flow.c (initialize_uninitialized_subregs): Make it static.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED, REG_N_THROWING_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143 #include "tree-pass.h"
144 #include "params.h"
145
146 #ifndef HAVE_epilogue
147 #define HAVE_epilogue 0
148 #endif
149 #ifndef HAVE_prologue
150 #define HAVE_prologue 0
151 #endif
152 #ifndef HAVE_sibcall_epilogue
153 #define HAVE_sibcall_epilogue 0
154 #endif
155
156 #ifndef EPILOGUE_USES
157 #define EPILOGUE_USES(REGNO) 0
158 #endif
159 #ifndef EH_USES
160 #define EH_USES(REGNO) 0
161 #endif
162
163 #ifdef HAVE_conditional_execution
164 #ifndef REVERSE_CONDEXEC_PREDICATES_P
165 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) \
166 (GET_CODE ((x)) == reversed_comparison_code ((y), NULL))
167 #endif
168 #endif
169
170 /* This is the maximum number of times we process any given block if the
171 latest loop depth count is smaller than this number. Only used for the
172 failure strategy to avoid infinite loops in calculate_global_regs_live. */
173 #define MAX_LIVENESS_ROUNDS 20
174
175 /* Nonzero if the second flow pass has completed. */
176 int flow2_completed;
177
178 /* Maximum register number used in this function, plus one. */
179
180 int max_regno;
181
182 /* Indexed by n, giving various register information */
183
184 varray_type reg_n_info;
185
186 /* Regset of regs live when calls to `setjmp'-like functions happen. */
187 /* ??? Does this exist only for the setjmp-clobbered warning message? */
188
189 static regset regs_live_at_setjmp;
190
191 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
192 that have to go in the same hard reg.
193 The first two regs in the list are a pair, and the next two
194 are another pair, etc. */
195 rtx regs_may_share;
196
197 /* Set of registers that may be eliminable. These are handled specially
198 in updating regs_ever_live. */
199
200 static HARD_REG_SET elim_reg_set;
201
202 /* Holds information for tracking conditional register life information. */
203 struct reg_cond_life_info
204 {
205 /* A boolean expression of conditions under which a register is dead. */
206 rtx condition;
207 /* Conditions under which a register is dead at the basic block end. */
208 rtx orig_condition;
209
210 /* A boolean expression of conditions under which a register has been
211 stored into. */
212 rtx stores;
213
214 /* ??? Could store mask of bytes that are dead, so that we could finally
215 track lifetimes of multi-word registers accessed via subregs. */
216 };
217
218 /* For use in communicating between propagate_block and its subroutines.
219 Holds all information needed to compute life and def-use information. */
220
221 struct propagate_block_info
222 {
223 /* The basic block we're considering. */
224 basic_block bb;
225
226 /* Bit N is set if register N is conditionally or unconditionally live. */
227 regset reg_live;
228
229 /* Bit N is set if register N is set this insn. */
230 regset new_set;
231
232 /* Element N is the next insn that uses (hard or pseudo) register N
233 within the current basic block; or zero, if there is no such insn. */
234 rtx *reg_next_use;
235
236 /* Contains a list of all the MEMs we are tracking for dead store
237 elimination. */
238 rtx mem_set_list;
239
240 /* If non-null, record the set of registers set unconditionally in the
241 basic block. */
242 regset local_set;
243
244 /* If non-null, record the set of registers set conditionally in the
245 basic block. */
246 regset cond_local_set;
247
248 #ifdef HAVE_conditional_execution
249 /* Indexed by register number, holds a reg_cond_life_info for each
250 register that is not unconditionally live or dead. */
251 splay_tree reg_cond_dead;
252
253 /* Bit N is set if register N is in an expression in reg_cond_dead. */
254 regset reg_cond_reg;
255 #endif
256
257 /* The length of mem_set_list. */
258 int mem_set_list_len;
259
260 /* Nonzero if the value of CC0 is live. */
261 int cc0_live;
262
263 /* Flags controlling the set of information propagate_block collects. */
264 int flags;
265 /* Index of instruction being processed. */
266 int insn_num;
267 };
268
269 /* Number of dead insns removed. */
270 static int ndead;
271
272 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
273 where given register died. When the register is marked alive, we use the
274 information to compute amount of instructions life range cross.
275 (remember, we are walking backward). This can be computed as current
276 pbi->insn_num - reg_deaths[regno].
277 At the end of processing each basic block, the remaining live registers
278 are inspected and live ranges are increased same way so liverange of global
279 registers are computed correctly.
280
281 The array is maintained clear for dead registers, so it can be safely reused
282 for next basic block without expensive memset of the whole array after
283 reseting pbi->insn_num to 0. */
284
285 static int *reg_deaths;
286
287 /* Forward declarations */
288 static int verify_wide_reg_1 (rtx *, void *);
289 static void verify_wide_reg (int, basic_block);
290 static void verify_local_live_at_start (regset, basic_block);
291 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
292 static void notice_stack_pointer_modification (void);
293 static void mark_reg (rtx, void *);
294 static void mark_regs_live_at_end (regset);
295 static void calculate_global_regs_live (sbitmap, sbitmap, int);
296 static void propagate_block_delete_insn (rtx);
297 static rtx propagate_block_delete_libcall (rtx, rtx);
298 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
299 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
300 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
301 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
302 rtx, rtx, int);
303 static int find_regno_partial (rtx *, void *);
304
305 #ifdef HAVE_conditional_execution
306 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
307 static void free_reg_cond_life_info (splay_tree_value);
308 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
309 static void flush_reg_cond_reg (struct propagate_block_info *, int);
310 static rtx elim_reg_cond (rtx, unsigned int);
311 static rtx ior_reg_cond (rtx, rtx, int);
312 static rtx not_reg_cond (rtx);
313 static rtx and_reg_cond (rtx, rtx, int);
314 #endif
315 #ifdef AUTO_INC_DEC
316 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
317 rtx, rtx);
318 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
319 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
320 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
321 #endif
322 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
323 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
324 void debug_flow_info (void);
325 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
326 static int invalidate_mems_from_autoinc (rtx *, void *);
327 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
328 static void clear_log_links (sbitmap);
329 static int count_or_remove_death_notes_bb (basic_block, int);
330 static void allocate_bb_life_data (void);
331 \f
332 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
333 note associated with the BLOCK. */
334
335 rtx
336 first_insn_after_basic_block_note (basic_block block)
337 {
338 rtx insn;
339
340 /* Get the first instruction in the block. */
341 insn = BB_HEAD (block);
342
343 if (insn == NULL_RTX)
344 return NULL_RTX;
345 if (LABEL_P (insn))
346 insn = NEXT_INSN (insn);
347 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (insn));
348
349 return NEXT_INSN (insn);
350 }
351 \f
352 /* Perform data flow analysis for the whole control flow graph.
353 FLAGS is a set of PROP_* flags to be used in accumulating flow info. */
354
355 void
356 life_analysis (FILE *file, int flags)
357 {
358 #ifdef ELIMINABLE_REGS
359 int i;
360 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
361 #endif
362
363 /* Record which registers will be eliminated. We use this in
364 mark_used_regs. */
365
366 CLEAR_HARD_REG_SET (elim_reg_set);
367
368 #ifdef ELIMINABLE_REGS
369 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
370 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
371 #else
372 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
373 #endif
374
375
376 #ifdef CANNOT_CHANGE_MODE_CLASS
377 if (flags & PROP_REG_INFO)
378 init_subregs_of_mode ();
379 #endif
380
381 if (! optimize)
382 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
383
384 /* The post-reload life analysis have (on a global basis) the same
385 registers live as was computed by reload itself. elimination
386 Otherwise offsets and such may be incorrect.
387
388 Reload will make some registers as live even though they do not
389 appear in the rtl.
390
391 We don't want to create new auto-incs after reload, since they
392 are unlikely to be useful and can cause problems with shared
393 stack slots. */
394 if (reload_completed)
395 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
396
397 /* We want alias analysis information for local dead store elimination. */
398 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
399 init_alias_analysis ();
400
401 /* Always remove no-op moves. Do this before other processing so
402 that we don't have to keep re-scanning them. */
403 delete_noop_moves ();
404
405 /* Some targets can emit simpler epilogues if they know that sp was
406 not ever modified during the function. After reload, of course,
407 we've already emitted the epilogue so there's no sense searching. */
408 if (! reload_completed)
409 notice_stack_pointer_modification ();
410
411 /* Allocate and zero out data structures that will record the
412 data from lifetime analysis. */
413 allocate_reg_life_data ();
414 allocate_bb_life_data ();
415
416 /* Find the set of registers live on function exit. */
417 mark_regs_live_at_end (EXIT_BLOCK_PTR->il.rtl->global_live_at_start);
418
419 /* "Update" life info from zero. It'd be nice to begin the
420 relaxation with just the exit and noreturn blocks, but that set
421 is not immediately handy. */
422
423 if (flags & PROP_REG_INFO)
424 {
425 memset (regs_ever_live, 0, sizeof (regs_ever_live));
426 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
427 }
428 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
429 if (reg_deaths)
430 {
431 free (reg_deaths);
432 reg_deaths = NULL;
433 }
434
435 /* Clean up. */
436 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
437 end_alias_analysis ();
438
439 if (file)
440 dump_flow_info (file);
441
442 /* Removing dead insns should have made jumptables really dead. */
443 delete_dead_jumptables ();
444 }
445
446 /* A subroutine of verify_wide_reg, called through for_each_rtx.
447 Search for REGNO. If found, return 2 if it is not wider than
448 word_mode. */
449
450 static int
451 verify_wide_reg_1 (rtx *px, void *pregno)
452 {
453 rtx x = *px;
454 unsigned int regno = *(int *) pregno;
455
456 if (REG_P (x) && REGNO (x) == regno)
457 {
458 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
459 return 2;
460 return 1;
461 }
462 return 0;
463 }
464
465 /* A subroutine of verify_local_live_at_start. Search through insns
466 of BB looking for register REGNO. */
467
468 static void
469 verify_wide_reg (int regno, basic_block bb)
470 {
471 rtx head = BB_HEAD (bb), end = BB_END (bb);
472
473 while (1)
474 {
475 if (INSN_P (head))
476 {
477 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
478 if (r == 1)
479 return;
480 if (r == 2)
481 break;
482 }
483 if (head == end)
484 break;
485 head = NEXT_INSN (head);
486 }
487 if (dump_file)
488 {
489 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
490 dump_bb (bb, dump_file, 0);
491 }
492 fatal_error ("internal consistency failure");
493 }
494
495 /* A subroutine of update_life_info. Verify that there are no untoward
496 changes in live_at_start during a local update. */
497
498 static void
499 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
500 {
501 if (reload_completed)
502 {
503 /* After reload, there are no pseudos, nor subregs of multi-word
504 registers. The regsets should exactly match. */
505 if (! REG_SET_EQUAL_P (new_live_at_start,
506 bb->il.rtl->global_live_at_start))
507 {
508 if (dump_file)
509 {
510 fprintf (dump_file,
511 "live_at_start mismatch in bb %d, aborting\nNew:\n",
512 bb->index);
513 debug_bitmap_file (dump_file, new_live_at_start);
514 fputs ("Old:\n", dump_file);
515 dump_bb (bb, dump_file, 0);
516 }
517 fatal_error ("internal consistency failure");
518 }
519 }
520 else
521 {
522 unsigned i;
523 reg_set_iterator rsi;
524
525 /* Find the set of changed registers. */
526 XOR_REG_SET (new_live_at_start, bb->il.rtl->global_live_at_start);
527
528 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i, rsi)
529 {
530 /* No registers should die. */
531 if (REGNO_REG_SET_P (bb->il.rtl->global_live_at_start, i))
532 {
533 if (dump_file)
534 {
535 fprintf (dump_file,
536 "Register %d died unexpectedly.\n", i);
537 dump_bb (bb, dump_file, 0);
538 }
539 fatal_error ("internal consistency failure");
540 }
541 /* Verify that the now-live register is wider than word_mode. */
542 verify_wide_reg (i, bb);
543 }
544 }
545 }
546
547 /* Updates life information starting with the basic blocks set in BLOCKS.
548 If BLOCKS is null, consider it to be the universal set.
549
550 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
551 we are only expecting local modifications to basic blocks. If we find
552 extra registers live at the beginning of a block, then we either killed
553 useful data, or we have a broken split that wants data not provided.
554 If we find registers removed from live_at_start, that means we have
555 a broken peephole that is killing a register it shouldn't.
556
557 ??? This is not true in one situation -- when a pre-reload splitter
558 generates subregs of a multi-word pseudo, current life analysis will
559 lose the kill. So we _can_ have a pseudo go live. How irritating.
560
561 It is also not true when a peephole decides that it doesn't need one
562 or more of the inputs.
563
564 Including PROP_REG_INFO does not properly refresh regs_ever_live
565 unless the caller resets it to zero. */
566
567 int
568 update_life_info (sbitmap blocks, enum update_life_extent extent,
569 int prop_flags)
570 {
571 regset tmp;
572 unsigned i = 0;
573 int stabilized_prop_flags = prop_flags;
574 basic_block bb;
575
576 tmp = ALLOC_REG_SET (&reg_obstack);
577 ndead = 0;
578
579 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
580 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
581
582 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
583 ? TV_LIFE_UPDATE : TV_LIFE);
584
585 /* Changes to the CFG are only allowed when
586 doing a global update for the entire CFG. */
587 gcc_assert (!(prop_flags & PROP_ALLOW_CFG_CHANGES)
588 || (extent != UPDATE_LIFE_LOCAL && !blocks));
589
590 /* For a global update, we go through the relaxation process again. */
591 if (extent != UPDATE_LIFE_LOCAL)
592 {
593 for ( ; ; )
594 {
595 int changed = 0;
596
597 calculate_global_regs_live (blocks, blocks,
598 prop_flags & (PROP_SCAN_DEAD_CODE
599 | PROP_SCAN_DEAD_STORES
600 | PROP_ALLOW_CFG_CHANGES));
601
602 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
603 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
604 break;
605
606 /* Removing dead code may allow the CFG to be simplified which
607 in turn may allow for further dead code detection / removal. */
608 FOR_EACH_BB_REVERSE (bb)
609 {
610 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
611 changed |= propagate_block (bb, tmp, NULL, NULL,
612 prop_flags & (PROP_SCAN_DEAD_CODE
613 | PROP_SCAN_DEAD_STORES
614 | PROP_KILL_DEAD_CODE));
615 }
616
617 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
618 subsequent propagate_block calls, since removing or acting as
619 removing dead code can affect global register liveness, which
620 is supposed to be finalized for this call after this loop. */
621 stabilized_prop_flags
622 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
623 | PROP_KILL_DEAD_CODE);
624
625 if (! changed)
626 break;
627
628 /* We repeat regardless of what cleanup_cfg says. If there were
629 instructions deleted above, that might have been only a
630 partial improvement (see PARAM_MAX_FLOW_MEMORY_LOCATIONS usage).
631 Further improvement may be possible. */
632 cleanup_cfg (CLEANUP_EXPENSIVE);
633
634 /* Zap the life information from the last round. If we don't
635 do this, we can wind up with registers that no longer appear
636 in the code being marked live at entry. */
637 FOR_EACH_BB (bb)
638 {
639 CLEAR_REG_SET (bb->il.rtl->global_live_at_start);
640 CLEAR_REG_SET (bb->il.rtl->global_live_at_end);
641 }
642 }
643
644 /* If asked, remove notes from the blocks we'll update. */
645 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
646 count_or_remove_death_notes (blocks,
647 prop_flags & PROP_POST_REGSTACK ? -1 : 1);
648 }
649
650 /* Clear log links in case we are asked to (re)compute them. */
651 if (prop_flags & PROP_LOG_LINKS)
652 clear_log_links (blocks);
653
654 if (blocks)
655 {
656 sbitmap_iterator sbi;
657
658 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
659 {
660 bb = BASIC_BLOCK (i);
661 if (bb)
662 {
663 /* The bitmap may be flawed in that one of the basic
664 blocks may have been deleted before you get here. */
665 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
666 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
667
668 if (extent == UPDATE_LIFE_LOCAL)
669 verify_local_live_at_start (tmp, bb);
670 }
671 };
672 }
673 else
674 {
675 FOR_EACH_BB_REVERSE (bb)
676 {
677 COPY_REG_SET (tmp, bb->il.rtl->global_live_at_end);
678
679 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
680
681 if (extent == UPDATE_LIFE_LOCAL)
682 verify_local_live_at_start (tmp, bb);
683 }
684 }
685
686 FREE_REG_SET (tmp);
687
688 if (prop_flags & PROP_REG_INFO)
689 {
690 reg_set_iterator rsi;
691
692 /* The only pseudos that are live at the beginning of the function
693 are those that were not set anywhere in the function. local-alloc
694 doesn't know how to handle these correctly, so mark them as not
695 local to any one basic block. */
696 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
697 FIRST_PSEUDO_REGISTER, i, rsi)
698 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
699
700 /* We have a problem with any pseudoreg that lives across the setjmp.
701 ANSI says that if a user variable does not change in value between
702 the setjmp and the longjmp, then the longjmp preserves it. This
703 includes longjmp from a place where the pseudo appears dead.
704 (In principle, the value still exists if it is in scope.)
705 If the pseudo goes in a hard reg, some other value may occupy
706 that hard reg where this pseudo is dead, thus clobbering the pseudo.
