bitmap.h (EXECUTE_IF_SET_IN_BITMAP, [...]): Changed to iterator style.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
167
168 /* Nonzero if the second flow pass has completed. */
169 int flow2_completed;
170
171 /* Maximum register number used in this function, plus one. */
172
173 int max_regno;
174
175 /* Indexed by n, giving various register information */
176
177 varray_type reg_n_info;
178
179 /* Size of a regset for the current function,
180 in (1) bytes and (2) elements. */
181
182 int regset_bytes;
183 int regset_size;
184
185 /* Regset of regs live when calls to `setjmp'-like functions happen. */
186 /* ??? Does this exist only for the setjmp-clobbered warning message? */
187
188 regset regs_live_at_setjmp;
189
190 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
191 that have to go in the same hard reg.
192 The first two regs in the list are a pair, and the next two
193 are another pair, etc. */
194 rtx regs_may_share;
195
196 /* Set of registers that may be eliminable. These are handled specially
197 in updating regs_ever_live. */
198
199 static HARD_REG_SET elim_reg_set;
200
201 /* Holds information for tracking conditional register life information. */
202 struct reg_cond_life_info
203 {
204 /* A boolean expression of conditions under which a register is dead. */
205 rtx condition;
206 /* Conditions under which a register is dead at the basic block end. */
207 rtx orig_condition;
208
209 /* A boolean expression of conditions under which a register has been
210 stored into. */
211 rtx stores;
212
213 /* ??? Could store mask of bytes that are dead, so that we could finally
214 track lifetimes of multi-word registers accessed via subregs. */
215 };
216
217 /* For use in communicating between propagate_block and its subroutines.
218 Holds all information needed to compute life and def-use information. */
219
220 struct propagate_block_info
221 {
222 /* The basic block we're considering. */
223 basic_block bb;
224
225 /* Bit N is set if register N is conditionally or unconditionally live. */
226 regset reg_live;
227
228 /* Bit N is set if register N is set this insn. */
229 regset new_set;
230
231 /* Element N is the next insn that uses (hard or pseudo) register N
232 within the current basic block; or zero, if there is no such insn. */
233 rtx *reg_next_use;
234
235 /* Contains a list of all the MEMs we are tracking for dead store
236 elimination. */
237 rtx mem_set_list;
238
239 /* If non-null, record the set of registers set unconditionally in the
240 basic block. */
241 regset local_set;
242
243 /* If non-null, record the set of registers set conditionally in the
244 basic block. */
245 regset cond_local_set;
246
247 #ifdef HAVE_conditional_execution
248 /* Indexed by register number, holds a reg_cond_life_info for each
249 register that is not unconditionally live or dead. */
250 splay_tree reg_cond_dead;
251
252 /* Bit N is set if register N is in an expression in reg_cond_dead. */
253 regset reg_cond_reg;
254 #endif
255
256 /* The length of mem_set_list. */
257 int mem_set_list_len;
258
259 /* Nonzero if the value of CC0 is live. */
260 int cc0_live;
261
262 /* Flags controlling the set of information propagate_block collects. */
263 int flags;
264 /* Index of instruction being processed. */
265 int insn_num;
266 };
267
268 /* Number of dead insns removed. */
269 static int ndead;
270
271 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
272 where given register died. When the register is marked alive, we use the
273 information to compute amount of instructions life range cross.
274 (remember, we are walking backward). This can be computed as current
275 pbi->insn_num - reg_deaths[regno].
276 At the end of processing each basic block, the remaining live registers
277 are inspected and liferanges are increased same way so liverange of global
278 registers are computed correctly.
279
280 The array is maintained clear for dead registers, so it can be safely reused
281 for next basic block without expensive memset of the whole array after
282 reseting pbi->insn_num to 0. */
283
284 static int *reg_deaths;
285
286 /* Maximum length of pbi->mem_set_list before we start dropping
287 new elements on the floor. */
288 #define MAX_MEM_SET_LIST_LEN 100
289
290 /* Forward declarations */
291 static int verify_wide_reg_1 (rtx *, void *);
292 static void verify_wide_reg (int, basic_block);
293 static void verify_local_live_at_start (regset, basic_block);
294 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
295 static void notice_stack_pointer_modification (void);
296 static void mark_reg (rtx, void *);
297 static void mark_regs_live_at_end (regset);
298 static void calculate_global_regs_live (sbitmap, sbitmap, int);
299 static void propagate_block_delete_insn (rtx);
300 static rtx propagate_block_delete_libcall (rtx, rtx);
301 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
302 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
304 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
305 rtx, rtx, int);
306 static int find_regno_partial (rtx *, void *);
307
308 #ifdef HAVE_conditional_execution
309 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
310 static void free_reg_cond_life_info (splay_tree_value);
311 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
312 static void flush_reg_cond_reg (struct propagate_block_info *, int);
313 static rtx elim_reg_cond (rtx, unsigned int);
314 static rtx ior_reg_cond (rtx, rtx, int);
315 static rtx not_reg_cond (rtx);
316 static rtx and_reg_cond (rtx, rtx, int);
317 #endif
318 #ifdef AUTO_INC_DEC
319 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
320 rtx, rtx);
321 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
322 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
323 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
324 #endif
325 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
326 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
327 void debug_flow_info (void);
328 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
329 static int invalidate_mems_from_autoinc (rtx *, void *);
330 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
331 static void clear_log_links (sbitmap);
332 static int count_or_remove_death_notes_bb (basic_block, int);
333 \f
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
336
337 rtx
338 first_insn_after_basic_block_note (basic_block block)
339 {
340 rtx insn;
341
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
344
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
350
351 return NEXT_INSN (insn);
352 }
353 \f
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
356
357 void
358 life_analysis (FILE *file, int flags)
359 {
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
364
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
367
368 CLEAR_HARD_REG_SET (elim_reg_set);
369
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
376
377
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
382
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
385
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
389
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
392
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
398
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
402
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
406
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
412
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
417
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
420
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
424
425 if (flags & PROP_REG_INFO)
426 {
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
429 }
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
432 {
433 free (reg_deaths);
434 reg_deaths = NULL;
435 }
436
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
440
441 if (file)
442 dump_flow_info (file);
443
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
446 }
447
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
451
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
454 {
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
457
458 if (REG_P (x) && REGNO (x) == regno)
459 {
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
463 }
464 return 0;
465 }
466
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
469
470 static void
471 verify_wide_reg (int regno, basic_block bb)
472 {
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
474
475 while (1)
476 {
477 if (INSN_P (head))
478 {
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
484 }
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
488 }
489 if (dump_file)
490 {
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
493 }
494 fatal_error ("internal consistency failure");
495 }
496
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
499
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
502 {
503 if (reload_completed)
504 {
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
508 {
509 if (dump_file)
510 {
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
517 }
518 fatal_error ("internal consistency failure");
519 }
520 }
521 else
522 {
523 int i;
524
525 /* Find the set of changed registers. */
526 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
527
528 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
529 {
530 /* No registers should die. */
531 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
532 {
533 if (dump_file)
534 {
535 fprintf (dump_file,
536 "Register %d died unexpectedly.\n", i);
537 dump_bb (bb, dump_file, 0);
538 }
539 fatal_error ("internal consistency failure");
540 }
541 /* Verify that the now-live register is wider than word_mode. */
542 verify_wide_reg (i, bb);
543 });
544 }
545 }
546
547 /* Updates life information starting with the basic blocks set in BLOCKS.
548 If BLOCKS is null, consider it to be the universal set.
549
550 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
551 we are only expecting local modifications to basic blocks. If we find
552 extra registers live at the beginning of a block, then we either killed
553 useful data, or we have a broken split that wants data not provided.
554 If we find registers removed from live_at_start, that means we have
555 a broken peephole that is killing a register it shouldn't.
556
557 ??? This is not true in one situation -- when a pre-reload splitter
558 generates subregs of a multi-word pseudo, current life analysis will
559 lose the kill. So we _can_ have a pseudo go live. How irritating.
560
561 It is also not true when a peephole decides that it doesn't need one
562 or more of the inputs.
563
564 Including PROP_REG_INFO does not properly refresh regs_ever_live
565 unless the caller resets it to zero. */
566
567 int
568 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
569 {
570 regset tmp;
571 regset_head tmp_head;
572 int i;
573 int stabilized_prop_flags = prop_flags;
574 basic_block bb;
575
576 tmp = INITIALIZE_REG_SET (tmp_head);
577 ndead = 0;
578
579 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
580 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
581
582 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
583 ? TV_LIFE_UPDATE : TV_LIFE);
584
585 /* Changes to the CFG are only allowed when
586 doing a global update for the entire CFG. */
587 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
588 || (extent != UPDATE_LIFE_LOCAL && !blocks));
589
590 /* For a global update, we go through the relaxation process again. */
591 if (extent != UPDATE_LIFE_LOCAL)
592 {
593 for ( ; ; )
594 {
595 int changed = 0;
596
597 calculate_global_regs_live (blocks, blocks,
598 prop_flags & (PROP_SCAN_DEAD_CODE
599 | PROP_SCAN_DEAD_STORES
600 | PROP_ALLOW_CFG_CHANGES));
601
602 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
603 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 break;
605
606 /* Removing dead code may allow the CFG to be simplified which
607 in turn may allow for further dead code detection / removal. */
608 FOR_EACH_BB_REVERSE (bb)
609 {
610 COPY_REG_SET (tmp, bb->global_live_at_end);
611 changed |= propagate_block (bb, tmp, NULL, NULL,
612 prop_flags & (PROP_SCAN_DEAD_CODE
613 | PROP_SCAN_DEAD_STORES
614 | PROP_KILL_DEAD_CODE));
615 }
616
617 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
618 subsequent propagate_block calls, since removing or acting as
619 removing dead code can affect global register liveness, which
620 is supposed to be finalized for this call after this loop. */
621 stabilized_prop_flags
622 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
623 | PROP_KILL_DEAD_CODE);
624
625 if (! changed)
626 break;
627
628 /* We repeat regardless of what cleanup_cfg says. If there were
629 instructions deleted above, that might have been only a
630 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
631 Further improvement may be possible. */
632 cleanup_cfg (CLEANUP_EXPENSIVE);
633
634 /* Zap the life information from the last round. If we don't
635 do this, we can wind up with registers that no longer appear
636 in the code being marked live at entry. */
637 FOR_EACH_BB (bb)
638 {
639 CLEAR_REG_SET (bb->global_live_at_start);
640 CLEAR_REG_SET (bb->global_live_at_end);
641 }
642 }
643
644 /* If asked, remove notes from the blocks we'll update. */
645 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
646 count_or_remove_death_notes (blocks, 1);
647 }
648
649 /* Clear log links in case we are asked to (re)compute them. */
650 if (prop_flags & PROP_LOG_LINKS)
651 clear_log_links (blocks);
652
653 if (blocks)
654 {
655 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
656 {
657 bb = BASIC_BLOCK (i);
658
659 COPY_REG_SET (tmp, bb->global_live_at_end);
660 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
661
662 if (extent == UPDATE_LIFE_LOCAL)
663 verify_local_live_at_start (tmp, bb);
664 });
665 }
666 else
667 {
668 FOR_EACH_BB_REVERSE (bb)
669 {
670 COPY_REG_SET (tmp, bb->global_live_at_end);
671
672 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
673
674 if (extent == UPDATE_LIFE_LOCAL)
675 verify_local_live_at_start (tmp, bb);
676 }
677 }
678
679 FREE_REG_SET (tmp);
680
681 if (prop_flags & PROP_REG_INFO)
682 {
683 /* The only pseudos that are live at the beginning of the function
684 are those that were not set anywhere in the function. local-alloc
685 doesn't know how to handle these correctly, so mark them as not
686 local to any one basic block. */
687 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
688 FIRST_PSEUDO_REGISTER, i,
689 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
690
691 /* We have a problem with any pseudoreg that lives across the setjmp.
692 ANSI says that if a user variable does not change in value between
693 the setjmp and the longjmp, then the longjmp preserves it. This
694 includes longjmp from a place where the pseudo appears dead.
695 (In principle, the value still exists if it is in scope.)
696 If the pseudo goes in a hard reg, some other value may occupy
697 that hard reg where this pseudo is dead, thus clobbering the pseudo.
698 Conclusion: such a pseudo must not go in a hard reg. */
699 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
700 FIRST_PSEUDO_REGISTER, i,
701 {
702 if (regno_reg_rtx[i] != 0)
703 {
704 REG_LIVE_LENGTH (i) = -1;
705 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
706 }
707 });
708 }
709 if (reg_deaths)
710 {
711 free (reg_deaths);
712 reg_deaths = NULL;
713 }
714 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
715 ? TV_LIFE_UPDATE : TV_LIFE);
716 if (ndead && dump_file)
717 fprintf (dump_file, "deleted %i dead insns\n", ndead);
718 return ndead;
719 }
720
721 /* Update life information in all blocks where BB_DIRTY is set. */
722
723 int
724 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
725 {
726 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
727 int n = 0;
728 basic_block bb;
729 int retval = 0;
730
731 sbitmap_zero (update_life_blocks);
732 FOR_EACH_BB (bb)
733 {
734 if (extent == UPDATE_LIFE_LOCAL)
735 {
736 if (bb->flags & BB_DIRTY)
737 {
738 SET_BIT (update_life_blocks, bb->index);
739 n++;
740 }
741 }
742 else
743 {
744 /* ??? Bootstrap with -march=pentium4 fails to terminate
745 with only a partial life update. */
746 SET_BIT (update_life_blocks, bb->index);
747 if (bb->flags & BB_DIRTY)
748 n++;
749 }
750 }
751
752 if (n)
753 retval = update_life_info (update_life_blocks, extent, prop_flags);
754
755 sbitmap_free (update_life_blocks);
756 return retval;
757 }
758
759 /* Free the variables allocated by find_basic_blocks. */
760
761 void
762 free_basic_block_vars (void)
763 {
764 if (basic_block_info)
765 {
766 clear_edges ();
767 basic_block_info = NULL;
768 }
769 n_basic_blocks = 0;
770 last_basic_block = 0;
771
772 ENTRY_BLOCK_PTR->aux = NULL;
773 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
774 EXIT_BLOCK_PTR->aux = NULL;
775 EXIT_BLOCK_PTR->global_live_at_start = NULL;
776 }
777
778 /* Delete any insns that copy a register to itself. */
779
780 int
781 delete_noop_moves (void)
782 {
783 rtx insn, next;
784 basic_block bb;
785 int nnoops = 0;
786
787 FOR_EACH_BB (bb)
788 {
789 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
790 {
791 next = NEXT_INSN (insn);
792 if (INSN_P (insn) && noop_move_p (insn))
793 {
794 rtx note;
795
796 /* If we're about to remove the first insn of a libcall
797 then move the libcall note to the next real insn and
798 update the retval note. */
799 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
800 && XEXP (note, 0) != insn)
801 {
802 rtx new_libcall_insn = next_real_insn (insn);
803 rtx retval_note = find_reg_note (XEXP (note, 0),
804 REG_RETVAL, NULL_RTX);
805 REG_NOTES (new_libcall_insn)
806 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
807 REG_NOTES (new_libcall_insn));
808 XEXP (retval_note, 0) = new_libcall_insn;
809 }
810
811 delete_insn_and_edges (insn);
812 nnoops++;
813 }
814 }
815 }
816 if (nnoops && dump_file)
817 fprintf (dump_file, "deleted %i noop moves", nnoops);
818 return nnoops;
819 }
820
821 /* Delete any jump tables never referenced. We can't delete them at the
822 time of removing tablejump insn as they are referenced by the preceding
823 insns computing the destination, so we delay deleting and garbagecollect
824 them once life information is computed. */
825 void
826 delete_dead_jumptables (void)
827 {
828 rtx insn, next;
829 for (insn = get_insns (); insn; insn = next)
830 {
831 next = NEXT_INSN (insn);
832 if (LABEL_P (insn)
833 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
834 && JUMP_P (next)
835 && (GET_CODE (PATTERN (next)) == ADDR_VEC
836 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
837 {
838 if (dump_file)
839 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
840 delete_insn (NEXT_INSN (insn));
841 delete_insn (insn);
842 next = NEXT_INSN (next);
843 }
844 }
845 }
846
847 /* Determine if the stack pointer is constant over the life of the function.
