recog.c (split_all_insns): Do not update reg info.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164 #endif
165 #endif
166
167 /* Nonzero if the second flow pass has completed. */
168 int flow2_completed;
169
170 /* Maximum register number used in this function, plus one. */
171
172 int max_regno;
173
174 /* Indexed by n, giving various register information */
175
176 varray_type reg_n_info;
177
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
180
181 int regset_bytes;
182 int regset_size;
183
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
186
187 regset regs_live_at_setjmp;
188
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
194
195 /* Callback that determines if it's ok for a function to have no
196 noreturn attribute. */
197 int (*lang_missing_noreturn_ok_p) (tree);
198
199 /* Set of registers that may be eliminable. These are handled specially
200 in updating regs_ever_live. */
201
202 static HARD_REG_SET elim_reg_set;
203
204 /* Holds information for tracking conditional register life information. */
205 struct reg_cond_life_info
206 {
207 /* A boolean expression of conditions under which a register is dead. */
208 rtx condition;
209 /* Conditions under which a register is dead at the basic block end. */
210 rtx orig_condition;
211
212 /* A boolean expression of conditions under which a register has been
213 stored into. */
214 rtx stores;
215
216 /* ??? Could store mask of bytes that are dead, so that we could finally
217 track lifetimes of multi-word registers accessed via subregs. */
218 };
219
220 /* For use in communicating between propagate_block and its subroutines.
221 Holds all information needed to compute life and def-use information. */
222
223 struct propagate_block_info
224 {
225 /* The basic block we're considering. */
226 basic_block bb;
227
228 /* Bit N is set if register N is conditionally or unconditionally live. */
229 regset reg_live;
230
231 /* Bit N is set if register N is set this insn. */
232 regset new_set;
233
234 /* Element N is the next insn that uses (hard or pseudo) register N
235 within the current basic block; or zero, if there is no such insn. */
236 rtx *reg_next_use;
237
238 /* Contains a list of all the MEMs we are tracking for dead store
239 elimination. */
240 rtx mem_set_list;
241
242 /* If non-null, record the set of registers set unconditionally in the
243 basic block. */
244 regset local_set;
245
246 /* If non-null, record the set of registers set conditionally in the
247 basic block. */
248 regset cond_local_set;
249
250 #ifdef HAVE_conditional_execution
251 /* Indexed by register number, holds a reg_cond_life_info for each
252 register that is not unconditionally live or dead. */
253 splay_tree reg_cond_dead;
254
255 /* Bit N is set if register N is in an expression in reg_cond_dead. */
256 regset reg_cond_reg;
257 #endif
258
259 /* The length of mem_set_list. */
260 int mem_set_list_len;
261
262 /* Nonzero if the value of CC0 is live. */
263 int cc0_live;
264
265 /* Flags controlling the set of information propagate_block collects. */
266 int flags;
267 /* Index of instruction being processed. */
268 int insn_num;
269 };
270
271 /* Number of dead insns removed. */
272 static int ndead;
273
274 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
275 where given register died. When the register is marked alive, we use the
276 information to compute amount of instructions life range cross.
277 (remember, we are walking backward). This can be computed as current
278 pbi->insn_num - reg_deaths[regno].
279 At the end of processing each basic block, the remaining live registers
280 are inspected and liferanges are increased same way so liverange of global
281 registers are computed correctly.
282
283 The array is maintained clear for dead registers, so it can be safely reused
284 for next basic block without expensive memset of the whole array after
285 reseting pbi->insn_num to 0. */
286
287 static int *reg_deaths;
288
289 /* Maximum length of pbi->mem_set_list before we start dropping
290 new elements on the floor. */
291 #define MAX_MEM_SET_LIST_LEN 100
292
293 /* Forward declarations */
294 static int verify_wide_reg_1 (rtx *, void *);
295 static void verify_wide_reg (int, basic_block);
296 static void verify_local_live_at_start (regset, basic_block);
297 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
298 static void notice_stack_pointer_modification (rtx);
299 static void mark_reg (rtx, void *);
300 static void mark_regs_live_at_end (regset);
301 static void calculate_global_regs_live (sbitmap, sbitmap, int);
302 static void propagate_block_delete_insn (rtx);
303 static rtx propagate_block_delete_libcall (rtx, rtx);
304 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
305 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
306 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
307 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
308 rtx, rtx, int);
309 static int find_regno_partial (rtx *, void *);
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
313 static void free_reg_cond_life_info (splay_tree_value);
314 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
315 static void flush_reg_cond_reg (struct propagate_block_info *, int);
316 static rtx elim_reg_cond (rtx, unsigned int);
317 static rtx ior_reg_cond (rtx, rtx, int);
318 static rtx not_reg_cond (rtx);
319 static rtx and_reg_cond (rtx, rtx, int);
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
323 rtx, rtx);
324 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
325 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
326 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
327 #endif
328 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
329 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
330 void debug_flow_info (void);
331 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
332 static int invalidate_mems_from_autoinc (rtx *, void *);
333 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
334 static void clear_log_links (sbitmap);
335 static int count_or_remove_death_notes_bb (basic_block, int);
336 \f
337
338 void
339 check_function_return_warnings (void)
340 {
341 if (warn_missing_noreturn
342 && !TREE_THIS_VOLATILE (cfun->decl)
343 && EXIT_BLOCK_PTR->pred == NULL
344 && (lang_missing_noreturn_ok_p
345 && !lang_missing_noreturn_ok_p (cfun->decl)))
346 warning ("function might be possible candidate for attribute `noreturn'");
347
348 /* If we have a path to EXIT, then we do return. */
349 if (TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred != NULL)
351 warning ("`noreturn' function does return");
352
353 /* If the clobber_return_insn appears in some basic block, then we
354 do reach the end without returning a value. */
355 else if (warn_return_type
356 && cfun->x_clobber_return_insn != NULL
357 && EXIT_BLOCK_PTR->pred != NULL)
358 {
359 int max_uid = get_max_uid ();
360
361 /* If clobber_return_insn was excised by jump1, then renumber_insns
362 can make max_uid smaller than the number still recorded in our rtx.
363 That's fine, since this is a quick way of verifying that the insn
364 is no longer in the chain. */
365 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
366 {
367 rtx insn;
368
369 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
370 if (insn == cfun->x_clobber_return_insn)
371 {
372 warning ("control reaches end of non-void function");
373 break;
374 }
375 }
376 }
377 }
378 \f
379 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
380 note associated with the BLOCK. */
381
382 rtx
383 first_insn_after_basic_block_note (basic_block block)
384 {
385 rtx insn;
386
387 /* Get the first instruction in the block. */
388 insn = BB_HEAD (block);
389
390 if (insn == NULL_RTX)
391 return NULL_RTX;
392 if (GET_CODE (insn) == CODE_LABEL)
393 insn = NEXT_INSN (insn);
394 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
395 abort ();
396
397 return NEXT_INSN (insn);
398 }
399 \f
400 /* Perform data flow analysis.
401 F is the first insn of the function; FLAGS is a set of PROP_* flags
402 to be used in accumulating flow info. */
403
404 void
405 life_analysis (rtx f, FILE *file, int flags)
406 {
407 #ifdef ELIMINABLE_REGS
408 int i;
409 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
410 #endif
411
412 /* Record which registers will be eliminated. We use this in
413 mark_used_regs. */
414
415 CLEAR_HARD_REG_SET (elim_reg_set);
416
417 #ifdef ELIMINABLE_REGS
418 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
419 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
420 #else
421 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
422 #endif
423
424
425 #ifdef CANNOT_CHANGE_MODE_CLASS
426 if (flags & PROP_REG_INFO)
427 bitmap_initialize (&subregs_of_mode, 1);
428 #endif
429
430 if (! optimize)
431 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
432
433 /* The post-reload life analysis have (on a global basis) the same
434 registers live as was computed by reload itself. elimination
435 Otherwise offsets and such may be incorrect.
436
437 Reload will make some registers as live even though they do not
438 appear in the rtl.
439
440 We don't want to create new auto-incs after reload, since they
441 are unlikely to be useful and can cause problems with shared
442 stack slots. */
443 if (reload_completed)
444 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
445
446 /* We want alias analysis information for local dead store elimination. */
447 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
448 init_alias_analysis ();
449
450 /* Always remove no-op moves. Do this before other processing so
451 that we don't have to keep re-scanning them. */
452 delete_noop_moves (f);
453
454 /* Some targets can emit simpler epilogues if they know that sp was
455 not ever modified during the function. After reload, of course,
456 we've already emitted the epilogue so there's no sense searching. */
457 if (! reload_completed)
458 notice_stack_pointer_modification (f);
459
460 /* Allocate and zero out data structures that will record the
461 data from lifetime analysis. */
462 allocate_reg_life_data ();
463 allocate_bb_life_data ();
464
465 /* Find the set of registers live on function exit. */
466 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
467
468 /* "Update" life info from zero. It'd be nice to begin the
469 relaxation with just the exit and noreturn blocks, but that set
470 is not immediately handy. */
471
472 if (flags & PROP_REG_INFO)
473 {
474 memset (regs_ever_live, 0, sizeof (regs_ever_live));
475 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
476 }
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478 if (reg_deaths)
479 {
480 free (reg_deaths);
481 reg_deaths = NULL;
482 }
483
484 /* Clean up. */
485 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
486 end_alias_analysis ();
487
488 if (file)
489 dump_flow_info (file);
490
491 free_basic_block_vars (1);
492
493 /* Removing dead insns should have made jumptables really dead. */
494 delete_dead_jumptables ();
495 }
496
497 /* A subroutine of verify_wide_reg, called through for_each_rtx.
498 Search for REGNO. If found, return 2 if it is not wider than
499 word_mode. */
500
501 static int
502 verify_wide_reg_1 (rtx *px, void *pregno)
503 {
504 rtx x = *px;
505 unsigned int regno = *(int *) pregno;
506
507 if (GET_CODE (x) == REG && REGNO (x) == regno)
508 {
509 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
510 return 2;
511 return 1;
512 }
513 return 0;
514 }
515
516 /* A subroutine of verify_local_live_at_start. Search through insns
517 of BB looking for register REGNO. */
518
519 static void
520 verify_wide_reg (int regno, basic_block bb)
521 {
522 rtx head = BB_HEAD (bb), end = BB_END (bb);
523
524 while (1)
525 {
526 if (INSN_P (head))
527 {
528 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
529 if (r == 1)
530 return;
531 if (r == 2)
532 break;
533 }
534 if (head == end)
535 break;
536 head = NEXT_INSN (head);
537 }
538
539 if (rtl_dump_file)
540 {
541 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
542 dump_bb (bb, rtl_dump_file, 0);
543 }
544 abort ();
545 }
546
547 /* A subroutine of update_life_info. Verify that there are no untoward
548 changes in live_at_start during a local update. */
549
550 static void
551 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
552 {
553 if (reload_completed)
554 {
555 /* After reload, there are no pseudos, nor subregs of multi-word
556 registers. The regsets should exactly match. */
557 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
558 {
559 if (rtl_dump_file)
560 {
561 fprintf (rtl_dump_file,
562 "live_at_start mismatch in bb %d, aborting\nNew:\n",
563 bb->index);
564 debug_bitmap_file (rtl_dump_file, new_live_at_start);
565 fputs ("Old:\n", rtl_dump_file);
566 dump_bb (bb, rtl_dump_file, 0);
567 }
568 abort ();
569 }
570 }
571 else
572 {
573 int i;
574
575 /* Find the set of changed registers. */
576 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
577
578 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
579 {
580 /* No registers should die. */
581 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
582 {
583 if (rtl_dump_file)
584 {
585 fprintf (rtl_dump_file,
586 "Register %d died unexpectedly.\n", i);
587 dump_bb (bb, rtl_dump_file, 0);
588 }
589 abort ();
590 }
591
592 /* Verify that the now-live register is wider than word_mode. */
593 verify_wide_reg (i, bb);
594 });
595 }
596 }
597
598 /* Updates life information starting with the basic blocks set in BLOCKS.
599 If BLOCKS is null, consider it to be the universal set.
600
601 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
602 we are only expecting local modifications to basic blocks. If we find
603 extra registers live at the beginning of a block, then we either killed
604 useful data, or we have a broken split that wants data not provided.
605 If we find registers removed from live_at_start, that means we have
606 a broken peephole that is killing a register it shouldn't.
607
608 ??? This is not true in one situation -- when a pre-reload splitter
609 generates subregs of a multi-word pseudo, current life analysis will
610 lose the kill. So we _can_ have a pseudo go live. How irritating.
611
612 It is also not true when a peephole decides that it doesn't need one
613 or more of the inputs.
614
615 Including PROP_REG_INFO does not properly refresh regs_ever_live
616 unless the caller resets it to zero. */
617
618 int
619 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
620 {
621 regset tmp;
622 regset_head tmp_head;
623 int i;
624 int stabilized_prop_flags = prop_flags;
625 basic_block bb;
626
627 tmp = INITIALIZE_REG_SET (tmp_head);
628 ndead = 0;
629
630 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
631 ? TV_LIFE_UPDATE : TV_LIFE);
632
633 /* Changes to the CFG are only allowed when
634 doing a global update for the entire CFG. */
635 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
636 && (extent == UPDATE_LIFE_LOCAL || blocks))
637 abort ();
638
639 /* For a global update, we go through the relaxation process again. */
640 if (extent != UPDATE_LIFE_LOCAL)
641 {
642 for ( ; ; )
643 {
644 int changed = 0;
645
646 calculate_global_regs_live (blocks, blocks,
647 prop_flags & (PROP_SCAN_DEAD_CODE
648 | PROP_SCAN_DEAD_STORES
649 | PROP_ALLOW_CFG_CHANGES));
650
651 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
652 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 break;
654
655 /* Removing dead code may allow the CFG to be simplified which
656 in turn may allow for further dead code detection / removal. */
657 FOR_EACH_BB_REVERSE (bb)
658 {
659 COPY_REG_SET (tmp, bb->global_live_at_end);
660 changed |= propagate_block (bb, tmp, NULL, NULL,
661 prop_flags & (PROP_SCAN_DEAD_CODE
662 | PROP_SCAN_DEAD_STORES
663 | PROP_KILL_DEAD_CODE));
664 }
665
666 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
667 subsequent propagate_block calls, since removing or acting as
668 removing dead code can affect global register liveness, which
669 is supposed to be finalized for this call after this loop. */
670 stabilized_prop_flags
671 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
672 | PROP_KILL_DEAD_CODE);
673
674 if (! changed)
675 break;
676
677 /* We repeat regardless of what cleanup_cfg says. If there were
678 instructions deleted above, that might have been only a
679 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
680 Further improvement may be possible. */
681 cleanup_cfg (CLEANUP_EXPENSIVE);
682
683 /* Zap the life information from the last round. If we don't
684 do this, we can wind up with registers that no longer appear
685 in the code being marked live at entry, which twiggs bogus
686 warnings from regno_uninitialized. */
687 FOR_EACH_BB (bb)
688 {
689 CLEAR_REG_SET (bb->global_live_at_start);
690 CLEAR_REG_SET (bb->global_live_at_end);
691 }
692 }
693
694 /* If asked, remove notes from the blocks we'll update. */
695 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
696 count_or_remove_death_notes (blocks, 1);
697 }
698
699 /* Clear log links in case we are asked to (re)compute them. */
700 if (prop_flags & PROP_LOG_LINKS)
701 clear_log_links (blocks);
702
703 if (blocks)
704 {
705 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
706 {
707 bb = BASIC_BLOCK (i);
708
709 COPY_REG_SET (tmp, bb->global_live_at_end);
710 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
711
712 if (extent == UPDATE_LIFE_LOCAL)
713 verify_local_live_at_start (tmp, bb);
714 });
715 }
716 else
717 {
718 FOR_EACH_BB_REVERSE (bb)
719 {
720 COPY_REG_SET (tmp, bb->global_live_at_end);
721
722 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
723
724 if (extent == UPDATE_LIFE_LOCAL)
725 verify_local_live_at_start (tmp, bb);
726 }
727 }
728
729 FREE_REG_SET (tmp);
730
731 if (prop_flags & PROP_REG_INFO)
732 {
733 /* The only pseudos that are live at the beginning of the function
734 are those that were not set anywhere in the function. local-alloc
735 doesn't know how to handle these correctly, so mark them as not
736 local to any one basic block. */
737 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
738 FIRST_PSEUDO_REGISTER, i,
739 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
740
741 /* We have a problem with any pseudoreg that lives across the setjmp.
