flow.c (propagate_one_insn): Kill function return value registers across tail calls.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
141
142 #include "obstack.h"
143 #include "splay-tree.h"
144
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
152
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
162
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
172
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
178
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
181
182 /* Maximum register number used in this function, plus one. */
183
184 int max_regno;
185
186 /* Indexed by n, giving various register information */
187
188 varray_type reg_n_info;
189
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
192
193 int regset_bytes;
194 int regset_size;
195
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
198
199 regset regs_live_at_setjmp;
200
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
206
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
210
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
213
214 static HARD_REG_SET elim_reg_set;
215
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
218 {
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
223
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
227
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
230 };
231
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
234
235 struct propagate_block_info
236 {
237 /* The basic block we're considering. */
238 basic_block bb;
239
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
242
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
245
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
249
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
253
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
257
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
261
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
266
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
270
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
273
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
276
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
279 };
280
281 /* Number of dead insns removed. */
282 static int ndead;
283
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void debug_flow_info PARAMS ((void));
337 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
338 rtx));
339 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
340 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
341 rtx));
342 static void clear_log_links PARAMS ((sbitmap));
343 \f
344
345 void
346 check_function_return_warnings ()
347 {
348 if (warn_missing_noreturn
349 && !TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred == NULL
351 && (lang_missing_noreturn_ok_p
352 && !lang_missing_noreturn_ok_p (cfun->decl)))
353 warning ("function might be possible candidate for attribute `noreturn'");
354
355 /* If we have a path to EXIT, then we do return. */
356 if (TREE_THIS_VOLATILE (cfun->decl)
357 && EXIT_BLOCK_PTR->pred != NULL)
358 warning ("`noreturn' function does return");
359
360 /* If the clobber_return_insn appears in some basic block, then we
361 do reach the end without returning a value. */
362 else if (warn_return_type
363 && cfun->x_clobber_return_insn != NULL
364 && EXIT_BLOCK_PTR->pred != NULL)
365 {
366 int max_uid = get_max_uid ();
367
368 /* If clobber_return_insn was excised by jump1, then renumber_insns
369 can make max_uid smaller than the number still recorded in our rtx.
370 That's fine, since this is a quick way of verifying that the insn
371 is no longer in the chain. */
372 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
373 {
374 rtx insn;
375
376 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
377 if (insn == cfun->x_clobber_return_insn)
378 {
379 warning ("control reaches end of non-void function");
380 break;
381 }
382 }
383 }
384 }
385 \f
386 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
387 note associated with the BLOCK. */
388
389 rtx
390 first_insn_after_basic_block_note (block)
391 basic_block block;
392 {
393 rtx insn;
394
395 /* Get the first instruction in the block. */
396 insn = block->head;
397
398 if (insn == NULL_RTX)
399 return NULL_RTX;
400 if (GET_CODE (insn) == CODE_LABEL)
401 insn = NEXT_INSN (insn);
402 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
403 abort ();
404
405 return NEXT_INSN (insn);
406 }
407 \f
408 /* Perform data flow analysis.
409 F is the first insn of the function; FLAGS is a set of PROP_* flags
410 to be used in accumulating flow info. */
411
412 void
413 life_analysis (f, file, flags)
414 rtx f;
415 FILE *file;
416 int flags;
417 {
418 #ifdef ELIMINABLE_REGS
419 int i;
420 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
421 #endif
422
423 /* Record which registers will be eliminated. We use this in
424 mark_used_regs. */
425
426 CLEAR_HARD_REG_SET (elim_reg_set);
427
428 #ifdef ELIMINABLE_REGS
429 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
430 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
431 #else
432 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
433 #endif
434
435
436 #ifdef CANNOT_CHANGE_MODE_CLASS
437 if (flags & PROP_REG_INFO)
438 bitmap_initialize (&subregs_of_mode, 1);
439 #endif
440
441 if (! optimize)
442 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
443
444 /* The post-reload life analysis have (on a global basis) the same
445 registers live as was computed by reload itself. elimination
446 Otherwise offsets and such may be incorrect.
447
448 Reload will make some registers as live even though they do not
449 appear in the rtl.
450
451 We don't want to create new auto-incs after reload, since they
452 are unlikely to be useful and can cause problems with shared
453 stack slots. */
454 if (reload_completed)
455 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
456
457 /* We want alias analysis information for local dead store elimination. */
458 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
459 init_alias_analysis ();
460
461 /* Always remove no-op moves. Do this before other processing so
462 that we don't have to keep re-scanning them. */
463 delete_noop_moves (f);
464
465 /* Some targets can emit simpler epilogues if they know that sp was
466 not ever modified during the function. After reload, of course,
467 we've already emitted the epilogue so there's no sense searching. */
468 if (! reload_completed)
469 notice_stack_pointer_modification (f);
470
471 /* Allocate and zero out data structures that will record the
472 data from lifetime analysis. */
473 allocate_reg_life_data ();
474 allocate_bb_life_data ();
475
476 /* Find the set of registers live on function exit. */
477 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
478
479 /* "Update" life info from zero. It'd be nice to begin the
480 relaxation with just the exit and noreturn blocks, but that set
481 is not immediately handy. */
482
483 if (flags & PROP_REG_INFO)
484 memset (regs_ever_live, 0, sizeof (regs_ever_live));
485 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
486
487 /* Clean up. */
488 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
489 end_alias_analysis ();
490
491 if (file)
492 dump_flow_info (file);
493
494 free_basic_block_vars (1);
495
496 /* Removing dead insns should've made jumptables really dead. */
497 delete_dead_jumptables ();
498 }
499
500 /* A subroutine of verify_wide_reg, called through for_each_rtx.
501 Search for REGNO. If found, return 2 if it is not wider than
502 word_mode. */
503
504 static int
505 verify_wide_reg_1 (px, pregno)
506 rtx *px;
507 void *pregno;
508 {
509 rtx x = *px;
510 unsigned int regno = *(int *) pregno;
511
512 if (GET_CODE (x) == REG && REGNO (x) == regno)
513 {
514 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
515 return 2;
516 return 1;
517 }
518 return 0;
519 }
520
521 /* A subroutine of verify_local_live_at_start. Search through insns
522 of BB looking for register REGNO. */
523
524 static void
525 verify_wide_reg (regno, bb)
526 int regno;
527 basic_block bb;
528 {
529 rtx head = bb->head, end = bb->end;
530
531 while (1)
532 {
533 if (INSN_P (head))
534 {
535 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
536 if (r == 1)
537 return;
538 if (r == 2)
539 break;
540 }
541 if (head == end)
542 break;
543 head = NEXT_INSN (head);
544 }
545
546 if (rtl_dump_file)
547 {
548 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
549 dump_bb (bb, rtl_dump_file);
550 }
551 abort ();
552 }
553
554 /* A subroutine of update_life_info. Verify that there are no untoward
555 changes in live_at_start during a local update. */
556
557 static void
558 verify_local_live_at_start (new_live_at_start, bb)
559 regset new_live_at_start;
560 basic_block bb;
561 {
562 if (reload_completed)
563 {
564 /* After reload, there are no pseudos, nor subregs of multi-word
565 registers. The regsets should exactly match. */
566 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
567 {
568 if (rtl_dump_file)
569 {
570 fprintf (rtl_dump_file,
571 "live_at_start mismatch in bb %d, aborting\nNew:\n",
572 bb->index);
573 debug_bitmap_file (rtl_dump_file, new_live_at_start);
574 fputs ("Old:\n", rtl_dump_file);
575 dump_bb (bb, rtl_dump_file);
576 }
577 abort ();
578 }
579 }
580 else
581 {
582 int i;
583
584 /* Find the set of changed registers. */
585 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
586
587 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
588 {
589 /* No registers should die. */
590 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
591 {
592 if (rtl_dump_file)
593 {
594 fprintf (rtl_dump_file,
595 "Register %d died unexpectedly.\n", i);
596 dump_bb (bb, rtl_dump_file);
597 }
598 abort ();
599 }
600
601 /* Verify that the now-live register is wider than word_mode. */
602 verify_wide_reg (i, bb);
603 });
604 }
605 }
606
607 /* Updates life information starting with the basic blocks set in BLOCKS.
608 If BLOCKS is null, consider it to be the universal set.
609
610 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
611 we are only expecting local modifications to basic blocks. If we find
612 extra registers live at the beginning of a block, then we either killed
613 useful data, or we have a broken split that wants data not provided.
614 If we find registers removed from live_at_start, that means we have
615 a broken peephole that is killing a register it shouldn't.
616
617 ??? This is not true in one situation -- when a pre-reload splitter
618 generates subregs of a multi-word pseudo, current life analysis will
619 lose the kill. So we _can_ have a pseudo go live. How irritating.
620
621 Including PROP_REG_INFO does not properly refresh regs_ever_live
622 unless the caller resets it to zero. */
623
624 int
625 update_life_info (blocks, extent, prop_flags)
626 sbitmap blocks;
627 enum update_life_extent extent;
628 int prop_flags;
629 {
630 regset tmp;
631 regset_head tmp_head;
632 int i;
633 int stabilized_prop_flags = prop_flags;
634 basic_block bb;
635
636 tmp = INITIALIZE_REG_SET (tmp_head);
637 ndead = 0;
638
639 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
640 ? TV_LIFE_UPDATE : TV_LIFE);
641
642 /* Changes to the CFG are only allowed when
643 doing a global update for the entire CFG. */
644 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
645 && (extent == UPDATE_LIFE_LOCAL || blocks))
646 abort ();
647
648 /* For a global update, we go through the relaxation process again. */
649 if (extent != UPDATE_LIFE_LOCAL)
650 {
651 for ( ; ; )
652 {
653 int changed = 0;
654
655 calculate_global_regs_live (blocks, blocks,
656 prop_flags & (PROP_SCAN_DEAD_CODE
657 | PROP_SCAN_DEAD_STORES
658 | PROP_ALLOW_CFG_CHANGES));
659
660 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
661 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
662 break;
663
664 /* Removing dead code may allow the CFG to be simplified which
665 in turn may allow for further dead code detection / removal. */
666 FOR_EACH_BB_REVERSE (bb)
667 {
668 COPY_REG_SET (tmp, bb->global_live_at_end);
669 changed |= propagate_block (bb, tmp, NULL, NULL,
670 prop_flags & (PROP_SCAN_DEAD_CODE
671 | PROP_SCAN_DEAD_STORES
672 | PROP_KILL_DEAD_CODE));
673 }
674
675 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
676 subsequent propagate_block calls, since removing or acting as
677 removing dead code can affect global register liveness, which
678 is supposed to be finalized for this call after this loop. */
679 stabilized_prop_flags
680 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
681 | PROP_KILL_DEAD_CODE);
682
683 if (! changed)
684 break;
685
686 /* We repeat regardless of what cleanup_cfg says. If there were
687 instructions deleted above, that might have been only a
688 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
689 Further improvement may be possible. */
690 cleanup_cfg (CLEANUP_EXPENSIVE);
691
692 /* Zap the life information from the last round. If we don't
693 do this, we can wind up with registers that no longer appear
694 in the code being marked live at entry, which twiggs bogus
695 warnings from regno_uninitialized. */
696 FOR_EACH_BB (bb)
697 {
698 CLEAR_REG_SET (bb->global_live_at_start);
699 CLEAR_REG_SET (bb->global_live_at_end);
700 }
701 }
702
703 /* If asked, remove notes from the blocks we'll update. */
704 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
705 count_or_remove_death_notes (blocks, 1);
706 }
707
708 /* Clear log links in case we are asked to (re)compute them. */
709 if (prop_flags & PROP_LOG_LINKS)
710 clear_log_links (blocks);
711
712 if (blocks)
713 {
714 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
715 {
716 bb = BASIC_BLOCK (i);
717
718 COPY_REG_SET (tmp, bb->global_live_at_end);
719 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
720
721 if (extent == UPDATE_LIFE_LOCAL)
722 verify_local_live_at_start (tmp, bb);
723 });
724 }
725 else
726 {
727 FOR_EACH_BB_REVERSE (bb)
728 {
729 COPY_REG_SET (tmp, bb->global_live_at_end);
730
731 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
732
733 if (extent == UPDATE_LIFE_LOCAL)
734 verify_local_live_at_start (tmp, bb);
735 }
736 }
737
738 FREE_REG_SET (tmp);
739
740 if (prop_flags & PROP_REG_INFO)
741 {
742 /* The only pseudos that are live at the beginning of the function
743 are those that were not set anywhere in the function. local-alloc
744 doesn't know how to handle these correctly, so mark them as not
745 local to any one basic block. */
746 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
747 FIRST_PSEUDO_REGISTER, i,
748 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
749
750 /* We have a problem with any pseudoreg that lives across the setjmp.
751 ANSI says that if a user variable does not change in value between
752 the setjmp and the longjmp, then the longjmp preserves it. This
753 includes longjmp from a place where the pseudo appears dead.
754 (In principle, the value still exists if it is in scope.)
755 If the pseudo goes in a hard reg, some other value may occupy
756 that hard reg where this pseudo is dead, thus clobbering the pseudo.
757 Conclusion: such a pseudo must not go in a hard reg. */
758 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
759 FIRST_PSEUDO_REGISTER, i,
760 {
761 if (regno_reg_rtx[i] != 0)
762 {
763 REG_LIVE_LENGTH (i) = -1;
764 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
765 }
766 });
767 }
768 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
769 ? TV_LIFE_UPDATE : TV_LIFE);
770 if (ndead && rtl_dump_file)
771 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
772 return ndead;
773 }
774
775 /* Update life information in all blocks where BB_DIRTY is set. */
776
777 int
778 update_life_info_in_dirty_blocks (extent, prop_flags)
779 enum update_life_extent extent;
780 int prop_flags;
781 {
782 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
783 int n = 0;
784 basic_block bb;
785 int retval = 0;
786
787 sbitmap_zero (update_life_blocks);
788 FOR_EACH_BB (bb)
789 {
790 if (extent == UPDATE_LIFE_LOCAL)
791 {
792 if (bb->flags & BB_DIRTY)
793 {
794 SET_BIT (update_life_blocks, bb->index);
795 n++;
796 }
797 }
798 else
799 {
800 /* ??? Bootstrap with -march=pentium4 fails to terminate
801 with only a partial life update. */
802 SET_BIT (update_life_blocks, bb->index);
803 if (bb->flags & BB_DIRTY)
804 n++;
805 }
806 }
807
808 if (n)
809 retval = update_life_info (update_life_blocks, extent, prop_flags);
810
811 sbitmap_free (update_life_blocks);
812 return retval;
813 }
814
815 /* Free the variables allocated by find_basic_blocks.
