tracer.c: Remove duplication declaration.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
141
142 #include "obstack.h"
143 #include "splay-tree.h"
144
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
152
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
162
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
172
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
178
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
181
182 /* Maximum register number used in this function, plus one. */
183
184 int max_regno;
185
186 /* Indexed by n, giving various register information */
187
188 varray_type reg_n_info;
189
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
192
193 int regset_bytes;
194 int regset_size;
195
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
198
199 regset regs_live_at_setjmp;
200
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
206
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
210
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
213
214 static HARD_REG_SET elim_reg_set;
215
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
218 {
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
223
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
227
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
230 };
231
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
234
235 struct propagate_block_info
236 {
237 /* The basic block we're considering. */
238 basic_block bb;
239
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
242
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
245
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
249
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
253
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
257
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
261
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
266
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
270
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
273
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
276
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
279 };
280
281 /* Number of dead insns removed. */
282 static int ndead;
283
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void debug_flow_info PARAMS ((void));
337 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
338 rtx));
339 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
340 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
341 rtx));
342 static void clear_log_links PARAMS ((sbitmap));
343 \f
344
345 void
346 check_function_return_warnings ()
347 {
348 if (warn_missing_noreturn
349 && !TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred == NULL
351 && (lang_missing_noreturn_ok_p
352 && !lang_missing_noreturn_ok_p (cfun->decl)))
353 warning ("function might be possible candidate for attribute `noreturn'");
354
355 /* If we have a path to EXIT, then we do return. */
356 if (TREE_THIS_VOLATILE (cfun->decl)
357 && EXIT_BLOCK_PTR->pred != NULL)
358 warning ("`noreturn' function does return");
359
360 /* If the clobber_return_insn appears in some basic block, then we
361 do reach the end without returning a value. */
362 else if (warn_return_type
363 && cfun->x_clobber_return_insn != NULL
364 && EXIT_BLOCK_PTR->pred != NULL)
365 {
366 int max_uid = get_max_uid ();
367
368 /* If clobber_return_insn was excised by jump1, then renumber_insns
369 can make max_uid smaller than the number still recorded in our rtx.
370 That's fine, since this is a quick way of verifying that the insn
371 is no longer in the chain. */
372 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
373 {
374 rtx insn;
375
376 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
377 if (insn == cfun->x_clobber_return_insn)
378 {
379 warning ("control reaches end of non-void function");
380 break;
381 }
382 }
383 }
384 }
385 \f
386 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
387 note associated with the BLOCK. */
388
389 rtx
390 first_insn_after_basic_block_note (block)
391 basic_block block;
392 {
393 rtx insn;
394
395 /* Get the first instruction in the block. */
396 insn = block->head;
397
398 if (insn == NULL_RTX)
399 return NULL_RTX;
400 if (GET_CODE (insn) == CODE_LABEL)
401 insn = NEXT_INSN (insn);
402 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
403 abort ();
404
405 return NEXT_INSN (insn);
406 }
407 \f
408 /* Perform data flow analysis.
409 F is the first insn of the function; FLAGS is a set of PROP_* flags
410 to be used in accumulating flow info. */
411
412 void
413 life_analysis (f, file, flags)
414 rtx f;
415 FILE *file;
416 int flags;
417 {
418 #ifdef ELIMINABLE_REGS
419 int i;
420 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
421 #endif
422
423 /* Record which registers will be eliminated. We use this in
424 mark_used_regs. */
425
426 CLEAR_HARD_REG_SET (elim_reg_set);
427
428 #ifdef ELIMINABLE_REGS
429 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
430 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
431 #else
432 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
433 #endif
434
435
436 #ifdef CANNOT_CHANGE_MODE_CLASS
437 if (flags & PROP_REG_INFO)
438 bitmap_initialize (&subregs_of_mode, 1);
439 #endif
440
441 if (! optimize)
442 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
443
444 /* The post-reload life analysis have (on a global basis) the same
445 registers live as was computed by reload itself. elimination
446 Otherwise offsets and such may be incorrect.
447
448 Reload will make some registers as live even though they do not
449 appear in the rtl.
450
451 We don't want to create new auto-incs after reload, since they
452 are unlikely to be useful and can cause problems with shared
453 stack slots. */
454 if (reload_completed)
455 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
456
457 /* We want alias analysis information for local dead store elimination. */
458 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
459 init_alias_analysis ();
460
461 /* Always remove no-op moves. Do this before other processing so
462 that we don't have to keep re-scanning them. */
463 delete_noop_moves (f);
464
465 /* Some targets can emit simpler epilogues if they know that sp was
466 not ever modified during the function. After reload, of course,
467 we've already emitted the epilogue so there's no sense searching. */
468 if (! reload_completed)
469 notice_stack_pointer_modification (f);
470
471 /* Allocate and zero out data structures that will record the
472 data from lifetime analysis. */
473 allocate_reg_life_data ();
474 allocate_bb_life_data ();
475
476 /* Find the set of registers live on function exit. */
477 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
478
479 /* "Update" life info from zero. It'd be nice to begin the
480 relaxation with just the exit and noreturn blocks, but that set
481 is not immediately handy. */
482
483 if (flags & PROP_REG_INFO)
484 memset (regs_ever_live, 0, sizeof (regs_ever_live));
485 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
486
487 /* Clean up. */
488 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
489 end_alias_analysis ();
490
491 if (file)
492 dump_flow_info (file);
493
494 free_basic_block_vars (1);
495
496 /* Removing dead insns should've made jumptables really dead. */
497 delete_dead_jumptables ();
498 }
499
500 /* A subroutine of verify_wide_reg, called through for_each_rtx.
501 Search for REGNO. If found, return 2 if it is not wider than
502 word_mode. */
503
504 static int
505 verify_wide_reg_1 (px, pregno)
506 rtx *px;
507 void *pregno;
508 {
509 rtx x = *px;
510 unsigned int regno = *(int *) pregno;
511
512 if (GET_CODE (x) == REG && REGNO (x) == regno)
513 {
514 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
515 return 2;
516 return 1;
517 }
518 return 0;
519 }
520
521 /* A subroutine of verify_local_live_at_start. Search through insns
522 of BB looking for register REGNO. */
523
524 static void
525 verify_wide_reg (regno, bb)
526 int regno;
527 basic_block bb;
528 {
529 rtx head = bb->head, end = bb->end;
530
531 while (1)
532 {
533 if (INSN_P (head))
534 {
535 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
536 if (r == 1)
537 return;
538 if (r == 2)
539 break;
540 }
541 if (head == end)
542 break;
543 head = NEXT_INSN (head);
544 }
545
546 if (rtl_dump_file)
547 {
548 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
549 dump_bb (bb, rtl_dump_file);
550 }
551 abort ();
552 }
553
554 /* A subroutine of update_life_info. Verify that there are no untoward
555 changes in live_at_start during a local update. */
556
557 static void
558 verify_local_live_at_start (new_live_at_start, bb)
559 regset new_live_at_start;
560 basic_block bb;
561 {
562 if (reload_completed)
563 {
564 /* After reload, there are no pseudos, nor subregs of multi-word
565 registers. The regsets should exactly match. */
566 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
567 {
568 if (rtl_dump_file)
569 {
570 fprintf (rtl_dump_file,
571 "live_at_start mismatch in bb %d, aborting\nNew:\n",
572 bb->index);
573 debug_bitmap_file (rtl_dump_file, new_live_at_start);
574 fputs ("Old:\n", rtl_dump_file);
575 dump_bb (bb, rtl_dump_file);
576 }
577 abort ();
578 }
579 }
580 else
581 {
582 int i;
583
584 /* Find the set of changed registers. */
585 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
586
587 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
588 {
589 /* No registers should die. */
590 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
591 {
592 if (rtl_dump_file)
593 {
594 fprintf (rtl_dump_file,
595 "Register %d died unexpectedly.\n", i);
596 dump_bb (bb, rtl_dump_file);
597 }
598 abort ();
599 }
600
601 /* Verify that the now-live register is wider than word_mode. */
602 verify_wide_reg (i, bb);
603 });
604 }
605 }
606
607 /* Updates life information starting with the basic blocks set in BLOCKS.
608 If BLOCKS is null, consider it to be the universal set.
609
610 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
611 we are only expecting local modifications to basic blocks. If we find
612 extra registers live at the beginning of a block, then we either killed
613 useful data, or we have a broken split that wants data not provided.
614 If we find registers removed from live_at_start, that means we have
615 a broken peephole that is killing a register it shouldn't.
616
617 ??? This is not true in one situation -- when a pre-reload splitter
618 generates subregs of a multi-word pseudo, current life analysis will
619 lose the kill. So we _can_ have a pseudo go live. How irritating.