742 ANSI says that if a user variable does not change in value between
743 the setjmp and the longjmp, then the longjmp preserves it. This
744 includes longjmp from a place where the pseudo appears dead.
745 (In principle, the value still exists if it is in scope.)
746 If the pseudo goes in a hard reg, some other value may occupy
747 that hard reg where this pseudo is dead, thus clobbering the pseudo.
748 Conclusion: such a pseudo must not go in a hard reg. */
749 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
750 FIRST_PSEUDO_REGISTER, i,
751 {
752 if (regno_reg_rtx[i] != 0)
753 {
754 REG_LIVE_LENGTH (i) = -1;
755 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
756 }
757 });
758 }
759 if (reg_deaths)
760 {
761 free (reg_deaths);
762 reg_deaths = NULL;
763 }
764 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
765 ? TV_LIFE_UPDATE : TV_LIFE);
766 if (ndead && rtl_dump_file)
767 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
768 return ndead;
769 }
770
771 /* Update life information in all blocks where BB_DIRTY is set. */
772
773 int
774 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
775 {
776 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
777 int n = 0;
778 basic_block bb;
779 int retval = 0;
780
781 sbitmap_zero (update_life_blocks);
782 FOR_EACH_BB (bb)
783 {
784 if (extent == UPDATE_LIFE_LOCAL)
785 {
786 if (bb->flags & BB_DIRTY)
787 {
788 SET_BIT (update_life_blocks, bb->index);
789 n++;
790 }
791 }
792 else
793 {
794 /* ??? Bootstrap with -march=pentium4 fails to terminate
795 with only a partial life update. */
796 SET_BIT (update_life_blocks, bb->index);
797 if (bb->flags & BB_DIRTY)
798 n++;
799 }
800 }
801
802 if (n)
803 retval = update_life_info (update_life_blocks, extent, prop_flags);
804
805 sbitmap_free (update_life_blocks);
806 return retval;
807 }
808
809 /* Free the variables allocated by find_basic_blocks.
810
811 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
812
813 void
814 free_basic_block_vars (int keep_head_end_p)
815 {
816 if (! keep_head_end_p)
817 {
818 if (basic_block_info)
819 {
820 clear_edges ();
821 VARRAY_FREE (basic_block_info);
822 }
823 n_basic_blocks = 0;
824 last_basic_block = 0;
825
826 ENTRY_BLOCK_PTR->aux = NULL;
827 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
828 EXIT_BLOCK_PTR->aux = NULL;
829 EXIT_BLOCK_PTR->global_live_at_start = NULL;
830 }
831 }
832
833 /* Delete any insns that copy a register to itself. */
834
835 int
836 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
837 {
838 rtx insn, next;
839 basic_block bb;
840 int nnoops = 0;
841
842 FOR_EACH_BB (bb)
843 {
844 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
845 {
846 next = NEXT_INSN (insn);
847 if (INSN_P (insn) && noop_move_p (insn))
848 {
849 rtx note;
850
851 /* If we're about to remove the first insn of a libcall
852 then move the libcall note to the next real insn and
853 update the retval note. */
854 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
855 && XEXP (note, 0) != insn)
856 {
857 rtx new_libcall_insn = next_real_insn (insn);
858 rtx retval_note = find_reg_note (XEXP (note, 0),
859 REG_RETVAL, NULL_RTX);
860 REG_NOTES (new_libcall_insn)
861 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
862 REG_NOTES (new_libcall_insn));
863 XEXP (retval_note, 0) = new_libcall_insn;
864 }
865
866 delete_insn_and_edges (insn);
867 nnoops++;
868 }
869 }
870 }
871 if (nnoops && rtl_dump_file)
872 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
873 return nnoops;
874 }
875
876 /* Delete any jump tables never referenced. We can't delete them at the
877 time of removing tablejump insn as they are referenced by the preceding
878 insns computing the destination, so we delay deleting and garbagecollect
879 them once life information is computed. */
880 void
881 delete_dead_jumptables (void)
882 {
883 rtx insn, next;
884 for (insn = get_insns (); insn; insn = next)
885 {
886 next = NEXT_INSN (insn);
887 if (GET_CODE (insn) == CODE_LABEL
888 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
889 && GET_CODE (next) == JUMP_INSN
890 && (GET_CODE (PATTERN (next)) == ADDR_VEC
891 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
892 {
893 if (rtl_dump_file)
894 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
895 delete_insn (NEXT_INSN (insn));
896 delete_insn (insn);
897 next = NEXT_INSN (next);
898 }
899 }
900 }
901
902 /* Determine if the stack pointer is constant over the life of the function.
903 Only useful before prologues have been emitted. */
904
905 static void
906 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
907 void *data ATTRIBUTE_UNUSED)
908 {
909 if (x == stack_pointer_rtx
910 /* The stack pointer is only modified indirectly as the result
911 of a push until later in flow. See the comments in rtl.texi
912 regarding Embedded Side-Effects on Addresses. */
913 || (GET_CODE (x) == MEM
914 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
915 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
916 current_function_sp_is_unchanging = 0;
917 }
918
919 static void
920 notice_stack_pointer_modification (rtx f)
921 {
922 rtx insn;
923
924 /* Assume that the stack pointer is unchanging if alloca hasn't
925 been used. */
926 current_function_sp_is_unchanging = !current_function_calls_alloca;
927 if (! current_function_sp_is_unchanging)
928 return;
929
930 for (insn = f; insn; insn = NEXT_INSN (insn))
931 {
932 if (INSN_P (insn))
933 {
934 /* Check if insn modifies the stack pointer. */
935 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
936 NULL);
937 if (! current_function_sp_is_unchanging)
938 return;
939 }
940 }
941 }
942
943 /* Mark a register in SET. Hard registers in large modes get all
944 of their component registers set as well. */
945
946 static void
947 mark_reg (rtx reg, void *xset)
948 {
949 regset set = (regset) xset;
950 int regno = REGNO (reg);
951
952 if (GET_MODE (reg) == BLKmode)
953 abort ();
954
955 SET_REGNO_REG_SET (set, regno);
956 if (regno < FIRST_PSEUDO_REGISTER)
957 {
958 int n = hard_regno_nregs[regno][GET_MODE (reg)];
959 while (--n > 0)
960 SET_REGNO_REG_SET (set, regno + n);
961 }
962 }
963
964 /* Mark those regs which are needed at the end of the function as live
965 at the end of the last basic block. */
966
967 static void
968 mark_regs_live_at_end (regset set)
969 {
970 unsigned int i;
971
972 /* If exiting needs the right stack value, consider the stack pointer
973 live at the end of the function. */
974 if ((HAVE_epilogue && epilogue_completed)
975 || ! EXIT_IGNORE_STACK
976 || (! FRAME_POINTER_REQUIRED
977 && ! current_function_calls_alloca
978 && flag_omit_frame_pointer)
979 || current_function_sp_is_unchanging)
980 {
981 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
982 }
983
984 /* Mark the frame pointer if needed at the end of the function. If
985 we end up eliminating it, it will be removed from the live list
986 of each basic block by reload. */
987
988 if (! reload_completed || frame_pointer_needed)
989 {
990 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
991 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
992 /* If they are different, also mark the hard frame pointer as live. */
993 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
994 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
995 #endif
996 }
997
998 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
999 /* Many architectures have a GP register even without flag_pic.
1000 Assume the pic register is not in use, or will be handled by
1001 other means, if it is not fixed. */
1002 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1003 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1004 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1005 #endif
1006
1007 /* Mark all global registers, and all registers used by the epilogue
1008 as being live at the end of the function since they may be
1009 referenced by our caller. */
1010 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1011 if (global_regs[i] || EPILOGUE_USES (i))
1012 SET_REGNO_REG_SET (set, i);
1013
1014 if (HAVE_epilogue && epilogue_completed)
1015 {
1016 /* Mark all call-saved registers that we actually used. */
1017 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1018 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1019 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1020 SET_REGNO_REG_SET (set, i);
1021 }
1022
1023 #ifdef EH_RETURN_DATA_REGNO
1024 /* Mark the registers that will contain data for the handler. */
1025 if (reload_completed && current_function_calls_eh_return)
1026 for (i = 0; ; ++i)
1027 {
1028 unsigned regno = EH_RETURN_DATA_REGNO(i);
1029 if (regno == INVALID_REGNUM)
1030 break;
1031 SET_REGNO_REG_SET (set, regno);
1032 }
1033 #endif
1034 #ifdef EH_RETURN_STACKADJ_RTX
1035 if ((! HAVE_epilogue || ! epilogue_completed)
1036 && current_function_calls_eh_return)
1037 {
1038 rtx tmp = EH_RETURN_STACKADJ_RTX;
1039 if (tmp && REG_P (tmp))
1040 mark_reg (tmp, set);
1041 }
1042 #endif
1043 #ifdef EH_RETURN_HANDLER_RTX
1044 if ((! HAVE_epilogue || ! epilogue_completed)
1045 && current_function_calls_eh_return)
1046 {
1047 rtx tmp = EH_RETURN_HANDLER_RTX;
1048 if (tmp && REG_P (tmp))
1049 mark_reg (tmp, set);
1050 }
1051 #endif
1052
1053 /* Mark function return value. */
1054 diddle_return_value (mark_reg, set);
1055 }
1056
1057 /* Propagate global life info around the graph of basic blocks. Begin
1058 considering blocks with their corresponding bit set in BLOCKS_IN.
1059 If BLOCKS_IN is null, consider it the universal set.
1060
1061 BLOCKS_OUT is set for every block that was changed. */
1062
1063 static void
1064 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1065 {
1066 basic_block *queue, *qhead, *qtail, *qend, bb;
1067 regset tmp, new_live_at_end, invalidated_by_call;
1068 regset_head tmp_head, invalidated_by_call_head;
1069 regset_head new_live_at_end_head;
1070 int i;
1071
1072 /* Some passes used to forget clear aux field of basic block causing
1073 sick behavior here. */
1074 #ifdef ENABLE_CHECKING
1075 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1076 if (bb->aux)
1077 abort ();
1078 #endif
1079
1080 tmp = INITIALIZE_REG_SET (tmp_head);
1081 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1082 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1083
1084 /* Inconveniently, this is only readily available in hard reg set form. */
1085 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1086 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1087 SET_REGNO_REG_SET (invalidated_by_call, i);
1088
1089 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1090 because the `head == tail' style test for an empty queue doesn't
1091 work with a full queue. */
1092 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1093 qtail = queue;
1094 qhead = qend = queue + n_basic_blocks + 2;
1095
1096 /* Queue the blocks set in the initial mask. Do this in reverse block
1097 number order so that we are more likely for the first round to do
1098 useful work. We use AUX non-null to flag that the block is queued. */
1099 if (blocks_in)
1100 {
1101 FOR_EACH_BB (bb)
1102 if (TEST_BIT (blocks_in, bb->index))
1103 {
1104 *--qhead = bb;
1105 bb->aux = bb;
1106 }
1107 }
1108 else
1109 {
1110 FOR_EACH_BB (bb)
1111 {
1112 *--qhead = bb;
1113 bb->aux = bb;
1114 }
1115 }
1116
1117 /* We clean aux when we remove the initially-enqueued bbs, but we
1118 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1119 unconditionally. */
1120 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1121
1122 if (blocks_out)
1123 sbitmap_zero (blocks_out);
1124
1125 /* We work through the queue until there are no more blocks. What
1126 is live at the end of this block is precisely the union of what
1127 is live at the beginning of all its successors. So, we set its
1128 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1129 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1130 this block by walking through the instructions in this block in
1131 reverse order and updating as we go. If that changed
1132 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1133 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1134
1135 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1136 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1137 must either be live at the end of the block, or used within the
1138 block. In the latter case, it will certainly never disappear
1139 from GLOBAL_LIVE_AT_START. In the former case, the register
1140 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1141 for one of the successor blocks. By induction, that cannot
1142 occur. */
1143 while (qhead != qtail)
1144 {
1145 int rescan, changed;
1146 basic_block bb;
1147 edge e;
1148
1149 bb = *qhead++;
1150 if (qhead == qend)
1151 qhead = queue;
1152 bb->aux = NULL;
1153
1154 /* Begin by propagating live_at_start from the successor blocks. */
1155 CLEAR_REG_SET (new_live_at_end);
1156
1157 if (bb->succ)
1158 for (e = bb->succ; e; e = e->succ_next)
1159 {
1160 basic_block sb = e->dest;
1161
1162 /* Call-clobbered registers die across exception and
1163 call edges. */
1164 /* ??? Abnormal call edges ignored for the moment, as this gets
1165 confused by sibling call edges, which crashes reg-stack. */
1166 if (e->flags & EDGE_EH)
1167 {
1168 bitmap_operation (tmp, sb->global_live_at_start,
1169 invalidated_by_call, BITMAP_AND_COMPL);
1170 IOR_REG_SET (new_live_at_end, tmp);
1171 }
1172 else
1173 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1174
1175 /* If a target saves one register in another (instead of on
1176 the stack) the save register will need to be live for EH. */
1177 if (e->flags & EDGE_EH)
1178 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1179 if (EH_USES (i))
1180 SET_REGNO_REG_SET (new_live_at_end, i);
1181 }
1182 else
1183 {
1184 /* This might be a noreturn function that throws. And
1185 even if it isn't, getting the unwind info right helps
1186 debugging. */
1187 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1188 if (EH_USES (i))
1189 SET_REGNO_REG_SET (new_live_at_end, i);
1190 }
1191
1192 /* The all-important stack pointer must always be live. */
1193 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1194
1195 /* Before reload, there are a few registers that must be forced
1196 live everywhere -- which might not already be the case for
1197 blocks within infinite loops. */
1198 if (! reload_completed)
1199 {
1200 /* Any reference to any pseudo before reload is a potential
1201 reference of the frame pointer. */
1202 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1203
1204 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1205 /* Pseudos with argument area equivalences may require
1206 reloading via the argument pointer. */
1207 if (fixed_regs[ARG_POINTER_REGNUM])
1208 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1209 #endif
1210
1211 /* Any constant, or pseudo with constant equivalences, may
1212 require reloading from memory using the pic register. */
1213 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1214 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1215 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1216 }
1217
1218 if (bb == ENTRY_BLOCK_PTR)
1219 {
1220 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1221 continue;
1222 }
1223
1224 /* On our first pass through this block, we'll go ahead and continue.
1225 Recognize first pass by local_set NULL. On subsequent passes, we
1226 get to skip out early if live_at_end wouldn't have changed. */
1227
1228 if (bb->local_set == NULL)
1229 {
1230 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1231 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1232 rescan = 1;
1233 }
1234 else
1235 {
1236 /* If any bits were removed from live_at_end, we'll have to
1237 rescan the block. This wouldn't be necessary if we had
1238 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1239 local_live is really dependent on live_at_end. */
1240 CLEAR_REG_SET (tmp);
1241 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1242 new_live_at_end, BITMAP_AND_COMPL);
1243
1244 if (! rescan)
1245 {
1246 /* If any of the registers in the new live_at_end set are
1247 conditionally set in this basic block, we must rescan.