848 Only useful before prologues have been emitted. */
849
850 static void
851 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
852 void *data ATTRIBUTE_UNUSED)
853 {
854 if (x == stack_pointer_rtx
855 /* The stack pointer is only modified indirectly as the result
856 of a push until later in flow. See the comments in rtl.texi
857 regarding Embedded Side-Effects on Addresses. */
858 || (MEM_P (x)
859 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
860 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
861 current_function_sp_is_unchanging = 0;
862 }
863
864 static void
865 notice_stack_pointer_modification (void)
866 {
867 basic_block bb;
868 rtx insn;
869
870 /* Assume that the stack pointer is unchanging if alloca hasn't
871 been used. */
872 current_function_sp_is_unchanging = !current_function_calls_alloca;
873 if (! current_function_sp_is_unchanging)
874 return;
875
876 FOR_EACH_BB (bb)
877 FOR_BB_INSNS (bb, insn)
878 {
879 if (INSN_P (insn))
880 {
881 /* Check if insn modifies the stack pointer. */
882 note_stores (PATTERN (insn),
883 notice_stack_pointer_modification_1,
884 NULL);
885 if (! current_function_sp_is_unchanging)
886 return;
887 }
888 }
889 }
890
891 /* Mark a register in SET. Hard registers in large modes get all
892 of their component registers set as well. */
893
894 static void
895 mark_reg (rtx reg, void *xset)
896 {
897 regset set = (regset) xset;
898 int regno = REGNO (reg);
899
900 gcc_assert (GET_MODE (reg) != BLKmode);
901
902 SET_REGNO_REG_SET (set, regno);
903 if (regno < FIRST_PSEUDO_REGISTER)
904 {
905 int n = hard_regno_nregs[regno][GET_MODE (reg)];
906 while (--n > 0)
907 SET_REGNO_REG_SET (set, regno + n);
908 }
909 }
910
911 /* Mark those regs which are needed at the end of the function as live
912 at the end of the last basic block. */
913
914 static void
915 mark_regs_live_at_end (regset set)
916 {
917 unsigned int i;
918
919 /* If exiting needs the right stack value, consider the stack pointer
920 live at the end of the function. */
921 if ((HAVE_epilogue && epilogue_completed)
922 || ! EXIT_IGNORE_STACK
923 || (! FRAME_POINTER_REQUIRED
924 && ! current_function_calls_alloca
925 && flag_omit_frame_pointer)
926 || current_function_sp_is_unchanging)
927 {
928 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
929 }
930
931 /* Mark the frame pointer if needed at the end of the function. If
932 we end up eliminating it, it will be removed from the live list
933 of each basic block by reload. */
934
935 if (! reload_completed || frame_pointer_needed)
936 {
937 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
938 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
939 /* If they are different, also mark the hard frame pointer as live. */
940 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
941 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
942 #endif
943 }
944
945 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
946 /* Many architectures have a GP register even without flag_pic.
947 Assume the pic register is not in use, or will be handled by
948 other means, if it is not fixed. */
949 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
950 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
951 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
952 #endif
953
954 /* Mark all global registers, and all registers used by the epilogue
955 as being live at the end of the function since they may be
956 referenced by our caller. */
957 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
958 if (global_regs[i] || EPILOGUE_USES (i))
959 SET_REGNO_REG_SET (set, i);
960
961 if (HAVE_epilogue && epilogue_completed)
962 {
963 /* Mark all call-saved registers that we actually used. */
964 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
965 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
966 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
967 SET_REGNO_REG_SET (set, i);
968 }
969
970 #ifdef EH_RETURN_DATA_REGNO
971 /* Mark the registers that will contain data for the handler. */
972 if (reload_completed && current_function_calls_eh_return)
973 for (i = 0; ; ++i)
974 {
975 unsigned regno = EH_RETURN_DATA_REGNO(i);
976 if (regno == INVALID_REGNUM)
977 break;
978 SET_REGNO_REG_SET (set, regno);
979 }
980 #endif
981 #ifdef EH_RETURN_STACKADJ_RTX
982 if ((! HAVE_epilogue || ! epilogue_completed)
983 && current_function_calls_eh_return)
984 {
985 rtx tmp = EH_RETURN_STACKADJ_RTX;
986 if (tmp && REG_P (tmp))
987 mark_reg (tmp, set);
988 }
989 #endif
990 #ifdef EH_RETURN_HANDLER_RTX
991 if ((! HAVE_epilogue || ! epilogue_completed)
992 && current_function_calls_eh_return)
993 {
994 rtx tmp = EH_RETURN_HANDLER_RTX;
995 if (tmp && REG_P (tmp))
996 mark_reg (tmp, set);
997 }
998 #endif
999
1000 /* Mark function return value. */
1001 diddle_return_value (mark_reg, set);
1002 }
1003
1004 /* Propagate global life info around the graph of basic blocks. Begin
1005 considering blocks with their corresponding bit set in BLOCKS_IN.
1006 If BLOCKS_IN is null, consider it the universal set.
1007
1008 BLOCKS_OUT is set for every block that was changed. */
1009
1010 static void
1011 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1012 {
1013 basic_block *queue, *qhead, *qtail, *qend, bb;
1014 regset tmp, new_live_at_end, invalidated_by_call;
1015 regset_head tmp_head, invalidated_by_call_head;
1016 regset_head new_live_at_end_head;
1017 int i;
1018
1019 /* Some passes used to forget clear aux field of basic block causing
1020 sick behavior here. */
1021 #ifdef ENABLE_CHECKING
1022 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1023 gcc_assert (!bb->aux);
1024 #endif
1025
1026 tmp = INITIALIZE_REG_SET (tmp_head);
1027 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1028 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1029
1030 /* Inconveniently, this is only readily available in hard reg set form. */
1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1032 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1033 SET_REGNO_REG_SET (invalidated_by_call, i);
1034
1035 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1036 because the `head == tail' style test for an empty queue doesn't
1037 work with a full queue. */
1038 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1039 qtail = queue;
1040 qhead = qend = queue + n_basic_blocks + 2;
1041
1042 /* Queue the blocks set in the initial mask. Do this in reverse block
1043 number order so that we are more likely for the first round to do
1044 useful work. We use AUX non-null to flag that the block is queued. */
1045 if (blocks_in)
1046 {
1047 FOR_EACH_BB (bb)
1048 if (TEST_BIT (blocks_in, bb->index))
1049 {
1050 *--qhead = bb;
1051 bb->aux = bb;
1052 }
1053 }
1054 else
1055 {
1056 FOR_EACH_BB (bb)
1057 {
1058 *--qhead = bb;
1059 bb->aux = bb;
1060 }
1061 }
1062
1063 /* We clean aux when we remove the initially-enqueued bbs, but we
1064 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1065 unconditionally. */
1066 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1067
1068 if (blocks_out)
1069 sbitmap_zero (blocks_out);
1070
1071 /* We work through the queue until there are no more blocks. What
1072 is live at the end of this block is precisely the union of what
1073 is live at the beginning of all its successors. So, we set its
1074 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1075 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1076 this block by walking through the instructions in this block in
1077 reverse order and updating as we go. If that changed
1078 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1079 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1080
1081 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1082 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1083 must either be live at the end of the block, or used within the
1084 block. In the latter case, it will certainly never disappear
1085 from GLOBAL_LIVE_AT_START. In the former case, the register
1086 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1087 for one of the successor blocks. By induction, that cannot
1088 occur. */
1089 while (qhead != qtail)
1090 {
1091 int rescan, changed;
1092 basic_block bb;
1093 edge e;
1094
1095 bb = *qhead++;
1096 if (qhead == qend)
1097 qhead = queue;
1098 bb->aux = NULL;
1099
1100 /* Begin by propagating live_at_start from the successor blocks. */
1101 CLEAR_REG_SET (new_live_at_end);
1102
1103 if (bb->succ)
1104 for (e = bb->succ; e; e = e->succ_next)
1105 {
1106 basic_block sb = e->dest;
1107
1108 /* Call-clobbered registers die across exception and
1109 call edges. */
1110 /* ??? Abnormal call edges ignored for the moment, as this gets
1111 confused by sibling call edges, which crashes reg-stack. */
1112 if (e->flags & EDGE_EH)
1113 {
1114 bitmap_operation (tmp, sb->global_live_at_start,
1115 invalidated_by_call, BITMAP_AND_COMPL);
1116 IOR_REG_SET (new_live_at_end, tmp);
1117 }
1118 else
1119 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1120
1121 /* If a target saves one register in another (instead of on
1122 the stack) the save register will need to be live for EH. */
1123 if (e->flags & EDGE_EH)
1124 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1125 if (EH_USES (i))
1126 SET_REGNO_REG_SET (new_live_at_end, i);
1127 }
1128 else
1129 {
1130 /* This might be a noreturn function that throws. And
1131 even if it isn't, getting the unwind info right helps
1132 debugging. */
1133 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1134 if (EH_USES (i))
1135 SET_REGNO_REG_SET (new_live_at_end, i);
1136 }
1137
1138 /* The all-important stack pointer must always be live. */
1139 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1140
1141 /* Before reload, there are a few registers that must be forced
1142 live everywhere -- which might not already be the case for
1143 blocks within infinite loops. */
1144 if (! reload_completed)
1145 {
1146 /* Any reference to any pseudo before reload is a potential
1147 reference of the frame pointer. */
1148 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1149
1150 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1151 /* Pseudos with argument area equivalences may require
1152 reloading via the argument pointer. */
1153 if (fixed_regs[ARG_POINTER_REGNUM])
1154 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1155 #endif
1156
1157 /* Any constant, or pseudo with constant equivalences, may
1158 require reloading from memory using the pic register. */
1159 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1160 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1161 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1162 }
1163
1164 if (bb == ENTRY_BLOCK_PTR)
1165 {
1166 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1167 continue;
1168 }
1169
1170 /* On our first pass through this block, we'll go ahead and continue.
1171 Recognize first pass by local_set NULL. On subsequent passes, we
1172 get to skip out early if live_at_end wouldn't have changed. */
1173
1174 if (bb->local_set == NULL)
1175 {
1176 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1177 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1178 rescan = 1;
1179 }
1180 else
1181 {
1182 /* If any bits were removed from live_at_end, we'll have to
1183 rescan the block. This wouldn't be necessary if we had
1184 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1185 local_live is really dependent on live_at_end. */
1186 CLEAR_REG_SET (tmp);
1187 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1188 new_live_at_end, BITMAP_AND_COMPL);
1189
1190 if (! rescan)
1191 {
1192 /* If any of the registers in the new live_at_end set are
1193 conditionally set in this basic block, we must rescan.
1194 This is because conditional lifetimes at the end of the
1195 block do not just take the live_at_end set into account,
1196 but also the liveness at the start of each successor
1197 block. We can miss changes in those sets if we only
1198 compare the new live_at_end against the previous one. */
1199 CLEAR_REG_SET (tmp);
1200 rescan = bitmap_operation (tmp, new_live_at_end,
1201 bb->cond_local_set, BITMAP_AND);
1202 }
1203
1204 if (! rescan)
1205 {
1206 /* Find the set of changed bits. Take this opportunity
1207 to notice that this set is empty and early out. */
1208 CLEAR_REG_SET (tmp);
1209 changed = bitmap_operation (tmp, bb->global_live_at_end,
1210 new_live_at_end, BITMAP_XOR);
1211 if (! changed)
1212 continue;
1213
1214 /* If any of the changed bits overlap with local_set,
1215 we'll have to rescan the block. Detect overlap by
1216 the AND with ~local_set turning off bits. */
1217 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1218 BITMAP_AND_COMPL);
1219 }
1220 }
1221
1222 /* Let our caller know that BB changed enough to require its
1223 death notes updated. */
1224 if (blocks_out)
1225 SET_BIT (blocks_out, bb->index);
1226
1227 if (! rescan)
1228 {
1229 /* Add to live_at_start the set of all registers in
1230 new_live_at_end that aren't in the old live_at_end. */
1231
1232 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1233 BITMAP_AND_COMPL);
1234 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1235
1236 changed = bitmap_operation (bb->global_live_at_start,
1237 bb->global_live_at_start,
1238 tmp, BITMAP_IOR);
1239 if (! changed)
1240 continue;
1241 }
1242 else
1243 {
1244 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1245
1246 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1247 into live_at_start. */
1248 propagate_block (bb, new_live_at_end, bb->local_set,
1249 bb->cond_local_set, flags);
1250
1251 /* If live_at start didn't change, no need to go farther. */
1252 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1253 continue;
1254
1255 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1256 }
1257
1258 /* Queue all predecessors of BB so that we may re-examine
1259 their live_at_end. */
1260 for (e = bb->pred; e; e = e->pred_next)
1261 {
1262 basic_block pb = e->src;
1263 if (pb->aux == NULL)
1264 {
1265 *qtail++ = pb;
1266 if (qtail == qend)
1267 qtail = queue;
1268 pb->aux = pb;
1269 }
1270 }
1271 }
1272
1273 FREE_REG_SET (tmp);
1274 FREE_REG_SET (new_live_at_end);
1275 FREE_REG_SET (invalidated_by_call);
1276
1277 if (blocks_out)
1278 {
1279 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1280 {
1281 basic_block bb = BASIC_BLOCK (i);
1282 FREE_REG_SET (bb->local_set);
1283 FREE_REG_SET (bb->cond_local_set);
1284 });
1285 }
1286 else
1287 {
1288 FOR_EACH_BB (bb)
1289 {
1290 FREE_REG_SET (bb->local_set);
1291 FREE_REG_SET (bb->cond_local_set);
1292 }
1293 }
1294
1295 free (queue);
1296 }
1297
1298 \f
1299 /* This structure is used to pass parameters to and from the
1300 the function find_regno_partial(). It is used to pass in the
1301 register number we are looking, as well as to return any rtx
1302 we find. */
1303
1304 typedef struct {
1305 unsigned regno_to_find;
1306 rtx retval;
1307 } find_regno_partial_param;
1308
1309
1310 /* Find the rtx for the reg numbers specified in 'data' if it is
1311 part of an expression which only uses part of the register. Return
1312 it in the structure passed in. */
1313 static int
1314 find_regno_partial (rtx *ptr, void *data)
1315 {
1316 find_regno_partial_param *param = (find_regno_partial_param *)data;
1317 unsigned reg = param->regno_to_find;
1318 param->retval = NULL_RTX;
1319
1320 if (*ptr == NULL_RTX)
1321 return 0;
1322
1323 switch (GET_CODE (*ptr))
1324 {
1325 case ZERO_EXTRACT:
1326 case SIGN_EXTRACT:
1327 case STRICT_LOW_PART:
1328 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1329 {
1330 param->retval = XEXP (*ptr, 0);
1331 return 1;
1332 }
1333 break;
1334
1335 case SUBREG:
1336 if (REG_P (SUBREG_REG (*ptr))
1337 && REGNO (SUBREG_REG (*ptr)) == reg)
1338 {
1339 param->retval = SUBREG_REG (*ptr);
1340 return 1;
1341 }
1342 break;
1343
1344 default:
1345 break;
1346 }
1347
1348 return 0;
1349 }
1350
1351 /* Process all immediate successors of the entry block looking for pseudo
1352 registers which are live on entry. Find all of those whose first
1353 instance is a partial register reference of some kind, and initialize
1354 them to 0 after the entry block. This will prevent bit sets within
1355 registers whose value is unknown, and may contain some kind of sticky
1356 bits we don't want. */
1357
1358 int
1359 initialize_uninitialized_subregs (void)
1360 {
1361 rtx insn;
1362 edge e;
1363 int reg, did_something = 0;
1364 find_regno_partial_param param;
1365
1366 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1367 {
1368 basic_block bb = e->dest;
1369 regset map = bb->global_live_at_start;
1370 EXECUTE_IF_SET_IN_REG_SET (map,
1371 FIRST_PSEUDO_REGISTER, reg,
1372 {
1373 int uid = REGNO_FIRST_UID (reg);
1374 rtx i;
1375
1376 /* Find an insn which mentions the register we are looking for.