620
621 Including PROP_REG_INFO does not properly refresh regs_ever_live
622 unless the caller resets it to zero. */
623
624 int
625 update_life_info (blocks, extent, prop_flags)
626 sbitmap blocks;
627 enum update_life_extent extent;
628 int prop_flags;
629 {
630 regset tmp;
631 regset_head tmp_head;
632 int i;
633 int stabilized_prop_flags = prop_flags;
634 basic_block bb;
635
636 tmp = INITIALIZE_REG_SET (tmp_head);
637 ndead = 0;
638
639 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
640 ? TV_LIFE_UPDATE : TV_LIFE);
641
642 /* Changes to the CFG are only allowed when
643 doing a global update for the entire CFG. */
644 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
645 && (extent == UPDATE_LIFE_LOCAL || blocks))
646 abort ();
647
648 /* For a global update, we go through the relaxation process again. */
649 if (extent != UPDATE_LIFE_LOCAL)
650 {
651 for ( ; ; )
652 {
653 int changed = 0;
654
655 calculate_global_regs_live (blocks, blocks,
656 prop_flags & (PROP_SCAN_DEAD_CODE
657 | PROP_SCAN_DEAD_STORES
658 | PROP_ALLOW_CFG_CHANGES));
659
660 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
661 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
662 break;
663
664 /* Removing dead code may allow the CFG to be simplified which
665 in turn may allow for further dead code detection / removal. */
666 FOR_EACH_BB_REVERSE (bb)
667 {
668 COPY_REG_SET (tmp, bb->global_live_at_end);
669 changed |= propagate_block (bb, tmp, NULL, NULL,
670 prop_flags & (PROP_SCAN_DEAD_CODE
671 | PROP_SCAN_DEAD_STORES
672 | PROP_KILL_DEAD_CODE));
673 }
674
675 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
676 subsequent propagate_block calls, since removing or acting as
677 removing dead code can affect global register liveness, which
678 is supposed to be finalized for this call after this loop. */
679 stabilized_prop_flags
680 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
681 | PROP_KILL_DEAD_CODE);
682
683 if (! changed)
684 break;
685
686 /* We repeat regardless of what cleanup_cfg says. If there were
687 instructions deleted above, that might have been only a
688 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
689 Further improvement may be possible. */
690 cleanup_cfg (CLEANUP_EXPENSIVE);
691
692 /* Zap the life information from the last round. If we don't
693 do this, we can wind up with registers that no longer appear
694 in the code being marked live at entry, which twiggs bogus
695 warnings from regno_uninitialized. */
696 FOR_EACH_BB (bb)
697 {
698 CLEAR_REG_SET (bb->global_live_at_start);
699 CLEAR_REG_SET (bb->global_live_at_end);
700 }
701 }
702
703 /* If asked, remove notes from the blocks we'll update. */
704 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
705 count_or_remove_death_notes (blocks, 1);
706 }
707
708 /* Clear log links in case we are asked to (re)compute them. */
709 if (prop_flags & PROP_LOG_LINKS)
710 clear_log_links (blocks);
711
712 if (blocks)
713 {
714 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
715 {
716 bb = BASIC_BLOCK (i);
717
718 COPY_REG_SET (tmp, bb->global_live_at_end);
719 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
720
721 if (extent == UPDATE_LIFE_LOCAL)
722 verify_local_live_at_start (tmp, bb);
723 });
724 }
725 else
726 {
727 FOR_EACH_BB_REVERSE (bb)
728 {
729 COPY_REG_SET (tmp, bb->global_live_at_end);
730
731 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
732
733 if (extent == UPDATE_LIFE_LOCAL)
734 verify_local_live_at_start (tmp, bb);
735 }
736 }
737
738 FREE_REG_SET (tmp);
739
740 if (prop_flags & PROP_REG_INFO)
741 {
742 /* The only pseudos that are live at the beginning of the function
743 are those that were not set anywhere in the function. local-alloc
744 doesn't know how to handle these correctly, so mark them as not
745 local to any one basic block. */
746 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
747 FIRST_PSEUDO_REGISTER, i,
748 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
749
750 /* We have a problem with any pseudoreg that lives across the setjmp.
751 ANSI says that if a user variable does not change in value between
752 the setjmp and the longjmp, then the longjmp preserves it. This
753 includes longjmp from a place where the pseudo appears dead.
754 (In principle, the value still exists if it is in scope.)
755 If the pseudo goes in a hard reg, some other value may occupy
756 that hard reg where this pseudo is dead, thus clobbering the pseudo.
757 Conclusion: such a pseudo must not go in a hard reg. */
758 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
759 FIRST_PSEUDO_REGISTER, i,
760 {
761 if (regno_reg_rtx[i] != 0)
762 {
763 REG_LIVE_LENGTH (i) = -1;
764 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
765 }
766 });
767 }
768 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
769 ? TV_LIFE_UPDATE : TV_LIFE);
770 if (ndead && rtl_dump_file)
771 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
772 return ndead;
773 }
774
775 /* Update life information in all blocks where BB_DIRTY is set. */
776
777 int
778 update_life_info_in_dirty_blocks (extent, prop_flags)
779 enum update_life_extent extent;
780 int prop_flags;
781 {
782 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
783 int n = 0;
784 basic_block bb;
785 int retval = 0;
786
787 sbitmap_zero (update_life_blocks);
788 FOR_EACH_BB (bb)
789 {
790 if (extent == UPDATE_LIFE_LOCAL)
791 {
792 if (bb->flags & BB_DIRTY)
793 {
794 SET_BIT (update_life_blocks, bb->index);
795 n++;
796 }
797 }
798 else
799 {
800 /* ??? Bootstrap with -march=pentium4 fails to terminate
801 with only a partial life update. */
802 SET_BIT (update_life_blocks, bb->index);
803 if (bb->flags & BB_DIRTY)
804 n++;
805 }
806 }
807
808 if (n)
809 retval = update_life_info (update_life_blocks, extent, prop_flags);
810
811 sbitmap_free (update_life_blocks);
812 return retval;
813 }
814
815 /* Free the variables allocated by find_basic_blocks.
816
817 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
818
819 void
820 free_basic_block_vars (keep_head_end_p)
821 int keep_head_end_p;
822 {
823 if (! keep_head_end_p)
824 {
825 if (basic_block_info)
826 {
827 clear_edges ();
828 VARRAY_FREE (basic_block_info);
829 }
830 n_basic_blocks = 0;
831 last_basic_block = 0;
832
833 ENTRY_BLOCK_PTR->aux = NULL;
834 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
835 EXIT_BLOCK_PTR->aux = NULL;
836 EXIT_BLOCK_PTR->global_live_at_start = NULL;
837 }
838 }
839
840 /* Delete any insns that copy a register to itself. */
841
842 int
843 delete_noop_moves (f)
844 rtx f ATTRIBUTE_UNUSED;
845 {
846 rtx insn, next;
847 basic_block bb;
848 int nnoops = 0;
849
850 FOR_EACH_BB (bb)
851 {
852 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
853 {
854 next = NEXT_INSN (insn);
855 if (INSN_P (insn) && noop_move_p (insn))
856 {
857 rtx note;
858
859 /* If we're about to remove the first insn of a libcall
860 then move the libcall note to the next real insn and
861 update the retval note. */
862 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
863 && XEXP (note, 0) != insn)
864 {
865 rtx new_libcall_insn = next_real_insn (insn);
866 rtx retval_note = find_reg_note (XEXP (note, 0),
867 REG_RETVAL, NULL_RTX);
868 REG_NOTES (new_libcall_insn)
869 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
870 REG_NOTES (new_libcall_insn));
871 XEXP (retval_note, 0) = new_libcall_insn;
872 }
873
874 delete_insn_and_edges (insn);
875 nnoops++;
876 }
877 }
878 }
879 if (nnoops && rtl_dump_file)
880 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
881 return nnoops;
882 }
883
884 /* Delete any jump tables never referenced. We can't delete them at the
885 time of removing tablejump insn as they are referenced by the preceding
886 insns computing the destination, so we delay deleting and garbagecollect
887 them once life information is computed. */
888 void
889 delete_dead_jumptables ()
890 {
891 rtx insn, next;
892 for (insn = get_insns (); insn; insn = next)
893 {
894 next = NEXT_INSN (insn);
895 if (GET_CODE (insn) == CODE_LABEL
896 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
897 && GET_CODE (next) == JUMP_INSN
898 && (GET_CODE (PATTERN (next)) == ADDR_VEC
899 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
900 {
901 if (rtl_dump_file)
902 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
903 delete_insn (NEXT_INSN (insn));
904 delete_insn (insn);
905 next = NEXT_INSN (next);
906 }
907 }
908 }
909
910 /* Determine if the stack pointer is constant over the life of the function.
911 Only useful before prologues have been emitted. */
912
913 static void
914 notice_stack_pointer_modification_1 (x, pat, data)
915 rtx x;
916 rtx pat ATTRIBUTE_UNUSED;
917 void *data ATTRIBUTE_UNUSED;
918 {
919 if (x == stack_pointer_rtx
920 /* The stack pointer is only modified indirectly as the result
921 of a push until later in flow. See the comments in rtl.texi
922 regarding Embedded Side-Effects on Addresses. */
923 || (GET_CODE (x) == MEM
924 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
925 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
926 current_function_sp_is_unchanging = 0;
927 }
928
929 static void
930 notice_stack_pointer_modification (f)
931 rtx f;
932 {
933 rtx insn;
934
935 /* Assume that the stack pointer is unchanging if alloca hasn't
936 been used. */
937 current_function_sp_is_unchanging = !current_function_calls_alloca;
938 if (! current_function_sp_is_unchanging)
939 return;
940
941 for (insn = f; insn; insn = NEXT_INSN (insn))
942 {
943 if (INSN_P (insn))
944 {
945 /* Check if insn modifies the stack pointer. */
946 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
947 NULL);
948 if (! current_function_sp_is_unchanging)
949 return;
950 }
951 }
952 }
953
954 /* Mark a register in SET. Hard registers in large modes get all
955 of their component registers set as well. */
956
957 static void
958 mark_reg (reg, xset)
959 rtx reg;
960 void *xset;
961 {
962 regset set = (regset) xset;
963 int regno = REGNO (reg);
964
965 if (GET_MODE (reg) == BLKmode)
966 abort ();
967
968 SET_REGNO_REG_SET (set, regno);
969 if (regno < FIRST_PSEUDO_REGISTER)
970 {
971 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
972 while (--n > 0)
973 SET_REGNO_REG_SET (set, regno + n);
974 }
975 }
976
977 /* Mark those regs which are needed at the end of the function as live
978 at the end of the last basic block. */
979
980 static void
981 mark_regs_live_at_end (set)
982 regset set;
983 {
984 unsigned int i;
985
986 /* If exiting needs the right stack value, consider the stack pointer
987 live at the end of the function. */
988 if ((HAVE_epilogue && reload_completed)
989 || ! EXIT_IGNORE_STACK
990 || (! FRAME_POINTER_REQUIRED
991 && ! current_function_calls_alloca
992 && flag_omit_frame_pointer)
993 || current_function_sp_is_unchanging)
994 {
995 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
996 }
997
998 /* Mark the frame pointer if needed at the end of the function. If
999 we end up eliminating it, it will be removed from the live list
1000 of each basic block by reload. */
1001
1002 if (! reload_completed || frame_pointer_needed)
1003 {
1004 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1005 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1006 /* If they are different, also mark the hard frame pointer as live. */
1007 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1008 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1009 #endif
1010 }
1011
1012 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1013 /* Many architectures have a GP register even without flag_pic.