1248 This is because conditional lifetimes at the end of the
1249 block do not just take the live_at_end set into account,
1250 but also the liveness at the start of each successor
1251 block. We can miss changes in those sets if we only
1252 compare the new live_at_end against the previous one. */
1253 CLEAR_REG_SET (tmp);
1254 rescan = bitmap_operation (tmp, new_live_at_end,
1255 bb->cond_local_set, BITMAP_AND);
1256 }
1257
1258 if (! rescan)
1259 {
1260 /* Find the set of changed bits. Take this opportunity
1261 to notice that this set is empty and early out. */
1262 CLEAR_REG_SET (tmp);
1263 changed = bitmap_operation (tmp, bb->global_live_at_end,
1264 new_live_at_end, BITMAP_XOR);
1265 if (! changed)
1266 continue;
1267
1268 /* If any of the changed bits overlap with local_set,
1269 we'll have to rescan the block. Detect overlap by
1270 the AND with ~local_set turning off bits. */
1271 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1272 BITMAP_AND_COMPL);
1273 }
1274 }
1275
1276 /* Let our caller know that BB changed enough to require its
1277 death notes updated. */
1278 if (blocks_out)
1279 SET_BIT (blocks_out, bb->index);
1280
1281 if (! rescan)
1282 {
1283 /* Add to live_at_start the set of all registers in
1284 new_live_at_end that aren't in the old live_at_end. */
1285
1286 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1287 BITMAP_AND_COMPL);
1288 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1289
1290 changed = bitmap_operation (bb->global_live_at_start,
1291 bb->global_live_at_start,
1292 tmp, BITMAP_IOR);
1293 if (! changed)
1294 continue;
1295 }
1296 else
1297 {
1298 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1299
1300 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1301 into live_at_start. */
1302 propagate_block (bb, new_live_at_end, bb->local_set,
1303 bb->cond_local_set, flags);
1304
1305 /* If live_at start didn't change, no need to go farther. */
1306 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1307 continue;
1308
1309 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1310 }
1311
1312 /* Queue all predecessors of BB so that we may re-examine
1313 their live_at_end. */
1314 for (e = bb->pred; e; e = e->pred_next)
1315 {
1316 basic_block pb = e->src;
1317 if (pb->aux == NULL)
1318 {
1319 *qtail++ = pb;
1320 if (qtail == qend)
1321 qtail = queue;
1322 pb->aux = pb;
1323 }
1324 }
1325 }
1326
1327 FREE_REG_SET (tmp);
1328 FREE_REG_SET (new_live_at_end);
1329 FREE_REG_SET (invalidated_by_call);
1330
1331 if (blocks_out)
1332 {
1333 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1334 {
1335 basic_block bb = BASIC_BLOCK (i);
1336 FREE_REG_SET (bb->local_set);
1337 FREE_REG_SET (bb->cond_local_set);
1338 });
1339 }
1340 else
1341 {
1342 FOR_EACH_BB (bb)
1343 {
1344 FREE_REG_SET (bb->local_set);
1345 FREE_REG_SET (bb->cond_local_set);
1346 }
1347 }
1348
1349 free (queue);
1350 }
1351
1352 \f
1353 /* This structure is used to pass parameters to and from the
1354 the function find_regno_partial(). It is used to pass in the
1355 register number we are looking, as well as to return any rtx
1356 we find. */
1357
1358 typedef struct {
1359 unsigned regno_to_find;
1360 rtx retval;
1361 } find_regno_partial_param;
1362
1363
1364 /* Find the rtx for the reg numbers specified in 'data' if it is
1365 part of an expression which only uses part of the register. Return
1366 it in the structure passed in. */
1367 static int
1368 find_regno_partial (rtx *ptr, void *data)
1369 {
1370 find_regno_partial_param *param = (find_regno_partial_param *)data;
1371 unsigned reg = param->regno_to_find;
1372 param->retval = NULL_RTX;
1373
1374 if (*ptr == NULL_RTX)
1375 return 0;
1376
1377 switch (GET_CODE (*ptr))
1378 {
1379 case ZERO_EXTRACT:
1380 case SIGN_EXTRACT:
1381 case STRICT_LOW_PART:
1382 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1383 {
1384 param->retval = XEXP (*ptr, 0);
1385 return 1;
1386 }
1387 break;
1388
1389 case SUBREG:
1390 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1391 && REGNO (SUBREG_REG (*ptr)) == reg)
1392 {
1393 param->retval = SUBREG_REG (*ptr);
1394 return 1;
1395 }
1396 break;
1397
1398 default:
1399 break;
1400 }
1401
1402 return 0;
1403 }
1404
1405 /* Process all immediate successors of the entry block looking for pseudo
1406 registers which are live on entry. Find all of those whose first
1407 instance is a partial register reference of some kind, and initialize
1408 them to 0 after the entry block. This will prevent bit sets within
1409 registers whose value is unknown, and may contain some kind of sticky
1410 bits we don't want. */
1411
1412 int
1413 initialize_uninitialized_subregs (void)
1414 {
1415 rtx insn;
1416 edge e;
1417 int reg, did_something = 0;
1418 find_regno_partial_param param;
1419
1420 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1421 {
1422 basic_block bb = e->dest;
1423 regset map = bb->global_live_at_start;
1424 EXECUTE_IF_SET_IN_REG_SET (map,
1425 FIRST_PSEUDO_REGISTER, reg,
1426 {
1427 int uid = REGNO_FIRST_UID (reg);
1428 rtx i;
1429
1430 /* Find an insn which mentions the register we are looking for.
1431 Its preferable to have an instance of the register's rtl since
1432 there may be various flags set which we need to duplicate.
1433 If we can't find it, its probably an automatic whose initial
1434 value doesn't matter, or hopefully something we don't care about. */
1435 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1436 ;
1437 if (i != NULL_RTX)
1438 {
1439 /* Found the insn, now get the REG rtx, if we can. */
1440 param.regno_to_find = reg;
1441 for_each_rtx (&i, find_regno_partial, &param);
1442 if (param.retval != NULL_RTX)
1443 {
1444 start_sequence ();
1445 emit_move_insn (param.retval,
1446 CONST0_RTX (GET_MODE (param.retval)));
1447 insn = get_insns ();
1448 end_sequence ();
1449 insert_insn_on_edge (insn, e);
1450 did_something = 1;
1451 }
1452 }
1453 });
1454 }
1455
1456 if (did_something)
1457 commit_edge_insertions ();
1458 return did_something;
1459 }
1460
1461 \f
1462 /* Subroutines of life analysis. */
1463
1464 /* Allocate the permanent data structures that represent the results
1465 of life analysis. Not static since used also for stupid life analysis. */
1466
1467 void
1468 allocate_bb_life_data (void)
1469 {
1470 basic_block bb;
1471
1472 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1473 {
1474 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1475 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1476 }
1477
1478 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1479 }
1480
1481 void
1482 allocate_reg_life_data (void)
1483 {
1484 int i;
1485
1486 max_regno = max_reg_num ();
1487 if (reg_deaths)
1488 abort ();
1489 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1490
1491 /* Recalculate the register space, in case it has grown. Old style
1492 vector oriented regsets would set regset_{size,bytes} here also. */
1493 allocate_reg_info (max_regno, FALSE, FALSE);
1494
1495 /* Reset all the data we'll collect in propagate_block and its
1496 subroutines. */
1497 for (i = 0; i < max_regno; i++)
1498 {
1499 REG_N_SETS (i) = 0;
1500 REG_N_REFS (i) = 0;
1501 REG_N_DEATHS (i) = 0;
1502 REG_N_CALLS_CROSSED (i) = 0;
1503 REG_LIVE_LENGTH (i) = 0;
1504 REG_FREQ (i) = 0;
1505 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1506 }
1507 }
1508
1509 /* Delete dead instructions for propagate_block. */
1510
1511 static void
1512 propagate_block_delete_insn (rtx insn)
1513 {
1514 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1515
1516 /* If the insn referred to a label, and that label was attached to
1517 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1518 pretty much mandatory to delete it, because the ADDR_VEC may be
1519 referencing labels that no longer exist.
1520
1521 INSN may reference a deleted label, particularly when a jump
1522 table has been optimized into a direct jump. There's no
1523 real good way to fix up the reference to the deleted label
1524 when the label is deleted, so we just allow it here. */
1525
1526 if (inote && GET_CODE (inote) == CODE_LABEL)
1527 {
1528 rtx label = XEXP (inote, 0);
1529 rtx next;
1530
1531 /* The label may be forced if it has been put in the constant
1532 pool. If that is the only use we must discard the table
1533 jump following it, but not the label itself. */
1534 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1535 && (next = next_nonnote_insn (label)) != NULL
1536 && GET_CODE (next) == JUMP_INSN
1537 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1538 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1539 {
1540 rtx pat = PATTERN (next);
1541 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1542 int len = XVECLEN (pat, diff_vec_p);
1543 int i;
1544
1545 for (i = 0; i < len; i++)
1546 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1547
1548 delete_insn_and_edges (next);
1549 ndead++;
1550 }
1551 }
1552
1553 delete_insn_and_edges (insn);
1554 ndead++;
1555 }
1556
1557 /* Delete dead libcalls for propagate_block. Return the insn
1558 before the libcall. */
1559
1560 static rtx
1561 propagate_block_delete_libcall (rtx insn, rtx note)
1562 {
1563 rtx first = XEXP (note, 0);
1564 rtx before = PREV_INSN (first);
1565
1566 delete_insn_chain_and_edges (first, insn);
1567 ndead++;
1568 return before;
1569 }
1570
1571 /* Update the life-status of regs for one insn. Return the previous insn. */
1572
1573 rtx
1574 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1575 {
1576 rtx prev = PREV_INSN (insn);
1577 int flags = pbi->flags;
1578 int insn_is_dead = 0;
1579 int libcall_is_dead = 0;
1580 rtx note;
1581 int i;
1582
1583 if (! INSN_P (insn))
1584 return prev;
1585
1586 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1587 if (flags & PROP_SCAN_DEAD_CODE)
1588 {
1589 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1590 libcall_is_dead = (insn_is_dead && note != 0
1591 && libcall_dead_p (pbi, note, insn));
1592 }
1593
1594 /* If an instruction consists of just dead store(s) on final pass,
1595 delete it. */
1596 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1597 {
1598 /* If we're trying to delete a prologue or epilogue instruction
1599 that isn't flagged as possibly being dead, something is wrong.
1600 But if we are keeping the stack pointer depressed, we might well
1601 be deleting insns that are used to compute the amount to update
1602 it by, so they are fine. */
1603 if (reload_completed
1604 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1605 && (TYPE_RETURNS_STACK_DEPRESSED
1606 (TREE_TYPE (current_function_decl))))
1607 && (((HAVE_epilogue || HAVE_prologue)
1608 && prologue_epilogue_contains (insn))
1609 || (HAVE_sibcall_epilogue
1610 && sibcall_epilogue_contains (insn)))
1611 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1612 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1613
1614 /* Record sets. Do this even for dead instructions, since they
1615 would have killed the values if they hadn't been deleted. */
1616 mark_set_regs (pbi, PATTERN (insn), insn);
1617
1618 /* CC0 is now known to be dead. Either this insn used it,
1619 in which case it doesn't anymore, or clobbered it,
1620 so the next insn can't use it. */
1621 pbi->cc0_live = 0;
1622
1623 if (libcall_is_dead)
1624 prev = propagate_block_delete_libcall ( insn, note);
1625 else
1626 {
1627
1628 /* If INSN contains a RETVAL note and is dead, but the libcall
1629 as a whole is not dead, then we want to remove INSN, but
1630 not the whole libcall sequence.
1631
1632 However, we need to also remove the dangling REG_LIBCALL
1633 note so that we do not have mis-matched LIBCALL/RETVAL
1634 notes. In theory we could find a new location for the
1635 REG_RETVAL note, but it hardly seems worth the effort.
1636
1637 NOTE at this point will be the RETVAL note if it exists. */
1638 if (note)
1639 {
1640 rtx libcall_note;
1641
1642 libcall_note
1643 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1644 remove_note (XEXP (note, 0), libcall_note);
1645 }
1646
1647 /* Similarly if INSN contains a LIBCALL note, remove the
1648 dangling REG_RETVAL note. */
1649 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1650 if (note)
1651 {
1652 rtx retval_note;
1653
1654 retval_note
1655 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1656 remove_note (XEXP (note, 0), retval_note);
1657 }
1658
1659 /* Now delete INSN. */
1660 propagate_block_delete_insn (insn);
1661 }
1662
1663 return prev;
1664 }
1665
1666 /* See if this is an increment or decrement that can be merged into
1667 a following memory address. */
1668 #ifdef AUTO_INC_DEC
1669 {
1670 rtx x = single_set (insn);
1671
1672 /* Does this instruction increment or decrement a register? */
1673 if ((flags & PROP_AUTOINC)
1674 && x != 0
1675 && GET_CODE (SET_DEST (x)) == REG
1676 && (GET_CODE (SET_SRC (x)) == PLUS
1677 || GET_CODE (SET_SRC (x)) == MINUS)
1678 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1679 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1680 /* Ok, look for a following memory ref we can combine with.
1681 If one is found, change the memory ref to a PRE_INC
1682 or PRE_DEC, cancel this insn, and return 1.
1683 Return 0 if nothing has been done. */
1684 && try_pre_increment_1 (pbi, insn))
1685 return prev;
1686 }
1687 #endif /* AUTO_INC_DEC */
1688
1689 CLEAR_REG_SET (pbi->new_set);
1690
1691 /* If this is not the final pass, and this insn is copying the value of
1692 a library call and it's dead, don't scan the insns that perform the
1693 library call, so that the call's arguments are not marked live. */
1694 if (libcall_is_dead)
1695 {
1696 /* Record the death of the dest reg. */
1697 mark_set_regs (pbi, PATTERN (insn), insn);
1698
1699 insn = XEXP (note, 0);
1700 return PREV_INSN (insn);
1701 }
1702 else if (GET_CODE (PATTERN (insn)) == SET
1703 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1704 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1705 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1706 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1707 /* We have an insn to pop a constant amount off the stack.
1708 (Such insns use PLUS regardless of the direction of the stack,
1709 and any insn to adjust the stack by a constant is always a pop.)