1377 Its preferable to have an instance of the register's rtl since
1378 there may be various flags set which we need to duplicate.
1379 If we can't find it, its probably an automatic whose initial
1380 value doesn't matter, or hopefully something we don't care about. */
1381 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1382 ;
1383 if (i != NULL_RTX)
1384 {
1385 /* Found the insn, now get the REG rtx, if we can. */
1386 param.regno_to_find = reg;
1387 for_each_rtx (&i, find_regno_partial, &param);
1388 if (param.retval != NULL_RTX)
1389 {
1390 start_sequence ();
1391 emit_move_insn (param.retval,
1392 CONST0_RTX (GET_MODE (param.retval)));
1393 insn = get_insns ();
1394 end_sequence ();
1395 insert_insn_on_edge (insn, e);
1396 did_something = 1;
1397 }
1398 }
1399 });
1400 }
1401
1402 if (did_something)
1403 commit_edge_insertions ();
1404 return did_something;
1405 }
1406
1407 \f
1408 /* Subroutines of life analysis. */
1409
1410 /* Allocate the permanent data structures that represent the results
1411 of life analysis. Not static since used also for stupid life analysis. */
1412
1413 void
1414 allocate_bb_life_data (void)
1415 {
1416 basic_block bb;
1417
1418 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1419 {
1420 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1421 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1422 }
1423
1424 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1425 }
1426
1427 void
1428 allocate_reg_life_data (void)
1429 {
1430 int i;
1431
1432 max_regno = max_reg_num ();
1433 gcc_assert (!reg_deaths);
1434 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1435
1436 /* Recalculate the register space, in case it has grown. Old style
1437 vector oriented regsets would set regset_{size,bytes} here also. */
1438 allocate_reg_info (max_regno, FALSE, FALSE);
1439
1440 /* Reset all the data we'll collect in propagate_block and its
1441 subroutines. */
1442 for (i = 0; i < max_regno; i++)
1443 {
1444 REG_N_SETS (i) = 0;
1445 REG_N_REFS (i) = 0;
1446 REG_N_DEATHS (i) = 0;
1447 REG_N_CALLS_CROSSED (i) = 0;
1448 REG_LIVE_LENGTH (i) = 0;
1449 REG_FREQ (i) = 0;
1450 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1451 }
1452 }
1453
1454 /* Delete dead instructions for propagate_block. */
1455
1456 static void
1457 propagate_block_delete_insn (rtx insn)
1458 {
1459 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1460
1461 /* If the insn referred to a label, and that label was attached to
1462 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1463 pretty much mandatory to delete it, because the ADDR_VEC may be
1464 referencing labels that no longer exist.
1465
1466 INSN may reference a deleted label, particularly when a jump
1467 table has been optimized into a direct jump. There's no
1468 real good way to fix up the reference to the deleted label
1469 when the label is deleted, so we just allow it here. */
1470
1471 if (inote && LABEL_P (inote))
1472 {
1473 rtx label = XEXP (inote, 0);
1474 rtx next;
1475
1476 /* The label may be forced if it has been put in the constant
1477 pool. If that is the only use we must discard the table
1478 jump following it, but not the label itself. */
1479 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1480 && (next = next_nonnote_insn (label)) != NULL
1481 && JUMP_P (next)
1482 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1483 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1484 {
1485 rtx pat = PATTERN (next);
1486 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1487 int len = XVECLEN (pat, diff_vec_p);
1488 int i;
1489
1490 for (i = 0; i < len; i++)
1491 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1492
1493 delete_insn_and_edges (next);
1494 ndead++;
1495 }
1496 }
1497
1498 delete_insn_and_edges (insn);
1499 ndead++;
1500 }
1501
1502 /* Delete dead libcalls for propagate_block. Return the insn
1503 before the libcall. */
1504
1505 static rtx
1506 propagate_block_delete_libcall (rtx insn, rtx note)
1507 {
1508 rtx first = XEXP (note, 0);
1509 rtx before = PREV_INSN (first);
1510
1511 delete_insn_chain_and_edges (first, insn);
1512 ndead++;
1513 return before;
1514 }
1515
1516 /* Update the life-status of regs for one insn. Return the previous insn. */
1517
1518 rtx
1519 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1520 {
1521 rtx prev = PREV_INSN (insn);
1522 int flags = pbi->flags;
1523 int insn_is_dead = 0;
1524 int libcall_is_dead = 0;
1525 rtx note;
1526 int i;
1527
1528 if (! INSN_P (insn))
1529 return prev;
1530
1531 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1532 if (flags & PROP_SCAN_DEAD_CODE)
1533 {
1534 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1535 libcall_is_dead = (insn_is_dead && note != 0
1536 && libcall_dead_p (pbi, note, insn));
1537 }
1538
1539 /* If an instruction consists of just dead store(s) on final pass,
1540 delete it. */
1541 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1542 {
1543 /* If we're trying to delete a prologue or epilogue instruction
1544 that isn't flagged as possibly being dead, something is wrong.
1545 But if we are keeping the stack pointer depressed, we might well
1546 be deleting insns that are used to compute the amount to update
1547 it by, so they are fine. */
1548 if (reload_completed
1549 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1550 && (TYPE_RETURNS_STACK_DEPRESSED
1551 (TREE_TYPE (current_function_decl))))
1552 && (((HAVE_epilogue || HAVE_prologue)
1553 && prologue_epilogue_contains (insn))
1554 || (HAVE_sibcall_epilogue
1555 && sibcall_epilogue_contains (insn)))
1556 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1557 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1558
1559 /* Record sets. Do this even for dead instructions, since they
1560 would have killed the values if they hadn't been deleted. */
1561 mark_set_regs (pbi, PATTERN (insn), insn);
1562
1563 /* CC0 is now known to be dead. Either this insn used it,
1564 in which case it doesn't anymore, or clobbered it,
1565 so the next insn can't use it. */
1566 pbi->cc0_live = 0;
1567
1568 if (libcall_is_dead)
1569 prev = propagate_block_delete_libcall ( insn, note);
1570 else
1571 {
1572
1573 /* If INSN contains a RETVAL note and is dead, but the libcall
1574 as a whole is not dead, then we want to remove INSN, but
1575 not the whole libcall sequence.
1576
1577 However, we need to also remove the dangling REG_LIBCALL
1578 note so that we do not have mis-matched LIBCALL/RETVAL
1579 notes. In theory we could find a new location for the
1580 REG_RETVAL note, but it hardly seems worth the effort.
1581
1582 NOTE at this point will be the RETVAL note if it exists. */
1583 if (note)
1584 {
1585 rtx libcall_note;
1586
1587 libcall_note
1588 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1589 remove_note (XEXP (note, 0), libcall_note);
1590 }
1591
1592 /* Similarly if INSN contains a LIBCALL note, remove the
1593 dangling REG_RETVAL note. */
1594 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1595 if (note)
1596 {
1597 rtx retval_note;
1598
1599 retval_note
1600 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1601 remove_note (XEXP (note, 0), retval_note);
1602 }
1603
1604 /* Now delete INSN. */
1605 propagate_block_delete_insn (insn);
1606 }
1607
1608 return prev;
1609 }
1610
1611 /* See if this is an increment or decrement that can be merged into
1612 a following memory address. */
1613 #ifdef AUTO_INC_DEC
1614 {
1615 rtx x = single_set (insn);
1616
1617 /* Does this instruction increment or decrement a register? */
1618 if ((flags & PROP_AUTOINC)
1619 && x != 0
1620 && REG_P (SET_DEST (x))
1621 && (GET_CODE (SET_SRC (x)) == PLUS
1622 || GET_CODE (SET_SRC (x)) == MINUS)
1623 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1624 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1625 /* Ok, look for a following memory ref we can combine with.
1626 If one is found, change the memory ref to a PRE_INC
1627 or PRE_DEC, cancel this insn, and return 1.
1628 Return 0 if nothing has been done. */
1629 && try_pre_increment_1 (pbi, insn))
1630 return prev;
1631 }
1632 #endif /* AUTO_INC_DEC */
1633
1634 CLEAR_REG_SET (pbi->new_set);
1635
1636 /* If this is not the final pass, and this insn is copying the value of
1637 a library call and it's dead, don't scan the insns that perform the
1638 library call, so that the call's arguments are not marked live. */
1639 if (libcall_is_dead)
1640 {
1641 /* Record the death of the dest reg. */
1642 mark_set_regs (pbi, PATTERN (insn), insn);
1643
1644 insn = XEXP (note, 0);
1645 return PREV_INSN (insn);
1646 }
1647 else if (GET_CODE (PATTERN (insn)) == SET
1648 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1649 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1650 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1651 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1652 {
1653 /* We have an insn to pop a constant amount off the stack.
1654 (Such insns use PLUS regardless of the direction of the stack,
1655 and any insn to adjust the stack by a constant is always a pop
1656 or part of a push.)
1657 These insns, if not dead stores, have no effect on life, though
1658 they do have an effect on the memory stores we are tracking. */
1659 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1660 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1661 concludes that the stack pointer is not modified. */
1662 mark_set_regs (pbi, PATTERN (insn), insn);
1663 }
1664 else
1665 {
1666 rtx note;
1667 /* Any regs live at the time of a call instruction must not go
1668 in a register clobbered by calls. Find all regs now live and
1669 record this for them. */
1670
1671 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1672 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1673 { REG_N_CALLS_CROSSED (i)++; });
1674
1675 /* Record sets. Do this even for dead instructions, since they
1676 would have killed the values if they hadn't been deleted. */
1677 mark_set_regs (pbi, PATTERN (insn), insn);
1678
1679 if (CALL_P (insn))
1680 {
1681 regset live_at_end;
1682 bool sibcall_p;
1683 rtx note, cond;
1684 int i;
1685
1686 cond = NULL_RTX;
1687 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1688 cond = COND_EXEC_TEST (PATTERN (insn));
1689
1690 /* Non-constant calls clobber memory, constant calls do not
1691 clobber memory, though they may clobber outgoing arguments
1692 on the stack. */
1693 if (! CONST_OR_PURE_CALL_P (insn))
1694 {
1695 free_EXPR_LIST_list (&pbi->mem_set_list);
1696 pbi->mem_set_list_len = 0;
1697 }
1698 else
1699 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1700
1701 /* There may be extra registers to be clobbered. */
1702 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1703 note;
1704 note = XEXP (note, 1))
1705 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1706 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1707 cond, insn, pbi->flags);
1708
1709 /* Calls change all call-used and global registers; sibcalls do not
1710 clobber anything that must be preserved at end-of-function,
1711 except for return values. */
1712
1713 sibcall_p = SIBLING_CALL_P (insn);
1714 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1715 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1716 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1717 && ! (sibcall_p
1718 && REGNO_REG_SET_P (live_at_end, i)
1719 && ! refers_to_regno_p (i, i+1,
1720 current_function_return_rtx,
1721 (rtx *) 0)))
1722 {
1723 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1724 /* We do not want REG_UNUSED notes for these registers. */
1725 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1726 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1727 }
1728 }
1729
1730 /* If an insn doesn't use CC0, it becomes dead since we assume
1731 that every insn clobbers it. So show it dead here;
1732 mark_used_regs will set it live if it is referenced. */
1733 pbi->cc0_live = 0;
1734
1735 /* Record uses. */
1736 if (! insn_is_dead)
1737 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1738 if ((flags & PROP_EQUAL_NOTES)
1739 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1740 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1741 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1742
1743 /* Sometimes we may have inserted something before INSN (such as a move)
1744 when we make an auto-inc. So ensure we will scan those insns. */
1745 #ifdef AUTO_INC_DEC
1746 prev = PREV_INSN (insn);
1747 #endif
1748
1749 if (! insn_is_dead && CALL_P (insn))
1750 {
1751 int i;
1752 rtx note, cond;
1753
1754 cond = NULL_RTX;
1755 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1756 cond = COND_EXEC_TEST (PATTERN (insn));
1757
1758 /* Calls use their arguments, and may clobber memory which
1759 address involves some register. */
1760 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1761 note;
1762 note = XEXP (note, 1))
1763 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1764 of which mark_used_regs knows how to handle. */
1765 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1766
1767 /* The stack ptr is used (honorarily) by a CALL insn. */
1768 if ((flags & PROP_REG_INFO)
1769 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1770 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1771 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1772
1773 /* Calls may also reference any of the global registers,
1774 so they are made live. */
1775 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1776 if (global_regs[i])
1777 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1778 }
1779 }
1780
1781 pbi->insn_num++;
1782
1783 return prev;
1784 }
1785
1786 /* Initialize a propagate_block_info struct for public consumption.