1014 Assume the pic register is not in use, or will be handled by
1015 other means, if it is not fixed. */
1016 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1017 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1018 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1019 #endif
1020
1021 /* Mark all global registers, and all registers used by the epilogue
1022 as being live at the end of the function since they may be
1023 referenced by our caller. */
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1025 if (global_regs[i] || EPILOGUE_USES (i))
1026 SET_REGNO_REG_SET (set, i);
1027
1028 if (HAVE_epilogue && reload_completed)
1029 {
1030 /* Mark all call-saved registers that we actually used. */
1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1032 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1033 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1034 SET_REGNO_REG_SET (set, i);
1035 }
1036
1037 #ifdef EH_RETURN_DATA_REGNO
1038 /* Mark the registers that will contain data for the handler. */
1039 if (reload_completed && current_function_calls_eh_return)
1040 for (i = 0; ; ++i)
1041 {
1042 unsigned regno = EH_RETURN_DATA_REGNO(i);
1043 if (regno == INVALID_REGNUM)
1044 break;
1045 SET_REGNO_REG_SET (set, regno);
1046 }
1047 #endif
1048 #ifdef EH_RETURN_STACKADJ_RTX
1049 if ((! HAVE_epilogue || ! reload_completed)
1050 && current_function_calls_eh_return)
1051 {
1052 rtx tmp = EH_RETURN_STACKADJ_RTX;
1053 if (tmp && REG_P (tmp))
1054 mark_reg (tmp, set);
1055 }
1056 #endif
1057 #ifdef EH_RETURN_HANDLER_RTX
1058 if ((! HAVE_epilogue || ! reload_completed)
1059 && current_function_calls_eh_return)
1060 {
1061 rtx tmp = EH_RETURN_HANDLER_RTX;
1062 if (tmp && REG_P (tmp))
1063 mark_reg (tmp, set);
1064 }
1065 #endif
1066
1067 /* Mark function return value. */
1068 diddle_return_value (mark_reg, set);
1069 }
1070
1071 /* Callback function for for_each_successor_phi. DATA is a regset.
1072 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1073 INSN, in the regset. */
1074
1075 static int
1076 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1077 rtx insn ATTRIBUTE_UNUSED;
1078 int dest_regno ATTRIBUTE_UNUSED;
1079 int src_regno;
1080 void *data;
1081 {
1082 regset live = (regset) data;
1083 SET_REGNO_REG_SET (live, src_regno);
1084 return 0;
1085 }
1086
1087 /* Propagate global life info around the graph of basic blocks. Begin
1088 considering blocks with their corresponding bit set in BLOCKS_IN.
1089 If BLOCKS_IN is null, consider it the universal set.
1090
1091 BLOCKS_OUT is set for every block that was changed. */
1092
1093 static void
1094 calculate_global_regs_live (blocks_in, blocks_out, flags)
1095 sbitmap blocks_in, blocks_out;
1096 int flags;
1097 {
1098 basic_block *queue, *qhead, *qtail, *qend, bb;
1099 regset tmp, new_live_at_end, invalidated_by_call;
1100 regset_head tmp_head, invalidated_by_call_head;
1101 regset_head new_live_at_end_head;
1102 int i;
1103
1104 /* Some passes used to forget clear aux field of basic block causing
1105 sick behavior here. */
1106 #ifdef ENABLE_CHECKING
1107 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1108 if (bb->aux)
1109 abort ();
1110 #endif
1111
1112 tmp = INITIALIZE_REG_SET (tmp_head);
1113 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1114 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1115
1116 /* Inconveniently, this is only readily available in hard reg set form. */
1117 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1119 SET_REGNO_REG_SET (invalidated_by_call, i);
1120
1121 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1122 because the `head == tail' style test for an empty queue doesn't
1123 work with a full queue. */
1124 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1125 qtail = queue;
1126 qhead = qend = queue + n_basic_blocks + 2;
1127
1128 /* Queue the blocks set in the initial mask. Do this in reverse block
1129 number order so that we are more likely for the first round to do
1130 useful work. We use AUX non-null to flag that the block is queued. */
1131 if (blocks_in)
1132 {
1133 FOR_EACH_BB (bb)
1134 if (TEST_BIT (blocks_in, bb->index))
1135 {
1136 *--qhead = bb;
1137 bb->aux = bb;
1138 }
1139 }
1140 else
1141 {
1142 FOR_EACH_BB (bb)
1143 {
1144 *--qhead = bb;
1145 bb->aux = bb;
1146 }
1147 }
1148
1149 /* We clean aux when we remove the initially-enqueued bbs, but we
1150 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1151 unconditionally. */
1152 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1153
1154 if (blocks_out)
1155 sbitmap_zero (blocks_out);
1156
1157 /* We work through the queue until there are no more blocks. What
1158 is live at the end of this block is precisely the union of what
1159 is live at the beginning of all its successors. So, we set its
1160 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1161 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1162 this block by walking through the instructions in this block in
1163 reverse order and updating as we go. If that changed
1164 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1165 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1166
1167 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1168 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1169 must either be live at the end of the block, or used within the
1170 block. In the latter case, it will certainly never disappear
1171 from GLOBAL_LIVE_AT_START. In the former case, the register
1172 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1173 for one of the successor blocks. By induction, that cannot
1174 occur. */
1175 while (qhead != qtail)
1176 {
1177 int rescan, changed;
1178 basic_block bb;
1179 edge e;
1180
1181 bb = *qhead++;
1182 if (qhead == qend)
1183 qhead = queue;
1184 bb->aux = NULL;
1185
1186 /* Begin by propagating live_at_start from the successor blocks. */
1187 CLEAR_REG_SET (new_live_at_end);
1188
1189 if (bb->succ)
1190 for (e = bb->succ; e; e = e->succ_next)
1191 {
1192 basic_block sb = e->dest;
1193
1194 /* Call-clobbered registers die across exception and
1195 call edges. */
1196 /* ??? Abnormal call edges ignored for the moment, as this gets
1197 confused by sibling call edges, which crashes reg-stack. */
1198 if (e->flags & EDGE_EH)
1199 {
1200 bitmap_operation (tmp, sb->global_live_at_start,
1201 invalidated_by_call, BITMAP_AND_COMPL);
1202 IOR_REG_SET (new_live_at_end, tmp);
1203 }
1204 else
1205 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1206
1207 /* If a target saves one register in another (instead of on
1208 the stack) the save register will need to be live for EH. */
1209 if (e->flags & EDGE_EH)
1210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1211 if (EH_USES (i))
1212 SET_REGNO_REG_SET (new_live_at_end, i);
1213 }
1214 else
1215 {
1216 /* This might be a noreturn function that throws. And
1217 even if it isn't, getting the unwind info right helps
1218 debugging. */
1219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1220 if (EH_USES (i))
1221 SET_REGNO_REG_SET (new_live_at_end, i);
1222 }
1223
1224 /* The all-important stack pointer must always be live. */
1225 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1226
1227 /* Before reload, there are a few registers that must be forced
1228 live everywhere -- which might not already be the case for
1229 blocks within infinite loops. */
1230 if (! reload_completed)
1231 {
1232 /* Any reference to any pseudo before reload is a potential
1233 reference of the frame pointer. */
1234 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1235
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 /* Pseudos with argument area equivalences may require
1238 reloading via the argument pointer. */
1239 if (fixed_regs[ARG_POINTER_REGNUM])
1240 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1241 #endif
1242
1243 /* Any constant, or pseudo with constant equivalences, may
1244 require reloading from memory using the pic register. */
1245 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1246 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1247 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1248 }
1249
1250 /* Regs used in phi nodes are not included in
1251 global_live_at_start, since they are live only along a
1252 particular edge. Set those regs that are live because of a
1253 phi node alternative corresponding to this particular block. */
1254 if (in_ssa_form)
1255 for_each_successor_phi (bb, &set_phi_alternative_reg,
1256 new_live_at_end);
1257
1258 if (bb == ENTRY_BLOCK_PTR)
1259 {
1260 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1261 continue;
1262 }
1263
1264 /* On our first pass through this block, we'll go ahead and continue.
1265 Recognize first pass by local_set NULL. On subsequent passes, we
1266 get to skip out early if live_at_end wouldn't have changed. */
1267
1268 if (bb->local_set == NULL)
1269 {
1270 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1271 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1272 rescan = 1;
1273 }
1274 else
1275 {
1276 /* If any bits were removed from live_at_end, we'll have to
1277 rescan the block. This wouldn't be necessary if we had
1278 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1279 local_live is really dependent on live_at_end. */
1280 CLEAR_REG_SET (tmp);
1281 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1282 new_live_at_end, BITMAP_AND_COMPL);
1283
1284 if (! rescan)
1285 {
1286 /* If any of the registers in the new live_at_end set are
1287 conditionally set in this basic block, we must rescan.