816
817 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
818
819 void
820 free_basic_block_vars (keep_head_end_p)
821 int keep_head_end_p;
822 {
823 if (! keep_head_end_p)
824 {
825 if (basic_block_info)
826 {
827 clear_edges ();
828 VARRAY_FREE (basic_block_info);
829 }
830 n_basic_blocks = 0;
831 last_basic_block = 0;
832
833 ENTRY_BLOCK_PTR->aux = NULL;
834 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
835 EXIT_BLOCK_PTR->aux = NULL;
836 EXIT_BLOCK_PTR->global_live_at_start = NULL;
837 }
838 }
839
840 /* Delete any insns that copy a register to itself. */
841
842 int
843 delete_noop_moves (f)
844 rtx f ATTRIBUTE_UNUSED;
845 {
846 rtx insn, next;
847 basic_block bb;
848 int nnoops = 0;
849
850 FOR_EACH_BB (bb)
851 {
852 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
853 {
854 next = NEXT_INSN (insn);
855 if (INSN_P (insn) && noop_move_p (insn))
856 {
857 rtx note;
858
859 /* If we're about to remove the first insn of a libcall
860 then move the libcall note to the next real insn and
861 update the retval note. */
862 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
863 && XEXP (note, 0) != insn)
864 {
865 rtx new_libcall_insn = next_real_insn (insn);
866 rtx retval_note = find_reg_note (XEXP (note, 0),
867 REG_RETVAL, NULL_RTX);
868 REG_NOTES (new_libcall_insn)
869 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
870 REG_NOTES (new_libcall_insn));
871 XEXP (retval_note, 0) = new_libcall_insn;
872 }
873
874 delete_insn_and_edges (insn);
875 nnoops++;
876 }
877 }
878 }
879 if (nnoops && rtl_dump_file)
880 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
881 return nnoops;
882 }
883
884 /* Delete any jump tables never referenced. We can't delete them at the
885 time of removing tablejump insn as they are referenced by the preceding
886 insns computing the destination, so we delay deleting and garbagecollect
887 them once life information is computed. */
888 void
889 delete_dead_jumptables ()
890 {
891 rtx insn, next;
892 for (insn = get_insns (); insn; insn = next)
893 {
894 next = NEXT_INSN (insn);
895 if (GET_CODE (insn) == CODE_LABEL
896 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
897 && GET_CODE (next) == JUMP_INSN
898 && (GET_CODE (PATTERN (next)) == ADDR_VEC
899 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
900 {
901 if (rtl_dump_file)
902 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
903 delete_insn (NEXT_INSN (insn));
904 delete_insn (insn);
905 next = NEXT_INSN (next);
906 }
907 }
908 }
909
910 /* Determine if the stack pointer is constant over the life of the function.
911 Only useful before prologues have been emitted. */
912
913 static void
914 notice_stack_pointer_modification_1 (x, pat, data)
915 rtx x;
916 rtx pat ATTRIBUTE_UNUSED;
917 void *data ATTRIBUTE_UNUSED;
918 {
919 if (x == stack_pointer_rtx
920 /* The stack pointer is only modified indirectly as the result
921 of a push until later in flow. See the comments in rtl.texi
922 regarding Embedded Side-Effects on Addresses. */
923 || (GET_CODE (x) == MEM
924 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
925 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
926 current_function_sp_is_unchanging = 0;
927 }
928
929 static void
930 notice_stack_pointer_modification (f)
931 rtx f;
932 {
933 rtx insn;
934
935 /* Assume that the stack pointer is unchanging if alloca hasn't
936 been used. */
937 current_function_sp_is_unchanging = !current_function_calls_alloca;
938 if (! current_function_sp_is_unchanging)
939 return;
940
941 for (insn = f; insn; insn = NEXT_INSN (insn))
942 {
943 if (INSN_P (insn))
944 {
945 /* Check if insn modifies the stack pointer. */
946 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
947 NULL);
948 if (! current_function_sp_is_unchanging)
949 return;
950 }
951 }
952 }
953
954 /* Mark a register in SET. Hard registers in large modes get all
955 of their component registers set as well. */
956
957 static void
958 mark_reg (reg, xset)
959 rtx reg;
960 void *xset;
961 {
962 regset set = (regset) xset;
963 int regno = REGNO (reg);
964
965 if (GET_MODE (reg) == BLKmode)
966 abort ();
967
968 SET_REGNO_REG_SET (set, regno);
969 if (regno < FIRST_PSEUDO_REGISTER)
970 {
971 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
972 while (--n > 0)
973 SET_REGNO_REG_SET (set, regno + n);
974 }
975 }
976
977 /* Mark those regs which are needed at the end of the function as live
978 at the end of the last basic block. */
979
980 static void
981 mark_regs_live_at_end (set)
982 regset set;
983 {
984 unsigned int i;
985
986 /* If exiting needs the right stack value, consider the stack pointer
987 live at the end of the function. */
988 if ((HAVE_epilogue && epilogue_completed)
989 || ! EXIT_IGNORE_STACK
990 || (! FRAME_POINTER_REQUIRED
991 && ! current_function_calls_alloca
992 && flag_omit_frame_pointer)
993 || current_function_sp_is_unchanging)
994 {
995 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
996 }
997
998 /* Mark the frame pointer if needed at the end of the function. If
999 we end up eliminating it, it will be removed from the live list
1000 of each basic block by reload. */
1001
1002 if (! reload_completed || frame_pointer_needed)
1003 {
1004 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1005 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1006 /* If they are different, also mark the hard frame pointer as live. */
1007 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1008 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1009 #endif
1010 }
1011
1012 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1013 /* Many architectures have a GP register even without flag_pic.
1014 Assume the pic register is not in use, or will be handled by
1015 other means, if it is not fixed. */
1016 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1017 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1018 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1019 #endif
1020
1021 /* Mark all global registers, and all registers used by the epilogue
1022 as being live at the end of the function since they may be
1023 referenced by our caller. */
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1025 if (global_regs[i] || EPILOGUE_USES (i))
1026 SET_REGNO_REG_SET (set, i);
1027
1028 if (HAVE_epilogue && epilogue_completed)
1029 {
1030 /* Mark all call-saved registers that we actually used. */
1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1032 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1033 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1034 SET_REGNO_REG_SET (set, i);
1035 }
1036
1037 #ifdef EH_RETURN_DATA_REGNO
1038 /* Mark the registers that will contain data for the handler. */
1039 if (reload_completed && current_function_calls_eh_return)
1040 for (i = 0; ; ++i)
1041 {
1042 unsigned regno = EH_RETURN_DATA_REGNO(i);
1043 if (regno == INVALID_REGNUM)
1044 break;
1045 SET_REGNO_REG_SET (set, regno);
1046 }
1047 #endif
1048 #ifdef EH_RETURN_STACKADJ_RTX
1049 if ((! HAVE_epilogue || ! epilogue_completed)
1050 && current_function_calls_eh_return)
1051 {
1052 rtx tmp = EH_RETURN_STACKADJ_RTX;
1053 if (tmp && REG_P (tmp))
1054 mark_reg (tmp, set);
1055 }
1056 #endif
1057 #ifdef EH_RETURN_HANDLER_RTX
1058 if ((! HAVE_epilogue || ! epilogue_completed)
1059 && current_function_calls_eh_return)
1060 {
1061 rtx tmp = EH_RETURN_HANDLER_RTX;
1062 if (tmp && REG_P (tmp))
1063 mark_reg (tmp, set);
1064 }
1065 #endif
1066
1067 /* Mark function return value. */
1068 diddle_return_value (mark_reg, set);
1069 }
1070
1071 /* Callback function for for_each_successor_phi. DATA is a regset.
1072 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1073 INSN, in the regset. */
1074
1075 static int
1076 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1077 rtx insn ATTRIBUTE_UNUSED;
1078 int dest_regno ATTRIBUTE_UNUSED;
1079 int src_regno;
1080 void *data;
1081 {
1082 regset live = (regset) data;
1083 SET_REGNO_REG_SET (live, src_regno);
1084 return 0;
1085 }
1086
1087 /* Propagate global life info around the graph of basic blocks. Begin
1088 considering blocks with their corresponding bit set in BLOCKS_IN.
1089 If BLOCKS_IN is null, consider it the universal set.
1090
1091 BLOCKS_OUT is set for every block that was changed. */
1092
1093 static void
1094 calculate_global_regs_live (blocks_in, blocks_out, flags)
1095 sbitmap blocks_in, blocks_out;
1096 int flags;
1097 {
1098 basic_block *queue, *qhead, *qtail, *qend, bb;
1099 regset tmp, new_live_at_end, invalidated_by_call;
1100 regset_head tmp_head, invalidated_by_call_head;
1101 regset_head new_live_at_end_head;
1102 int i;
1103
1104 /* Some passes used to forget clear aux field of basic block causing
1105 sick behavior here. */
1106 #ifdef ENABLE_CHECKING
1107 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1108 if (bb->aux)
1109 abort ();
1110 #endif
1111
1112 tmp = INITIALIZE_REG_SET (tmp_head);
1113 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1114 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1115
1116 /* Inconveniently, this is only readily available in hard reg set form. */
1117 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1119 SET_REGNO_REG_SET (invalidated_by_call, i);
1120
1121 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1122 because the `head == tail' style test for an empty queue doesn't
1123 work with a full queue. */
1124 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1125 qtail = queue;
1126 qhead = qend = queue + n_basic_blocks + 2;
1127
1128 /* Queue the blocks set in the initial mask. Do this in reverse block
1129 number order so that we are more likely for the first round to do
1130 useful work. We use AUX non-null to flag that the block is queued. */
1131 if (blocks_in)
1132 {
1133 FOR_EACH_BB (bb)
1134 if (TEST_BIT (blocks_in, bb->index))
1135 {
1136 *--qhead = bb;
1137 bb->aux = bb;
1138 }
1139 }
1140 else
1141 {
1142 FOR_EACH_BB (bb)
1143 {
1144 *--qhead = bb;
1145 bb->aux = bb;
1146 }
1147 }
1148
1149 /* We clean aux when we remove the initially-enqueued bbs, but we
1150 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1151 unconditionally. */
1152 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1153
1154 if (blocks_out)
1155 sbitmap_zero (blocks_out);
1156
1157 /* We work through the queue until there are no more blocks. What
1158 is live at the end of this block is precisely the union of what
1159 is live at the beginning of all its successors. So, we set its
1160 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1161 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1162 this block by walking through the instructions in this block in
1163 reverse order and updating as we go. If that changed
1164 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1165 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1166
1167 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1168 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1169 must either be live at the end of the block, or used within the
1170 block. In the latter case, it will certainly never disappear
1171 from GLOBAL_LIVE_AT_START. In the former case, the register
1172 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1173 for one of the successor blocks. By induction, that cannot
1174 occur. */
1175 while (qhead != qtail)
1176 {
1177 int rescan, changed;
1178 basic_block bb;
1179 edge e;
1180
1181 bb = *qhead++;
1182 if (qhead == qend)
1183 qhead = queue;
1184 bb->aux = NULL;
1185
1186 /* Begin by propagating live_at_start from the successor blocks. */
1187 CLEAR_REG_SET (new_live_at_end);
1188
1189 if (bb->succ)
1190 for (e = bb->succ; e; e = e->succ_next)
1191 {
1192 basic_block sb = e->dest;
1193
1194 /* Call-clobbered registers die across exception and
1195 call edges. */
1196 /* ??? Abnormal call edges ignored for the moment, as this gets
1197 confused by sibling call edges, which crashes reg-stack. */
1198 if (e->flags & EDGE_EH)
1199 {
1200 bitmap_operation (tmp, sb->global_live_at_start,
1201 invalidated_by_call, BITMAP_AND_COMPL);
1202 IOR_REG_SET (new_live_at_end, tmp);
1203 }
1204 else
1205 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1206
1207 /* If a target saves one register in another (instead of on
1208 the stack) the save register will need to be live for EH. */
1209 if (e->flags & EDGE_EH)
1210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1211 if (EH_USES (i))
1212 SET_REGNO_REG_SET (new_live_at_end, i);
1213 }
1214 else
1215 {
1216 /* This might be a noreturn function that throws. And
1217 even if it isn't, getting the unwind info right helps
1218 debugging. */
1219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1220 if (EH_USES (i))
1221 SET_REGNO_REG_SET (new_live_at_end, i);
1222 }
1223
1224 /* The all-important stack pointer must always be live. */
1225 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1226
1227 /* Before reload, there are a few registers that must be forced
1228 live everywhere -- which might not already be the case for
1229 blocks within infinite loops. */
1230 if (! reload_completed)
1231 {
1232 /* Any reference to any pseudo before reload is a potential
1233 reference of the frame pointer. */
1234 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1235
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 /* Pseudos with argument area equivalences may require
1238 reloading via the argument pointer. */
1239 if (fixed_regs[ARG_POINTER_REGNUM])
1240 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1241 #endif
1242
1243 /* Any constant, or pseudo with constant equivalences, may
1244 require reloading from memory using the pic register. */
1245 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1246 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1247 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1248 }
1249
1250 /* Regs used in phi nodes are not included in
1251 global_live_at_start, since they are live only along a
1252 particular edge. Set those regs that are live because of a
1253 phi node alternative corresponding to this particular block. */
1254 if (in_ssa_form)
1255 for_each_successor_phi (bb, &set_phi_alternative_reg,
1256 new_live_at_end);
1257
1258 if (bb == ENTRY_BLOCK_PTR)
1259 {
1260 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1261 continue;
1262 }
1263
1264 /* On our first pass through this block, we'll go ahead and continue.
1265 Recognize first pass by local_set NULL. On subsequent passes, we
1266 get to skip out early if live_at_end wouldn't have changed. */
1267
1268 if (bb->local_set == NULL)
1269 {
1270 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1271 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1272 rescan = 1;
1273 }
1274 else
1275 {
1276 /* If any bits were removed from live_at_end, we'll have to
1277 rescan the block. This wouldn't be necessary if we had
1278 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1279 local_live is really dependent on live_at_end. */
1280 CLEAR_REG_SET (tmp);
1281 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1282 new_live_at_end, BITMAP_AND_COMPL);
1283
1284 if (! rescan)
1285 {
1286 /* If any of the registers in the new live_at_end set are
1287 conditionally set in this basic block, we must rescan.
