Makefile.in: Add function.h to BASIC_BLOCK_H.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
164 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
165 #endif
166 #endif
167
168 /* This is the maximum number of times we process any given block if the
169 latest loop depth count is smaller than this number. Only used for the
170 failure strategy to avoid infinite loops in calculate_global_regs_live. */
171 #define MAX_LIVENESS_ROUNDS 20
172
173 /* Nonzero if the second flow pass has completed. */
174 int flow2_completed;
175
176 /* Maximum register number used in this function, plus one. */
177
178 int max_regno;
179
180 /* Indexed by n, giving various register information */
181
182 varray_type reg_n_info;
183
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
186
187 static regset regs_live_at_setjmp;
188
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
194
195 /* Set of registers that may be eliminable. These are handled specially
196 in updating regs_ever_live. */
197
198 static HARD_REG_SET elim_reg_set;
199
200 /* Holds information for tracking conditional register life information. */
201 struct reg_cond_life_info
202 {
203 /* A boolean expression of conditions under which a register is dead. */
204 rtx condition;
205 /* Conditions under which a register is dead at the basic block end. */
206 rtx orig_condition;
207
208 /* A boolean expression of conditions under which a register has been
209 stored into. */
210 rtx stores;
211
212 /* ??? Could store mask of bytes that are dead, so that we could finally
213 track lifetimes of multi-word registers accessed via subregs. */
214 };
215
216 /* For use in communicating between propagate_block and its subroutines.
217 Holds all information needed to compute life and def-use information. */
218
219 struct propagate_block_info
220 {
221 /* The basic block we're considering. */
222 basic_block bb;
223
224 /* Bit N is set if register N is conditionally or unconditionally live. */
225 regset reg_live;
226
227 /* Bit N is set if register N is set this insn. */
228 regset new_set;
229
230 /* Element N is the next insn that uses (hard or pseudo) register N
231 within the current basic block; or zero, if there is no such insn. */
232 rtx *reg_next_use;
233
234 /* Contains a list of all the MEMs we are tracking for dead store
235 elimination. */
236 rtx mem_set_list;
237
238 /* If non-null, record the set of registers set unconditionally in the
239 basic block. */
240 regset local_set;
241
242 /* If non-null, record the set of registers set conditionally in the
243 basic block. */
244 regset cond_local_set;
245
246 #ifdef HAVE_conditional_execution
247 /* Indexed by register number, holds a reg_cond_life_info for each
248 register that is not unconditionally live or dead. */
249 splay_tree reg_cond_dead;
250
251 /* Bit N is set if register N is in an expression in reg_cond_dead. */
252 regset reg_cond_reg;
253 #endif
254
255 /* The length of mem_set_list. */
256 int mem_set_list_len;
257
258 /* Nonzero if the value of CC0 is live. */
259 int cc0_live;
260
261 /* Flags controlling the set of information propagate_block collects. */
262 int flags;
263 /* Index of instruction being processed. */
264 int insn_num;
265 };
266
267 /* Number of dead insns removed. */
268 static int ndead;
269
270 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
271 where given register died. When the register is marked alive, we use the
272 information to compute amount of instructions life range cross.
273 (remember, we are walking backward). This can be computed as current
274 pbi->insn_num - reg_deaths[regno].
275 At the end of processing each basic block, the remaining live registers
276 are inspected and live ranges are increased same way so liverange of global
277 registers are computed correctly.
278
279 The array is maintained clear for dead registers, so it can be safely reused
280 for next basic block without expensive memset of the whole array after
281 reseting pbi->insn_num to 0. */
282
283 static int *reg_deaths;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 (rtx *, void *);
291 static void verify_wide_reg (int, basic_block);
292 static void verify_local_live_at_start (regset, basic_block);
293 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
294 static void notice_stack_pointer_modification (void);
295 static void mark_reg (rtx, void *);
296 static void mark_regs_live_at_end (regset);
297 static void calculate_global_regs_live (sbitmap, sbitmap, int);
298 static void propagate_block_delete_insn (rtx);
299 static rtx propagate_block_delete_libcall (rtx, rtx);
300 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
301 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
302 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
303 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
304 rtx, rtx, int);
305 static int find_regno_partial (rtx *, void *);
306
307 #ifdef HAVE_conditional_execution
308 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
309 static void free_reg_cond_life_info (splay_tree_value);
310 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
311 static void flush_reg_cond_reg (struct propagate_block_info *, int);
312 static rtx elim_reg_cond (rtx, unsigned int);
313 static rtx ior_reg_cond (rtx, rtx, int);
314 static rtx not_reg_cond (rtx);
315 static rtx and_reg_cond (rtx, rtx, int);
316 #endif
317 #ifdef AUTO_INC_DEC
318 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
319 rtx, rtx);
320 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
321 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
322 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
323 #endif
324 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
325 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
326 void debug_flow_info (void);
327 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
328 static int invalidate_mems_from_autoinc (rtx *, void *);
329 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
330 static void clear_log_links (sbitmap);
331 static int count_or_remove_death_notes_bb (basic_block, int);
332 static void allocate_bb_life_data (void);
333 \f
334 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
335 note associated with the BLOCK. */
336
337 rtx
338 first_insn_after_basic_block_note (basic_block block)
339 {
340 rtx insn;
341
342 /* Get the first instruction in the block. */
343 insn = BB_HEAD (block);
344
345 if (insn == NULL_RTX)
346 return NULL_RTX;
347 if (LABEL_P (insn))
348 insn = NEXT_INSN (insn);
349 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
350
351 return NEXT_INSN (insn);
352 }
353 \f
354 /* Perform data flow analysis for the whole control flow graph.
355 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
356
357 void
358 life_analysis (FILE *file, int flags)
359 {
360 #ifdef ELIMINABLE_REGS
361 int i;
362 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
363 #endif
364
365 /* Record which registers will be eliminated. We use this in
366 mark_used_regs. */
367
368 CLEAR_HARD_REG_SET (elim_reg_set);
369
370 #ifdef ELIMINABLE_REGS
371 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
372 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
373 #else
374 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
375 #endif
376
377
378 #ifdef CANNOT_CHANGE_MODE_CLASS
379 if (flags & PROP_REG_INFO)
380 init_subregs_of_mode ();
381 #endif
382
383 if (! optimize)
384 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
385
386 /* The post-reload life analysis have (on a global basis) the same
387 registers live as was computed by reload itself. elimination
388 Otherwise offsets and such may be incorrect.
389
390 Reload will make some registers as live even though they do not
391 appear in the rtl.
392
393 We don't want to create new auto-incs after reload, since they
394 are unlikely to be useful and can cause problems with shared
395 stack slots. */
396 if (reload_completed)
397 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
398
399 /* We want alias analysis information for local dead store elimination. */
400 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
401 init_alias_analysis ();
402
403 /* Always remove no-op moves. Do this before other processing so
404 that we don't have to keep re-scanning them. */
405 delete_noop_moves ();
406
407 /* Some targets can emit simpler epilogues if they know that sp was
408 not ever modified during the function. After reload, of course,
409 we've already emitted the epilogue so there's no sense searching. */
410 if (! reload_completed)
411 notice_stack_pointer_modification ();
412
413 /* Allocate and zero out data structures that will record the
414 data from lifetime analysis. */
415 allocate_reg_life_data ();
416 allocate_bb_life_data ();
417
418 /* Find the set of registers live on function exit. */
419 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
420
421 /* "Update" life info from zero. It'd be nice to begin the
422 relaxation with just the exit and noreturn blocks, but that set
423 is not immediately handy. */
424
425 if (flags & PROP_REG_INFO)
426 {
427 memset (regs_ever_live, 0, sizeof (regs_ever_live));
428 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
429 }
430 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
431 if (reg_deaths)
432 {
433 free (reg_deaths);
434 reg_deaths = NULL;
435 }
436
437 /* Clean up. */
438 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
439 end_alias_analysis ();
440
441 if (file)
442 dump_flow_info (file);
443
444 /* Removing dead insns should have made jumptables really dead. */
445 delete_dead_jumptables ();
446 }
447
448 /* A subroutine of verify_wide_reg, called through for_each_rtx.
449 Search for REGNO. If found, return 2 if it is not wider than
450 word_mode. */
451
452 static int
453 verify_wide_reg_1 (rtx *px, void *pregno)
454 {
455 rtx x = *px;
456 unsigned int regno = *(int *) pregno;
457
458 if (REG_P (x) && REGNO (x) == regno)
459 {
460 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
461 return 2;
462 return 1;
463 }
464 return 0;
465 }
466
467 /* A subroutine of verify_local_live_at_start. Search through insns
468 of BB looking for register REGNO. */
469
470 static void
471 verify_wide_reg (int regno, basic_block bb)
472 {
473 rtx head = BB_HEAD (bb), end = BB_END (bb);
474
475 while (1)
476 {
477 if (INSN_P (head))
478 {
479 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
480 if (r == 1)
481 return;
482 if (r == 2)
483 break;
484 }
485 if (head == end)
486 break;
487 head = NEXT_INSN (head);
488 }
489 if (dump_file)
490 {
491 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
492 dump_bb (bb, dump_file, 0);
493 }
494 fatal_error ("internal consistency failure");
495 }
496
497 /* A subroutine of update_life_info. Verify that there are no untoward
498 changes in live_at_start during a local update. */
499
500 static void
501 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
502 {
503 if (reload_completed)
504 {
505 /* After reload, there are no pseudos, nor subregs of multi-word
506 registers. The regsets should exactly match. */
507 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
508 {
509 if (dump_file)
510 {
511 fprintf (dump_file,
512 "live_at_start mismatch in bb %d, aborting\nNew:\n",
513 bb->index);
514 debug_bitmap_file (dump_file, new_live_at_start);
515 fputs ("Old:\n", dump_file);
516 dump_bb (bb, dump_file, 0);
517 }
518 fatal_error ("internal consistency failure");
519 }
520 }
521 else
522 {
523 unsigned i;
524 reg_set_iterator rsi;
525
526 /* Find the set of changed registers. */
527 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
528
529 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
530 {
531 /* No registers should die. */
532 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
533 {
534 if (dump_file)
535 {
536 fprintf (dump_file,
537 "Register %d died unexpectedly.\n", i);
538 dump_bb (bb, dump_file, 0);
539 }
540 fatal_error ("internal consistency failure");
541 }
542 /* Verify that the now-live register is wider than word_mode. */
543 verify_wide_reg (i, bb);
544 }
545 }
546 }
547
548 /* Updates life information starting with the basic blocks set in BLOCKS.
549 If BLOCKS is null, consider it to be the universal set.
550
551 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
552 we are only expecting local modifications to basic blocks. If we find
553 extra registers live at the beginning of a block, then we either killed
554 useful data, or we have a broken split that wants data not provided.
555 If we find registers removed from live_at_start, that means we have
556 a broken peephole that is killing a register it shouldn't.
557
558 ??? This is not true in one situation -- when a pre-reload splitter
559 generates subregs of a multi-word pseudo, current life analysis will
560 lose the kill. So we _can_ have a pseudo go live. How irritating.
561
562 It is also not true when a peephole decides that it doesn't need one
563 or more of the inputs.
564
565 Including PROP_REG_INFO does not properly refresh regs_ever_live
566 unless the caller resets it to zero. */
567
568 int
569 update_life_info (sbitmap blocks, enum update_life_extent extent,
570 int prop_flags)
571 {
572 regset tmp;
573 unsigned i;
574 int stabilized_prop_flags = prop_flags;
575 basic_block bb;
576
577 tmp = ALLOC_REG_SET (&reg_obstack);
578 ndead = 0;
579
580 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
581 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
582
583 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
584 ? TV_LIFE_UPDATE : TV_LIFE);
585
586 /* Changes to the CFG are only allowed when
587 doing a global update for the entire CFG. */
588 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
589 || (extent != UPDATE_LIFE_LOCAL && !blocks));
590
591 /* For a global update, we go through the relaxation process again. */
592 if (extent != UPDATE_LIFE_LOCAL)
593 {
594 for ( ; ; )
595 {
596 int changed = 0;
597
598 calculate_global_regs_live (blocks, blocks,
599 prop_flags & (PROP_SCAN_DEAD_CODE
600 | PROP_SCAN_DEAD_STORES
601 | PROP_ALLOW_CFG_CHANGES));
602
603 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
605 break;
606
607 /* Removing dead code may allow the CFG to be simplified which
608 in turn may allow for further dead code detection / removal. */
609 FOR_EACH_BB_REVERSE (bb)
610 {
611 COPY_REG_SET (tmp, bb->global_live_at_end);
612 changed |= propagate_block (bb, tmp, NULL, NULL,
613 prop_flags & (PROP_SCAN_DEAD_CODE
614 | PROP_SCAN_DEAD_STORES
615 | PROP_KILL_DEAD_CODE));
616 }
617
618 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
619 subsequent propagate_block calls, since removing or acting as
620 removing dead code can affect global register liveness, which
621 is supposed to be finalized for this call after this loop. */
622 stabilized_prop_flags
623 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
624 | PROP_KILL_DEAD_CODE);
625
626 if (! changed)
627 break;
628
629 /* We repeat regardless of what cleanup_cfg says. If there were
630 instructions deleted above, that might have been only a
631 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
632 Further improvement may be possible. */
633 cleanup_cfg (CLEANUP_EXPENSIVE);
634
635 /* Zap the life information from the last round. If we don't
636 do this, we can wind up with registers that no longer appear
637 in the code being marked live at entry. */
638 FOR_EACH_BB (bb)
639 {
640 CLEAR_REG_SET (bb->global_live_at_start);
641 CLEAR_REG_SET (bb->global_live_at_end);
642 }
643 }
644
645 /* If asked, remove notes from the blocks we'll update. */
646 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
647 count_or_remove_death_notes (blocks, 1);
648 }
649
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
653
654 if (blocks)
655 {
656 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
657 {
658 bb = BASIC_BLOCK (i);
659
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
662
663 if (extent == UPDATE_LIFE_LOCAL)
664 verify_local_live_at_start (tmp, bb);
665 });
666 }
667 else
668 {
669 FOR_EACH_BB_REVERSE (bb)
670 {
671 COPY_REG_SET (tmp, bb->global_live_at_end);
672
673 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
674
675 if (extent == UPDATE_LIFE_LOCAL)
676 verify_local_live_at_start (tmp, bb);
677 }
678 }
679
680 FREE_REG_SET (tmp);
681
682 if (prop_flags & PROP_REG_INFO)
683 {
684 reg_set_iterator rsi;
685
686 /* The only pseudos that are live at the beginning of the function
687 are those that were not set anywhere in the function. local-alloc
688 doesn't know how to handle these correctly, so mark them as not
689 local to any one basic block. */
690 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
691 FIRST_PSEUDO_REGISTER, i, rsi)
692 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
693
694 /* We have a problem with any pseudoreg that lives across the setjmp.
695 ANSI says that if a user variable does not change in value between
696 the setjmp and the longjmp, then the longjmp preserves it. This
697 includes longjmp from a place where the pseudo appears dead.
698 (In principle, the value still exists if it is in scope.)
699 If the pseudo goes in a hard reg, some other value may occupy
700 that hard reg where this pseudo is dead, thus clobbering the pseudo.