1787 Note that the structure itself is opaque to this file, but that
1788 the user can use the regsets provided here. */
1789
1790 struct propagate_block_info *
1791 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1792 regset cond_local_set, int flags)
1793 {
1794 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1795
1796 pbi->bb = bb;
1797 pbi->reg_live = live;
1798 pbi->mem_set_list = NULL_RTX;
1799 pbi->mem_set_list_len = 0;
1800 pbi->local_set = local_set;
1801 pbi->cond_local_set = cond_local_set;
1802 pbi->cc0_live = 0;
1803 pbi->flags = flags;
1804 pbi->insn_num = 0;
1805
1806 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1807 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1808 else
1809 pbi->reg_next_use = NULL;
1810
1811 pbi->new_set = BITMAP_XMALLOC ();
1812
1813 #ifdef HAVE_conditional_execution
1814 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1815 free_reg_cond_life_info);
1816 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1817
1818 /* If this block ends in a conditional branch, for each register
1819 live from one side of the branch and not the other, record the
1820 register as conditionally dead. */
1821 if (JUMP_P (BB_END (bb))
1822 && any_condjump_p (BB_END (bb)))
1823 {
1824 regset_head diff_head;
1825 regset diff = INITIALIZE_REG_SET (diff_head);
1826 basic_block bb_true, bb_false;
1827 int i;
1828
1829 /* Identify the successor blocks. */
1830 bb_true = bb->succ->dest;
1831 if (bb->succ->succ_next != NULL)
1832 {
1833 bb_false = bb->succ->succ_next->dest;
1834
1835 if (bb->succ->flags & EDGE_FALLTHRU)
1836 {
1837 basic_block t = bb_false;
1838 bb_false = bb_true;
1839 bb_true = t;
1840 }
1841 else
1842 gcc_assert (bb->succ->succ_next->flags & EDGE_FALLTHRU);
1843 }
1844 else
1845 {
1846 /* This can happen with a conditional jump to the next insn. */
1847 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1848
1849 /* Simplest way to do nothing. */
1850 bb_false = bb_true;
1851 }
1852
1853 /* Compute which register lead different lives in the successors. */
1854 if (bitmap_operation (diff, bb_true->global_live_at_start,
1855 bb_false->global_live_at_start, BITMAP_XOR))
1856 {
1857 /* Extract the condition from the branch. */
1858 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1859 rtx cond_true = XEXP (set_src, 0);
1860 rtx reg = XEXP (cond_true, 0);
1861 enum rtx_code inv_cond;
1862
1863 if (GET_CODE (reg) == SUBREG)
1864 reg = SUBREG_REG (reg);
1865
1866 /* We can only track conditional lifetimes if the condition is
1867 in the form of a reversible comparison of a register against
1868 zero. If the condition is more complex than that, then it is
1869 safe not to record any information. */
1870 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
1871 if (inv_cond != UNKNOWN
1872 && REG_P (reg)
1873 && XEXP (cond_true, 1) == const0_rtx)
1874 {
1875 rtx cond_false
1876 = gen_rtx_fmt_ee (inv_cond,
1877 GET_MODE (cond_true), XEXP (cond_true, 0),
1878 XEXP (cond_true, 1));
1879 if (GET_CODE (XEXP (set_src, 1)) == PC)
1880 {
1881 rtx t = cond_false;
1882 cond_false = cond_true;
1883 cond_true = t;
1884 }
1885
1886 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1887
1888 /* For each such register, mark it conditionally dead. */
1889 EXECUTE_IF_SET_IN_REG_SET
1890 (diff, 0, i,
1891 {
1892 struct reg_cond_life_info *rcli;
1893 rtx cond;
1894
1895 rcli = xmalloc (sizeof (*rcli));
1896
1897 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1898 cond = cond_false;
1899 else
1900 cond = cond_true;
1901 rcli->condition = cond;
1902 rcli->stores = const0_rtx;
1903 rcli->orig_condition = cond;
1904
1905 splay_tree_insert (pbi->reg_cond_dead, i,
1906 (splay_tree_value) rcli);
1907 });
1908 }
1909 }
1910
1911 FREE_REG_SET (diff);
1912 }
1913 #endif
1914
1915 /* If this block has no successors, any stores to the frame that aren't
1916 used later in the block are dead. So make a pass over the block
1917 recording any such that are made and show them dead at the end. We do
1918 a very conservative and simple job here. */
1919 if (optimize
1920 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1921 && (TYPE_RETURNS_STACK_DEPRESSED
1922 (TREE_TYPE (current_function_decl))))
1923 && (flags & PROP_SCAN_DEAD_STORES)
1924 && (bb->succ == NULL
1925 || (bb->succ->succ_next == NULL
1926 && bb->succ->dest == EXIT_BLOCK_PTR
1927 && ! current_function_calls_eh_return)))
1928 {
1929 rtx insn, set;
1930 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1931 if (NONJUMP_INSN_P (insn)
1932 && (set = single_set (insn))
1933 && MEM_P (SET_DEST (set)))
1934 {
1935 rtx mem = SET_DEST (set);
1936 rtx canon_mem = canon_rtx (mem);
1937
1938 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1939 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1940 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1941 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1942 add_to_mem_set_list (pbi, canon_mem);
1943 }
1944 }
1945
1946 return pbi;
1947 }
1948
1949 /* Release a propagate_block_info struct. */
1950
1951 void
1952 free_propagate_block_info (struct propagate_block_info *pbi)
1953 {
1954 free_EXPR_LIST_list (&pbi->mem_set_list);
1955
1956 BITMAP_XFREE (pbi->new_set);
1957
1958 #ifdef HAVE_conditional_execution
1959 splay_tree_delete (pbi->reg_cond_dead);
1960 BITMAP_XFREE (pbi->reg_cond_reg);
1961 #endif
1962
1963 if (pbi->flags & PROP_REG_INFO)
1964 {
1965 int num = pbi->insn_num;
1966 int i;
1967
1968 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1969 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
1970 reg_deaths[i] = 0;
1971 });
1972 }
1973 if (pbi->reg_next_use)
1974 free (pbi->reg_next_use);
1975
1976 free (pbi);
1977 }
1978
1979 /* Compute the registers live at the beginning of a basic block BB from
1980 those live at the end.
1981
1982 When called, REG_LIVE contains those live at the end. On return, it
1983 contains those live at the beginning.
1984
1985 LOCAL_SET, if non-null, will be set with all registers killed
1986 unconditionally by this basic block.
1987 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1988 killed conditionally by this basic block. If there is any unconditional
1989 set of a register, then the corresponding bit will be set in LOCAL_SET
1990 and cleared in COND_LOCAL_SET.
1991 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1992 case, the resulting set will be equal to the union of the two sets that
1993 would otherwise be computed.
1994
1995 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
1996
1997 int
1998 propagate_block (basic_block bb, regset live, regset local_set,
1999 regset cond_local_set, int flags)
2000 {
2001 struct propagate_block_info *pbi;
2002 rtx insn, prev;
2003 int changed;
2004
2005 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2006
2007 if (flags & PROP_REG_INFO)
2008 {
2009 int i;
2010
2011 /* Process the regs live at the end of the block.
2012 Mark them as not local to any one basic block. */
2013 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2014 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2015 }
2016
2017 /* Scan the block an insn at a time from end to beginning. */
2018
2019 changed = 0;
2020 for (insn = BB_END (bb); ; insn = prev)
2021 {
2022 /* If this is a call to `setjmp' et al, warn if any
2023 non-volatile datum is live. */
2024 if ((flags & PROP_REG_INFO)
2025 && CALL_P (insn)
2026 && find_reg_note (insn, REG_SETJMP, NULL))
2027 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2028
2029 prev = propagate_one_insn (pbi, insn);
2030 if (!prev)
2031 changed |= insn != get_insns ();
2032 else
2033 changed |= NEXT_INSN (prev) != insn;
2034
2035 if (insn == BB_HEAD (bb))
2036 break;
2037 }
2038
2039 free_propagate_block_info (pbi);
2040
2041 return changed;
2042 }
2043 \f
2044 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2045 (SET expressions whose destinations are registers dead after the insn).
2046 NEEDED is the regset that says which regs are alive after the insn.
2047
2048 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2049
2050 If X is the entire body of an insn, NOTES contains the reg notes
2051 pertaining to the insn. */
2052
2053 static int
2054 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2055 rtx notes ATTRIBUTE_UNUSED)
2056 {
2057 enum rtx_code code = GET_CODE (x);
2058
2059 /* Don't eliminate insns that may trap. */
2060 if (flag_non_call_exceptions && may_trap_p (x))
2061 return 0;
2062
2063 #ifdef AUTO_INC_DEC
2064 /* As flow is invoked after combine, we must take existing AUTO_INC
2065 expressions into account. */
2066 for (; notes; notes = XEXP (notes, 1))
2067 {
2068 if (REG_NOTE_KIND (notes) == REG_INC)
2069 {
2070 int regno = REGNO (XEXP (notes, 0));
2071
2072 /* Don't delete insns to set global regs. */
2073 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2074 || REGNO_REG_SET_P (pbi->reg_live, regno))
2075 return 0;
2076 }
2077 }
2078 #endif
2079
2080 /* If setting something that's a reg or part of one,
2081 see if that register's altered value will be live. */
2082
2083 if (code == SET)
2084 {
2085 rtx r = SET_DEST (x);
2086
2087 #ifdef HAVE_cc0
2088 if (GET_CODE (r) == CC0)
2089 return ! pbi->cc0_live;
2090 #endif
2091
2092 /* A SET that is a subroutine call cannot be dead. */
2093 if (GET_CODE (SET_SRC (x)) == CALL)
2094 {
2095 if (! call_ok)
2096 return 0;
2097 }
2098
2099 /* Don't eliminate loads from volatile memory or volatile asms. */
2100 else if (volatile_refs_p (SET_SRC (x)))
2101 return 0;
2102
2103 if (MEM_P (r))
2104 {
2105 rtx temp, canon_r;
2106
2107 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2108 return 0;
2109
2110 canon_r = canon_rtx (r);
2111
2112 /* Walk the set of memory locations we are currently tracking
2113 and see if one is an identical match to this memory location.
2114 If so, this memory write is dead (remember, we're walking
2115 backwards from the end of the block to the start). Since
2116 rtx_equal_p does not check the alias set or flags, we also
2117 must have the potential for them to conflict (anti_dependence). */
2118 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2119 if (anti_dependence (r, XEXP (temp, 0)))
2120 {
2121 rtx mem = XEXP (temp, 0);
2122
2123 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2124 && (GET_MODE_SIZE (GET_MODE (canon_r))
2125 <= GET_MODE_SIZE (GET_MODE (mem))))
2126 return 1;
2127
2128 #ifdef AUTO_INC_DEC
2129 /* Check if memory reference matches an auto increment. Only
2130 post increment/decrement or modify are valid. */
2131 if (GET_MODE (mem) == GET_MODE (r)
2132 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2133 || GET_CODE (XEXP (mem, 0)) == POST_INC
2134 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2135 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2136 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2137 return 1;
2138 #endif
2139 }
2140 }
2141 else
2142 {
2143 while (GET_CODE (r) == SUBREG
2144 || GET_CODE (r) == STRICT_LOW_PART
2145 || GET_CODE (r) == ZERO_EXTRACT)
2146 r = XEXP (r, 0);
2147
2148 if (REG_P (r))
2149 {
2150 int regno = REGNO (r);
2151
2152 /* Obvious. */
2153 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2154 return 0;
2155
2156 /* If this is a hard register, verify that subsequent
2157 words are not needed. */
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 {
2160 int n = hard_regno_nregs[regno][GET_MODE (r)];
2161
2162 while (--n > 0)
2163 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2164 return 0;
2165 }
2166
2167 /* Don't delete insns to set global regs. */
2168 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2169 return 0;
2170
2171 /* Make sure insns to set the stack pointer aren't deleted. */
2172 if (regno == STACK_POINTER_REGNUM)
2173 return 0;
2174
2175 /* ??? These bits might be redundant with the force live bits
2176 in calculate_global_regs_live. We would delete from
2177 sequential sets; whether this actually affects real code
2178 for anything but the stack pointer I don't know. */
2179 /* Make sure insns to set the frame pointer aren't deleted. */
2180 if (regno == FRAME_POINTER_REGNUM
2181 && (! reload_completed || frame_pointer_needed))
2182 return 0;
2183 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2184 if (regno == HARD_FRAME_POINTER_REGNUM
2185 && (! reload_completed || frame_pointer_needed))
2186 return 0;
2187 #endif
2188
2189 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2190 /* Make sure insns to set arg pointer are never deleted
2191 (if the arg pointer isn't fixed, there will be a USE
2192 for it, so we can treat it normally). */
2193 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2194 return 0;
2195 #endif
2196
2197 /* Otherwise, the set is dead. */
2198 return 1;
2199 }
2200 }
2201 }
2202
2203 /* If performing several activities, insn is dead if each activity
2204 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2205 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2206 worth keeping. */
2207 else if (code == PARALLEL)
2208 {
2209 int i = XVECLEN (x, 0);
2210
2211 for (i--; i >= 0; i--)
2212 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2213 && GET_CODE (XVECEXP (x, 0, i)) != USE
2214 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2215 return 0;
2216
2217 return 1;
2218 }
2219
2220 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2221 is not necessarily true for hard registers until after reload. */
2222 else if (code == CLOBBER)
2223 {
2224 if (REG_P (XEXP (x, 0))
2225 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2226 || reload_completed)
2227 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2228 return 1;
2229 }
2230
2231 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2232 Instances where it is still used are either (1) temporary and the USE
2233 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2234 or (3) hiding bugs elsewhere that are not properly representing data
2235 flow. */
2236
2237 return 0;
2238 }
2239
2240 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2241 return 1 if the entire library call is dead.
2242 This is true if INSN copies a register (hard or pseudo)
2243 and if the hard return reg of the call insn is dead.
2244 (The caller should have tested the destination of the SET inside
2245 INSN already for death.)
2246
2247 If this insn doesn't just copy a register, then we don't
2248 have an ordinary libcall. In that case, cse could not have
2249 managed to substitute the source for the dest later on,
2250 so we can assume the libcall is dead.
2251
2252 PBI is the block info giving pseudoregs live before this insn.
2253 NOTE is the REG_RETVAL note of the insn. */
2254
2255 static int
2256 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2257 {
2258 rtx x = single_set (insn);
2259
2260 if (x)
2261 {
2262 rtx r = SET_SRC (x);
2263
2264 if (REG_P (r))
2265 {
2266 rtx call = XEXP (note, 0);
2267 rtx call_pat;
2268 int i;
2269
2270 /* Find the call insn. */
2271 while (call != insn && !CALL_P (call))
2272 call = NEXT_INSN (call);
2273
2274 /* If there is none, do nothing special,
2275 since ordinary death handling can understand these insns. */
2276 if (call == insn)
2277 return 0;
2278
2279 /* See if the hard reg holding the value is dead.
2280 If this is a PARALLEL, find the call within it. */
2281 call_pat = PATTERN (call);
2282 if (GET_CODE (call_pat) == PARALLEL)
2283 {
2284 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2285 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2286 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2287 break;
2288
2289 /* This may be a library call that is returning a value
2290 via invisible pointer. Do nothing special, since
2291 ordinary death handling can understand these insns. */
2292 if (i < 0)
2293 return 0;
2294
2295 call_pat = XVECEXP (call_pat, 0, i);
2296 }
2297
2298 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2299 }
2300 }
2301 return 1;
2302 }
2303
2304 /* 1 if register REGNO was alive at a place where `setjmp' was called
2305 and was set more than once or is an argument.