1710 These insns, if not dead stores, have no effect on life, though
1711 they do have an effect on the memory stores we are tracking. */
1712 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1713 else
1714 {
1715 rtx note;
1716 /* Any regs live at the time of a call instruction must not go
1717 in a register clobbered by calls. Find all regs now live and
1718 record this for them. */
1719
1720 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1721 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1722 { REG_N_CALLS_CROSSED (i)++; });
1723
1724 /* Record sets. Do this even for dead instructions, since they
1725 would have killed the values if they hadn't been deleted. */
1726 mark_set_regs (pbi, PATTERN (insn), insn);
1727
1728 if (GET_CODE (insn) == CALL_INSN)
1729 {
1730 regset live_at_end;
1731 bool sibcall_p;
1732 rtx note, cond;
1733 int i;
1734
1735 cond = NULL_RTX;
1736 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1737 cond = COND_EXEC_TEST (PATTERN (insn));
1738
1739 /* Non-constant calls clobber memory, constant calls do not
1740 clobber memory, though they may clobber outgoing arguments
1741 on the stack. */
1742 if (! CONST_OR_PURE_CALL_P (insn))
1743 {
1744 free_EXPR_LIST_list (&pbi->mem_set_list);
1745 pbi->mem_set_list_len = 0;
1746 }
1747 else
1748 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1749
1750 /* There may be extra registers to be clobbered. */
1751 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1752 note;
1753 note = XEXP (note, 1))
1754 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1755 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1756 cond, insn, pbi->flags);
1757
1758 /* Calls change all call-used and global registers; sibcalls do not
1759 clobber anything that must be preserved at end-of-function,
1760 except for return values. */
1761
1762 sibcall_p = SIBLING_CALL_P (insn);
1763 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1764 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1765 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1766 && ! (sibcall_p
1767 && REGNO_REG_SET_P (live_at_end, i)
1768 && ! refers_to_regno_p (i, i+1,
1769 current_function_return_rtx,
1770 (rtx *) 0)))
1771 {
1772 /* We do not want REG_UNUSED notes for these registers. */
1773 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1774 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1775 }
1776 }
1777
1778 /* If an insn doesn't use CC0, it becomes dead since we assume
1779 that every insn clobbers it. So show it dead here;
1780 mark_used_regs will set it live if it is referenced. */
1781 pbi->cc0_live = 0;
1782
1783 /* Record uses. */
1784 if (! insn_is_dead)
1785 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1786 if ((flags & PROP_EQUAL_NOTES)
1787 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1788 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1789 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1790
1791 /* Sometimes we may have inserted something before INSN (such as a move)
1792 when we make an auto-inc. So ensure we will scan those insns. */
1793 #ifdef AUTO_INC_DEC
1794 prev = PREV_INSN (insn);
1795 #endif
1796
1797 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1798 {
1799 int i;
1800 rtx note, cond;
1801
1802 cond = NULL_RTX;
1803 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1804 cond = COND_EXEC_TEST (PATTERN (insn));
1805
1806 /* Calls use their arguments, and may clobber memory which
1807 address involves some register. */
1808 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1809 note;
1810 note = XEXP (note, 1))
1811 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1812 of which mark_used_regs knows how to handle. */
1813 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1814
1815 /* The stack ptr is used (honorarily) by a CALL insn. */
1816 if ((flags & PROP_REG_INFO)
1817 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1818 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1819 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1820
1821 /* Calls may also reference any of the global registers,
1822 so they are made live. */
1823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1824 if (global_regs[i])
1825 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1826 }
1827 }
1828
1829 pbi->insn_num++;
1830
1831 return prev;
1832 }
1833
1834 /* Initialize a propagate_block_info struct for public consumption.
1835 Note that the structure itself is opaque to this file, but that
1836 the user can use the regsets provided here. */
1837
1838 struct propagate_block_info *
1839 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1840 regset cond_local_set, int flags)
1841 {
1842 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1843
1844 pbi->bb = bb;
1845 pbi->reg_live = live;
1846 pbi->mem_set_list = NULL_RTX;
1847 pbi->mem_set_list_len = 0;
1848 pbi->local_set = local_set;
1849 pbi->cond_local_set = cond_local_set;
1850 pbi->cc0_live = 0;
1851 pbi->flags = flags;
1852 pbi->insn_num = 0;
1853
1854 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1855 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1856 else
1857 pbi->reg_next_use = NULL;
1858
1859 pbi->new_set = BITMAP_XMALLOC ();
1860
1861 #ifdef HAVE_conditional_execution
1862 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1863 free_reg_cond_life_info);
1864 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1865
1866 /* If this block ends in a conditional branch, for each register
1867 live from one side of the branch and not the other, record the
1868 register as conditionally dead. */
1869 if (GET_CODE (BB_END (bb)) == JUMP_INSN
1870 && any_condjump_p (BB_END (bb)))
1871 {
1872 regset_head diff_head;
1873 regset diff = INITIALIZE_REG_SET (diff_head);
1874 basic_block bb_true, bb_false;
1875 int i;
1876
1877 /* Identify the successor blocks. */
1878 bb_true = bb->succ->dest;
1879 if (bb->succ->succ_next != NULL)
1880 {
1881 bb_false = bb->succ->succ_next->dest;
1882
1883 if (bb->succ->flags & EDGE_FALLTHRU)
1884 {
1885 basic_block t = bb_false;
1886 bb_false = bb_true;
1887 bb_true = t;
1888 }
1889 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1890 abort ();
1891 }
1892 else
1893 {
1894 /* This can happen with a conditional jump to the next insn. */
1895 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1896 abort ();
1897
1898 /* Simplest way to do nothing. */
1899 bb_false = bb_true;
1900 }
1901
1902 /* Compute which register lead different lives in the successors. */
1903 if (bitmap_operation (diff, bb_true->global_live_at_start,
1904 bb_false->global_live_at_start, BITMAP_XOR))
1905 {
1906 /* Extract the condition from the branch. */
1907 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1908 rtx cond_true = XEXP (set_src, 0);
1909 rtx reg = XEXP (cond_true, 0);
1910
1911 if (GET_CODE (reg) == SUBREG)
1912 reg = SUBREG_REG (reg);
1913
1914 /* We can only track conditional lifetimes if the condition is
1915 in the form of a comparison of a register against zero.
1916 If the condition is more complex than that, then it is safe
1917 not to record any information. */
1918 if (GET_CODE (reg) == REG
1919 && XEXP (cond_true, 1) == const0_rtx)
1920 {
1921 rtx cond_false
1922 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1923 GET_MODE (cond_true), XEXP (cond_true, 0),
1924 XEXP (cond_true, 1));
1925 if (GET_CODE (XEXP (set_src, 1)) == PC)
1926 {
1927 rtx t = cond_false;
1928 cond_false = cond_true;
1929 cond_true = t;
1930 }
1931
1932 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1933
1934 /* For each such register, mark it conditionally dead. */
1935 EXECUTE_IF_SET_IN_REG_SET
1936 (diff, 0, i,
1937 {
1938 struct reg_cond_life_info *rcli;
1939 rtx cond;
1940
1941 rcli = xmalloc (sizeof (*rcli));
1942
1943 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1944 cond = cond_false;
1945 else
1946 cond = cond_true;
1947 rcli->condition = cond;
1948 rcli->stores = const0_rtx;
1949 rcli->orig_condition = cond;
1950
1951 splay_tree_insert (pbi->reg_cond_dead, i,
1952 (splay_tree_value) rcli);
1953 });
1954 }
1955 }
1956
1957 FREE_REG_SET (diff);
1958 }
1959 #endif
1960
1961 /* If this block has no successors, any stores to the frame that aren't
1962 used later in the block are dead. So make a pass over the block
1963 recording any such that are made and show them dead at the end. We do
1964 a very conservative and simple job here. */
1965 if (optimize
1966 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1967 && (TYPE_RETURNS_STACK_DEPRESSED
1968 (TREE_TYPE (current_function_decl))))
1969 && (flags & PROP_SCAN_DEAD_STORES)
1970 && (bb->succ == NULL
1971 || (bb->succ->succ_next == NULL
1972 && bb->succ->dest == EXIT_BLOCK_PTR
1973 && ! current_function_calls_eh_return)))
1974 {
1975 rtx insn, set;
1976 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1977 if (GET_CODE (insn) == INSN
1978 && (set = single_set (insn))
1979 && GET_CODE (SET_DEST (set)) == MEM)
1980 {
1981 rtx mem = SET_DEST (set);
1982 rtx canon_mem = canon_rtx (mem);
1983
1984 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1985 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1986 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1987 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1988 add_to_mem_set_list (pbi, canon_mem);
1989 }
1990 }
1991
1992 return pbi;
1993 }
1994
1995 /* Release a propagate_block_info struct. */
1996
1997 void
1998 free_propagate_block_info (struct propagate_block_info *pbi)
1999 {
2000 free_EXPR_LIST_list (&pbi->mem_set_list);
2001
2002 BITMAP_XFREE (pbi->new_set);
2003
2004 #ifdef HAVE_conditional_execution
2005 splay_tree_delete (pbi->reg_cond_dead);
2006 BITMAP_XFREE (pbi->reg_cond_reg);
2007 #endif
2008
2009 if (pbi->flags & PROP_REG_INFO)
2010 {
2011 int num = pbi->insn_num;
2012 int i;
2013
2014 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
2015 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2016 reg_deaths[i] = 0;
2017 });
2018 }
2019 if (pbi->reg_next_use)
2020 free (pbi->reg_next_use);
2021
2022 free (pbi);
2023 }
2024
2025 /* Compute the registers live at the beginning of a basic block BB from
2026 those live at the end.
2027
2028 When called, REG_LIVE contains those live at the end. On return, it
2029 contains those live at the beginning.
2030
2031 LOCAL_SET, if non-null, will be set with all registers killed
2032 unconditionally by this basic block.
2033 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2034 killed conditionally by this basic block. If there is any unconditional
2035 set of a register, then the corresponding bit will be set in LOCAL_SET
2036 and cleared in COND_LOCAL_SET.
2037 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2038 case, the resulting set will be equal to the union of the two sets that
2039 would otherwise be computed.
2040
2041 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2042
2043 int
2044 propagate_block (basic_block bb, regset live, regset local_set,
2045 regset cond_local_set, int flags)
2046 {
2047 struct propagate_block_info *pbi;
2048 rtx insn, prev;
2049 int changed;
2050
2051 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2052
2053 if (flags & PROP_REG_INFO)
2054 {
2055 int i;
2056
2057 /* Process the regs live at the end of the block.
2058 Mark them as not local to any one basic block. */
2059 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2060 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2061 }
2062
2063 /* Scan the block an insn at a time from end to beginning. */
2064
2065 changed = 0;
2066 for (insn = BB_END (bb); ; insn = prev)
2067 {
2068 /* If this is a call to `setjmp' et al, warn if any
2069 non-volatile datum is live. */
2070 if ((flags & PROP_REG_INFO)
2071 && GET_CODE (insn) == CALL_INSN
2072 && find_reg_note (insn, REG_SETJMP, NULL))
2073 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2074
2075 prev = propagate_one_insn (pbi, insn);
2076 if (!prev)
2077 changed |= insn != get_insns ();
2078 else
2079 changed |= NEXT_INSN (prev) != insn;
2080
2081 if (insn == BB_HEAD (bb))
2082 break;
2083 }
2084
2085 free_propagate_block_info (pbi);
2086
2087 return changed;
2088 }
2089 \f
2090 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2091 (SET expressions whose destinations are registers dead after the insn).
2092 NEEDED is the regset that says which regs are alive after the insn.
2093
2094 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2095
2096 If X is the entire body of an insn, NOTES contains the reg notes
2097 pertaining to the insn. */
2098
2099 static int
2100 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2101 rtx notes ATTRIBUTE_UNUSED)
2102 {
2103 enum rtx_code code = GET_CODE (x);
2104
2105 /* Don't eliminate insns that may trap. */
2106 if (flag_non_call_exceptions && may_trap_p (x))
2107 return 0;
2108
2109 #ifdef AUTO_INC_DEC
2110 /* As flow is invoked after combine, we must take existing AUTO_INC
2111 expressions into account. */
2112 for (; notes; notes = XEXP (notes, 1))
2113 {
2114 if (REG_NOTE_KIND (notes) == REG_INC)
2115 {
2116 int regno = REGNO (XEXP (notes, 0));
2117
2118 /* Don't delete insns to set global regs. */
2119 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2120 || REGNO_REG_SET_P (pbi->reg_live, regno))
2121 return 0;
2122 }
2123 }
2124 #endif
2125
2126 /* If setting something that's a reg or part of one,
2127 see if that register's altered value will be live. */
2128
2129 if (code == SET)
2130 {
2131 rtx r = SET_DEST (x);
2132
2133 #ifdef HAVE_cc0
2134 if (GET_CODE (r) == CC0)
2135 return ! pbi->cc0_live;
2136 #endif
2137
2138 /* A SET that is a subroutine call cannot be dead. */
2139 if (GET_CODE (SET_SRC (x)) == CALL)
2140 {
2141 if (! call_ok)
2142 return 0;
2143 }
2144
2145 /* Don't eliminate loads from volatile memory or volatile asms. */
2146 else if (volatile_refs_p (SET_SRC (x)))
2147 return 0;
2148
2149 if (GET_CODE (r) == MEM)
2150 {
2151 rtx temp, canon_r;
2152
2153 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2154 return 0;
2155
2156 canon_r = canon_rtx (r);
2157
2158 /* Walk the set of memory locations we are currently tracking
2159 and see if one is an identical match to this memory location.
2160 If so, this memory write is dead (remember, we're walking
2161 backwards from the end of the block to the start). Since
2162 rtx_equal_p does not check the alias set or flags, we also
2163 must have the potential for them to conflict (anti_dependence). */
2164 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2165 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2166 {
2167 rtx mem = XEXP (temp, 0);
2168
2169 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2170 && (GET_MODE_SIZE (GET_MODE (canon_r))
2171 <= GET_MODE_SIZE (GET_MODE (mem))))
2172 return 1;
2173
2174 #ifdef AUTO_INC_DEC
2175 /* Check if memory reference matches an auto increment. Only
2176 post increment/decrement or modify are valid. */
2177 if (GET_MODE (mem) == GET_MODE (r)
2178 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2179 || GET_CODE (XEXP (mem, 0)) == POST_INC
2180 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2181 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2182 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2183 return 1;
2184 #endif
2185 }
2186 }
2187 else
2188 {
2189 while (GET_CODE (r) == SUBREG
2190 || GET_CODE (r) == STRICT_LOW_PART
2191 || GET_CODE (r) == ZERO_EXTRACT)
2192 r = XEXP (r, 0);
2193
2194 if (GET_CODE (r) == REG)
2195 {
2196 int regno = REGNO (r);
2197
2198 /* Obvious. */
2199 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2200 return 0;
2201
2202 /* If this is a hard register, verify that subsequent
2203 words are not needed. */
2204 if (regno < FIRST_PSEUDO_REGISTER)
2205 {
2206 int n = hard_regno_nregs[regno][GET_MODE (r)];
2207
2208 while (--n > 0)
2209 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2210 return 0;
2211 }
2212
2213 /* Don't delete insns to set global regs. */
2214 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2215 return 0;
2216
2217 /* Make sure insns to set the stack pointer aren't deleted. */
2218 if (regno == STACK_POINTER_REGNUM)
2219 return 0;
2220
2221 /* ??? These bits might be redundant with the force live bits
2222 in calculate_global_regs_live. We would delete from
2223 sequential sets; whether this actually affects real code
2224 for anything but the stack pointer I don't know. */
2225 /* Make sure insns to set the frame pointer aren't deleted. */
2226 if (regno == FRAME_POINTER_REGNUM
2227 && (! reload_completed || frame_pointer_needed))
2228 return 0;
2229 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2230 if (regno == HARD_FRAME_POINTER_REGNUM
2231 && (! reload_completed || frame_pointer_needed))
2232 return 0;
2233 #endif
2234
2235 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2236 /* Make sure insns to set arg pointer are never deleted
2237 (if the arg pointer isn't fixed, there will be a USE
2238 for it, so we can treat it normally). */
2239 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2240 return 0;
2241 #endif
2242
2243 /* Otherwise, the set is dead. */
2244 return 1;
2245 }
2246 }
2247 }
2248
2249 /* If performing several activities, insn is dead if each activity
2250 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2251 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2252 worth keeping. */
2253 else if (code == PARALLEL)
2254 {
2255 int i = XVECLEN (x, 0);
2256
2257 for (i--; i >= 0; i--)
2258 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2259 && GET_CODE (XVECEXP (x, 0, i)) != USE
2260 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2261 return 0;
2262
2263 return 1;
2264 }
2265
2266 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2267 is not necessarily true for hard registers. */
2268 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2269 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2270 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2271 return 1;
2272
2273 /* We do not check other CLOBBER or USE here. An insn consisting of just
2274 a CLOBBER or just a USE should not be deleted. */
2275 return 0;
2276 }
2277
2278 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2279 return 1 if the entire library call is dead.