1288 This is because conditional lifetimes at the end of the
1289 block do not just take the live_at_end set into account,
1290 but also the liveness at the start of each successor
1291 block. We can miss changes in those sets if we only
1292 compare the new live_at_end against the previous one. */
1293 CLEAR_REG_SET (tmp);
1294 rescan = bitmap_operation (tmp, new_live_at_end,
1295 bb->cond_local_set, BITMAP_AND);
1296 }
1297
1298 if (! rescan)
1299 {
1300 /* Find the set of changed bits. Take this opportunity
1301 to notice that this set is empty and early out. */
1302 CLEAR_REG_SET (tmp);
1303 changed = bitmap_operation (tmp, bb->global_live_at_end,
1304 new_live_at_end, BITMAP_XOR);
1305 if (! changed)
1306 continue;
1307
1308 /* If any of the changed bits overlap with local_set,
1309 we'll have to rescan the block. Detect overlap by
1310 the AND with ~local_set turning off bits. */
1311 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1312 BITMAP_AND_COMPL);
1313 }
1314 }
1315
1316 /* Let our caller know that BB changed enough to require its
1317 death notes updated. */
1318 if (blocks_out)
1319 SET_BIT (blocks_out, bb->index);
1320
1321 if (! rescan)
1322 {
1323 /* Add to live_at_start the set of all registers in
1324 new_live_at_end that aren't in the old live_at_end. */
1325
1326 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1327 BITMAP_AND_COMPL);
1328 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1329
1330 changed = bitmap_operation (bb->global_live_at_start,
1331 bb->global_live_at_start,
1332 tmp, BITMAP_IOR);
1333 if (! changed)
1334 continue;
1335 }
1336 else
1337 {
1338 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1339
1340 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1341 into live_at_start. */
1342 propagate_block (bb, new_live_at_end, bb->local_set,
1343 bb->cond_local_set, flags);
1344
1345 /* If live_at start didn't change, no need to go farther. */
1346 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1347 continue;
1348
1349 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1350 }
1351
1352 /* Queue all predecessors of BB so that we may re-examine
1353 their live_at_end. */
1354 for (e = bb->pred; e; e = e->pred_next)
1355 {
1356 basic_block pb = e->src;
1357 if (pb->aux == NULL)
1358 {
1359 *qtail++ = pb;
1360 if (qtail == qend)
1361 qtail = queue;
1362 pb->aux = pb;
1363 }
1364 }
1365 }
1366
1367 FREE_REG_SET (tmp);
1368 FREE_REG_SET (new_live_at_end);
1369 FREE_REG_SET (invalidated_by_call);
1370
1371 if (blocks_out)
1372 {
1373 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1374 {
1375 basic_block bb = BASIC_BLOCK (i);
1376 FREE_REG_SET (bb->local_set);
1377 FREE_REG_SET (bb->cond_local_set);
1378 });
1379 }
1380 else
1381 {
1382 FOR_EACH_BB (bb)
1383 {
1384 FREE_REG_SET (bb->local_set);
1385 FREE_REG_SET (bb->cond_local_set);
1386 }
1387 }
1388
1389 free (queue);
1390 }
1391
1392 \f
1393 /* This structure is used to pass parameters to and from the
1394 the function find_regno_partial(). It is used to pass in the
1395 register number we are looking, as well as to return any rtx
1396 we find. */
1397
1398 typedef struct {
1399 unsigned regno_to_find;
1400 rtx retval;
1401 } find_regno_partial_param;
1402
1403
1404 /* Find the rtx for the reg numbers specified in 'data' if it is
1405 part of an expression which only uses part of the register. Return
1406 it in the structure passed in. */
1407 static int
1408 find_regno_partial (ptr, data)
1409 rtx *ptr;
1410 void *data;
1411 {
1412 find_regno_partial_param *param = (find_regno_partial_param *)data;
1413 unsigned reg = param->regno_to_find;
1414 param->retval = NULL_RTX;
1415
1416 if (*ptr == NULL_RTX)
1417 return 0;
1418
1419 switch (GET_CODE (*ptr))
1420 {
1421 case ZERO_EXTRACT:
1422 case SIGN_EXTRACT:
1423 case STRICT_LOW_PART:
1424 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1425 {
1426 param->retval = XEXP (*ptr, 0);
1427 return 1;
1428 }
1429 break;
1430
1431 case SUBREG:
1432 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1433 && REGNO (SUBREG_REG (*ptr)) == reg)
1434 {
1435 param->retval = SUBREG_REG (*ptr);
1436 return 1;
1437 }
1438 break;
1439
1440 default:
1441 break;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* Process all immediate successors of the entry block looking for pseudo
1448 registers which are live on entry. Find all of those whose first
1449 instance is a partial register reference of some kind, and initialize
1450 them to 0 after the entry block. This will prevent bit sets within
1451 registers whose value is unknown, and may contain some kind of sticky
1452 bits we don't want. */
1453
1454 int
1455 initialize_uninitialized_subregs ()
1456 {
1457 rtx insn;
1458 edge e;
1459 int reg, did_something = 0;
1460 find_regno_partial_param param;
1461
1462 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1463 {
1464 basic_block bb = e->dest;
1465 regset map = bb->global_live_at_start;
1466 EXECUTE_IF_SET_IN_REG_SET (map,
1467 FIRST_PSEUDO_REGISTER, reg,
1468 {
1469 int uid = REGNO_FIRST_UID (reg);
1470 rtx i;
1471
1472 /* Find an insn which mentions the register we are looking for.
1473 Its preferable to have an instance of the register's rtl since
1474 there may be various flags set which we need to duplicate.
1475 If we can't find it, its probably an automatic whose initial
1476 value doesn't matter, or hopefully something we don't care about. */
1477 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1478 ;
1479 if (i != NULL_RTX)
1480 {
1481 /* Found the insn, now get the REG rtx, if we can. */
1482 param.regno_to_find = reg;
1483 for_each_rtx (&i, find_regno_partial, &param);
1484 if (param.retval != NULL_RTX)
1485 {
1486 start_sequence ();
1487 emit_move_insn (param.retval,
1488 CONST0_RTX (GET_MODE (param.retval)));
1489 insn = get_insns ();
1490 end_sequence ();
1491 insert_insn_on_edge (insn, e);
1492 did_something = 1;
1493 }
1494 }
1495 });
1496 }
1497
1498 if (did_something)
1499 commit_edge_insertions ();
1500 return did_something;
1501 }
1502
1503 \f
1504 /* Subroutines of life analysis. */
1505
1506 /* Allocate the permanent data structures that represent the results
1507 of life analysis. Not static since used also for stupid life analysis. */
1508
1509 void
1510 allocate_bb_life_data ()
1511 {
1512 basic_block bb;
1513
1514 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1515 {
1516 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1517 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1518 }
1519
1520 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1521 }
1522
1523 void
1524 allocate_reg_life_data ()
1525 {
1526 int i;
1527
1528 max_regno = max_reg_num ();
1529
1530 /* Recalculate the register space, in case it has grown. Old style
1531 vector oriented regsets would set regset_{size,bytes} here also. */
1532 allocate_reg_info (max_regno, FALSE, FALSE);
1533
1534 /* Reset all the data we'll collect in propagate_block and its
1535 subroutines. */
1536 for (i = 0; i < max_regno; i++)
1537 {
1538 REG_N_SETS (i) = 0;
1539 REG_N_REFS (i) = 0;
1540 REG_N_DEATHS (i) = 0;
1541 REG_N_CALLS_CROSSED (i) = 0;
1542 REG_LIVE_LENGTH (i) = 0;
1543 REG_FREQ (i) = 0;
1544 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1545 }
1546 }
1547
1548 /* Delete dead instructions for propagate_block. */
1549
1550 static void
1551 propagate_block_delete_insn (insn)
1552 rtx insn;
1553 {
1554 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1555
1556 /* If the insn referred to a label, and that label was attached to
1557 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1558 pretty much mandatory to delete it, because the ADDR_VEC may be
1559 referencing labels that no longer exist.
1560
1561 INSN may reference a deleted label, particularly when a jump
1562 table has been optimized into a direct jump. There's no
1563 real good way to fix up the reference to the deleted label
1564 when the label is deleted, so we just allow it here. */
1565
1566 if (inote && GET_CODE (inote) == CODE_LABEL)
1567 {
1568 rtx label = XEXP (inote, 0);
1569 rtx next;
1570
1571 /* The label may be forced if it has been put in the constant
1572 pool. If that is the only use we must discard the table
1573 jump following it, but not the label itself. */
1574 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1575 && (next = next_nonnote_insn (label)) != NULL
1576 && GET_CODE (next) == JUMP_INSN
1577 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1578 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1579 {
1580 rtx pat = PATTERN (next);
1581 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1582 int len = XVECLEN (pat, diff_vec_p);
1583 int i;
1584
1585 for (i = 0; i < len; i++)
1586 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1587
1588 delete_insn_and_edges (next);
1589 ndead++;
1590 }
1591 }
1592
1593 delete_insn_and_edges (insn);
1594 ndead++;
1595 }
1596
1597 /* Delete dead libcalls for propagate_block. Return the insn
1598 before the libcall. */
1599
1600 static rtx
1601 propagate_block_delete_libcall ( insn, note)
1602 rtx insn, note;
1603 {
1604 rtx first = XEXP (note, 0);
1605 rtx before = PREV_INSN (first);
1606
1607 delete_insn_chain_and_edges (first, insn);
1608 ndead++;
1609 return before;
1610 }
1611
1612 /* Update the life-status of regs for one insn. Return the previous insn. */
1613
1614 rtx
1615 propagate_one_insn (pbi, insn)
1616 struct propagate_block_info *pbi;
1617 rtx insn;
1618 {
1619 rtx prev = PREV_INSN (insn);
1620 int flags = pbi->flags;
1621 int insn_is_dead = 0;
1622 int libcall_is_dead = 0;
1623 rtx note;
1624 int i;
1625
1626 if (! INSN_P (insn))
1627 return prev;
1628
1629 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1630 if (flags & PROP_SCAN_DEAD_CODE)
1631 {
1632 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1633 libcall_is_dead = (insn_is_dead && note != 0
1634 && libcall_dead_p (pbi, note, insn));
1635 }
1636
1637 /* If an instruction consists of just dead store(s) on final pass,
1638 delete it. */
1639 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1640 {
1641 /* If we're trying to delete a prologue or epilogue instruction
1642 that isn't flagged as possibly being dead, something is wrong.