2306 Such regs may be clobbered by `longjmp'. */
2307
2308 int
2309 regno_clobbered_at_setjmp (int regno)
2310 {
2311 if (n_basic_blocks == 0)
2312 return 0;
2313
2314 return ((REG_N_SETS (regno) > 1
2315 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2316 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2317 }
2318 \f
2319 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2320 maximal list size; look for overlaps in mode and select the largest. */
2321 static void
2322 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2323 {
2324 rtx i;
2325
2326 /* We don't know how large a BLKmode store is, so we must not
2327 take them into consideration. */
2328 if (GET_MODE (mem) == BLKmode)
2329 return;
2330
2331 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2332 {
2333 rtx e = XEXP (i, 0);
2334 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2335 {
2336 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2337 {
2338 #ifdef AUTO_INC_DEC
2339 /* If we must store a copy of the mem, we can just modify
2340 the mode of the stored copy. */
2341 if (pbi->flags & PROP_AUTOINC)
2342 PUT_MODE (e, GET_MODE (mem));
2343 else
2344 #endif
2345 XEXP (i, 0) = mem;
2346 }
2347 return;
2348 }
2349 }
2350
2351 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2352 {
2353 #ifdef AUTO_INC_DEC
2354 /* Store a copy of mem, otherwise the address may be
2355 scrogged by find_auto_inc. */
2356 if (pbi->flags & PROP_AUTOINC)
2357 mem = shallow_copy_rtx (mem);
2358 #endif
2359 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2360 pbi->mem_set_list_len++;
2361 }
2362 }
2363
2364 /* INSN references memory, possibly using autoincrement addressing modes.
2365 Find any entries on the mem_set_list that need to be invalidated due
2366 to an address change. */
2367
2368 static int
2369 invalidate_mems_from_autoinc (rtx *px, void *data)
2370 {
2371 rtx x = *px;
2372 struct propagate_block_info *pbi = data;
2373
2374 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2375 {
2376 invalidate_mems_from_set (pbi, XEXP (x, 0));
2377 return -1;
2378 }
2379
2380 return 0;
2381 }
2382
2383 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2384
2385 static void
2386 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2387 {
2388 rtx temp = pbi->mem_set_list;
2389 rtx prev = NULL_RTX;
2390 rtx next;
2391
2392 while (temp)
2393 {
2394 next = XEXP (temp, 1);
2395 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2396 {
2397 /* Splice this entry out of the list. */
2398 if (prev)
2399 XEXP (prev, 1) = next;
2400 else
2401 pbi->mem_set_list = next;
2402 free_EXPR_LIST_node (temp);
2403 pbi->mem_set_list_len--;
2404 }
2405 else
2406 prev = temp;
2407 temp = next;
2408 }
2409 }
2410
2411 /* Process the registers that are set within X. Their bits are set to
2412 1 in the regset DEAD, because they are dead prior to this insn.
2413
2414 If INSN is nonzero, it is the insn being processed.
2415
2416 FLAGS is the set of operations to perform. */
2417
2418 static void
2419 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2420 {
2421 rtx cond = NULL_RTX;
2422 rtx link;
2423 enum rtx_code code;
2424 int flags = pbi->flags;
2425
2426 if (insn)
2427 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2428 {
2429 if (REG_NOTE_KIND (link) == REG_INC)
2430 mark_set_1 (pbi, SET, XEXP (link, 0),
2431 (GET_CODE (x) == COND_EXEC
2432 ? COND_EXEC_TEST (x) : NULL_RTX),
2433 insn, flags);
2434 }
2435 retry:
2436 switch (code = GET_CODE (x))
2437 {
2438 case SET:
2439 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2440 flags |= PROP_ASM_SCAN;
2441 /* Fall through */
2442 case CLOBBER:
2443 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2444 return;
2445
2446 case COND_EXEC:
2447 cond = COND_EXEC_TEST (x);
2448 x = COND_EXEC_CODE (x);
2449 goto retry;
2450
2451 case PARALLEL:
2452 {
2453 int i;
2454
2455 /* We must scan forwards. If we have an asm, we need to set
2456 the PROP_ASM_SCAN flag before scanning the clobbers. */
2457 for (i = 0; i < XVECLEN (x, 0); i++)
2458 {
2459 rtx sub = XVECEXP (x, 0, i);
2460 switch (code = GET_CODE (sub))
2461 {
2462 case COND_EXEC:
2463 gcc_assert (!cond);
2464
2465 cond = COND_EXEC_TEST (sub);
2466 sub = COND_EXEC_CODE (sub);
2467 if (GET_CODE (sub) == SET)
2468 goto mark_set;
2469 if (GET_CODE (sub) == CLOBBER)
2470 goto mark_clob;
2471 break;
2472
2473 case SET:
2474 mark_set:
2475 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2476 flags |= PROP_ASM_SCAN;
2477 /* Fall through */
2478 case CLOBBER:
2479 mark_clob:
2480 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2481 break;
2482
2483 case ASM_OPERANDS:
2484 flags |= PROP_ASM_SCAN;
2485 break;
2486
2487 default:
2488 break;
2489 }
2490 }
2491 break;
2492 }
2493
2494 default:
2495 break;
2496 }
2497 }
2498
2499 /* Process a single set, which appears in INSN. REG (which may not
2500 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2501 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2502 If the set is conditional (because it appear in a COND_EXEC), COND
2503 will be the condition. */
2504
2505 static void
2506 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2507 {
2508 int regno_first = -1, regno_last = -1;
2509 unsigned long not_dead = 0;
2510 int i;
2511
2512 /* Modifying just one hardware register of a multi-reg value or just a
2513 byte field of a register does not mean the value from before this insn
2514 is now dead. Of course, if it was dead after it's unused now. */
2515
2516 switch (GET_CODE (reg))
2517 {
2518 case PARALLEL:
2519 /* Some targets place small structures in registers for return values of
2520 functions. We have to detect this case specially here to get correct
2521 flow information. */
2522 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2523 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2524 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2525 flags);
2526 return;
2527
2528 case ZERO_EXTRACT:
2529 case SIGN_EXTRACT:
2530 case STRICT_LOW_PART:
2531 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2532 do
2533 reg = XEXP (reg, 0);
2534 while (GET_CODE (reg) == SUBREG
2535 || GET_CODE (reg) == ZERO_EXTRACT
2536 || GET_CODE (reg) == SIGN_EXTRACT
2537 || GET_CODE (reg) == STRICT_LOW_PART);
2538 if (MEM_P (reg))
2539 break;
2540 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2541 /* Fall through. */
2542
2543 case REG:
2544 regno_last = regno_first = REGNO (reg);
2545 if (regno_first < FIRST_PSEUDO_REGISTER)
2546 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2547 break;
2548
2549 case SUBREG:
2550 if (REG_P (SUBREG_REG (reg)))
2551 {
2552 enum machine_mode outer_mode = GET_MODE (reg);
2553 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2554
2555 /* Identify the range of registers affected. This is moderately
2556 tricky for hard registers. See alter_subreg. */
2557
2558 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2559 if (regno_first < FIRST_PSEUDO_REGISTER)
2560 {
2561 regno_first += subreg_regno_offset (regno_first, inner_mode,
2562 SUBREG_BYTE (reg),
2563 outer_mode);
2564 regno_last = (regno_first
2565 + hard_regno_nregs[regno_first][outer_mode] - 1);
2566
2567 /* Since we've just adjusted the register number ranges, make
2568 sure REG matches. Otherwise some_was_live will be clear
2569 when it shouldn't have been, and we'll create incorrect
2570 REG_UNUSED notes. */
2571 reg = gen_rtx_REG (outer_mode, regno_first);
2572 }
2573 else
2574 {
2575 /* If the number of words in the subreg is less than the number
2576 of words in the full register, we have a well-defined partial
2577 set. Otherwise the high bits are undefined.
2578
2579 This is only really applicable to pseudos, since we just took
2580 care of multi-word hard registers. */
2581 if (((GET_MODE_SIZE (outer_mode)
2582 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2583 < ((GET_MODE_SIZE (inner_mode)
2584 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2585 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2586 regno_first);
2587
2588 reg = SUBREG_REG (reg);
2589 }
2590 }
2591 else
2592 reg = SUBREG_REG (reg);
2593 break;
2594
2595 default:
2596 break;
2597 }
2598
2599 /* If this set is a MEM, then it kills any aliased writes.
2600 If this set is a REG, then it kills any MEMs which use the reg. */
2601 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2602 {
2603 if (REG_P (reg))
2604 invalidate_mems_from_set (pbi, reg);
2605
2606 /* If the memory reference had embedded side effects (autoincrement
2607 address modes. Then we may need to kill some entries on the
2608 memory set list. */
2609 if (insn && MEM_P (reg))
2610 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2611
2612 if (MEM_P (reg) && ! side_effects_p (reg)
2613 /* ??? With more effort we could track conditional memory life. */
2614 && ! cond)
2615 add_to_mem_set_list (pbi, canon_rtx (reg));
2616 }
2617
2618 if (REG_P (reg)
2619 && ! (regno_first == FRAME_POINTER_REGNUM
2620 && (! reload_completed || frame_pointer_needed))
2621 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2622 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2623 && (! reload_completed || frame_pointer_needed))
2624 #endif
2625 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2626 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2627 #endif
2628 )
2629 {
2630 int some_was_live = 0, some_was_dead = 0;
2631
2632 for (i = regno_first; i <= regno_last; ++i)
2633 {
2634 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2635 if (pbi->local_set)
2636 {
2637 /* Order of the set operation matters here since both
2638 sets may be the same. */
2639 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2640 if (cond != NULL_RTX
2641 && ! REGNO_REG_SET_P (pbi->local_set, i))
2642 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2643 else
2644 SET_REGNO_REG_SET (pbi->local_set, i);
2645 }
2646 if (code != CLOBBER)
2647 SET_REGNO_REG_SET (pbi->new_set, i);
2648
2649 some_was_live |= needed_regno;
2650 some_was_dead |= ! needed_regno;
2651 }
2652
2653 #ifdef HAVE_conditional_execution
2654 /* Consider conditional death in deciding that the register needs
2655 a death note. */
2656 if (some_was_live && ! not_dead
2657 /* The stack pointer is never dead. Well, not strictly true,
2658 but it's very difficult to tell from here. Hopefully
2659 combine_stack_adjustments will fix up the most egregious
2660 errors. */
2661 && regno_first != STACK_POINTER_REGNUM)
2662 {
2663 for (i = regno_first; i <= regno_last; ++i)
2664 if (! mark_regno_cond_dead (pbi, i, cond))
2665 not_dead |= ((unsigned long) 1) << (i - regno_first);
2666 }
2667 #endif
2668
2669 /* Additional data to record if this is the final pass. */
2670 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2671 | PROP_DEATH_NOTES | PROP_AUTOINC))
2672 {
2673 rtx y;
2674 int blocknum = pbi->bb->index;
2675
2676 y = NULL_RTX;
2677 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2678 {
2679 y = pbi->reg_next_use[regno_first];
2680
2681 /* The next use is no longer next, since a store intervenes. */
2682 for (i = regno_first; i <= regno_last; ++i)
2683 pbi->reg_next_use[i] = 0;
2684 }
2685
2686 if (flags & PROP_REG_INFO)
2687 {
2688 for (i = regno_first; i <= regno_last; ++i)
2689 {
2690 /* Count (weighted) references, stores, etc. This counts a
2691 register twice if it is modified, but that is correct. */
2692 REG_N_SETS (i) += 1;
2693 REG_N_REFS (i) += 1;
2694 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2695
2696 /* The insns where a reg is live are normally counted
2697 elsewhere, but we want the count to include the insn
2698 where the reg is set, and the normal counting mechanism
2699 would not count it. */
2700 REG_LIVE_LENGTH (i) += 1;
2701 }
2702
2703 /* If this is a hard reg, record this function uses the reg. */
2704 if (regno_first < FIRST_PSEUDO_REGISTER)
2705 {
2706 for (i = regno_first; i <= regno_last; i++)
2707 regs_ever_live[i] = 1;
2708 if (flags & PROP_ASM_SCAN)
2709 for (i = regno_first; i <= regno_last; i++)
2710 regs_asm_clobbered[i] = 1;
2711 }
2712 else
2713 {
2714 /* Keep track of which basic blocks each reg appears in. */
2715 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2716 REG_BASIC_BLOCK (regno_first) = blocknum;
2717 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2718 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2719 }
2720 }
2721
2722 if (! some_was_dead)
2723 {
2724 if (flags & PROP_LOG_LINKS)
2725 {
2726 /* Make a logical link from the next following insn
2727 that uses this register, back to this insn.
2728 The following insns have already been processed.
2729
2730 We don't build a LOG_LINK for hard registers containing
2731 in ASM_OPERANDs. If these registers get replaced,
2732 we might wind up changing the semantics of the insn,
2733 even if reload can make what appear to be valid
2734 assignments later.
2735
2736 We don't build a LOG_LINK for global registers to
2737 or from a function call. We don't want to let
2738 combine think that it knows what is going on with
2739 global registers. */
2740 if (y && (BLOCK_NUM (y) == blocknum)
2741 && (regno_first >= FIRST_PSEUDO_REGISTER
2742 || (asm_noperands (PATTERN (y)) < 0
2743 && ! ((CALL_P (insn)
2744 || CALL_P (y))
2745 && global_regs[regno_first]))))
2746 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2747 }
2748 }
2749 else if (not_dead)
2750 ;
2751 else if (! some_was_live)
2752 {
2753 if (flags & PROP_REG_INFO)
2754 REG_N_DEATHS (regno_first) += 1;
2755
2756 if (flags & PROP_DEATH_NOTES)
2757 {
2758 /* Note that dead stores have already been deleted
2759 when possible. If we get here, we have found a
2760 dead store that cannot be eliminated (because the
2761 same insn does something useful). Indicate this
2762 by marking the reg being set as dying here. */
2763 REG_NOTES (insn)
2764 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2765 }
2766 }
2767 else
2768 {
2769 if (flags & PROP_DEATH_NOTES)
2770 {
2771 /* This is a case where we have a multi-word hard register
2772 and some, but not all, of the words of the register are
2773 needed in subsequent insns. Write REG_UNUSED notes
2774 for those parts that were not needed. This case should
2775 be rare. */
2776
2777 for (i = regno_first; i <= regno_last; ++i)
2778 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2779 REG_NOTES (insn)
2780 = alloc_EXPR_LIST (REG_UNUSED,
2781 regno_reg_rtx[i],
2782 REG_NOTES (insn));
2783 }
2784 }
2785 }
2786
2787 /* Mark the register as being dead. */
2788 if (some_was_live
2789 /* The stack pointer is never dead. Well, not strictly true,
2790 but it's very difficult to tell from here. Hopefully
2791 combine_stack_adjustments will fix up the most egregious
2792 errors. */
2793 && regno_first != STACK_POINTER_REGNUM)
2794 {
2795 for (i = regno_first; i <= regno_last; ++i)
2796 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2797 {
2798 if ((pbi->flags & PROP_REG_INFO)
2799 && REGNO_REG_SET_P (pbi->reg_live, i))
2800 {
2801 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2802 reg_deaths[i] = 0;
2803 }
2804 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2805 }
2806 }
2807 }
2808 else if (REG_P (reg))
2809 {
2810 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2811 pbi->reg_next_use[regno_first] = 0;
2812
2813 if ((flags & PROP_REG_INFO) != 0
2814 && (flags & PROP_ASM_SCAN) != 0
2815 && regno_first < FIRST_PSEUDO_REGISTER)
2816 {
2817 for (i = regno_first; i <= regno_last; i++)
2818 regs_asm_clobbered[i] = 1;
2819 }
2820 }
2821
2822 /* If this is the last pass and this is a SCRATCH, show it will be dying
2823 here and count it. */
2824 else if (GET_CODE (reg) == SCRATCH)
2825 {
2826 if (flags & PROP_DEATH_NOTES)
2827 REG_NOTES (insn)
2828 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2829 }
2830 }
2831 \f
2832 #ifdef HAVE_conditional_execution
2833 /* Mark REGNO conditionally dead.