701 Conclusion: such a pseudo must not go in a hard reg. */
702 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
703 FIRST_PSEUDO_REGISTER, i, rsi)
704 {
705 if (regno_reg_rtx[i] != 0)
706 {
707 REG_LIVE_LENGTH (i) = -1;
708 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
709 }
710 }
711 }
712 if (reg_deaths)
713 {
714 free (reg_deaths);
715 reg_deaths = NULL;
716 }
717 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
718 ? TV_LIFE_UPDATE : TV_LIFE);
719 if (ndead && dump_file)
720 fprintf (dump_file, "deleted %i dead insns\n", ndead);
721 return ndead;
722 }
723
724 /* Update life information in all blocks where BB_DIRTY is set. */
725
726 int
727 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
728 {
729 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
730 int n = 0;
731 basic_block bb;
732 int retval = 0;
733
734 sbitmap_zero (update_life_blocks);
735 FOR_EACH_BB (bb)
736 {
737 if (bb->flags & BB_DIRTY)
738 {
739 SET_BIT (update_life_blocks, bb->index);
740 n++;
741 }
742 }
743
744 if (n)
745 retval = update_life_info (update_life_blocks, extent, prop_flags);
746
747 sbitmap_free (update_life_blocks);
748 return retval;
749 }
750
751 /* Free the variables allocated by find_basic_blocks. */
752
753 void
754 free_basic_block_vars (void)
755 {
756 if (basic_block_info)
757 {
758 clear_edges ();
759 basic_block_info = NULL;
760 }
761 n_basic_blocks = 0;
762 last_basic_block = 0;
763 n_edges = 0;
764
765 label_to_block_map = NULL;
766
767 ENTRY_BLOCK_PTR->aux = NULL;
768 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
769 EXIT_BLOCK_PTR->aux = NULL;
770 EXIT_BLOCK_PTR->global_live_at_start = NULL;
771 }
772
773 /* Delete any insns that copy a register to itself. */
774
775 int
776 delete_noop_moves (void)
777 {
778 rtx insn, next;
779 basic_block bb;
780 int nnoops = 0;
781
782 FOR_EACH_BB (bb)
783 {
784 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
785 {
786 next = NEXT_INSN (insn);
787 if (INSN_P (insn) && noop_move_p (insn))
788 {
789 rtx note;
790
791 /* If we're about to remove the first insn of a libcall
792 then move the libcall note to the next real insn and
793 update the retval note. */
794 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
795 && XEXP (note, 0) != insn)
796 {
797 rtx new_libcall_insn = next_real_insn (insn);
798 rtx retval_note = find_reg_note (XEXP (note, 0),
799 REG_RETVAL, NULL_RTX);
800 REG_NOTES (new_libcall_insn)
801 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
802 REG_NOTES (new_libcall_insn));
803 XEXP (retval_note, 0) = new_libcall_insn;
804 }
805
806 delete_insn_and_edges (insn);
807 nnoops++;
808 }
809 }
810 }
811 if (nnoops && dump_file)
812 fprintf (dump_file, "deleted %i noop moves", nnoops);
813 return nnoops;
814 }
815
816 /* Delete any jump tables never referenced. We can't delete them at the
817 time of removing tablejump insn as they are referenced by the preceding
818 insns computing the destination, so we delay deleting and garbagecollect
819 them once life information is computed. */
820 void
821 delete_dead_jumptables (void)
822 {
823 basic_block bb;
824
825 /* A dead jump table does not belong to any basic block. Scan insns
826 between two adjacent basic blocks. */
827 FOR_EACH_BB (bb)
828 {
829 rtx insn, next;
830
831 for (insn = NEXT_INSN (BB_END (bb));
832 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
833 insn = next)
834 {
835 next = NEXT_INSN (insn);
836 if (LABEL_P (insn)
837 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
838 && JUMP_P (next)
839 && (GET_CODE (PATTERN (next)) == ADDR_VEC
840 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
841 {
842 rtx label = insn, jump = next;
843
844 if (dump_file)
845 fprintf (dump_file, "Dead jumptable %i removed\n",
846 INSN_UID (insn));
847
848 next = NEXT_INSN (next);
849 delete_insn (jump);
850 delete_insn (label);
851 }
852 }
853 }
854 }
855
856 /* Determine if the stack pointer is constant over the life of the function.
857 Only useful before prologues have been emitted. */
858
859 static void
860 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
861 void *data ATTRIBUTE_UNUSED)
862 {
863 if (x == stack_pointer_rtx
864 /* The stack pointer is only modified indirectly as the result
865 of a push until later in flow. See the comments in rtl.texi
866 regarding Embedded Side-Effects on Addresses. */
867 || (MEM_P (x)
868 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
869 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
870 current_function_sp_is_unchanging = 0;
871 }
872
873 static void
874 notice_stack_pointer_modification (void)
875 {
876 basic_block bb;
877 rtx insn;
878
879 /* Assume that the stack pointer is unchanging if alloca hasn't
880 been used. */
881 current_function_sp_is_unchanging = !current_function_calls_alloca;
882 if (! current_function_sp_is_unchanging)
883 return;
884
885 FOR_EACH_BB (bb)
886 FOR_BB_INSNS (bb, insn)
887 {
888 if (INSN_P (insn))
889 {
890 /* Check if insn modifies the stack pointer. */
891 note_stores (PATTERN (insn),
892 notice_stack_pointer_modification_1,
893 NULL);
894 if (! current_function_sp_is_unchanging)
895 return;
896 }
897 }
898 }
899
900 /* Mark a register in SET. Hard registers in large modes get all
901 of their component registers set as well. */
902
903 static void
904 mark_reg (rtx reg, void *xset)
905 {
906 regset set = (regset) xset;
907 int regno = REGNO (reg);
908
909 gcc_assert (GET_MODE (reg) != BLKmode);
910
911 SET_REGNO_REG_SET (set, regno);
912 if (regno < FIRST_PSEUDO_REGISTER)
913 {
914 int n = hard_regno_nregs[regno][GET_MODE (reg)];
915 while (--n > 0)
916 SET_REGNO_REG_SET (set, regno + n);
917 }
918 }
919
920 /* Mark those regs which are needed at the end of the function as live
921 at the end of the last basic block. */
922
923 static void
924 mark_regs_live_at_end (regset set)
925 {
926 unsigned int i;
927
928 /* If exiting needs the right stack value, consider the stack pointer
929 live at the end of the function. */
930 if ((HAVE_epilogue && epilogue_completed)
931 || ! EXIT_IGNORE_STACK
932 || (! FRAME_POINTER_REQUIRED
933 && ! current_function_calls_alloca
934 && flag_omit_frame_pointer)
935 || current_function_sp_is_unchanging)
936 {
937 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
938 }
939
940 /* Mark the frame pointer if needed at the end of the function. If
941 we end up eliminating it, it will be removed from the live list
942 of each basic block by reload. */
943
944 if (! reload_completed || frame_pointer_needed)
945 {
946 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
947 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
948 /* If they are different, also mark the hard frame pointer as live. */
949 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
950 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
951 #endif
952 }
953
954 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
955 /* Many architectures have a GP register even without flag_pic.
956 Assume the pic register is not in use, or will be handled by
957 other means, if it is not fixed. */
958 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
959 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
960 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
961 #endif
962
963 /* Mark all global registers, and all registers used by the epilogue
964 as being live at the end of the function since they may be
965 referenced by our caller. */
966 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
967 if (global_regs[i] || EPILOGUE_USES (i))
968 SET_REGNO_REG_SET (set, i);
969
970 if (HAVE_epilogue && epilogue_completed)
971 {
972 /* Mark all call-saved registers that we actually used. */
973 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
974 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
975 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
976 SET_REGNO_REG_SET (set, i);
977 }
978
979 #ifdef EH_RETURN_DATA_REGNO
980 /* Mark the registers that will contain data for the handler. */
981 if (reload_completed && current_function_calls_eh_return)
982 for (i = 0; ; ++i)
983 {
984 unsigned regno = EH_RETURN_DATA_REGNO(i);
985 if (regno == INVALID_REGNUM)
986 break;
987 SET_REGNO_REG_SET (set, regno);
988 }
989 #endif
990 #ifdef EH_RETURN_STACKADJ_RTX
991 if ((! HAVE_epilogue || ! epilogue_completed)
992 && current_function_calls_eh_return)
993 {
994 rtx tmp = EH_RETURN_STACKADJ_RTX;
995 if (tmp && REG_P (tmp))
996 mark_reg (tmp, set);
997 }
998 #endif
999 #ifdef EH_RETURN_HANDLER_RTX
1000 if ((! HAVE_epilogue || ! epilogue_completed)
1001 && current_function_calls_eh_return)
1002 {
1003 rtx tmp = EH_RETURN_HANDLER_RTX;
1004 if (tmp && REG_P (tmp))
1005 mark_reg (tmp, set);
1006 }
1007 #endif
1008
1009 /* Mark function return value. */
1010 diddle_return_value (mark_reg, set);
1011 }
1012
1013 /* Propagate global life info around the graph of basic blocks. Begin
1014 considering blocks with their corresponding bit set in BLOCKS_IN.
1015 If BLOCKS_IN is null, consider it the universal set.
1016
1017 BLOCKS_OUT is set for every block that was changed. */
1018
1019 static void
1020 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1021 {
1022 basic_block *queue, *qhead, *qtail, *qend, bb;
1023 regset tmp, new_live_at_end, invalidated_by_call;
1024 regset registers_made_dead;
1025 bool failure_strategy_required = false;
1026 int *block_accesses;
1027
1028 /* The registers that are modified within this in block. */
1029 regset *local_sets;
1030
1031 /* The registers that are conditionally modified within this block.
1032 In other words, regs that are set only as part of a COND_EXEC. */
1033 regset *cond_local_sets;
1034
1035 int i;
1036
1037 /* Some passes used to forget clear aux field of basic block causing
1038 sick behavior here. */
1039 #ifdef ENABLE_CHECKING
1040 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1041 gcc_assert (!bb->aux);
1042 #endif
1043
1044 tmp = ALLOC_REG_SET (&reg_obstack);
1045 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1046 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1047 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1048
1049 /* Inconveniently, this is only readily available in hard reg set form. */
1050 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1051 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1052 SET_REGNO_REG_SET (invalidated_by_call, i);
1053
1054 /* Allocate space for the sets of local properties. */
1055 local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1056 sizeof (regset));
1057 cond_local_sets = xcalloc (last_basic_block - (INVALID_BLOCK + 1),
1058 sizeof (regset));
1059
1060 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1061 because the `head == tail' style test for an empty queue doesn't
1062 work with a full queue. */
1063 queue = xmalloc ((n_basic_blocks - (INVALID_BLOCK + 1)) * sizeof (*queue));
1064 qtail = queue;
1065 qhead = qend = queue + n_basic_blocks - (INVALID_BLOCK + 1);
1066
1067 /* Queue the blocks set in the initial mask. Do this in reverse block
1068 number order so that we are more likely for the first round to do
1069 useful work. We use AUX non-null to flag that the block is queued. */
1070 if (blocks_in)
1071 {
1072 FOR_EACH_BB (bb)
1073 if (TEST_BIT (blocks_in, bb->index))
1074 {
1075 *--qhead = bb;
1076 bb->aux = bb;
1077 }
1078 }
1079 else
1080 {
1081 FOR_EACH_BB (bb)
1082 {
1083 *--qhead = bb;
1084 bb->aux = bb;
1085 }
1086 }
1087
1088 block_accesses = xcalloc (last_basic_block, sizeof (int));
1089
1090 /* We clean aux when we remove the initially-enqueued bbs, but we
1091 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1092 unconditionally. */
1093 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1094
1095 if (blocks_out)
1096 sbitmap_zero (blocks_out);
1097
1098 /* We work through the queue until there are no more blocks. What
1099 is live at the end of this block is precisely the union of what
1100 is live at the beginning of all its successors. So, we set its
1101 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1102 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1103 this block by walking through the instructions in this block in
1104 reverse order and updating as we go. If that changed
1105 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1106 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1107
1108 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1109 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1110 must either be live at the end of the block, or used within the
1111 block. In the latter case, it will certainly never disappear
1112 from GLOBAL_LIVE_AT_START. In the former case, the register
1113 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1114 for one of the successor blocks. By induction, that cannot
1115 occur.
1116
1117 ??? This reasoning doesn't work if we start from non-empty initial
1118 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1119 1) Updating may not terminate (endless oscillation).
1120 2) Even if it does (and it usually does), the resulting information
1121 may be inaccurate. Consider for example the following case:
1122
1123 a = ...;
1124 while (...) {...} -- 'a' not mentioned at all
1125 ... = a;
1126
1127 If the use of 'a' is deleted between two calculations of liveness
1128 information and the initial sets are not cleared, the information
1129 about a's liveness will get stuck inside the loop and the set will
1130 appear not to be dead.
1131
1132 We do not attempt to solve 2) -- the information is conservatively
1133 correct (i.e. we never claim that something live is dead) and the
1134 amount of optimization opportunities missed due to this problem is
1135 not significant.
1136
1137 1) is more serious. In order to fix it, we monitor the number of times
1138 each block is processed. Once one of the blocks has been processed more
1139 times than the maximum number of rounds, we use the following strategy:
1140 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1141 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1142 add the blocks with changed sets into the queue. Thus we are guaranteed
1143 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1144 in which case the original reasoning above is valid), but in general we
1145 only fix up a few offending registers.
1146
1147 The maximum number of rounds for computing liveness is the largest of
1148 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1149
1150 while (qhead != qtail)
1151 {
1152 int rescan, changed;
1153 basic_block bb;
1154 edge e;
1155 edge_iterator ei;
1156
1157 bb = *qhead++;
1158 if (qhead == qend)
1159 qhead = queue;
1160 bb->aux = NULL;
1161
1162 /* Should we start using the failure strategy? */
1163 if (bb != ENTRY_BLOCK_PTR)
1164 {
1165 int max_liveness_rounds =
1166 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1167
1168 block_accesses[bb->index]++;
1169 if (block_accesses[bb->index] > max_liveness_rounds)
1170 failure_strategy_required = true;
1171 }
1172
1173 /* Begin by propagating live_at_start from the successor blocks. */
1174 CLEAR_REG_SET (new_live_at_end);
1175
1176 if (EDGE_COUNT (bb->succs) > 0)
1177 FOR_EACH_EDGE (e, ei, bb->succs)
1178 {
1179 basic_block sb = e->dest;
1180
1181 /* Call-clobbered registers die across exception and
1182 call edges. */
1183 /* ??? Abnormal call edges ignored for the moment, as this gets
1184 confused by sibling call edges, which crashes reg-stack. */
1185 if (e->flags & EDGE_EH)
1186 bitmap_ior_and_compl_into (new_live_at_end,
1187 sb->global_live_at_start,
1188 invalidated_by_call);
1189 else
1190 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1191
1192 /* If a target saves one register in another (instead of on
1193 the stack) the save register will need to be live for EH. */
1194 if (e->flags & EDGE_EH)
1195 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1196 if (EH_USES (i))
1197 SET_REGNO_REG_SET (new_live_at_end, i);
1198 }
1199 else
1200 {
1201 /* This might be a noreturn function that throws. And
1202 even if it isn't, getting the unwind info right helps
1203 debugging. */
1204 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1205 if (EH_USES (i))
1206 SET_REGNO_REG_SET (new_live_at_end, i);
1207 }
1208
1209 /* The all-important stack pointer must always be live. */
1210 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1211
1212 /* Before reload, there are a few registers that must be forced
1213 live everywhere -- which might not already be the case for
1214 blocks within infinite loops. */
1215 if (! reload_completed)
1216 {
1217 /* Any reference to any pseudo before reload is a potential
1218 reference of the frame pointer. */
1219 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1220
1221 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1222 /* Pseudos with argument area equivalences may require
1223 reloading via the argument pointer. */
1224 if (fixed_regs[ARG_POINTER_REGNUM])
1225 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1226 #endif
1227
1228 /* Any constant, or pseudo with constant equivalences, may
1229 require reloading from memory using the pic register. */
1230 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1231 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1232 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1233 }
1234
1235 if (bb == ENTRY_BLOCK_PTR)
1236 {
1237 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1238 continue;
1239 }
1240
1241 /* On our first pass through this block, we'll go ahead and continue.
1242 Recognize first pass by checking if local_set is NULL for this
1243 basic block. On subsequent passes, we get to skip out early if
1244 live_at_end wouldn't have changed. */
1245
1246 if (local_sets[bb->index - (INVALID_BLOCK + 1)] == NULL)
1247 {
1248 local_sets[bb->index - (INVALID_BLOCK + 1)]
1249 = ALLOC_REG_SET (&reg_obstack);
1250 cond_local_sets[bb->index - (INVALID_BLOCK + 1)]
1251 = ALLOC_REG_SET (&reg_obstack);
1252 rescan = 1;
1253 }
1254 else
1255 {
1256 /* If any bits were removed from live_at_end, we'll have to
1257 rescan the block. This wouldn't be necessary if we had
1258 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1259 local_live is really dependent on live_at_end. */
1260 rescan = bitmap_intersect_compl_p (bb->global_live_at_end,
1261 new_live_at_end);
1262
1263 if (!rescan)
1264 {
1265 regset cond_local_set;
1266
1267 /* If any of the registers in the new live_at_end set are
1268 conditionally set in this basic block, we must rescan.