1288 This is because conditional lifetimes at the end of the
1289 block do not just take the live_at_end set into account,
1290 but also the liveness at the start of each successor
1291 block. We can miss changes in those sets if we only
1292 compare the new live_at_end against the previous one. */
1293 CLEAR_REG_SET (tmp);
1294 rescan = bitmap_operation (tmp, new_live_at_end,
1295 bb->cond_local_set, BITMAP_AND);
1296 }
1297
1298 if (! rescan)
1299 {
1300 /* Find the set of changed bits. Take this opportunity
1301 to notice that this set is empty and early out. */
1302 CLEAR_REG_SET (tmp);
1303 changed = bitmap_operation (tmp, bb->global_live_at_end,
1304 new_live_at_end, BITMAP_XOR);
1305 if (! changed)
1306 continue;
1307
1308 /* If any of the changed bits overlap with local_set,
1309 we'll have to rescan the block. Detect overlap by
1310 the AND with ~local_set turning off bits. */
1311 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1312 BITMAP_AND_COMPL);
1313 }
1314 }
1315
1316 /* Let our caller know that BB changed enough to require its
1317 death notes updated. */
1318 if (blocks_out)
1319 SET_BIT (blocks_out, bb->index);
1320
1321 if (! rescan)
1322 {
1323 /* Add to live_at_start the set of all registers in
1324 new_live_at_end that aren't in the old live_at_end. */
1325
1326 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1327 BITMAP_AND_COMPL);
1328 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1329
1330 changed = bitmap_operation (bb->global_live_at_start,
1331 bb->global_live_at_start,
1332 tmp, BITMAP_IOR);
1333 if (! changed)
1334 continue;
1335 }
1336 else
1337 {
1338 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1339
1340 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1341 into live_at_start. */
1342 propagate_block (bb, new_live_at_end, bb->local_set,
1343 bb->cond_local_set, flags);
1344
1345 /* If live_at start didn't change, no need to go farther. */
1346 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1347 continue;
1348
1349 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1350 }
1351
1352 /* Queue all predecessors of BB so that we may re-examine
1353 their live_at_end. */
1354 for (e = bb->pred; e; e = e->pred_next)
1355 {
1356 basic_block pb = e->src;
1357 if (pb->aux == NULL)
1358 {
1359 *qtail++ = pb;
1360 if (qtail == qend)
1361 qtail = queue;
1362 pb->aux = pb;
1363 }
1364 }
1365 }
1366
1367 FREE_REG_SET (tmp);
1368 FREE_REG_SET (new_live_at_end);
1369 FREE_REG_SET (invalidated_by_call);
1370
1371 if (blocks_out)
1372 {
1373 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1374 {
1375 basic_block bb = BASIC_BLOCK (i);
1376 FREE_REG_SET (bb->local_set);
1377 FREE_REG_SET (bb->cond_local_set);
1378 });
1379 }
1380 else
1381 {
1382 FOR_EACH_BB (bb)
1383 {
1384 FREE_REG_SET (bb->local_set);
1385 FREE_REG_SET (bb->cond_local_set);
1386 }
1387 }
1388
1389 free (queue);
1390 }
1391
1392 \f
1393 /* This structure is used to pass parameters to and from the
1394 the function find_regno_partial(). It is used to pass in the
1395 register number we are looking, as well as to return any rtx
1396 we find. */
1397
1398 typedef struct {
1399 unsigned regno_to_find;
1400 rtx retval;
1401 } find_regno_partial_param;
1402
1403
1404 /* Find the rtx for the reg numbers specified in 'data' if it is
1405 part of an expression which only uses part of the register. Return
1406 it in the structure passed in. */
1407 static int
1408 find_regno_partial (ptr, data)
1409 rtx *ptr;
1410 void *data;
1411 {
1412 find_regno_partial_param *param = (find_regno_partial_param *)data;
1413 unsigned reg = param->regno_to_find;
1414 param->retval = NULL_RTX;
1415
1416 if (*ptr == NULL_RTX)
1417 return 0;
1418
1419 switch (GET_CODE (*ptr))
1420 {
1421 case ZERO_EXTRACT:
1422 case SIGN_EXTRACT:
1423 case STRICT_LOW_PART:
1424 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1425 {
1426 param->retval = XEXP (*ptr, 0);
1427 return 1;
1428 }
1429 break;
1430
1431 case SUBREG:
1432 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1433 && REGNO (SUBREG_REG (*ptr)) == reg)
1434 {
1435 param->retval = SUBREG_REG (*ptr);
1436 return 1;
1437 }
1438 break;
1439
1440 default:
1441 break;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* Process all immediate successors of the entry block looking for pseudo
1448 registers which are live on entry. Find all of those whose first
1449 instance is a partial register reference of some kind, and initialize
1450 them to 0 after the entry block. This will prevent bit sets within
1451 registers whose value is unknown, and may contain some kind of sticky
1452 bits we don't want. */
1453
1454 int
1455 initialize_uninitialized_subregs ()
1456 {
1457 rtx insn;
1458 edge e;
1459 int reg, did_something = 0;
1460 find_regno_partial_param param;
1461
1462 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1463 {
1464 basic_block bb = e->dest;
1465 regset map = bb->global_live_at_start;
1466 EXECUTE_IF_SET_IN_REG_SET (map,
1467 FIRST_PSEUDO_REGISTER, reg,
1468 {
1469 int uid = REGNO_FIRST_UID (reg);
1470 rtx i;
1471
1472 /* Find an insn which mentions the register we are looking for.
1473 Its preferable to have an instance of the register's rtl since
1474 there may be various flags set which we need to duplicate.
1475 If we can't find it, its probably an automatic whose initial
1476 value doesn't matter, or hopefully something we don't care about. */
1477 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1478 ;
1479 if (i != NULL_RTX)
1480 {
1481 /* Found the insn, now get the REG rtx, if we can. */
1482 param.regno_to_find = reg;
1483 for_each_rtx (&i, find_regno_partial, &param);
1484 if (param.retval != NULL_RTX)
1485 {
1486 start_sequence ();
1487 emit_move_insn (param.retval,
1488 CONST0_RTX (GET_MODE (param.retval)));
1489 insn = get_insns ();
1490 end_sequence ();
1491 insert_insn_on_edge (insn, e);
1492 did_something = 1;
1493 }
1494 }
1495 });
1496 }
1497
1498 if (did_something)
1499 commit_edge_insertions ();
1500 return did_something;
1501 }
1502
1503 \f
1504 /* Subroutines of life analysis. */
1505
1506 /* Allocate the permanent data structures that represent the results
1507 of life analysis. Not static since used also for stupid life analysis. */
1508
1509 void
1510 allocate_bb_life_data ()
1511 {
1512 basic_block bb;
1513
1514 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1515 {
1516 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1517 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1518 }
1519
1520 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1521 }
1522
1523 void
1524 allocate_reg_life_data ()
1525 {
1526 int i;
1527
1528 max_regno = max_reg_num ();
1529
1530 /* Recalculate the register space, in case it has grown. Old style
1531 vector oriented regsets would set regset_{size,bytes} here also. */
1532 allocate_reg_info (max_regno, FALSE, FALSE);
1533
1534 /* Reset all the data we'll collect in propagate_block and its
1535 subroutines. */
1536 for (i = 0; i < max_regno; i++)
1537 {
1538 REG_N_SETS (i) = 0;
1539 REG_N_REFS (i) = 0;
1540 REG_N_DEATHS (i) = 0;
1541 REG_N_CALLS_CROSSED (i) = 0;
1542 REG_LIVE_LENGTH (i) = 0;
1543 REG_FREQ (i) = 0;
1544 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1545 }
1546 }
1547
1548 /* Delete dead instructions for propagate_block. */
1549
1550 static void
1551 propagate_block_delete_insn (insn)
1552 rtx insn;
1553 {
1554 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1555
1556 /* If the insn referred to a label, and that label was attached to
1557 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1558 pretty much mandatory to delete it, because the ADDR_VEC may be
1559 referencing labels that no longer exist.
1560
1561 INSN may reference a deleted label, particularly when a jump
1562 table has been optimized into a direct jump. There's no
1563 real good way to fix up the reference to the deleted label
1564 when the label is deleted, so we just allow it here. */
1565
1566 if (inote && GET_CODE (inote) == CODE_LABEL)
1567 {
1568 rtx label = XEXP (inote, 0);
1569 rtx next;
1570
1571 /* The label may be forced if it has been put in the constant
1572 pool. If that is the only use we must discard the table
1573 jump following it, but not the label itself. */
1574 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1575 && (next = next_nonnote_insn (label)) != NULL
1576 && GET_CODE (next) == JUMP_INSN
1577 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1578 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1579 {
1580 rtx pat = PATTERN (next);
1581 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1582 int len = XVECLEN (pat, diff_vec_p);
1583 int i;
1584
1585 for (i = 0; i < len; i++)
1586 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1587
1588 delete_insn_and_edges (next);
1589 ndead++;
1590 }
1591 }
1592
1593 delete_insn_and_edges (insn);
1594 ndead++;
1595 }
1596
1597 /* Delete dead libcalls for propagate_block. Return the insn
1598 before the libcall. */
1599
1600 static rtx
1601 propagate_block_delete_libcall ( insn, note)
1602 rtx insn, note;
1603 {
1604 rtx first = XEXP (note, 0);
1605 rtx before = PREV_INSN (first);
1606
1607 delete_insn_chain_and_edges (first, insn);
1608 ndead++;
1609 return before;
1610 }
1611
1612 /* Update the life-status of regs for one insn. Return the previous insn. */
1613
1614 rtx
1615 propagate_one_insn (pbi, insn)
1616 struct propagate_block_info *pbi;
1617 rtx insn;
1618 {
1619 rtx prev = PREV_INSN (insn);
1620 int flags = pbi->flags;
1621 int insn_is_dead = 0;
1622 int libcall_is_dead = 0;
1623 rtx note;
1624 int i;
1625
1626 if (! INSN_P (insn))
1627 return prev;
1628
1629 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1630 if (flags & PROP_SCAN_DEAD_CODE)
1631 {
1632 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1633 libcall_is_dead = (insn_is_dead && note != 0
1634 && libcall_dead_p (pbi, note, insn));
1635 }
1636
1637 /* If an instruction consists of just dead store(s) on final pass,
1638 delete it. */
1639 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1640 {
1641 /* If we're trying to delete a prologue or epilogue instruction
1642 that isn't flagged as possibly being dead, something is wrong.
1643 But if we are keeping the stack pointer depressed, we might well
1644 be deleting insns that are used to compute the amount to update
1645 it by, so they are fine. */
1646 if (reload_completed
1647 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1648 && (TYPE_RETURNS_STACK_DEPRESSED
1649 (TREE_TYPE (current_function_decl))))
1650 && (((HAVE_epilogue || HAVE_prologue)
1651 && prologue_epilogue_contains (insn))
1652 || (HAVE_sibcall_epilogue
1653 && sibcall_epilogue_contains (insn)))
1654 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1655 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1656
1657 /* Record sets. Do this even for dead instructions, since they
1658 would have killed the values if they hadn't been deleted. */
1659 mark_set_regs (pbi, PATTERN (insn), insn);
1660
1661 /* CC0 is now known to be dead. Either this insn used it,
1662 in which case it doesn't anymore, or clobbered it,
1663 so the next insn can't use it. */
1664 pbi->cc0_live = 0;
1665
1666 if (libcall_is_dead)
1667 prev = propagate_block_delete_libcall ( insn, note);
1668 else
1669 {
1670
1671 /* If INSN contains a RETVAL note and is dead, but the libcall
1672 as a whole is not dead, then we want to remove INSN, but
1673 not the whole libcall sequence.
1674
1675 However, we need to also remove the dangling REG_LIBCALL
1676 note so that we do not have mis-matched LIBCALL/RETVAL
1677 notes. In theory we could find a new location for the
1678 REG_RETVAL note, but it hardly seems worth the effort.
1679
1680 NOTE at this point will be the RETVAL note if it exists. */
1681 if (note)
1682 {
1683 rtx libcall_note;
1684
1685 libcall_note
1686 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1687 remove_note (XEXP (note, 0), libcall_note);
1688 }
1689
1690 /* Similarly if INSN contains a LIBCALL note, remove the
1691 dangling REG_RETVAL note. */
1692 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1693 if (note)
1694 {
1695 rtx retval_note;
1696
1697 retval_note
1698 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1699 remove_note (XEXP (note, 0), retval_note);
1700 }
1701
1702 /* Now delete INSN. */
1703 propagate_block_delete_insn (insn);
1704 }
1705
1706 return prev;
1707 }
1708
1709 /* See if this is an increment or decrement that can be merged into
1710 a following memory address. */
1711 #ifdef AUTO_INC_DEC
1712 {
1713 rtx x = single_set (insn);
1714
1715 /* Does this instruction increment or decrement a register? */
1716 if ((flags & PROP_AUTOINC)
1717 && x != 0
1718 && GET_CODE (SET_DEST (x)) == REG
1719 && (GET_CODE (SET_SRC (x)) == PLUS
1720 || GET_CODE (SET_SRC (x)) == MINUS)
1721 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1722 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1723 /* Ok, look for a following memory ref we can combine with.
1724 If one is found, change the memory ref to a PRE_INC
1725 or PRE_DEC, cancel this insn, and return 1.
1726 Return 0 if nothing has been done. */
1727 && try_pre_increment_1 (pbi, insn))
1728 return prev;
1729 }
1730 #endif /* AUTO_INC_DEC */
1731
1732 CLEAR_REG_SET (pbi->new_set);
1733
1734 /* If this is not the final pass, and this insn is copying the value of
1735 a library call and it's dead, don't scan the insns that perform the
1736 library call, so that the call's arguments are not marked live. */
1737 if (libcall_is_dead)
1738 {
1739 /* Record the death of the dest reg. */
1740 mark_set_regs (pbi, PATTERN (insn), insn);
1741
1742 insn = XEXP (note, 0);
1743 return PREV_INSN (insn);
1744 }
1745 else if (GET_CODE (PATTERN (insn)) == SET
1746 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1747 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1748 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1749 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1750 /* We have an insn to pop a constant amount off the stack.
1751 (Such insns use PLUS regardless of the direction of the stack,
1752 and any insn to adjust the stack by a constant is always a pop.)
1753 These insns, if not dead stores, have no effect on life, though
1754 they do have an effect on the memory stores we are tracking. */
1755 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1756 else
1757 {
1758 rtx note;
1759 /* Any regs live at the time of a call instruction must not go
1760 in a register clobbered by calls. Find all regs now live and
1761 record this for them. */
1762
1763 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1764 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1765 { REG_N_CALLS_CROSSED (i)++; });
1766
1767 /* Record sets. Do this even for dead instructions, since they
1768 would have killed the values if they hadn't been deleted. */
1769 mark_set_regs (pbi, PATTERN (insn), insn);
1770
1771 if (GET_CODE (insn) == CALL_INSN)
1772 {
1773 regset live_at_end;
1774 bool sibcall_p;
1775 rtx note, cond;
1776 int i;
1777
1778 cond = NULL_RTX;
1779 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1780 cond = COND_EXEC_TEST (PATTERN (insn));
1781
1782 /* Non-constant calls clobber memory, constant calls do not
1783 clobber memory, though they may clobber outgoing arguments
1784 on the stack. */
1785 if (! CONST_OR_PURE_CALL_P (insn))
1786 {
1787 free_EXPR_LIST_list (&pbi->mem_set_list);
1788 pbi->mem_set_list_len = 0;
1789 }
1790 else
1791 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1792
1793 /* There may be extra registers to be clobbered. */
1794 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1795 note;
1796 note = XEXP (note, 1))
1797 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1798 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1799 cond, insn, pbi->flags);
1800
1801 /* Calls change all call-used and global registers; sibcalls do not
1802 clobber anything that must be preserved at end-of-function,
1803 except for return values. */
1804
1805 sibcall_p = SIBLING_CALL_P (insn);
1806 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1807 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1808 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1809 && ! (sibcall_p
1810 && REGNO_REG_SET_P (live_at_end, i)
1811 && !FUNCTION_VALUE_REGNO_P (i)))
1812 {
1813 /* We do not want REG_UNUSED notes for these registers. */
1814 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1815 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1816 }
1817 }
1818
1819 /* If an insn doesn't use CC0, it becomes dead since we assume
1820 that every insn clobbers it. So show it dead here;
1821 mark_used_regs will set it live if it is referenced. */
1822 pbi->cc0_live = 0;
1823
1824 /* Record uses. */
1825 if (! insn_is_dead)
1826 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1827 if ((flags & PROP_EQUAL_NOTES)
1828 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1829 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1830 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1831
1832 /* Sometimes we may have inserted something before INSN (such as a move)
1833 when we make an auto-inc. So ensure we will scan those insns. */
1834 #ifdef AUTO_INC_DEC
1835 prev = PREV_INSN (insn);
1836 #endif
1837
1838 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1839 {
1840 int i;
1841 rtx note, cond;
1842
1843 cond = NULL_RTX;
1844 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1845 cond = COND_EXEC_TEST (PATTERN (insn));
1846
1847 /* Calls use their arguments, and may clobber memory which
1848 address involves some register. */
1849 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1850 note;
1851 note = XEXP (note, 1))
1852 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1853 of which mark_used_regs knows how to handle. */
1854 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1855
1856 /* The stack ptr is used (honorarily) by a CALL insn. */
1857 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1858
1859 /* Calls may also reference any of the global registers,
1860 so they are made live. */
1861 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1862 if (global_regs[i])
1863 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1864 }
1865 }
1866
1867 /* On final pass, update counts of how many insns in which each reg
1868 is live. */
1869 if (flags & PROP_REG_INFO)
1870 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1871 { REG_LIVE_LENGTH (i)++; });
1872
1873 return prev;
1874 }
1875
1876 /* Initialize a propagate_block_info struct for public consumption.