2834 Return true if the register is now unconditionally dead. */
2835
2836 static int
2837 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2838 {
2839 /* If this is a store to a predicate register, the value of the
2840 predicate is changing, we don't know that the predicate as seen
2841 before is the same as that seen after. Flush all dependent
2842 conditions from reg_cond_dead. This will make all such
2843 conditionally live registers unconditionally live. */
2844 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2845 flush_reg_cond_reg (pbi, regno);
2846
2847 /* If this is an unconditional store, remove any conditional
2848 life that may have existed. */
2849 if (cond == NULL_RTX)
2850 splay_tree_remove (pbi->reg_cond_dead, regno);
2851 else
2852 {
2853 splay_tree_node node;
2854 struct reg_cond_life_info *rcli;
2855 rtx ncond;
2856
2857 /* Otherwise this is a conditional set. Record that fact.
2858 It may have been conditionally used, or there may be a
2859 subsequent set with a complimentary condition. */
2860
2861 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2862 if (node == NULL)
2863 {
2864 /* The register was unconditionally live previously.
2865 Record the current condition as the condition under
2866 which it is dead. */
2867 rcli = xmalloc (sizeof (*rcli));
2868 rcli->condition = cond;
2869 rcli->stores = cond;
2870 rcli->orig_condition = const0_rtx;
2871 splay_tree_insert (pbi->reg_cond_dead, regno,
2872 (splay_tree_value) rcli);
2873
2874 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2875
2876 /* Not unconditionally dead. */
2877 return 0;
2878 }
2879 else
2880 {
2881 /* The register was conditionally live previously.
2882 Add the new condition to the old. */
2883 rcli = (struct reg_cond_life_info *) node->value;
2884 ncond = rcli->condition;
2885 ncond = ior_reg_cond (ncond, cond, 1);
2886 if (rcli->stores == const0_rtx)
2887 rcli->stores = cond;
2888 else if (rcli->stores != const1_rtx)
2889 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2890
2891 /* If the register is now unconditionally dead, remove the entry
2892 in the splay_tree. A register is unconditionally dead if the
2893 dead condition ncond is true. A register is also unconditionally
2894 dead if the sum of all conditional stores is an unconditional
2895 store (stores is true), and the dead condition is identically the
2896 same as the original dead condition initialized at the end of
2897 the block. This is a pointer compare, not an rtx_equal_p
2898 compare. */
2899 if (ncond == const1_rtx
2900 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2901 splay_tree_remove (pbi->reg_cond_dead, regno);
2902 else
2903 {
2904 rcli->condition = ncond;
2905
2906 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2907
2908 /* Not unconditionally dead. */
2909 return 0;
2910 }
2911 }
2912 }
2913
2914 return 1;
2915 }
2916
2917 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2918
2919 static void
2920 free_reg_cond_life_info (splay_tree_value value)
2921 {
2922 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2923 free (rcli);
2924 }
2925
2926 /* Helper function for flush_reg_cond_reg. */
2927
2928 static int
2929 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2930 {
2931 struct reg_cond_life_info *rcli;
2932 int *xdata = (int *) data;
2933 unsigned int regno = xdata[0];
2934
2935 /* Don't need to search if last flushed value was farther on in
2936 the in-order traversal. */
2937 if (xdata[1] >= (int) node->key)
2938 return 0;
2939
2940 /* Splice out portions of the expression that refer to regno. */
2941 rcli = (struct reg_cond_life_info *) node->value;
2942 rcli->condition = elim_reg_cond (rcli->condition, regno);
2943 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2944 rcli->stores = elim_reg_cond (rcli->stores, regno);
2945
2946 /* If the entire condition is now false, signal the node to be removed. */
2947 if (rcli->condition == const0_rtx)
2948 {
2949 xdata[1] = node->key;
2950 return -1;
2951 }
2952 else
2953 gcc_assert (rcli->condition != const1_rtx);
2954
2955 return 0;
2956 }
2957
2958 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2959
2960 static void
2961 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
2962 {
2963 int pair[2];
2964
2965 pair[0] = regno;
2966 pair[1] = -1;
2967 while (splay_tree_foreach (pbi->reg_cond_dead,
2968 flush_reg_cond_reg_1, pair) == -1)
2969 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2970
2971 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2972 }
2973
2974 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2975 For ior/and, the ADD flag determines whether we want to add the new
2976 condition X to the old one unconditionally. If it is zero, we will
2977 only return a new expression if X allows us to simplify part of
2978 OLD, otherwise we return NULL to the caller.
2979 If ADD is nonzero, we will return a new condition in all cases. The
2980 toplevel caller of one of these functions should always pass 1 for
2981 ADD. */
2982
2983 static rtx
2984 ior_reg_cond (rtx old, rtx x, int add)
2985 {
2986 rtx op0, op1;
2987
2988 if (COMPARISON_P (old))
2989 {
2990 if (COMPARISON_P (x)
2991 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
2992 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2993 return const1_rtx;
2994 if (GET_CODE (x) == GET_CODE (old)
2995 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2996 return old;
2997 if (! add)
2998 return NULL;
2999 return gen_rtx_IOR (0, old, x);
3000 }
3001
3002 switch (GET_CODE (old))
3003 {
3004 case IOR:
3005 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3006 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3007 if (op0 != NULL || op1 != NULL)
3008 {
3009 if (op0 == const0_rtx)
3010 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3011 if (op1 == const0_rtx)
3012 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3013 if (op0 == const1_rtx || op1 == const1_rtx)
3014 return const1_rtx;
3015 if (op0 == NULL)
3016 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3017 else if (rtx_equal_p (x, op0))
3018 /* (x | A) | x ~ (x | A). */
3019 return old;
3020 if (op1 == NULL)
3021 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3022 else if (rtx_equal_p (x, op1))
3023 /* (A | x) | x ~ (A | x). */
3024 return old;
3025 return gen_rtx_IOR (0, op0, op1);
3026 }
3027 if (! add)
3028 return NULL;
3029 return gen_rtx_IOR (0, old, x);
3030
3031 case AND:
3032 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3033 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3034 if (op0 != NULL || op1 != NULL)
3035 {
3036 if (op0 == const1_rtx)
3037 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3038 if (op1 == const1_rtx)
3039 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3040 if (op0 == const0_rtx || op1 == const0_rtx)
3041 return const0_rtx;
3042 if (op0 == NULL)
3043 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3044 else if (rtx_equal_p (x, op0))
3045 /* (x & A) | x ~ x. */
3046 return op0;
3047 if (op1 == NULL)
3048 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3049 else if (rtx_equal_p (x, op1))
3050 /* (A & x) | x ~ x. */
3051 return op1;
3052 return gen_rtx_AND (0, op0, op1);
3053 }
3054 if (! add)
3055 return NULL;
3056 return gen_rtx_IOR (0, old, x);
3057
3058 case NOT:
3059 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3060 if (op0 != NULL)
3061 return not_reg_cond (op0);
3062 if (! add)
3063 return NULL;
3064 return gen_rtx_IOR (0, old, x);
3065
3066 default:
3067 gcc_unreachable ();
3068 }
3069 }
3070
3071 static rtx
3072 not_reg_cond (rtx x)
3073 {
3074 if (x == const0_rtx)
3075 return const1_rtx;
3076 else if (x == const1_rtx)
3077 return const0_rtx;
3078 if (GET_CODE (x) == NOT)
3079 return XEXP (x, 0);
3080 if (COMPARISON_P (x)
3081 && REG_P (XEXP (x, 0)))
3082 {
3083 gcc_assert (XEXP (x, 1) == const0_rtx);
3084
3085 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3086 VOIDmode, XEXP (x, 0), const0_rtx);
3087 }
3088 return gen_rtx_NOT (0, x);
3089 }
3090
3091 static rtx
3092 and_reg_cond (rtx old, rtx x, int add)
3093 {
3094 rtx op0, op1;
3095
3096 if (COMPARISON_P (old))
3097 {
3098 if (COMPARISON_P (x)
3099 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3100 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3101 return const0_rtx;
3102 if (GET_CODE (x) == GET_CODE (old)
3103 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3104 return old;
3105 if (! add)
3106 return NULL;
3107 return gen_rtx_AND (0, old, x);
3108 }
3109
3110 switch (GET_CODE (old))
3111 {
3112 case IOR:
3113 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3114 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3115 if (op0 != NULL || op1 != NULL)
3116 {
3117 if (op0 == const0_rtx)
3118 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3119 if (op1 == const0_rtx)
3120 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3121 if (op0 == const1_rtx || op1 == const1_rtx)
3122 return const1_rtx;
3123 if (op0 == NULL)
3124 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3125 else if (rtx_equal_p (x, op0))
3126 /* (x | A) & x ~ x. */
3127 return op0;
3128 if (op1 == NULL)
3129 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3130 else if (rtx_equal_p (x, op1))
3131 /* (A | x) & x ~ x. */
3132 return op1;
3133 return gen_rtx_IOR (0, op0, op1);
3134 }
3135 if (! add)
3136 return NULL;
3137 return gen_rtx_AND (0, old, x);
3138
3139 case AND:
3140 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3141 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3142 if (op0 != NULL || op1 != NULL)
3143 {
3144 if (op0 == const1_rtx)
3145 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3146 if (op1 == const1_rtx)
3147 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3148 if (op0 == const0_rtx || op1 == const0_rtx)
3149 return const0_rtx;
3150 if (op0 == NULL)
3151 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3152 else if (rtx_equal_p (x, op0))
3153 /* (x & A) & x ~ (x & A). */
3154 return old;
3155 if (op1 == NULL)
3156 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3157 else if (rtx_equal_p (x, op1))
3158 /* (A & x) & x ~ (A & x). */
3159 return old;
3160 return gen_rtx_AND (0, op0, op1);
3161 }
3162 if (! add)
3163 return NULL;
3164 return gen_rtx_AND (0, old, x);
3165
3166 case NOT:
3167 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3168 if (op0 != NULL)
3169 return not_reg_cond (op0);
3170 if (! add)
3171 return NULL;
3172 return gen_rtx_AND (0, old, x);
3173
3174 default:
3175 gcc_unreachable ();
3176 }
3177 }
3178
3179 /* Given a condition X, remove references to reg REGNO and return the
3180 new condition. The removal will be done so that all conditions
3181 involving REGNO are considered to evaluate to false. This function
3182 is used when the value of REGNO changes. */
3183
3184 static rtx
3185 elim_reg_cond (rtx x, unsigned int regno)
3186 {
3187 rtx op0, op1;
3188
3189 if (COMPARISON_P (x))
3190 {
3191 if (REGNO (XEXP (x, 0)) == regno)
3192 return const0_rtx;
3193 return x;
3194 }
3195
3196 switch (GET_CODE (x))
3197 {
3198 case AND:
3199 op0 = elim_reg_cond (XEXP (x, 0), regno);
3200 op1 = elim_reg_cond (XEXP (x, 1), regno);
3201 if (op0 == const0_rtx || op1 == const0_rtx)
3202 return const0_rtx;
3203 if (op0 == const1_rtx)
3204 return op1;
3205 if (op1 == const1_rtx)
3206 return op0;
3207 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3208 return x;
3209 return gen_rtx_AND (0, op0, op1);
3210
3211 case IOR:
3212 op0 = elim_reg_cond (XEXP (x, 0), regno);
3213 op1 = elim_reg_cond (XEXP (x, 1), regno);
3214 if (op0 == const1_rtx || op1 == const1_rtx)
3215 return const1_rtx;
3216 if (op0 == const0_rtx)
3217 return op1;
3218 if (op1 == const0_rtx)
3219 return op0;
3220 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3221 return x;
3222 return gen_rtx_IOR (0, op0, op1);
3223
3224 case NOT:
3225 op0 = elim_reg_cond (XEXP (x, 0), regno);
3226 if (op0 == const0_rtx)
3227 return const1_rtx;
3228 if (op0 == const1_rtx)
3229 return const0_rtx;
3230 if (op0 != XEXP (x, 0))
3231 return not_reg_cond (op0);
3232 return x;
3233
3234 default:
3235 gcc_unreachable ();
3236 }
3237 }
3238 #endif /* HAVE_conditional_execution */
3239 \f
3240 #ifdef AUTO_INC_DEC
3241
3242 /* Try to substitute the auto-inc expression INC as the address inside
3243 MEM which occurs in INSN. Currently, the address of MEM is an expression
3244 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3245 that has a single set whose source is a PLUS of INCR_REG and something
3246 else. */
3247
3248 static void
3249 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3250 rtx mem, rtx incr, rtx incr_reg)
3251 {
3252 int regno = REGNO (incr_reg);
3253 rtx set = single_set (incr);
3254 rtx q = SET_DEST (set);
3255 rtx y = SET_SRC (set);
3256 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3257 int changed;
3258
3259 /* Make sure this reg appears only once in this insn. */
3260 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3261 return;
3262
3263 if (dead_or_set_p (incr, incr_reg)
3264 /* Mustn't autoinc an eliminable register. */
3265 && (regno >= FIRST_PSEUDO_REGISTER
3266 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3267 {
3268 /* This is the simple case. Try to make the auto-inc. If
3269 we can't, we are done. Otherwise, we will do any
3270 needed updates below. */
3271 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3272 return;
3273 }
3274 else if (REG_P (q)
3275 /* PREV_INSN used here to check the semi-open interval
3276 [insn,incr). */
3277 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3278 /* We must also check for sets of q as q may be
3279 a call clobbered hard register and there may
3280 be a call between PREV_INSN (insn) and incr. */
3281 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3282 {
3283 /* We have *p followed sometime later by q = p+size.
3284 Both p and q must be live afterward,
3285 and q is not used between INSN and its assignment.