707 Conclusion: such a pseudo must not go in a hard reg. */
708 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
709 FIRST_PSEUDO_REGISTER, i, rsi)
710 {
711 if (regno_reg_rtx[i] != 0)
712 {
713 REG_LIVE_LENGTH (i) = -1;
714 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
715 }
716 }
717 }
718 if (reg_deaths)
719 {
720 free (reg_deaths);
721 reg_deaths = NULL;
722 }
723 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
724 ? TV_LIFE_UPDATE : TV_LIFE);
725 if (ndead && dump_file)
726 fprintf (dump_file, "deleted %i dead insns\n", ndead);
727 return ndead;
728 }
729
730 /* Update life information in all blocks where BB_DIRTY is set. */
731
732 int
733 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
734 {
735 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
736 int n = 0;
737 basic_block bb;
738 int retval = 0;
739
740 sbitmap_zero (update_life_blocks);
741 FOR_EACH_BB (bb)
742 {
743 if (bb->flags & BB_DIRTY)
744 {
745 SET_BIT (update_life_blocks, bb->index);
746 n++;
747 }
748 }
749
750 if (n)
751 retval = update_life_info (update_life_blocks, extent, prop_flags);
752
753 sbitmap_free (update_life_blocks);
754 return retval;
755 }
756
757 /* Free the variables allocated by find_basic_blocks. */
758
759 void
760 free_basic_block_vars (void)
761 {
762 if (basic_block_info)
763 {
764 clear_edges ();
765 basic_block_info = NULL;
766 }
767 n_basic_blocks = 0;
768 last_basic_block = 0;
769 n_edges = 0;
770
771 label_to_block_map = NULL;
772
773 ENTRY_BLOCK_PTR->aux = NULL;
774 ENTRY_BLOCK_PTR->il.rtl->global_live_at_end = NULL;
775 EXIT_BLOCK_PTR->aux = NULL;
776 EXIT_BLOCK_PTR->il.rtl->global_live_at_start = NULL;
777 }
778
779 /* Delete any insns that copy a register to itself. */
780
781 int
782 delete_noop_moves (void)
783 {
784 rtx insn, next;
785 basic_block bb;
786 int nnoops = 0;
787
788 FOR_EACH_BB (bb)
789 {
790 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
791 {
792 next = NEXT_INSN (insn);
793 if (INSN_P (insn) && noop_move_p (insn))
794 {
795 rtx note;
796
797 /* If we're about to remove the first insn of a libcall
798 then move the libcall note to the next real insn and
799 update the retval note. */
800 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
801 && XEXP (note, 0) != insn)
802 {
803 rtx new_libcall_insn = next_real_insn (insn);
804 rtx retval_note = find_reg_note (XEXP (note, 0),
805 REG_RETVAL, NULL_RTX);
806 REG_NOTES (new_libcall_insn)
807 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
808 REG_NOTES (new_libcall_insn));
809 XEXP (retval_note, 0) = new_libcall_insn;
810 }
811
812 delete_insn_and_edges (insn);
813 nnoops++;
814 }
815 }
816 }
817 if (nnoops && dump_file)
818 fprintf (dump_file, "deleted %i noop moves", nnoops);
819 return nnoops;
820 }
821
822 /* Delete any jump tables never referenced. We can't delete them at the
823 time of removing tablejump insn as they are referenced by the preceding
824 insns computing the destination, so we delay deleting and garbagecollect
825 them once life information is computed. */
826 void
827 delete_dead_jumptables (void)
828 {
829 basic_block bb;
830
831 /* A dead jump table does not belong to any basic block. Scan insns
832 between two adjacent basic blocks. */
833 FOR_EACH_BB (bb)
834 {
835 rtx insn, next;
836
837 for (insn = NEXT_INSN (BB_END (bb));
838 insn && !NOTE_INSN_BASIC_BLOCK_P (insn);
839 insn = next)
840 {
841 next = NEXT_INSN (insn);
842 if (LABEL_P (insn)
843 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
844 && JUMP_P (next)
845 && (GET_CODE (PATTERN (next)) == ADDR_VEC
846 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
847 {
848 rtx label = insn, jump = next;
849
850 if (dump_file)
851 fprintf (dump_file, "Dead jumptable %i removed\n",
852 INSN_UID (insn));
853
854 next = NEXT_INSN (next);
855 delete_insn (jump);
856 delete_insn (label);
857 }
858 }
859 }
860 }
861
862 /* Determine if the stack pointer is constant over the life of the function.
863 Only useful before prologues have been emitted. */
864
865 static void
866 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
867 void *data ATTRIBUTE_UNUSED)
868 {
869 if (x == stack_pointer_rtx
870 /* The stack pointer is only modified indirectly as the result
871 of a push until later in flow. See the comments in rtl.texi
872 regarding Embedded Side-Effects on Addresses. */
873 || (MEM_P (x)
874 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
875 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
876 current_function_sp_is_unchanging = 0;
877 }
878
879 static void
880 notice_stack_pointer_modification (void)
881 {
882 basic_block bb;
883 rtx insn;
884
885 /* Assume that the stack pointer is unchanging if alloca hasn't
886 been used. */
887 current_function_sp_is_unchanging = !current_function_calls_alloca;
888 if (! current_function_sp_is_unchanging)
889 return;
890
891 FOR_EACH_BB (bb)
892 FOR_BB_INSNS (bb, insn)
893 {
894 if (INSN_P (insn))
895 {
896 /* Check if insn modifies the stack pointer. */
897 note_stores (PATTERN (insn),
898 notice_stack_pointer_modification_1,
899 NULL);
900 if (! current_function_sp_is_unchanging)
901 return;
902 }
903 }
904 }
905
906 /* Mark a register in SET. Hard registers in large modes get all
907 of their component registers set as well. */
908
909 static void
910 mark_reg (rtx reg, void *xset)
911 {
912 regset set = (regset) xset;
913 int regno = REGNO (reg);
914
915 gcc_assert (GET_MODE (reg) != BLKmode);
916
917 SET_REGNO_REG_SET (set, regno);
918 if (regno < FIRST_PSEUDO_REGISTER)
919 {
920 int n = hard_regno_nregs[regno][GET_MODE (reg)];
921 while (--n > 0)
922 SET_REGNO_REG_SET (set, regno + n);
923 }
924 }
925
926 /* Mark those regs which are needed at the end of the function as live
927 at the end of the last basic block. */
928
929 static void
930 mark_regs_live_at_end (regset set)
931 {
932 unsigned int i;
933
934 /* If exiting needs the right stack value, consider the stack pointer
935 live at the end of the function. */
936 if ((HAVE_epilogue && epilogue_completed)
937 || ! EXIT_IGNORE_STACK
938 || (! FRAME_POINTER_REQUIRED
939 && ! current_function_calls_alloca
940 && flag_omit_frame_pointer)
941 || current_function_sp_is_unchanging)
942 {
943 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
944 }
945
946 /* Mark the frame pointer if needed at the end of the function. If
947 we end up eliminating it, it will be removed from the live list
948 of each basic block by reload. */
949
950 if (! reload_completed || frame_pointer_needed)
951 {
952 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
953 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
954 /* If they are different, also mark the hard frame pointer as live. */
955 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
956 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
957 #endif
958 }
959
960 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
961 /* Many architectures have a GP register even without flag_pic.
962 Assume the pic register is not in use, or will be handled by
963 other means, if it is not fixed. */
964 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
965 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
966 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
967 #endif
968
969 /* Mark all global registers, and all registers used by the epilogue
970 as being live at the end of the function since they may be
971 referenced by our caller. */
972 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
973 if (global_regs[i] || EPILOGUE_USES (i))
974 SET_REGNO_REG_SET (set, i);
975
976 if (HAVE_epilogue && epilogue_completed)
977 {
978 /* Mark all call-saved registers that we actually used. */
979 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
980 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
981 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
982 SET_REGNO_REG_SET (set, i);
983 }
984
985 #ifdef EH_RETURN_DATA_REGNO
986 /* Mark the registers that will contain data for the handler. */
987 if (reload_completed && current_function_calls_eh_return)
988 for (i = 0; ; ++i)
989 {
990 unsigned regno = EH_RETURN_DATA_REGNO(i);
991 if (regno == INVALID_REGNUM)
992 break;
993 SET_REGNO_REG_SET (set, regno);
994 }
995 #endif
996 #ifdef EH_RETURN_STACKADJ_RTX
997 if ((! HAVE_epilogue || ! epilogue_completed)
998 && current_function_calls_eh_return)
999 {
1000 rtx tmp = EH_RETURN_STACKADJ_RTX;
1001 if (tmp && REG_P (tmp))
1002 mark_reg (tmp, set);
1003 }
1004 #endif
1005 #ifdef EH_RETURN_HANDLER_RTX
1006 if ((! HAVE_epilogue || ! epilogue_completed)
1007 && current_function_calls_eh_return)
1008 {
1009 rtx tmp = EH_RETURN_HANDLER_RTX;
1010 if (tmp && REG_P (tmp))
1011 mark_reg (tmp, set);
1012 }
1013 #endif
1014
1015 /* Mark function return value. */
1016 diddle_return_value (mark_reg, set);
1017 }
1018
1019 /* Propagate global life info around the graph of basic blocks. Begin
1020 considering blocks with their corresponding bit set in BLOCKS_IN.
1021 If BLOCKS_IN is null, consider it the universal set.
1022
1023 BLOCKS_OUT is set for every block that was changed. */
1024
1025 static void
1026 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1027 {
1028 basic_block *queue, *qhead, *qtail, *qend, bb;
1029 regset tmp, new_live_at_end, invalidated_by_call;
1030 regset registers_made_dead;
1031 bool failure_strategy_required = false;
1032 int *block_accesses;
1033
1034 /* The registers that are modified within this in block. */
1035 regset *local_sets;
1036
1037 /* The registers that are conditionally modified within this block.
1038 In other words, regs that are set only as part of a COND_EXEC. */
1039 regset *cond_local_sets;
1040
1041 unsigned int i;
1042
1043 /* Some passes used to forget clear aux field of basic block causing
1044 sick behavior here. */
1045 #ifdef ENABLE_CHECKING
1046 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1047 gcc_assert (!bb->aux);
1048 #endif
1049
1050 tmp = ALLOC_REG_SET (&reg_obstack);
1051 new_live_at_end = ALLOC_REG_SET (&reg_obstack);
1052 invalidated_by_call = ALLOC_REG_SET (&reg_obstack);
1053 registers_made_dead = ALLOC_REG_SET (&reg_obstack);
1054
1055 /* Inconveniently, this is only readily available in hard reg set form. */
1056 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1057 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1058 SET_REGNO_REG_SET (invalidated_by_call, i);
1059
1060 /* Allocate space for the sets of local properties. */
1061 local_sets = xcalloc (last_basic_block, sizeof (regset));
1062 cond_local_sets = xcalloc (last_basic_block, sizeof (regset));
1063
1064 /* Create a worklist. Allocate an extra slot for the `head == tail'
1065 style test for an empty queue doesn't work with a full queue. */
1066 queue = xmalloc ((n_basic_blocks + 1) * sizeof (*queue));
1067 qtail = queue;
1068 qhead = qend = queue + n_basic_blocks;
1069
1070 /* Queue the blocks set in the initial mask. Do this in reverse block
1071 number order so that we are more likely for the first round to do
1072 useful work. We use AUX non-null to flag that the block is queued. */
1073 if (blocks_in)
1074 {
1075 FOR_EACH_BB (bb)
1076 if (TEST_BIT (blocks_in, bb->index))
1077 {
1078 *--qhead = bb;
1079 bb->aux = bb;
1080 }
1081 }
1082 else
1083 {
1084 FOR_EACH_BB (bb)
1085 {
1086 *--qhead = bb;
1087 bb->aux = bb;
1088 }
1089 }
1090
1091 block_accesses = xcalloc (last_basic_block, sizeof (int));
1092
1093 /* We clean aux when we remove the initially-enqueued bbs, but we
1094 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1095 unconditionally. */
1096 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1097
1098 if (blocks_out)
1099 sbitmap_zero (blocks_out);
1100
1101 /* We work through the queue until there are no more blocks. What
1102 is live at the end of this block is precisely the union of what
1103 is live at the beginning of all its successors. So, we set its
1104 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1105 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1106 this block by walking through the instructions in this block in
1107 reverse order and updating as we go. If that changed
1108 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1109 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1110
1111 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1112 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1113 must either be live at the end of the block, or used within the
1114 block. In the latter case, it will certainly never disappear
1115 from GLOBAL_LIVE_AT_START. In the former case, the register
1116 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1117 for one of the successor blocks. By induction, that cannot
1118 occur.
1119
1120 ??? This reasoning doesn't work if we start from non-empty initial
1121 GLOBAL_LIVE_AT_START sets. And there are actually two problems:
1122 1) Updating may not terminate (endless oscillation).
1123 2) Even if it does (and it usually does), the resulting information
1124 may be inaccurate. Consider for example the following case:
1125
1126 a = ...;
1127 while (...) {...} -- 'a' not mentioned at all
1128 ... = a;
1129
1130 If the use of 'a' is deleted between two calculations of liveness
1131 information and the initial sets are not cleared, the information
1132 about a's liveness will get stuck inside the loop and the set will
1133 appear not to be dead.
1134
1135 We do not attempt to solve 2) -- the information is conservatively
1136 correct (i.e. we never claim that something live is dead) and the
1137 amount of optimization opportunities missed due to this problem is
1138 not significant.
1139
1140 1) is more serious. In order to fix it, we monitor the number of times
1141 each block is processed. Once one of the blocks has been processed more
1142 times than the maximum number of rounds, we use the following strategy:
1143 When a register disappears from one of the sets, we add it to a MAKE_DEAD
1144 set, remove all registers in this set from all GLOBAL_LIVE_AT_* sets and
1145 add the blocks with changed sets into the queue. Thus we are guaranteed
1146 to terminate (the worst case corresponds to all registers in MADE_DEAD,
1147 in which case the original reasoning above is valid), but in general we
1148 only fix up a few offending registers.
1149
1150 The maximum number of rounds for computing liveness is the largest of
1151 MAX_LIVENESS_ROUNDS and the latest loop depth count for this function. */
1152
1153 while (qhead != qtail)
1154 {
1155 int rescan, changed;
1156 basic_block bb;
1157 edge e;
1158 edge_iterator ei;
1159
1160 bb = *qhead++;
1161 if (qhead == qend)
1162 qhead = queue;
1163 bb->aux = NULL;
1164
1165 /* Should we start using the failure strategy? */
1166 if (bb != ENTRY_BLOCK_PTR)
1167 {
1168 int max_liveness_rounds =
1169 MAX (MAX_LIVENESS_ROUNDS, cfun->max_loop_depth);
1170
1171 block_accesses[bb->index]++;
1172 if (block_accesses[bb->index] > max_liveness_rounds)
1173 failure_strategy_required = true;
1174 }
1175
1176 /* Begin by propagating live_at_start from the successor blocks. */
1177 CLEAR_REG_SET (new_live_at_end);
1178
1179 if (EDGE_COUNT (bb->succs) > 0)
1180 FOR_EACH_EDGE (e, ei, bb->succs)
1181 {
1182 basic_block sb = e->dest;
1183
1184 /* Call-clobbered registers die across exception and
1185 call edges. */
1186 /* ??? Abnormal call edges ignored for the moment, as this gets
1187 confused by sibling call edges, which crashes reg-stack. */
1188 if (e->flags & EDGE_EH)
1189 bitmap_ior_and_compl_into (new_live_at_end,
1190 sb->il.rtl->global_live_at_start,
1191 invalidated_by_call);
1192 else
1193 IOR_REG_SET (new_live_at_end, sb->il.rtl->global_live_at_start);
1194
1195 /* If a target saves one register in another (instead of on
1196 the stack) the save register will need to be live for EH. */
1197 if (e->flags & EDGE_EH)
1198 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1199 if (EH_USES (i))
1200 SET_REGNO_REG_SET (new_live_at_end, i);
1201 }
1202 else
1203 {
1204 /* This might be a noreturn function that throws. And
1205 even if it isn't, getting the unwind info right helps
1206 debugging. */
1207 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1208 if (EH_USES (i))
1209 SET_REGNO_REG_SET (new_live_at_end, i);
1210 }
1211
1212 /* The all-important stack pointer must always be live. */
1213 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1214
1215 /* Before reload, there are a few registers that must be forced
1216 live everywhere -- which might not already be the case for
1217 blocks within infinite loops. */
1218 if (! reload_completed)
1219 {
1220 /* Any reference to any pseudo before reload is a potential
1221 reference of the frame pointer. */
1222 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1223
1224 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1225 /* Pseudos with argument area equivalences may require
1226 reloading via the argument pointer. */
1227 if (fixed_regs[ARG_POINTER_REGNUM])
1228 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1229 #endif
1230
1231 /* Any constant, or pseudo with constant equivalences, may
1232 require reloading from memory using the pic register. */
1233 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1234 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1235 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1236 }
1237
1238 if (bb == ENTRY_BLOCK_PTR)
1239 {
1240 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1241 continue;
1242 }
1243
1244 /* On our first pass through this block, we'll go ahead and continue.
1245 Recognize first pass by checking if local_set is NULL for this
1246 basic block. On subsequent passes, we get to skip out early if
1247 live_at_end wouldn't have changed. */
1248
1249 if (local_sets[bb->index] == NULL)
1250 {
1251 local_sets[bb->index] = ALLOC_REG_SET (&reg_obstack);
1252 cond_local_sets[bb->index] = ALLOC_REG_SET (&reg_obstack);
1253 rescan = 1;
1254 }
1255 else
1256 {
1257 /* If any bits were removed from live_at_end, we'll have to
1258 rescan the block. This wouldn't be necessary if we had
1259 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1260 local_live is really dependent on live_at_end. */
1261 rescan = bitmap_intersect_compl_p (bb->il.rtl->global_live_at_end,
1262 new_live_at_end);
1263
1264 if (!rescan)
1265 {
1266 regset cond_local_set;
1267
1268 /* If any of the registers in the new live_at_end set are
1269 conditionally set in this basic block, we must rescan.