1877 Note that the structure itself is opaque to this file, but that
1878 the user can use the regsets provided here. */
1879
1880 struct propagate_block_info *
1881 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1882 basic_block bb;
1883 regset live, local_set, cond_local_set;
1884 int flags;
1885 {
1886 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1887
1888 pbi->bb = bb;
1889 pbi->reg_live = live;
1890 pbi->mem_set_list = NULL_RTX;
1891 pbi->mem_set_list_len = 0;
1892 pbi->local_set = local_set;
1893 pbi->cond_local_set = cond_local_set;
1894 pbi->cc0_live = 0;
1895 pbi->flags = flags;
1896
1897 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1898 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1899 else
1900 pbi->reg_next_use = NULL;
1901
1902 pbi->new_set = BITMAP_XMALLOC ();
1903
1904 #ifdef HAVE_conditional_execution
1905 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1906 free_reg_cond_life_info);
1907 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1908
1909 /* If this block ends in a conditional branch, for each register live
1910 from one side of the branch and not the other, record the register
1911 as conditionally dead. */
1912 if (GET_CODE (bb->end) == JUMP_INSN
1913 && any_condjump_p (bb->end))
1914 {
1915 regset_head diff_head;
1916 regset diff = INITIALIZE_REG_SET (diff_head);
1917 basic_block bb_true, bb_false;
1918 rtx cond_true, cond_false, set_src;
1919 int i;
1920
1921 /* Identify the successor blocks. */
1922 bb_true = bb->succ->dest;
1923 if (bb->succ->succ_next != NULL)
1924 {
1925 bb_false = bb->succ->succ_next->dest;
1926
1927 if (bb->succ->flags & EDGE_FALLTHRU)
1928 {
1929 basic_block t = bb_false;
1930 bb_false = bb_true;
1931 bb_true = t;
1932 }
1933 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1934 abort ();
1935 }
1936 else
1937 {
1938 /* This can happen with a conditional jump to the next insn. */
1939 if (JUMP_LABEL (bb->end) != bb_true->head)
1940 abort ();
1941
1942 /* Simplest way to do nothing. */
1943 bb_false = bb_true;
1944 }
1945
1946 /* Extract the condition from the branch. */
1947 set_src = SET_SRC (pc_set (bb->end));
1948 cond_true = XEXP (set_src, 0);
1949 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1950 GET_MODE (cond_true), XEXP (cond_true, 0),
1951 XEXP (cond_true, 1));
1952 if (GET_CODE (XEXP (set_src, 1)) == PC)
1953 {
1954 rtx t = cond_false;
1955 cond_false = cond_true;
1956 cond_true = t;
1957 }
1958
1959 /* Compute which register lead different lives in the successors. */
1960 if (bitmap_operation (diff, bb_true->global_live_at_start,
1961 bb_false->global_live_at_start, BITMAP_XOR))
1962 {
1963 rtx reg = XEXP (cond_true, 0);
1964
1965 if (GET_CODE (reg) == SUBREG)
1966 reg = SUBREG_REG (reg);
1967
1968 if (GET_CODE (reg) != REG)
1969 abort ();
1970
1971 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1972
1973 /* For each such register, mark it conditionally dead. */
1974 EXECUTE_IF_SET_IN_REG_SET
1975 (diff, 0, i,
1976 {
1977 struct reg_cond_life_info *rcli;
1978 rtx cond;
1979
1980 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1981
1982 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1983 cond = cond_false;
1984 else
1985 cond = cond_true;
1986 rcli->condition = cond;
1987 rcli->stores = const0_rtx;
1988 rcli->orig_condition = cond;
1989
1990 splay_tree_insert (pbi->reg_cond_dead, i,
1991 (splay_tree_value) rcli);
1992 });
1993 }
1994
1995 FREE_REG_SET (diff);
1996 }
1997 #endif
1998
1999 /* If this block has no successors, any stores to the frame that aren't
2000 used later in the block are dead. So make a pass over the block
2001 recording any such that are made and show them dead at the end. We do
2002 a very conservative and simple job here. */
2003 if (optimize
2004 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2005 && (TYPE_RETURNS_STACK_DEPRESSED
2006 (TREE_TYPE (current_function_decl))))
2007 && (flags & PROP_SCAN_DEAD_STORES)
2008 && (bb->succ == NULL
2009 || (bb->succ->succ_next == NULL
2010 && bb->succ->dest == EXIT_BLOCK_PTR
2011 && ! current_function_calls_eh_return)))
2012 {
2013 rtx insn, set;
2014 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
2015 if (GET_CODE (insn) == INSN
2016 && (set = single_set (insn))
2017 && GET_CODE (SET_DEST (set)) == MEM)
2018 {
2019 rtx mem = SET_DEST (set);
2020 rtx canon_mem = canon_rtx (mem);
2021
2022 /* This optimization is performed by faking a store to the
2023 memory at the end of the block. This doesn't work for
2024 unchanging memories because multiple stores to unchanging
2025 memory is illegal and alias analysis doesn't consider it. */
2026 if (RTX_UNCHANGING_P (canon_mem))
2027 continue;
2028
2029 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2030 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2031 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2032 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2033 add_to_mem_set_list (pbi, canon_mem);
2034 }
2035 }
2036
2037 return pbi;
2038 }
2039
2040 /* Release a propagate_block_info struct. */
2041
2042 void
2043 free_propagate_block_info (pbi)
2044 struct propagate_block_info *pbi;
2045 {
2046 free_EXPR_LIST_list (&pbi->mem_set_list);
2047
2048 BITMAP_XFREE (pbi->new_set);
2049
2050 #ifdef HAVE_conditional_execution
2051 splay_tree_delete (pbi->reg_cond_dead);
2052 BITMAP_XFREE (pbi->reg_cond_reg);
2053 #endif
2054
2055 if (pbi->reg_next_use)
2056 free (pbi->reg_next_use);
2057
2058 free (pbi);
2059 }
2060
2061 /* Compute the registers live at the beginning of a basic block BB from
2062 those live at the end.
2063
2064 When called, REG_LIVE contains those live at the end. On return, it
2065 contains those live at the beginning.
2066
2067 LOCAL_SET, if non-null, will be set with all registers killed
2068 unconditionally by this basic block.
2069 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2070 killed conditionally by this basic block. If there is any unconditional
2071 set of a register, then the corresponding bit will be set in LOCAL_SET
2072 and cleared in COND_LOCAL_SET.
2073 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2074 case, the resulting set will be equal to the union of the two sets that
2075 would otherwise be computed.
2076
2077 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2078
2079 int
2080 propagate_block (bb, live, local_set, cond_local_set, flags)
2081 basic_block bb;
2082 regset live;
2083 regset local_set;
2084 regset cond_local_set;
2085 int flags;
2086 {
2087 struct propagate_block_info *pbi;
2088 rtx insn, prev;
2089 int changed;
2090
2091 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2092
2093 if (flags & PROP_REG_INFO)
2094 {
2095 int i;
2096
2097 /* Process the regs live at the end of the block.
2098 Mark them as not local to any one basic block. */
2099 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2100 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2101 }
2102
2103 /* Scan the block an insn at a time from end to beginning. */
2104
2105 changed = 0;
2106 for (insn = bb->end;; insn = prev)
2107 {
2108 /* If this is a call to `setjmp' et al, warn if any
2109 non-volatile datum is live. */
2110 if ((flags & PROP_REG_INFO)
2111 && GET_CODE (insn) == CALL_INSN
2112 && find_reg_note (insn, REG_SETJMP, NULL))
2113 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2114
2115 prev = propagate_one_insn (pbi, insn);
2116 changed |= NEXT_INSN (prev) != insn;
2117
2118 if (insn == bb->head)
2119 break;
2120 }
2121
2122 free_propagate_block_info (pbi);
2123
2124 return changed;
2125 }
2126 \f
2127 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2128 (SET expressions whose destinations are registers dead after the insn).
2129 NEEDED is the regset that says which regs are alive after the insn.
2130
2131 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2132
2133 If X is the entire body of an insn, NOTES contains the reg notes
2134 pertaining to the insn. */
2135
2136 static int
2137 insn_dead_p (pbi, x, call_ok, notes)
2138 struct propagate_block_info *pbi;
2139 rtx x;
2140 int call_ok;
2141 rtx notes ATTRIBUTE_UNUSED;
2142 {
2143 enum rtx_code code = GET_CODE (x);
2144
2145 /* Don't eliminate insns that may trap. */
2146 if (flag_non_call_exceptions && may_trap_p (x))
2147 return 0;
2148
2149 #ifdef AUTO_INC_DEC
2150 /* As flow is invoked after combine, we must take existing AUTO_INC
2151 expressions into account. */
2152 for (; notes; notes = XEXP (notes, 1))
2153 {
2154 if (REG_NOTE_KIND (notes) == REG_INC)
2155 {
2156 int regno = REGNO (XEXP (notes, 0));
2157
2158 /* Don't delete insns to set global regs. */
2159 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2160 || REGNO_REG_SET_P (pbi->reg_live, regno))
2161 return 0;
2162 }
2163 }
2164 #endif
2165
2166 /* If setting something that's a reg or part of one,
2167 see if that register's altered value will be live. */
2168
2169 if (code == SET)
2170 {
2171 rtx r = SET_DEST (x);
2172
2173 #ifdef HAVE_cc0
2174 if (GET_CODE (r) == CC0)
2175 return ! pbi->cc0_live;
2176 #endif
2177
2178 /* A SET that is a subroutine call cannot be dead. */
2179 if (GET_CODE (SET_SRC (x)) == CALL)
2180 {
2181 if (! call_ok)
2182 return 0;
2183 }
2184
2185 /* Don't eliminate loads from volatile memory or volatile asms. */
2186 else if (volatile_refs_p (SET_SRC (x)))
2187 return 0;
2188
2189 if (GET_CODE (r) == MEM)
2190 {
2191 rtx temp, canon_r;
2192
2193 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2194 return 0;
2195
2196 canon_r = canon_rtx (r);
2197
2198 /* Walk the set of memory locations we are currently tracking
2199 and see if one is an identical match to this memory location.
2200 If so, this memory write is dead (remember, we're walking
2201 backwards from the end of the block to the start). Since
2202 rtx_equal_p does not check the alias set or flags, we also
2203 must have the potential for them to conflict (anti_dependence). */
2204 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2205 if (anti_dependence (r, XEXP (temp, 0)))
2206 {
2207 rtx mem = XEXP (temp, 0);
2208
2209 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2210 && (GET_MODE_SIZE (GET_MODE (canon_r))
2211 <= GET_MODE_SIZE (GET_MODE (mem))))
2212 return 1;
2213
2214 #ifdef AUTO_INC_DEC
2215 /* Check if memory reference matches an auto increment. Only
2216 post increment/decrement or modify are valid. */
2217 if (GET_MODE (mem) == GET_MODE (r)
2218 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2219 || GET_CODE (XEXP (mem, 0)) == POST_INC
2220 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2221 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2222 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2223 return 1;
2224 #endif
2225 }
2226 }
2227 else
2228 {
2229 while (GET_CODE (r) == SUBREG
2230 || GET_CODE (r) == STRICT_LOW_PART
2231 || GET_CODE (r) == ZERO_EXTRACT)
2232 r = XEXP (r, 0);
2233
2234 if (GET_CODE (r) == REG)
2235 {
2236 int regno = REGNO (r);
2237
2238 /* Obvious. */
2239 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2240 return 0;
2241
2242 /* If this is a hard register, verify that subsequent
2243 words are not needed. */
2244 if (regno < FIRST_PSEUDO_REGISTER)
2245 {
2246 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2247
2248 while (--n > 0)
2249 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2250 return 0;
2251 }
2252
2253 /* Don't delete insns to set global regs. */
2254 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2255 return 0;
2256
2257 /* Make sure insns to set the stack pointer aren't deleted. */
2258 if (regno == STACK_POINTER_REGNUM)
2259 return 0;
2260
2261 /* ??? These bits might be redundant with the force live bits
2262 in calculate_global_regs_live. We would delete from
2263 sequential sets; whether this actually affects real code
2264 for anything but the stack pointer I don't know. */
2265 /* Make sure insns to set the frame pointer aren't deleted. */
2266 if (regno == FRAME_POINTER_REGNUM
2267 && (! reload_completed || frame_pointer_needed))
2268 return 0;
2269 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2270 if (regno == HARD_FRAME_POINTER_REGNUM
2271 && (! reload_completed || frame_pointer_needed))
2272 return 0;
2273 #endif
2274
2275 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2276 /* Make sure insns to set arg pointer are never deleted
2277 (if the arg pointer isn't fixed, there will be a USE
2278 for it, so we can treat it normally). */
2279 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2280 return 0;
2281 #endif
2282
2283 /* Otherwise, the set is dead. */
2284 return 1;
2285 }
2286 }
2287 }
2288
2289 /* If performing several activities, insn is dead if each activity
2290 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2291 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2292 worth keeping. */
2293 else if (code == PARALLEL)
2294 {
2295 int i = XVECLEN (x, 0);
2296
2297 for (i--; i >= 0; i--)
2298 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2299 && GET_CODE (XVECEXP (x, 0, i)) != USE
2300 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2301 return 0;
2302
2303 return 1;
2304 }
2305
2306 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2307 is not necessarily true for hard registers. */
2308 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2309 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2310 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2311 return 1;
2312
2313 /* We do not check other CLOBBER or USE here. An insn consisting of just
2314 a CLOBBER or just a USE should not be deleted. */
2315 return 0;
2316 }
2317
2318 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2319 return 1 if the entire library call is dead.
2320 This is true if INSN copies a register (hard or pseudo)
2321 and if the hard return reg of the call insn is dead.
2322 (The caller should have tested the destination of the SET inside
2323 INSN already for death.)
2324
2325 If this insn doesn't just copy a register, then we don't
2326 have an ordinary libcall. In that case, cse could not have
2327 managed to substitute the source for the dest later on,
2328 so we can assume the libcall is dead.
2329
2330 PBI is the block info giving pseudoregs live before this insn.
2331 NOTE is the REG_RETVAL note of the insn. */
2332
2333 static int
2334 libcall_dead_p (pbi, note, insn)
2335 struct propagate_block_info *pbi;
2336 rtx note;
2337 rtx insn;
2338 {
2339 rtx x = single_set (insn);
2340
2341 if (x)
2342 {
2343 rtx r = SET_SRC (x);
2344
2345 if (GET_CODE (r) == REG)
2346 {
2347 rtx call = XEXP (note, 0);
2348 rtx call_pat;
2349 int i;
2350
2351 /* Find the call insn. */
2352 while (call != insn && GET_CODE (call) != CALL_INSN)
2353 call = NEXT_INSN (call);
2354
2355 /* If there is none, do nothing special,
2356 since ordinary death handling can understand these insns. */
2357 if (call == insn)
2358 return 0;
2359
2360 /* See if the hard reg holding the value is dead.