2280 This is true if INSN copies a register (hard or pseudo)
2281 and if the hard return reg of the call insn is dead.
2282 (The caller should have tested the destination of the SET inside
2283 INSN already for death.)
2284
2285 If this insn doesn't just copy a register, then we don't
2286 have an ordinary libcall. In that case, cse could not have
2287 managed to substitute the source for the dest later on,
2288 so we can assume the libcall is dead.
2289
2290 PBI is the block info giving pseudoregs live before this insn.
2291 NOTE is the REG_RETVAL note of the insn. */
2292
2293 static int
2294 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2295 {
2296 rtx x = single_set (insn);
2297
2298 if (x)
2299 {
2300 rtx r = SET_SRC (x);
2301
2302 if (GET_CODE (r) == REG)
2303 {
2304 rtx call = XEXP (note, 0);
2305 rtx call_pat;
2306 int i;
2307
2308 /* Find the call insn. */
2309 while (call != insn && GET_CODE (call) != CALL_INSN)
2310 call = NEXT_INSN (call);
2311
2312 /* If there is none, do nothing special,
2313 since ordinary death handling can understand these insns. */
2314 if (call == insn)
2315 return 0;
2316
2317 /* See if the hard reg holding the value is dead.
2318 If this is a PARALLEL, find the call within it. */
2319 call_pat = PATTERN (call);
2320 if (GET_CODE (call_pat) == PARALLEL)
2321 {
2322 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2323 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2324 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2325 break;
2326
2327 /* This may be a library call that is returning a value
2328 via invisible pointer. Do nothing special, since
2329 ordinary death handling can understand these insns. */
2330 if (i < 0)
2331 return 0;
2332
2333 call_pat = XVECEXP (call_pat, 0, i);
2334 }
2335
2336 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2337 }
2338 }
2339 return 1;
2340 }
2341
2342 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2343 live at function entry. Don't count global register variables, variables
2344 in registers that can be used for function arg passing, or variables in
2345 fixed hard registers. */
2346
2347 int
2348 regno_uninitialized (unsigned int regno)
2349 {
2350 if (n_basic_blocks == 0
2351 || (regno < FIRST_PSEUDO_REGISTER
2352 && (global_regs[regno]
2353 || fixed_regs[regno]
2354 || FUNCTION_ARG_REGNO_P (regno))))
2355 return 0;
2356
2357 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2358 }
2359
2360 /* 1 if register REGNO was alive at a place where `setjmp' was called
2361 and was set more than once or is an argument.
2362 Such regs may be clobbered by `longjmp'. */
2363
2364 int
2365 regno_clobbered_at_setjmp (int regno)
2366 {
2367 if (n_basic_blocks == 0)
2368 return 0;
2369
2370 return ((REG_N_SETS (regno) > 1
2371 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2372 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2373 }
2374 \f
2375 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2376 maximal list size; look for overlaps in mode and select the largest. */
2377 static void
2378 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2379 {
2380 rtx i;
2381
2382 /* We don't know how large a BLKmode store is, so we must not
2383 take them into consideration. */
2384 if (GET_MODE (mem) == BLKmode)
2385 return;
2386
2387 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2388 {
2389 rtx e = XEXP (i, 0);
2390 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2391 {
2392 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2393 {
2394 #ifdef AUTO_INC_DEC
2395 /* If we must store a copy of the mem, we can just modify
2396 the mode of the stored copy. */
2397 if (pbi->flags & PROP_AUTOINC)
2398 PUT_MODE (e, GET_MODE (mem));
2399 else
2400 #endif
2401 XEXP (i, 0) = mem;
2402 }
2403 return;
2404 }
2405 }
2406
2407 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2408 {
2409 #ifdef AUTO_INC_DEC
2410 /* Store a copy of mem, otherwise the address may be
2411 scrogged by find_auto_inc. */
2412 if (pbi->flags & PROP_AUTOINC)
2413 mem = shallow_copy_rtx (mem);
2414 #endif
2415 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2416 pbi->mem_set_list_len++;
2417 }
2418 }
2419
2420 /* INSN references memory, possibly using autoincrement addressing modes.
2421 Find any entries on the mem_set_list that need to be invalidated due
2422 to an address change. */
2423
2424 static int
2425 invalidate_mems_from_autoinc (rtx *px, void *data)
2426 {
2427 rtx x = *px;
2428 struct propagate_block_info *pbi = data;
2429
2430 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2431 {
2432 invalidate_mems_from_set (pbi, XEXP (x, 0));
2433 return -1;
2434 }
2435
2436 return 0;
2437 }
2438
2439 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2440
2441 static void
2442 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2443 {
2444 rtx temp = pbi->mem_set_list;
2445 rtx prev = NULL_RTX;
2446 rtx next;
2447
2448 while (temp)
2449 {
2450 next = XEXP (temp, 1);
2451 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2452 {
2453 /* Splice this entry out of the list. */
2454 if (prev)
2455 XEXP (prev, 1) = next;
2456 else
2457 pbi->mem_set_list = next;
2458 free_EXPR_LIST_node (temp);
2459 pbi->mem_set_list_len--;
2460 }
2461 else
2462 prev = temp;
2463 temp = next;
2464 }
2465 }
2466
2467 /* Process the registers that are set within X. Their bits are set to
2468 1 in the regset DEAD, because they are dead prior to this insn.
2469
2470 If INSN is nonzero, it is the insn being processed.
2471
2472 FLAGS is the set of operations to perform. */
2473
2474 static void
2475 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2476 {
2477 rtx cond = NULL_RTX;
2478 rtx link;
2479 enum rtx_code code;
2480 int flags = pbi->flags;
2481
2482 if (insn)
2483 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2484 {
2485 if (REG_NOTE_KIND (link) == REG_INC)
2486 mark_set_1 (pbi, SET, XEXP (link, 0),
2487 (GET_CODE (x) == COND_EXEC
2488 ? COND_EXEC_TEST (x) : NULL_RTX),
2489 insn, flags);
2490 }
2491 retry:
2492 switch (code = GET_CODE (x))
2493 {
2494 case SET:
2495 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2496 flags |= PROP_ASM_SCAN;
2497 /* Fall through */
2498 case CLOBBER:
2499 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2500 return;
2501
2502 case COND_EXEC:
2503 cond = COND_EXEC_TEST (x);
2504 x = COND_EXEC_CODE (x);
2505 goto retry;
2506
2507 case PARALLEL:
2508 {
2509 int i;
2510
2511 /* We must scan forwards. If we have an asm, we need to set
2512 the PROP_ASM_SCAN flag before scanning the clobbers. */
2513 for (i = 0; i < XVECLEN (x, 0); i++)
2514 {
2515 rtx sub = XVECEXP (x, 0, i);
2516 switch (code = GET_CODE (sub))
2517 {
2518 case COND_EXEC:
2519 if (cond != NULL_RTX)
2520 abort ();
2521
2522 cond = COND_EXEC_TEST (sub);
2523 sub = COND_EXEC_CODE (sub);
2524 if (GET_CODE (sub) == SET)
2525 goto mark_set;
2526 if (GET_CODE (sub) == CLOBBER)
2527 goto mark_clob;
2528 break;
2529
2530 case SET:
2531 mark_set:
2532 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2533 flags |= PROP_ASM_SCAN;
2534 /* Fall through */
2535 case CLOBBER:
2536 mark_clob:
2537 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2538 break;
2539
2540 case ASM_OPERANDS:
2541 flags |= PROP_ASM_SCAN;
2542 break;
2543
2544 default:
2545 break;
2546 }
2547 }
2548 break;
2549 }
2550
2551 default:
2552 break;
2553 }
2554 }
2555
2556 /* Process a single set, which appears in INSN. REG (which may not
2557 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2558 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2559 If the set is conditional (because it appear in a COND_EXEC), COND
2560 will be the condition. */
2561
2562 static void
2563 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2564 {
2565 int regno_first = -1, regno_last = -1;
2566 unsigned long not_dead = 0;
2567 int i;
2568
2569 /* Modifying just one hardware register of a multi-reg value or just a
2570 byte field of a register does not mean the value from before this insn
2571 is now dead. Of course, if it was dead after it's unused now. */
2572
2573 switch (GET_CODE (reg))
2574 {
2575 case PARALLEL:
2576 /* Some targets place small structures in registers for return values of
2577 functions. We have to detect this case specially here to get correct
2578 flow information. */
2579 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2580 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2581 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2582 flags);
2583 return;
2584
2585 case ZERO_EXTRACT:
2586 case SIGN_EXTRACT:
2587 case STRICT_LOW_PART:
2588 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2589 do
2590 reg = XEXP (reg, 0);
2591 while (GET_CODE (reg) == SUBREG
2592 || GET_CODE (reg) == ZERO_EXTRACT
2593 || GET_CODE (reg) == SIGN_EXTRACT
2594 || GET_CODE (reg) == STRICT_LOW_PART);
2595 if (GET_CODE (reg) == MEM)
2596 break;
2597 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2598 /* Fall through. */
2599
2600 case REG:
2601 regno_last = regno_first = REGNO (reg);
2602 if (regno_first < FIRST_PSEUDO_REGISTER)
2603 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2604 break;
2605
2606 case SUBREG:
2607 if (GET_CODE (SUBREG_REG (reg)) == REG)
2608 {
2609 enum machine_mode outer_mode = GET_MODE (reg);
2610 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2611
2612 /* Identify the range of registers affected. This is moderately
2613 tricky for hard registers. See alter_subreg. */
2614
2615 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2616 if (regno_first < FIRST_PSEUDO_REGISTER)
2617 {
2618 regno_first += subreg_regno_offset (regno_first, inner_mode,
2619 SUBREG_BYTE (reg),
2620 outer_mode);
2621 regno_last = (regno_first
2622 + hard_regno_nregs[regno_first][outer_mode] - 1);
2623
2624 /* Since we've just adjusted the register number ranges, make
2625 sure REG matches. Otherwise some_was_live will be clear
2626 when it shouldn't have been, and we'll create incorrect
2627 REG_UNUSED notes. */
2628 reg = gen_rtx_REG (outer_mode, regno_first);
2629 }
2630 else
2631 {
2632 /* If the number of words in the subreg is less than the number
2633 of words in the full register, we have a well-defined partial
2634 set. Otherwise the high bits are undefined.
2635
2636 This is only really applicable to pseudos, since we just took
2637 care of multi-word hard registers. */
2638 if (((GET_MODE_SIZE (outer_mode)
2639 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2640 < ((GET_MODE_SIZE (inner_mode)
2641 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2642 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2643 regno_first);
2644
2645 reg = SUBREG_REG (reg);
2646 }
2647 }
2648 else
2649 reg = SUBREG_REG (reg);
2650 break;
2651
2652 default:
2653 break;
2654 }
2655
2656 /* If this set is a MEM, then it kills any aliased writes.
2657 If this set is a REG, then it kills any MEMs which use the reg. */
2658 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2659 {
2660 if (GET_CODE (reg) == REG)
2661 invalidate_mems_from_set (pbi, reg);
2662
2663 /* If the memory reference had embedded side effects (autoincrement
2664 address modes. Then we may need to kill some entries on the
2665 memory set list. */
2666 if (insn && GET_CODE (reg) == MEM)
2667 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2668
2669 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2670 /* ??? With more effort we could track conditional memory life. */
2671 && ! cond)
2672 add_to_mem_set_list (pbi, canon_rtx (reg));
2673 }
2674
2675 if (GET_CODE (reg) == REG
2676 && ! (regno_first == FRAME_POINTER_REGNUM
2677 && (! reload_completed || frame_pointer_needed))
2678 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2679 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2680 && (! reload_completed || frame_pointer_needed))
2681 #endif
2682 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2683 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2684 #endif
2685 )
2686 {
2687 int some_was_live = 0, some_was_dead = 0;
2688
2689 for (i = regno_first; i <= regno_last; ++i)
2690 {
2691 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2692 if (pbi->local_set)
2693 {
2694 /* Order of the set operation matters here since both
2695 sets may be the same. */
2696 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2697 if (cond != NULL_RTX
2698 && ! REGNO_REG_SET_P (pbi->local_set, i))
2699 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2700 else
2701 SET_REGNO_REG_SET (pbi->local_set, i);
2702 }
2703 if (code != CLOBBER)
2704 SET_REGNO_REG_SET (pbi->new_set, i);
2705
2706 some_was_live |= needed_regno;
2707 some_was_dead |= ! needed_regno;
2708 }
2709
2710 #ifdef HAVE_conditional_execution
2711 /* Consider conditional death in deciding that the register needs
2712 a death note. */
2713 if (some_was_live && ! not_dead
2714 /* The stack pointer is never dead. Well, not strictly true,
2715 but it's very difficult to tell from here. Hopefully
2716 combine_stack_adjustments will fix up the most egregious
2717 errors. */
2718 && regno_first != STACK_POINTER_REGNUM)
2719 {
2720 for (i = regno_first; i <= regno_last; ++i)
2721 if (! mark_regno_cond_dead (pbi, i, cond))
2722 not_dead |= ((unsigned long) 1) << (i - regno_first);
2723 }
2724 #endif
2725
2726 /* Additional data to record if this is the final pass. */
2727 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2728 | PROP_DEATH_NOTES | PROP_AUTOINC))
2729 {
2730 rtx y;
2731 int blocknum = pbi->bb->index;
2732
2733 y = NULL_RTX;
2734 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2735 {
2736 y = pbi->reg_next_use[regno_first];
2737
2738 /* The next use is no longer next, since a store intervenes. */
2739 for (i = regno_first; i <= regno_last; ++i)
2740 pbi->reg_next_use[i] = 0;
2741 }
2742
2743 if (flags & PROP_REG_INFO)
2744 {
2745 for (i = regno_first; i <= regno_last; ++i)
2746 {
2747 /* Count (weighted) references, stores, etc. This counts a
2748 register twice if it is modified, but that is correct. */
2749 REG_N_SETS (i) += 1;
2750 REG_N_REFS (i) += 1;
2751 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2752
2753 /* The insns where a reg is live are normally counted
2754 elsewhere, but we want the count to include the insn
2755 where the reg is set, and the normal counting mechanism
2756 would not count it. */
2757 REG_LIVE_LENGTH (i) += 1;
2758 }
2759
2760 /* If this is a hard reg, record this function uses the reg. */
2761 if (regno_first < FIRST_PSEUDO_REGISTER)
2762 {
2763 for (i = regno_first; i <= regno_last; i++)
2764 regs_ever_live[i] = 1;
2765 if (flags & PROP_ASM_SCAN)
2766 for (i = regno_first; i <= regno_last; i++)
2767 regs_asm_clobbered[i] = 1;
2768 }
2769 else
2770 {
2771 /* Keep track of which basic blocks each reg appears in. */
2772 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2773 REG_BASIC_BLOCK (regno_first) = blocknum;
2774 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2775 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2776 }
2777 }
2778
2779 if (! some_was_dead)
2780 {
2781 if (flags & PROP_LOG_LINKS)
2782 {
2783 /* Make a logical link from the next following insn
2784 that uses this register, back to this insn.