1270 This is because conditional lifetimes at the end of the
1271 block do not just take the live_at_end set into
1272 account, but also the liveness at the start of each
1273 successor block. We can miss changes in those sets if
1274 we only compare the new live_at_end against the
1275 previous one. */
1276 cond_local_set = cond_local_sets[bb->index];
1277 rescan = bitmap_intersect_p (new_live_at_end, cond_local_set);
1278 }
1279
1280 if (!rescan)
1281 {
1282 regset local_set;
1283
1284 /* Find the set of changed bits. Take this opportunity
1285 to notice that this set is empty and early out. */
1286 bitmap_xor (tmp, bb->il.rtl->global_live_at_end, new_live_at_end);
1287 if (bitmap_empty_p (tmp))
1288 continue;
1289
1290 /* If any of the changed bits overlap with local_sets[bb],
1291 we'll have to rescan the block. */
1292 local_set = local_sets[bb->index];
1293 rescan = bitmap_intersect_p (tmp, local_set);
1294 }
1295 }
1296
1297 /* Let our caller know that BB changed enough to require its
1298 death notes updated. */
1299 if (blocks_out)
1300 SET_BIT (blocks_out, bb->index);
1301
1302 if (! rescan)
1303 {
1304 /* Add to live_at_start the set of all registers in
1305 new_live_at_end that aren't in the old live_at_end. */
1306
1307 changed = bitmap_ior_and_compl_into (bb->il.rtl->global_live_at_start,
1308 new_live_at_end,
1309 bb->il.rtl->global_live_at_end);
1310 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1311 if (! changed)
1312 continue;
1313 }
1314 else
1315 {
1316 COPY_REG_SET (bb->il.rtl->global_live_at_end, new_live_at_end);
1317
1318 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1319 into live_at_start. */
1320 propagate_block (bb, new_live_at_end,
1321 local_sets[bb->index],
1322 cond_local_sets[bb->index],
1323 flags);
1324
1325 /* If live_at start didn't change, no need to go farther. */
1326 if (REG_SET_EQUAL_P (bb->il.rtl->global_live_at_start,
1327 new_live_at_end))
1328 continue;
1329
1330 if (failure_strategy_required)
1331 {
1332 /* Get the list of registers that were removed from the
1333 bb->global_live_at_start set. */
1334 bitmap_and_compl (tmp, bb->il.rtl->global_live_at_start,
1335 new_live_at_end);
1336 if (!bitmap_empty_p (tmp))
1337 {
1338 bool pbb_changed;
1339 basic_block pbb;
1340
1341 /* It should not happen that one of registers we have
1342 removed last time is disappears again before any other
1343 register does. */
1344 pbb_changed = bitmap_ior_into (registers_made_dead, tmp);
1345 gcc_assert (pbb_changed);
1346
1347 /* Now remove the registers from all sets. */
1348 FOR_EACH_BB (pbb)
1349 {
1350 pbb_changed = false;
1351
1352 pbb_changed
1353 |= bitmap_and_compl_into
1354 (pbb->il.rtl->global_live_at_start,
1355 registers_made_dead);
1356 pbb_changed
1357 |= bitmap_and_compl_into
1358 (pbb->il.rtl->global_live_at_end,
1359 registers_made_dead);
1360 if (!pbb_changed)
1361 continue;
1362
1363 /* Note the (possible) change. */
1364 if (blocks_out)
1365 SET_BIT (blocks_out, pbb->index);
1366
1367 /* Makes sure to really rescan the block. */
1368 if (local_sets[pbb->index])
1369 {
1370 FREE_REG_SET (local_sets[pbb->index]);
1371 FREE_REG_SET (cond_local_sets[pbb->index]);
1372 local_sets[pbb->index] = 0;
1373 }
1374
1375 /* Add it to the queue. */
1376 if (pbb->aux == NULL)
1377 {
1378 *qtail++ = pbb;
1379 if (qtail == qend)
1380 qtail = queue;
1381 pbb->aux = pbb;
1382 }
1383 }
1384 continue;
1385 }
1386 } /* end of failure_strategy_required */
1387
1388 COPY_REG_SET (bb->il.rtl->global_live_at_start, new_live_at_end);
1389 }
1390
1391 /* Queue all predecessors of BB so that we may re-examine
1392 their live_at_end. */
1393 FOR_EACH_EDGE (e, ei, bb->preds)
1394 {
1395 basic_block pb = e->src;
1396 if (pb->aux == NULL)
1397 {
1398 *qtail++ = pb;
1399 if (qtail == qend)
1400 qtail = queue;
1401 pb->aux = pb;
1402 }
1403 }
1404 }
1405
1406 FREE_REG_SET (tmp);
1407 FREE_REG_SET (new_live_at_end);
1408 FREE_REG_SET (invalidated_by_call);
1409 FREE_REG_SET (registers_made_dead);
1410
1411 if (blocks_out)
1412 {
1413 sbitmap_iterator sbi;
1414
1415 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i, sbi)
1416 {
1417 basic_block bb = BASIC_BLOCK (i);
1418 FREE_REG_SET (local_sets[bb->index]);
1419 FREE_REG_SET (cond_local_sets[bb->index]);
1420 };
1421 }
1422 else
1423 {
1424 FOR_EACH_BB (bb)
1425 {
1426 FREE_REG_SET (local_sets[bb->index]);
1427 FREE_REG_SET (cond_local_sets[bb->index]);
1428 }
1429 }
1430
1431 free (block_accesses);
1432 free (queue);
1433 free (cond_local_sets);
1434 free (local_sets);
1435 }
1436
1437 \f
1438 /* This structure is used to pass parameters to and from the
1439 the function find_regno_partial(). It is used to pass in the
1440 register number we are looking, as well as to return any rtx
1441 we find. */
1442
1443 typedef struct {
1444 unsigned regno_to_find;
1445 rtx retval;
1446 } find_regno_partial_param;
1447
1448
1449 /* Find the rtx for the reg numbers specified in 'data' if it is
1450 part of an expression which only uses part of the register. Return
1451 it in the structure passed in. */
1452 static int
1453 find_regno_partial (rtx *ptr, void *data)
1454 {
1455 find_regno_partial_param *param = (find_regno_partial_param *)data;
1456 unsigned reg = param->regno_to_find;
1457 param->retval = NULL_RTX;
1458
1459 if (*ptr == NULL_RTX)
1460 return 0;
1461
1462 switch (GET_CODE (*ptr))
1463 {
1464 case ZERO_EXTRACT:
1465 case SIGN_EXTRACT:
1466 case STRICT_LOW_PART:
1467 if (REG_P (XEXP (*ptr, 0)) && REGNO (XEXP (*ptr, 0)) == reg)
1468 {
1469 param->retval = XEXP (*ptr, 0);
1470 return 1;
1471 }
1472 break;
1473
1474 case SUBREG:
1475 if (REG_P (SUBREG_REG (*ptr))
1476 && REGNO (SUBREG_REG (*ptr)) == reg)
1477 {
1478 param->retval = SUBREG_REG (*ptr);
1479 return 1;
1480 }
1481 break;
1482
1483 default:
1484 break;
1485 }
1486
1487 return 0;
1488 }
1489
1490 /* Process all immediate successors of the entry block looking for pseudo
1491 registers which are live on entry. Find all of those whose first
1492 instance is a partial register reference of some kind, and initialize
1493 them to 0 after the entry block. This will prevent bit sets within
1494 registers whose value is unknown, and may contain some kind of sticky
1495 bits we don't want. */
1496
1497 static int
1498 initialize_uninitialized_subregs (void)
1499 {
1500 rtx insn;
1501 edge e;
1502 unsigned reg, did_something = 0;
1503 find_regno_partial_param param;
1504 edge_iterator ei;
1505
1506 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
1507 {
1508 basic_block bb = e->dest;
1509 regset map = bb->il.rtl->global_live_at_start;
1510 reg_set_iterator rsi;
1511
1512 EXECUTE_IF_SET_IN_REG_SET (map, FIRST_PSEUDO_REGISTER, reg, rsi)
1513 {
1514 int uid = REGNO_FIRST_UID (reg);
1515 rtx i;
1516
1517 /* Find an insn which mentions the register we are looking for.
1518 Its preferable to have an instance of the register's rtl since
1519 there may be various flags set which we need to duplicate.
1520 If we can't find it, its probably an automatic whose initial
1521 value doesn't matter, or hopefully something we don't care about. */
1522 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1523 ;
1524 if (i != NULL_RTX)
1525 {
1526 /* Found the insn, now get the REG rtx, if we can. */
1527 param.regno_to_find = reg;
1528 for_each_rtx (&i, find_regno_partial, &param);
1529 if (param.retval != NULL_RTX)
1530 {
1531 start_sequence ();
1532 emit_move_insn (param.retval,
1533 CONST0_RTX (GET_MODE (param.retval)));
1534 insn = get_insns ();
1535 end_sequence ();
1536 insert_insn_on_edge (insn, e);
1537 did_something = 1;
1538 }
1539 }
1540 }
1541 }
1542
1543 if (did_something)
1544 commit_edge_insertions ();
1545 return did_something;
1546 }
1547
1548 \f
1549 /* Subroutines of life analysis. */
1550
1551 /* Allocate the permanent data structures that represent the results
1552 of life analysis. */
1553
1554 static void
1555 allocate_bb_life_data (void)
1556 {
1557 basic_block bb;
1558
1559 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1560 {
1561 bb->il.rtl->global_live_at_start = ALLOC_REG_SET (&reg_obstack);
1562 bb->il.rtl->global_live_at_end = ALLOC_REG_SET (&reg_obstack);
1563 }
1564
1565 regs_live_at_setjmp = ALLOC_REG_SET (&reg_obstack);
1566 }
1567
1568 void
1569 allocate_reg_life_data (void)
1570 {
1571 int i;
1572
1573 max_regno = max_reg_num ();
1574 gcc_assert (!reg_deaths);
1575 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1576
1577 /* Recalculate the register space, in case it has grown. Old style
1578 vector oriented regsets would set regset_{size,bytes} here also. */
1579 allocate_reg_info (max_regno, FALSE, FALSE);
1580
1581 /* Reset all the data we'll collect in propagate_block and its
1582 subroutines. */
1583 for (i = 0; i < max_regno; i++)
1584 {
1585 REG_N_SETS (i) = 0;
1586 REG_N_REFS (i) = 0;
1587 REG_N_DEATHS (i) = 0;
1588 REG_N_CALLS_CROSSED (i) = 0;
1589 REG_N_THROWING_CALLS_CROSSED (i) = 0;
1590 REG_LIVE_LENGTH (i) = 0;
1591 REG_FREQ (i) = 0;
1592 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1593 }
1594 }
1595
1596 /* Delete dead instructions for propagate_block. */
1597
1598 static void
1599 propagate_block_delete_insn (rtx insn)
1600 {
1601 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1602
1603 /* If the insn referred to a label, and that label was attached to
1604 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1605 pretty much mandatory to delete it, because the ADDR_VEC may be
1606 referencing labels that no longer exist.
1607
1608 INSN may reference a deleted label, particularly when a jump
1609 table has been optimized into a direct jump. There's no
1610 real good way to fix up the reference to the deleted label
1611 when the label is deleted, so we just allow it here. */
1612
1613 if (inote && LABEL_P (inote))
1614 {
1615 rtx label = XEXP (inote, 0);
1616 rtx next;
1617
1618 /* The label may be forced if it has been put in the constant
1619 pool. If that is the only use we must discard the table
1620 jump following it, but not the label itself. */
1621 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1622 && (next = next_nonnote_insn (label)) != NULL
1623 && JUMP_P (next)
1624 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1625 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1626 {
1627 rtx pat = PATTERN (next);
1628 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1629 int len = XVECLEN (pat, diff_vec_p);
1630 int i;
1631
1632 for (i = 0; i < len; i++)
1633 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1634
1635 delete_insn_and_edges (next);
1636 ndead++;
1637 }
1638 }
1639
1640 delete_insn_and_edges (insn);
1641 ndead++;
1642 }
1643
1644 /* Delete dead libcalls for propagate_block. Return the insn
1645 before the libcall. */
1646
1647 static rtx
1648 propagate_block_delete_libcall (rtx insn, rtx note)
1649 {
1650 rtx first = XEXP (note, 0);
1651 rtx before = PREV_INSN (first);
1652
1653 delete_insn_chain_and_edges (first, insn);
1654 ndead++;
1655 return before;
1656 }
1657
1658 /* Update the life-status of regs for one insn. Return the previous insn. */
1659
1660 rtx
1661 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1662 {
1663 rtx prev = PREV_INSN (insn);
1664 int flags = pbi->flags;
1665 int insn_is_dead = 0;
1666 int libcall_is_dead = 0;
1667 rtx note;
1668 unsigned i;
1669
1670 if (! INSN_P (insn))
1671 return prev;
1672
1673 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1674 if (flags & PROP_SCAN_DEAD_CODE)
1675 {
1676 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1677 libcall_is_dead = (insn_is_dead && note != 0
1678 && libcall_dead_p (pbi, note, insn));
1679 }
1680
1681 /* If an instruction consists of just dead store(s) on final pass,
1682 delete it. */
1683 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1684 {
1685 /* If we're trying to delete a prologue or epilogue instruction
1686 that isn't flagged as possibly being dead, something is wrong.
1687 But if we are keeping the stack pointer depressed, we might well
1688 be deleting insns that are used to compute the amount to update
1689 it by, so they are fine. */
1690 if (reload_completed
1691 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1692 && (TYPE_RETURNS_STACK_DEPRESSED
1693 (TREE_TYPE (current_function_decl))))
1694 && (((HAVE_epilogue || HAVE_prologue)
1695 && prologue_epilogue_contains (insn))
1696 || (HAVE_sibcall_epilogue
1697 && sibcall_epilogue_contains (insn)))
1698 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1699 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1700
1701 /* Record sets. Do this even for dead instructions, since they
1702 would have killed the values if they hadn't been deleted. To
1703 be consistent, we also have to emit a clobber when we delete
1704 an insn that clobbers a live register. */
1705 pbi->flags |= PROP_DEAD_INSN;
1706 mark_set_regs (pbi, PATTERN (insn), insn);
1707 pbi->flags &= ~PROP_DEAD_INSN;
1708
1709 /* CC0 is now known to be dead. Either this insn used it,
1710 in which case it doesn't anymore, or clobbered it,
1711 so the next insn can't use it. */
1712 pbi->cc0_live = 0;
1713
1714 if (libcall_is_dead)
1715 prev = propagate_block_delete_libcall (insn, note);
1716 else
1717 {
1718
1719 /* If INSN contains a RETVAL note and is dead, but the libcall
1720 as a whole is not dead, then we want to remove INSN, but
1721 not the whole libcall sequence.
1722
1723 However, we need to also remove the dangling REG_LIBCALL
1724 note so that we do not have mis-matched LIBCALL/RETVAL
1725 notes. In theory we could find a new location for the
1726 REG_RETVAL note, but it hardly seems worth the effort.
1727
1728 NOTE at this point will be the RETVAL note if it exists. */
1729 if (note)
1730 {
1731 rtx libcall_note;
1732
1733 libcall_note
1734 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1735 remove_note (XEXP (note, 0), libcall_note);
1736 }
1737
1738 /* Similarly if INSN contains a LIBCALL note, remove the
1739 dangling REG_RETVAL note. */
1740 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1741 if (note)
1742 {
1743 rtx retval_note;
1744
1745 retval_note
1746 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1747 remove_note (XEXP (note, 0), retval_note);
1748 }
1749
1750 /* Now delete INSN. */
1751 propagate_block_delete_insn (insn);
1752 }
1753
1754 return prev;
1755 }
1756
1757 /* See if this is an increment or decrement that can be merged into
1758 a following memory address. */
1759 #ifdef AUTO_INC_DEC
1760 {
1761 rtx x = single_set (insn);
1762
1763 /* Does this instruction increment or decrement a register? */
1764 if ((flags & PROP_AUTOINC)
1765 && x != 0
1766 && REG_P (SET_DEST (x))
1767 && (GET_CODE (SET_SRC (x)) == PLUS
1768 || GET_CODE (SET_SRC (x)) == MINUS)
1769 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1770 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1771 /* Ok, look for a following memory ref we can combine with.
1772 If one is found, change the memory ref to a PRE_INC
1773 or PRE_DEC, cancel this insn, and return 1.
1774 Return 0 if nothing has been done. */
1775 && try_pre_increment_1 (pbi, insn))
1776 return prev;
1777 }
1778 #endif /* AUTO_INC_DEC */
1779
1780 CLEAR_REG_SET (pbi->new_set);
1781
1782 /* If this is not the final pass, and this insn is copying the value of
1783 a library call and it's dead, don't scan the insns that perform the
1784 library call, so that the call's arguments are not marked live. */
1785 if (libcall_is_dead)
1786 {
1787 /* Record the death of the dest reg. */
1788 mark_set_regs (pbi, PATTERN (insn), insn);
1789
1790 insn = XEXP (note, 0);
1791 return PREV_INSN (insn);
1792 }
1793 else if (GET_CODE (PATTERN (insn)) == SET
1794 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1795 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1796 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1797 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1798 {
1799 /* We have an insn to pop a constant amount off the stack.
1800 (Such insns use PLUS regardless of the direction of the stack,
1801 and any insn to adjust the stack by a constant is always a pop
1802 or part of a push.)