1643 But if we are keeping the stack pointer depressed, we might well
1644 be deleting insns that are used to compute the amount to update
1645 it by, so they are fine. */
1646 if (reload_completed
1647 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1648 && (TYPE_RETURNS_STACK_DEPRESSED
1649 (TREE_TYPE (current_function_decl))))
1650 && (((HAVE_epilogue || HAVE_prologue)
1651 && prologue_epilogue_contains (insn))
1652 || (HAVE_sibcall_epilogue
1653 && sibcall_epilogue_contains (insn)))
1654 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1655 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1656
1657 /* Record sets. Do this even for dead instructions, since they
1658 would have killed the values if they hadn't been deleted. */
1659 mark_set_regs (pbi, PATTERN (insn), insn);
1660
1661 /* CC0 is now known to be dead. Either this insn used it,
1662 in which case it doesn't anymore, or clobbered it,
1663 so the next insn can't use it. */
1664 pbi->cc0_live = 0;
1665
1666 if (libcall_is_dead)
1667 prev = propagate_block_delete_libcall ( insn, note);
1668 else
1669 {
1670
1671 /* If INSN contains a RETVAL note and is dead, but the libcall
1672 as a whole is not dead, then we want to remove INSN, but
1673 not the whole libcall sequence.
1674
1675 However, we need to also remove the dangling REG_LIBCALL
1676 note so that we do not have mis-matched LIBCALL/RETVAL
1677 notes. In theory we could find a new location for the
1678 REG_RETVAL note, but it hardly seems worth the effort.
1679
1680 NOTE at this point will be the RETVAL note if it exists. */
1681 if (note)
1682 {
1683 rtx libcall_note;
1684
1685 libcall_note
1686 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1687 remove_note (XEXP (note, 0), libcall_note);
1688 }
1689
1690 /* Similarly if INSN contains a LIBCALL note, remove the
1691 dangling REG_RETVAL note. */
1692 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1693 if (note)
1694 {
1695 rtx retval_note;
1696
1697 retval_note
1698 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1699 remove_note (XEXP (note, 0), retval_note);
1700 }
1701
1702 /* Now delete INSN. */
1703 propagate_block_delete_insn (insn);
1704 }
1705
1706 return prev;
1707 }
1708
1709 /* See if this is an increment or decrement that can be merged into
1710 a following memory address. */
1711 #ifdef AUTO_INC_DEC
1712 {
1713 rtx x = single_set (insn);
1714
1715 /* Does this instruction increment or decrement a register? */
1716 if ((flags & PROP_AUTOINC)
1717 && x != 0
1718 && GET_CODE (SET_DEST (x)) == REG
1719 && (GET_CODE (SET_SRC (x)) == PLUS
1720 || GET_CODE (SET_SRC (x)) == MINUS)
1721 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1722 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1723 /* Ok, look for a following memory ref we can combine with.
1724 If one is found, change the memory ref to a PRE_INC
1725 or PRE_DEC, cancel this insn, and return 1.
1726 Return 0 if nothing has been done. */
1727 && try_pre_increment_1 (pbi, insn))
1728 return prev;
1729 }
1730 #endif /* AUTO_INC_DEC */
1731
1732 CLEAR_REG_SET (pbi->new_set);
1733
1734 /* If this is not the final pass, and this insn is copying the value of
1735 a library call and it's dead, don't scan the insns that perform the
1736 library call, so that the call's arguments are not marked live. */
1737 if (libcall_is_dead)
1738 {
1739 /* Record the death of the dest reg. */
1740 mark_set_regs (pbi, PATTERN (insn), insn);
1741
1742 insn = XEXP (note, 0);
1743 return PREV_INSN (insn);
1744 }
1745 else if (GET_CODE (PATTERN (insn)) == SET
1746 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1747 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1748 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1749 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1750 /* We have an insn to pop a constant amount off the stack.
1751 (Such insns use PLUS regardless of the direction of the stack,
1752 and any insn to adjust the stack by a constant is always a pop.)
1753 These insns, if not dead stores, have no effect on life, though
1754 they do have an effect on the memory stores we are tracking. */
1755 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1756 else
1757 {
1758 rtx note;
1759 /* Any regs live at the time of a call instruction must not go
1760 in a register clobbered by calls. Find all regs now live and
1761 record this for them. */
1762
1763 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1764 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1765 { REG_N_CALLS_CROSSED (i)++; });
1766
1767 /* Record sets. Do this even for dead instructions, since they
1768 would have killed the values if they hadn't been deleted. */
1769 mark_set_regs (pbi, PATTERN (insn), insn);
1770
1771 if (GET_CODE (insn) == CALL_INSN)
1772 {
1773 int i;
1774 rtx note, cond;
1775
1776 cond = NULL_RTX;
1777 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1778 cond = COND_EXEC_TEST (PATTERN (insn));
1779
1780 /* Non-constant calls clobber memory, constant calls do not
1781 clobber memory, though they may clobber outgoing arguments
1782 on the stack. */
1783 if (! CONST_OR_PURE_CALL_P (insn))
1784 {
1785 free_EXPR_LIST_list (&pbi->mem_set_list);
1786 pbi->mem_set_list_len = 0;
1787 }
1788 else
1789 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1790
1791 /* There may be extra registers to be clobbered. */
1792 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1793 note;
1794 note = XEXP (note, 1))
1795 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1796 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1797 cond, insn, pbi->flags);
1798
1799 /* Calls change all call-used and global registers. */
1800 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1801 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1802 {
1803 /* We do not want REG_UNUSED notes for these registers. */
1804 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1805 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1806 }
1807 }
1808
1809 /* If an insn doesn't use CC0, it becomes dead since we assume
1810 that every insn clobbers it. So show it dead here;
1811 mark_used_regs will set it live if it is referenced. */
1812 pbi->cc0_live = 0;
1813
1814 /* Record uses. */
1815 if (! insn_is_dead)
1816 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1817 if ((flags & PROP_EQUAL_NOTES)
1818 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1819 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1820 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1821
1822 /* Sometimes we may have inserted something before INSN (such as a move)
1823 when we make an auto-inc. So ensure we will scan those insns. */
1824 #ifdef AUTO_INC_DEC
1825 prev = PREV_INSN (insn);
1826 #endif
1827
1828 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1829 {
1830 int i;
1831 rtx note, cond;
1832
1833 cond = NULL_RTX;
1834 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1835 cond = COND_EXEC_TEST (PATTERN (insn));
1836
1837 /* Calls use their arguments, and may clobber memory which
1838 address involves some register. */
1839 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1840 note;
1841 note = XEXP (note, 1))
1842 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1843 of which mark_used_regs knows how to handle. */
1844 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1845
1846 /* The stack ptr is used (honorarily) by a CALL insn. */
1847 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1848
1849 /* Calls may also reference any of the global registers,
1850 so they are made live. */
1851 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1852 if (global_regs[i])
1853 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1854 }
1855 }
1856
1857 /* On final pass, update counts of how many insns in which each reg
1858 is live. */
1859 if (flags & PROP_REG_INFO)
1860 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1861 { REG_LIVE_LENGTH (i)++; });
1862
1863 return prev;
1864 }
1865
1866 /* Initialize a propagate_block_info struct for public consumption.