1269 This is because conditional lifetimes at the end of the
1270 block do not just take the live_at_end set into
1271 account, but also the liveness at the start of each
1272 successor block. We can miss changes in those sets if
1273 we only compare the new live_at_end against the
1274 previous one. */
1275 cond_local_set = cond_local_sets[bb->index - (INVALID_BLOCK + 1)];
1276 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1277 }
1278
1279 if (!rescan)
1280 {
1281 regset local_set;
1282
1283 /* Find the set of changed bits. Take this opportunity
1284 to notice that this set is empty and early out. */
1285 bitmap_xor (tmp, bb->global_live_at_end, new_live_at_end);
1286 if (bitmap_empty_p (tmp))
1287 continue;
1288
1289 /* If any of the changed bits overlap with local_sets[bb],
1290 we'll have to rescan the block. */
1291 local_set = local_sets[bb->index - (INVALID_BLOCK + 1)];
1292 rescan = bitmap_intersect_p (tmp, local_set);
1293 }
1294 }
1295
1296 /* Let our caller know that BB changed enough to require its
1297 death notes updated. */
1298 if (blocks_out)
1299 SET_BIT (blocks_out, bb->index);
1300
1301 if (! rescan)
1302 {
1303 /* Add to live_at_start the set of all registers in
1304 new_live_at_end that aren't in the old live_at_end. */
1305
1306 changed = bitmap_ior_and_compl_into (bb->global_live_at_start,
1307 new_live_at_end,
1308 bb->global_live_at_end);
1309 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1310 if (! changed)
1311 continue;
1312 }
1313 else
1314 {
1315 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1316
1317 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1318 into live_at_start. */
1319 propagate_block (bb, new_live_at_end,
1320 local_sets[bb->index - (INVALID_BLOCK + 1)],
1321 cond_local_sets[bb->index - (INVALID_BLOCK + 1)],
1322 flags);
1323
1324 /* If live_at start didn't change, no need to go farther. */
1325 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1326 continue;
1327
1328 if (failure_strategy_required)
1329 {
1330 /* Get the list of registers that were removed from the
1331 bb->global_live_at_start set. */
1332 bitmap_and_compl (tmp, bb->global_live_at_start,
1333 new_live_at_end);
1334 if (!bitmap_empty_p (tmp))
1335 {
1336 bool pbb_changed;
1337 basic_block pbb;
1338
1339 /* It should not happen that one of registers we have
1340 removed last time is disappears again before any other
1341 register does. */
1342 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1343 gcc_assert (pbb_changed);
1344
1345 /* Now remove the registers from all sets. */
1346 FOR_EACH_BB (pbb)
1347 {
1348 pbb_changed = false;
1349
1350 pbb_changed
1351 |= bitmap_and_compl_into (pbb->global_live_at_start,
1352 registers_made_dead);
1353 pbb_changed
1354 |= bitmap_and_compl_into (pbb->global_live_at_end,
1355 registers_made_dead);
1356 if (!pbb_changed)
1357 continue;
1358
1359 /* Note the (possible) change. */
1360 if (blocks_out)
1361 SET_BIT (blocks_out, pbb->index);
1362
1363 /* Makes sure to really rescan the block. */
1364 if (local_sets[pbb->index - (INVALID_BLOCK + 1)])
1365 {
1366 FREE_REG_SET (local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1367 FREE_REG_SET (cond_local_sets[pbb->index - (INVALID_BLOCK + 1)]);
1368 local_sets[pbb->index - (INVALID_BLOCK + 1)] = 0;
1369 }
1370
1371 /* Add it to the queue. */
1372 if (pbb->aux == NULL)
1373 {
1374 *qtail++ = pbb;
1375 if (qtail == qend)
1376 qtail = queue;
1377 pbb->aux = pbb;
1378 }
1379 }
1380 continue;
1381 }
1382 } /* end of failure_strategy_required */
1383
1384 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1385 }
1386
1387 /* Queue all predecessors of BB so that we may re-examine
1388 their live_at_end. */
1389 FOR_EACH_EDGE (e, ei, bb->preds)
1390 {
1391 basic_block pb = e->src;
1392 if (pb->aux == NULL)
1393 {
1394 *qtail++ = pb;
1395 if (qtail == qend)
1396 qtail = queue;
1397 pb->aux = pb;
1398 }
1399 }
1400 }
1401
1402 FREE_REG_SET (tmp);
1403 FREE_REG_SET (new_live_at_end);
1404 FREE_REG_SET (invalidated_by_call);
1405 FREE_REG_SET (registers_made_dead);
1406
1407 if (blocks_out)
1408 {
1409 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1410 {
1411 basic_block bb = BASIC_BLOCK (i);
1412 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1413 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1414 });
1415 }
1416 else
1417 {
1418 FOR_EACH_BB (bb)
1419 {
1420 FREE_REG_SET (local_sets[bb->index - (INVALID_BLOCK + 1)]);
1421 FREE_REG_SET (cond_local_sets[bb->index - (INVALID_BLOCK + 1)]);
1422 }
1423 }
1424
1425 free (block_accesses);
1426 free (queue);
1427 free (cond_local_sets);
1428 free (local_sets);
1429 }
1430
1431 \f
1432 /* This structure is used to pass parameters to and from the
1433 the function find_regno_partial(). It is used to pass in the
1434 register number we are looking, as well as to return any rtx
1435 we find. */
1436
1437 typedef struct {
1438 unsigned regno_to_find;
1439 rtx retval;
1440 } find_regno_partial_param;
1441
1442
1443 /* Find the rtx for the reg numbers specified in 'data' if it is
1444 part of an expression which only uses part of the register. Return
1445 it in the structure passed in. */
1446 static int
1447 find_regno_partial (rtx *ptr, void *data)
1448 {
1449 find_regno_partial_param *param = (find_regno_partial_param *)data;
1450 unsigned reg = param->regno_to_find;
1451 param->retval = NULL_RTX;
1452
1453 if (*ptr == NULL_RTX)
1454 return 0;
1455
1456 switch (GET_CODE (*ptr))
1457 {
1458 case ZERO_EXTRACT:
1459 case SIGN_EXTRACT:
1460 case STRICT_LOW_PART:
1461 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1462 {
1463 param->retval = XEXP (*ptr, 0);
1464 return 1;
1465 }
1466 break;
1467
1468 case SUBREG:
1469 if (REG_P (SUBREG_REG (*ptr))
1470 && REGNO (SUBREG_REG (*ptr)) == reg)
1471 {
1472 param->retval = SUBREG_REG (*ptr);
1473 return 1;
1474 }
1475 break;
1476
1477 default:
1478 break;
1479 }
1480
1481 return 0;
1482 }
1483
1484 /* Process all immediate successors of the entry block looking for pseudo
1485 registers which are live on entry. Find all of those whose first
1486 instance is a partial register reference of some kind, and initialize
1487 them to 0 after the entry block. This will prevent bit sets within
1488 registers whose value is unknown, and may contain some kind of sticky
1489 bits we don't want. */
1490
1491 int
1492 initialize_uninitialized_subregs (void)
1493 {
1494 rtx insn;
1495 edge e;
1496 unsigned reg, did_something = 0;
1497 find_regno_partial_param param;
1498 edge_iterator ei;
1499
1500 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1501 {
1502 basic_block bb = e->dest;
1503 regset map = bb->global_live_at_start;
1504 reg_set_iterator rsi;
1505
1506 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1507 {
1508 int uid = REGNO_FIRST_UID (reg);
1509 rtx i;
1510
1511 /* Find an insn which mentions the register we are looking for.
1512 Its preferable to have an instance of the register's rtl since
1513 there may be various flags set which we need to duplicate.
1514 If we can't find it, its probably an automatic whose initial
1515 value doesn't matter, or hopefully something we don't care about. */
1516 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1517 ;
1518 if (i != NULL_RTX)
1519 {
1520 /* Found the insn, now get the REG rtx, if we can. */
1521 param.regno_to_find = reg;
1522 for_each_rtx (&i, find_regno_partial, &param);
1523 if (param.retval != NULL_RTX)
1524 {
1525 start_sequence ();
1526 emit_move_insn (param.retval,
1527 CONST0_RTX (GET_MODE (param.retval)));
1528 insn = get_insns ();
1529 end_sequence ();
1530 insert_insn_on_edge (insn, e);
1531 did_something = 1;
1532 }
1533 }
1534 }
1535 }
1536
1537 if (did_something)
1538 commit_edge_insertions ();
1539 return did_something;
1540 }
1541
1542 \f
1543 /* Subroutines of life analysis. */
1544
1545 /* Allocate the permanent data structures that represent the results
1546 of life analysis. */
1547
1548 static void
1549 allocate_bb_life_data (void)
1550 {
1551 basic_block bb;
1552
1553 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1554 {
1555 bb->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1556 bb->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1557 }
1558
1559 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1560 }
1561
1562 void
1563 allocate_reg_life_data (void)
1564 {
1565 int i;
1566
1567 max_regno = max_reg_num ();
1568 gcc_assert (!reg_deaths);
1569 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1570
1571 /* Recalculate the register space, in case it has grown. Old style
1572 vector oriented regsets would set regset_{size,bytes} here also. */
1573 allocate_reg_info (max_regno, FALSE, FALSE);
1574
1575 /* Reset all the data we'll collect in propagate_block and its
1576 subroutines. */
1577 for (i = 0; i < max_regno; i++)
1578 {
1579 REG_N_SETS (i) = 0;
1580 REG_N_REFS (i) = 0;
1581 REG_N_DEATHS (i) = 0;
1582 REG_N_CALLS_CROSSED (i) = 0;
1583 REG_LIVE_LENGTH (i) = 0;
1584 REG_FREQ (i) = 0;
1585 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1586 }
1587 }
1588
1589 /* Delete dead instructions for propagate_block. */
1590
1591 static void
1592 propagate_block_delete_insn (rtx insn)
1593 {
1594 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1595
1596 /* If the insn referred to a label, and that label was attached to
1597 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1598 pretty much mandatory to delete it, because the ADDR_VEC may be
1599 referencing labels that no longer exist.
1600
1601 INSN may reference a deleted label, particularly when a jump
1602 table has been optimized into a direct jump. There's no
1603 real good way to fix up the reference to the deleted label
1604 when the label is deleted, so we just allow it here. */
1605
1606 if (inote && LABEL_P (inote))
1607 {
1608 rtx label = XEXP (inote, 0);
1609 rtx next;
1610
1611 /* The label may be forced if it has been put in the constant
1612 pool. If that is the only use we must discard the table
1613 jump following it, but not the label itself. */
1614 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1615 && (next = next_nonnote_insn (label)) != NULL
1616 && JUMP_P (next)
1617 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1618 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1619 {
1620 rtx pat = PATTERN (next);
1621 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1622 int len = XVECLEN (pat, diff_vec_p);
1623 int i;
1624
1625 for (i = 0; i < len; i++)
1626 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1627
1628 delete_insn_and_edges (next);
1629 ndead++;
1630 }
1631 }
1632
1633 delete_insn_and_edges (insn);
1634 ndead++;
1635 }
1636
1637 /* Delete dead libcalls for propagate_block. Return the insn
1638 before the libcall. */
1639
1640 static rtx
1641 propagate_block_delete_libcall (rtx insn, rtx note)
1642 {
1643 rtx first = XEXP (note, 0);
1644 rtx before = PREV_INSN (first);
1645
1646 delete_insn_chain_and_edges (first, insn);
1647 ndead++;
1648 return before;
1649 }
1650
1651 /* Update the life-status of regs for one insn. Return the previous insn. */
1652
1653 rtx
1654 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1655 {
1656 rtx prev = PREV_INSN (insn);
1657 int flags = pbi->flags;
1658 int insn_is_dead = 0;
1659 int libcall_is_dead = 0;
1660 rtx note;
1661 unsigned i;
1662
1663 if (! INSN_P (insn))
1664 return prev;
1665
1666 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1667 if (flags & PROP_SCAN_DEAD_CODE)
1668 {
1669 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1670 libcall_is_dead = (insn_is_dead && note != 0
1671 && libcall_dead_p (pbi, note, insn));
1672 }
1673
1674 /* If an instruction consists of just dead store(s) on final pass,
1675 delete it. */
1676 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1677 {
1678 /* If we're trying to delete a prologue or epilogue instruction
1679 that isn't flagged as possibly being dead, something is wrong.
1680 But if we are keeping the stack pointer depressed, we might well
1681 be deleting insns that are used to compute the amount to update
1682 it by, so they are fine. */
1683 if (reload_completed
1684 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1685 && (TYPE_RETURNS_STACK_DEPRESSED
1686 (TREE_TYPE (current_function_decl))))
1687 && (((HAVE_epilogue || HAVE_prologue)
1688 && prologue_epilogue_contains (insn))
1689 || (HAVE_sibcall_epilogue
1690 && sibcall_epilogue_contains (insn)))
1691 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1692 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1693
1694 /* Record sets. Do this even for dead instructions, since they
1695 would have killed the values if they hadn't been deleted. */
1696 mark_set_regs (pbi, PATTERN (insn), insn);
1697
1698 /* CC0 is now known to be dead. Either this insn used it,
1699 in which case it doesn't anymore, or clobbered it,
1700 so the next insn can't use it. */
1701 pbi->cc0_live = 0;
1702
1703 if (libcall_is_dead)
1704 prev = propagate_block_delete_libcall (insn, note);
1705 else
1706 {
1707
1708 /* If INSN contains a RETVAL note and is dead, but the libcall
1709 as a whole is not dead, then we want to remove INSN, but
1710 not the whole libcall sequence.
1711
1712 However, we need to also remove the dangling REG_LIBCALL
1713 note so that we do not have mis-matched LIBCALL/RETVAL
1714 notes. In theory we could find a new location for the
1715 REG_RETVAL note, but it hardly seems worth the effort.
1716
1717 NOTE at this point will be the RETVAL note if it exists. */
1718 if (note)
1719 {
1720 rtx libcall_note;
1721
1722 libcall_note
1723 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1724 remove_note (XEXP (note, 0), libcall_note);
1725 }
1726
1727 /* Similarly if INSN contains a LIBCALL note, remove the
1728 dangling REG_RETVAL note. */
1729 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1730 if (note)
1731 {
1732 rtx retval_note;
1733
1734 retval_note
1735 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1736 remove_note (XEXP (note, 0), retval_note);
1737 }
1738
1739 /* Now delete INSN. */
1740 propagate_block_delete_insn (insn);
1741 }
1742
1743 return prev;
1744 }
1745
1746 /* See if this is an increment or decrement that can be merged into
1747 a following memory address. */
1748 #ifdef AUTO_INC_DEC
1749 {
1750 rtx x = single_set (insn);
1751
1752 /* Does this instruction increment or decrement a register? */
1753 if ((flags & PROP_AUTOINC)
1754 && x != 0
1755 && REG_P (SET_DEST (x))
1756 && (GET_CODE (SET_SRC (x)) == PLUS
1757 || GET_CODE (SET_SRC (x)) == MINUS)
1758 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1759 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1760 /* Ok, look for a following memory ref we can combine with.
1761 If one is found, change the memory ref to a PRE_INC
1762 or PRE_DEC, cancel this insn, and return 1.
1763 Return 0 if nothing has been done. */
1764 && try_pre_increment_1 (pbi, insn))
1765 return prev;
1766 }
1767 #endif /* AUTO_INC_DEC */
1768
1769 CLEAR_REG_SET (pbi->new_set);
1770
1771 /* If this is not the final pass, and this insn is copying the value of
1772 a library call and it's dead, don't scan the insns that perform the
1773 library call, so that the call's arguments are not marked live. */
1774 if (libcall_is_dead)
1775 {
1776 /* Record the death of the dest reg. */
1777 mark_set_regs (pbi, PATTERN (insn), insn);
1778
1779 insn = XEXP (note, 0);
1780 return PREV_INSN (insn);
1781 }
1782 else if (GET_CODE (PATTERN (insn)) == SET
1783 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1784 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1785 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1786 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1787 {
1788 /* We have an insn to pop a constant amount off the stack.