1803 These insns, if not dead stores, have no effect on life, though
1804 they do have an effect on the memory stores we are tracking. */
1805 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1806 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1807 concludes that the stack pointer is not modified. */
1808 mark_set_regs (pbi, PATTERN (insn), insn);
1809 }
1810 else
1811 {
1812 /* Any regs live at the time of a call instruction must not go
1813 in a register clobbered by calls. Find all regs now live and
1814 record this for them. */
1815
1816 if (CALL_P (insn) && (flags & PROP_REG_INFO))
1817 {
1818 reg_set_iterator rsi;
1819 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1820 REG_N_CALLS_CROSSED (i)++;
1821 if (can_throw_internal (insn))
1822 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
1823 REG_N_THROWING_CALLS_CROSSED (i)++;
1824 }
1825
1826 /* Record sets. Do this even for dead instructions, since they
1827 would have killed the values if they hadn't been deleted. */
1828 mark_set_regs (pbi, PATTERN (insn), insn);
1829
1830 if (CALL_P (insn))
1831 {
1832 regset live_at_end;
1833 bool sibcall_p;
1834 rtx note, cond;
1835 int i;
1836
1837 cond = NULL_RTX;
1838 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1839 cond = COND_EXEC_TEST (PATTERN (insn));
1840
1841 /* Non-constant calls clobber memory, constant calls do not
1842 clobber memory, though they may clobber outgoing arguments
1843 on the stack. */
1844 if (! CONST_OR_PURE_CALL_P (insn))
1845 {
1846 free_EXPR_LIST_list (&pbi->mem_set_list);
1847 pbi->mem_set_list_len = 0;
1848 }
1849 else
1850 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1851
1852 /* There may be extra registers to be clobbered. */
1853 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1854 note;
1855 note = XEXP (note, 1))
1856 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1857 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1858 cond, insn, pbi->flags);
1859
1860 /* Calls change all call-used and global registers; sibcalls do not
1861 clobber anything that must be preserved at end-of-function,
1862 except for return values. */
1863
1864 sibcall_p = SIBLING_CALL_P (insn);
1865 live_at_end = EXIT_BLOCK_PTR->il.rtl->global_live_at_start;
1866 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1867 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1868 && ! (sibcall_p
1869 && REGNO_REG_SET_P (live_at_end, i)
1870 && ! refers_to_regno_p (i, i+1,
1871 current_function_return_rtx,
1872 (rtx *) 0)))
1873 {
1874 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1875 /* We do not want REG_UNUSED notes for these registers. */
1876 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1877 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1878 }
1879 }
1880
1881 /* If an insn doesn't use CC0, it becomes dead since we assume
1882 that every insn clobbers it. So show it dead here;
1883 mark_used_regs will set it live if it is referenced. */
1884 pbi->cc0_live = 0;
1885
1886 /* Record uses. */
1887 if (! insn_is_dead)
1888 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1889
1890 /* Sometimes we may have inserted something before INSN (such as a move)
1891 when we make an auto-inc. So ensure we will scan those insns. */
1892 #ifdef AUTO_INC_DEC
1893 prev = PREV_INSN (insn);
1894 #endif
1895
1896 if (! insn_is_dead && CALL_P (insn))
1897 {
1898 int i;
1899 rtx note, cond;
1900
1901 cond = NULL_RTX;
1902 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1903 cond = COND_EXEC_TEST (PATTERN (insn));
1904
1905 /* Calls use their arguments, and may clobber memory which
1906 address involves some register. */
1907 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1908 note;
1909 note = XEXP (note, 1))
1910 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1911 of which mark_used_regs knows how to handle. */
1912 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1913
1914 /* The stack ptr is used (honorarily) by a CALL insn. */
1915 if ((flags & PROP_REG_INFO)
1916 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1917 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1918 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1919
1920 /* Calls may also reference any of the global registers,
1921 so they are made live. */
1922 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1923 if (global_regs[i])
1924 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1925 }
1926 }
1927
1928 pbi->insn_num++;
1929
1930 return prev;
1931 }
1932
1933 /* Initialize a propagate_block_info struct for public consumption.
1934 Note that the structure itself is opaque to this file, but that
1935 the user can use the regsets provided here. */
1936
1937 struct propagate_block_info *
1938 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1939 regset cond_local_set, int flags)
1940 {
1941 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1942
1943 pbi->bb = bb;
1944 pbi->reg_live = live;
1945 pbi->mem_set_list = NULL_RTX;
1946 pbi->mem_set_list_len = 0;
1947 pbi->local_set = local_set;
1948 pbi->cond_local_set = cond_local_set;
1949 pbi->cc0_live = 0;
1950 pbi->flags = flags;
1951 pbi->insn_num = 0;
1952
1953 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1954 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1955 else
1956 pbi->reg_next_use = NULL;
1957
1958 pbi->new_set = BITMAP_ALLOC (NULL);
1959
1960 #ifdef HAVE_conditional_execution
1961 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1962 free_reg_cond_life_info);
1963 pbi->reg_cond_reg = BITMAP_ALLOC (NULL);
1964
1965 /* If this block ends in a conditional branch, for each register
1966 live from one side of the branch and not the other, record the
1967 register as conditionally dead. */
1968 if (JUMP_P (BB_END (bb))
1969 && any_condjump_p (BB_END (bb)))
1970 {
1971 regset diff = ALLOC_REG_SET (&reg_obstack);
1972 basic_block bb_true, bb_false;
1973 unsigned i;
1974
1975 /* Identify the successor blocks. */
1976 bb_true = EDGE_SUCC (bb, 0)->dest;
1977 if (!single_succ_p (bb))
1978 {
1979 bb_false = EDGE_SUCC (bb, 1)->dest;
1980
1981 if (EDGE_SUCC (bb, 0)->flags & EDGE_FALLTHRU)
1982 {
1983 basic_block t = bb_false;
1984 bb_false = bb_true;
1985 bb_true = t;
1986 }
1987 else
1988 gcc_assert (EDGE_SUCC (bb, 1)->flags & EDGE_FALLTHRU);
1989 }
1990 else
1991 {
1992 /* This can happen with a conditional jump to the next insn. */
1993 gcc_assert (JUMP_LABEL (BB_END (bb)) == BB_HEAD (bb_true));
1994
1995 /* Simplest way to do nothing. */
1996 bb_false = bb_true;
1997 }
1998
1999 /* Compute which register lead different lives in the successors. */
2000 bitmap_xor (diff, bb_true->il.rtl->global_live_at_start,
2001 bb_false->il.rtl->global_live_at_start);
2002
2003 if (!bitmap_empty_p (diff))
2004 {
2005 /* Extract the condition from the branch. */
2006 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
2007 rtx cond_true = XEXP (set_src, 0);
2008 rtx reg = XEXP (cond_true, 0);
2009 enum rtx_code inv_cond;
2010
2011 if (GET_CODE (reg) == SUBREG)
2012 reg = SUBREG_REG (reg);
2013
2014 /* We can only track conditional lifetimes if the condition is
2015 in the form of a reversible comparison of a register against
2016 zero. If the condition is more complex than that, then it is
2017 safe not to record any information. */
2018 inv_cond = reversed_comparison_code (cond_true, BB_END (bb));
2019 if (inv_cond != UNKNOWN
2020 && REG_P (reg)
2021 && XEXP (cond_true, 1) == const0_rtx)
2022 {
2023 rtx cond_false
2024 = gen_rtx_fmt_ee (inv_cond,
2025 GET_MODE (cond_true), XEXP (cond_true, 0),
2026 XEXP (cond_true, 1));
2027 reg_set_iterator rsi;
2028
2029 if (GET_CODE (XEXP (set_src, 1)) == PC)
2030 {
2031 rtx t = cond_false;
2032 cond_false = cond_true;
2033 cond_true = t;
2034 }
2035
2036 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
2037
2038 /* For each such register, mark it conditionally dead. */
2039 EXECUTE_IF_SET_IN_REG_SET (diff, 0, i, rsi)
2040 {
2041 struct reg_cond_life_info *rcli;
2042 rtx cond;
2043
2044 rcli = xmalloc (sizeof (*rcli));
2045
2046 if (REGNO_REG_SET_P (bb_true->il.rtl->global_live_at_start,
2047 i))
2048 cond = cond_false;
2049 else
2050 cond = cond_true;
2051 rcli->condition = cond;
2052 rcli->stores = const0_rtx;
2053 rcli->orig_condition = cond;
2054
2055 splay_tree_insert (pbi->reg_cond_dead, i,
2056 (splay_tree_value) rcli);
2057 }
2058 }
2059 }
2060
2061 FREE_REG_SET (diff);
2062 }
2063 #endif
2064
2065 /* If this block has no successors, any stores to the frame that aren't
2066 used later in the block are dead. So make a pass over the block
2067 recording any such that are made and show them dead at the end. We do
2068 a very conservative and simple job here. */
2069 if (optimize
2070 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2071 && (TYPE_RETURNS_STACK_DEPRESSED
2072 (TREE_TYPE (current_function_decl))))
2073 && (flags & PROP_SCAN_DEAD_STORES)
2074 && (EDGE_COUNT (bb->succs) == 0
2075 || (single_succ_p (bb)
2076 && single_succ (bb) == EXIT_BLOCK_PTR
2077 && ! current_function_calls_eh_return)))
2078 {
2079 rtx insn, set;
2080 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
2081 if (NONJUMP_INSN_P (insn)
2082 && (set = single_set (insn))
2083 && MEM_P (SET_DEST (set)))
2084 {
2085 rtx mem = SET_DEST (set);
2086 rtx canon_mem = canon_rtx (mem);
2087
2088 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2089 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2090 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2091 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2092 add_to_mem_set_list (pbi, canon_mem);
2093 }
2094 }
2095
2096 return pbi;
2097 }
2098
2099 /* Release a propagate_block_info struct. */
2100
2101 void
2102 free_propagate_block_info (struct propagate_block_info *pbi)
2103 {
2104 free_EXPR_LIST_list (&pbi->mem_set_list);
2105
2106 BITMAP_FREE (pbi->new_set);
2107
2108 #ifdef HAVE_conditional_execution
2109 splay_tree_delete (pbi->reg_cond_dead);
2110 BITMAP_FREE (pbi->reg_cond_reg);
2111 #endif
2112
2113 if (pbi->flags & PROP_REG_INFO)
2114 {
2115 int num = pbi->insn_num;
2116 unsigned i;
2117 reg_set_iterator rsi;
2118
2119 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i, rsi)
2120 {
2121 REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2122 reg_deaths[i] = 0;
2123 }
2124 }
2125 if (pbi->reg_next_use)
2126 free (pbi->reg_next_use);
2127
2128 free (pbi);
2129 }
2130
2131 /* Compute the registers live at the beginning of a basic block BB from
2132 those live at the end.
2133
2134 When called, REG_LIVE contains those live at the end. On return, it
2135 contains those live at the beginning.
2136
2137 LOCAL_SET, if non-null, will be set with all registers killed
2138 unconditionally by this basic block.
2139 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2140 killed conditionally by this basic block. If there is any unconditional
2141 set of a register, then the corresponding bit will be set in LOCAL_SET
2142 and cleared in COND_LOCAL_SET.
2143 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2144 case, the resulting set will be equal to the union of the two sets that
2145 would otherwise be computed.
2146
2147 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2148
2149 int
2150 propagate_block (basic_block bb, regset live, regset local_set,
2151 regset cond_local_set, int flags)
2152 {
2153 struct propagate_block_info *pbi;
2154 rtx insn, prev;
2155 int changed;
2156
2157 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2158
2159 if (flags & PROP_REG_INFO)
2160 {
2161 unsigned i;
2162 reg_set_iterator rsi;
2163
2164 /* Process the regs live at the end of the block.
2165 Mark them as not local to any one basic block. */
2166 EXECUTE_IF_SET_IN_REG_SET (live, 0, i, rsi)
2167 REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL;
2168 }
2169
2170 /* Scan the block an insn at a time from end to beginning. */
2171
2172 changed = 0;
2173 for (insn = BB_END (bb); ; insn = prev)
2174 {
2175 /* If this is a call to `setjmp' et al, warn if any
2176 non-volatile datum is live. */
2177 if ((flags & PROP_REG_INFO)
2178 && CALL_P (insn)
2179 && find_reg_note (insn, REG_SETJMP, NULL))
2180 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2181
2182 prev = propagate_one_insn (pbi, insn);
2183 if (!prev)
2184 changed |= insn != get_insns ();
2185 else
2186 changed |= NEXT_INSN (prev) != insn;
2187
2188 if (insn == BB_HEAD (bb))
2189 break;
2190 }
2191
2192 free_propagate_block_info (pbi);
2193
2194 return changed;
2195 }
2196 \f
2197 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2198 (SET expressions whose destinations are registers dead after the insn).
2199 NEEDED is the regset that says which regs are alive after the insn.
2200
2201 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2202
2203 If X is the entire body of an insn, NOTES contains the reg notes
2204 pertaining to the insn. */
2205
2206 static int
2207 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2208 rtx notes ATTRIBUTE_UNUSED)
2209 {
2210 enum rtx_code code = GET_CODE (x);
2211
2212 /* Don't eliminate insns that may trap. */
2213 if (flag_non_call_exceptions && may_trap_p (x))
2214 return 0;
2215
2216 #ifdef AUTO_INC_DEC
2217 /* As flow is invoked after combine, we must take existing AUTO_INC
2218 expressions into account. */
2219 for (; notes; notes = XEXP (notes, 1))
2220 {
2221 if (REG_NOTE_KIND (notes) == REG_INC)
2222 {
2223 int regno = REGNO (XEXP (notes, 0));
2224
2225 /* Don't delete insns to set global regs. */
2226 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2227 || REGNO_REG_SET_P (pbi->reg_live, regno))
2228 return 0;
2229 }
2230 }
2231 #endif
2232
2233 /* If setting something that's a reg or part of one,
2234 see if that register's altered value will be live. */
2235
2236 if (code == SET)
2237 {
2238 rtx r = SET_DEST (x);
2239
2240 #ifdef HAVE_cc0
2241 if (GET_CODE (r) == CC0)
2242 return ! pbi->cc0_live;
2243 #endif
2244
2245 /* A SET that is a subroutine call cannot be dead. */
2246 if (GET_CODE (SET_SRC (x)) == CALL)
2247 {
2248 if (! call_ok)
2249 return 0;
2250 }
2251
2252 /* Don't eliminate loads from volatile memory or volatile asms. */
2253 else if (volatile_refs_p (SET_SRC (x)))
2254 return 0;
2255
2256 if (MEM_P (r))
2257 {
2258 rtx temp, canon_r;
2259
2260 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2261 return 0;
2262
2263 canon_r = canon_rtx (r);
2264
2265 /* Walk the set of memory locations we are currently tracking
2266 and see if one is an identical match to this memory location.
2267 If so, this memory write is dead (remember, we're walking
2268 backwards from the end of the block to the start). Since
2269 rtx_equal_p does not check the alias set or flags, we also
2270 must have the potential for them to conflict (anti_dependence). */
2271 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2272 if (anti_dependence (r, XEXP (temp, 0)))
2273 {
2274 rtx mem = XEXP (temp, 0);
2275
2276 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2277 && (GET_MODE_SIZE (GET_MODE (canon_r))
2278 <= GET_MODE_SIZE (GET_MODE (mem))))
2279 return 1;
2280
2281 #ifdef AUTO_INC_DEC
2282 /* Check if memory reference matches an auto increment. Only
2283 post increment/decrement or modify are valid. */
2284 if (GET_MODE (mem) == GET_MODE (r)
2285 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2286 || GET_CODE (XEXP (mem, 0)) == POST_INC
2287 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2288 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2289 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2290 return 1;
2291 #endif
2292 }
2293 }
2294 else
2295 {
2296 while (GET_CODE (r) == SUBREG
2297 || GET_CODE (r) == STRICT_LOW_PART
2298 || GET_CODE (r) == ZERO_EXTRACT)
2299 r = XEXP (r, 0);
2300
2301 if (REG_P (r))
2302 {
2303 int regno = REGNO (r);
2304
2305 /* Obvious. */
2306 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2307 return 0;
2308
2309 /* If this is a hard register, verify that subsequent
2310 words are not needed. */
2311 if (regno < FIRST_PSEUDO_REGISTER)
2312 {
2313 int n = hard_regno_nregs[regno][GET_MODE (r)];
2314
2315 while (--n > 0)
2316 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2317 return 0;
2318 }
2319
2320 /* Don't delete insns to set global regs. */
2321 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2322 return 0;
2323
2324 /* Make sure insns to set the stack pointer aren't deleted. */
2325 if (regno == STACK_POINTER_REGNUM)
2326 return 0;
2327
2328 /* ??? These bits might be redundant with the force live bits
2329 in calculate_global_regs_live. We would delete from
2330 sequential sets; whether this actually affects real code
2331 for anything but the stack pointer I don't know. */
2332 /* Make sure insns to set the frame pointer aren't deleted. */
2333 if (regno == FRAME_POINTER_REGNUM
2334 && (! reload_completed || frame_pointer_needed))
2335 return 0;
2336 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2337 if (regno == HARD_FRAME_POINTER_REGNUM
2338 && (! reload_completed || frame_pointer_needed))
2339 return 0;
2340 #endif
2341
2342 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2343 /* Make sure insns to set arg pointer are never deleted
2344 (if the arg pointer isn't fixed, there will be a USE
2345 for it, so we can treat it normally). */
2346 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2347 return 0;
2348 #endif
2349
2350 /* Otherwise, the set is dead. */
2351 return 1;
2352 }
2353 }
2354 }
2355
2356 /* If performing several activities, insn is dead if each activity
2357 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2358 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2359 worth keeping. */
2360 else if (code == PARALLEL)
2361 {
2362 int i = XVECLEN (x, 0);
2363
2364 for (i--; i >= 0; i--)
2365 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2366 && GET_CODE (XVECEXP (x, 0, i)) != USE
2367 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2368 return 0;
2369
2370 return 1;
2371 }
2372
2373 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2374 is not necessarily true for hard registers until after reload. */
2375 else if (code == CLOBBER)
2376 {
2377 if (REG_P (XEXP (x, 0))
2378 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2379 || reload_completed)
2380 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2381 return 1;
2382 }
2383
2384 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2385 Instances where it is still used are either (1) temporary and the USE
2386 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2387 or (3) hiding bugs elsewhere that are not properly representing data
2388 flow. */
2389
2390 return 0;
2391 }
2392
2393 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2394 return 1 if the entire library call is dead.