2785 The following insns have already been processed.
2786
2787 We don't build a LOG_LINK for hard registers containing
2788 in ASM_OPERANDs. If these registers get replaced,
2789 we might wind up changing the semantics of the insn,
2790 even if reload can make what appear to be valid
2791 assignments later. */
2792 if (y && (BLOCK_NUM (y) == blocknum)
2793 && (regno_first >= FIRST_PSEUDO_REGISTER
2794 || asm_noperands (PATTERN (y)) < 0))
2795 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2796 }
2797 }
2798 else if (not_dead)
2799 ;
2800 else if (! some_was_live)
2801 {
2802 if (flags & PROP_REG_INFO)
2803 REG_N_DEATHS (regno_first) += 1;
2804
2805 if (flags & PROP_DEATH_NOTES)
2806 {
2807 /* Note that dead stores have already been deleted
2808 when possible. If we get here, we have found a
2809 dead store that cannot be eliminated (because the
2810 same insn does something useful). Indicate this
2811 by marking the reg being set as dying here. */
2812 REG_NOTES (insn)
2813 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2814 }
2815 }
2816 else
2817 {
2818 if (flags & PROP_DEATH_NOTES)
2819 {
2820 /* This is a case where we have a multi-word hard register
2821 and some, but not all, of the words of the register are
2822 needed in subsequent insns. Write REG_UNUSED notes
2823 for those parts that were not needed. This case should
2824 be rare. */
2825
2826 for (i = regno_first; i <= regno_last; ++i)
2827 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2828 REG_NOTES (insn)
2829 = alloc_EXPR_LIST (REG_UNUSED,
2830 regno_reg_rtx[i],
2831 REG_NOTES (insn));
2832 }
2833 }
2834 }
2835
2836 /* Mark the register as being dead. */
2837 if (some_was_live
2838 /* The stack pointer is never dead. Well, not strictly true,
2839 but it's very difficult to tell from here. Hopefully
2840 combine_stack_adjustments will fix up the most egregious
2841 errors. */
2842 && regno_first != STACK_POINTER_REGNUM)
2843 {
2844 for (i = regno_first; i <= regno_last; ++i)
2845 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2846 {
2847 if ((pbi->flags & PROP_REG_INFO)
2848 && REGNO_REG_SET_P (pbi->reg_live, i))
2849 {
2850 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2851 reg_deaths[i] = 0;
2852 }
2853 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2854 }
2855 }
2856 }
2857 else if (GET_CODE (reg) == REG)
2858 {
2859 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2860 pbi->reg_next_use[regno_first] = 0;
2861
2862 if ((flags & PROP_REG_INFO) != 0
2863 && (flags & PROP_ASM_SCAN) != 0
2864 && regno_first < FIRST_PSEUDO_REGISTER)
2865 {
2866 for (i = regno_first; i <= regno_last; i++)
2867 regs_asm_clobbered[i] = 1;
2868 }
2869 }
2870
2871 /* If this is the last pass and this is a SCRATCH, show it will be dying
2872 here and count it. */
2873 else if (GET_CODE (reg) == SCRATCH)
2874 {
2875 if (flags & PROP_DEATH_NOTES)
2876 REG_NOTES (insn)
2877 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2878 }
2879 }
2880 \f
2881 #ifdef HAVE_conditional_execution
2882 /* Mark REGNO conditionally dead.
2883 Return true if the register is now unconditionally dead. */
2884
2885 static int
2886 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2887 {
2888 /* If this is a store to a predicate register, the value of the
2889 predicate is changing, we don't know that the predicate as seen
2890 before is the same as that seen after. Flush all dependent
2891 conditions from reg_cond_dead. This will make all such
2892 conditionally live registers unconditionally live. */
2893 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2894 flush_reg_cond_reg (pbi, regno);
2895
2896 /* If this is an unconditional store, remove any conditional
2897 life that may have existed. */
2898 if (cond == NULL_RTX)
2899 splay_tree_remove (pbi->reg_cond_dead, regno);
2900 else
2901 {
2902 splay_tree_node node;
2903 struct reg_cond_life_info *rcli;
2904 rtx ncond;
2905
2906 /* Otherwise this is a conditional set. Record that fact.
2907 It may have been conditionally used, or there may be a
2908 subsequent set with a complimentary condition. */
2909
2910 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2911 if (node == NULL)
2912 {
2913 /* The register was unconditionally live previously.
2914 Record the current condition as the condition under
2915 which it is dead. */
2916 rcli = xmalloc (sizeof (*rcli));
2917 rcli->condition = cond;
2918 rcli->stores = cond;
2919 rcli->orig_condition = const0_rtx;
2920 splay_tree_insert (pbi->reg_cond_dead, regno,
2921 (splay_tree_value) rcli);
2922
2923 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2924
2925 /* Not unconditionally dead. */
2926 return 0;
2927 }
2928 else
2929 {
2930 /* The register was conditionally live previously.
2931 Add the new condition to the old. */
2932 rcli = (struct reg_cond_life_info *) node->value;
2933 ncond = rcli->condition;
2934 ncond = ior_reg_cond (ncond, cond, 1);
2935 if (rcli->stores == const0_rtx)
2936 rcli->stores = cond;
2937 else if (rcli->stores != const1_rtx)
2938 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2939
2940 /* If the register is now unconditionally dead, remove the entry
2941 in the splay_tree. A register is unconditionally dead if the
2942 dead condition ncond is true. A register is also unconditionally
2943 dead if the sum of all conditional stores is an unconditional
2944 store (stores is true), and the dead condition is identically the
2945 same as the original dead condition initialized at the end of
2946 the block. This is a pointer compare, not an rtx_equal_p
2947 compare. */
2948 if (ncond == const1_rtx
2949 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2950 splay_tree_remove (pbi->reg_cond_dead, regno);
2951 else
2952 {
2953 rcli->condition = ncond;
2954
2955 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2956
2957 /* Not unconditionally dead. */
2958 return 0;
2959 }
2960 }
2961 }
2962
2963 return 1;
2964 }
2965
2966 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2967
2968 static void
2969 free_reg_cond_life_info (splay_tree_value value)
2970 {
2971 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2972 free (rcli);
2973 }
2974
2975 /* Helper function for flush_reg_cond_reg. */
2976
2977 static int
2978 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2979 {
2980 struct reg_cond_life_info *rcli;
2981 int *xdata = (int *) data;
2982 unsigned int regno = xdata[0];
2983
2984 /* Don't need to search if last flushed value was farther on in
2985 the in-order traversal. */
2986 if (xdata[1] >= (int) node->key)
2987 return 0;
2988
2989 /* Splice out portions of the expression that refer to regno. */
2990 rcli = (struct reg_cond_life_info *) node->value;
2991 rcli->condition = elim_reg_cond (rcli->condition, regno);
2992 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2993 rcli->stores = elim_reg_cond (rcli->stores, regno);
2994
2995 /* If the entire condition is now false, signal the node to be removed. */
2996 if (rcli->condition == const0_rtx)
2997 {
2998 xdata[1] = node->key;
2999 return -1;
3000 }
3001 else if (rcli->condition == const1_rtx)
3002 abort ();
3003
3004 return 0;
3005 }
3006
3007 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3008
3009 static void
3010 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3011 {
3012 int pair[2];
3013
3014 pair[0] = regno;
3015 pair[1] = -1;
3016 while (splay_tree_foreach (pbi->reg_cond_dead,
3017 flush_reg_cond_reg_1, pair) == -1)
3018 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3019
3020 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3021 }
3022
3023 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3024 For ior/and, the ADD flag determines whether we want to add the new
3025 condition X to the old one unconditionally. If it is zero, we will
3026 only return a new expression if X allows us to simplify part of
3027 OLD, otherwise we return NULL to the caller.
3028 If ADD is nonzero, we will return a new condition in all cases. The
3029 toplevel caller of one of these functions should always pass 1 for
3030 ADD. */
3031
3032 static rtx
3033 ior_reg_cond (rtx old, rtx x, int add)
3034 {
3035 rtx op0, op1;
3036
3037 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3038 {
3039 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3040 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3041 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3042 return const1_rtx;
3043 if (GET_CODE (x) == GET_CODE (old)
3044 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3045 return old;
3046 if (! add)
3047 return NULL;
3048 return gen_rtx_IOR (0, old, x);
3049 }
3050
3051 switch (GET_CODE (old))
3052 {
3053 case IOR:
3054 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3055 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3056 if (op0 != NULL || op1 != NULL)
3057 {
3058 if (op0 == const0_rtx)
3059 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3060 if (op1 == const0_rtx)
3061 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3062 if (op0 == const1_rtx || op1 == const1_rtx)
3063 return const1_rtx;
3064 if (op0 == NULL)
3065 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3066 else if (rtx_equal_p (x, op0))
3067 /* (x | A) | x ~ (x | A). */
3068 return old;
3069 if (op1 == NULL)
3070 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3071 else if (rtx_equal_p (x, op1))
3072 /* (A | x) | x ~ (A | x). */
3073 return old;
3074 return gen_rtx_IOR (0, op0, op1);
3075 }
3076 if (! add)
3077 return NULL;
3078 return gen_rtx_IOR (0, old, x);
3079
3080 case AND:
3081 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3082 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3083 if (op0 != NULL || op1 != NULL)
3084 {
3085 if (op0 == const1_rtx)
3086 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3087 if (op1 == const1_rtx)
3088 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3089 if (op0 == const0_rtx || op1 == const0_rtx)
3090 return const0_rtx;
3091 if (op0 == NULL)
3092 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3093 else if (rtx_equal_p (x, op0))
3094 /* (x & A) | x ~ x. */
3095 return op0;
3096 if (op1 == NULL)
3097 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3098 else if (rtx_equal_p (x, op1))
3099 /* (A & x) | x ~ x. */
3100 return op1;
3101 return gen_rtx_AND (0, op0, op1);
3102 }
3103 if (! add)
3104 return NULL;
3105 return gen_rtx_IOR (0, old, x);
3106
3107 case NOT:
3108 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3109 if (op0 != NULL)
3110 return not_reg_cond (op0);
3111 if (! add)
3112 return NULL;
3113 return gen_rtx_IOR (0, old, x);
3114
3115 default:
3116 abort ();
3117 }
3118 }
3119
3120 static rtx
3121 not_reg_cond (rtx x)
3122 {
3123 enum rtx_code x_code;
3124
3125 if (x == const0_rtx)
3126 return const1_rtx;
3127 else if (x == const1_rtx)
3128 return const0_rtx;
3129 x_code = GET_CODE (x);
3130 if (x_code == NOT)
3131 return XEXP (x, 0);
3132 if (GET_RTX_CLASS (x_code) == '<'
3133 && GET_CODE (XEXP (x, 0)) == REG)
3134 {
3135 if (XEXP (x, 1) != const0_rtx)
3136 abort ();
3137
3138 return gen_rtx_fmt_ee (reverse_condition (x_code),
3139 VOIDmode, XEXP (x, 0), const0_rtx);
3140 }
3141 return gen_rtx_NOT (0, x);
3142 }
3143
3144 static rtx
3145 and_reg_cond (rtx old, rtx x, int add)
3146 {
3147 rtx op0, op1;
3148
3149 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3150 {
3151 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3152 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3153 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3154 return const0_rtx;
3155 if (GET_CODE (x) == GET_CODE (old)
3156 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3157 return old;
3158 if (! add)
3159 return NULL;
3160 return gen_rtx_AND (0, old, x);
3161 }
3162
3163 switch (GET_CODE (old))
3164 {
3165 case IOR:
3166 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3167 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3168 if (op0 != NULL || op1 != NULL)
3169 {
3170 if (op0 == const0_rtx)
3171 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3172 if (op1 == const0_rtx)
3173 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3174 if (op0 == const1_rtx || op1 == const1_rtx)
3175 return const1_rtx;
3176 if (op0 == NULL)
3177 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3178 else if (rtx_equal_p (x, op0))
3179 /* (x | A) & x ~ x. */
3180 return op0;
3181 if (op1 == NULL)
3182 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3183 else if (rtx_equal_p (x, op1))
3184 /* (A | x) & x ~ x. */
3185 return op1;
3186 return gen_rtx_IOR (0, op0, op1);
3187 }
3188 if (! add)
3189 return NULL;
3190 return gen_rtx_AND (0, old, x);
3191
3192 case AND:
3193 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3194 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3195 if (op0 != NULL || op1 != NULL)
3196 {
3197 if (op0 == const1_rtx)
3198 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3199 if (op1 == const1_rtx)
3200 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3201 if (op0 == const0_rtx || op1 == const0_rtx)
3202 return const0_rtx;
3203 if (op0 == NULL)
3204 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3205 else if (rtx_equal_p (x, op0))
3206 /* (x & A) & x ~ (x & A). */
3207 return old;
3208 if (op1 == NULL)
3209 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3210 else if (rtx_equal_p (x, op1))
3211 /* (A & x) & x ~ (A & x). */
3212 return old;
3213 return gen_rtx_AND (0, op0, op1);
3214 }
3215 if (! add)
3216 return NULL;
3217 return gen_rtx_AND (0, old, x);
3218
3219 case NOT:
3220 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3221 if (op0 != NULL)
3222 return not_reg_cond (op0);
3223 if (! add)
3224 return NULL;
3225 return gen_rtx_AND (0, old, x);
3226
3227 default:
3228 abort ();
3229 }
3230 }
3231
3232 /* Given a condition X, remove references to reg REGNO and return the
3233 new condition. The removal will be done so that all conditions
3234 involving REGNO are considered to evaluate to false. This function
3235 is used when the value of REGNO changes. */
3236
3237 static rtx
3238 elim_reg_cond (rtx x, unsigned int regno)
3239 {
3240 rtx op0, op1;
3241
3242 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3243 {
3244 if (REGNO (XEXP (x, 0)) == regno)
3245 return const0_rtx;
3246 return x;
3247 }
3248
3249 switch (GET_CODE (x))
3250 {
3251 case AND:
3252 op0 = elim_reg_cond (XEXP (x, 0), regno);
3253 op1 = elim_reg_cond (XEXP (x, 1), regno);
3254 if (op0 == const0_rtx || op1 == const0_rtx)
3255 return const0_rtx;
3256 if (op0 == const1_rtx)
3257 return op1;
3258 if (op1 == const1_rtx)
3259 return op0;
3260 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3261 return x;
3262 return gen_rtx_AND (0, op0, op1);
3263
3264 case IOR:
3265 op0 = elim_reg_cond (XEXP (x, 0), regno);
3266 op1 = elim_reg_cond (XEXP (x, 1), regno);
3267 if (op0 == const1_rtx || op1 == const1_rtx)
3268 return const1_rtx;
3269 if (op0 == const0_rtx)
3270 return op1;
3271 if (op1 == const0_rtx)
3272 return op0;
3273 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3274 return x;
3275 return gen_rtx_IOR (0, op0, op1);
3276
3277 case NOT:
3278 op0 = elim_reg_cond (XEXP (x, 0), regno);
3279 if (op0 == const0_rtx)
3280 return const1_rtx;
3281 if (op0 == const1_rtx)
3282 return const0_rtx;
3283 if (op0 != XEXP (x, 0))
3284 return not_reg_cond (op0);
3285 return x;
3286
3287 default:
3288 abort ();
3289 }
3290 }
3291 #endif /* HAVE_conditional_execution */
3292 \f
3293 #ifdef AUTO_INC_DEC
3294
3295 /* Try to substitute the auto-inc expression INC as the address inside
3296 MEM which occurs in INSN. Currently, the address of MEM is an expression
3297 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3298 that has a single set whose source is a PLUS of INCR_REG and something
3299 else. */
3300
3301 static void
3302 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3303 rtx mem, rtx incr, rtx incr_reg)
3304 {
3305 int regno = REGNO (incr_reg);
3306 rtx set = single_set (incr);
3307 rtx q = SET_DEST (set);
3308 rtx y = SET_SRC (set);
3309 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3310
3311 /* Make sure this reg appears only once in this insn. */
3312 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3313 return;
3314
3315 if (dead_or_set_p (incr, incr_reg)
3316 /* Mustn't autoinc an eliminable register. */
3317 && (regno >= FIRST_PSEUDO_REGISTER
3318 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3319 {
3320 /* This is the simple case. Try to make the auto-inc. If
3321 we can't, we are done. Otherwise, we will do any
3322 needed updates below. */
3323 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3324 return;
3325 }
3326 else if (GET_CODE (q) == REG
3327 /* PREV_INSN used here to check the semi-open interval
3328 [insn,incr). */
3329 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3330 /* We must also check for sets of q as q may be
3331 a call clobbered hard register and there may
3332 be a call between PREV_INSN (insn) and incr. */
3333 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3334 {
3335 /* We have *p followed sometime later by q = p+size.