1789 (Such insns use PLUS regardless of the direction of the stack,
1790 and any insn to adjust the stack by a constant is always a pop
1791 or part of a push.)
1792 These insns, if not dead stores, have no effect on life, though
1793 they do have an effect on the memory stores we are tracking. */
1794 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1795 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1796 concludes that the stack pointer is not modified. */
1797 mark_set_regs (pbi, PATTERN (insn), insn);
1798 }
1799 else
1800 {
1801 rtx note;
1802 /* Any regs live at the time of a call instruction must not go
1803 in a register clobbered by calls. Find all regs now live and
1804 record this for them. */
1805
1806 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1807 {
1808 reg_set_iterator rsi;
1809 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1810 REG_N_CALLS_CROSSED (i)++;
1811 }
1812
1813 /* Record sets. Do this even for dead instructions, since they
1814 would have killed the values if they hadn't been deleted. */
1815 mark_set_regs (pbi, PATTERN (insn), insn);
1816
1817 if (CALL_P (insn))
1818 {
1819 regset live_at_end;
1820 bool sibcall_p;
1821 rtx note, cond;
1822 int i;
1823
1824 cond = NULL_RTX;
1825 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1826 cond = COND_EXEC_TEST (PATTERN (insn));
1827
1828 /* Non-constant calls clobber memory, constant calls do not
1829 clobber memory, though they may clobber outgoing arguments
1830 on the stack. */
1831 if (! CONST_OR_PURE_CALL_P (insn))
1832 {
1833 free_EXPR_LIST_list (&pbi->mem_set_list);
1834 pbi->mem_set_list_len = 0;
1835 }
1836 else
1837 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1838
1839 /* There may be extra registers to be clobbered. */
1840 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1841 note;
1842 note = XEXP (note, 1))
1843 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1844 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1845 cond, insn, pbi->flags);
1846
1847 /* Calls change all call-used and global registers; sibcalls do not
1848 clobber anything that must be preserved at end-of-function,
1849 except for return values. */
1850
1851 sibcall_p = SIBLING_CALL_P (insn);
1852 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1853 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1854 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1855 && ! (sibcall_p
1856 && REGNO_REG_SET_P (live_at_end, i)
1857 && ! refers_to_regno_p (i, i+1,
1858 current_function_return_rtx,
1859 (rtx *) 0)))
1860 {
1861 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1862 /* We do not want REG_UNUSED notes for these registers. */
1863 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1864 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1865 }
1866 }
1867
1868 /* If an insn doesn't use CC0, it becomes dead since we assume
1869 that every insn clobbers it. So show it dead here;
1870 mark_used_regs will set it live if it is referenced. */
1871 pbi->cc0_live = 0;
1872
1873 /* Record uses. */
1874 if (! insn_is_dead)
1875 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1876 if ((flags & PROP_EQUAL_NOTES)
1877 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1878 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1879 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1880
1881 /* Sometimes we may have inserted something before INSN (such as a move)
1882 when we make an auto-inc. So ensure we will scan those insns. */
1883 #ifdef AUTO_INC_DEC
1884 prev = PREV_INSN (insn);
1885 #endif
1886
1887 if (! insn_is_dead && CALL_P (insn))
1888 {
1889 int i;
1890 rtx note, cond;
1891
1892 cond = NULL_RTX;
1893 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1894 cond = COND_EXEC_TEST (PATTERN (insn));
1895
1896 /* Calls use their arguments, and may clobber memory which
1897 address involves some register. */
1898 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1899 note;
1900 note = XEXP (note, 1))
1901 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1902 of which mark_used_regs knows how to handle. */
1903 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1904
1905 /* The stack ptr is used (honorarily) by a CALL insn. */
1906 if ((flags & PROP_REG_INFO)
1907 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1908 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1909 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1910
1911 /* Calls may also reference any of the global registers,
1912 so they are made live. */
1913 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1914 if (global_regs[i])
1915 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1916 }
1917 }
1918
1919 pbi->insn_num++;
1920
1921 return prev;
1922 }
1923
1924 /* Initialize a propagate_block_info struct for public consumption.
1925 Note that the structure itself is opaque to this file, but that
1926 the user can use the regsets provided here. */
1927
1928 struct propagate_block_info *
1929 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1930 regset cond_local_set, int flags)
1931 {
1932 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1933
1934 pbi->bb = bb;
1935 pbi->reg_live = live;
1936 pbi->mem_set_list = NULL_RTX;
1937 pbi->mem_set_list_len = 0;
1938 pbi->local_set = local_set;
1939 pbi->cond_local_set = cond_local_set;
1940 pbi->cc0_live = 0;
1941 pbi->flags = flags;
1942 pbi->insn_num = 0;
1943
1944 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1945 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1946 else
1947 pbi->reg_next_use = NULL;
1948
1949 pbi->new_set = BITMAP_ALLOC (NULL);
1950
1951 #ifdef HAVE_conditional_execution
1952 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1953 free_reg_cond_life_info);
1954 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1955
1956 /* If this block ends in a conditional branch, for each register
1957 live from one side of the branch and not the other, record the
1958 register as conditionally dead. */
1959 if (JUMP_P (BB_END (bb))
1960 && any_condjump_p (BB_END (bb)))
1961 {
1962 regset diff = ALLOC_REG_SET (&reg_obstack);
1963 basic_block bb_true, bb_false;
1964 unsigned i;
1965
1966 /* Identify the successor blocks. */
1967 bb_true = EDGE_SUCC (bb, 0)->dest;
1968 if (!single_succ_p (bb))
1969 {
1970 bb_false = EDGE_SUCC (bb, 1)->dest;
1971
1972 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1973 {
1974 basic_block t = bb_false;
1975 bb_false = bb_true;
1976 bb_true = t;
1977 }
1978 else
1979 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1980 }
1981 else
1982 {
1983 /* This can happen with a conditional jump to the next insn. */
1984 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1985
1986 /* Simplest way to do nothing. */
1987 bb_false = bb_true;
1988 }
1989
1990 /* Compute which register lead different lives in the successors. */
1991 bitmap_xor (diff, bb_true->global_live_at_start,
1992 bb_false->global_live_at_start);
1993
1994 if (!bitmap_empty_p (diff))
1995 {
1996 /* Extract the condition from the branch. */
1997 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1998 rtx cond_true = XEXP (set_src, 0);
1999 rtx reg = XEXP (cond_true, 0);
2000 enum rtx_code inv_cond;
2001
2002 if (GET_CODE (reg) == SUBREG)
2003 reg = SUBREG_REG (reg);
2004
2005 /* We can only track conditional lifetimes if the condition is
2006 in the form of a reversible comparison of a register against
2007 zero. If the condition is more complex than that, then it is
2008 safe not to record any information. */
2009 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2010 if (inv_cond != UNKNOWN
2011 && REG_P (reg)
2012 && XEXP (cond_true, 1) == const0_rtx)
2013 {
2014 rtx cond_false
2015 = gen_rtx_fmt_ee (inv_cond,
2016 GET_MODE (cond_true), XEXP (cond_true, 0),
2017 XEXP (cond_true, 1));
2018 reg_set_iterator rsi;
2019
2020 if (GET_CODE (XEXP (set_src, 1)) == PC)
2021 {
2022 rtx t = cond_false;
2023 cond_false = cond_true;
2024 cond_true = t;
2025 }
2026
2027 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2028
2029 /* For each such register, mark it conditionally dead. */
2030 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2031 {
2032 struct reg_cond_life_info *rcli;
2033 rtx cond;
2034
2035 rcli = xmalloc (sizeof (*rcli));
2036
2037 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
2038 cond = cond_false;
2039 else
2040 cond = cond_true;
2041 rcli->condition = cond;
2042 rcli->stores = const0_rtx;
2043 rcli->orig_condition = cond;
2044
2045 splay_tree_insert (pbi->reg_cond_dead, i,
2046 (splay_tree_value) rcli);
2047 }
2048 }
2049 }
2050
2051 FREE_REG_SET (diff);
2052 }
2053 #endif
2054
2055 /* If this block has no successors, any stores to the frame that aren't
2056 used later in the block are dead. So make a pass over the block
2057 recording any such that are made and show them dead at the end. We do
2058 a very conservative and simple job here. */
2059 if (optimize
2060 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2061 && (TYPE_RETURNS_STACK_DEPRESSED
2062 (TREE_TYPE (current_function_decl))))
2063 && (flags & PROP_SCAN_DEAD_STORES)
2064 && (EDGE_COUNT (bb->succs) == 0
2065 || (single_succ_p (bb)
2066 && single_succ (bb) == EXIT_BLOCK_PTR
2067 && ! current_function_calls_eh_return)))
2068 {
2069 rtx insn, set;
2070 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2071 if (NONJUMP_INSN_P (insn)
2072 && (set = single_set (insn))
2073 && MEM_P (SET_DEST (set)))
2074 {
2075 rtx mem = SET_DEST (set);
2076 rtx canon_mem = canon_rtx (mem);
2077
2078 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2079 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2080 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2081 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2082 add_to_mem_set_list (pbi, canon_mem);
2083 }
2084 }
2085
2086 return pbi;
2087 }
2088
2089 /* Release a propagate_block_info struct. */
2090
2091 void
2092 free_propagate_block_info (struct propagate_block_info *pbi)
2093 {
2094 free_EXPR_LIST_list (&pbi->mem_set_list);
2095
2096 BITMAP_FREE (pbi->new_set);
2097
2098 #ifdef HAVE_conditional_execution
2099 splay_tree_delete (pbi->reg_cond_dead);
2100 BITMAP_FREE (pbi->reg_cond_reg);
2101 #endif
2102
2103 if (pbi->flags & PROP_REG_INFO)
2104 {
2105 int num = pbi->insn_num;
2106 unsigned i;
2107 reg_set_iterator rsi;
2108
2109 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2110 {
2111 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2112 reg_deaths[i] = 0;
2113 }
2114 }
2115 if (pbi->reg_next_use)
2116 free (pbi->reg_next_use);
2117
2118 free (pbi);
2119 }
2120
2121 /* Compute the registers live at the beginning of a basic block BB from
2122 those live at the end.
2123
2124 When called, REG_LIVE contains those live at the end. On return, it
2125 contains those live at the beginning.
2126
2127 LOCAL_SET, if non-null, will be set with all registers killed
2128 unconditionally by this basic block.
2129 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2130 killed conditionally by this basic block. If there is any unconditional
2131 set of a register, then the corresponding bit will be set in LOCAL_SET
2132 and cleared in COND_LOCAL_SET.
2133 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2134 case, the resulting set will be equal to the union of the two sets that
2135 would otherwise be computed.
2136
2137 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2138
2139 int
2140 propagate_block (basic_block bb, regset live, regset local_set,
2141 regset cond_local_set, int flags)
2142 {
2143 struct propagate_block_info *pbi;
2144 rtx insn, prev;
2145 int changed;
2146
2147 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2148
2149 if (flags & PROP_REG_INFO)
2150 {
2151 unsigned i;
2152 reg_set_iterator rsi;
2153
2154 /* Process the regs live at the end of the block.
2155 Mark them as not local to any one basic block. */
2156 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2157 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2158 }
2159
2160 /* Scan the block an insn at a time from end to beginning. */
2161
2162 changed = 0;
2163 for (insn = BB_END (bb); ; insn = prev)
2164 {
2165 /* If this is a call to `setjmp' et al, warn if any
2166 non-volatile datum is live. */
2167 if ((flags & PROP_REG_INFO)
2168 && CALL_P (insn)
2169 && find_reg_note (insn, REG_SETJMP, NULL))
2170 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2171
2172 prev = propagate_one_insn (pbi, insn);
2173 if (!prev)
2174 changed |= insn != get_insns ();
2175 else
2176 changed |= NEXT_INSN (prev) != insn;
2177
2178 if (insn == BB_HEAD (bb))
2179 break;
2180 }
2181
2182 free_propagate_block_info (pbi);
2183
2184 return changed;
2185 }
2186 \f
2187 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2188 (SET expressions whose destinations are registers dead after the insn).
2189 NEEDED is the regset that says which regs are alive after the insn.
2190
2191 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2192
2193 If X is the entire body of an insn, NOTES contains the reg notes
2194 pertaining to the insn. */
2195
2196 static int
2197 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2198 rtx notes ATTRIBUTE_UNUSED)
2199 {
2200 enum rtx_code code = GET_CODE (x);
2201
2202 /* Don't eliminate insns that may trap. */
2203 if (flag_non_call_exceptions && may_trap_p (x))
2204 return 0;
2205
2206 #ifdef AUTO_INC_DEC
2207 /* As flow is invoked after combine, we must take existing AUTO_INC
2208 expressions into account. */
2209 for (; notes; notes = XEXP (notes, 1))
2210 {
2211 if (REG_NOTE_KIND (notes) == REG_INC)
2212 {
2213 int regno = REGNO (XEXP (notes, 0));
2214
2215 /* Don't delete insns to set global regs. */
2216 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2217 || REGNO_REG_SET_P (pbi->reg_live, regno))
2218 return 0;
2219 }
2220 }
2221 #endif
2222
2223 /* If setting something that's a reg or part of one,
2224 see if that register's altered value will be live. */
2225
2226 if (code == SET)
2227 {
2228 rtx r = SET_DEST (x);
2229
2230 #ifdef HAVE_cc0
2231 if (GET_CODE (r) == CC0)
2232 return ! pbi->cc0_live;
2233 #endif
2234
2235 /* A SET that is a subroutine call cannot be dead. */
2236 if (GET_CODE (SET_SRC (x)) == CALL)
2237 {
2238 if (! call_ok)
2239 return 0;
2240 }
2241
2242 /* Don't eliminate loads from volatile memory or volatile asms. */
2243 else if (volatile_refs_p (SET_SRC (x)))
2244 return 0;
2245
2246 if (MEM_P (r))
2247 {
2248 rtx temp, canon_r;
2249
2250 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2251 return 0;
2252
2253 canon_r = canon_rtx (r);
2254
2255 /* Walk the set of memory locations we are currently tracking
2256 and see if one is an identical match to this memory location.