2395 This is true if INSN copies a register (hard or pseudo)
2396 and if the hard return reg of the call insn is dead.
2397 (The caller should have tested the destination of the SET inside
2398 INSN already for death.)
2399
2400 If this insn doesn't just copy a register, then we don't
2401 have an ordinary libcall. In that case, cse could not have
2402 managed to substitute the source for the dest later on,
2403 so we can assume the libcall is dead.
2404
2405 PBI is the block info giving pseudoregs live before this insn.
2406 NOTE is the REG_RETVAL note of the insn. */
2407
2408 static int
2409 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2410 {
2411 rtx x = single_set (insn);
2412
2413 if (x)
2414 {
2415 rtx r = SET_SRC (x);
2416
2417 if (REG_P (r) || GET_CODE (r) == SUBREG)
2418 {
2419 rtx call = XEXP (note, 0);
2420 rtx call_pat;
2421 int i;
2422
2423 /* Find the call insn. */
2424 while (call != insn && !CALL_P (call))
2425 call = NEXT_INSN (call);
2426
2427 /* If there is none, do nothing special,
2428 since ordinary death handling can understand these insns. */
2429 if (call == insn)
2430 return 0;
2431
2432 /* See if the hard reg holding the value is dead.
2433 If this is a PARALLEL, find the call within it. */
2434 call_pat = PATTERN (call);
2435 if (GET_CODE (call_pat) == PARALLEL)
2436 {
2437 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2438 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2439 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2440 break;
2441
2442 /* This may be a library call that is returning a value
2443 via invisible pointer. Do nothing special, since
2444 ordinary death handling can understand these insns. */
2445 if (i < 0)
2446 return 0;
2447
2448 call_pat = XVECEXP (call_pat, 0, i);
2449 }
2450
2451 if (! insn_dead_p (pbi, call_pat, 1, REG_NOTES (call)))
2452 return 0;
2453
2454 while ((insn = PREV_INSN (insn)) != call)
2455 {
2456 if (! INSN_P (insn))
2457 continue;
2458 if (! insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn)))
2459 return 0;
2460 }
2461 return 1;
2462 }
2463 }
2464 return 0;
2465 }
2466
2467 /* 1 if register REGNO was alive at a place where `setjmp' was called
2468 and was set more than once or is an argument.
2469 Such regs may be clobbered by `longjmp'. */
2470
2471 int
2472 regno_clobbered_at_setjmp (int regno)
2473 {
2474 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2475 return 0;
2476
2477 return ((REG_N_SETS (regno) > 1
2478 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
2479 regno))
2480 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2481 }
2482 \f
2483 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2484 maximal list size; look for overlaps in mode and select the largest. */
2485 static void
2486 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2487 {
2488 rtx i;
2489
2490 /* We don't know how large a BLKmode store is, so we must not
2491 take them into consideration. */
2492 if (GET_MODE (mem) == BLKmode)
2493 return;
2494
2495 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2496 {
2497 rtx e = XEXP (i, 0);
2498 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2499 {
2500 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2501 {
2502 #ifdef AUTO_INC_DEC
2503 /* If we must store a copy of the mem, we can just modify
2504 the mode of the stored copy. */
2505 if (pbi->flags & PROP_AUTOINC)
2506 PUT_MODE (e, GET_MODE (mem));
2507 else
2508 #endif
2509 XEXP (i, 0) = mem;
2510 }
2511 return;
2512 }
2513 }
2514
2515 if (pbi->mem_set_list_len < PARAM_VALUE (PARAM_MAX_FLOW_MEMORY_LOCATIONS))
2516 {
2517 #ifdef AUTO_INC_DEC
2518 /* Store a copy of mem, otherwise the address may be
2519 scrogged by find_auto_inc. */
2520 if (pbi->flags & PROP_AUTOINC)
2521 mem = shallow_copy_rtx (mem);
2522 #endif
2523 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2524 pbi->mem_set_list_len++;
2525 }
2526 }
2527
2528 /* INSN references memory, possibly using autoincrement addressing modes.
2529 Find any entries on the mem_set_list that need to be invalidated due
2530 to an address change. */
2531
2532 static int
2533 invalidate_mems_from_autoinc (rtx *px, void *data)
2534 {
2535 rtx x = *px;
2536 struct propagate_block_info *pbi = data;
2537
2538 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2539 {
2540 invalidate_mems_from_set (pbi, XEXP (x, 0));
2541 return -1;
2542 }
2543
2544 return 0;
2545 }
2546
2547 /* EXP is a REG or MEM. Remove any dependent entries from
2548 pbi->mem_set_list. */
2549
2550 static void
2551 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2552 {
2553 rtx temp = pbi->mem_set_list;
2554 rtx prev = NULL_RTX;
2555 rtx next;
2556
2557 while (temp)
2558 {
2559 next = XEXP (temp, 1);
2560 if ((REG_P (exp) && reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2561 /* When we get an EXP that is a mem here, we want to check if EXP
2562 overlaps the *address* of any of the mems in the list (i.e. not
2563 whether the mems actually overlap; that's done elsewhere). */
2564 || (MEM_P (exp)
2565 && reg_overlap_mentioned_p (exp, XEXP (XEXP (temp, 0), 0))))
2566 {
2567 /* Splice this entry out of the list. */
2568 if (prev)
2569 XEXP (prev, 1) = next;
2570 else
2571 pbi->mem_set_list = next;
2572 free_EXPR_LIST_node (temp);
2573 pbi->mem_set_list_len--;
2574 }
2575 else
2576 prev = temp;
2577 temp = next;
2578 }
2579 }
2580
2581 /* Process the registers that are set within X. Their bits are set to
2582 1 in the regset DEAD, because they are dead prior to this insn.
2583
2584 If INSN is nonzero, it is the insn being processed.
2585
2586 FLAGS is the set of operations to perform. */
2587
2588 static void
2589 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2590 {
2591 rtx cond = NULL_RTX;
2592 rtx link;
2593 enum rtx_code code;
2594 int flags = pbi->flags;
2595
2596 if (insn)
2597 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2598 {
2599 if (REG_NOTE_KIND (link) == REG_INC)
2600 mark_set_1 (pbi, SET, XEXP (link, 0),
2601 (GET_CODE (x) == COND_EXEC
2602 ? COND_EXEC_TEST (x) : NULL_RTX),
2603 insn, flags);
2604 }
2605 retry:
2606 switch (code = GET_CODE (x))
2607 {
2608 case SET:
2609 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2610 flags |= PROP_ASM_SCAN;
2611 /* Fall through */
2612 case CLOBBER:
2613 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2614 return;
2615
2616 case COND_EXEC:
2617 cond = COND_EXEC_TEST (x);
2618 x = COND_EXEC_CODE (x);
2619 goto retry;
2620
2621 case PARALLEL:
2622 {
2623 int i;
2624
2625 /* We must scan forwards. If we have an asm, we need to set
2626 the PROP_ASM_SCAN flag before scanning the clobbers. */
2627 for (i = 0; i < XVECLEN (x, 0); i++)
2628 {
2629 rtx sub = XVECEXP (x, 0, i);
2630 switch (code = GET_CODE (sub))
2631 {
2632 case COND_EXEC:
2633 gcc_assert (!cond);
2634
2635 cond = COND_EXEC_TEST (sub);
2636 sub = COND_EXEC_CODE (sub);
2637 if (GET_CODE (sub) == SET)
2638 goto mark_set;
2639 if (GET_CODE (sub) == CLOBBER)
2640 goto mark_clob;
2641 break;
2642
2643 case SET:
2644 mark_set:
2645 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2646 flags |= PROP_ASM_SCAN;
2647 /* Fall through */
2648 case CLOBBER:
2649 mark_clob:
2650 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2651 break;
2652
2653 case ASM_OPERANDS:
2654 flags |= PROP_ASM_SCAN;
2655 break;
2656
2657 default:
2658 break;
2659 }
2660 }
2661 break;
2662 }
2663
2664 default:
2665 break;
2666 }
2667 }
2668
2669 /* Process a single set, which appears in INSN. REG (which may not
2670 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2671 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2672 If the set is conditional (because it appear in a COND_EXEC), COND
2673 will be the condition. */
2674
2675 static void
2676 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2677 {
2678 int regno_first = -1, regno_last = -1;
2679 unsigned long not_dead = 0;
2680 int i;
2681
2682 /* Modifying just one hardware register of a multi-reg value or just a
2683 byte field of a register does not mean the value from before this insn
2684 is now dead. Of course, if it was dead after it's unused now. */
2685
2686 switch (GET_CODE (reg))
2687 {
2688 case PARALLEL:
2689 /* Some targets place small structures in registers for return values of
2690 functions. We have to detect this case specially here to get correct
2691 flow information. */
2692 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2693 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2694 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2695 flags);
2696 return;
2697
2698 case SIGN_EXTRACT:
2699 /* SIGN_EXTRACT cannot be an lvalue. */
2700 gcc_unreachable ();
2701
2702 case ZERO_EXTRACT:
2703 case STRICT_LOW_PART:
2704 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2705 do
2706 reg = XEXP (reg, 0);
2707 while (GET_CODE (reg) == SUBREG
2708 || GET_CODE (reg) == ZERO_EXTRACT
2709 || GET_CODE (reg) == STRICT_LOW_PART);
2710 if (MEM_P (reg))
2711 break;
2712 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2713 /* Fall through. */
2714
2715 case REG:
2716 regno_last = regno_first = REGNO (reg);
2717 if (regno_first < FIRST_PSEUDO_REGISTER)
2718 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2719 break;
2720
2721 case SUBREG:
2722 if (REG_P (SUBREG_REG (reg)))
2723 {
2724 enum machine_mode outer_mode = GET_MODE (reg);
2725 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2726
2727 /* Identify the range of registers affected. This is moderately
2728 tricky for hard registers. See alter_subreg. */
2729
2730 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2731 if (regno_first < FIRST_PSEUDO_REGISTER)
2732 {
2733 regno_first += subreg_regno_offset (regno_first, inner_mode,
2734 SUBREG_BYTE (reg),
2735 outer_mode);
2736 regno_last = (regno_first
2737 + hard_regno_nregs[regno_first][outer_mode] - 1);
2738
2739 /* Since we've just adjusted the register number ranges, make
2740 sure REG matches. Otherwise some_was_live will be clear
2741 when it shouldn't have been, and we'll create incorrect
2742 REG_UNUSED notes. */
2743 reg = gen_rtx_REG (outer_mode, regno_first);
2744 }
2745 else
2746 {
2747 /* If the number of words in the subreg is less than the number
2748 of words in the full register, we have a well-defined partial
2749 set. Otherwise the high bits are undefined.
2750
2751 This is only really applicable to pseudos, since we just took
2752 care of multi-word hard registers. */
2753 if (((GET_MODE_SIZE (outer_mode)
2754 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2755 < ((GET_MODE_SIZE (inner_mode)
2756 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2757 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2758 regno_first);
2759
2760 reg = SUBREG_REG (reg);
2761 }
2762 }
2763 else
2764 reg = SUBREG_REG (reg);
2765 break;
2766
2767 default:
2768 break;
2769 }
2770
2771 /* If this set is a MEM, then it kills any aliased writes and any
2772 other MEMs which use it.
2773 If this set is a REG, then it kills any MEMs which use the reg. */
2774 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2775 {
2776 if (REG_P (reg) || MEM_P (reg))
2777 invalidate_mems_from_set (pbi, reg);
2778
2779 /* If the memory reference had embedded side effects (autoincrement
2780 address modes) then we may need to kill some entries on the
2781 memory set list. */
2782 if (insn && MEM_P (reg))
2783 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2784
2785 if (MEM_P (reg) && ! side_effects_p (reg)
2786 /* ??? With more effort we could track conditional memory life. */
2787 && ! cond)
2788 add_to_mem_set_list (pbi, canon_rtx (reg));
2789 }
2790
2791 if (REG_P (reg)
2792 && ! (regno_first == FRAME_POINTER_REGNUM
2793 && (! reload_completed || frame_pointer_needed))
2794 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2795 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2796 && (! reload_completed || frame_pointer_needed))
2797 #endif
2798 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2799 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2800 #endif
2801 )
2802 {
2803 int some_was_live = 0, some_was_dead = 0;
2804
2805 for (i = regno_first; i <= regno_last; ++i)
2806 {
2807 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2808 if (pbi->local_set)
2809 {
2810 /* Order of the set operation matters here since both
2811 sets may be the same. */
2812 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2813 if (cond != NULL_RTX
2814 && ! REGNO_REG_SET_P (pbi->local_set, i))
2815 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2816 else
2817 SET_REGNO_REG_SET (pbi->local_set, i);
2818 }
2819 if (code != CLOBBER || needed_regno)
2820 SET_REGNO_REG_SET (pbi->new_set, i);
2821
2822 some_was_live |= needed_regno;
2823 some_was_dead |= ! needed_regno;
2824 }
2825
2826 #ifdef HAVE_conditional_execution
2827 /* Consider conditional death in deciding that the register needs
2828 a death note. */
2829 if (some_was_live && ! not_dead
2830 /* The stack pointer is never dead. Well, not strictly true,
2831 but it's very difficult to tell from here. Hopefully
2832 combine_stack_adjustments will fix up the most egregious
2833 errors. */
2834 && regno_first != STACK_POINTER_REGNUM)
2835 {
2836 for (i = regno_first; i <= regno_last; ++i)
2837 if (! mark_regno_cond_dead (pbi, i, cond))
2838 not_dead |= ((unsigned long) 1) << (i - regno_first);
2839 }
2840 #endif
2841
2842 /* Additional data to record if this is the final pass. */
2843 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2844 | PROP_DEATH_NOTES | PROP_AUTOINC))
2845 {
2846 rtx y;
2847 int blocknum = pbi->bb->index;
2848
2849 y = NULL_RTX;
2850 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2851 {
2852 y = pbi->reg_next_use[regno_first];
2853
2854 /* The next use is no longer next, since a store intervenes. */
2855 for (i = regno_first; i <= regno_last; ++i)
2856 pbi->reg_next_use[i] = 0;
2857 }
2858
2859 if (flags & PROP_REG_INFO)
2860 {
2861 for (i = regno_first; i <= regno_last; ++i)
2862 {
2863 /* Count (weighted) references, stores, etc. This counts a
2864 register twice if it is modified, but that is correct. */
2865 REG_N_SETS (i) += 1;
2866 REG_N_REFS (i) += 1;
2867 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2868
2869 /* The insns where a reg is live are normally counted
2870 elsewhere, but we want the count to include the insn
2871 where the reg is set, and the normal counting mechanism
2872 would not count it. */
2873 REG_LIVE_LENGTH (i) += 1;
2874 }
2875
2876 /* If this is a hard reg, record this function uses the reg. */
2877 if (regno_first < FIRST_PSEUDO_REGISTER)
2878 {
2879 for (i = regno_first; i <= regno_last; i++)
2880 regs_ever_live[i] = 1;
2881 if (flags & PROP_ASM_SCAN)
2882 for (i = regno_first; i <= regno_last; i++)
2883 regs_asm_clobbered[i] = 1;
2884 }
2885 else
2886 {
2887 /* Keep track of which basic blocks each reg appears in. */
2888 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2889 REG_BASIC_BLOCK (regno_first) = blocknum;
2890 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2891 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2892 }
2893 }
2894
2895 if (! some_was_dead)
2896 {
2897 if (flags & PROP_LOG_LINKS)
2898 {
2899 /* Make a logical link from the next following insn
2900 that uses this register, back to this insn.
2901 The following insns have already been processed.
2902
2903 We don't build a LOG_LINK for hard registers containing
2904 in ASM_OPERANDs. If these registers get replaced,
2905 we might wind up changing the semantics of the insn,
2906 even if reload can make what appear to be valid
2907 assignments later.
2908
2909 We don't build a LOG_LINK for global registers to
2910 or from a function call. We don't want to let
2911 combine think that it knows what is going on with
2912 global registers. */
2913 if (y && (BLOCK_NUM (y) == blocknum)
2914 && (regno_first >= FIRST_PSEUDO_REGISTER
2915 || (asm_noperands (PATTERN (y)) < 0
2916 && ! ((CALL_P (insn)
2917 || CALL_P (y))
2918 && global_regs[regno_first]))))
2919 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2920 }
2921 }
2922 else if (not_dead)
2923 ;
2924 else if (! some_was_live)
2925 {
2926 if (flags & PROP_REG_INFO)
2927 REG_N_DEATHS (regno_first) += 1;
2928
2929 if (flags & PROP_DEATH_NOTES
2930 #ifdef STACK_REGS
2931 && (!(flags & PROP_POST_REGSTACK)
2932 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
2933 LAST_STACK_REG))
2934 #endif
2935 )
2936 {
2937 /* Note that dead stores have already been deleted
2938 when possible. If we get here, we have found a
2939 dead store that cannot be eliminated (because the
2940 same insn does something useful). Indicate this
2941 by marking the reg being set as dying here. */
2942 REG_NOTES (insn)
2943 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2944 }
2945 }
2946 else
2947 {
2948 if (flags & PROP_DEATH_NOTES
2949 #ifdef STACK_REGS
2950 && (!(flags & PROP_POST_REGSTACK)
2951 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG,
2952 LAST_STACK_REG))
2953 #endif
2954 )
2955 {
2956 /* This is a case where we have a multi-word hard register
2957 and some, but not all, of the words of the register are
2958 needed in subsequent insns. Write REG_UNUSED notes
2959 for those parts that were not needed. This case should
2960 be rare. */
2961
2962 for (i = regno_first; i <= regno_last; ++i)
2963 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2964 REG_NOTES (insn)
2965 = alloc_EXPR_LIST (REG_UNUSED,
2966 regno_reg_rtx[i],
2967 REG_NOTES (insn));
2968 }
2969 }
2970 }
2971
2972 /* Mark the register as being dead. */
2973 if (some_was_live
2974 /* The stack pointer is never dead. Well, not strictly true,
2975 but it's very difficult to tell from here. Hopefully
2976 combine_stack_adjustments will fix up the most egregious
2977 errors. */
2978 && regno_first != STACK_POINTER_REGNUM)
2979 {
2980 for (i = regno_first; i <= regno_last; ++i)
2981 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2982 {
2983 if ((pbi->flags & PROP_REG_INFO)
2984 && REGNO_REG_SET_P (pbi->reg_live, i))
2985 {
2986 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2987 reg_deaths[i] = 0;
2988 }
2989 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2990 }
2991 if (flags & PROP_DEAD_INSN)
2992 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, reg), insn);
2993 }
2994 }
2995 else if (REG_P (reg))
2996 {
2997 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2998 pbi->reg_next_use[regno_first] = 0;
2999
3000 if ((flags & PROP_REG_INFO) != 0
3001 && (flags & PROP_ASM_SCAN) != 0
3002 && regno_first < FIRST_PSEUDO_REGISTER)
3003 {
3004 for (i = regno_first; i <= regno_last; i++)
3005 regs_asm_clobbered[i] = 1;
3006 }
3007 }
3008
3009 /* If this is the last pass and this is a SCRATCH, show it will be dying
3010 here and count it. */
3011 else if (GET_CODE (reg) == SCRATCH)
3012 {
3013 if (flags & PROP_DEATH_NOTES
3014 #ifdef STACK_REGS
3015 && (!(flags & PROP_POST_REGSTACK)
3016 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
3017 #endif
3018 )
3019 REG_NOTES (insn)
3020 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
3021 }
3022 }
3023 \f
3024 #ifdef HAVE_conditional_execution
3025 /* Mark REGNO conditionally dead.