3286 Change it to q = p, ...*q..., q = q+size.
3287 Then fall into the usual case. */
3288 rtx insns, temp;
3289
3290 start_sequence ();
3291 emit_move_insn (q, incr_reg);
3292 insns = get_insns ();
3293 end_sequence ();
3294
3295 /* If we can't make the auto-inc, or can't make the
3296 replacement into Y, exit. There's no point in making
3297 the change below if we can't do the auto-inc and doing
3298 so is not correct in the pre-inc case. */
3299
3300 XEXP (inc, 0) = q;
3301 validate_change (insn, &XEXP (mem, 0), inc, 1);
3302 validate_change (incr, &XEXP (y, opnum), q, 1);
3303 if (! apply_change_group ())
3304 return;
3305
3306 /* We now know we'll be doing this change, so emit the
3307 new insn(s) and do the updates. */
3308 emit_insn_before (insns, insn);
3309
3310 if (BB_HEAD (pbi->bb) == insn)
3311 BB_HEAD (pbi->bb) = insns;
3312
3313 /* INCR will become a NOTE and INSN won't contain a
3314 use of INCR_REG. If a use of INCR_REG was just placed in
3315 the insn before INSN, make that the next use.
3316 Otherwise, invalidate it. */
3317 if (NONJUMP_INSN_P (PREV_INSN (insn))
3318 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3319 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3320 pbi->reg_next_use[regno] = PREV_INSN (insn);
3321 else
3322 pbi->reg_next_use[regno] = 0;
3323
3324 incr_reg = q;
3325 regno = REGNO (q);
3326
3327 if ((pbi->flags & PROP_REG_INFO)
3328 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3329 reg_deaths[regno] = pbi->insn_num;
3330
3331 /* REGNO is now used in INCR which is below INSN, but
3332 it previously wasn't live here. If we don't mark
3333 it as live, we'll put a REG_DEAD note for it
3334 on this insn, which is incorrect. */
3335 SET_REGNO_REG_SET (pbi->reg_live, regno);
3336
3337 /* If there are any calls between INSN and INCR, show
3338 that REGNO now crosses them. */
3339 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3340 if (CALL_P (temp))
3341 REG_N_CALLS_CROSSED (regno)++;
3342
3343 /* Invalidate alias info for Q since we just changed its value. */
3344 clear_reg_alias_info (q);
3345 }
3346 else
3347 return;
3348
3349 /* If we haven't returned, it means we were able to make the
3350 auto-inc, so update the status. First, record that this insn
3351 has an implicit side effect. */
3352
3353 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3354
3355 /* Modify the old increment-insn to simply copy
3356 the already-incremented value of our register. */
3357 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3358 gcc_assert (changed);
3359
3360 /* If that makes it a no-op (copying the register into itself) delete
3361 it so it won't appear to be a "use" and a "set" of this
3362 register. */
3363 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3364 {
3365 /* If the original source was dead, it's dead now. */
3366 rtx note;
3367
3368 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3369 {
3370 remove_note (incr, note);
3371 if (XEXP (note, 0) != incr_reg)
3372 {
3373 unsigned int regno = REGNO (XEXP (note, 0));
3374
3375 if ((pbi->flags & PROP_REG_INFO)
3376 && REGNO_REG_SET_P (pbi->reg_live, regno))
3377 {
3378 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3379 reg_deaths[regno] = 0;
3380 }
3381 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3382 }
3383 }
3384
3385 SET_INSN_DELETED (incr);
3386 }
3387
3388 if (regno >= FIRST_PSEUDO_REGISTER)
3389 {
3390 /* Count an extra reference to the reg. When a reg is
3391 incremented, spilling it is worse, so we want to make
3392 that less likely. */
3393 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3394
3395 /* Count the increment as a setting of the register,
3396 even though it isn't a SET in rtl. */
3397 REG_N_SETS (regno)++;
3398 }
3399 }
3400
3401 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3402 reference. */
3403
3404 static void
3405 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3406 {
3407 rtx addr = XEXP (x, 0);
3408 HOST_WIDE_INT offset = 0;
3409 rtx set, y, incr, inc_val;
3410 int regno;
3411 int size = GET_MODE_SIZE (GET_MODE (x));
3412
3413 if (JUMP_P (insn))
3414 return;
3415
3416 /* Here we detect use of an index register which might be good for
3417 postincrement, postdecrement, preincrement, or predecrement. */
3418
3419 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3420 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3421
3422 if (!REG_P (addr))
3423 return;
3424
3425 regno = REGNO (addr);
3426
3427 /* Is the next use an increment that might make auto-increment? */
3428 incr = pbi->reg_next_use[regno];
3429 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3430 return;
3431 set = single_set (incr);
3432 if (set == 0 || GET_CODE (set) != SET)
3433 return;
3434 y = SET_SRC (set);
3435
3436 if (GET_CODE (y) != PLUS)
3437 return;
3438
3439 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3440 inc_val = XEXP (y, 1);
3441 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3442 inc_val = XEXP (y, 0);
3443 else
3444 return;
3445
3446 if (GET_CODE (inc_val) == CONST_INT)
3447 {
3448 if (HAVE_POST_INCREMENT
3449 && (INTVAL (inc_val) == size && offset == 0))
3450 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3451 incr, addr);
3452 else if (HAVE_POST_DECREMENT
3453 && (INTVAL (inc_val) == -size && offset == 0))
3454 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3455 incr, addr);
3456 else if (HAVE_PRE_INCREMENT
3457 && (INTVAL (inc_val) == size && offset == size))
3458 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3459 incr, addr);
3460 else if (HAVE_PRE_DECREMENT
3461 && (INTVAL (inc_val) == -size && offset == -size))
3462 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3463 incr, addr);
3464 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3465 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3466 gen_rtx_PLUS (Pmode,
3467 addr,
3468 inc_val)),
3469 insn, x, incr, addr);
3470 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3471 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3472 gen_rtx_PLUS (Pmode,
3473 addr,
3474 inc_val)),
3475 insn, x, incr, addr);
3476 }
3477 else if (REG_P (inc_val)
3478 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3479 NEXT_INSN (incr)))
3480
3481 {
3482 if (HAVE_POST_MODIFY_REG && offset == 0)
3483 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3484 gen_rtx_PLUS (Pmode,
3485 addr,
3486 inc_val)),
3487 insn, x, incr, addr);
3488 }
3489 }
3490
3491 #endif /* AUTO_INC_DEC */
3492 \f
3493 static void
3494 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3495 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3496 {
3497 unsigned int regno_first, regno_last, i;
3498 int some_was_live, some_was_dead, some_not_set;
3499
3500 regno_last = regno_first = REGNO (reg);
3501 if (regno_first < FIRST_PSEUDO_REGISTER)
3502 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3503
3504 /* Find out if any of this register is live after this instruction. */
3505 some_was_live = some_was_dead = 0;
3506 for (i = regno_first; i <= regno_last; ++i)
3507 {
3508 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3509 some_was_live |= needed_regno;
3510 some_was_dead |= ! needed_regno;
3511 }
3512
3513 /* Find out if any of the register was set this insn. */
3514 some_not_set = 0;
3515 for (i = regno_first; i <= regno_last; ++i)
3516 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3517
3518 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3519 {
3520 /* Record where each reg is used, so when the reg is set we know
3521 the next insn that uses it. */
3522 pbi->reg_next_use[regno_first] = insn;
3523 }
3524
3525 if (pbi->flags & PROP_REG_INFO)
3526 {
3527 if (regno_first < FIRST_PSEUDO_REGISTER)
3528 {
3529 /* If this is a register we are going to try to eliminate,
3530 don't mark it live here. If we are successful in
3531 eliminating it, it need not be live unless it is used for
3532 pseudos, in which case it will have been set live when it
3533 was allocated to the pseudos. If the register will not
3534 be eliminated, reload will set it live at that point.
3535
3536 Otherwise, record that this function uses this register. */
3537 /* ??? The PPC backend tries to "eliminate" on the pic
3538 register to itself. This should be fixed. In the mean
3539 time, hack around it. */
3540
3541 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3542 && (regno_first == FRAME_POINTER_REGNUM
3543 || regno_first == ARG_POINTER_REGNUM)))
3544 for (i = regno_first; i <= regno_last; ++i)
3545 regs_ever_live[i] = 1;
3546 }
3547 else
3548 {
3549 /* Keep track of which basic block each reg appears in. */
3550
3551 int blocknum = pbi->bb->index;
3552 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3553 REG_BASIC_BLOCK (regno_first) = blocknum;
3554 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3555 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3556
3557 /* Count (weighted) number of uses of each reg. */
3558 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3559 REG_N_REFS (regno_first)++;
3560 }
3561 for (i = regno_first; i <= regno_last; ++i)
3562 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3563 {
3564 gcc_assert (!reg_deaths[i]);
3565 reg_deaths[i] = pbi->insn_num;
3566 }
3567 }
3568
3569 /* Record and count the insns in which a reg dies. If it is used in
3570 this insn and was dead below the insn then it dies in this insn.
3571 If it was set in this insn, we do not make a REG_DEAD note;
3572 likewise if we already made such a note. */
3573 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3574 && some_was_dead
3575 && some_not_set)
3576 {
3577 /* Check for the case where the register dying partially
3578 overlaps the register set by this insn. */
3579 if (regno_first != regno_last)
3580 for (i = regno_first; i <= regno_last; ++i)
3581 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3582
3583 /* If none of the words in X is needed, make a REG_DEAD note.
3584 Otherwise, we must make partial REG_DEAD notes. */
3585 if (! some_was_live)
3586 {
3587 if ((pbi->flags & PROP_DEATH_NOTES)
3588 && ! find_regno_note (insn, REG_DEAD, regno_first))
3589 REG_NOTES (insn)
3590 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3591
3592 if (pbi->flags & PROP_REG_INFO)
3593 REG_N_DEATHS (regno_first)++;
3594 }
3595 else
3596 {
3597 /* Don't make a REG_DEAD note for a part of a register
3598 that is set in the insn. */
3599 for (i = regno_first; i <= regno_last; ++i)
3600 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3601 && ! dead_or_set_regno_p (insn, i))
3602 REG_NOTES (insn)
3603 = alloc_EXPR_LIST (REG_DEAD,
3604 regno_reg_rtx[i],
3605 REG_NOTES (insn));
3606 }
3607 }
3608
3609 /* Mark the register as being live. */
3610 for (i = regno_first; i <= regno_last; ++i)
3611 {
3612 #ifdef HAVE_conditional_execution
3613 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3614 #endif
3615
3616 SET_REGNO_REG_SET (pbi->reg_live, i);
3617
3618 #ifdef HAVE_conditional_execution
3619 /* If this is a conditional use, record that fact. If it is later
3620 conditionally set, we'll know to kill the register. */
3621 if (cond != NULL_RTX)
3622 {
3623 splay_tree_node node;
3624 struct reg_cond_life_info *rcli;
3625 rtx ncond;
3626
3627 if (this_was_live)
3628 {
3629 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3630 if (node == NULL)
3631 {
3632 /* The register was unconditionally live previously.
3633 No need to do anything. */
3634 }
3635 else
3636 {
3637 /* The register was conditionally live previously.
3638 Subtract the new life cond from the old death cond. */
3639 rcli = (struct reg_cond_life_info *) node->value;
3640 ncond = rcli->condition;
3641 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3642
3643 /* If the register is now unconditionally live,
3644 remove the entry in the splay_tree. */
3645 if (ncond == const0_rtx)
3646 splay_tree_remove (pbi->reg_cond_dead, i);
3647 else
3648 {
3649 rcli->condition = ncond;
3650 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3651 REGNO (XEXP (cond, 0)));
3652 }
3653 }
3654 }
3655 else
3656 {
3657 /* The register was not previously live at all. Record
3658 the condition under which it is still dead. */
3659 rcli = xmalloc (sizeof (*rcli));
3660 rcli->condition = not_reg_cond (cond);
3661 rcli->stores = const0_rtx;
3662 rcli->orig_condition = const0_rtx;
3663 splay_tree_insert (pbi->reg_cond_dead, i,
3664 (splay_tree_value) rcli);
3665
3666 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3667 }
3668 }
3669 else if (this_was_live)
3670 {
3671 /* The register may have been conditionally live previously, but
3672 is now unconditionally live. Remove it from the conditionally
3673 dead list, so that a conditional set won't cause us to think
3674 it dead. */
3675 splay_tree_remove (pbi->reg_cond_dead, i);
3676 }
3677 #endif
3678 }
3679 }
3680
3681 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3682 This is done assuming the registers needed from X are those that
3683 have 1-bits in PBI->REG_LIVE.
3684
3685 INSN is the containing instruction. If INSN is dead, this function
3686 is not called. */
3687
3688 static void
3689 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3690 {
3691 RTX_CODE code;
3692 int regno;
3693 int flags = pbi->flags;
3694
3695 retry:
3696 if (!x)
3697 return;
3698 code = GET_CODE (x);
3699 switch (code)
3700 {
3701 case LABEL_REF:
3702 case SYMBOL_REF:
3703 case CONST_INT:
3704 case CONST:
3705 case CONST_DOUBLE:
3706 case CONST_VECTOR:
3707 case PC:
3708 case ADDR_VEC:
3709 case ADDR_DIFF_VEC:
3710 return;
3711
3712 #ifdef HAVE_cc0
3713 case CC0:
3714 pbi->cc0_live = 1;
3715 return;
3716 #endif
3717
3718 case CLOBBER:
3719 /* If we are clobbering a MEM, mark any registers inside the address
3720 as being used. */
3721 if (MEM_P (XEXP (x, 0)))
3722 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3723 return;
3724
3725 case MEM:
3726 /* Don't bother watching stores to mems if this is not the
3727 final pass. We'll not be deleting dead stores this round. */
3728 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3729 {
3730 /* Invalidate the data for the last MEM stored, but only if MEM is
3731 something that can be stored into. */
3732 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3733 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3734 /* Needn't clear the memory set list. */
3735 ;
3736 else
3737 {
3738 rtx temp = pbi->mem_set_list;
3739 rtx prev = NULL_RTX;
3740 rtx next;
3741
3742 while (temp)
3743 {
3744 next = XEXP (temp, 1);
3745 if (anti_dependence (XEXP (temp, 0), x))
3746 {
3747 /* Splice temp out of the list. */
3748 if (prev)
3749 XEXP (prev, 1) = next;
3750 else
3751 pbi->mem_set_list = next;
3752 free_EXPR_LIST_node (temp);
3753 pbi->mem_set_list_len--;
3754 }
3755 else
3756 prev = temp;
3757 temp = next;
3758 }
3759 }
3760
3761 /* If the memory reference had embedded side effects (autoincrement
3762 address modes. Then we may need to kill some entries on the
3763 memory set list. */
3764 if (insn)
3765 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3766 }
3767
3768 #ifdef AUTO_INC_DEC
3769 if (flags & PROP_AUTOINC)
3770 find_auto_inc (pbi, x, insn);
3771 #endif
3772 break;
3773
3774 case SUBREG:
3775 #ifdef CANNOT_CHANGE_MODE_CLASS
3776 if (flags & PROP_REG_INFO)
3777 record_subregs_of_mode (x);
3778 #endif
3779
3780 /* While we're here, optimize this case. */
3781 x = SUBREG_REG (x);
3782 if (!REG_P (x))
3783 goto retry;
3784 /* Fall through. */
3785
3786 case REG:
3787 /* See a register other than being set => mark it as needed. */
3788 mark_used_reg (pbi, x, cond, insn);
3789 return;
3790
3791 case SET:
3792 {
3793 rtx testreg = SET_DEST (x);
3794 int mark_dest = 0;
3795
3796 /* If storing into MEM, don't show it as being used. But do
3797 show the address as being used. */
3798 if (MEM_P (testreg))
3799 {
3800 #ifdef AUTO_INC_DEC
3801 if (flags & PROP_AUTOINC)
3802 find_auto_inc (pbi, testreg, insn);
3803 #endif
3804 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3805 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3806 return;
3807 }
3808
3809 /* Storing in STRICT_LOW_PART is like storing in a reg
3810 in that this SET might be dead, so ignore it in TESTREG.