2257 If so, this memory write is dead (remember, we're walking
2258 backwards from the end of the block to the start). Since
2259 rtx_equal_p does not check the alias set or flags, we also
2260 must have the potential for them to conflict (anti_dependence). */
2261 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2262 if (anti_dependence (r, XEXP (temp, 0)))
2263 {
2264 rtx mem = XEXP (temp, 0);
2265
2266 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2267 && (GET_MODE_SIZE (GET_MODE (canon_r))
2268 <= GET_MODE_SIZE (GET_MODE (mem))))
2269 return 1;
2270
2271 #ifdef AUTO_INC_DEC
2272 /* Check if memory reference matches an auto increment. Only
2273 post increment/decrement or modify are valid. */
2274 if (GET_MODE (mem) == GET_MODE (r)
2275 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2276 || GET_CODE (XEXP (mem, 0)) == POST_INC
2277 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2278 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2279 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2280 return 1;
2281 #endif
2282 }
2283 }
2284 else
2285 {
2286 while (GET_CODE (r) == SUBREG
2287 || GET_CODE (r) == STRICT_LOW_PART
2288 || GET_CODE (r) == ZERO_EXTRACT)
2289 r = XEXP (r, 0);
2290
2291 if (REG_P (r))
2292 {
2293 int regno = REGNO (r);
2294
2295 /* Obvious. */
2296 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2297 return 0;
2298
2299 /* If this is a hard register, verify that subsequent
2300 words are not needed. */
2301 if (regno < FIRST_PSEUDO_REGISTER)
2302 {
2303 int n = hard_regno_nregs[regno][GET_MODE (r)];
2304
2305 while (--n > 0)
2306 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2307 return 0;
2308 }
2309
2310 /* Don't delete insns to set global regs. */
2311 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2312 return 0;
2313
2314 /* Make sure insns to set the stack pointer aren't deleted. */
2315 if (regno == STACK_POINTER_REGNUM)
2316 return 0;
2317
2318 /* ??? These bits might be redundant with the force live bits
2319 in calculate_global_regs_live. We would delete from
2320 sequential sets; whether this actually affects real code
2321 for anything but the stack pointer I don't know. */
2322 /* Make sure insns to set the frame pointer aren't deleted. */
2323 if (regno == FRAME_POINTER_REGNUM
2324 && (! reload_completed || frame_pointer_needed))
2325 return 0;
2326 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2327 if (regno == HARD_FRAME_POINTER_REGNUM
2328 && (! reload_completed || frame_pointer_needed))
2329 return 0;
2330 #endif
2331
2332 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2333 /* Make sure insns to set arg pointer are never deleted
2334 (if the arg pointer isn't fixed, there will be a USE
2335 for it, so we can treat it normally). */
2336 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2337 return 0;
2338 #endif
2339
2340 /* Otherwise, the set is dead. */
2341 return 1;
2342 }
2343 }
2344 }
2345
2346 /* If performing several activities, insn is dead if each activity
2347 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2348 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2349 worth keeping. */
2350 else if (code == PARALLEL)
2351 {
2352 int i = XVECLEN (x, 0);
2353
2354 for (i--; i >= 0; i--)
2355 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2356 && GET_CODE (XVECEXP (x, 0, i)) != USE
2357 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2358 return 0;
2359
2360 return 1;
2361 }
2362
2363 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2364 is not necessarily true for hard registers until after reload. */
2365 else if (code == CLOBBER)
2366 {
2367 if (REG_P (XEXP (x, 0))
2368 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2369 || reload_completed)
2370 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2371 return 1;
2372 }
2373
2374 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2375 Instances where it is still used are either (1) temporary and the USE
2376 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2377 or (3) hiding bugs elsewhere that are not properly representing data
2378 flow. */
2379
2380 return 0;
2381 }
2382
2383 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2384 return 1 if the entire library call is dead.
2385 This is true if INSN copies a register (hard or pseudo)
2386 and if the hard return reg of the call insn is dead.
2387 (The caller should have tested the destination of the SET inside
2388 INSN already for death.)
2389
2390 If this insn doesn't just copy a register, then we don't
2391 have an ordinary libcall. In that case, cse could not have
2392 managed to substitute the source for the dest later on,
2393 so we can assume the libcall is dead.
2394
2395 PBI is the block info giving pseudoregs live before this insn.
2396 NOTE is the REG_RETVAL note of the insn. */
2397
2398 static int
2399 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2400 {
2401 rtx x = single_set (insn);
2402
2403 if (x)
2404 {
2405 rtx r = SET_SRC (x);
2406
2407 if (REG_P (r) || GET_CODE (r) == SUBREG)
2408 {
2409 rtx call = XEXP (note, 0);
2410 rtx call_pat;
2411 int i;
2412
2413 /* Find the call insn. */
2414 while (call != insn && !CALL_P (call))
2415 call = NEXT_INSN (call);
2416
2417 /* If there is none, do nothing special,
2418 since ordinary death handling can understand these insns. */
2419 if (call == insn)
2420 return 0;
2421
2422 /* See if the hard reg holding the value is dead.
2423 If this is a PARALLEL, find the call within it. */
2424 call_pat = PATTERN (call);
2425 if (GET_CODE (call_pat) == PARALLEL)
2426 {
2427 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2428 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2429 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2430 break;
2431
2432 /* This may be a library call that is returning a value
2433 via invisible pointer. Do nothing special, since
2434 ordinary death handling can understand these insns. */
2435 if (i < 0)
2436 return 0;
2437
2438 call_pat = XVECEXP (call_pat, 0, i);
2439 }
2440
2441 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2442 return 0;
2443
2444 while ((insn = PREV_INSN (insn)) != call)
2445 {
2446 if (! INSN_P (insn))
2447 continue;
2448 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2449 return 0;
2450 }
2451 return 1;
2452 }
2453 }
2454 return 0;
2455 }
2456
2457 /* 1 if register REGNO was alive at a place where `setjmp' was called
2458 and was set more than once or is an argument.
2459 Such regs may be clobbered by `longjmp'. */
2460
2461 int
2462 regno_clobbered_at_setjmp (int regno)
2463 {
2464 if (n_basic_blocks == 0)
2465 return 0;
2466
2467 return ((REG_N_SETS (regno) > 1
2468 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2469 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2470 }
2471 \f
2472 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2473 maximal list size; look for overlaps in mode and select the largest. */
2474 static void
2475 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2476 {
2477 rtx i;
2478
2479 /* We don't know how large a BLKmode store is, so we must not
2480 take them into consideration. */
2481 if (GET_MODE (mem) == BLKmode)
2482 return;
2483
2484 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2485 {
2486 rtx e = XEXP (i, 0);
2487 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2488 {
2489 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2490 {
2491 #ifdef AUTO_INC_DEC
2492 /* If we must store a copy of the mem, we can just modify
2493 the mode of the stored copy. */
2494 if (pbi->flags & PROP_AUTOINC)
2495 PUT_MODE (e, GET_MODE (mem));
2496 else
2497 #endif
2498 XEXP (i, 0) = mem;
2499 }
2500 return;
2501 }
2502 }
2503
2504 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2505 {
2506 #ifdef AUTO_INC_DEC
2507 /* Store a copy of mem, otherwise the address may be
2508 scrogged by find_auto_inc. */
2509 if (pbi->flags & PROP_AUTOINC)
2510 mem = shallow_copy_rtx (mem);
2511 #endif
2512 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2513 pbi->mem_set_list_len++;
2514 }
2515 }
2516
2517 /* INSN references memory, possibly using autoincrement addressing modes.
2518 Find any entries on the mem_set_list that need to be invalidated due
2519 to an address change. */
2520
2521 static int
2522 invalidate_mems_from_autoinc (rtx *px, void *data)
2523 {
2524 rtx x = *px;
2525 struct propagate_block_info *pbi = data;
2526
2527 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2528 {
2529 invalidate_mems_from_set (pbi, XEXP (x, 0));
2530 return -1;
2531 }
2532
2533 return 0;
2534 }
2535
2536 /* EXP is a REG or MEM. Remove any dependent entries from
2537 pbi->mem_set_list. */
2538
2539 static void
2540 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2541 {
2542 rtx temp = pbi->mem_set_list;
2543 rtx prev = NULL_RTX;
2544 rtx next;
2545
2546 while (temp)
2547 {
2548 next = XEXP (temp, 1);
2549 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2550 /* When we get an EXP that is a mem here, we want to check if EXP
2551 overlaps the *address* of any of the mems in the list (i.e. not
2552 whether the mems actually overlap; that's done elsewhere). */
2553 || (MEM_P (exp)
2554 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2555 {
2556 /* Splice this entry out of the list. */
2557 if (prev)
2558 XEXP (prev, 1) = next;
2559 else
2560 pbi->mem_set_list = next;
2561 free_EXPR_LIST_node (temp);
2562 pbi->mem_set_list_len--;
2563 }
2564 else
2565 prev = temp;
2566 temp = next;
2567 }
2568 }
2569
2570 /* Process the registers that are set within X. Their bits are set to
2571 1 in the regset DEAD, because they are dead prior to this insn.
2572
2573 If INSN is nonzero, it is the insn being processed.
2574
2575 FLAGS is the set of operations to perform. */
2576
2577 static void
2578 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2579 {
2580 rtx cond = NULL_RTX;
2581 rtx link;
2582 enum rtx_code code;
2583 int flags = pbi->flags;
2584
2585 if (insn)
2586 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2587 {
2588 if (REG_NOTE_KIND (link) == REG_INC)
2589 mark_set_1 (pbi, SET, XEXP (link, 0),
2590 (GET_CODE (x) == COND_EXEC
2591 ? COND_EXEC_TEST (x) : NULL_RTX),
2592 insn, flags);
2593 }
2594 retry:
2595 switch (code = GET_CODE (x))
2596 {
2597 case SET:
2598 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2599 flags |= PROP_ASM_SCAN;
2600 /* Fall through */
2601 case CLOBBER:
2602 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2603 return;
2604
2605 case COND_EXEC:
2606 cond = COND_EXEC_TEST (x);
2607 x = COND_EXEC_CODE (x);
2608 goto retry;
2609
2610 case PARALLEL:
2611 {
2612 int i;
2613
2614 /* We must scan forwards. If we have an asm, we need to set
2615 the PROP_ASM_SCAN flag before scanning the clobbers. */
2616 for (i = 0; i < XVECLEN (x, 0); i++)
2617 {
2618 rtx sub = XVECEXP (x, 0, i);
2619 switch (code = GET_CODE (sub))
2620 {
2621 case COND_EXEC:
2622 gcc_assert (!cond);
2623
2624 cond = COND_EXEC_TEST (sub);
2625 sub = COND_EXEC_CODE (sub);
2626 if (GET_CODE (sub) == SET)
2627 goto mark_set;
2628 if (GET_CODE (sub) == CLOBBER)
2629 goto mark_clob;
2630 break;
2631
2632 case SET:
2633 mark_set:
2634 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2635 flags |= PROP_ASM_SCAN;
2636 /* Fall through */
2637 case CLOBBER:
2638 mark_clob:
2639 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2640 break;
2641
2642 case ASM_OPERANDS:
2643 flags |= PROP_ASM_SCAN;
2644 break;
2645
2646 default:
2647 break;
2648 }
2649 }
2650 break;
2651 }
2652
2653 default:
2654 break;
2655 }
2656 }
2657
2658 /* Process a single set, which appears in INSN. REG (which may not
2659 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2660 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2661 If the set is conditional (because it appear in a COND_EXEC), COND
2662 will be the condition. */
2663
2664 static void
2665 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2666 {
2667 int regno_first = -1, regno_last = -1;
2668 unsigned long not_dead = 0;
2669 int i;
2670
2671 /* Modifying just one hardware register of a multi-reg value or just a
2672 byte field of a register does not mean the value from before this insn
2673 is now dead. Of course, if it was dead after it's unused now. */
2674
2675 switch (GET_CODE (reg))
2676 {
2677 case PARALLEL:
2678 /* Some targets place small structures in registers for return values of
2679 functions. We have to detect this case specially here to get correct
2680 flow information. */
2681 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2682 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2683 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2684 flags);
2685 return;
2686
2687 case SIGN_EXTRACT:
2688 /* SIGN_EXTRACT cannot be an lvalue. */
2689 gcc_unreachable ();
2690
2691 case ZERO_EXTRACT:
2692 case STRICT_LOW_PART:
2693 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2694 do
2695 reg = XEXP (reg, 0);
2696 while (GET_CODE (reg) == SUBREG
2697 || GET_CODE (reg) == ZERO_EXTRACT
2698 || GET_CODE (reg) == STRICT_LOW_PART);
2699 if (MEM_P (reg))
2700 break;
2701 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2702 /* Fall through. */
2703
2704 case REG:
2705 regno_last = regno_first = REGNO (reg);
2706 if (regno_first < FIRST_PSEUDO_REGISTER)
2707 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2708 break;
2709
2710 case SUBREG:
2711 if (REG_P (SUBREG_REG (reg)))
2712 {
2713 enum machine_mode outer_mode = GET_MODE (reg);
2714 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2715
2716 /* Identify the range of registers affected. This is moderately
2717 tricky for hard registers. See alter_subreg. */
2718
2719 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2720 if (regno_first < FIRST_PSEUDO_REGISTER)
2721 {
2722 regno_first += subreg_regno_offset (regno_first, inner_mode,
2723 SUBREG_BYTE (reg),
2724 outer_mode);
2725 regno_last = (regno_first
2726 + hard_regno_nregs[regno_first][outer_mode] - 1);
2727
2728 /* Since we've just adjusted the register number ranges, make
2729 sure REG matches. Otherwise some_was_live will be clear
2730 when it shouldn't have been, and we'll create incorrect
2731 REG_UNUSED notes. */
2732 reg = gen_rtx_REG (outer_mode, regno_first);
2733 }
2734 else
2735 {
2736 /* If the number of words in the subreg is less than the number
2737 of words in the full register, we have a well-defined partial
2738 set. Otherwise the high bits are undefined.
2739
2740 This is only really applicable to pseudos, since we just took
2741 care of multi-word hard registers. */
2742 if (((GET_MODE_SIZE (outer_mode)
2743 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2744 < ((GET_MODE_SIZE (inner_mode)
2745 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2746 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2747 regno_first);
2748
2749 reg = SUBREG_REG (reg);
2750 }
2751 }
2752 else
2753 reg = SUBREG_REG (reg);
2754 break;
2755
2756 default:
2757 break;
2758 }
2759
2760 /* If this set is a MEM, then it kills any aliased writes and any
2761 other MEMs which use it.
2762 If this set is a REG, then it kills any MEMs which use the reg. */
2763 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2764 {
2765 if (REG_P (reg) || MEM_P (reg))
2766 invalidate_mems_from_set (pbi, reg);
2767
2768 /* If the memory reference had embedded side effects (autoincrement
2769 address modes) then we may need to kill some entries on the
2770 memory set list. */
2771 if (insn && MEM_P (reg))
2772 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2773
2774 if (MEM_P (reg) && ! side_effects_p (reg)
2775 /* ??? With more effort we could track conditional memory life. */
2776 && ! cond)
2777 add_to_mem_set_list (pbi, canon_rtx (reg));
2778 }
2779
2780 if (REG_P (reg)
2781 && ! (regno_first == FRAME_POINTER_REGNUM
2782 && (! reload_completed || frame_pointer_needed))
2783 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2784 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2785 && (! reload_completed || frame_pointer_needed))
2786 #endif
2787 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2788 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2789 #endif
2790 )
2791 {
2792 int some_was_live = 0, some_was_dead = 0;
2793
2794 for (i = regno_first; i <= regno_last; ++i)
2795 {
2796 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2797 if (pbi->local_set)
2798 {
2799 /* Order of the set operation matters here since both
2800 sets may be the same. */
2801 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2802 if (cond != NULL_RTX
2803 && ! REGNO_REG_SET_P (pbi->local_set, i))
2804 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2805 else
2806 SET_REGNO_REG_SET (pbi->local_set, i);
2807 }
2808 if (code != CLOBBER)
2809 SET_REGNO_REG_SET (pbi->new_set, i);
2810
2811 some_was_live |= needed_regno;
2812 some_was_dead |= ! needed_regno;
2813 }
2814
2815 #ifdef HAVE_conditional_execution
2816 /* Consider conditional death in deciding that the register needs
2817 a death note. */
2818 if (some_was_live && ! not_dead
2819 /* The stack pointer is never dead. Well, not strictly true,
2820 but it's very difficult to tell from here. Hopefully
2821 combine_stack_adjustments will fix up the most egregious
2822 errors. */
2823 && regno_first != STACK_POINTER_REGNUM)
2824 {
2825 for (i = regno_first; i <= regno_last; ++i)
2826 if (! mark_regno_cond_dead (pbi, i, cond))
2827 not_dead |= ((unsigned long) 1) << (i - regno_first);
2828 }
2829 #endif
2830
2831 /* Additional data to record if this is the final pass. */
2832 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2833 | PROP_DEATH_NOTES | PROP_AUTOINC))
2834 {
2835 rtx y;
2836 int blocknum = pbi->bb->index;
2837
2838 y = NULL_RTX;
2839 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2840 {
2841 y = pbi->reg_next_use[regno_first];
2842
2843 /* The next use is no longer next, since a store intervenes. */
2844 for (i = regno_first; i <= regno_last; ++i)
2845 pbi->reg_next_use[i] = 0;
2846 }
2847
2848 if (flags & PROP_REG_INFO)
2849 {
2850 for (i = regno_first; i <= regno_last; ++i)
2851 {
2852 /* Count (weighted) references, stores, etc. This counts a
2853 register twice if it is modified, but that is correct. */
2854 REG_N_SETS (i) += 1;
2855 REG_N_REFS (i) += 1;
2856 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2857
2858 /* The insns where a reg is live are normally counted
2859 elsewhere, but we want the count to include the insn
2860 where the reg is set, and the normal counting mechanism
2861 would not count it. */
2862 REG_LIVE_LENGTH (i) += 1;
2863 }
2864
2865 /* If this is a hard reg, record this function uses the reg. */
2866 if (regno_first < FIRST_PSEUDO_REGISTER)
2867 {
2868 for (i = regno_first; i <= regno_last; i++)
2869 regs_ever_live[i] = 1;
2870 if (flags & PROP_ASM_SCAN)
2871 for (i = regno_first; i <= regno_last; i++)
2872 regs_asm_clobbered[i] = 1;
2873 }
2874 else
2875 {
2876 /* Keep track of which basic blocks each reg appears in. */
2877 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2878 REG_BASIC_BLOCK (regno_first) = blocknum;
2879 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2880 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2881 }
2882 }
2883
2884 if (! some_was_dead)
2885 {
2886 if (flags & PROP_LOG_LINKS)
2887 {
2888 /* Make a logical link from the next following insn
2889 that uses this register, back to this insn.