3026 Return true if the register is now unconditionally dead. */
3027
3028 static int
3029 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
3030 {
3031 /* If this is a store to a predicate register, the value of the
3032 predicate is changing, we don't know that the predicate as seen
3033 before is the same as that seen after. Flush all dependent
3034 conditions from reg_cond_dead. This will make all such
3035 conditionally live registers unconditionally live. */
3036 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
3037 flush_reg_cond_reg (pbi, regno);
3038
3039 /* If this is an unconditional store, remove any conditional
3040 life that may have existed. */
3041 if (cond == NULL_RTX)
3042 splay_tree_remove (pbi->reg_cond_dead, regno);
3043 else
3044 {
3045 splay_tree_node node;
3046 struct reg_cond_life_info *rcli;
3047 rtx ncond;
3048
3049 /* Otherwise this is a conditional set. Record that fact.
3050 It may have been conditionally used, or there may be a
3051 subsequent set with a complementary condition. */
3052
3053 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
3054 if (node == NULL)
3055 {
3056 /* The register was unconditionally live previously.
3057 Record the current condition as the condition under
3058 which it is dead. */
3059 rcli = xmalloc (sizeof (*rcli));
3060 rcli->condition = cond;
3061 rcli->stores = cond;
3062 rcli->orig_condition = const0_rtx;
3063 splay_tree_insert (pbi->reg_cond_dead, regno,
3064 (splay_tree_value) rcli);
3065
3066 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3067
3068 /* Not unconditionally dead. */
3069 return 0;
3070 }
3071 else
3072 {
3073 /* The register was conditionally live previously.
3074 Add the new condition to the old. */
3075 rcli = (struct reg_cond_life_info *) node->value;
3076 ncond = rcli->condition;
3077 ncond = ior_reg_cond (ncond, cond, 1);
3078 if (rcli->stores == const0_rtx)
3079 rcli->stores = cond;
3080 else if (rcli->stores != const1_rtx)
3081 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
3082
3083 /* If the register is now unconditionally dead, remove the entry
3084 in the splay_tree. A register is unconditionally dead if the
3085 dead condition ncond is true. A register is also unconditionally
3086 dead if the sum of all conditional stores is an unconditional
3087 store (stores is true), and the dead condition is identically the
3088 same as the original dead condition initialized at the end of
3089 the block. This is a pointer compare, not an rtx_equal_p
3090 compare. */
3091 if (ncond == const1_rtx
3092 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
3093 splay_tree_remove (pbi->reg_cond_dead, regno);
3094 else
3095 {
3096 rcli->condition = ncond;
3097
3098 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3099
3100 /* Not unconditionally dead. */
3101 return 0;
3102 }
3103 }
3104 }
3105
3106 return 1;
3107 }
3108
3109 /* Called from splay_tree_delete for pbi->reg_cond_life. */
3110
3111 static void
3112 free_reg_cond_life_info (splay_tree_value value)
3113 {
3114 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
3115 free (rcli);
3116 }
3117
3118 /* Helper function for flush_reg_cond_reg. */
3119
3120 static int
3121 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
3122 {
3123 struct reg_cond_life_info *rcli;
3124 int *xdata = (int *) data;
3125 unsigned int regno = xdata[0];
3126
3127 /* Don't need to search if last flushed value was farther on in
3128 the in-order traversal. */
3129 if (xdata[1] >= (int) node->key)
3130 return 0;
3131
3132 /* Splice out portions of the expression that refer to regno. */
3133 rcli = (struct reg_cond_life_info *) node->value;
3134 rcli->condition = elim_reg_cond (rcli->condition, regno);
3135 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3136 rcli->stores = elim_reg_cond (rcli->stores, regno);
3137
3138 /* If the entire condition is now false, signal the node to be removed. */
3139 if (rcli->condition == const0_rtx)
3140 {
3141 xdata[1] = node->key;
3142 return -1;
3143 }
3144 else
3145 gcc_assert (rcli->condition != const1_rtx);
3146
3147 return 0;
3148 }
3149
3150 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3151
3152 static void
3153 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3154 {
3155 int pair[2];
3156
3157 pair[0] = regno;
3158 pair[1] = -1;
3159 while (splay_tree_foreach (pbi->reg_cond_dead,
3160 flush_reg_cond_reg_1, pair) == -1)
3161 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3162
3163 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3164 }
3165
3166 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3167 For ior/and, the ADD flag determines whether we want to add the new
3168 condition X to the old one unconditionally. If it is zero, we will
3169 only return a new expression if X allows us to simplify part of
3170 OLD, otherwise we return NULL to the caller.
3171 If ADD is nonzero, we will return a new condition in all cases. The
3172 toplevel caller of one of these functions should always pass 1 for
3173 ADD. */
3174
3175 static rtx
3176 ior_reg_cond (rtx old, rtx x, int add)
3177 {
3178 rtx op0, op1;
3179
3180 if (COMPARISON_P (old))
3181 {
3182 if (COMPARISON_P (x)
3183 && REVERSE_CONDEXEC_PREDICATES_P (x, old)
3184 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3185 return const1_rtx;
3186 if (GET_CODE (x) == GET_CODE (old)
3187 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3188 return old;
3189 if (! add)
3190 return NULL;
3191 return gen_rtx_IOR (0, old, x);
3192 }
3193
3194 switch (GET_CODE (old))
3195 {
3196 case IOR:
3197 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3198 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3199 if (op0 != NULL || op1 != NULL)
3200 {
3201 if (op0 == const0_rtx)
3202 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3203 if (op1 == const0_rtx)
3204 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3205 if (op0 == const1_rtx || op1 == const1_rtx)
3206 return const1_rtx;
3207 if (op0 == NULL)
3208 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3209 else if (rtx_equal_p (x, op0))
3210 /* (x | A) | x ~ (x | A). */
3211 return old;
3212 if (op1 == NULL)
3213 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3214 else if (rtx_equal_p (x, op1))
3215 /* (A | x) | x ~ (A | x). */
3216 return old;
3217 return gen_rtx_IOR (0, op0, op1);
3218 }
3219 if (! add)
3220 return NULL;
3221 return gen_rtx_IOR (0, old, x);
3222
3223 case AND:
3224 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3225 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3226 if (op0 != NULL || op1 != NULL)
3227 {
3228 if (op0 == const1_rtx)
3229 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3230 if (op1 == const1_rtx)
3231 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3232 if (op0 == const0_rtx || op1 == const0_rtx)
3233 return const0_rtx;
3234 if (op0 == NULL)
3235 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3236 else if (rtx_equal_p (x, op0))
3237 /* (x & A) | x ~ x. */
3238 return op0;
3239 if (op1 == NULL)
3240 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3241 else if (rtx_equal_p (x, op1))
3242 /* (A & x) | x ~ x. */
3243 return op1;
3244 return gen_rtx_AND (0, op0, op1);
3245 }
3246 if (! add)
3247 return NULL;
3248 return gen_rtx_IOR (0, old, x);
3249
3250 case NOT:
3251 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3252 if (op0 != NULL)
3253 return not_reg_cond (op0);
3254 if (! add)
3255 return NULL;
3256 return gen_rtx_IOR (0, old, x);
3257
3258 default:
3259 gcc_unreachable ();
3260 }
3261 }
3262
3263 static rtx
3264 not_reg_cond (rtx x)
3265 {
3266 if (x == const0_rtx)
3267 return const1_rtx;
3268 else if (x == const1_rtx)
3269 return const0_rtx;
3270 if (GET_CODE (x) == NOT)
3271 return XEXP (x, 0);
3272 if (COMPARISON_P (x)
3273 && REG_P (XEXP (x, 0)))
3274 {
3275 gcc_assert (XEXP (x, 1) == const0_rtx);
3276
3277 return gen_rtx_fmt_ee (reversed_comparison_code (x, NULL),
3278 VOIDmode, XEXP (x, 0), const0_rtx);
3279 }
3280 return gen_rtx_NOT (0, x);
3281 }
3282
3283 static rtx
3284 and_reg_cond (rtx old, rtx x, int add)
3285 {
3286 rtx op0, op1;
3287
3288 if (COMPARISON_P (old))
3289 {
3290 if (COMPARISON_P (x)
3291 && GET_CODE (x) == reversed_comparison_code (old, NULL)
3292 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3293 return const0_rtx;
3294 if (GET_CODE (x) == GET_CODE (old)
3295 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3296 return old;
3297 if (! add)
3298 return NULL;
3299 return gen_rtx_AND (0, old, x);
3300 }
3301
3302 switch (GET_CODE (old))
3303 {
3304 case IOR:
3305 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3306 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3307 if (op0 != NULL || op1 != NULL)
3308 {
3309 if (op0 == const0_rtx)
3310 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3311 if (op1 == const0_rtx)
3312 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3313 if (op0 == const1_rtx || op1 == const1_rtx)
3314 return const1_rtx;
3315 if (op0 == NULL)
3316 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3317 else if (rtx_equal_p (x, op0))
3318 /* (x | A) & x ~ x. */
3319 return op0;
3320 if (op1 == NULL)
3321 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3322 else if (rtx_equal_p (x, op1))
3323 /* (A | x) & x ~ x. */
3324 return op1;
3325 return gen_rtx_IOR (0, op0, op1);
3326 }
3327 if (! add)
3328 return NULL;
3329 return gen_rtx_AND (0, old, x);
3330
3331 case AND:
3332 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3333 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3334 if (op0 != NULL || op1 != NULL)
3335 {
3336 if (op0 == const1_rtx)
3337 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3338 if (op1 == const1_rtx)
3339 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3340 if (op0 == const0_rtx || op1 == const0_rtx)
3341 return const0_rtx;
3342 if (op0 == NULL)
3343 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3344 else if (rtx_equal_p (x, op0))
3345 /* (x & A) & x ~ (x & A). */
3346 return old;
3347 if (op1 == NULL)
3348 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3349 else if (rtx_equal_p (x, op1))
3350 /* (A & x) & x ~ (A & x). */
3351 return old;
3352 return gen_rtx_AND (0, op0, op1);
3353 }
3354 if (! add)
3355 return NULL;
3356 return gen_rtx_AND (0, old, x);
3357
3358 case NOT:
3359 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3360 if (op0 != NULL)
3361 return not_reg_cond (op0);
3362 if (! add)
3363 return NULL;
3364 return gen_rtx_AND (0, old, x);
3365
3366 default:
3367 gcc_unreachable ();
3368 }
3369 }
3370
3371 /* Given a condition X, remove references to reg REGNO and return the
3372 new condition. The removal will be done so that all conditions
3373 involving REGNO are considered to evaluate to false. This function
3374 is used when the value of REGNO changes. */
3375
3376 static rtx
3377 elim_reg_cond (rtx x, unsigned int regno)
3378 {
3379 rtx op0, op1;
3380
3381 if (COMPARISON_P (x))
3382 {
3383 if (REGNO (XEXP (x, 0)) == regno)
3384 return const0_rtx;
3385 return x;
3386 }
3387
3388 switch (GET_CODE (x))
3389 {
3390 case AND:
3391 op0 = elim_reg_cond (XEXP (x, 0), regno);
3392 op1 = elim_reg_cond (XEXP (x, 1), regno);
3393 if (op0 == const0_rtx || op1 == const0_rtx)
3394 return const0_rtx;
3395 if (op0 == const1_rtx)
3396 return op1;
3397 if (op1 == const1_rtx)
3398 return op0;
3399 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3400 return x;
3401 return gen_rtx_AND (0, op0, op1);
3402
3403 case IOR:
3404 op0 = elim_reg_cond (XEXP (x, 0), regno);
3405 op1 = elim_reg_cond (XEXP (x, 1), regno);
3406 if (op0 == const1_rtx || op1 == const1_rtx)
3407 return const1_rtx;
3408 if (op0 == const0_rtx)
3409 return op1;
3410 if (op1 == const0_rtx)
3411 return op0;
3412 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3413 return x;
3414 return gen_rtx_IOR (0, op0, op1);
3415
3416 case NOT:
3417 op0 = elim_reg_cond (XEXP (x, 0), regno);
3418 if (op0 == const0_rtx)
3419 return const1_rtx;
3420 if (op0 == const1_rtx)
3421 return const0_rtx;
3422 if (op0 != XEXP (x, 0))
3423 return not_reg_cond (op0);
3424 return x;
3425
3426 default:
3427 gcc_unreachable ();
3428 }
3429 }
3430 #endif /* HAVE_conditional_execution */
3431 \f
3432 #ifdef AUTO_INC_DEC
3433
3434 /* Try to substitute the auto-inc expression INC as the address inside
3435 MEM which occurs in INSN. Currently, the address of MEM is an expression
3436 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3437 that has a single set whose source is a PLUS of INCR_REG and something
3438 else. */
3439
3440 static void
3441 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3442 rtx mem, rtx incr, rtx incr_reg)
3443 {
3444 int regno = REGNO (incr_reg);
3445 rtx set = single_set (incr);
3446 rtx q = SET_DEST (set);
3447 rtx y = SET_SRC (set);
3448 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3449 int changed;
3450
3451 /* Make sure this reg appears only once in this insn. */
3452 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3453 return;
3454
3455 if (dead_or_set_p (incr, incr_reg)
3456 /* Mustn't autoinc an eliminable register. */
3457 && (regno >= FIRST_PSEUDO_REGISTER
3458 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3459 {
3460 /* This is the simple case. Try to make the auto-inc. If
3461 we can't, we are done. Otherwise, we will do any
3462 needed updates below. */
3463 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3464 return;
3465 }
3466 else if (REG_P (q)
3467 /* PREV_INSN used here to check the semi-open interval
3468 [insn,incr). */
3469 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3470 /* We must also check for sets of q as q may be
3471 a call clobbered hard register and there may
3472 be a call between PREV_INSN (insn) and incr. */
3473 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3474 {
3475 /* We have *p followed sometime later by q = p+size.
3476 Both p and q must be live afterward,
3477 and q is not used between INSN and its assignment.
3478 Change it to q = p, ...*q..., q = q+size.
3479 Then fall into the usual case. */
3480 rtx insns, temp;
3481
3482 start_sequence ();
3483 emit_move_insn (q, incr_reg);
3484 insns = get_insns ();
3485 end_sequence ();
3486
3487 /* If we can't make the auto-inc, or can't make the
3488 replacement into Y, exit. There's no point in making
3489 the change below if we can't do the auto-inc and doing
3490 so is not correct in the pre-inc case. */
3491
3492 XEXP (inc, 0) = q;
3493 validate_change (insn, &XEXP (mem, 0), inc, 1);
3494 validate_change (incr, &XEXP (y, opnum), q, 1);
3495 if (! apply_change_group ())
3496 return;
3497
3498 /* We now know we'll be doing this change, so emit the
3499 new insn(s) and do the updates. */
3500 emit_insn_before (insns, insn);
3501
3502 if (BB_HEAD (pbi->bb) == insn)
3503 BB_HEAD (pbi->bb) = insns;
3504
3505 /* INCR will become a NOTE and INSN won't contain a
3506 use of INCR_REG. If a use of INCR_REG was just placed in
3507 the insn before INSN, make that the next use.