3336 Both p and q must be live afterward,
3337 and q is not used between INSN and its assignment.
3338 Change it to q = p, ...*q..., q = q+size.
3339 Then fall into the usual case. */
3340 rtx insns, temp;
3341
3342 start_sequence ();
3343 emit_move_insn (q, incr_reg);
3344 insns = get_insns ();
3345 end_sequence ();
3346
3347 /* If we can't make the auto-inc, or can't make the
3348 replacement into Y, exit. There's no point in making
3349 the change below if we can't do the auto-inc and doing
3350 so is not correct in the pre-inc case. */
3351
3352 XEXP (inc, 0) = q;
3353 validate_change (insn, &XEXP (mem, 0), inc, 1);
3354 validate_change (incr, &XEXP (y, opnum), q, 1);
3355 if (! apply_change_group ())
3356 return;
3357
3358 /* We now know we'll be doing this change, so emit the
3359 new insn(s) and do the updates. */
3360 emit_insn_before (insns, insn);
3361
3362 if (BB_HEAD (pbi->bb) == insn)
3363 BB_HEAD (pbi->bb) = insns;
3364
3365 /* INCR will become a NOTE and INSN won't contain a
3366 use of INCR_REG. If a use of INCR_REG was just placed in
3367 the insn before INSN, make that the next use.
3368 Otherwise, invalidate it. */
3369 if (GET_CODE (PREV_INSN (insn)) == INSN
3370 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3371 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3372 pbi->reg_next_use[regno] = PREV_INSN (insn);
3373 else
3374 pbi->reg_next_use[regno] = 0;
3375
3376 incr_reg = q;
3377 regno = REGNO (q);
3378
3379 /* REGNO is now used in INCR which is below INSN, but
3380 it previously wasn't live here. If we don't mark
3381 it as live, we'll put a REG_DEAD note for it
3382 on this insn, which is incorrect. */
3383 SET_REGNO_REG_SET (pbi->reg_live, regno);
3384
3385 /* We shall not do the autoinc during final pass. */
3386 if (flags & PROP_REG_INFO)
3387 abort ();
3388
3389 /* If there are any calls between INSN and INCR, show
3390 that REGNO now crosses them. */
3391 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3392 if (GET_CODE (temp) == CALL_INSN)
3393 REG_N_CALLS_CROSSED (regno)++;
3394
3395 /* Invalidate alias info for Q since we just changed its value. */
3396 clear_reg_alias_info (q);
3397 }
3398 else
3399 return;
3400
3401 /* If we haven't returned, it means we were able to make the
3402 auto-inc, so update the status. First, record that this insn
3403 has an implicit side effect. */
3404
3405 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3406
3407 /* Modify the old increment-insn to simply copy
3408 the already-incremented value of our register. */
3409 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3410 abort ();
3411
3412 /* If that makes it a no-op (copying the register into itself) delete
3413 it so it won't appear to be a "use" and a "set" of this
3414 register. */
3415 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3416 {
3417 /* If the original source was dead, it's dead now. */
3418 rtx note;
3419
3420 /* We shall not do the autoinc during final pass. */
3421 if (flags & PROP_REG_INFO)
3422 abort ();
3423 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3424 {
3425 remove_note (incr, note);
3426 if (XEXP (note, 0) != incr_reg)
3427 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3428 }
3429
3430 PUT_CODE (incr, NOTE);
3431 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3432 NOTE_SOURCE_FILE (incr) = 0;
3433 }
3434
3435 if (regno >= FIRST_PSEUDO_REGISTER)
3436 {
3437 /* Count an extra reference to the reg. When a reg is
3438 incremented, spilling it is worse, so we want to make
3439 that less likely. */
3440 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3441
3442 /* Count the increment as a setting of the register,
3443 even though it isn't a SET in rtl. */
3444 REG_N_SETS (regno)++;
3445 }
3446 }
3447
3448 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3449 reference. */
3450
3451 static void
3452 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3453 {
3454 rtx addr = XEXP (x, 0);
3455 HOST_WIDE_INT offset = 0;
3456 rtx set, y, incr, inc_val;
3457 int regno;
3458 int size = GET_MODE_SIZE (GET_MODE (x));
3459
3460 if (GET_CODE (insn) == JUMP_INSN)
3461 return;
3462
3463 /* Here we detect use of an index register which might be good for
3464 postincrement, postdecrement, preincrement, or predecrement. */
3465
3466 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3467 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3468
3469 if (GET_CODE (addr) != REG)
3470 return;
3471
3472 regno = REGNO (addr);
3473
3474 /* Is the next use an increment that might make auto-increment? */
3475 incr = pbi->reg_next_use[regno];
3476 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3477 return;
3478 set = single_set (incr);
3479 if (set == 0 || GET_CODE (set) != SET)
3480 return;
3481 y = SET_SRC (set);
3482
3483 if (GET_CODE (y) != PLUS)
3484 return;
3485
3486 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3487 inc_val = XEXP (y, 1);
3488 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3489 inc_val = XEXP (y, 0);
3490 else
3491 return;
3492
3493 if (GET_CODE (inc_val) == CONST_INT)
3494 {
3495 if (HAVE_POST_INCREMENT
3496 && (INTVAL (inc_val) == size && offset == 0))
3497 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3498 incr, addr);
3499 else if (HAVE_POST_DECREMENT
3500 && (INTVAL (inc_val) == -size && offset == 0))
3501 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3502 incr, addr);
3503 else if (HAVE_PRE_INCREMENT
3504 && (INTVAL (inc_val) == size && offset == size))
3505 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3506 incr, addr);
3507 else if (HAVE_PRE_DECREMENT
3508 && (INTVAL (inc_val) == -size && offset == -size))
3509 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3510 incr, addr);
3511 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3512 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3513 gen_rtx_PLUS (Pmode,
3514 addr,
3515 inc_val)),
3516 insn, x, incr, addr);
3517 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3518 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3519 gen_rtx_PLUS (Pmode,
3520 addr,
3521 inc_val)),
3522 insn, x, incr, addr);
3523 }
3524 else if (GET_CODE (inc_val) == REG
3525 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3526 NEXT_INSN (incr)))
3527
3528 {
3529 if (HAVE_POST_MODIFY_REG && offset == 0)
3530 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3531 gen_rtx_PLUS (Pmode,
3532 addr,
3533 inc_val)),
3534 insn, x, incr, addr);
3535 }
3536 }
3537
3538 #endif /* AUTO_INC_DEC */
3539 \f
3540 static void
3541 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3542 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3543 {
3544 unsigned int regno_first, regno_last, i;
3545 int some_was_live, some_was_dead, some_not_set;
3546
3547 regno_last = regno_first = REGNO (reg);
3548 if (regno_first < FIRST_PSEUDO_REGISTER)
3549 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3550
3551 /* Find out if any of this register is live after this instruction. */
3552 some_was_live = some_was_dead = 0;
3553 for (i = regno_first; i <= regno_last; ++i)
3554 {
3555 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3556 some_was_live |= needed_regno;
3557 some_was_dead |= ! needed_regno;
3558 }
3559
3560 /* Find out if any of the register was set this insn. */
3561 some_not_set = 0;
3562 for (i = regno_first; i <= regno_last; ++i)
3563 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3564
3565 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3566 {
3567 /* Record where each reg is used, so when the reg is set we know
3568 the next insn that uses it. */
3569 pbi->reg_next_use[regno_first] = insn;
3570 }
3571
3572 if (pbi->flags & PROP_REG_INFO)
3573 {
3574 if (regno_first < FIRST_PSEUDO_REGISTER)
3575 {
3576 /* If this is a register we are going to try to eliminate,
3577 don't mark it live here. If we are successful in
3578 eliminating it, it need not be live unless it is used for
3579 pseudos, in which case it will have been set live when it
3580 was allocated to the pseudos. If the register will not
3581 be eliminated, reload will set it live at that point.
3582
3583 Otherwise, record that this function uses this register. */
3584 /* ??? The PPC backend tries to "eliminate" on the pic
3585 register to itself. This should be fixed. In the mean
3586 time, hack around it. */
3587
3588 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3589 && (regno_first == FRAME_POINTER_REGNUM
3590 || regno_first == ARG_POINTER_REGNUM)))
3591 for (i = regno_first; i <= regno_last; ++i)
3592 regs_ever_live[i] = 1;
3593 }
3594 else
3595 {
3596 /* Keep track of which basic block each reg appears in. */
3597
3598 int blocknum = pbi->bb->index;
3599 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3600 REG_BASIC_BLOCK (regno_first) = blocknum;
3601 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3602 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3603
3604 /* Count (weighted) number of uses of each reg. */
3605 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3606 REG_N_REFS (regno_first)++;
3607 }
3608 for (i = regno_first; i <= regno_last; ++i)
3609 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3610 {
3611 #ifdef ENABLE_CHECKING
3612 if (reg_deaths[i])
3613 abort ();
3614 #endif
3615 reg_deaths[i] = pbi->insn_num;
3616 }
3617 }
3618
3619 /* Record and count the insns in which a reg dies. If it is used in
3620 this insn and was dead below the insn then it dies in this insn.
3621 If it was set in this insn, we do not make a REG_DEAD note;
3622 likewise if we already made such a note. */
3623 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3624 && some_was_dead
3625 && some_not_set)
3626 {
3627 /* Check for the case where the register dying partially
3628 overlaps the register set by this insn. */
3629 if (regno_first != regno_last)
3630 for (i = regno_first; i <= regno_last; ++i)
3631 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3632
3633 /* If none of the words in X is needed, make a REG_DEAD note.
3634 Otherwise, we must make partial REG_DEAD notes. */
3635 if (! some_was_live)
3636 {
3637 if ((pbi->flags & PROP_DEATH_NOTES)
3638 && ! find_regno_note (insn, REG_DEAD, regno_first))
3639 REG_NOTES (insn)
3640 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3641
3642 if (pbi->flags & PROP_REG_INFO)
3643 REG_N_DEATHS (regno_first)++;
3644 }
3645 else
3646 {
3647 /* Don't make a REG_DEAD note for a part of a register
3648 that is set in the insn. */
3649 for (i = regno_first; i <= regno_last; ++i)
3650 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3651 && ! dead_or_set_regno_p (insn, i))
3652 REG_NOTES (insn)
3653 = alloc_EXPR_LIST (REG_DEAD,
3654 regno_reg_rtx[i],
3655 REG_NOTES (insn));
3656 }
3657 }
3658
3659 /* Mark the register as being live. */
3660 for (i = regno_first; i <= regno_last; ++i)
3661 {
3662 #ifdef HAVE_conditional_execution
3663 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3664 #endif
3665
3666 SET_REGNO_REG_SET (pbi->reg_live, i);
3667
3668 #ifdef HAVE_conditional_execution
3669 /* If this is a conditional use, record that fact. If it is later
3670 conditionally set, we'll know to kill the register. */
3671 if (cond != NULL_RTX)
3672 {
3673 splay_tree_node node;
3674 struct reg_cond_life_info *rcli;
3675 rtx ncond;
3676
3677 if (this_was_live)
3678 {
3679 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3680 if (node == NULL)
3681 {
3682 /* The register was unconditionally live previously.
3683 No need to do anything. */
3684 }
3685 else
3686 {
3687 /* The register was conditionally live previously.
3688 Subtract the new life cond from the old death cond. */
3689 rcli = (struct reg_cond_life_info *) node->value;
3690 ncond = rcli->condition;
3691 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3692
3693 /* If the register is now unconditionally live,
3694 remove the entry in the splay_tree. */
3695 if (ncond == const0_rtx)
3696 splay_tree_remove (pbi->reg_cond_dead, i);
3697 else
3698 {
3699 rcli->condition = ncond;
3700 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3701 REGNO (XEXP (cond, 0)));
3702 }
3703 }
3704 }
3705 else
3706 {
3707 /* The register was not previously live at all. Record
3708 the condition under which it is still dead. */
3709 rcli = xmalloc (sizeof (*rcli));
3710 rcli->condition = not_reg_cond (cond);
3711 rcli->stores = const0_rtx;
3712 rcli->orig_condition = const0_rtx;
3713 splay_tree_insert (pbi->reg_cond_dead, i,
3714 (splay_tree_value) rcli);
3715
3716 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3717 }
3718 }
3719 else if (this_was_live)
3720 {
3721 /* The register may have been conditionally live previously, but
3722 is now unconditionally live. Remove it from the conditionally
3723 dead list, so that a conditional set won't cause us to think
3724 it dead. */
3725 splay_tree_remove (pbi->reg_cond_dead, i);
3726 }
3727 #endif
3728 }
3729 }
3730
3731 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3732 This is done assuming the registers needed from X are those that
3733 have 1-bits in PBI->REG_LIVE.
3734
3735 INSN is the containing instruction. If INSN is dead, this function
3736 is not called. */
3737
3738 static void
3739 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3740 {
3741 RTX_CODE code;
3742 int regno;
3743 int flags = pbi->flags;
3744
3745 retry:
3746 if (!x)
3747 return;
3748 code = GET_CODE (x);
3749 switch (code)
3750 {
3751 case LABEL_REF:
3752 case SYMBOL_REF:
3753 case CONST_INT:
3754 case CONST:
3755 case CONST_DOUBLE:
3756 case CONST_VECTOR:
3757 case PC:
3758 case ADDR_VEC:
3759 case ADDR_DIFF_VEC:
3760 return;
3761
3762 #ifdef HAVE_cc0
3763 case CC0:
3764 pbi->cc0_live = 1;
3765 return;
3766 #endif
3767
3768 case CLOBBER:
3769 /* If we are clobbering a MEM, mark any registers inside the address
3770 as being used. */
3771 if (GET_CODE (XEXP (x, 0)) == MEM)
3772 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3773 return;
3774
3775 case MEM:
3776 /* Don't bother watching stores to mems if this is not the
3777 final pass. We'll not be deleting dead stores this round. */
3778 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3779 {
3780 /* Invalidate the data for the last MEM stored, but only if MEM is
3781 something that can be stored into. */
3782 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3783 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3784 /* Needn't clear the memory set list. */
3785 ;
3786 else
3787 {
3788 rtx temp = pbi->mem_set_list;
3789 rtx prev = NULL_RTX;
3790 rtx next;
3791
3792 while (temp)
3793 {
3794 next = XEXP (temp, 1);
3795 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3796 {
3797 /* Splice temp out of the list. */
3798 if (prev)
3799 XEXP (prev, 1) = next;
3800 else
3801 pbi->mem_set_list = next;
3802 free_EXPR_LIST_node (temp);
3803 pbi->mem_set_list_len--;
3804 }
3805 else
3806 prev = temp;
3807 temp = next;
3808 }
3809 }
3810
3811 /* If the memory reference had embedded side effects (autoincrement
3812 address modes. Then we may need to kill some entries on the
3813 memory set list. */
3814 if (insn)
3815 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3816 }
3817
3818 #ifdef AUTO_INC_DEC
3819 if (flags & PROP_AUTOINC)
3820 find_auto_inc (pbi, x, insn);
3821 #endif
3822 break;
3823
3824 case SUBREG:
3825 #ifdef CANNOT_CHANGE_MODE_CLASS
3826 if ((flags & PROP_REG_INFO)
3827 && GET_CODE (SUBREG_REG (x)) == REG
3828 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3829 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3830 * MAX_MACHINE_MODE
3831 + GET_MODE (x));
3832 #endif
3833
3834 /* While we're here, optimize this case. */
3835 x = SUBREG_REG (x);
3836 if (GET_CODE (x) != REG)
3837 goto retry;
3838 /* Fall through. */
3839
3840 case REG:
3841 /* See a register other than being set => mark it as needed. */
3842 mark_used_reg (pbi, x, cond, insn);
3843 return;
3844
3845 case SET:
3846 {
3847 rtx testreg = SET_DEST (x);
3848 int mark_dest = 0;
3849
3850 /* If storing into MEM, don't show it as being used. But do
3851 show the address as being used. */
3852 if (GET_CODE (testreg) == MEM)
3853 {
3854 #ifdef AUTO_INC_DEC
3855 if (flags & PROP_AUTOINC)
3856 find_auto_inc (pbi, testreg, insn);
3857 #endif
3858 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3859 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3860 return;
3861 }
3862
3863 /* Storing in STRICT_LOW_PART is like storing in a reg
3864 in that this SET might be dead, so ignore it in TESTREG.