2361 If this is a PARALLEL, find the call within it. */
2362 call_pat = PATTERN (call);
2363 if (GET_CODE (call_pat) == PARALLEL)
2364 {
2365 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2366 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2367 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2368 break;
2369
2370 /* This may be a library call that is returning a value
2371 via invisible pointer. Do nothing special, since
2372 ordinary death handling can understand these insns. */
2373 if (i < 0)
2374 return 0;
2375
2376 call_pat = XVECEXP (call_pat, 0, i);
2377 }
2378
2379 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2380 }
2381 }
2382 return 1;
2383 }
2384
2385 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2386 live at function entry. Don't count global register variables, variables
2387 in registers that can be used for function arg passing, or variables in
2388 fixed hard registers. */
2389
2390 int
2391 regno_uninitialized (regno)
2392 unsigned int regno;
2393 {
2394 if (n_basic_blocks == 0
2395 || (regno < FIRST_PSEUDO_REGISTER
2396 && (global_regs[regno]
2397 || fixed_regs[regno]
2398 || FUNCTION_ARG_REGNO_P (regno))))
2399 return 0;
2400
2401 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2402 }
2403
2404 /* 1 if register REGNO was alive at a place where `setjmp' was called
2405 and was set more than once or is an argument.
2406 Such regs may be clobbered by `longjmp'. */
2407
2408 int
2409 regno_clobbered_at_setjmp (regno)
2410 int regno;
2411 {
2412 if (n_basic_blocks == 0)
2413 return 0;
2414
2415 return ((REG_N_SETS (regno) > 1
2416 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2417 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2418 }
2419 \f
2420 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2421 maximal list size; look for overlaps in mode and select the largest. */
2422 static void
2423 add_to_mem_set_list (pbi, mem)
2424 struct propagate_block_info *pbi;
2425 rtx mem;
2426 {
2427 rtx i;
2428
2429 /* We don't know how large a BLKmode store is, so we must not
2430 take them into consideration. */
2431 if (GET_MODE (mem) == BLKmode)
2432 return;
2433
2434 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2435 {
2436 rtx e = XEXP (i, 0);
2437 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2438 {
2439 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2440 {
2441 #ifdef AUTO_INC_DEC
2442 /* If we must store a copy of the mem, we can just modify
2443 the mode of the stored copy. */
2444 if (pbi->flags & PROP_AUTOINC)
2445 PUT_MODE (e, GET_MODE (mem));
2446 else
2447 #endif
2448 XEXP (i, 0) = mem;
2449 }
2450 return;
2451 }
2452 }
2453
2454 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2455 {
2456 #ifdef AUTO_INC_DEC
2457 /* Store a copy of mem, otherwise the address may be
2458 scrogged by find_auto_inc. */
2459 if (pbi->flags & PROP_AUTOINC)
2460 mem = shallow_copy_rtx (mem);
2461 #endif
2462 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2463 pbi->mem_set_list_len++;
2464 }
2465 }
2466
2467 /* INSN references memory, possibly using autoincrement addressing modes.
2468 Find any entries on the mem_set_list that need to be invalidated due
2469 to an address change. */
2470
2471 static int
2472 invalidate_mems_from_autoinc (px, data)
2473 rtx *px;
2474 void *data;
2475 {
2476 rtx x = *px;
2477 struct propagate_block_info *pbi = data;
2478
2479 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2480 {
2481 invalidate_mems_from_set (pbi, XEXP (x, 0));
2482 return -1;
2483 }
2484
2485 return 0;
2486 }
2487
2488 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2489
2490 static void
2491 invalidate_mems_from_set (pbi, exp)
2492 struct propagate_block_info *pbi;
2493 rtx exp;
2494 {
2495 rtx temp = pbi->mem_set_list;
2496 rtx prev = NULL_RTX;
2497 rtx next;
2498
2499 while (temp)
2500 {
2501 next = XEXP (temp, 1);
2502 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2503 {
2504 /* Splice this entry out of the list. */
2505 if (prev)
2506 XEXP (prev, 1) = next;
2507 else
2508 pbi->mem_set_list = next;
2509 free_EXPR_LIST_node (temp);
2510 pbi->mem_set_list_len--;
2511 }
2512 else
2513 prev = temp;
2514 temp = next;
2515 }
2516 }
2517
2518 /* Process the registers that are set within X. Their bits are set to
2519 1 in the regset DEAD, because they are dead prior to this insn.
2520
2521 If INSN is nonzero, it is the insn being processed.
2522
2523 FLAGS is the set of operations to perform. */
2524
2525 static void
2526 mark_set_regs (pbi, x, insn)
2527 struct propagate_block_info *pbi;
2528 rtx x, insn;
2529 {
2530 rtx cond = NULL_RTX;
2531 rtx link;
2532 enum rtx_code code;
2533
2534 if (insn)
2535 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2536 {
2537 if (REG_NOTE_KIND (link) == REG_INC)
2538 mark_set_1 (pbi, SET, XEXP (link, 0),
2539 (GET_CODE (x) == COND_EXEC
2540 ? COND_EXEC_TEST (x) : NULL_RTX),
2541 insn, pbi->flags);
2542 }
2543 retry:
2544 switch (code = GET_CODE (x))
2545 {
2546 case SET:
2547 case CLOBBER:
2548 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2549 return;
2550
2551 case COND_EXEC:
2552 cond = COND_EXEC_TEST (x);
2553 x = COND_EXEC_CODE (x);
2554 goto retry;
2555
2556 case PARALLEL:
2557 {
2558 int i;
2559
2560 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2561 {
2562 rtx sub = XVECEXP (x, 0, i);
2563 switch (code = GET_CODE (sub))
2564 {
2565 case COND_EXEC:
2566 if (cond != NULL_RTX)
2567 abort ();
2568
2569 cond = COND_EXEC_TEST (sub);
2570 sub = COND_EXEC_CODE (sub);
2571 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2572 break;
2573 /* Fall through. */
2574
2575 case SET:
2576 case CLOBBER:
2577 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2578 break;
2579
2580 default:
2581 break;
2582 }
2583 }
2584 break;
2585 }
2586
2587 default:
2588 break;
2589 }
2590 }
2591
2592 /* Process a single set, which appears in INSN. REG (which may not
2593 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2594 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2595 If the set is conditional (because it appear in a COND_EXEC), COND
2596 will be the condition. */
2597
2598 static void
2599 mark_set_1 (pbi, code, reg, cond, insn, flags)
2600 struct propagate_block_info *pbi;
2601 enum rtx_code code;
2602 rtx reg, cond, insn;
2603 int flags;
2604 {
2605 int regno_first = -1, regno_last = -1;
2606 unsigned long not_dead = 0;
2607 int i;
2608
2609 /* Modifying just one hardware register of a multi-reg value or just a
2610 byte field of a register does not mean the value from before this insn
2611 is now dead. Of course, if it was dead after it's unused now. */
2612
2613 switch (GET_CODE (reg))
2614 {
2615 case PARALLEL:
2616 /* Some targets place small structures in registers for return values of
2617 functions. We have to detect this case specially here to get correct
2618 flow information. */
2619 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2620 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2621 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2622 flags);
2623 return;
2624
2625 case ZERO_EXTRACT:
2626 case SIGN_EXTRACT:
2627 case STRICT_LOW_PART:
2628 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2629 do
2630 reg = XEXP (reg, 0);
2631 while (GET_CODE (reg) == SUBREG
2632 || GET_CODE (reg) == ZERO_EXTRACT
2633 || GET_CODE (reg) == SIGN_EXTRACT
2634 || GET_CODE (reg) == STRICT_LOW_PART);
2635 if (GET_CODE (reg) == MEM)
2636 break;
2637 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2638 /* Fall through. */
2639
2640 case REG:
2641 regno_last = regno_first = REGNO (reg);
2642 if (regno_first < FIRST_PSEUDO_REGISTER)
2643 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2644 break;
2645
2646 case SUBREG:
2647 if (GET_CODE (SUBREG_REG (reg)) == REG)
2648 {
2649 enum machine_mode outer_mode = GET_MODE (reg);
2650 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2651
2652 /* Identify the range of registers affected. This is moderately
2653 tricky for hard registers. See alter_subreg. */
2654
2655 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2656 if (regno_first < FIRST_PSEUDO_REGISTER)
2657 {
2658 regno_first += subreg_regno_offset (regno_first, inner_mode,
2659 SUBREG_BYTE (reg),
2660 outer_mode);
2661 regno_last = (regno_first
2662 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2663
2664 /* Since we've just adjusted the register number ranges, make
2665 sure REG matches. Otherwise some_was_live will be clear
2666 when it shouldn't have been, and we'll create incorrect
2667 REG_UNUSED notes. */
2668 reg = gen_rtx_REG (outer_mode, regno_first);
2669 }
2670 else
2671 {
2672 /* If the number of words in the subreg is less than the number
2673 of words in the full register, we have a well-defined partial
2674 set. Otherwise the high bits are undefined.
2675
2676 This is only really applicable to pseudos, since we just took
2677 care of multi-word hard registers. */
2678 if (((GET_MODE_SIZE (outer_mode)
2679 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2680 < ((GET_MODE_SIZE (inner_mode)
2681 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2682 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2683 regno_first);
2684
2685 reg = SUBREG_REG (reg);
2686 }
2687 }
2688 else
2689 reg = SUBREG_REG (reg);
2690 break;
2691
2692 default:
2693 break;
2694 }
2695
2696 /* If this set is a MEM, then it kills any aliased writes.
2697 If this set is a REG, then it kills any MEMs which use the reg. */
2698 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2699 {
2700 if (GET_CODE (reg) == REG)
2701 invalidate_mems_from_set (pbi, reg);
2702
2703 /* If the memory reference had embedded side effects (autoincrement
2704 address modes. Then we may need to kill some entries on the
2705 memory set list. */
2706 if (insn && GET_CODE (reg) == MEM)
2707 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2708
2709 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2710 /* ??? With more effort we could track conditional memory life. */
2711 && ! cond)
2712 add_to_mem_set_list (pbi, canon_rtx (reg));
2713 }
2714
2715 if (GET_CODE (reg) == REG
2716 && ! (regno_first == FRAME_POINTER_REGNUM
2717 && (! reload_completed || frame_pointer_needed))
2718 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2719 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2720 && (! reload_completed || frame_pointer_needed))
2721 #endif
2722 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2723 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2724 #endif
2725 )
2726 {
2727 int some_was_live = 0, some_was_dead = 0;
2728
2729 for (i = regno_first; i <= regno_last; ++i)
2730 {
2731 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2732 if (pbi->local_set)
2733 {
2734 /* Order of the set operation matters here since both
2735 sets may be the same. */
2736 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2737 if (cond != NULL_RTX
2738 && ! REGNO_REG_SET_P (pbi->local_set, i))
2739 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2740 else
2741 SET_REGNO_REG_SET (pbi->local_set, i);
2742 }
2743 if (code != CLOBBER)
2744 SET_REGNO_REG_SET (pbi->new_set, i);
2745
2746 some_was_live |= needed_regno;
2747 some_was_dead |= ! needed_regno;
2748 }
2749
2750 #ifdef HAVE_conditional_execution
2751 /* Consider conditional death in deciding that the register needs
2752 a death note. */
2753 if (some_was_live && ! not_dead
2754 /* The stack pointer is never dead. Well, not strictly true,
2755 but it's very difficult to tell from here. Hopefully
2756 combine_stack_adjustments will fix up the most egregious
2757 errors. */
2758 && regno_first != STACK_POINTER_REGNUM)
2759 {
2760 for (i = regno_first; i <= regno_last; ++i)
2761 if (! mark_regno_cond_dead (pbi, i, cond))
2762 not_dead |= ((unsigned long) 1) << (i - regno_first);
2763 }
2764 #endif
2765
2766 /* Additional data to record if this is the final pass. */
2767 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2768 | PROP_DEATH_NOTES | PROP_AUTOINC))
2769 {
2770 rtx y;
2771 int blocknum = pbi->bb->index;
2772
2773 y = NULL_RTX;
2774 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2775 {
2776 y = pbi->reg_next_use[regno_first];
2777
2778 /* The next use is no longer next, since a store intervenes. */
2779 for (i = regno_first; i <= regno_last; ++i)
2780 pbi->reg_next_use[i] = 0;
2781 }
2782
2783 if (flags & PROP_REG_INFO)
2784 {
2785 for (i = regno_first; i <= regno_last; ++i)
2786 {
2787 /* Count (weighted) references, stores, etc. This counts a
2788 register twice if it is modified, but that is correct. */
2789 REG_N_SETS (i) += 1;
2790 REG_N_REFS (i) += 1;
2791 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2792
2793 /* The insns where a reg is live are normally counted
2794 elsewhere, but we want the count to include the insn
2795 where the reg is set, and the normal counting mechanism
2796 would not count it. */
2797 REG_LIVE_LENGTH (i) += 1;
2798 }
2799
2800 /* If this is a hard reg, record this function uses the reg. */
2801 if (regno_first < FIRST_PSEUDO_REGISTER)
2802 {
2803 for (i = regno_first; i <= regno_last; i++)
2804 regs_ever_live[i] = 1;
2805 }
2806 else
2807 {
2808 /* Keep track of which basic blocks each reg appears in. */
2809 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2810 REG_BASIC_BLOCK (regno_first) = blocknum;
2811 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2812 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2813 }
2814 }
2815
2816 if (! some_was_dead)
2817 {
2818 if (flags & PROP_LOG_LINKS)
2819 {
2820 /* Make a logical link from the next following insn
2821 that uses this register, back to this insn.
2822 The following insns have already been processed.
2823
2824 We don't build a LOG_LINK for hard registers containing
2825 in ASM_OPERANDs. If these registers get replaced,
2826 we might wind up changing the semantics of the insn,
2827 even if reload can make what appear to be valid
2828 assignments later. */
2829 if (y && (BLOCK_NUM (y) == blocknum)
2830 && (regno_first >= FIRST_PSEUDO_REGISTER
2831 || asm_noperands (PATTERN (y)) < 0))
2832 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2833 }
2834 }
2835 else if (not_dead)
2836 ;
2837 else if (! some_was_live)
2838 {
2839 if (flags & PROP_REG_INFO)
2840 REG_N_DEATHS (regno_first) += 1;
2841
2842 if (flags & PROP_DEATH_NOTES)
2843 {
2844 /* Note that dead stores have already been deleted
2845 when possible. If we get here, we have found a
2846 dead store that cannot be eliminated (because the
2847 same insn does something useful). Indicate this
2848 by marking the reg being set as dying here. */
2849 REG_NOTES (insn)
2850 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2851 }
2852 }
2853 else
2854 {
2855 if (flags & PROP_DEATH_NOTES)
2856 {
2857 /* This is a case where we have a multi-word hard register
2858 and some, but not all, of the words of the register are
2859 needed in subsequent insns. Write REG_UNUSED notes
2860 for those parts that were not needed. This case should
2861 be rare. */
2862
2863 for (i = regno_first; i <= regno_last; ++i)
2864 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2865 REG_NOTES (insn)
2866 = alloc_EXPR_LIST (REG_UNUSED,
2867 regno_reg_rtx[i],
2868 REG_NOTES (insn));
2869 }
2870 }
2871 }
2872
2873 /* Mark the register as being dead. */
2874 if (some_was_live
2875 /* The stack pointer is never dead. Well, not strictly true,
2876 but it's very difficult to tell from here. Hopefully
2877 combine_stack_adjustments will fix up the most egregious
2878 errors. */
2879 && regno_first != STACK_POINTER_REGNUM)
2880 {
2881 for (i = regno_first; i <= regno_last; ++i)
2882 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2883 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2884 }
2885 }
2886 else if (GET_CODE (reg) == REG)
2887 {
2888 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2889 pbi->reg_next_use[regno_first] = 0;
2890 }
2891
2892 /* If this is the last pass and this is a SCRATCH, show it will be dying
2893 here and count it. */
2894 else if (GET_CODE (reg) == SCRATCH)
2895 {
2896 if (flags & PROP_DEATH_NOTES)
2897 REG_NOTES (insn)
2898 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2899 }
2900 }
2901 \f
2902 #ifdef HAVE_conditional_execution
2903 /* Mark REGNO conditionally dead.