3508 Otherwise, invalidate it. */
3509 if (NONJUMP_INSN_P (PREV_INSN (insn))
3510 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3511 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3512 pbi->reg_next_use[regno] = PREV_INSN (insn);
3513 else
3514 pbi->reg_next_use[regno] = 0;
3515
3516 incr_reg = q;
3517 regno = REGNO (q);
3518
3519 if ((pbi->flags & PROP_REG_INFO)
3520 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3521 reg_deaths[regno] = pbi->insn_num;
3522
3523 /* REGNO is now used in INCR which is below INSN, but
3524 it previously wasn't live here. If we don't mark
3525 it as live, we'll put a REG_DEAD note for it
3526 on this insn, which is incorrect. */
3527 SET_REGNO_REG_SET (pbi->reg_live, regno);
3528
3529 /* If there are any calls between INSN and INCR, show
3530 that REGNO now crosses them. */
3531 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3532 if (CALL_P (temp))
3533 {
3534 REG_N_CALLS_CROSSED (regno)++;
3535 if (can_throw_internal (temp))
3536 REG_N_THROWING_CALLS_CROSSED (regno)++;
3537 }
3538
3539 /* Invalidate alias info for Q since we just changed its value. */
3540 clear_reg_alias_info (q);
3541 }
3542 else
3543 return;
3544
3545 /* If we haven't returned, it means we were able to make the
3546 auto-inc, so update the status. First, record that this insn
3547 has an implicit side effect. */
3548
3549 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3550
3551 /* Modify the old increment-insn to simply copy
3552 the already-incremented value of our register. */
3553 changed = validate_change (incr, &SET_SRC (set), incr_reg, 0);
3554 gcc_assert (changed);
3555
3556 /* If that makes it a no-op (copying the register into itself) delete
3557 it so it won't appear to be a "use" and a "set" of this
3558 register. */
3559 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3560 {
3561 /* If the original source was dead, it's dead now. */
3562 rtx note;
3563
3564 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3565 {
3566 remove_note (incr, note);
3567 if (XEXP (note, 0) != incr_reg)
3568 {
3569 unsigned int regno = REGNO (XEXP (note, 0));
3570
3571 if ((pbi->flags & PROP_REG_INFO)
3572 && REGNO_REG_SET_P (pbi->reg_live, regno))
3573 {
3574 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3575 reg_deaths[regno] = 0;
3576 }
3577 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3578 }
3579 }
3580
3581 SET_INSN_DELETED (incr);
3582 }
3583
3584 if (regno >= FIRST_PSEUDO_REGISTER)
3585 {
3586 /* Count an extra reference to the reg. When a reg is
3587 incremented, spilling it is worse, so we want to make
3588 that less likely. */
3589 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3590
3591 /* Count the increment as a setting of the register,
3592 even though it isn't a SET in rtl. */
3593 REG_N_SETS (regno)++;
3594 }
3595 }
3596
3597 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3598 reference. */
3599
3600 static void
3601 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3602 {
3603 rtx addr = XEXP (x, 0);
3604 HOST_WIDE_INT offset = 0;
3605 rtx set, y, incr, inc_val;
3606 int regno;
3607 int size = GET_MODE_SIZE (GET_MODE (x));
3608
3609 if (JUMP_P (insn))
3610 return;
3611
3612 /* Here we detect use of an index register which might be good for
3613 postincrement, postdecrement, preincrement, or predecrement. */
3614
3615 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3616 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3617
3618 if (!REG_P (addr))
3619 return;
3620
3621 regno = REGNO (addr);
3622
3623 /* Is the next use an increment that might make auto-increment? */
3624 incr = pbi->reg_next_use[regno];
3625 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3626 return;
3627 set = single_set (incr);
3628 if (set == 0 || GET_CODE (set) != SET)
3629 return;
3630 y = SET_SRC (set);
3631
3632 if (GET_CODE (y) != PLUS)
3633 return;
3634
3635 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3636 inc_val = XEXP (y, 1);
3637 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3638 inc_val = XEXP (y, 0);
3639 else
3640 return;
3641
3642 if (GET_CODE (inc_val) == CONST_INT)
3643 {
3644 if (HAVE_POST_INCREMENT
3645 && (INTVAL (inc_val) == size && offset == 0))
3646 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3647 incr, addr);
3648 else if (HAVE_POST_DECREMENT
3649 && (INTVAL (inc_val) == -size && offset == 0))
3650 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3651 incr, addr);
3652 else if (HAVE_PRE_INCREMENT
3653 && (INTVAL (inc_val) == size && offset == size))
3654 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3655 incr, addr);
3656 else if (HAVE_PRE_DECREMENT
3657 && (INTVAL (inc_val) == -size && offset == -size))
3658 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3659 incr, addr);
3660 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3661 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3662 gen_rtx_PLUS (Pmode,
3663 addr,
3664 inc_val)),
3665 insn, x, incr, addr);
3666 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3667 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3668 gen_rtx_PLUS (Pmode,
3669 addr,
3670 inc_val)),
3671 insn, x, incr, addr);
3672 }
3673 else if (REG_P (inc_val)
3674 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3675 NEXT_INSN (incr)))
3676
3677 {
3678 if (HAVE_POST_MODIFY_REG && offset == 0)
3679 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3680 gen_rtx_PLUS (Pmode,
3681 addr,
3682 inc_val)),
3683 insn, x, incr, addr);
3684 }
3685 }
3686
3687 #endif /* AUTO_INC_DEC */
3688 \f
3689 static void
3690 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3691 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3692 {
3693 unsigned int regno_first, regno_last, i;
3694 int some_was_live, some_was_dead, some_not_set;
3695
3696 regno_last = regno_first = REGNO (reg);
3697 if (regno_first < FIRST_PSEUDO_REGISTER)
3698 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3699
3700 /* Find out if any of this register is live after this instruction. */
3701 some_was_live = some_was_dead = 0;
3702 for (i = regno_first; i <= regno_last; ++i)
3703 {
3704 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3705 some_was_live |= needed_regno;
3706 some_was_dead |= ! needed_regno;
3707 }
3708
3709 /* Find out if any of the register was set this insn. */
3710 some_not_set = 0;
3711 for (i = regno_first; i <= regno_last; ++i)
3712 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3713
3714 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3715 {
3716 /* Record where each reg is used, so when the reg is set we know
3717 the next insn that uses it. */
3718 pbi->reg_next_use[regno_first] = insn;
3719 }
3720
3721 if (pbi->flags & PROP_REG_INFO)
3722 {
3723 if (regno_first < FIRST_PSEUDO_REGISTER)
3724 {
3725 /* If this is a register we are going to try to eliminate,
3726 don't mark it live here. If we are successful in
3727 eliminating it, it need not be live unless it is used for
3728 pseudos, in which case it will have been set live when it
3729 was allocated to the pseudos. If the register will not
3730 be eliminated, reload will set it live at that point.
3731
3732 Otherwise, record that this function uses this register. */
3733 /* ??? The PPC backend tries to "eliminate" on the pic
3734 register to itself. This should be fixed. In the mean
3735 time, hack around it. */
3736
3737 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3738 && (regno_first == FRAME_POINTER_REGNUM
3739 || regno_first == ARG_POINTER_REGNUM)))
3740 for (i = regno_first; i <= regno_last; ++i)
3741 regs_ever_live[i] = 1;
3742 }
3743 else
3744 {
3745 /* Keep track of which basic block each reg appears in. */
3746
3747 int blocknum = pbi->bb->index;
3748 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3749 REG_BASIC_BLOCK (regno_first) = blocknum;
3750 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3751 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3752
3753 /* Count (weighted) number of uses of each reg. */
3754 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3755 REG_N_REFS (regno_first)++;
3756 }
3757 for (i = regno_first; i <= regno_last; ++i)
3758 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3759 {
3760 gcc_assert (!reg_deaths[i]);
3761 reg_deaths[i] = pbi->insn_num;
3762 }
3763 }
3764
3765 /* Record and count the insns in which a reg dies. If it is used in
3766 this insn and was dead below the insn then it dies in this insn.
3767 If it was set in this insn, we do not make a REG_DEAD note;
3768 likewise if we already made such a note. */
3769 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3770 && some_was_dead
3771 && some_not_set)
3772 {
3773 /* Check for the case where the register dying partially
3774 overlaps the register set by this insn. */
3775 if (regno_first != regno_last)
3776 for (i = regno_first; i <= regno_last; ++i)
3777 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3778
3779 /* If none of the words in X is needed, make a REG_DEAD note.
3780 Otherwise, we must make partial REG_DEAD notes. */
3781 if (! some_was_live)
3782 {
3783 if ((pbi->flags & PROP_DEATH_NOTES)
3784 #ifdef STACK_REGS
3785 && (!(pbi->flags & PROP_POST_REGSTACK)
3786 || !IN_RANGE (REGNO (reg), FIRST_STACK_REG, LAST_STACK_REG))
3787 #endif
3788 && ! find_regno_note (insn, REG_DEAD, regno_first))
3789 REG_NOTES (insn)
3790 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3791
3792 if (pbi->flags & PROP_REG_INFO)
3793 REG_N_DEATHS (regno_first)++;
3794 }
3795 else
3796 {
3797 /* Don't make a REG_DEAD note for a part of a register
3798 that is set in the insn. */
3799 for (i = regno_first; i <= regno_last; ++i)
3800 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3801 && ! dead_or_set_regno_p (insn, i))
3802 REG_NOTES (insn)
3803 = alloc_EXPR_LIST (REG_DEAD,
3804 regno_reg_rtx[i],
3805 REG_NOTES (insn));
3806 }
3807 }
3808
3809 /* Mark the register as being live. */
3810 for (i = regno_first; i <= regno_last; ++i)
3811 {
3812 #ifdef HAVE_conditional_execution
3813 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3814 #endif
3815
3816 SET_REGNO_REG_SET (pbi->reg_live, i);
3817
3818 #ifdef HAVE_conditional_execution
3819 /* If this is a conditional use, record that fact. If it is later
3820 conditionally set, we'll know to kill the register. */
3821 if (cond != NULL_RTX)
3822 {
3823 splay_tree_node node;
3824 struct reg_cond_life_info *rcli;
3825 rtx ncond;
3826
3827 if (this_was_live)
3828 {
3829 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3830 if (node == NULL)
3831 {
3832 /* The register was unconditionally live previously.
3833 No need to do anything. */
3834 }
3835 else
3836 {
3837 /* The register was conditionally live previously.
3838 Subtract the new life cond from the old death cond. */
3839 rcli = (struct reg_cond_life_info *) node->value;
3840 ncond = rcli->condition;
3841 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3842
3843 /* If the register is now unconditionally live,
3844 remove the entry in the splay_tree. */
3845 if (ncond == const0_rtx)
3846 splay_tree_remove (pbi->reg_cond_dead, i);
3847 else
3848 {
3849 rcli->condition = ncond;
3850 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3851 REGNO (XEXP (cond, 0)));
3852 }
3853 }
3854 }
3855 else
3856 {
3857 /* The register was not previously live at all. Record
3858 the condition under which it is still dead. */
3859 rcli = xmalloc (sizeof (*rcli));
3860 rcli->condition = not_reg_cond (cond);
3861 rcli->stores = const0_rtx;
3862 rcli->orig_condition = const0_rtx;
3863 splay_tree_insert (pbi->reg_cond_dead, i,
3864 (splay_tree_value) rcli);
3865
3866 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3867 }
3868 }
3869 else if (this_was_live)
3870 {
3871 /* The register may have been conditionally live previously, but
3872 is now unconditionally live. Remove it from the conditionally
3873 dead list, so that a conditional set won't cause us to think
3874 it dead. */
3875 splay_tree_remove (pbi->reg_cond_dead, i);
3876 }
3877 #endif
3878 }
3879 }
3880
3881 /* Scan expression X for registers which have to be marked used in PBI.
3882 X is considered to be the SET_DEST rtx of SET. TRUE is returned if
3883 X could be handled by this function. */
3884
3885 static bool
3886 mark_used_dest_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3887 {
3888 int regno;
3889 bool mark_dest = false;
3890 rtx dest = x;
3891
3892 /* On some platforms calls return values spread over several
3893 locations. These locations are wrapped in a EXPR_LIST rtx
3894 together with a CONST_INT offset. */
3895 if (GET_CODE (x) == EXPR_LIST
3896 && GET_CODE (XEXP (x, 1)) == CONST_INT)
3897 x = XEXP (x, 0);
3898
3899 if (x == NULL_RTX)
3900 return false;
3901
3902 /* If storing into MEM, don't show it as being used. But do
3903 show the address as being used. */
3904 if (MEM_P (x))
3905 {
3906 #ifdef AUTO_INC_DEC
3907 if (pbi->flags & PROP_AUTOINC)
3908 find_auto_inc (pbi, x, insn);
3909 #endif
3910 mark_used_regs (pbi, XEXP (x, 0), cond, insn);
3911 return true;
3912 }
3913
3914 /* Storing in STRICT_LOW_PART is like storing in a reg
3915 in that this SET might be dead, so ignore it in TESTREG.
3916 but in some other ways it is like using the reg.
3917
3918 Storing in a SUBREG or a bit field is like storing the entire
3919 register in that if the register's value is not used
3920 then this SET is not needed. */
3921 while (GET_CODE (x) == STRICT_LOW_PART
3922 || GET_CODE (x) == ZERO_EXTRACT
3923 || GET_CODE (x) == SUBREG)
3924 {
3925 #ifdef CANNOT_CHANGE_MODE_CLASS
3926 if ((pbi->flags & PROP_REG_INFO) && GET_CODE (x) == SUBREG)
3927 record_subregs_of_mode (x);
3928 #endif
3929
3930 /* Modifying a single register in an alternate mode
3931 does not use any of the old value. But these other
3932 ways of storing in a register do use the old value. */
3933 if (GET_CODE (x) == SUBREG
3934 && !((REG_BYTES (SUBREG_REG (x))
3935 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3936 > (REG_BYTES (x)
3937 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3938 ;
3939 else
3940 mark_dest = true;
3941
3942 x = XEXP (x, 0);
3943 }
3944
3945 /* If this is a store into a register or group of registers,
3946 recursively scan the value being stored. */
3947 if (REG_P (x)
3948 && (regno = REGNO (x),
3949 !(regno == FRAME_POINTER_REGNUM
3950 && (!reload_completed || frame_pointer_needed)))
3951 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3952 && !(regno == HARD_FRAME_POINTER_REGNUM
3953 && (!reload_completed || frame_pointer_needed))
3954 #endif
3955 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3956 && !(regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3957 #endif
3958 )
3959 {
3960 if (mark_dest)
3961 mark_used_regs (pbi, dest, cond, insn);
3962 return true;
3963 }
3964 return false;
3965 }
3966
3967 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3968 This is done assuming the registers needed from X are those that
3969 have 1-bits in PBI->REG_LIVE.
3970
3971 INSN is the containing instruction. If INSN is dead, this function
3972 is not called. */
3973
3974 static void
3975 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3976 {
3977 RTX_CODE code;
3978 int flags = pbi->flags;
3979
3980 retry:
3981 if (!x)
3982 return;
3983 code = GET_CODE (x);
3984 switch (code)
3985 {
3986 case LABEL_REF:
3987 case SYMBOL_REF:
3988 case CONST_INT:
3989 case CONST:
3990 case CONST_DOUBLE:
3991 case CONST_VECTOR:
3992 case PC:
3993 case ADDR_VEC:
3994 case ADDR_DIFF_VEC:
3995 return;
3996
3997 #ifdef HAVE_cc0
3998 case CC0:
3999 pbi->cc0_live = 1;
4000 return;
4001 #endif
4002
4003 case CLOBBER:
4004 /* If we are clobbering a MEM, mark any registers inside the address
4005 as being used. */
4006 if (MEM_P (XEXP (x, 0)))
4007 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
4008 return;
4009
4010 case MEM:
4011 /* Don't bother watching stores to mems if this is not the
4012 final pass. We'll not be deleting dead stores this round. */
4013 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
4014 {
4015 /* Invalidate the data for the last MEM stored, but only if MEM is
4016 something that can be stored into. */
4017 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
4018 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
4019 /* Needn't clear the memory set list. */
4020 ;
4021 else
4022 {
4023 rtx temp = pbi->mem_set_list;
4024 rtx prev = NULL_RTX;
4025 rtx next;
4026
4027 while (temp)
4028 {
4029 next = XEXP (temp, 1);
4030 if (anti_dependence (XEXP (temp, 0), x))
4031 {
4032 /* Splice temp out of the list. */
4033 if (prev)
4034 XEXP (prev, 1) = next;
4035 else
4036 pbi->mem_set_list = next;
4037 free_EXPR_LIST_node (temp);
4038 pbi->mem_set_list_len--;
4039 }
4040 else
4041 prev = temp;
4042 temp = next;
4043 }
4044 }
4045
4046 /* If the memory reference had embedded side effects (autoincrement
4047 address modes. Then we may need to kill some entries on the
4048 memory set list. */
4049 if (insn)
4050 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
4051 }
4052
4053 #ifdef AUTO_INC_DEC
4054 if (flags & PROP_AUTOINC)
4055 find_auto_inc (pbi, x, insn);
4056 #endif
4057 break;
4058
4059 case SUBREG:
4060 #ifdef CANNOT_CHANGE_MODE_CLASS
4061 if (flags & PROP_REG_INFO)
4062 record_subregs_of_mode (x);
4063 #endif
4064
4065 /* While we're here, optimize this case. */
4066 x = SUBREG_REG (x);
4067 if (!REG_P (x))
4068 goto retry;
4069 /* Fall through. */
4070
4071 case REG:
4072 /* See a register other than being set => mark it as needed. */
4073 mark_used_reg (pbi, x, cond, insn);
4074 return;
4075
4076 case SET:
4077 {
4078 rtx dest = SET_DEST (x);
4079 int i;
4080 bool ret = false;
4081
4082 if (GET_CODE (dest) == PARALLEL)
4083 for (i = 0; i < XVECLEN (dest, 0); i++)
4084 ret |= mark_used_dest_regs (pbi, XVECEXP (dest, 0, i), cond, insn);
4085 else
4086 ret = mark_used_dest_regs (pbi, dest, cond, insn);
4087
4088 if (ret)
4089 {
4090 mark_used_regs (pbi, SET_SRC (x), cond, insn);
4091 return;
4092 }
4093 }
4094 break;
4095
4096 case ASM_OPERANDS:
4097 case UNSPEC_VOLATILE:
4098 case TRAP_IF:
4099 case ASM_INPUT:
4100 {
4101 /* Traditional and volatile asm instructions must be considered to use
4102 and clobber all hard registers, all pseudo-registers and all of
4103 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
4104
4105 Consider for instance a volatile asm that changes the fpu rounding
4106 mode. An insn should not be moved across this even if it only uses
4107 pseudo-regs because it might give an incorrectly rounded result.