3811 but in some other ways it is like using the reg.
3812
3813 Storing in a SUBREG or a bit field is like storing the entire
3814 register in that if the register's value is not used
3815 then this SET is not needed. */
3816 while (GET_CODE (testreg) == STRICT_LOW_PART
3817 || GET_CODE (testreg) == ZERO_EXTRACT
3818 || GET_CODE (testreg) == SIGN_EXTRACT
3819 || GET_CODE (testreg) == SUBREG)
3820 {
3821 #ifdef CANNOT_CHANGE_MODE_CLASS
3822 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3823 record_subregs_of_mode (testreg);
3824 #endif
3825
3826 /* Modifying a single register in an alternate mode
3827 does not use any of the old value. But these other
3828 ways of storing in a register do use the old value. */
3829 if (GET_CODE (testreg) == SUBREG
3830 && !((REG_BYTES (SUBREG_REG (testreg))
3831 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3832 > (REG_BYTES (testreg)
3833 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3834 ;
3835 else
3836 mark_dest = 1;
3837
3838 testreg = XEXP (testreg, 0);
3839 }
3840
3841 /* If this is a store into a register or group of registers,
3842 recursively scan the value being stored. */
3843
3844 if ((GET_CODE (testreg) == PARALLEL
3845 && GET_MODE (testreg) == BLKmode)
3846 || (REG_P (testreg)
3847 && (regno = REGNO (testreg),
3848 ! (regno == FRAME_POINTER_REGNUM
3849 && (! reload_completed || frame_pointer_needed)))
3850 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3851 && ! (regno == HARD_FRAME_POINTER_REGNUM
3852 && (! reload_completed || frame_pointer_needed))
3853 #endif
3854 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3855 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3856 #endif
3857 ))
3858 {
3859 if (mark_dest)
3860 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3861 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3862 return;
3863 }
3864 }
3865 break;
3866
3867 case ASM_OPERANDS:
3868 case UNSPEC_VOLATILE:
3869 case TRAP_IF:
3870 case ASM_INPUT:
3871 {
3872 /* Traditional and volatile asm instructions must be considered to use
3873 and clobber all hard registers, all pseudo-registers and all of
3874 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3875
3876 Consider for instance a volatile asm that changes the fpu rounding
3877 mode. An insn should not be moved across this even if it only uses
3878 pseudo-regs because it might give an incorrectly rounded result.
3879
3880 ?!? Unfortunately, marking all hard registers as live causes massive
3881 problems for the register allocator and marking all pseudos as live
3882 creates mountains of uninitialized variable warnings.
3883
3884 So for now, just clear the memory set list and mark any regs
3885 we can find in ASM_OPERANDS as used. */
3886 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3887 {
3888 free_EXPR_LIST_list (&pbi->mem_set_list);
3889 pbi->mem_set_list_len = 0;
3890 }
3891
3892 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3893 We can not just fall through here since then we would be confused
3894 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3895 traditional asms unlike their normal usage. */
3896 if (code == ASM_OPERANDS)
3897 {
3898 int j;
3899
3900 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3901 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3902 }
3903 break;
3904 }
3905
3906 case COND_EXEC:
3907 gcc_assert (!cond);
3908
3909 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3910
3911 cond = COND_EXEC_TEST (x);
3912 x = COND_EXEC_CODE (x);
3913 goto retry;
3914
3915 default:
3916 break;
3917 }
3918
3919 /* Recursively scan the operands of this expression. */
3920
3921 {
3922 const char * const fmt = GET_RTX_FORMAT (code);
3923 int i;
3924
3925 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3926 {
3927 if (fmt[i] == 'e')
3928 {
3929 /* Tail recursive case: save a function call level. */
3930 if (i == 0)
3931 {
3932 x = XEXP (x, 0);
3933 goto retry;
3934 }
3935 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3936 }
3937 else if (fmt[i] == 'E')
3938 {
3939 int j;
3940 for (j = 0; j < XVECLEN (x, i); j++)
3941 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3942 }
3943 }
3944 }
3945 }
3946 \f
3947 #ifdef AUTO_INC_DEC
3948
3949 static int
3950 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
3951 {
3952 /* Find the next use of this reg. If in same basic block,
3953 make it do pre-increment or pre-decrement if appropriate. */
3954 rtx x = single_set (insn);
3955 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3956 * INTVAL (XEXP (SET_SRC (x), 1)));
3957 int regno = REGNO (SET_DEST (x));
3958 rtx y = pbi->reg_next_use[regno];
3959 if (y != 0
3960 && SET_DEST (x) != stack_pointer_rtx
3961 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3962 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3963 mode would be better. */
3964 && ! dead_or_set_p (y, SET_DEST (x))
3965 && try_pre_increment (y, SET_DEST (x), amount))
3966 {
3967 /* We have found a suitable auto-increment and already changed
3968 insn Y to do it. So flush this increment instruction. */
3969 propagate_block_delete_insn (insn);
3970
3971 /* Count a reference to this reg for the increment insn we are
3972 deleting. When a reg is incremented, spilling it is worse,
3973 so we want to make that less likely. */
3974 if (regno >= FIRST_PSEUDO_REGISTER)
3975 {
3976 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3977 REG_N_SETS (regno)++;
3978 }
3979
3980 /* Flush any remembered memories depending on the value of
3981 the incremented register. */
3982 invalidate_mems_from_set (pbi, SET_DEST (x));
3983
3984 return 1;
3985 }
3986 return 0;
3987 }
3988
3989 /* Try to change INSN so that it does pre-increment or pre-decrement
3990 addressing on register REG in order to add AMOUNT to REG.
3991 AMOUNT is negative for pre-decrement.
3992 Returns 1 if the change could be made.
3993 This checks all about the validity of the result of modifying INSN. */
3994
3995 static int
3996 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
3997 {
3998 rtx use;
3999
4000 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4001 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4002 int pre_ok = 0;
4003 /* Nonzero if we can try to make a post-increment or post-decrement.
4004 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4005 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4006 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4007 int post_ok = 0;
4008
4009 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4010 int do_post = 0;
4011
4012 /* From the sign of increment, see which possibilities are conceivable
4013 on this target machine. */
4014 if (HAVE_PRE_INCREMENT && amount > 0)
4015 pre_ok = 1;
4016 if (HAVE_POST_INCREMENT && amount > 0)
4017 post_ok = 1;
4018
4019 if (HAVE_PRE_DECREMENT && amount < 0)
4020 pre_ok = 1;
4021 if (HAVE_POST_DECREMENT && amount < 0)
4022 post_ok = 1;
4023
4024 if (! (pre_ok || post_ok))
4025 return 0;
4026
4027 /* It is not safe to add a side effect to a jump insn
4028 because if the incremented register is spilled and must be reloaded
4029 there would be no way to store the incremented value back in memory. */
4030
4031 if (JUMP_P (insn))
4032 return 0;
4033
4034 use = 0;
4035 if (pre_ok)
4036 use = find_use_as_address (PATTERN (insn), reg, 0);
4037 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4038 {
4039 use = find_use_as_address (PATTERN (insn), reg, -amount);
4040 do_post = 1;
4041 }
4042
4043 if (use == 0 || use == (rtx) (size_t) 1)
4044 return 0;
4045
4046 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4047 return 0;
4048
4049 /* See if this combination of instruction and addressing mode exists. */
4050 if (! validate_change (insn, &XEXP (use, 0),
4051 gen_rtx_fmt_e (amount > 0
4052 ? (do_post ? POST_INC : PRE_INC)
4053 : (do_post ? POST_DEC : PRE_DEC),
4054 Pmode, reg), 0))
4055 return 0;
4056
4057 /* Record that this insn now has an implicit side effect on X. */
4058 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4059 return 1;
4060 }
4061
4062 #endif /* AUTO_INC_DEC */
4063 \f
4064 /* Find the place in the rtx X where REG is used as a memory address.
4065 Return the MEM rtx that so uses it.
4066 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4067 (plus REG (const_int PLUSCONST)).
4068
4069 If such an address does not appear, return 0.
4070 If REG appears more than once, or is used other than in such an address,
4071 return (rtx) 1. */
4072
4073 rtx
4074 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4075 {
4076 enum rtx_code code = GET_CODE (x);
4077 const char * const fmt = GET_RTX_FORMAT (code);
4078 int i;
4079 rtx value = 0;
4080 rtx tem;
4081
4082 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4083 return x;
4084
4085 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4086 && XEXP (XEXP (x, 0), 0) == reg
4087 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4088 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4089 return x;
4090
4091 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4092 {
4093 /* If REG occurs inside a MEM used in a bit-field reference,
4094 that is unacceptable. */
4095 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4096 return (rtx) (size_t) 1;
4097 }
4098
4099 if (x == reg)
4100 return (rtx) (size_t) 1;
4101
4102 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4103 {
4104 if (fmt[i] == 'e')
4105 {
4106 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4107 if (value == 0)
4108 value = tem;
4109 else if (tem != 0)
4110 return (rtx) (size_t) 1;
4111 }
4112 else if (fmt[i] == 'E')
4113 {
4114 int j;
4115 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4116 {
4117 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4118 if (value == 0)
4119 value = tem;
4120 else if (tem != 0)
4121 return (rtx) (size_t) 1;
4122 }
4123 }
4124 }
4125
4126 return value;
4127 }
4128 \f
4129 /* Write information about registers and basic blocks into FILE.
4130 This is part of making a debugging dump. */
4131
4132 void
4133 dump_regset (regset r, FILE *outf)
4134 {
4135 int i;
4136 if (r == NULL)
4137 {
4138 fputs (" (nil)", outf);
4139 return;
4140 }
4141
4142 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4143 {
4144 fprintf (outf, " %d", i);
4145 if (i < FIRST_PSEUDO_REGISTER)
4146 fprintf (outf, " [%s]",
4147 reg_names[i]);
4148 });
4149 }
4150
4151 /* Print a human-readable representation of R on the standard error
4152 stream. This function is designed to be used from within the
4153 debugger. */
4154
4155 void
4156 debug_regset (regset r)
4157 {
4158 dump_regset (r, stderr);
4159 putc ('\n', stderr);
4160 }
4161
4162 /* Recompute register set/reference counts immediately prior to register
4163 allocation.
4164
4165 This avoids problems with set/reference counts changing to/from values
4166 which have special meanings to the register allocators.
4167
4168 Additionally, the reference counts are the primary component used by the
4169 register allocators to prioritize pseudos for allocation to hard regs.
4170 More accurate reference counts generally lead to better register allocation.
4171
4172 F is the first insn to be scanned.
4173
4174 LOOP_STEP denotes how much loop_depth should be incremented per
4175 loop nesting level in order to increase the ref count more for
4176 references in a loop.
4177
4178 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4179 possibly other information which is used by the register allocators. */
4180
4181 void
4182 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4183 {
4184 allocate_reg_life_data ();
4185 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4186 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4187 solve this update the DEATH_NOTES here. */
4188 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4189 }
4190
4191 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4192 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4193 of the number of registers that died. */
4194
4195 int
4196 count_or_remove_death_notes (sbitmap blocks, int kill)
4197 {
4198 int count = 0;
4199 int i;
4200 basic_block bb;
4201
4202 /* This used to be a loop over all the blocks with a membership test
4203 inside the loop. That can be amazingly expensive on a large CFG
4204 when only a small number of bits are set in BLOCKs (for example,
4205 the calls from the scheduler typically have very few bits set).
4206
4207 For extra credit, someone should convert BLOCKS to a bitmap rather
4208 than an sbitmap. */
4209 if (blocks)
4210 {
4211 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4212 {
4213 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4214 });
4215 }
4216 else
4217 {
4218 FOR_EACH_BB (bb)
4219 {
4220 count += count_or_remove_death_notes_bb (bb, kill);
4221 }
4222 }
4223
4224 return count;
4225 }
4226
4227 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4228 block BB. Returns a count of the number of registers that died. */
4229
4230 static int
4231 count_or_remove_death_notes_bb (basic_block bb, int kill)
4232 {
4233 int count = 0;
4234 rtx insn;
4235
4236 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4237 {
4238 if (INSN_P (insn))
4239 {
4240 rtx *pprev = &REG_NOTES (insn);
4241 rtx link = *pprev;
4242
4243 while (link)
4244 {
4245 switch (REG_NOTE_KIND (link))
4246 {
4247 case REG_DEAD:
4248 if (REG_P (XEXP (link, 0)))
4249 {
4250 rtx reg = XEXP (link, 0);
4251 int n;
4252
4253 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4254 n = 1;
4255 else
4256 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4257 count += n;
4258 }
4259
4260 /* Fall through. */
4261
4262 case REG_UNUSED:
4263 if (kill)
4264 {
4265 rtx next = XEXP (link, 1);
4266 free_EXPR_LIST_node (link);
4267 *pprev = link = next;
4268 break;
4269 }
4270 /* Fall through. */
4271
4272 default:
4273 pprev = &XEXP (link, 1);
4274 link = *pprev;
4275 break;
4276 }
4277 }
4278 }
4279
4280 if (insn == BB_END (bb))
4281 break;
4282 }
4283
4284 return count;
4285 }
4286
4287 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4288 if blocks is NULL. */
4289
4290 static void
4291 clear_log_links (sbitmap blocks)
4292 {
4293 rtx insn;
4294 int i;
4295
4296 if (!blocks)
4297 {
4298 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4299 if (INSN_P (insn))
4300 free_INSN_LIST_list (&LOG_LINKS (insn));
4301 }
4302 else
4303 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4304 {
4305 basic_block bb = BASIC_BLOCK (i);
4306
4307 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4308 insn = NEXT_INSN (insn))
4309 if (INSN_P (insn))
4310 free_INSN_LIST_list (&LOG_LINKS (insn));
4311 });
4312 }
4313
4314 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4315 correspond to the hard registers, if any, set in that map. This
4316 could be done far more efficiently by having all sorts of special-cases
4317 with moving single words, but probably isn't worth the trouble. */
4318
4319 void
4320 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4321 {
4322 int i;
4323 bitmap_iterator bi;
4324
4325 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4326 {
4327 if (i >= FIRST_PSEUDO_REGISTER)
4328 return;
4329 SET_HARD_REG_BIT (*to, i);
4330 }
4331 }