2904 Return true if the register is now unconditionally dead. */
2905
2906 static int
2907 mark_regno_cond_dead (pbi, regno, cond)
2908 struct propagate_block_info *pbi;
2909 int regno;
2910 rtx cond;
2911 {
2912 /* If this is a store to a predicate register, the value of the
2913 predicate is changing, we don't know that the predicate as seen
2914 before is the same as that seen after. Flush all dependent
2915 conditions from reg_cond_dead. This will make all such
2916 conditionally live registers unconditionally live. */
2917 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2918 flush_reg_cond_reg (pbi, regno);
2919
2920 /* If this is an unconditional store, remove any conditional
2921 life that may have existed. */
2922 if (cond == NULL_RTX)
2923 splay_tree_remove (pbi->reg_cond_dead, regno);
2924 else
2925 {
2926 splay_tree_node node;
2927 struct reg_cond_life_info *rcli;
2928 rtx ncond;
2929
2930 /* Otherwise this is a conditional set. Record that fact.
2931 It may have been conditionally used, or there may be a
2932 subsequent set with a complimentary condition. */
2933
2934 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2935 if (node == NULL)
2936 {
2937 /* The register was unconditionally live previously.
2938 Record the current condition as the condition under
2939 which it is dead. */
2940 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2941 rcli->condition = cond;
2942 rcli->stores = cond;
2943 rcli->orig_condition = const0_rtx;
2944 splay_tree_insert (pbi->reg_cond_dead, regno,
2945 (splay_tree_value) rcli);
2946
2947 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2948
2949 /* Not unconditionally dead. */
2950 return 0;
2951 }
2952 else
2953 {
2954 /* The register was conditionally live previously.
2955 Add the new condition to the old. */
2956 rcli = (struct reg_cond_life_info *) node->value;
2957 ncond = rcli->condition;
2958 ncond = ior_reg_cond (ncond, cond, 1);
2959 if (rcli->stores == const0_rtx)
2960 rcli->stores = cond;
2961 else if (rcli->stores != const1_rtx)
2962 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2963
2964 /* If the register is now unconditionally dead, remove the entry
2965 in the splay_tree. A register is unconditionally dead if the
2966 dead condition ncond is true. A register is also unconditionally
2967 dead if the sum of all conditional stores is an unconditional
2968 store (stores is true), and the dead condition is identically the
2969 same as the original dead condition initialized at the end of
2970 the block. This is a pointer compare, not an rtx_equal_p
2971 compare. */
2972 if (ncond == const1_rtx
2973 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2974 splay_tree_remove (pbi->reg_cond_dead, regno);
2975 else
2976 {
2977 rcli->condition = ncond;
2978
2979 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2980
2981 /* Not unconditionally dead. */
2982 return 0;
2983 }
2984 }
2985 }
2986
2987 return 1;
2988 }
2989
2990 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2991
2992 static void
2993 free_reg_cond_life_info (value)
2994 splay_tree_value value;
2995 {
2996 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2997 free (rcli);
2998 }
2999
3000 /* Helper function for flush_reg_cond_reg. */
3001
3002 static int
3003 flush_reg_cond_reg_1 (node, data)
3004 splay_tree_node node;
3005 void *data;
3006 {
3007 struct reg_cond_life_info *rcli;
3008 int *xdata = (int *) data;
3009 unsigned int regno = xdata[0];
3010
3011 /* Don't need to search if last flushed value was farther on in
3012 the in-order traversal. */
3013 if (xdata[1] >= (int) node->key)
3014 return 0;
3015
3016 /* Splice out portions of the expression that refer to regno. */
3017 rcli = (struct reg_cond_life_info *) node->value;
3018 rcli->condition = elim_reg_cond (rcli->condition, regno);
3019 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3020 rcli->stores = elim_reg_cond (rcli->stores, regno);
3021
3022 /* If the entire condition is now false, signal the node to be removed. */
3023 if (rcli->condition == const0_rtx)
3024 {
3025 xdata[1] = node->key;
3026 return -1;
3027 }
3028 else if (rcli->condition == const1_rtx)
3029 abort ();
3030
3031 return 0;
3032 }
3033
3034 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3035
3036 static void
3037 flush_reg_cond_reg (pbi, regno)
3038 struct propagate_block_info *pbi;
3039 int regno;
3040 {
3041 int pair[2];
3042
3043 pair[0] = regno;
3044 pair[1] = -1;
3045 while (splay_tree_foreach (pbi->reg_cond_dead,
3046 flush_reg_cond_reg_1, pair) == -1)
3047 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3048
3049 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3050 }
3051
3052 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3053 For ior/and, the ADD flag determines whether we want to add the new
3054 condition X to the old one unconditionally. If it is zero, we will
3055 only return a new expression if X allows us to simplify part of
3056 OLD, otherwise we return NULL to the caller.
3057 If ADD is nonzero, we will return a new condition in all cases. The
3058 toplevel caller of one of these functions should always pass 1 for
3059 ADD. */
3060
3061 static rtx
3062 ior_reg_cond (old, x, add)
3063 rtx old, x;
3064 int add;
3065 {
3066 rtx op0, op1;
3067
3068 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3069 {
3070 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3071 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3072 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3073 return const1_rtx;
3074 if (GET_CODE (x) == GET_CODE (old)
3075 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3076 return old;
3077 if (! add)
3078 return NULL;
3079 return gen_rtx_IOR (0, old, x);
3080 }
3081
3082 switch (GET_CODE (old))
3083 {
3084 case IOR:
3085 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3086 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3087 if (op0 != NULL || op1 != NULL)
3088 {
3089 if (op0 == const0_rtx)
3090 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3091 if (op1 == const0_rtx)
3092 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3093 if (op0 == const1_rtx || op1 == const1_rtx)
3094 return const1_rtx;
3095 if (op0 == NULL)
3096 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3097 else if (rtx_equal_p (x, op0))
3098 /* (x | A) | x ~ (x | A). */
3099 return old;
3100 if (op1 == NULL)
3101 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3102 else if (rtx_equal_p (x, op1))
3103 /* (A | x) | x ~ (A | x). */
3104 return old;
3105 return gen_rtx_IOR (0, op0, op1);
3106 }
3107 if (! add)
3108 return NULL;
3109 return gen_rtx_IOR (0, old, x);
3110
3111 case AND:
3112 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3113 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3114 if (op0 != NULL || op1 != NULL)
3115 {
3116 if (op0 == const1_rtx)
3117 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3118 if (op1 == const1_rtx)
3119 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3120 if (op0 == const0_rtx || op1 == const0_rtx)
3121 return const0_rtx;
3122 if (op0 == NULL)
3123 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3124 else if (rtx_equal_p (x, op0))
3125 /* (x & A) | x ~ x. */
3126 return op0;
3127 if (op1 == NULL)
3128 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3129 else if (rtx_equal_p (x, op1))
3130 /* (A & x) | x ~ x. */
3131 return op1;
3132 return gen_rtx_AND (0, op0, op1);
3133 }
3134 if (! add)
3135 return NULL;
3136 return gen_rtx_IOR (0, old, x);
3137
3138 case NOT:
3139 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3140 if (op0 != NULL)
3141 return not_reg_cond (op0);
3142 if (! add)
3143 return NULL;
3144 return gen_rtx_IOR (0, old, x);
3145
3146 default:
3147 abort ();
3148 }
3149 }
3150
3151 static rtx
3152 not_reg_cond (x)
3153 rtx x;
3154 {
3155 enum rtx_code x_code;
3156
3157 if (x == const0_rtx)
3158 return const1_rtx;
3159 else if (x == const1_rtx)
3160 return const0_rtx;
3161 x_code = GET_CODE (x);
3162 if (x_code == NOT)
3163 return XEXP (x, 0);
3164 if (GET_RTX_CLASS (x_code) == '<'
3165 && GET_CODE (XEXP (x, 0)) == REG)
3166 {
3167 if (XEXP (x, 1) != const0_rtx)
3168 abort ();
3169
3170 return gen_rtx_fmt_ee (reverse_condition (x_code),
3171 VOIDmode, XEXP (x, 0), const0_rtx);
3172 }
3173 return gen_rtx_NOT (0, x);
3174 }
3175
3176 static rtx
3177 and_reg_cond (old, x, add)
3178 rtx old, x;
3179 int add;
3180 {
3181 rtx op0, op1;
3182
3183 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3184 {
3185 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3186 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3187 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3188 return const0_rtx;
3189 if (GET_CODE (x) == GET_CODE (old)
3190 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3191 return old;
3192 if (! add)
3193 return NULL;
3194 return gen_rtx_AND (0, old, x);
3195 }
3196
3197 switch (GET_CODE (old))
3198 {
3199 case IOR:
3200 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3201 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3202 if (op0 != NULL || op1 != NULL)
3203 {
3204 if (op0 == const0_rtx)
3205 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3206 if (op1 == const0_rtx)
3207 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3208 if (op0 == const1_rtx || op1 == const1_rtx)
3209 return const1_rtx;
3210 if (op0 == NULL)
3211 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3212 else if (rtx_equal_p (x, op0))
3213 /* (x | A) & x ~ x. */
3214 return op0;
3215 if (op1 == NULL)
3216 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3217 else if (rtx_equal_p (x, op1))
3218 /* (A | x) & x ~ x. */
3219 return op1;
3220 return gen_rtx_IOR (0, op0, op1);
3221 }
3222 if (! add)
3223 return NULL;
3224 return gen_rtx_AND (0, old, x);
3225
3226 case AND:
3227 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3228 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3229 if (op0 != NULL || op1 != NULL)
3230 {
3231 if (op0 == const1_rtx)
3232 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3233 if (op1 == const1_rtx)
3234 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3235 if (op0 == const0_rtx || op1 == const0_rtx)
3236 return const0_rtx;
3237 if (op0 == NULL)
3238 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3239 else if (rtx_equal_p (x, op0))
3240 /* (x & A) & x ~ (x & A). */
3241 return old;
3242 if (op1 == NULL)
3243 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3244 else if (rtx_equal_p (x, op1))
3245 /* (A & x) & x ~ (A & x). */
3246 return old;
3247 return gen_rtx_AND (0, op0, op1);
3248 }
3249 if (! add)
3250 return NULL;
3251 return gen_rtx_AND (0, old, x);
3252
3253 case NOT:
3254 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3255 if (op0 != NULL)
3256 return not_reg_cond (op0);
3257 if (! add)
3258 return NULL;
3259 return gen_rtx_AND (0, old, x);
3260
3261 default:
3262 abort ();
3263 }
3264 }
3265
3266 /* Given a condition X, remove references to reg REGNO and return the
3267 new condition. The removal will be done so that all conditions
3268 involving REGNO are considered to evaluate to false. This function
3269 is used when the value of REGNO changes. */
3270
3271 static rtx
3272 elim_reg_cond (x, regno)
3273 rtx x;
3274 unsigned int regno;
3275 {
3276 rtx op0, op1;
3277
3278 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3279 {
3280 if (REGNO (XEXP (x, 0)) == regno)
3281 return const0_rtx;
3282 return x;
3283 }
3284
3285 switch (GET_CODE (x))
3286 {
3287 case AND:
3288 op0 = elim_reg_cond (XEXP (x, 0), regno);
3289 op1 = elim_reg_cond (XEXP (x, 1), regno);
3290 if (op0 == const0_rtx || op1 == const0_rtx)
3291 return const0_rtx;
3292 if (op0 == const1_rtx)
3293 return op1;
3294 if (op1 == const1_rtx)
3295 return op0;
3296 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3297 return x;
3298 return gen_rtx_AND (0, op0, op1);
3299
3300 case IOR:
3301 op0 = elim_reg_cond (XEXP (x, 0), regno);
3302 op1 = elim_reg_cond (XEXP (x, 1), regno);
3303 if (op0 == const1_rtx || op1 == const1_rtx)
3304 return const1_rtx;
3305 if (op0 == const0_rtx)
3306 return op1;
3307 if (op1 == const0_rtx)
3308 return op0;
3309 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3310 return x;
3311 return gen_rtx_IOR (0, op0, op1);
3312
3313 case NOT:
3314 op0 = elim_reg_cond (XEXP (x, 0), regno);
3315 if (op0 == const0_rtx)
3316 return const1_rtx;
3317 if (op0 == const1_rtx)
3318 return const0_rtx;
3319 if (op0 != XEXP (x, 0))
3320 return not_reg_cond (op0);
3321 return x;
3322
3323 default:
3324 abort ();
3325 }
3326 }
3327 #endif /* HAVE_conditional_execution */
3328 \f
3329 #ifdef AUTO_INC_DEC
3330
3331 /* Try to substitute the auto-inc expression INC as the address inside
3332 MEM which occurs in INSN. Currently, the address of MEM is an expression
3333 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3334 that has a single set whose source is a PLUS of INCR_REG and something
3335 else. */
3336
3337 static void
3338 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3339 struct propagate_block_info *pbi;
3340 rtx inc, insn, mem, incr, incr_reg;
3341 {
3342 int regno = REGNO (incr_reg);
3343 rtx set = single_set (incr);
3344 rtx q = SET_DEST (set);
3345 rtx y = SET_SRC (set);
3346 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3347
3348 /* Make sure this reg appears only once in this insn. */
3349 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3350 return;
3351
3352 if (dead_or_set_p (incr, incr_reg)
3353 /* Mustn't autoinc an eliminable register. */
3354 && (regno >= FIRST_PSEUDO_REGISTER
3355 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3356 {
3357 /* This is the simple case. Try to make the auto-inc. If
3358 we can't, we are done. Otherwise, we will do any
3359 needed updates below. */
3360 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3361 return;
3362 }
3363 else if (GET_CODE (q) == REG
3364 /* PREV_INSN used here to check the semi-open interval
3365 [insn,incr). */
3366 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3367 /* We must also check for sets of q as q may be
3368 a call clobbered hard register and there may
3369 be a call between PREV_INSN (insn) and incr. */
3370 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3371 {
3372 /* We have *p followed sometime later by q = p+size.
3373 Both p and q must be live afterward,
3374 and q is not used between INSN and its assignment.