1867 Note that the structure itself is opaque to this file, but that
1868 the user can use the regsets provided here. */
1869
1870 struct propagate_block_info *
1871 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1872 basic_block bb;
1873 regset live, local_set, cond_local_set;
1874 int flags;
1875 {
1876 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1877
1878 pbi->bb = bb;
1879 pbi->reg_live = live;
1880 pbi->mem_set_list = NULL_RTX;
1881 pbi->mem_set_list_len = 0;
1882 pbi->local_set = local_set;
1883 pbi->cond_local_set = cond_local_set;
1884 pbi->cc0_live = 0;
1885 pbi->flags = flags;
1886
1887 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1888 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1889 else
1890 pbi->reg_next_use = NULL;
1891
1892 pbi->new_set = BITMAP_XMALLOC ();
1893
1894 #ifdef HAVE_conditional_execution
1895 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1896 free_reg_cond_life_info);
1897 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1898
1899 /* If this block ends in a conditional branch, for each register live
1900 from one side of the branch and not the other, record the register
1901 as conditionally dead. */
1902 if (GET_CODE (bb->end) == JUMP_INSN
1903 && any_condjump_p (bb->end))
1904 {
1905 regset_head diff_head;
1906 regset diff = INITIALIZE_REG_SET (diff_head);
1907 basic_block bb_true, bb_false;
1908 rtx cond_true, cond_false, set_src;
1909 int i;
1910
1911 /* Identify the successor blocks. */
1912 bb_true = bb->succ->dest;
1913 if (bb->succ->succ_next != NULL)
1914 {
1915 bb_false = bb->succ->succ_next->dest;
1916
1917 if (bb->succ->flags & EDGE_FALLTHRU)
1918 {
1919 basic_block t = bb_false;
1920 bb_false = bb_true;
1921 bb_true = t;
1922 }
1923 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1924 abort ();
1925 }
1926 else
1927 {
1928 /* This can happen with a conditional jump to the next insn. */
1929 if (JUMP_LABEL (bb->end) != bb_true->head)
1930 abort ();
1931
1932 /* Simplest way to do nothing. */
1933 bb_false = bb_true;
1934 }
1935
1936 /* Extract the condition from the branch. */
1937 set_src = SET_SRC (pc_set (bb->end));
1938 cond_true = XEXP (set_src, 0);
1939 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1940 GET_MODE (cond_true), XEXP (cond_true, 0),
1941 XEXP (cond_true, 1));
1942 if (GET_CODE (XEXP (set_src, 1)) == PC)
1943 {
1944 rtx t = cond_false;
1945 cond_false = cond_true;
1946 cond_true = t;
1947 }
1948
1949 /* Compute which register lead different lives in the successors. */
1950 if (bitmap_operation (diff, bb_true->global_live_at_start,
1951 bb_false->global_live_at_start, BITMAP_XOR))
1952 {
1953 rtx reg = XEXP (cond_true, 0);
1954
1955 if (GET_CODE (reg) == SUBREG)
1956 reg = SUBREG_REG (reg);
1957
1958 if (GET_CODE (reg) != REG)
1959 abort ();
1960
1961 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1962
1963 /* For each such register, mark it conditionally dead. */
1964 EXECUTE_IF_SET_IN_REG_SET
1965 (diff, 0, i,
1966 {
1967 struct reg_cond_life_info *rcli;
1968 rtx cond;
1969
1970 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1971
1972 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1973 cond = cond_false;
1974 else
1975 cond = cond_true;
1976 rcli->condition = cond;
1977 rcli->stores = const0_rtx;
1978 rcli->orig_condition = cond;
1979
1980 splay_tree_insert (pbi->reg_cond_dead, i,
1981 (splay_tree_value) rcli);
1982 });
1983 }
1984
1985 FREE_REG_SET (diff);
1986 }
1987 #endif
1988
1989 /* If this block has no successors, any stores to the frame that aren't
1990 used later in the block are dead. So make a pass over the block
1991 recording any such that are made and show them dead at the end. We do
1992 a very conservative and simple job here. */
1993 if (optimize
1994 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1995 && (TYPE_RETURNS_STACK_DEPRESSED
1996 (TREE_TYPE (current_function_decl))))
1997 && (flags & PROP_SCAN_DEAD_STORES)
1998 && (bb->succ == NULL
1999 || (bb->succ->succ_next == NULL
2000 && bb->succ->dest == EXIT_BLOCK_PTR
2001 && ! current_function_calls_eh_return)))
2002 {
2003 rtx insn, set;
2004 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
2005 if (GET_CODE (insn) == INSN
2006 && (set = single_set (insn))
2007 && GET_CODE (SET_DEST (set)) == MEM)
2008 {
2009 rtx mem = SET_DEST (set);
2010 rtx canon_mem = canon_rtx (mem);
2011
2012 /* This optimization is performed by faking a store to the
2013 memory at the end of the block. This doesn't work for
2014 unchanging memories because multiple stores to unchanging
2015 memory is illegal and alias analysis doesn't consider it. */
2016 if (RTX_UNCHANGING_P (canon_mem))
2017 continue;
2018
2019 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2020 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2021 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2022 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2023 add_to_mem_set_list (pbi, canon_mem);
2024 }
2025 }
2026
2027 return pbi;
2028 }
2029
2030 /* Release a propagate_block_info struct. */
2031
2032 void
2033 free_propagate_block_info (pbi)
2034 struct propagate_block_info *pbi;
2035 {
2036 free_EXPR_LIST_list (&pbi->mem_set_list);
2037
2038 BITMAP_XFREE (pbi->new_set);
2039
2040 #ifdef HAVE_conditional_execution
2041 splay_tree_delete (pbi->reg_cond_dead);
2042 BITMAP_XFREE (pbi->reg_cond_reg);
2043 #endif
2044
2045 if (pbi->reg_next_use)
2046 free (pbi->reg_next_use);
2047
2048 free (pbi);
2049 }
2050
2051 /* Compute the registers live at the beginning of a basic block BB from
2052 those live at the end.
2053
2054 When called, REG_LIVE contains those live at the end. On return, it
2055 contains those live at the beginning.
2056
2057 LOCAL_SET, if non-null, will be set with all registers killed
2058 unconditionally by this basic block.
2059 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2060 killed conditionally by this basic block. If there is any unconditional
2061 set of a register, then the corresponding bit will be set in LOCAL_SET
2062 and cleared in COND_LOCAL_SET.
2063 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2064 case, the resulting set will be equal to the union of the two sets that
2065 would otherwise be computed.
2066
2067 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2068
2069 int
2070 propagate_block (bb, live, local_set, cond_local_set, flags)
2071 basic_block bb;
2072 regset live;
2073 regset local_set;
2074 regset cond_local_set;
2075 int flags;
2076 {
2077 struct propagate_block_info *pbi;
2078 rtx insn, prev;
2079 int changed;
2080
2081 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2082
2083 if (flags & PROP_REG_INFO)
2084 {
2085 int i;
2086
2087 /* Process the regs live at the end of the block.
2088 Mark them as not local to any one basic block. */
2089 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2090 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2091 }
2092
2093 /* Scan the block an insn at a time from end to beginning. */
2094
2095 changed = 0;
2096 for (insn = bb->end;; insn = prev)
2097 {
2098 /* If this is a call to `setjmp' et al, warn if any
2099 non-volatile datum is live. */
2100 if ((flags & PROP_REG_INFO)
2101 && GET_CODE (insn) == CALL_INSN
2102 && find_reg_note (insn, REG_SETJMP, NULL))
2103 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2104
2105 prev = propagate_one_insn (pbi, insn);
2106 changed |= NEXT_INSN (prev) != insn;
2107
2108 if (insn == bb->head)
2109 break;
2110 }
2111
2112 free_propagate_block_info (pbi);
2113
2114 return changed;
2115 }
2116 \f
2117 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2118 (SET expressions whose destinations are registers dead after the insn).
2119 NEEDED is the regset that says which regs are alive after the insn.
2120
2121 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2122
2123 If X is the entire body of an insn, NOTES contains the reg notes
2124 pertaining to the insn. */
2125
2126 static int
2127 insn_dead_p (pbi, x, call_ok, notes)
2128 struct propagate_block_info *pbi;
2129 rtx x;
2130 int call_ok;
2131 rtx notes ATTRIBUTE_UNUSED;
2132 {
2133 enum rtx_code code = GET_CODE (x);
2134
2135 /* Don't eliminate insns that may trap. */
2136 if (flag_non_call_exceptions && may_trap_p (x))
2137 return 0;
2138
2139 #ifdef AUTO_INC_DEC
2140 /* As flow is invoked after combine, we must take existing AUTO_INC
2141 expressions into account. */
2142 for (; notes; notes = XEXP (notes, 1))
2143 {
2144 if (REG_NOTE_KIND (notes) == REG_INC)
2145 {
2146 int regno = REGNO (XEXP (notes, 0));
2147
2148 /* Don't delete insns to set global regs. */
2149 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2150 || REGNO_REG_SET_P (pbi->reg_live, regno))
2151 return 0;
2152 }
2153 }
2154 #endif
2155
2156 /* If setting something that's a reg or part of one,
2157 see if that register's altered value will be live. */
2158
2159 if (code == SET)
2160 {
2161 rtx r = SET_DEST (x);
2162
2163 #ifdef HAVE_cc0
2164 if (GET_CODE (r) == CC0)
2165 return ! pbi->cc0_live;
2166 #endif
2167
2168 /* A SET that is a subroutine call cannot be dead. */
2169 if (GET_CODE (SET_SRC (x)) == CALL)
2170 {
2171 if (! call_ok)
2172 return 0;
2173 }
2174
2175 /* Don't eliminate loads from volatile memory or volatile asms. */
2176 else if (volatile_refs_p (SET_SRC (x)))
2177 return 0;
2178
2179 if (GET_CODE (r) == MEM)
2180 {
2181 rtx temp, canon_r;
2182
2183 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2184 return 0;
2185
2186 canon_r = canon_rtx (r);
2187
2188 /* Walk the set of memory locations we are currently tracking
2189 and see if one is an identical match to this memory location.