4108
4109 ?!? Unfortunately, marking all hard registers as live causes massive
4110 problems for the register allocator and marking all pseudos as live
4111 creates mountains of uninitialized variable warnings.
4112
4113 So for now, just clear the memory set list and mark any regs
4114 we can find in ASM_OPERANDS as used. */
4115 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
4116 {
4117 free_EXPR_LIST_list (&pbi->mem_set_list);
4118 pbi->mem_set_list_len = 0;
4119 }
4120
4121 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
4122 We can not just fall through here since then we would be confused
4123 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
4124 traditional asms unlike their normal usage. */
4125 if (code == ASM_OPERANDS)
4126 {
4127 int j;
4128
4129 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
4130 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
4131 }
4132 break;
4133 }
4134
4135 case COND_EXEC:
4136 gcc_assert (!cond);
4137
4138 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
4139
4140 cond = COND_EXEC_TEST (x);
4141 x = COND_EXEC_CODE (x);
4142 goto retry;
4143
4144 default:
4145 break;
4146 }
4147
4148 /* Recursively scan the operands of this expression. */
4149
4150 {
4151 const char * const fmt = GET_RTX_FORMAT (code);
4152 int i;
4153
4154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4155 {
4156 if (fmt[i] == 'e')
4157 {
4158 /* Tail recursive case: save a function call level. */
4159 if (i == 0)
4160 {
4161 x = XEXP (x, 0);
4162 goto retry;
4163 }
4164 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4165 }
4166 else if (fmt[i] == 'E')
4167 {
4168 int j;
4169 for (j = 0; j < XVECLEN (x, i); j++)
4170 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4171 }
4172 }
4173 }
4174 }
4175 \f
4176 #ifdef AUTO_INC_DEC
4177
4178 static int
4179 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4180 {
4181 /* Find the next use of this reg. If in same basic block,
4182 make it do pre-increment or pre-decrement if appropriate. */
4183 rtx x = single_set (insn);
4184 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4185 * INTVAL (XEXP (SET_SRC (x), 1)));
4186 int regno = REGNO (SET_DEST (x));
4187 rtx y = pbi->reg_next_use[regno];
4188 if (y != 0
4189 && SET_DEST (x) != stack_pointer_rtx
4190 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4191 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4192 mode would be better. */
4193 && ! dead_or_set_p (y, SET_DEST (x))
4194 && try_pre_increment (y, SET_DEST (x), amount))
4195 {
4196 /* We have found a suitable auto-increment and already changed
4197 insn Y to do it. So flush this increment instruction. */
4198 propagate_block_delete_insn (insn);
4199
4200 /* Count a reference to this reg for the increment insn we are
4201 deleting. When a reg is incremented, spilling it is worse,
4202 so we want to make that less likely. */
4203 if (regno >= FIRST_PSEUDO_REGISTER)
4204 {
4205 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4206 REG_N_SETS (regno)++;
4207 }
4208
4209 /* Flush any remembered memories depending on the value of
4210 the incremented register. */
4211 invalidate_mems_from_set (pbi, SET_DEST (x));
4212
4213 return 1;
4214 }
4215 return 0;
4216 }
4217
4218 /* Try to change INSN so that it does pre-increment or pre-decrement
4219 addressing on register REG in order to add AMOUNT to REG.
4220 AMOUNT is negative for pre-decrement.
4221 Returns 1 if the change could be made.
4222 This checks all about the validity of the result of modifying INSN. */
4223
4224 static int
4225 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4226 {
4227 rtx use;
4228
4229 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4230 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4231 int pre_ok = 0;
4232 /* Nonzero if we can try to make a post-increment or post-decrement.
4233 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4234 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4235 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4236 int post_ok = 0;
4237
4238 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4239 int do_post = 0;
4240
4241 /* From the sign of increment, see which possibilities are conceivable
4242 on this target machine. */
4243 if (HAVE_PRE_INCREMENT && amount > 0)
4244 pre_ok = 1;
4245 if (HAVE_POST_INCREMENT && amount > 0)
4246 post_ok = 1;
4247
4248 if (HAVE_PRE_DECREMENT && amount < 0)
4249 pre_ok = 1;
4250 if (HAVE_POST_DECREMENT && amount < 0)
4251 post_ok = 1;
4252
4253 if (! (pre_ok || post_ok))
4254 return 0;
4255
4256 /* It is not safe to add a side effect to a jump insn
4257 because if the incremented register is spilled and must be reloaded
4258 there would be no way to store the incremented value back in memory. */
4259
4260 if (JUMP_P (insn))
4261 return 0;
4262
4263 use = 0;
4264 if (pre_ok)
4265 use = find_use_as_address (PATTERN (insn), reg, 0);
4266 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4267 {
4268 use = find_use_as_address (PATTERN (insn), reg, -amount);
4269 do_post = 1;
4270 }
4271
4272 if (use == 0 || use == (rtx) (size_t) 1)
4273 return 0;
4274
4275 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4276 return 0;
4277
4278 /* See if this combination of instruction and addressing mode exists. */
4279 if (! validate_change (insn, &XEXP (use, 0),
4280 gen_rtx_fmt_e (amount > 0
4281 ? (do_post ? POST_INC : PRE_INC)
4282 : (do_post ? POST_DEC : PRE_DEC),
4283 Pmode, reg), 0))
4284 return 0;
4285
4286 /* Record that this insn now has an implicit side effect on X. */
4287 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4288 return 1;
4289 }
4290
4291 #endif /* AUTO_INC_DEC */
4292 \f
4293 /* Find the place in the rtx X where REG is used as a memory address.
4294 Return the MEM rtx that so uses it.
4295 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4296 (plus REG (const_int PLUSCONST)).
4297
4298 If such an address does not appear, return 0.
4299 If REG appears more than once, or is used other than in such an address,
4300 return (rtx) 1. */
4301
4302 rtx
4303 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4304 {
4305 enum rtx_code code = GET_CODE (x);
4306 const char * const fmt = GET_RTX_FORMAT (code);
4307 int i;
4308 rtx value = 0;
4309 rtx tem;
4310
4311 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4312 return x;
4313
4314 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4315 && XEXP (XEXP (x, 0), 0) == reg
4316 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4317 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4318 return x;
4319
4320 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4321 {
4322 /* If REG occurs inside a MEM used in a bit-field reference,
4323 that is unacceptable. */
4324 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4325 return (rtx) (size_t) 1;
4326 }
4327
4328 if (x == reg)
4329 return (rtx) (size_t) 1;
4330
4331 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4332 {
4333 if (fmt[i] == 'e')
4334 {
4335 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4336 if (value == 0)
4337 value = tem;
4338 else if (tem != 0)
4339 return (rtx) (size_t) 1;
4340 }
4341 else if (fmt[i] == 'E')
4342 {
4343 int j;
4344 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4345 {
4346 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4347 if (value == 0)
4348 value = tem;
4349 else if (tem != 0)
4350 return (rtx) (size_t) 1;
4351 }
4352 }
4353 }
4354
4355 return value;
4356 }
4357 \f
4358 /* Write information about registers and basic blocks into FILE.
4359 This is part of making a debugging dump. */
4360
4361 void
4362 dump_regset (regset r, FILE *outf)
4363 {
4364 unsigned i;
4365 reg_set_iterator rsi;
4366
4367 if (r == NULL)
4368 {
4369 fputs (" (nil)", outf);
4370 return;
4371 }
4372
4373 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
4374 {
4375 fprintf (outf, " %d", i);
4376 if (i < FIRST_PSEUDO_REGISTER)
4377 fprintf (outf, " [%s]",
4378 reg_names[i]);
4379 }
4380 }
4381
4382 /* Print a human-readable representation of R on the standard error
4383 stream. This function is designed to be used from within the
4384 debugger. */
4385
4386 void
4387 debug_regset (regset r)
4388 {
4389 dump_regset (r, stderr);
4390 putc ('\n', stderr);
4391 }
4392
4393 /* Recompute register set/reference counts immediately prior to register
4394 allocation.
4395
4396 This avoids problems with set/reference counts changing to/from values
4397 which have special meanings to the register allocators.
4398
4399 Additionally, the reference counts are the primary component used by the
4400 register allocators to prioritize pseudos for allocation to hard regs.
4401 More accurate reference counts generally lead to better register allocation.
4402
4403 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4404 possibly other information which is used by the register allocators. */
4405
4406 void
4407 recompute_reg_usage (void)
4408 {
4409 allocate_reg_life_data ();
4410 /* distribute_notes in combiner fails to convert some of the
4411 REG_UNUSED notes to REG_DEAD notes. This causes CHECK_DEAD_NOTES
4412 in sched1 to die. To solve this update the DEATH_NOTES
4413 here. */
4414 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4415
4416 if (dump_file)
4417 dump_flow_info (dump_file);
4418 }
4419
4420 struct tree_opt_pass pass_recompute_reg_usage =
4421 {
4422 "life2", /* name */
4423 NULL, /* gate */
4424 recompute_reg_usage, /* execute */
4425 NULL, /* sub */
4426 NULL, /* next */
4427 0, /* static_pass_number */
4428 0, /* tv_id */
4429 0, /* properties_required */
4430 0, /* properties_provided */
4431 0, /* properties_destroyed */
4432 0, /* todo_flags_start */
4433 TODO_dump_func, /* todo_flags_finish */
4434 'f' /* letter */
4435 };
4436
4437 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4438 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4439 of the number of registers that died.
4440 If KILL is 1, remove old REG_DEAD / REG_UNUSED notes. If it is 0, don't.
4441 if it is -1, remove them unless they pertain to a stack reg. */
4442
4443 int
4444 count_or_remove_death_notes (sbitmap blocks, int kill)
4445 {
4446 int count = 0;
4447 unsigned int i = 0;
4448 basic_block bb;
4449
4450 /* This used to be a loop over all the blocks with a membership test
4451 inside the loop. That can be amazingly expensive on a large CFG
4452 when only a small number of bits are set in BLOCKs (for example,
4453 the calls from the scheduler typically have very few bits set).
4454
4455 For extra credit, someone should convert BLOCKS to a bitmap rather
4456 than an sbitmap. */
4457 if (blocks)
4458 {
4459 sbitmap_iterator sbi;
4460
4461 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4462 {
4463 basic_block bb = BASIC_BLOCK (i);
4464 /* The bitmap may be flawed in that one of the basic blocks
4465 may have been deleted before you get here. */
4466 if (bb)
4467 count += count_or_remove_death_notes_bb (bb, kill);
4468 };
4469 }
4470 else
4471 {
4472 FOR_EACH_BB (bb)
4473 {
4474 count += count_or_remove_death_notes_bb (bb, kill);
4475 }
4476 }
4477
4478 return count;
4479 }
4480
4481 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4482 block BB. Returns a count of the number of registers that died. */
4483
4484 static int
4485 count_or_remove_death_notes_bb (basic_block bb, int kill)
4486 {
4487 int count = 0;
4488 rtx insn;
4489
4490 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4491 {
4492 if (INSN_P (insn))
4493 {
4494 rtx *pprev = &REG_NOTES (insn);
4495 rtx link = *pprev;
4496
4497 while (link)
4498 {
4499 switch (REG_NOTE_KIND (link))
4500 {
4501 case REG_DEAD:
4502 if (REG_P (XEXP (link, 0)))
4503 {
4504 rtx reg = XEXP (link, 0);
4505 int n;
4506
4507 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4508 n = 1;
4509 else
4510 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4511 count += n;
4512 }
4513
4514 /* Fall through. */
4515
4516 case REG_UNUSED:
4517 if (kill > 0
4518 || (kill
4519 #ifdef STACK_REGS
4520 && (!REG_P (XEXP (link, 0))
4521 || !IN_RANGE (REGNO (XEXP (link, 0)),
4522 FIRST_STACK_REG, LAST_STACK_REG))
4523 #endif
4524 ))
4525 {
4526 rtx next = XEXP (link, 1);
4527 free_EXPR_LIST_node (link);
4528 *pprev = link = next;
4529 break;
4530 }
4531 /* Fall through. */
4532
4533 default:
4534 pprev = &XEXP (link, 1);
4535 link = *pprev;
4536 break;
4537 }
4538 }
4539 }
4540
4541 if (insn == BB_END (bb))
4542 break;
4543 }
4544
4545 return count;
4546 }
4547
4548 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4549 if blocks is NULL. */
4550
4551 static void
4552 clear_log_links (sbitmap blocks)
4553 {
4554 rtx insn;
4555
4556 if (!blocks)
4557 {
4558 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4559 if (INSN_P (insn))
4560 free_INSN_LIST_list (&LOG_LINKS (insn));
4561 }
4562 else
4563 {
4564 unsigned int i = 0;
4565 sbitmap_iterator sbi;
4566
4567 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i, sbi)
4568 {
4569 basic_block bb = BASIC_BLOCK (i);
4570
4571 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4572 insn = NEXT_INSN (insn))
4573 if (INSN_P (insn))
4574 free_INSN_LIST_list (&LOG_LINKS (insn));
4575 }
4576 }
4577 }
4578
4579 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4580 correspond to the hard registers, if any, set in that map. This
4581 could be done far more efficiently by having all sorts of special-cases
4582 with moving single words, but probably isn't worth the trouble. */
4583
4584 void
4585 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4586 {
4587 unsigned i;
4588 bitmap_iterator bi;
4589
4590 EXECUTE_IF_SET_IN_BITMAP (from, 0, i, bi)
4591 {
4592 if (i >= FIRST_PSEUDO_REGISTER)
4593 return;
4594 SET_HARD_REG_BIT (*to, i);
4595 }
4596 }
4597 \f
4598
4599 static bool
4600 gate_remove_death_notes (void)
4601 {
4602 return flag_profile_values;
4603 }
4604
4605 static void
4606 rest_of_handle_remove_death_notes (void)
4607 {
4608 count_or_remove_death_notes (NULL, 1);
4609 }
4610
4611 struct tree_opt_pass pass_remove_death_notes =
4612 {
4613 "ednotes", /* name */
4614 gate_remove_death_notes, /* gate */
4615 rest_of_handle_remove_death_notes, /* execute */
4616 NULL, /* sub */
4617 NULL, /* next */
4618 0, /* static_pass_number */
4619 0, /* tv_id */
4620 0, /* properties_required */
4621 0, /* properties_provided */
4622 0, /* properties_destroyed */
4623 0, /* todo_flags_start */
4624 0, /* todo_flags_finish */
4625 0 /* letter */
4626 };
4627
4628 /* Perform life analysis. */
4629 static void
4630 rest_of_handle_life (void)
4631 {
4632 regclass_init ();
4633
4634 life_analysis (dump_file, PROP_FINAL);
4635 if (optimize)
4636 cleanup_cfg (CLEANUP_EXPENSIVE | CLEANUP_UPDATE_LIFE | CLEANUP_LOG_LINKS
4637 | (flag_thread_jumps ? CLEANUP_THREADING : 0));
4638
4639 if (extra_warnings)
4640 {
4641 setjmp_vars_warning (DECL_INITIAL (current_function_decl));
4642 setjmp_args_warning ();
4643 }
4644
4645 if (optimize)
4646 {
4647 if (initialize_uninitialized_subregs ())
4648 {
4649 /* Insns were inserted, and possibly pseudos created, so
4650 things might look a bit different. */
4651 allocate_reg_life_data ();
4652 update_life_info (NULL, UPDATE_LIFE_GLOBAL_RM_NOTES,
4653 PROP_LOG_LINKS | PROP_REG_INFO | PROP_DEATH_NOTES);
4654 }
4655 }
4656
4657 no_new_pseudos = 1;
4658 }
4659
4660 struct tree_opt_pass pass_life =
4661 {
4662 "life1", /* name */
4663 NULL, /* gate */
4664 rest_of_handle_life, /* execute */
4665 NULL, /* sub */
4666 NULL, /* next */
4667 0, /* static_pass_number */
4668 TV_FLOW, /* tv_id */
4669 0, /* properties_required */
4670 0, /* properties_provided */
4671 0, /* properties_destroyed */
4672 TODO_verify_flow, /* todo_flags_start */
4673 TODO_dump_func |
4674 TODO_ggc_collect, /* todo_flags_finish */
4675 'f' /* letter */
4676 };
4677
4678 static void
4679 rest_of_handle_flow2 (void)
4680 {
4681 /* If optimizing, then go ahead and split insns now. */
4682 #ifndef STACK_REGS
4683 if (optimize > 0)
4684 #endif
4685 split_all_insns (0);
4686
4687 if (flag_branch_target_load_optimize)
4688 branch_target_load_optimize (epilogue_completed);
4689
4690 if (optimize)
4691 cleanup_cfg (CLEANUP_EXPENSIVE);
4692
4693 /* On some machines, the prologue and epilogue code, or parts thereof,
4694 can be represented as RTL. Doing so lets us schedule insns between
4695 it and the rest of the code and also allows delayed branch
4696 scheduling to operate in the epilogue. */
4697 thread_prologue_and_epilogue_insns (get_insns ());
4698 epilogue_completed = 1;
4699 flow2_completed = 1;
4700 }
4701
4702 struct tree_opt_pass pass_flow2 =
4703 {
4704 "flow2", /* name */
4705 NULL, /* gate */
4706 rest_of_handle_flow2, /* execute */
4707 NULL, /* sub */
4708 NULL, /* next */
4709 0, /* static_pass_number */
4710 TV_FLOW2, /* tv_id */
4711 0, /* properties_required */
4712 0, /* properties_provided */
4713 0, /* properties_destroyed */
4714 TODO_verify_flow, /* todo_flags_start */
4715 TODO_dump_func |
4716 TODO_ggc_collect, /* todo_flags_finish */
4717 'w' /* letter */
4718 };
4719