3375 Change it to q = p, ...*q..., q = q+size.
3376 Then fall into the usual case. */
3377 rtx insns, temp;
3378
3379 start_sequence ();
3380 emit_move_insn (q, incr_reg);
3381 insns = get_insns ();
3382 end_sequence ();
3383
3384 /* If we can't make the auto-inc, or can't make the
3385 replacement into Y, exit. There's no point in making
3386 the change below if we can't do the auto-inc and doing
3387 so is not correct in the pre-inc case. */
3388
3389 XEXP (inc, 0) = q;
3390 validate_change (insn, &XEXP (mem, 0), inc, 1);
3391 validate_change (incr, &XEXP (y, opnum), q, 1);
3392 if (! apply_change_group ())
3393 return;
3394
3395 /* We now know we'll be doing this change, so emit the
3396 new insn(s) and do the updates. */
3397 emit_insn_before (insns, insn);
3398
3399 if (pbi->bb->head == insn)
3400 pbi->bb->head = insns;
3401
3402 /* INCR will become a NOTE and INSN won't contain a
3403 use of INCR_REG. If a use of INCR_REG was just placed in
3404 the insn before INSN, make that the next use.
3405 Otherwise, invalidate it. */
3406 if (GET_CODE (PREV_INSN (insn)) == INSN
3407 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3408 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3409 pbi->reg_next_use[regno] = PREV_INSN (insn);
3410 else
3411 pbi->reg_next_use[regno] = 0;
3412
3413 incr_reg = q;
3414 regno = REGNO (q);
3415
3416 /* REGNO is now used in INCR which is below INSN, but
3417 it previously wasn't live here. If we don't mark
3418 it as live, we'll put a REG_DEAD note for it
3419 on this insn, which is incorrect. */
3420 SET_REGNO_REG_SET (pbi->reg_live, regno);
3421
3422 /* If there are any calls between INSN and INCR, show
3423 that REGNO now crosses them. */
3424 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3425 if (GET_CODE (temp) == CALL_INSN)
3426 REG_N_CALLS_CROSSED (regno)++;
3427
3428 /* Invalidate alias info for Q since we just changed its value. */
3429 clear_reg_alias_info (q);
3430 }
3431 else
3432 return;
3433
3434 /* If we haven't returned, it means we were able to make the
3435 auto-inc, so update the status. First, record that this insn
3436 has an implicit side effect. */
3437
3438 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3439
3440 /* Modify the old increment-insn to simply copy
3441 the already-incremented value of our register. */
3442 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3443 abort ();
3444
3445 /* If that makes it a no-op (copying the register into itself) delete
3446 it so it won't appear to be a "use" and a "set" of this
3447 register. */
3448 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3449 {
3450 /* If the original source was dead, it's dead now. */
3451 rtx note;
3452
3453 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3454 {
3455 remove_note (incr, note);
3456 if (XEXP (note, 0) != incr_reg)
3457 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3458 }
3459
3460 PUT_CODE (incr, NOTE);
3461 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3462 NOTE_SOURCE_FILE (incr) = 0;
3463 }
3464
3465 if (regno >= FIRST_PSEUDO_REGISTER)
3466 {
3467 /* Count an extra reference to the reg. When a reg is
3468 incremented, spilling it is worse, so we want to make
3469 that less likely. */
3470 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3471
3472 /* Count the increment as a setting of the register,
3473 even though it isn't a SET in rtl. */
3474 REG_N_SETS (regno)++;
3475 }
3476 }
3477
3478 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3479 reference. */
3480
3481 static void
3482 find_auto_inc (pbi, x, insn)
3483 struct propagate_block_info *pbi;
3484 rtx x;
3485 rtx insn;
3486 {
3487 rtx addr = XEXP (x, 0);
3488 HOST_WIDE_INT offset = 0;
3489 rtx set, y, incr, inc_val;
3490 int regno;
3491 int size = GET_MODE_SIZE (GET_MODE (x));
3492
3493 if (GET_CODE (insn) == JUMP_INSN)
3494 return;
3495
3496 /* Here we detect use of an index register which might be good for
3497 postincrement, postdecrement, preincrement, or predecrement. */
3498
3499 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3500 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3501
3502 if (GET_CODE (addr) != REG)
3503 return;
3504
3505 regno = REGNO (addr);
3506
3507 /* Is the next use an increment that might make auto-increment? */
3508 incr = pbi->reg_next_use[regno];
3509 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3510 return;
3511 set = single_set (incr);
3512 if (set == 0 || GET_CODE (set) != SET)
3513 return;
3514 y = SET_SRC (set);
3515
3516 if (GET_CODE (y) != PLUS)
3517 return;
3518
3519 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3520 inc_val = XEXP (y, 1);
3521 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3522 inc_val = XEXP (y, 0);
3523 else
3524 return;
3525
3526 if (GET_CODE (inc_val) == CONST_INT)
3527 {
3528 if (HAVE_POST_INCREMENT
3529 && (INTVAL (inc_val) == size && offset == 0))
3530 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3531 incr, addr);
3532 else if (HAVE_POST_DECREMENT
3533 && (INTVAL (inc_val) == -size && offset == 0))
3534 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3535 incr, addr);
3536 else if (HAVE_PRE_INCREMENT
3537 && (INTVAL (inc_val) == size && offset == size))
3538 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3539 incr, addr);
3540 else if (HAVE_PRE_DECREMENT
3541 && (INTVAL (inc_val) == -size && offset == -size))
3542 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3543 incr, addr);
3544 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3545 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3546 gen_rtx_PLUS (Pmode,
3547 addr,
3548 inc_val)),
3549 insn, x, incr, addr);
3550 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3551 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3552 gen_rtx_PLUS (Pmode,
3553 addr,
3554 inc_val)),
3555 insn, x, incr, addr);
3556 }
3557 else if (GET_CODE (inc_val) == REG
3558 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3559 NEXT_INSN (incr)))
3560
3561 {
3562 if (HAVE_POST_MODIFY_REG && offset == 0)
3563 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3564 gen_rtx_PLUS (Pmode,
3565 addr,
3566 inc_val)),
3567 insn, x, incr, addr);
3568 }
3569 }
3570
3571 #endif /* AUTO_INC_DEC */
3572 \f
3573 static void
3574 mark_used_reg (pbi, reg, cond, insn)
3575 struct propagate_block_info *pbi;
3576 rtx reg;
3577 rtx cond ATTRIBUTE_UNUSED;
3578 rtx insn;
3579 {
3580 unsigned int regno_first, regno_last, i;
3581 int some_was_live, some_was_dead, some_not_set;
3582
3583 regno_last = regno_first = REGNO (reg);
3584 if (regno_first < FIRST_PSEUDO_REGISTER)
3585 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3586
3587 /* Find out if any of this register is live after this instruction. */
3588 some_was_live = some_was_dead = 0;
3589 for (i = regno_first; i <= regno_last; ++i)
3590 {
3591 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3592 some_was_live |= needed_regno;
3593 some_was_dead |= ! needed_regno;
3594 }
3595
3596 /* Find out if any of the register was set this insn. */
3597 some_not_set = 0;
3598 for (i = regno_first; i <= regno_last; ++i)
3599 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3600
3601 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3602 {
3603 /* Record where each reg is used, so when the reg is set we know
3604 the next insn that uses it. */
3605 pbi->reg_next_use[regno_first] = insn;
3606 }
3607
3608 if (pbi->flags & PROP_REG_INFO)
3609 {
3610 if (regno_first < FIRST_PSEUDO_REGISTER)
3611 {
3612 /* If this is a register we are going to try to eliminate,
3613 don't mark it live here. If we are successful in
3614 eliminating it, it need not be live unless it is used for
3615 pseudos, in which case it will have been set live when it
3616 was allocated to the pseudos. If the register will not
3617 be eliminated, reload will set it live at that point.
3618
3619 Otherwise, record that this function uses this register. */
3620 /* ??? The PPC backend tries to "eliminate" on the pic
3621 register to itself. This should be fixed. In the mean
3622 time, hack around it. */
3623
3624 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3625 && (regno_first == FRAME_POINTER_REGNUM
3626 || regno_first == ARG_POINTER_REGNUM)))
3627 for (i = regno_first; i <= regno_last; ++i)
3628 regs_ever_live[i] = 1;
3629 }
3630 else
3631 {
3632 /* Keep track of which basic block each reg appears in. */
3633
3634 int blocknum = pbi->bb->index;
3635 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3636 REG_BASIC_BLOCK (regno_first) = blocknum;
3637 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3638 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3639
3640 /* Count (weighted) number of uses of each reg. */
3641 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3642 REG_N_REFS (regno_first)++;
3643 }
3644 }
3645
3646 /* Record and count the insns in which a reg dies. If it is used in
3647 this insn and was dead below the insn then it dies in this insn.
3648 If it was set in this insn, we do not make a REG_DEAD note;
3649 likewise if we already made such a note. */
3650 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3651 && some_was_dead
3652 && some_not_set)
3653 {
3654 /* Check for the case where the register dying partially
3655 overlaps the register set by this insn. */
3656 if (regno_first != regno_last)
3657 for (i = regno_first; i <= regno_last; ++i)
3658 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3659
3660 /* If none of the words in X is needed, make a REG_DEAD note.
3661 Otherwise, we must make partial REG_DEAD notes. */
3662 if (! some_was_live)
3663 {
3664 if ((pbi->flags & PROP_DEATH_NOTES)
3665 && ! find_regno_note (insn, REG_DEAD, regno_first))
3666 REG_NOTES (insn)
3667 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3668
3669 if (pbi->flags & PROP_REG_INFO)
3670 REG_N_DEATHS (regno_first)++;
3671 }
3672 else
3673 {
3674 /* Don't make a REG_DEAD note for a part of a register
3675 that is set in the insn. */
3676 for (i = regno_first; i <= regno_last; ++i)
3677 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3678 && ! dead_or_set_regno_p (insn, i))
3679 REG_NOTES (insn)
3680 = alloc_EXPR_LIST (REG_DEAD,
3681 regno_reg_rtx[i],
3682 REG_NOTES (insn));
3683 }
3684 }
3685
3686 /* Mark the register as being live. */
3687 for (i = regno_first; i <= regno_last; ++i)
3688 {
3689 #ifdef HAVE_conditional_execution
3690 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3691 #endif
3692
3693 SET_REGNO_REG_SET (pbi->reg_live, i);
3694
3695 #ifdef HAVE_conditional_execution
3696 /* If this is a conditional use, record that fact. If it is later
3697 conditionally set, we'll know to kill the register. */
3698 if (cond != NULL_RTX)
3699 {
3700 splay_tree_node node;
3701 struct reg_cond_life_info *rcli;
3702 rtx ncond;
3703
3704 if (this_was_live)
3705 {
3706 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3707 if (node == NULL)
3708 {
3709 /* The register was unconditionally live previously.
3710 No need to do anything. */
3711 }
3712 else
3713 {
3714 /* The register was conditionally live previously.
3715 Subtract the new life cond from the old death cond. */
3716 rcli = (struct reg_cond_life_info *) node->value;
3717 ncond = rcli->condition;
3718 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3719
3720 /* If the register is now unconditionally live,
3721 remove the entry in the splay_tree. */
3722 if (ncond == const0_rtx)
3723 splay_tree_remove (pbi->reg_cond_dead, i);
3724 else
3725 {
3726 rcli->condition = ncond;
3727 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3728 REGNO (XEXP (cond, 0)));
3729 }
3730 }
3731 }
3732 else
3733 {
3734 /* The register was not previously live at all. Record
3735 the condition under which it is still dead. */
3736 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3737 rcli->condition = not_reg_cond (cond);
3738 rcli->stores = const0_rtx;
3739 rcli->orig_condition = const0_rtx;
3740 splay_tree_insert (pbi->reg_cond_dead, i,
3741 (splay_tree_value) rcli);
3742
3743 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3744 }
3745 }
3746 else if (this_was_live)
3747 {
3748 /* The register may have been conditionally live previously, but
3749 is now unconditionally live. Remove it from the conditionally
3750 dead list, so that a conditional set won't cause us to think
3751 it dead. */
3752 splay_tree_remove (pbi->reg_cond_dead, i);
3753 }
3754 #endif
3755 }
3756 }
3757
3758 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3759 This is done assuming the registers needed from X are those that
3760 have 1-bits in PBI->REG_LIVE.
3761
3762 INSN is the containing instruction. If INSN is dead, this function
3763 is not called. */
3764
3765 static void
3766 mark_used_regs (pbi, x, cond, insn)
3767 struct propagate_block_info *pbi;
3768 rtx x, cond, insn;
3769 {
3770 RTX_CODE code;
3771 int regno;
3772 int flags = pbi->flags;
3773
3774 retry:
3775 if (!x)
3776 return;
3777 code = GET_CODE (x);
3778 switch (code)
3779 {
3780 case LABEL_REF:
3781 case SYMBOL_REF:
3782 case CONST_INT:
3783 case CONST:
3784 case CONST_DOUBLE:
3785 case CONST_VECTOR:
3786 case PC:
3787 case ADDR_VEC:
3788 case ADDR_DIFF_VEC:
3789 return;
3790
3791 #ifdef HAVE_cc0
3792 case CC0:
3793 pbi->cc0_live = 1;
3794 return;
3795 #endif
3796
3797 case CLOBBER:
3798 /* If we are clobbering a MEM, mark any registers inside the address
3799 as being used. */
3800 if (GET_CODE (XEXP (x, 0)) == MEM)
3801 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3802 return;
3803
3804 case MEM:
3805 /* Don't bother watching stores to mems if this is not the
3806 final pass. We'll not be deleting dead stores this round. */
3807 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3808 {
3809 /* Invalidate the data for the last MEM stored, but only if MEM is
3810 something that can be stored into. */
3811 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3812 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3813 /* Needn't clear the memory set list. */
3814 ;
3815 else
3816 {
3817 rtx temp = pbi->mem_set_list;
3818 rtx prev = NULL_RTX;
3819 rtx next;
3820
3821 while (temp)
3822 {
3823 next = XEXP (temp, 1);
3824 if (anti_dependence (XEXP (temp, 0), x))
3825 {
3826 /* Splice temp out of the list. */
3827 if (prev)
3828 XEXP (prev, 1) = next;
3829 else
3830 pbi->mem_set_list = next;
3831 free_EXPR_LIST_node (temp);
3832 pbi->mem_set_list_len--;
3833 }
3834 else
3835 prev = temp;
3836 temp = next;
3837 }
3838 }
3839
3840 /* If the memory reference had embedded side effects (autoincrement
3841 address modes. Then we may need to kill some entries on the
3842 memory set list. */
3843 if (insn)
3844 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3845 }
3846
3847 #ifdef AUTO_INC_DEC
3848 if (flags & PROP_AUTOINC)
3849 find_auto_inc (pbi, x, insn);
3850 #endif
3851 break;
3852
3853 case SUBREG:
3854 #ifdef CANNOT_CHANGE_MODE_CLASS
3855 if ((flags & PROP_REG_INFO)
3856 && GET_CODE (SUBREG_REG (x)) == REG
3857 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3858 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3859 * MAX_MACHINE_MODE
3860 + GET_MODE (x));
3861 #endif
3862
3863 /* While we're here, optimize this case. */
3864 x = SUBREG_REG (x);
3865 if (GET_CODE (x) != REG)
3866 goto retry;
3867 /* Fall through. */
3868
3869 case REG:
3870 /* See a register other than being set => mark it as needed. */
3871 mark_used_reg (pbi, x, cond, insn);
3872 return;
3873
3874 case SET:
3875 {
3876 rtx testreg = SET_DEST (x);
3877 int mark_dest = 0;
3878
3879 /* If storing into MEM, don't show it as being used. But do
3880 show the address as being used. */
3881 if (GET_CODE (testreg) == MEM)
3882 {
3883 #ifdef AUTO_INC_DEC
3884 if (flags & PROP_AUTOINC)
3885 find_auto_inc (pbi, testreg, insn);
3886 #endif
3887 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3888 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3889 return;
3890 }
3891
3892 /* Storing in STRICT_LOW_PART is like storing in a reg
3893 in that this SET might be dead, so ignore it in TESTREG.