2890 The following insns have already been processed.
2891
2892 We don't build a LOG_LINK for hard registers containing
2893 in ASM_OPERANDs. If these registers get replaced,
2894 we might wind up changing the semantics of the insn,
2895 even if reload can make what appear to be valid
2896 assignments later.
2897
2898 We don't build a LOG_LINK for global registers to
2899 or from a function call. We don't want to let
2900 combine think that it knows what is going on with
2901 global registers. */
2902 if (y && (BLOCK_NUM (y) == blocknum)
2903 && (regno_first >= FIRST_PSEUDO_REGISTER
2904 || (asm_noperands (PATTERN (y)) < 0
2905 && ! ((CALL_P (insn)
2906 || CALL_P (y))
2907 && global_regs[regno_first]))))
2908 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2909 }
2910 }
2911 else if (not_dead)
2912 ;
2913 else if (! some_was_live)
2914 {
2915 if (flags & PROP_REG_INFO)
2916 REG_N_DEATHS (regno_first) += 1;
2917
2918 if (flags & PROP_DEATH_NOTES)
2919 {
2920 /* Note that dead stores have already been deleted
2921 when possible. If we get here, we have found a
2922 dead store that cannot be eliminated (because the
2923 same insn does something useful). Indicate this
2924 by marking the reg being set as dying here. */
2925 REG_NOTES (insn)
2926 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2927 }
2928 }
2929 else
2930 {
2931 if (flags & PROP_DEATH_NOTES)
2932 {
2933 /* This is a case where we have a multi-word hard register
2934 and some, but not all, of the words of the register are
2935 needed in subsequent insns. Write REG_UNUSED notes
2936 for those parts that were not needed. This case should
2937 be rare. */
2938
2939 for (i = regno_first; i <= regno_last; ++i)
2940 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2941 REG_NOTES (insn)
2942 = alloc_EXPR_LIST (REG_UNUSED,
2943 regno_reg_rtx[i],
2944 REG_NOTES (insn));
2945 }
2946 }
2947 }
2948
2949 /* Mark the register as being dead. */
2950 if (some_was_live
2951 /* The stack pointer is never dead. Well, not strictly true,
2952 but it's very difficult to tell from here. Hopefully
2953 combine_stack_adjustments will fix up the most egregious
2954 errors. */
2955 && regno_first != STACK_POINTER_REGNUM)
2956 {
2957 for (i = regno_first; i <= regno_last; ++i)
2958 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2959 {
2960 if ((pbi->flags & PROP_REG_INFO)
2961 && REGNO_REG_SET_P (pbi->reg_live, i))
2962 {
2963 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2964 reg_deaths[i] = 0;
2965 }
2966 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2967 }
2968 }
2969 }
2970 else if (REG_P (reg))
2971 {
2972 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2973 pbi->reg_next_use[regno_first] = 0;
2974
2975 if ((flags & PROP_REG_INFO) != 0
2976 && (flags & PROP_ASM_SCAN) != 0
2977 && regno_first < FIRST_PSEUDO_REGISTER)
2978 {
2979 for (i = regno_first; i <= regno_last; i++)
2980 regs_asm_clobbered[i] = 1;
2981 }
2982 }
2983
2984 /* If this is the last pass and this is a SCRATCH, show it will be dying
2985 here and count it. */
2986 else if (GET_CODE (reg) == SCRATCH)
2987 {
2988 if (flags & PROP_DEATH_NOTES)
2989 REG_NOTES (insn)
2990 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2991 }
2992 }
2993 \f
2994 #ifdef HAVE_conditional_execution
2995 /* Mark REGNO conditionally dead.
2996 Return true if the register is now unconditionally dead. */
2997
2998 static int
2999 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3000 {
3001 /* If this is a store to a predicate register, the value of the
3002 predicate is changing, we don't know that the predicate as seen
3003 before is the same as that seen after. Flush all dependent
3004 conditions from reg_cond_dead. This will make all such
3005 conditionally live registers unconditionally live. */
3006 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3007 flush_reg_cond_reg (pbi, regno);
3008
3009 /* If this is an unconditional store, remove any conditional
3010 life that may have existed. */
3011 if (cond == NULL_RTX)
3012 splay_tree_remove (pbi->reg_cond_dead, regno);
3013 else
3014 {
3015 splay_tree_node node;
3016 struct reg_cond_life_info *rcli;
3017 rtx ncond;
3018
3019 /* Otherwise this is a conditional set. Record that fact.
3020 It may have been conditionally used, or there may be a
3021 subsequent set with a complementary condition. */
3022
3023 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3024 if (node == NULL)
3025 {
3026 /* The register was unconditionally live previously.
3027 Record the current condition as the condition under
3028 which it is dead. */
3029 rcli = xmalloc (sizeof (*rcli));
3030 rcli->condition = cond;
3031 rcli->stores = cond;
3032 rcli->orig_condition = const0_rtx;
3033 splay_tree_insert (pbi->reg_cond_dead, regno,
3034 (splay_tree_value) rcli);
3035
3036 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3037
3038 /* Not unconditionally dead. */
3039 return 0;
3040 }
3041 else
3042 {
3043 /* The register was conditionally live previously.
3044 Add the new condition to the old. */
3045 rcli = (struct reg_cond_life_info *) node->value;
3046 ncond = rcli->condition;
3047 ncond = ior_reg_cond (ncond, cond, 1);
3048 if (rcli->stores == const0_rtx)
3049 rcli->stores = cond;
3050 else if (rcli->stores != const1_rtx)
3051 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3052
3053 /* If the register is now unconditionally dead, remove the entry
3054 in the splay_tree. A register is unconditionally dead if the
3055 dead condition ncond is true. A register is also unconditionally
3056 dead if the sum of all conditional stores is an unconditional
3057 store (stores is true), and the dead condition is identically the
3058 same as the original dead condition initialized at the end of
3059 the block. This is a pointer compare, not an rtx_equal_p
3060 compare. */
3061 if (ncond == const1_rtx
3062 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3063 splay_tree_remove (pbi->reg_cond_dead, regno);
3064 else
3065 {
3066 rcli->condition = ncond;
3067
3068 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3069
3070 /* Not unconditionally dead. */
3071 return 0;
3072 }
3073 }
3074 }
3075
3076 return 1;
3077 }
3078
3079 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3080
3081 static void
3082 free_reg_cond_life_info (splay_tree_value value)
3083 {
3084 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3085 free (rcli);
3086 }
3087
3088 /* Helper function for flush_reg_cond_reg. */
3089
3090 static int
3091 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3092 {
3093 struct reg_cond_life_info *rcli;
3094 int *xdata = (int *) data;
3095 unsigned int regno = xdata[0];
3096
3097 /* Don't need to search if last flushed value was farther on in
3098 the in-order traversal. */
3099 if (xdata[1] >= (int) node->key)
3100 return 0;
3101
3102 /* Splice out portions of the expression that refer to regno. */
3103 rcli = (struct reg_cond_life_info *) node->value;
3104 rcli->condition = elim_reg_cond (rcli->condition, regno);
3105 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3106 rcli->stores = elim_reg_cond (rcli->stores, regno);
3107
3108 /* If the entire condition is now false, signal the node to be removed. */
3109 if (rcli->condition == const0_rtx)
3110 {
3111 xdata[1] = node->key;
3112 return -1;
3113 }
3114 else
3115 gcc_assert (rcli->condition != const1_rtx);
3116
3117 return 0;
3118 }
3119
3120 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3121
3122 static void
3123 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3124 {
3125 int pair[2];
3126
3127 pair[0] = regno;
3128 pair[1] = -1;
3129 while (splay_tree_foreach (pbi->reg_cond_dead,
3130 flush_reg_cond_reg_1, pair) == -1)
3131 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3132
3133 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3134 }
3135
3136 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3137 For ior/and, the ADD flag determines whether we want to add the new
3138 condition X to the old one unconditionally. If it is zero, we will
3139 only return a new expression if X allows us to simplify part of
3140 OLD, otherwise we return NULL to the caller.
3141 If ADD is nonzero, we will return a new condition in all cases. The
3142 toplevel caller of one of these functions should always pass 1 for
3143 ADD. */
3144
3145 static rtx
3146 ior_reg_cond (rtx old, rtx x, int add)
3147 {
3148 rtx op0, op1;
3149
3150 if (COMPARISON_P (old))
3151 {
3152 if (COMPARISON_P (x)
3153 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3154 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3155 return const1_rtx;
3156 if (GET_CODE (x) == GET_CODE (old)
3157 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3158 return old;
3159 if (! add)
3160 return NULL;
3161 return gen_rtx_IOR (0, old, x);
3162 }
3163
3164 switch (GET_CODE (old))
3165 {
3166 case IOR:
3167 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3168 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3169 if (op0 != NULL || op1 != NULL)
3170 {
3171 if (op0 == const0_rtx)
3172 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3173 if (op1 == const0_rtx)
3174 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3175 if (op0 == const1_rtx || op1 == const1_rtx)
3176 return const1_rtx;
3177 if (op0 == NULL)
3178 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3179 else if (rtx_equal_p (x, op0))
3180 /* (x | A) | x ~ (x | A). */
3181 return old;
3182 if (op1 == NULL)
3183 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3184 else if (rtx_equal_p (x, op1))
3185 /* (A | x) | x ~ (A | x). */
3186 return old;
3187 return gen_rtx_IOR (0, op0, op1);
3188 }
3189 if (! add)
3190 return NULL;
3191 return gen_rtx_IOR (0, old, x);
3192
3193 case AND:
3194 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3195 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3196 if (op0 != NULL || op1 != NULL)
3197 {
3198 if (op0 == const1_rtx)
3199 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3200 if (op1 == const1_rtx)
3201 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3202 if (op0 == const0_rtx || op1 == const0_rtx)
3203 return const0_rtx;
3204 if (op0 == NULL)
3205 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3206 else if (rtx_equal_p (x, op0))
3207 /* (x & A) | x ~ x. */
3208 return op0;
3209 if (op1 == NULL)
3210 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3211 else if (rtx_equal_p (x, op1))
3212 /* (A & x) | x ~ x. */
3213 return op1;
3214 return gen_rtx_AND (0, op0, op1);
3215 }
3216 if (! add)
3217 return NULL;
3218 return gen_rtx_IOR (0, old, x);
3219
3220 case NOT:
3221 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3222 if (op0 != NULL)
3223 return not_reg_cond (op0);
3224 if (! add)
3225 return NULL;
3226 return gen_rtx_IOR (0, old, x);
3227
3228 default:
3229 gcc_unreachable ();
3230 }
3231 }
3232
3233 static rtx
3234 not_reg_cond (rtx x)
3235 {
3236 if (x == const0_rtx)
3237 return const1_rtx;
3238 else if (x == const1_rtx)
3239 return const0_rtx;
3240 if (GET_CODE (x) == NOT)
3241 return XEXP (x, 0);
3242 if (COMPARISON_P (x)
3243 && REG_P (XEXP (x, 0)))
3244 {
3245 gcc_assert (XEXP (x, 1) == const0_rtx);
3246
3247 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3248 VOIDmode, XEXP (x, 0), const0_rtx);
3249 }
3250 return gen_rtx_NOT (0, x);
3251 }
3252
3253 static rtx
3254 and_reg_cond (rtx old, rtx x, int add)
3255 {
3256 rtx op0, op1;
3257
3258 if (COMPARISON_P (old))
3259 {
3260 if (COMPARISON_P (x)
3261 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3262 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3263 return const0_rtx;
3264 if (GET_CODE (x) == GET_CODE (old)
3265 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3266 return old;
3267 if (! add)
3268 return NULL;
3269 return gen_rtx_AND (0, old, x);
3270 }
3271
3272 switch (GET_CODE (old))
3273 {
3274 case IOR:
3275 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3276 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3277 if (op0 != NULL || op1 != NULL)
3278 {
3279 if (op0 == const0_rtx)
3280 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3281 if (op1 == const0_rtx)
3282 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3283 if (op0 == const1_rtx || op1 == const1_rtx)
3284 return const1_rtx;
3285 if (op0 == NULL)
3286 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3287 else if (rtx_equal_p (x, op0))
3288 /* (x | A) & x ~ x. */
3289 return op0;
3290 if (op1 == NULL)
3291 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3292 else if (rtx_equal_p (x, op1))
3293 /* (A | x) & x ~ x. */
3294 return op1;
3295 return gen_rtx_IOR (0, op0, op1);
3296 }
3297 if (! add)
3298 return NULL;
3299 return gen_rtx_AND (0, old, x);
3300
3301 case AND:
3302 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3303 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3304 if (op0 != NULL || op1 != NULL)
3305 {
3306 if (op0 == const1_rtx)
3307 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3308 if (op1 == const1_rtx)
3309 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3310 if (op0 == const0_rtx || op1 == const0_rtx)
3311 return const0_rtx;
3312 if (op0 == NULL)
3313 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3314 else if (rtx_equal_p (x, op0))
3315 /* (x & A) & x ~ (x & A). */
3316 return old;
3317 if (op1 == NULL)
3318 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3319 else if (rtx_equal_p (x, op1))
3320 /* (A & x) & x ~ (A & x). */
3321 return old;
3322 return gen_rtx_AND (0, op0, op1);
3323 }
3324 if (! add)
3325 return NULL;
3326 return gen_rtx_AND (0, old, x);
3327
3328 case NOT:
3329 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3330 if (op0 != NULL)
3331 return not_reg_cond (op0);
3332 if (! add)
3333 return NULL;
3334 return gen_rtx_AND (0, old, x);
3335
3336 default:
3337 gcc_unreachable ();
3338 }
3339 }
3340
3341 /* Given a condition X, remove references to reg REGNO and return the
3342 new condition. The removal will be done so that all conditions
3343 involving REGNO are considered to evaluate to false. This function
3344 is used when the value of REGNO changes. */
3345
3346 static rtx
3347 elim_reg_cond (rtx x, unsigned int regno)
3348 {
3349 rtx op0, op1;
3350
3351 if (COMPARISON_P (x))
3352 {
3353 if (REGNO (XEXP (x, 0)) == regno)
3354 return const0_rtx;
3355 return x;
3356 }
3357
3358 switch (GET_CODE (x))
3359 {
3360 case AND:
3361 op0 = elim_reg_cond (XEXP (x, 0), regno);
3362 op1 = elim_reg_cond (XEXP (x, 1), regno);
3363 if (op0 == const0_rtx || op1 == const0_rtx)
3364 return const0_rtx;
3365 if (op0 == const1_rtx)
3366 return op1;
3367 if (op1 == const1_rtx)
3368 return op0;
3369 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3370 return x;
3371 return gen_rtx_AND (0, op0, op1);
3372
3373 case IOR:
3374 op0 = elim_reg_cond (XEXP (x, 0), regno);
3375 op1 = elim_reg_cond (XEXP (x, 1), regno);
3376 if (op0 == const1_rtx || op1 == const1_rtx)
3377 return const1_rtx;
3378 if (op0 == const0_rtx)
3379 return op1;
3380 if (op1 == const0_rtx)
3381 return op0;
3382 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3383 return x;
3384 return gen_rtx_IOR (0, op0, op1);
3385
3386 case NOT:
3387 op0 = elim_reg_cond (XEXP (x, 0), regno);
3388 if (op0 == const0_rtx)
3389 return const1_rtx;
3390 if (op0 == const1_rtx)
3391 return const0_rtx;
3392 if (op0 != XEXP (x, 0))
3393 return not_reg_cond (op0);
3394 return x;
3395
3396 default:
3397 gcc_unreachable ();
3398 }
3399 }
3400 #endif /* HAVE_conditional_execution */
3401 \f
3402 #ifdef AUTO_INC_DEC
3403
3404 /* Try to substitute the auto-inc expression INC as the address inside
3405 MEM which occurs in INSN. Currently, the address of MEM is an expression
3406 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3407 that has a single set whose source is a PLUS of INCR_REG and something
3408 else. */
3409
3410 static void
3411 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3412 rtx mem, rtx incr, rtx incr_reg)
3413 {
3414 int regno = REGNO (incr_reg);
3415 rtx set = single_set (incr);
3416 rtx q = SET_DEST (set);
3417 rtx y = SET_SRC (set);
3418 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3419 int changed;
3420
3421 /* Make sure this reg appears only once in this insn. */
3422 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3423 return;
3424
3425 if (dead_or_set_p (incr, incr_reg)
3426 /* Mustn't autoinc an eliminable register. */
3427 && (regno >= FIRST_PSEUDO_REGISTER
3428 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3429 {
3430 /* This is the simple case. Try to make the auto-inc. If
3431 we can't, we are done. Otherwise, we will do any
3432 needed updates below. */
3433 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3434 return;
3435 }
3436 else if (REG_P (q)
3437 /* PREV_INSN used here to check the semi-open interval
3438 [insn,incr). */
3439 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3440 /* We must also check for sets of q as q may be
3441 a call clobbered hard register and there may
3442 be a call between PREV_INSN (insn) and incr. */
3443 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3444 {
3445 /* We have *p followed sometime later by q = p+size.
