 {
4086 fprintf (outf, " %d", i);
4087 if (i < FIRST_PSEUDO_REGISTER)
4088 fprintf (outf, " [%s]",
4089 reg_names[i]);
4090 });
4091 }
4092
4093 /* Print a human-reaable representation of R on the standard error
4094 stream. This function is designed to be used from within the
4095 debugger. */
4096
4097 void
4098 debug_regset (r)
4099 regset r;
4100 {
4101 dump_regset (r, stderr);
4102 putc ('\n', stderr);
4103 }
4104
4105 /* Dump the rtl into the current debugging dump file, then abort. */
4106
4107 static void
4108 print_rtl_and_abort_fcn (file, line, function)
4109 const char *file;
4110 int line;
4111 const char *function;
4112 {
4113 if (rtl_dump_file)
4114 {
4115 print_rtl_with_bb (rtl_dump_file, get_insns ());
4116 fclose (rtl_dump_file);
4117 }
4118
4119 fancy_abort (file, line, function);
4120 }
4121
4122 /* Recompute register set/reference counts immediately prior to register
4123 allocation.
4124
4125 This avoids problems with set/reference counts changing to/from values
4126 which have special meanings to the register allocators.
4127
4128 Additionally, the reference counts are the primary component used by the
4129 register allocators to prioritize pseudos for allocation to hard regs.
4130 More accurate reference counts generally lead to better register allocation.
4131
4132 F is the first insn to be scanned.
4133
4134 LOOP_STEP denotes how much loop_depth should be incremented per
4135 loop nesting level in order to increase the ref count more for
4136 references in a loop.
4137
4138 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4139 possibly other information which is used by the register allocators. */
4140
4141 void
4142 recompute_reg_usage (f, loop_step)
4143 rtx f ATTRIBUTE_UNUSED;
4144 int loop_step ATTRIBUTE_UNUSED;
4145 {
4146 allocate_reg_life_data ();
4147 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4148 }
4149
4150 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4151 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4152 of the number of registers that died. */
4153
4154 int
4155 count_or_remove_death_notes (blocks, kill)
4156 sbitmap blocks;
4157 int kill;
4158 {
4159 int i, count = 0;
4160
4161 for (i = n_basic_blocks - 1; i >= 0; --i)
4162 {
4163 basic_block bb;
4164 rtx insn;
4165
4166 if (blocks && ! TEST_BIT (blocks, i))
4167 continue;
4168
4169 bb = BASIC_BLOCK (i);
4170
4171 for (insn = bb->head;; insn = NEXT_INSN (insn))
4172 {
4173 if (INSN_P (insn))
4174 {
4175 rtx *pprev = &REG_NOTES (insn);
4176 rtx link = *pprev;
4177
4178 while (link)
4179 {
4180 switch (REG_NOTE_KIND (link))
4181 {
4182 case REG_DEAD:
4183 if (GET_CODE (XEXP (link, 0)) == REG)
4184 {
4185 rtx reg = XEXP (link, 0);
4186 int n;
4187
4188 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4189 n = 1;
4190 else
4191 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4192 count += n;
4193 }
4194 /* Fall through. */
4195
4196 case REG_UNUSED:
4197 if (kill)
4198 {
4199 rtx next = XEXP (link, 1);
4200 free_EXPR_LIST_node (link);
4201 *pprev = link = next;
4202 break;
4203 }
4204 /* Fall through. */
4205
4206 default:
4207 pprev = &XEXP (link, 1);
4208 link = *pprev;
4209 break;
4210 }
4211 }
4212 }
4213
4214 if (insn == bb->end)
4215 break;
4216 }
4217 }
4218
4219 return count;
4220 }
4221 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4222 if blocks is NULL. */
4223
4224 static void
4225 clear_log_links (blocks)
4226 sbitmap blocks;
4227 {
4228 rtx insn;
4229 int i;
4230
4231 if (!blocks)
4232 {
4233 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4234 if (INSN_P (insn))
4235 free_INSN_LIST_list (&LOG_LINKS (insn));
4236 }
4237 else
4238 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4239 {
4240 basic_block bb = BASIC_BLOCK (i);
4241
4242 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4243 insn = NEXT_INSN (insn))
4244 if (INSN_P (insn))
4245 free_INSN_LIST_list (&LOG_LINKS (insn));
4246 });
4247 }
4248
4249 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4250 correspond to the hard registers, if any, set in that map. This
4251 could be done far more efficiently by having all sorts of special-cases
4252 with moving single words, but probably isn't worth the trouble. */
4253
4254 void
4255 reg_set_to_hard_reg_set (to, from)
4256 HARD_REG_SET *to;
4257 bitmap from;
4258 {
4259 int i;
4260
4261 EXECUTE_IF_SET_IN_BITMAP
4262 (from, 0, i,
4263 {
4264 if (i >= FIRST_PSEUDO_REGISTER)
4265 return;
4266 SET_HARD_REG_BIT (*to, i);
4267 });
4268 }