3894 but in some other ways it is like using the reg.
3895
3896 Storing in a SUBREG or a bit field is like storing the entire
3897 register in that if the register's value is not used
3898 then this SET is not needed. */
3899 while (GET_CODE (testreg) == STRICT_LOW_PART
3900 || GET_CODE (testreg) == ZERO_EXTRACT
3901 || GET_CODE (testreg) == SIGN_EXTRACT
3902 || GET_CODE (testreg) == SUBREG)
3903 {
3904 #ifdef CANNOT_CHANGE_MODE_CLASS
3905 if ((flags & PROP_REG_INFO)
3906 && GET_CODE (testreg) == SUBREG
3907 && GET_CODE (SUBREG_REG (testreg)) == REG
3908 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3909 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3910 * MAX_MACHINE_MODE
3911 + GET_MODE (testreg));
3912 #endif
3913
3914 /* Modifying a single register in an alternate mode
3915 does not use any of the old value. But these other
3916 ways of storing in a register do use the old value. */
3917 if (GET_CODE (testreg) == SUBREG
3918 && !((REG_BYTES (SUBREG_REG (testreg))
3919 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3920 > (REG_BYTES (testreg)
3921 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3922 ;
3923 else
3924 mark_dest = 1;
3925
3926 testreg = XEXP (testreg, 0);
3927 }
3928
3929 /* If this is a store into a register or group of registers,
3930 recursively scan the value being stored. */
3931
3932 if ((GET_CODE (testreg) == PARALLEL
3933 && GET_MODE (testreg) == BLKmode)
3934 || (GET_CODE (testreg) == REG
3935 && (regno = REGNO (testreg),
3936 ! (regno == FRAME_POINTER_REGNUM
3937 && (! reload_completed || frame_pointer_needed)))
3938 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3939 && ! (regno == HARD_FRAME_POINTER_REGNUM
3940 && (! reload_completed || frame_pointer_needed))
3941 #endif
3942 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3943 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3944 #endif
3945 ))
3946 {
3947 if (mark_dest)
3948 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3949 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3950 return;
3951 }
3952 }
3953 break;
3954
3955 case ASM_OPERANDS:
3956 case UNSPEC_VOLATILE:
3957 case TRAP_IF:
3958 case ASM_INPUT:
3959 {
3960 /* Traditional and volatile asm instructions must be considered to use
3961 and clobber all hard registers, all pseudo-registers and all of
3962 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3963
3964 Consider for instance a volatile asm that changes the fpu rounding
3965 mode. An insn should not be moved across this even if it only uses
3966 pseudo-regs because it might give an incorrectly rounded result.
3967
3968 ?!? Unfortunately, marking all hard registers as live causes massive
3969 problems for the register allocator and marking all pseudos as live
3970 creates mountains of uninitialized variable warnings.
3971
3972 So for now, just clear the memory set list and mark any regs
3973 we can find in ASM_OPERANDS as used. */
3974 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3975 {
3976 free_EXPR_LIST_list (&pbi->mem_set_list);
3977 pbi->mem_set_list_len = 0;
3978 }
3979
3980 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3981 We can not just fall through here since then we would be confused
3982 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3983 traditional asms unlike their normal usage. */
3984 if (code == ASM_OPERANDS)
3985 {
3986 int j;
3987
3988 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3989 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3990 }
3991 break;
3992 }
3993
3994 case COND_EXEC:
3995 if (cond != NULL_RTX)
3996 abort ();
3997
3998 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3999
4000 cond = COND_EXEC_TEST (x);
4001 x = COND_EXEC_CODE (x);
4002 goto retry;
4003
4004 case PHI:
4005 /* We _do_not_ want to scan operands of phi nodes. Operands of
4006 a phi function are evaluated only when control reaches this
4007 block along a particular edge. Therefore, regs that appear
4008 as arguments to phi should not be added to the global live at
4009 start. */
4010 return;
4011
4012 default:
4013 break;
4014 }
4015
4016 /* Recursively scan the operands of this expression. */
4017
4018 {
4019 const char * const fmt = GET_RTX_FORMAT (code);
4020 int i;
4021
4022 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4023 {
4024 if (fmt[i] == 'e')
4025 {
4026 /* Tail recursive case: save a function call level. */
4027 if (i == 0)
4028 {
4029 x = XEXP (x, 0);
4030 goto retry;
4031 }
4032 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4033 }
4034 else if (fmt[i] == 'E')
4035 {
4036 int j;
4037 for (j = 0; j < XVECLEN (x, i); j++)
4038 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4039 }
4040 }
4041 }
4042 }
4043 \f
4044 #ifdef AUTO_INC_DEC
4045
4046 static int
4047 try_pre_increment_1 (pbi, insn)
4048 struct propagate_block_info *pbi;
4049 rtx insn;
4050 {
4051 /* Find the next use of this reg. If in same basic block,
4052 make it do pre-increment or pre-decrement if appropriate. */
4053 rtx x = single_set (insn);
4054 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4055 * INTVAL (XEXP (SET_SRC (x), 1)));
4056 int regno = REGNO (SET_DEST (x));
4057 rtx y = pbi->reg_next_use[regno];
4058 if (y != 0
4059 && SET_DEST (x) != stack_pointer_rtx
4060 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4061 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4062 mode would be better. */
4063 && ! dead_or_set_p (y, SET_DEST (x))
4064 && try_pre_increment (y, SET_DEST (x), amount))
4065 {
4066 /* We have found a suitable auto-increment and already changed
4067 insn Y to do it. So flush this increment instruction. */
4068 propagate_block_delete_insn (insn);
4069
4070 /* Count a reference to this reg for the increment insn we are
4071 deleting. When a reg is incremented, spilling it is worse,
4072 so we want to make that less likely. */
4073 if (regno >= FIRST_PSEUDO_REGISTER)
4074 {
4075 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4076 REG_N_SETS (regno)++;
4077 }
4078
4079 /* Flush any remembered memories depending on the value of
4080 the incremented register. */
4081 invalidate_mems_from_set (pbi, SET_DEST (x));
4082
4083 return 1;
4084 }
4085 return 0;
4086 }
4087
4088 /* Try to change INSN so that it does pre-increment or pre-decrement
4089 addressing on register REG in order to add AMOUNT to REG.
4090 AMOUNT is negative for pre-decrement.
4091 Returns 1 if the change could be made.
4092 This checks all about the validity of the result of modifying INSN. */
4093
4094 static int
4095 try_pre_increment (insn, reg, amount)
4096 rtx insn, reg;
4097 HOST_WIDE_INT amount;
4098 {
4099 rtx use;
4100
4101 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4102 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4103 int pre_ok = 0;
4104 /* Nonzero if we can try to make a post-increment or post-decrement.
4105 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4106 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4107 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4108 int post_ok = 0;
4109
4110 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4111 int do_post = 0;
4112
4113 /* From the sign of increment, see which possibilities are conceivable
4114 on this target machine. */
4115 if (HAVE_PRE_INCREMENT && amount > 0)
4116 pre_ok = 1;
4117 if (HAVE_POST_INCREMENT && amount > 0)
4118 post_ok = 1;
4119
4120 if (HAVE_PRE_DECREMENT && amount < 0)
4121 pre_ok = 1;
4122 if (HAVE_POST_DECREMENT && amount < 0)
4123 post_ok = 1;
4124
4125 if (! (pre_ok || post_ok))
4126 return 0;
4127
4128 /* It is not safe to add a side effect to a jump insn
4129 because if the incremented register is spilled and must be reloaded
4130 there would be no way to store the incremented value back in memory. */
4131
4132 if (GET_CODE (insn) == JUMP_INSN)
4133 return 0;
4134
4135 use = 0;
4136 if (pre_ok)
4137 use = find_use_as_address (PATTERN (insn), reg, 0);
4138 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4139 {
4140 use = find_use_as_address (PATTERN (insn), reg, -amount);
4141 do_post = 1;
4142 }
4143
4144 if (use == 0 || use == (rtx) (size_t) 1)
4145 return 0;
4146
4147 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4148 return 0;
4149
4150 /* See if this combination of instruction and addressing mode exists. */
4151 if (! validate_change (insn, &XEXP (use, 0),
4152 gen_rtx_fmt_e (amount > 0
4153 ? (do_post ? POST_INC : PRE_INC)
4154 : (do_post ? POST_DEC : PRE_DEC),
4155 Pmode, reg), 0))
4156 return 0;
4157
4158 /* Record that this insn now has an implicit side effect on X. */
4159 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4160 return 1;
4161 }
4162
4163 #endif /* AUTO_INC_DEC */
4164 \f
4165 /* Find the place in the rtx X where REG is used as a memory address.
4166 Return the MEM rtx that so uses it.
4167 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4168 (plus REG (const_int PLUSCONST)).
4169
4170 If such an address does not appear, return 0.
4171 If REG appears more than once, or is used other than in such an address,
4172 return (rtx) 1. */
4173
4174 rtx
4175 find_use_as_address (x, reg, plusconst)
4176 rtx x;
4177 rtx reg;
4178 HOST_WIDE_INT plusconst;
4179 {
4180 enum rtx_code code = GET_CODE (x);
4181 const char * const fmt = GET_RTX_FORMAT (code);
4182 int i;
4183 rtx value = 0;
4184 rtx tem;
4185
4186 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4187 return x;
4188
4189 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4190 && XEXP (XEXP (x, 0), 0) == reg
4191 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4192 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4193 return x;
4194
4195 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4196 {
4197 /* If REG occurs inside a MEM used in a bit-field reference,
4198 that is unacceptable. */
4199 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4200 return (rtx) (size_t) 1;
4201 }
4202
4203 if (x == reg)
4204 return (rtx) (size_t) 1;
4205
4206 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4207 {
4208 if (fmt[i] == 'e')
4209 {
4210 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4211 if (value == 0)
4212 value = tem;
4213 else if (tem != 0)
4214 return (rtx) (size_t) 1;
4215 }
4216 else if (fmt[i] == 'E')
4217 {
4218 int j;
4219 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4220 {
4221 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4222 if (value == 0)
4223 value = tem;
4224 else if (tem != 0)
4225 return (rtx) (size_t) 1;
4226 }
4227 }
4228 }
4229
4230 return value;
4231 }
4232 \f
4233 /* Write information about registers and basic blocks into FILE.
4234 This is part of making a debugging dump. */
4235
4236 void
4237 dump_regset (r, outf)
4238 regset r;
4239 FILE *outf;
4240 {
4241 int i;
4242 if (r == NULL)
4243 {
4244 fputs (" (nil)", outf);
4245 return;
4246 }
4247
4248 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4249 {
4250 fprintf (outf, " %d", i);
4251 if (i < FIRST_PSEUDO_REGISTER)
4252 fprintf (outf, " [%s]",
4253 reg_names[i]);
4254 });
4255 }
4256
4257 /* Print a human-readable representation of R on the standard error
4258 stream. This function is designed to be used from within the
4259 debugger. */
4260
4261 void
4262 debug_regset (r)
4263 regset r;
4264 {
4265 dump_regset (r, stderr);
4266 putc ('\n', stderr);
4267 }
4268
4269 /* Recompute register set/reference counts immediately prior to register
4270 allocation.
4271
4272 This avoids problems with set/reference counts changing to/from values
4273 which have special meanings to the register allocators.
4274
4275 Additionally, the reference counts are the primary component used by the
4276 register allocators to prioritize pseudos for allocation to hard regs.
4277 More accurate reference counts generally lead to better register allocation.
4278
4279 F is the first insn to be scanned.
4280
4281 LOOP_STEP denotes how much loop_depth should be incremented per
4282 loop nesting level in order to increase the ref count more for
4283 references in a loop.
4284
4285 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4286 possibly other information which is used by the register allocators. */
4287
4288 void
4289 recompute_reg_usage (f, loop_step)
4290 rtx f ATTRIBUTE_UNUSED;
4291 int loop_step ATTRIBUTE_UNUSED;
4292 {
4293 allocate_reg_life_data ();
4294 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4295 }
4296
4297 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4298 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4299 of the number of registers that died. */
4300
4301 int
4302 count_or_remove_death_notes (blocks, kill)
4303 sbitmap blocks;
4304 int kill;
4305 {
4306 int count = 0;
4307 basic_block bb;
4308
4309 FOR_EACH_BB_REVERSE (bb)
4310 {
4311 rtx insn;
4312
4313 if (blocks && ! TEST_BIT (blocks, bb->index))
4314 continue;
4315
4316 for (insn = bb->head;; insn = NEXT_INSN (insn))
4317 {
4318 if (INSN_P (insn))
4319 {
4320 rtx *pprev = &REG_NOTES (insn);
4321 rtx link = *pprev;
4322
4323 while (link)
4324 {
4325 switch (REG_NOTE_KIND (link))
4326 {
4327 case REG_DEAD:
4328 if (GET_CODE (XEXP (link, 0)) == REG)
4329 {
4330 rtx reg = XEXP (link, 0);
4331 int n;
4332
4333 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4334 n = 1;
4335 else
4336 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4337 count += n;
4338 }
4339 /* Fall through. */
4340
4341 case REG_UNUSED:
4342 if (kill)
4343 {
4344 rtx next = XEXP (link, 1);
4345 free_EXPR_LIST_node (link);
4346 *pprev = link = next;
4347 break;
4348 }
4349 /* Fall through. */
4350
4351 default:
4352 pprev = &XEXP (link, 1);
4353 link = *pprev;
4354 break;
4355 }
4356 }
4357 }
4358
4359 if (insn == bb->end)
4360 break;
4361 }
4362 }
4363
4364 return count;
4365 }
4366 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4367 if blocks is NULL. */
4368
4369 static void
4370 clear_log_links (blocks)
4371 sbitmap blocks;
4372 {
4373 rtx insn;
4374 int i;
4375
4376 if (!blocks)
4377 {
4378 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4379 if (INSN_P (insn))
4380 free_INSN_LIST_list (&LOG_LINKS (insn));
4381 }
4382 else
4383 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4384 {
4385 basic_block bb = BASIC_BLOCK (i);
4386
4387 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4388 insn = NEXT_INSN (insn))
4389 if (INSN_P (insn))
4390 free_INSN_LIST_list (&LOG_LINKS (insn));
4391 });
4392 }
4393
4394 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4395 correspond to the hard registers, if any, set in that map. This
4396 could be done far more efficiently by having all sorts of special-cases
4397 with moving single words, but probably isn't worth the trouble. */
4398
4399 void
4400 reg_set_to_hard_reg_set (to, from)
4401 HARD_REG_SET *to;
4402 bitmap from;
4403 {
4404 int i;
4405
4406 EXECUTE_IF_SET_IN_BITMAP
4407 (from, 0, i,
4408 {
4409 if (i >= FIRST_PSEUDO_REGISTER)
4410 return;
4411 SET_HARD_REG_BIT (*to, i);
4412 });
4413 }