3446 Both p and q must be live afterward,
3447 and q is not used between INSN and its assignment.
3448 Change it to q = p, ...*q..., q = q+size.
3449 Then fall into the usual case. */
3450 rtx insns, temp;
3451
3452 start_sequence ();
3453 emit_move_insn (q, incr_reg);
3454 insns = get_insns ();
3455 end_sequence ();
3456
3457 /* If we can't make the auto-inc, or can't make the
3458 replacement into Y, exit. There's no point in making
3459 the change below if we can't do the auto-inc and doing
3460 so is not correct in the pre-inc case. */
3461
3462 XEXP (inc, 0) = q;
3463 validate_change (insn, &XEXP (mem, 0), inc, 1);
3464 validate_change (incr, &XEXP (y, opnum), q, 1);
3465 if (! apply_change_group ())
3466 return;
3467
3468 /* We now know we'll be doing this change, so emit the
3469 new insn(s) and do the updates. */
3470 emit_insn_before (insns, insn);
3471
3472 if (BB_HEAD (pbi->bb) == insn)
3473 BB_HEAD (pbi->bb) = insns;
3474
3475 /* INCR will become a NOTE and INSN won't contain a
3476 use of INCR_REG. If a use of INCR_REG was just placed in
3477 the insn before INSN, make that the next use.
3478 Otherwise, invalidate it. */
3479 if (NONJUMP_INSN_P (PREV_INSN (insn))
3480 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3481 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3482 pbi->reg_next_use[regno] = PREV_INSN (insn);
3483 else
3484 pbi->reg_next_use[regno] = 0;
3485
3486 incr_reg = q;
3487 regno = REGNO (q);
3488
3489 if ((pbi->flags & PROP_REG_INFO)
3490 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3491 reg_deaths[regno] = pbi->insn_num;
3492
3493 /* REGNO is now used in INCR which is below INSN, but
3494 it previously wasn't live here. If we don't mark
3495 it as live, we'll put a REG_DEAD note for it
3496 on this insn, which is incorrect. */
3497 SET_REGNO_REG_SET (pbi->reg_live, regno);
3498
3499 /* If there are any calls between INSN and INCR, show
3500 that REGNO now crosses them. */
3501 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3502 if (CALL_P (temp))
3503 REG_N_CALLS_CROSSED (regno)++;
3504
3505 /* Invalidate alias info for Q since we just changed its value. */
3506 clear_reg_alias_info (q);
3507 }
3508 else
3509 return;
3510
3511 /* If we haven't returned, it means we were able to make the
3512 auto-inc, so update the status. First, record that this insn
3513 has an implicit side effect. */
3514
3515 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3516
3517 /* Modify the old increment-insn to simply copy
3518 the already-incremented value of our register. */
3519 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3520 gcc_assert (changed);
3521
3522 /* If that makes it a no-op (copying the register into itself) delete
3523 it so it won't appear to be a "use" and a "set" of this
3524 register. */
3525 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3526 {
3527 /* If the original source was dead, it's dead now. */
3528 rtx note;
3529
3530 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3531 {
3532 remove_note (incr, note);
3533 if (XEXP (note, 0) != incr_reg)
3534 {
3535 unsigned int regno = REGNO (XEXP (note, 0));
3536
3537 if ((pbi->flags & PROP_REG_INFO)
3538 && REGNO_REG_SET_P (pbi->reg_live, regno))
3539 {
3540 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3541 reg_deaths[regno] = 0;
3542 }
3543 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3544 }
3545 }
3546
3547 SET_INSN_DELETED (incr);
3548 }
3549
3550 if (regno >= FIRST_PSEUDO_REGISTER)
3551 {
3552 /* Count an extra reference to the reg. When a reg is
3553 incremented, spilling it is worse, so we want to make
3554 that less likely. */
3555 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3556
3557 /* Count the increment as a setting of the register,
3558 even though it isn't a SET in rtl. */
3559 REG_N_SETS (regno)++;
3560 }
3561 }
3562
3563 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3564 reference. */
3565
3566 static void
3567 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3568 {
3569 rtx addr = XEXP (x, 0);
3570 HOST_WIDE_INT offset = 0;
3571 rtx set, y, incr, inc_val;
3572 int regno;
3573 int size = GET_MODE_SIZE (GET_MODE (x));
3574
3575 if (JUMP_P (insn))
3576 return;
3577
3578 /* Here we detect use of an index register which might be good for
3579 postincrement, postdecrement, preincrement, or predecrement. */
3580
3581 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3582 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3583
3584 if (!REG_P (addr))
3585 return;
3586
3587 regno = REGNO (addr);
3588
3589 /* Is the next use an increment that might make auto-increment? */
3590 incr = pbi->reg_next_use[regno];
3591 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3592 return;
3593 set = single_set (incr);
3594 if (set == 0 || GET_CODE (set) != SET)
3595 return;
3596 y = SET_SRC (set);
3597
3598 if (GET_CODE (y) != PLUS)
3599 return;
3600
3601 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3602 inc_val = XEXP (y, 1);
3603 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3604 inc_val = XEXP (y, 0);
3605 else
3606 return;
3607
3608 if (GET_CODE (inc_val) == CONST_INT)
3609 {
3610 if (HAVE_POST_INCREMENT
3611 && (INTVAL (inc_val) == size && offset == 0))
3612 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3613 incr, addr);
3614 else if (HAVE_POST_DECREMENT
3615 && (INTVAL (inc_val) == -size && offset == 0))
3616 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3617 incr, addr);
3618 else if (HAVE_PRE_INCREMENT
3619 && (INTVAL (inc_val) == size && offset == size))
3620 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3621 incr, addr);
3622 else if (HAVE_PRE_DECREMENT
3623 && (INTVAL (inc_val) == -size && offset == -size))
3624 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3625 incr, addr);
3626 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3627 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3628 gen_rtx_PLUS (Pmode,
3629 addr,
3630 inc_val)),
3631 insn, x, incr, addr);
3632 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3633 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3634 gen_rtx_PLUS (Pmode,
3635 addr,
3636 inc_val)),
3637 insn, x, incr, addr);
3638 }
3639 else if (REG_P (inc_val)
3640 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3641 NEXT_INSN (incr)))
3642
3643 {
3644 if (HAVE_POST_MODIFY_REG && offset == 0)
3645 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3646 gen_rtx_PLUS (Pmode,
3647 addr,
3648 inc_val)),
3649 insn, x, incr, addr);
3650 }
3651 }
3652
3653 #endif /* AUTO_INC_DEC */
3654 \f
3655 static void
3656 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3657 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3658 {
3659 unsigned int regno_first, regno_last, i;
3660 int some_was_live, some_was_dead, some_not_set;
3661
3662 regno_last = regno_first = REGNO (reg);
3663 if (regno_first < FIRST_PSEUDO_REGISTER)
3664 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3665
3666 /* Find out if any of this register is live after this instruction. */
3667 some_was_live = some_was_dead = 0;
3668 for (i = regno_first; i <= regno_last; ++i)
3669 {
3670 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3671 some_was_live |= needed_regno;
3672 some_was_dead |= ! needed_regno;
3673 }
3674
3675 /* Find out if any of the register was set this insn. */
3676 some_not_set = 0;
3677 for (i = regno_first; i <= regno_last; ++i)
3678 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3679
3680 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3681 {
3682 /* Record where each reg is used, so when the reg is set we know
3683 the next insn that uses it. */
3684 pbi->reg_next_use[regno_first] = insn;
3685 }
3686
3687 if (pbi->flags & PROP_REG_INFO)
3688 {
3689 if (regno_first < FIRST_PSEUDO_REGISTER)
3690 {
3691 /* If this is a register we are going to try to eliminate,
3692 don't mark it live here. If we are successful in
3693 eliminating it, it need not be live unless it is used for
3694 pseudos, in which case it will have been set live when it
3695 was allocated to the pseudos. If the register will not
3696 be eliminated, reload will set it live at that point.
3697
3698 Otherwise, record that this function uses this register. */
3699 /* ??? The PPC backend tries to "eliminate" on the pic
3700 register to itself. This should be fixed. In the mean
3701 time, hack around it. */
3702
3703 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3704 && (regno_first == FRAME_POINTER_REGNUM
3705 || regno_first == ARG_POINTER_REGNUM)))
3706 for (i = regno_first; i <= regno_last; ++i)
3707 regs_ever_live[i] = 1;
3708 }
3709 else
3710 {
3711 /* Keep track of which basic block each reg appears in. */
3712
3713 int blocknum = pbi->bb->index;
3714 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3715 REG_BASIC_BLOCK (regno_first) = blocknum;
3716 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3717 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3718
3719 /* Count (weighted) number of uses of each reg. */
3720 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3721 REG_N_REFS (regno_first)++;
3722 }
3723 for (i = regno_first; i <= regno_last; ++i)
3724 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3725 {
3726 gcc_assert (!reg_deaths[i]);
3727 reg_deaths[i] = pbi->insn_num;
3728 }
3729 }
3730
3731 /* Record and count the insns in which a reg dies. If it is used in
3732 this insn and was dead below the insn then it dies in this insn.
3733 If it was set in this insn, we do not make a REG_DEAD note;
3734 likewise if we already made such a note. */
3735 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3736 && some_was_dead
3737 && some_not_set)
3738 {
3739 /* Check for the case where the register dying partially
3740 overlaps the register set by this insn. */
3741 if (regno_first != regno_last)
3742 for (i = regno_first; i <= regno_last; ++i)
3743 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3744
3745 /* If none of the words in X is needed, make a REG_DEAD note.
3746 Otherwise, we must make partial REG_DEAD notes. */
3747 if (! some_was_live)
3748 {
3749 if ((pbi->flags & PROP_DEATH_NOTES)
3750 && ! find_regno_note (insn, REG_DEAD, regno_first))
3751 REG_NOTES (insn)
3752 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3753
3754 if (pbi->flags & PROP_REG_INFO)
3755 REG_N_DEATHS (regno_first)++;
3756 }
3757 else
3758 {
3759 /* Don't make a REG_DEAD note for a part of a register
3760 that is set in the insn. */
3761 for (i = regno_first; i <= regno_last; ++i)
3762 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3763 && ! dead_or_set_regno_p (insn, i))
3764 REG_NOTES (insn)
3765 = alloc_EXPR_LIST (REG_DEAD,
3766 regno_reg_rtx[i],
3767 REG_NOTES (insn));
3768 }
3769 }
3770
3771 /* Mark the register as being live. */
3772 for (i = regno_first; i <= regno_last; ++i)
3773 {
3774 #ifdef HAVE_conditional_execution
3775 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3776 #endif
3777
3778 SET_REGNO_REG_SET (pbi->reg_live, i);
3779
3780 #ifdef HAVE_conditional_execution
3781 /* If this is a conditional use, record that fact. If it is later
3782 conditionally set, we'll know to kill the register. */
3783 if (cond != NULL_RTX)
3784 {
3785 splay_tree_node node;
3786 struct reg_cond_life_info *rcli;
3787 rtx ncond;
3788
3789 if (this_was_live)
3790 {
3791 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3792 if (node == NULL)
3793 {
3794 /* The register was unconditionally live previously.
3795 No need to do anything. */
3796 }
3797 else
3798 {
3799 /* The register was conditionally live previously.
3800 Subtract the new life cond from the old death cond. */
3801 rcli = (struct reg_cond_life_info *) node->value;
3802 ncond = rcli->condition;
3803 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3804
3805 /* If the register is now unconditionally live,
3806 remove the entry in the splay_tree. */
3807 if (ncond == const0_rtx)
3808 splay_tree_remove (pbi->reg_cond_dead, i);
3809 else
3810 {
3811 rcli->condition = ncond;
3812 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3813 REGNO (XEXP (cond, 0)));
3814 }
3815 }
3816 }
3817 else
3818 {
3819 /* The register was not previously live at all. Record
3820 the condition under which it is still dead. */
3821 rcli = xmalloc (sizeof (*rcli));
3822 rcli->condition = not_reg_cond (cond);
3823 rcli->stores = const0_rtx;
3824 rcli->orig_condition = const0_rtx;
3825 splay_tree_insert (pbi->reg_cond_dead, i,
3826 (splay_tree_value) rcli);
3827
3828 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3829 }
3830 }
3831 else if (this_was_live)
3832 {
3833 /* The register may have been conditionally live previously, but
3834 is now unconditionally live. Remove it from the conditionally
3835 dead list, so that a conditional set won't cause us to think
3836 it dead. */
3837 splay_tree_remove (pbi->reg_cond_dead, i);
3838 }
3839 #endif
3840 }
3841 }
3842
3843 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3844 This is done assuming the registers needed from X are those that
3845 have 1-bits in PBI->REG_LIVE.