3865 but in some other ways it is like using the reg.
3866
3867 Storing in a SUBREG or a bit field is like storing the entire
3868 register in that if the register's value is not used
3869 then this SET is not needed. */
3870 while (GET_CODE (testreg) == STRICT_LOW_PART
3871 || GET_CODE (testreg) == ZERO_EXTRACT
3872 || GET_CODE (testreg) == SIGN_EXTRACT
3873 || GET_CODE (testreg) == SUBREG)
3874 {
3875 #ifdef CANNOT_CHANGE_MODE_CLASS
3876 if ((flags & PROP_REG_INFO)
3877 && GET_CODE (testreg) == SUBREG
3878 && GET_CODE (SUBREG_REG (testreg)) == REG
3879 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3880 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3881 * MAX_MACHINE_MODE
3882 + GET_MODE (testreg));
3883 #endif
3884
3885 /* Modifying a single register in an alternate mode
3886 does not use any of the old value. But these other
3887 ways of storing in a register do use the old value. */
3888 if (GET_CODE (testreg) == SUBREG
3889 && !((REG_BYTES (SUBREG_REG (testreg))
3890 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3891 > (REG_BYTES (testreg)
3892 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3893 ;
3894 else
3895 mark_dest = 1;
3896
3897 testreg = XEXP (testreg, 0);
3898 }
3899
3900 /* If this is a store into a register or group of registers,
3901 recursively scan the value being stored. */
3902
3903 if ((GET_CODE (testreg) == PARALLEL
3904 && GET_MODE (testreg) == BLKmode)
3905 || (GET_CODE (testreg) == REG
3906 && (regno = REGNO (testreg),
3907 ! (regno == FRAME_POINTER_REGNUM
3908 && (! reload_completed || frame_pointer_needed)))
3909 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3910 && ! (regno == HARD_FRAME_POINTER_REGNUM
3911 && (! reload_completed || frame_pointer_needed))
3912 #endif
3913 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3914 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3915 #endif
3916 ))
3917 {
3918 if (mark_dest)
3919 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3920 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3921 return;
3922 }
3923 }
3924 break;
3925
3926 case ASM_OPERANDS:
3927 case UNSPEC_VOLATILE:
3928 case TRAP_IF:
3929 case ASM_INPUT:
3930 {
3931 /* Traditional and volatile asm instructions must be considered to use
3932 and clobber all hard registers, all pseudo-registers and all of
3933 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3934
3935 Consider for instance a volatile asm that changes the fpu rounding
3936 mode. An insn should not be moved across this even if it only uses
3937 pseudo-regs because it might give an incorrectly rounded result.
3938
3939 ?!? Unfortunately, marking all hard registers as live causes massive
3940 problems for the register allocator and marking all pseudos as live
3941 creates mountains of uninitialized variable warnings.
3942
3943 So for now, just clear the memory set list and mark any regs
3944 we can find in ASM_OPERANDS as used. */
3945 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3946 {
3947 free_EXPR_LIST_list (&pbi->mem_set_list);
3948 pbi->mem_set_list_len = 0;
3949 }
3950
3951 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3952 We can not just fall through here since then we would be confused
3953 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3954 traditional asms unlike their normal usage. */
3955 if (code == ASM_OPERANDS)
3956 {
3957 int j;
3958
3959 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3960 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3961 }
3962 break;
3963 }
3964
3965 case COND_EXEC:
3966 if (cond != NULL_RTX)
3967 abort ();
3968
3969 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3970
3971 cond = COND_EXEC_TEST (x);
3972 x = COND_EXEC_CODE (x);
3973 goto retry;
3974
3975 default:
3976 break;
3977 }
3978
3979 /* Recursively scan the operands of this expression. */
3980
3981 {
3982 const char * const fmt = GET_RTX_FORMAT (code);
3983 int i;
3984
3985 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3986 {
3987 if (fmt[i] == 'e')
3988 {
3989 /* Tail recursive case: save a function call level. */
3990 if (i == 0)
3991 {
3992 x = XEXP (x, 0);
3993 goto retry;
3994 }
3995 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3996 }
3997 else if (fmt[i] == 'E')
3998 {
3999 int j;
4000 for (j = 0; j < XVECLEN (x, i); j++)
4001 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4002 }
4003 }
4004 }
4005 }
4006 \f
4007 #ifdef AUTO_INC_DEC
4008
4009 static int
4010 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4011 {
4012 /* Find the next use of this reg. If in same basic block,
4013 make it do pre-increment or pre-decrement if appropriate. */
4014 rtx x = single_set (insn);
4015 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4016 * INTVAL (XEXP (SET_SRC (x), 1)));
4017 int regno = REGNO (SET_DEST (x));
4018 rtx y = pbi->reg_next_use[regno];
4019 if (y != 0
4020 && SET_DEST (x) != stack_pointer_rtx
4021 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4022 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4023 mode would be better. */
4024 && ! dead_or_set_p (y, SET_DEST (x))
4025 && try_pre_increment (y, SET_DEST (x), amount))
4026 {
4027 /* We have found a suitable auto-increment and already changed
4028 insn Y to do it. So flush this increment instruction. */
4029 propagate_block_delete_insn (insn);
4030
4031 /* Count a reference to this reg for the increment insn we are
4032 deleting. When a reg is incremented, spilling it is worse,
4033 so we want to make that less likely. */
4034 if (regno >= FIRST_PSEUDO_REGISTER)
4035 {
4036 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4037 REG_N_SETS (regno)++;
4038 }
4039
4040 /* Flush any remembered memories depending on the value of
4041 the incremented register. */
4042 invalidate_mems_from_set (pbi, SET_DEST (x));
4043
4044 return 1;
4045 }
4046 return 0;
4047 }
4048
4049 /* Try to change INSN so that it does pre-increment or pre-decrement
4050 addressing on register REG in order to add AMOUNT to REG.
4051 AMOUNT is negative for pre-decrement.
4052 Returns 1 if the change could be made.
4053 This checks all about the validity of the result of modifying INSN. */
4054
4055 static int
4056 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4057 {
4058 rtx use;
4059
4060 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4061 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4062 int pre_ok = 0;
4063 /* Nonzero if we can try to make a post-increment or post-decrement.
4064 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4065 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4066 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4067 int post_ok = 0;
4068
4069 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4070 int do_post = 0;
4071
4072 /* From the sign of increment, see which possibilities are conceivable
4073 on this target machine. */
4074 if (HAVE_PRE_INCREMENT && amount > 0)
4075 pre_ok = 1;
4076 if (HAVE_POST_INCREMENT && amount > 0)
4077 post_ok = 1;
4078
4079 if (HAVE_PRE_DECREMENT && amount < 0)
4080 pre_ok = 1;
4081 if (HAVE_POST_DECREMENT && amount < 0)
4082 post_ok = 1;
4083
4084 if (! (pre_ok || post_ok))
4085 return 0;
4086
4087 /* It is not safe to add a side effect to a jump insn
4088 because if the incremented register is spilled and must be reloaded
4089 there would be no way to store the incremented value back in memory. */
4090
4091 if (GET_CODE (insn) == JUMP_INSN)
4092 return 0;
4093
4094 use = 0;
4095 if (pre_ok)
4096 use = find_use_as_address (PATTERN (insn), reg, 0);
4097 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4098 {
4099 use = find_use_as_address (PATTERN (insn), reg, -amount);
4100 do_post = 1;
4101 }
4102
4103 if (use == 0 || use == (rtx) (size_t) 1)
4104 return 0;
4105
4106 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4107 return 0;
4108
4109 /* See if this combination of instruction and addressing mode exists. */
4110 if (! validate_change (insn, &XEXP (use, 0),
4111 gen_rtx_fmt_e (amount > 0
4112 ? (do_post ? POST_INC : PRE_INC)
4113 : (do_post ? POST_DEC : PRE_DEC),
4114 Pmode, reg), 0))
4115 return 0;
4116
4117 /* Record that this insn now has an implicit side effect on X. */
4118 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4119 return 1;
4120 }
4121
4122 #endif /* AUTO_INC_DEC */
4123 \f
4124 /* Find the place in the rtx X where REG is used as a memory address.
4125 Return the MEM rtx that so uses it.
4126 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4127 (plus REG (const_int PLUSCONST)).
4128
4129 If such an address does not appear, return 0.
4130 If REG appears more than once, or is used other than in such an address,
4131 return (rtx) 1. */
4132
4133 rtx
4134 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4135 {
4136 enum rtx_code code = GET_CODE (x);
4137 const char * const fmt = GET_RTX_FORMAT (code);
4138 int i;
4139 rtx value = 0;
4140 rtx tem;
4141
4142 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4143 return x;
4144
4145 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4146 && XEXP (XEXP (x, 0), 0) == reg
4147 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4148 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4149 return x;
4150
4151 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4152 {
4153 /* If REG occurs inside a MEM used in a bit-field reference,
4154 that is unacceptable. */
4155 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4156 return (rtx) (size_t) 1;
4157 }
4158
4159 if (x == reg)
4160 return (rtx) (size_t) 1;
4161
4162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4163 {
4164 if (fmt[i] == 'e')
4165 {
4166 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4167 if (value == 0)
4168 value = tem;
4169 else if (tem != 0)
4170 return (rtx) (size_t) 1;
4171 }
4172 else if (fmt[i] == 'E')
4173 {
4174 int j;
4175 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4176 {
4177 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4178 if (value == 0)
4179 value = tem;
4180 else if (tem != 0)
4181 return (rtx) (size_t) 1;
4182 }
4183 }
4184 }
4185
4186 return value;
4187 }
4188 \f
4189 /* Write information about registers and basic blocks into FILE.
4190 This is part of making a debugging dump. */
4191
4192 void
4193 dump_regset (regset r, FILE *outf)
4194 {
4195 int i;
4196 if (r == NULL)
4197 {
4198 fputs (" (nil)", outf);
4199 return;
4200 }
4201
4202 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4203 {
4204 fprintf (outf, " %d", i);
4205 if (i < FIRST_PSEUDO_REGISTER)
4206 fprintf (outf, " [%s]",
4207 reg_names[i]);
4208 });
4209 }
4210
4211 /* Print a human-readable representation of R on the standard error
4212 stream. This function is designed to be used from within the
4213 debugger. */
4214
4215 void
4216 debug_regset (regset r)
4217 {
4218 dump_regset (r, stderr);
4219 putc ('\n', stderr);
4220 }
4221
4222 /* Recompute register set/reference counts immediately prior to register
4223 allocation.
4224
4225 This avoids problems with set/reference counts changing to/from values
4226 which have special meanings to the register allocators.
4227
4228 Additionally, the reference counts are the primary component used by the
4229 register allocators to prioritize pseudos for allocation to hard regs.
4230 More accurate reference counts generally lead to better register allocation.
4231
4232 F is the first insn to be scanned.
4233
4234 LOOP_STEP denotes how much loop_depth should be incremented per
4235 loop nesting level in order to increase the ref count more for
4236 references in a loop.
4237
4238 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4239 possibly other information which is used by the register allocators. */
4240
4241 void
4242 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4243 {
4244 allocate_reg_life_data ();
4245 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4246 }
4247
4248 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4249 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4250 of the number of registers that died. */
4251
4252 int
4253 count_or_remove_death_notes (sbitmap blocks, int kill)
4254 {
4255 int count = 0;
4256 int i;
4257 basic_block bb;
4258
4259
4260 /* This used to be a loop over all the blocks with a membership test
4261 inside the loop. That can be amazingly expensive on a large CFG
4262 when only a small number of bits are set in BLOCKs (for example,
4263 the calls from the scheduler typically have very few bits set).
4264
4265 For extra credit, someone should convert BLOCKS to a bitmap rather
4266 than an sbitmap. */
4267 if (blocks)
4268 {
4269 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4270 {
4271 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4272 });
4273 }
4274 else
4275 {
4276 FOR_EACH_BB (bb)
4277 {
4278 count += count_or_remove_death_notes_bb (bb, kill);
4279 }
4280 }
4281
4282 return count;
4283 }
4284
4285 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4286 block BB. Returns a count of the number of registers that died. */
4287
4288 static int
4289 count_or_remove_death_notes_bb (basic_block bb, int kill)
4290 {
4291 int count = 0;
4292 rtx insn;
4293
4294 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4295 {
4296 if (INSN_P (insn))
4297 {
4298 rtx *pprev = &REG_NOTES (insn);
4299 rtx link = *pprev;
4300
4301 while (link)
4302 {
4303 switch (REG_NOTE_KIND (link))
4304 {
4305 case REG_DEAD:
4306 if (GET_CODE (XEXP (link, 0)) == REG)
4307 {
4308 rtx reg = XEXP (link, 0);
4309 int n;
4310
4311 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4312 n = 1;
4313 else
4314 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4315 count += n;
4316 }
4317
4318 /* Fall through. */
4319
4320 case REG_UNUSED:
4321 if (kill)
4322 {
4323 rtx next = XEXP (link, 1);
4324 free_EXPR_LIST_node (link);
4325 *pprev = link = next;
4326 break;
4327 }
4328 /* Fall through. */
4329
4330 default:
4331 pprev = &XEXP (link, 1);
4332 link = *pprev;
4333 break;
4334 }
4335 }
4336 }
4337
4338 if (insn == BB_END (bb))
4339 break;
4340 }
4341
4342 return count;
4343 }
4344
4345 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4346 if blocks is NULL. */
4347
4348 static void
4349 clear_log_links (sbitmap blocks)
4350 {
4351 rtx insn;
4352 int i;
4353
4354 if (!blocks)
4355 {
4356 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4357 if (INSN_P (insn))
4358 free_INSN_LIST_list (&LOG_LINKS (insn));
4359 }
4360 else
4361 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4362 {
4363 basic_block bb = BASIC_BLOCK (i);
4364
4365 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4366 insn = NEXT_INSN (insn))
4367 if (INSN_P (insn))
4368 free_INSN_LIST_list (&LOG_LINKS (insn));
4369 });
4370 }
4371
4372 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4373 correspond to the hard registers, if any, set in that map. This
4374 could be done far more efficiently by having all sorts of special-cases
4375 with moving single words, but probably isn't worth the trouble. */
4376
4377 void
4378 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4379 {
4380 int i;
4381
4382 EXECUTE_IF_SET_IN_BITMAP
4383 (from, 0, i,
4384 {
4385 if (i >= FIRST_PSEUDO_REGISTER)
4386 return;
4387 SET_HARD_REG_BIT (*to, i);
4388 });
4389 }