2190 If so, this memory write is dead (remember, we're walking
2191 backwards from the end of the block to the start). Since
2192 rtx_equal_p does not check the alias set or flags, we also
2193 must have the potential for them to conflict (anti_dependence). */
2194 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2195 if (anti_dependence (r, XEXP (temp, 0)))
2196 {
2197 rtx mem = XEXP (temp, 0);
2198
2199 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2200 && (GET_MODE_SIZE (GET_MODE (canon_r))
2201 <= GET_MODE_SIZE (GET_MODE (mem))))
2202 return 1;
2203
2204 #ifdef AUTO_INC_DEC
2205 /* Check if memory reference matches an auto increment. Only
2206 post increment/decrement or modify are valid. */
2207 if (GET_MODE (mem) == GET_MODE (r)
2208 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2209 || GET_CODE (XEXP (mem, 0)) == POST_INC
2210 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2211 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2212 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2213 return 1;
2214 #endif
2215 }
2216 }
2217 else
2218 {
2219 while (GET_CODE (r) == SUBREG
2220 || GET_CODE (r) == STRICT_LOW_PART
2221 || GET_CODE (r) == ZERO_EXTRACT)
2222 r = XEXP (r, 0);
2223
2224 if (GET_CODE (r) == REG)
2225 {
2226 int regno = REGNO (r);
2227
2228 /* Obvious. */
2229 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2230 return 0;
2231
2232 /* If this is a hard register, verify that subsequent
2233 words are not needed. */
2234 if (regno < FIRST_PSEUDO_REGISTER)
2235 {
2236 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2237
2238 while (--n > 0)
2239 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2240 return 0;
2241 }
2242
2243 /* Don't delete insns to set global regs. */
2244 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2245 return 0;
2246
2247 /* Make sure insns to set the stack pointer aren't deleted. */
2248 if (regno == STACK_POINTER_REGNUM)
2249 return 0;
2250
2251 /* ??? These bits might be redundant with the force live bits
2252 in calculate_global_regs_live. We would delete from
2253 sequential sets; whether this actually affects real code
2254 for anything but the stack pointer I don't know. */
2255 /* Make sure insns to set the frame pointer aren't deleted. */
2256 if (regno == FRAME_POINTER_REGNUM
2257 && (! reload_completed || frame_pointer_needed))
2258 return 0;
2259 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2260 if (regno == HARD_FRAME_POINTER_REGNUM
2261 && (! reload_completed || frame_pointer_needed))
2262 return 0;
2263 #endif
2264
2265 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2266 /* Make sure insns to set arg pointer are never deleted
2267 (if the arg pointer isn't fixed, there will be a USE
2268 for it, so we can treat it normally). */
2269 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2270 return 0;
2271 #endif
2272
2273 /* Otherwise, the set is dead. */
2274 return 1;
2275 }
2276 }
2277 }
2278
2279 /* If performing several activities, insn is dead if each activity
2280 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2281 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2282 worth keeping. */
2283 else if (code == PARALLEL)
2284 {
2285 int i = XVECLEN (x, 0);
2286
2287 for (i--; i >= 0; i--)
2288 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2289 && GET_CODE (XVECEXP (x, 0, i)) != USE
2290 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2291 return 0;
2292
2293 return 1;
2294 }
2295
2296 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2297 is not necessarily true for hard registers. */
2298 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2299 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2300 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2301 return 1;
2302
2303 /* We do not check other CLOBBER or USE here. An insn consisting of just
2304 a CLOBBER or just a USE should not be deleted. */
2305 return 0;
2306 }
2307
2308 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2309 return 1 if the entire library call is dead.
2310 This is true if INSN copies a register (hard or pseudo)
2311 and if the hard return reg of the call insn is dead.
2312 (The caller should have tested the destination of the SET inside
2313 INSN already for death.)
2314
2315 If this insn doesn't just copy a register, then we don't
2316 have an ordinary libcall. In that case, cse could not have
2317 managed to substitute the source for the dest later on,
2318 so we can assume the libcall is dead.
2319
2320 PBI is the block info giving pseudoregs live before this insn.
2321 NOTE is the REG_RETVAL note of the insn. */
2322
2323 static int
2324 libcall_dead_p (pbi, note, insn)
2325 struct propagate_block_info *pbi;
2326 rtx note;
2327 rtx insn;
2328 {
2329 rtx x = single_set (insn);
2330
2331 if (x)
2332 {
2333 rtx r = SET_SRC (x);
2334
2335 if (GET_CODE (r) == REG)
2336 {
2337 rtx call = XEXP (note, 0);
2338 rtx call_pat;
2339 int i;
2340
2341 /* Find the call insn. */
2342 while (call != insn && GET_CODE (call) != CALL_INSN)
2343 call = NEXT_INSN (call);
2344
2345 /* If there is none, do nothing special,
2346 since ordinary death handling can understand these insns. */
2347 if (call == insn)
2348 return 0;
2349
2350 /* See if the hard reg holding the value is dead.
2351 If this is a PARALLEL, find the call within it. */
2352 call_pat = PATTERN (call);
2353 if (GET_CODE (call_pat) == PARALLEL)
2354 {
2355 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2356 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2357 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2358 break;
2359
2360 /* This may be a library call that is returning a value
2361 via invisible pointer. Do nothing special, since
2362 ordinary death handling can understand these insns. */
2363 if (i < 0)
2364 return 0;
2365
2366 call_pat = XVECEXP (call_pat, 0, i);
2367 }
2368
2369 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2370 }
2371 }
2372 return 1;
2373 }
2374
2375 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2376 live at function entry. Don't count global register variables, variables
2377 in registers that can be used for function arg passing, or variables in
2378 fixed hard registers. */
2379
2380 int
2381 regno_uninitialized (regno)
2382 unsigned int regno;
2383 {
2384 if (n_basic_blocks == 0
2385 || (regno < FIRST_PSEUDO_REGISTER
2386 && (global_regs[regno]
2387 || fixed_regs[regno]
2388 || FUNCTION_ARG_REGNO_P (regno))))
2389 return 0;
2390
2391 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2392 }
2393
2394 /* 1 if register REGNO was alive at a place where `setjmp' was called
2395 and was set more than once or is an argument.
2396 Such regs may be clobbered by `longjmp'. */
2397
2398 int
2399 regno_clobbered_at_setjmp (regno)
2400 int regno;
2401 {
2402 if (n_basic_blocks == 0)
2403 return 0;
2404
2405 return ((REG_N_SETS (regno) > 1
2406 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2407 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2408 }
2409 \f
2410 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2411 maximal list size; look for overlaps in mode and select the largest. */
2412 static void
2413 add_to_mem_set_list (pbi, mem)
2414 struct propagate_block_info *pbi;
2415 rtx mem;
2416 {
2417 rtx i;
2418
2419 /* We don't know how large a BLKmode store is, so we must not
2420 take them into consideration. */
2421 if (GET_MODE (mem) == BLKmode)
2422 return;
2423
2424 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2425 {
2426 rtx e = XEXP (i, 0);
2427 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2428 {
2429 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2430 {
2431 #ifdef AUTO_INC_DEC
2432 /* If we must store a copy of the mem, we can just modify
2433 the mode of the stored copy. */
2434 if (pbi->flags & PROP_AUTOINC)
2435 PUT_MODE (e, GET_MODE (mem));
2436 else
2437 #endif
2438 XEXP (i, 0) = mem;
2439 }
2440 return;
2441 }
2442 }
2443
2444 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2445 {
2446 #ifdef AUTO_INC_DEC
2447 /* Store a copy of mem, otherwise the address may be
2448 scrogged by find_auto_inc. */
2449 if (pbi->flags & PROP_AUTOINC)
2450 mem = shallow_copy_rtx (mem);
2451 #endif
2452 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2453 pbi->mem_set_list_len++;
2454 }
2455 }
2456
2457 /* INSN references memory, possibly using autoincrement addressing modes.
2458 Find any entries on the mem_set_list that need to be invalidated due
2459 to an address change. */
2460
2461 static int
2462 invalidate_mems_from_autoinc (px, data)
2463 rtx *px;
2464 void *data;
2465 {
2466 rtx x = *px;
2467 struct propagate_block_info *pbi = data;
2468
2469 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2470 {
2471 invalidate_mems_from_set (pbi, XEXP (x, 0));
2472 return -1;
2473 }
2474
2475 return 0;
2476 }
2477
2478 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2479
2480 static void
2481 invalidate_mems_from_set (pbi, exp)
2482 struct propagate_block_info *pbi;
2483 rtx exp;
2484 {
2485 rtx temp = pbi->mem_set_list;
2486 rtx prev = NULL_RTX;
2487 rtx next;
2488
2489 while (temp)
2490 {
2491 next = XEXP (temp, 1);
2492 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2493 {
2494 /* Splice this entry out of the list. */
2495 if (prev)
2496 XEXP (prev, 1) = next;
2497 else
2498 pbi->mem_set_list = next;
2499 free_EXPR_LIST_node (temp);
2500 pbi->mem_set_list_len--;
2501 }
2502 else
2503 prev = temp;
2504 temp = next;
2505 }
2506 }
2507
2508 /* Process the registers that are set within X. Their bits are set to
2509 1 in the regset DEAD, because they are dead prior to this insn.