3846
3847 INSN is the containing instruction. If INSN is dead, this function
3848 is not called. */
3849
3850 static void
3851 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3852 {
3853 RTX_CODE code;
3854 int regno;
3855 int flags = pbi->flags;
3856
3857 retry:
3858 if (!x)
3859 return;
3860 code = GET_CODE (x);
3861 switch (code)
3862 {
3863 case LABEL_REF:
3864 case SYMBOL_REF:
3865 case CONST_INT:
3866 case CONST:
3867 case CONST_DOUBLE:
3868 case CONST_VECTOR:
3869 case PC:
3870 case ADDR_VEC:
3871 case ADDR_DIFF_VEC:
3872 return;
3873
3874 #ifdef HAVE_cc0
3875 case CC0:
3876 pbi->cc0_live = 1;
3877 return;
3878 #endif
3879
3880 case CLOBBER:
3881 /* If we are clobbering a MEM, mark any registers inside the address
3882 as being used. */
3883 if (MEM_P (XEXP (x, 0)))
3884 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3885 return;
3886
3887 case MEM:
3888 /* Don't bother watching stores to mems if this is not the
3889 final pass. We'll not be deleting dead stores this round. */
3890 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3891 {
3892 /* Invalidate the data for the last MEM stored, but only if MEM is
3893 something that can be stored into. */
3894 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3895 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3896 /* Needn't clear the memory set list. */
3897 ;
3898 else
3899 {
3900 rtx temp = pbi->mem_set_list;
3901 rtx prev = NULL_RTX;
3902 rtx next;
3903
3904 while (temp)
3905 {
3906 next = XEXP (temp, 1);
3907 if (anti_dependence (XEXP (temp, 0), x))
3908 {
3909 /* Splice temp out of the list. */
3910 if (prev)
3911 XEXP (prev, 1) = next;
3912 else
3913 pbi->mem_set_list = next;
3914 free_EXPR_LIST_node (temp);
3915 pbi->mem_set_list_len--;
3916 }
3917 else
3918 prev = temp;
3919 temp = next;
3920 }
3921 }
3922
3923 /* If the memory reference had embedded side effects (autoincrement
3924 address modes. Then we may need to kill some entries on the
3925 memory set list. */
3926 if (insn)
3927 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3928 }
3929
3930 #ifdef AUTO_INC_DEC
3931 if (flags & PROP_AUTOINC)
3932 find_auto_inc (pbi, x, insn);
3933 #endif
3934 break;
3935
3936 case SUBREG:
3937 #ifdef CANNOT_CHANGE_MODE_CLASS
3938 if (flags & PROP_REG_INFO)
3939 record_subregs_of_mode (x);
3940 #endif
3941
3942 /* While we're here, optimize this case. */
3943 x = SUBREG_REG (x);
3944 if (!REG_P (x))
3945 goto retry;
3946 /* Fall through. */
3947
3948 case REG:
3949 /* See a register other than being set => mark it as needed. */
3950 mark_used_reg (pbi, x, cond, insn);
3951 return;
3952
3953 case SET:
3954 {
3955 rtx testreg = SET_DEST (x);
3956 int mark_dest = 0;
3957
3958 /* If storing into MEM, don't show it as being used. But do
3959 show the address as being used. */
3960 if (MEM_P (testreg))
3961 {
3962 #ifdef AUTO_INC_DEC
3963 if (flags & PROP_AUTOINC)
3964 find_auto_inc (pbi, testreg, insn);
3965 #endif
3966 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3967 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3968 return;
3969 }
3970
3971 /* Storing in STRICT_LOW_PART is like storing in a reg
3972 in that this SET might be dead, so ignore it in TESTREG.
3973 but in some other ways it is like using the reg.
3974
3975 Storing in a SUBREG or a bit field is like storing the entire
3976 register in that if the register's value is not used
3977 then this SET is not needed. */
3978 while (GET_CODE (testreg) == STRICT_LOW_PART
3979 || GET_CODE (testreg) == ZERO_EXTRACT
3980 || GET_CODE (testreg) == SUBREG)
3981 {
3982 #ifdef CANNOT_CHANGE_MODE_CLASS
3983 if ((flags & PROP_REG_INFO) && GET_CODE (testreg) == SUBREG)
3984 record_subregs_of_mode (testreg);
3985 #endif
3986
3987 /* Modifying a single register in an alternate mode
3988 does not use any of the old value. But these other
3989 ways of storing in a register do use the old value. */
3990 if (GET_CODE (testreg) == SUBREG
3991 && !((REG_BYTES (SUBREG_REG (testreg))
3992 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3993 > (REG_BYTES (testreg)
3994 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3995 ;
3996 else
3997 mark_dest = 1;
3998
3999 testreg = XEXP (testreg, 0);
4000 }
4001
4002 /* If this is a store into a register or group of registers,
4003 recursively scan the value being stored. */
4004
4005 if ((GET_CODE (testreg) == PARALLEL
4006 && GET_MODE (testreg) == BLKmode)
4007 || (REG_P (testreg)
4008 && (regno = REGNO (testreg),
4009 ! (regno == FRAME_POINTER_REGNUM
4010 && (! reload_completed || frame_pointer_needed)))
4011 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4012 && ! (regno == HARD_FRAME_POINTER_REGNUM
4013 && (! reload_completed || frame_pointer_needed))
4014 #endif
4015 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4016 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
4017 #endif
4018 ))
4019 {
4020 if (mark_dest)
4021 mark_used_regs (pbi, SET_DEST (x), cond, insn);
4022 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4023 return;
4024 }
4025 }
4026 break;
4027
4028 case ASM_OPERANDS:
4029 case UNSPEC_VOLATILE:
4030 case TRAP_IF:
4031 case ASM_INPUT:
4032 {
4033 /* Traditional and volatile asm instructions must be considered to use
4034 and clobber all hard registers, all pseudo-registers and all of
4035 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4036
4037 Consider for instance a volatile asm that changes the fpu rounding
4038 mode. An insn should not be moved across this even if it only uses
4039 pseudo-regs because it might give an incorrectly rounded result.
4040
4041 ?!? Unfortunately, marking all hard registers as live causes massive
4042 problems for the register allocator and marking all pseudos as live
4043 creates mountains of uninitialized variable warnings.
4044
4045 So for now, just clear the memory set list and mark any regs
4046 we can find in ASM_OPERANDS as used. */
4047 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4048 {
4049 free_EXPR_LIST_list (&pbi->mem_set_list);
4050 pbi->mem_set_list_len = 0;
4051 }
4052
4053 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4054 We can not just fall through here since then we would be confused
4055 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4056 traditional asms unlike their normal usage. */
4057 if (code == ASM_OPERANDS)
4058 {
4059 int j;
4060
4061 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4062 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4063 }
4064 break;
4065 }
4066
4067 case COND_EXEC:
4068 gcc_assert (!cond);
4069
4070 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4071
4072 cond = COND_EXEC_TEST (x);
4073 x = COND_EXEC_CODE (x);
4074 goto retry;
4075
4076 default:
4077 break;
4078 }
4079
4080 /* Recursively scan the operands of this expression. */
4081
4082 {
4083 const char * const fmt = GET_RTX_FORMAT (code);
4084 int i;
4085
4086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4087 {
4088 if (fmt[i] == 'e')
4089 {
4090 /* Tail recursive case: save a function call level. */
4091 if (i == 0)
4092 {
4093 x = XEXP (x, 0);
4094 goto retry;
4095 }
4096 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4097 }
4098 else if (fmt[i] == 'E')
4099 {
4100 int j;
4101 for (j = 0; j < XVECLEN (x, i); j++)
4102 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4103 }
4104 }
4105 }
4106 }
4107 \f
4108 #ifdef AUTO_INC_DEC
4109
4110 static int
4111 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4112 {
4113 /* Find the next use of this reg. If in same basic block,
4114 make it do pre-increment or pre-decrement if appropriate. */
4115 rtx x = single_set (insn);
4116 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4117 * INTVAL (XEXP (SET_SRC (x), 1)));
4118 int regno = REGNO (SET_DEST (x));
4119 rtx y = pbi->reg_next_use[regno];
4120 if (y != 0
4121 && SET_DEST (x) != stack_pointer_rtx
4122 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4123 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4124 mode would be better. */
4125 && ! dead_or_set_p (y, SET_DEST (x))
4126 && try_pre_increment (y, SET_DEST (x), amount))
4127 {
4128 /* We have found a suitable auto-increment and already changed
4129 insn Y to do it. So flush this increment instruction. */
4130 propagate_block_delete_insn (insn);
4131
4132 /* Count a reference to this reg for the increment insn we are
4133 deleting. When a reg is incremented, spilling it is worse,
4134 so we want to make that less likely. */
4135 if (regno >= FIRST_PSEUDO_REGISTER)
4136 {
4137 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4138 REG_N_SETS (regno)++;
4139 }
4140
4141 /* Flush any remembered memories depending on the value of
4142 the incremented register. */
4143 invalidate_mems_from_set (pbi, SET_DEST (x));
4144
4145 return 1;
4146 }
4147 return 0;
4148 }
4149
4150 /* Try to change INSN so that it does pre-increment or pre-decrement
4151 addressing on register REG in order to add AMOUNT to REG.
4152 AMOUNT is negative for pre-decrement.
4153 Returns 1 if the change could be made.
4154 This checks all about the validity of the result of modifying INSN. */
4155
4156 static int
4157 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4158 {
4159 rtx use;
4160
4161 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4162 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4163 int pre_ok = 0;
4164 /* Nonzero if we can try to make a post-increment or post-decrement.
4165 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4166 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4167 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4168 int post_ok = 0;
4169
4170 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4171 int do_post = 0;
4172
4173 /* From the sign of increment, see which possibilities are conceivable
4174 on this target machine. */
4175 if (HAVE_PRE_INCREMENT && amount > 0)
4176 pre_ok = 1;
4177 if (HAVE_POST_INCREMENT && amount > 0)
4178 post_ok = 1;
4179
4180 if (HAVE_PRE_DECREMENT && amount < 0)
4181 pre_ok = 1;
4182 if (HAVE_POST_DECREMENT && amount < 0)
4183 post_ok = 1;
4184
4185 if (! (pre_ok || post_ok))
4186 return 0;
4187
4188 /* It is not safe to add a side effect to a jump insn
4189 because if the incremented register is spilled and must be reloaded
4190 there would be no way to store the incremented value back in memory. */
4191
4192 if (JUMP_P (insn))
4193 return 0;
4194
4195 use = 0;
4196 if (pre_ok)
4197 use = find_use_as_address (PATTERN (insn), reg, 0);
4198 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4199 {
4200 use = find_use_as_address (PATTERN (insn), reg, -amount);
4201 do_post = 1;
4202 }
4203
4204 if (use == 0 || use == (rtx) (size_t) 1)
4205 return 0;
4206
4207 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4208 return 0;
4209
4210 /* See if this combination of instruction and addressing mode exists. */
4211 if (! validate_change (insn, &XEXP (use, 0),
4212 gen_rtx_fmt_e (amount > 0
4213 ? (do_post ? POST_INC : PRE_INC)
4214 : (do_post ? POST_DEC : PRE_DEC),
4215 Pmode, reg), 0))
4216 return 0;
4217
4218 /* Record that this insn now has an implicit side effect on X. */
4219 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4220 return 1;
4221 }
4222
4223 #endif /* AUTO_INC_DEC */
4224 \f
4225 /* Find the place in the rtx X where REG is used as a memory address.
4226 Return the MEM rtx that so uses it.
4227 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4228 (plus REG (const_int PLUSCONST)).
4229
4230 If such an address does not appear, return 0.
4231 If REG appears more than once, or is used other than in such an address,
4232 return (rtx) 1. */
4233
4234 rtx
4235 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4236 {
4237 enum rtx_code code = GET_CODE (x);
4238 const char * const fmt = GET_RTX_FORMAT (code);
4239 int i;
4240 rtx value = 0;
4241 rtx tem;
4242
4243 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4244 return x;
4245
4246 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4247 && XEXP (XEXP (x, 0), 0) == reg
4248 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4249 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4250 return x;
4251
4252 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4253 {
4254 /* If REG occurs inside a MEM used in a bit-field reference,
4255 that is unacceptable. */
4256 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4257 return (rtx) (size_t) 1;
4258 }
4259
4260 if (x == reg)
4261 return (rtx) (size_t) 1;
4262
4263 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4264 {
4265 if (fmt[i] == 'e')
4266 {
4267 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4268 if (value == 0)
4269 value = tem;
4270 else if (tem != 0)
4271 return (rtx) (size_t) 1;
4272 }
4273 else if (fmt[i] == 'E')
4274 {
4275 int j;
4276 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4277 {
4278 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4279 if (value == 0)
4280 value = tem;
4281 else if (tem != 0)
4282 return (rtx) (size_t) 1;
4283 }
4284 }
4285 }
4286
4287 return value;
4288 }
4289 \f
4290 /* Write information about registers and basic blocks into FILE.
4291 This is part of making a debugging dump. */
4292
4293 void
4294 dump_regset (regset r, FILE *outf)
4295 {
4296 unsigned i;
4297 reg_set_iterator rsi;
4298
4299 if (r == NULL)
4300 {
4301 fputs (" (nil)", outf);
4302 return;
4303 }
4304
4305 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4306 {
4307 fprintf (outf, " %d", i);
4308 if (i < FIRST_PSEUDO_REGISTER)
4309 fprintf (outf, " [%s]",
4310 reg_names[i]);
4311 }
4312 }
4313
4314 /* Print a human-readable representation of R on the standard error
4315 stream. This function is designed to be used from within the
4316 debugger. */
4317
4318 void
4319 debug_regset (regset r)
4320 {
4321 dump_regset (r, stderr);
4322 putc ('\n', stderr);
4323 }
4324
4325 /* Recompute register set/reference counts immediately prior to register
4326 allocation.
4327
4328 This avoids problems with set/reference counts changing to/from values
4329 which have special meanings to the register allocators.
4330
4331 Additionally, the reference counts are the primary component used by the
4332 register allocators to prioritize pseudos for allocation to hard regs.
4333 More accurate reference counts generally lead to better register allocation.
4334
4335 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4336 possibly other information which is used by the register allocators. */
4337
4338 void
4339 recompute_reg_usage (void)
4340 {
4341 allocate_reg_life_data ();
4342 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4343 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4344 solve this update the DEATH_NOTES here. */
4345 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4346 }
4347
4348 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4349 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4350 of the number of registers that died. */
4351
4352 int
4353 count_or_remove_death_notes (sbitmap blocks, int kill)
4354 {
4355 int count = 0;
4356 int i;
4357 basic_block bb;
4358
4359 /* This used to be a loop over all the blocks with a membership test
4360 inside the loop. That can be amazingly expensive on a large CFG
4361 when only a small number of bits are set in BLOCKs (for example,
4362 the calls from the scheduler typically have very few bits set).
4363
4364 For extra credit, someone should convert BLOCKS to a bitmap rather
4365 than an sbitmap. */
4366 if (blocks)
4367 {
4368 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4369 {
4370 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4371 });
4372 }
4373 else
4374 {
4375 FOR_EACH_BB (bb)
4376 {
4377 count += count_or_remove_death_notes_bb (bb, kill);
4378 }
4379 }
4380
4381 return count;
4382 }
4383
4384 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4385 block BB. Returns a count of the number of registers that died. */
4386
4387 static int
4388 count_or_remove_death_notes_bb (basic_block bb, int kill)
4389 {
4390 int count = 0;
4391 rtx insn;
4392
4393 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4394 {
4395 if (INSN_P (insn))
4396 {
4397 rtx *pprev = &REG_NOTES (insn);
4398 rtx link = *pprev;
4399
4400 while (link)
4401 {
4402 switch (REG_NOTE_KIND (link))
4403 {
4404 case REG_DEAD:
4405 if (REG_P (XEXP (link, 0)))
4406 {
4407 rtx reg = XEXP (link, 0);
4408 int n;
4409
4410 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4411 n = 1;
4412 else
4413 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4414 count += n;
4415 }
4416
4417 /* Fall through. */
4418
4419 case REG_UNUSED:
4420 if (kill)
4421 {
4422 rtx next = XEXP (link, 1);
4423 free_EXPR_LIST_node (link);
4424 *pprev = link = next;
4425 break;
4426 }
4427 /* Fall through. */
4428
4429 default:
4430 pprev = &XEXP (link, 1);
4431 link = *pprev;
4432 break;
4433 }
4434 }
4435 }
4436
4437 if (insn == BB_END (bb))
4438 break;
4439 }
4440
4441 return count;
4442 }
4443
4444 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4445 if blocks is NULL. */
4446
4447 static void
4448 clear_log_links (sbitmap blocks)
4449 {
4450 rtx insn;
4451 int i;
4452
4453 if (!blocks)
4454 {
4455 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4456 if (INSN_P (insn))
4457 free_INSN_LIST_list (&LOG_LINKS (insn));
4458 }
4459 else
4460 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4461 {
4462 basic_block bb = BASIC_BLOCK (i);
4463
4464 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4465 insn = NEXT_INSN (insn))
4466 if (INSN_P (insn))
4467 free_INSN_LIST_list (&LOG_LINKS (insn));
4468 });
4469 }
4470
4471 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4472 correspond to the hard registers, if any, set in that map. This
4473 could be done far more efficiently by having all sorts of special-cases
4474 with moving single words, but probably isn't worth the trouble. */
4475
4476 void
4477 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4478 {
4479 unsigned i;
4480 bitmap_iterator bi;
4481
4482 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4483 {
4484 if (i >= FIRST_PSEUDO_REGISTER)
4485 return;
4486 SET_HARD_REG_BIT (*to, i);
4487 }
4488 }