2510
2511 If INSN is nonzero, it is the insn being processed.
2512
2513 FLAGS is the set of operations to perform. */
2514
2515 static void
2516 mark_set_regs (pbi, x, insn)
2517 struct propagate_block_info *pbi;
2518 rtx x, insn;
2519 {
2520 rtx cond = NULL_RTX;
2521 rtx link;
2522 enum rtx_code code;
2523
2524 if (insn)
2525 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2526 {
2527 if (REG_NOTE_KIND (link) == REG_INC)
2528 mark_set_1 (pbi, SET, XEXP (link, 0),
2529 (GET_CODE (x) == COND_EXEC
2530 ? COND_EXEC_TEST (x) : NULL_RTX),
2531 insn, pbi->flags);
2532 }
2533 retry:
2534 switch (code = GET_CODE (x))
2535 {
2536 case SET:
2537 case CLOBBER:
2538 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2539 return;
2540
2541 case COND_EXEC:
2542 cond = COND_EXEC_TEST (x);
2543 x = COND_EXEC_CODE (x);
2544 goto retry;
2545
2546 case PARALLEL:
2547 {
2548 int i;
2549
2550 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2551 {
2552 rtx sub = XVECEXP (x, 0, i);
2553 switch (code = GET_CODE (sub))
2554 {
2555 case COND_EXEC:
2556 if (cond != NULL_RTX)
2557 abort ();
2558
2559 cond = COND_EXEC_TEST (sub);
2560 sub = COND_EXEC_CODE (sub);
2561 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2562 break;
2563 /* Fall through. */
2564
2565 case SET:
2566 case CLOBBER:
2567 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2568 break;
2569
2570 default:
2571 break;
2572 }
2573 }
2574 break;
2575 }
2576
2577 default:
2578 break;
2579 }
2580 }
2581
2582 /* Process a single set, which appears in INSN. REG (which may not
2583 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2584 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2585 If the set is conditional (because it appear in a COND_EXEC), COND
2586 will be the condition. */
2587
2588 static void
2589 mark_set_1 (pbi, code, reg, cond, insn, flags)
2590 struct propagate_block_info *pbi;
2591 enum rtx_code code;
2592 rtx reg, cond, insn;
2593 int flags;
2594 {
2595 int regno_first = -1, regno_last = -1;
2596 unsigned long not_dead = 0;
2597 int i;
2598
2599 /* Modifying just one hardware register of a multi-reg value or just a
2600 byte field of a register does not mean the value from before this insn
2601 is now dead. Of course, if it was dead after it's unused now. */
2602
2603 switch (GET_CODE (reg))
2604 {
2605 case PARALLEL:
2606 /* Some targets place small structures in registers for return values of
2607 functions. We have to detect this case specially here to get correct
2608 flow information. */
2609 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2610 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2611 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2612 flags);
2613 return;
2614
2615 case ZERO_EXTRACT:
2616 case SIGN_EXTRACT:
2617 case STRICT_LOW_PART:
2618 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2619 do
2620 reg = XEXP (reg, 0);
2621 while (GET_CODE (reg) == SUBREG
2622 || GET_CODE (reg) == ZERO_EXTRACT
2623 || GET_CODE (reg) == SIGN_EXTRACT
2624 || GET_CODE (reg) == STRICT_LOW_PART);
2625 if (GET_CODE (reg) == MEM)
2626 break;
2627 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2628 /* Fall through. */
2629
2630 case REG:
2631 regno_last = regno_first = REGNO (reg);
2632 if (regno_first < FIRST_PSEUDO_REGISTER)
2633 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2634 break;
2635
2636 case SUBREG:
2637 if (GET_CODE (SUBREG_REG (reg)) == REG)
2638 {
2639 enum machine_mode outer_mode = GET_MODE (reg);
2640 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2641
2642 /* Identify the range of registers affected. This is moderately
2643 tricky for hard registers. See alter_subreg. */
2644
2645 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2646 if (regno_first < FIRST_PSEUDO_REGISTER)
2647 {
2648 regno_first += subreg_regno_offset (regno_first, inner_mode,
2649 SUBREG_BYTE (reg),
2650 outer_mode);
2651 regno_last = (regno_first
2652 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2653
2654 /* Since we've just adjusted the register number ranges, make
2655 sure REG matches. Otherwise some_was_live will be clear
2656 when it shouldn't have been, and we'll create incorrect
2657 REG_UNUSED notes. */
2658 reg = gen_rtx_REG (outer_mode, regno_first);
2659 }
2660 else
2661 {
2662 /* If the number of words in the subreg is less than the number
2663 of words in the full register, we have a well-defined partial
2664 set. Otherwise the high bits are undefined.
2665
2666 This is only really applicable to pseudos, since we just took
2667 care of multi-word hard registers. */
2668 if (((GET_MODE_SIZE (outer_mode)
2669 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2670 < ((GET_MODE_SIZE (inner_mode)
2671 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2672 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2673 regno_first);
2674
2675 reg = SUBREG_REG (reg);
2676 }
2677 }
2678 else
2679 reg = SUBREG_REG (reg);
2680 break;
2681
2682 default:
2683 break;
2684 }
2685
2686 /* If this set is a MEM, then it kills any aliased writes.
2687 If this set is a REG, then it kills any MEMs which use the reg. */
2688 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2689 {
2690 if (GET_CODE (reg) == REG)
2691 invalidate_mems_from_set (pbi, reg);
2692
2693 /* If the memory reference had embedded side effects (autoincrement
2694 address modes. Then we may need to kill some entries on the
2695 memory set list. */
2696 if (insn && GET_CODE (reg) == MEM)
2697 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2698
2699 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2700 /* ??? With more effort we could track conditional memory life. */
2701 && ! cond)
2702 add_to_mem_set_list (pbi, canon_rtx (reg));
2703 }
2704
2705 if (GET_CODE (reg) == REG
2706 && ! (regno_first == FRAME_POINTER_REGNUM
2707 && (! reload_completed || frame_pointer_needed))
2708 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2709 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2710 && (! reload_completed || frame_pointer_needed))
2711 #endif
2712 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2713 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2714 #endif
2715 )
2716 {
2717 int some_was_live = 0, some_was_dead = 0;
2718
2719 for (i = regno_first; i <= regno_last; ++i)
2720 {
2721 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2722 if (pbi->local_set)
2723 {
2724 /* Order of the set operation matters here since both
2725 sets may be the same. */
2726 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2727 if (cond != NULL_RTX
2728 && ! REGNO_REG_SET_P (pbi->local_set, i))
2729 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2730 else
2731 SET_REGNO_REG_SET (pbi->local_set, i);
2732 }
2733 if (code != CLOBBER)
2734 SET_REGNO_REG_SET (pbi->new_set, i);
2735
2736 some_was_live |= needed_regno;
2737 some_was_dead |= ! needed_regno;
2738 }
2739
2740 #ifdef HAVE_conditional_execution
2741 /* Consider conditional death in deciding that the register needs
2742 a death note. */
2743 if (some_was_live && ! not_dead
2744 /* The stack pointer is never dead. Well, not strictly true,
2745 but it's very difficult to tell from here. Hopefully
2746 combine_stack_adjustments will fix up the most egregious
2747 errors. */
2748 && regno_first != STACK_POINTER_REGNUM)
2749 {
2750 for (i = regno_first; i <= regno_last; ++i)
2751 if (! mark_regno_cond_dead (pbi, i, cond))
2752 not_dead |= ((unsigned long) 1) << (i - regno_first);
2753 }
2754 #endif
2755
2756 /* Additional data to record if this is the final pass. */
2757 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2758 | PROP_DEATH_NOTES | PROP_AUTOINC))
2759 {
2760 rtx y;
2761 int blocknum = pbi->bb->index;
2762
2763 y = NULL_RTX;
2764 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2765 {
2766 y = pbi->reg_next_use[regno_first];
2767
2768 /* The next use is no longer next, since a store intervenes. */
2769 for (i = regno_first; i <= regno_last; ++i)
2770 pbi->reg_next_use[i] = 0;
2771 }
2772
2773 if (flags & PROP_REG_INFO)
2774 {
2775 for (i = regno_first; i <= regno_last; ++i)
2776 {
2777 /* Count (weighted) references, stores, etc. This counts a
2778 register twice if it is modified, but that is correct. */
2779 REG_N_SETS (i) += 1;
2780 REG_N_REFS (i) += 1;
2781 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2782
2783 /* The insns where a reg is live are normally counted
2784 elsewhere, but we want the count to include the insn
2785 where the reg is set, and the normal counting mechanism
2786 would not count it. */
2787 REG_LIVE_LENGTH (i) += 1;
2788 }
2789
2790 /* If this is a hard reg, record this function uses the reg. */
2791 if (regno_first < FIRST_PSEUDO_REGISTER)
2792 {
2793 for (i = regno_first; i <= regno_last; i++)
2794 regs_ever_live[i] = 1;
2795 }
2796 else
2797 {
2798 /* Keep track of which basic blocks each reg appears in. */
2799 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2800 REG_BASIC_BLOCK (regno_first) = blocknum;
2801 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2802 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2803 }
2804 }
2805
2806 if (! some_was_dead)
2807 {
2808 if (flags & PROP_LOG_LINKS)
2809 {
2810 /* Make a logical link from the next following insn
2811 that uses this register, back to this insn.
2812 The following insns have already been processed.
2813
2814 We don't build a LOG_LINK for hard registers containing
2815 in ASM_OPERANDs. If these registers get replaced,
2816 we might wind up changing the semantics of the insn,
2817 even if reload can make what appear to be valid
2818 assignments later. */
2819 if (y && (BLOCK_NUM (y) == blocknum)
2820 && (regno_first >= FIRST_PSEUDO_REGISTER
2821 || asm_noperands (PATTERN (y)) < 0))
2822 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2823 }
2824 }
2825 else if (not_dead)
2826 ;
2827 else if (! some_was_live)
2828 {
2829 if (flags & PROP_REG_INFO)
2830 REG_N_DEATHS (regno_first) += 1;
2831
2832 if (flags & PROP_DEATH_NOTES)
2833 {
2834 /* Note that dead stores have already been deleted
2835 when possible. If we get here, we have found a
2836 dead store that cannot be eliminated (because the
2837 same insn does something useful). Indicate this
2838 by marking the reg being set as dying here. */
2839 REG_NOTES (insn)
2840 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2841 }
2842 }
2843 else
2844 {
2845 if (flags & PROP_DEATH_NOTES)
2846 {
2847 /* This is a case where we have a multi-word hard register
2848 and some, but not all, of the words of the register are
2849 needed in subsequent insns. Write REG_UNUSED notes
2850 for those parts that were not needed. This case should
2851 be rare. */
2852
2853 for (i = regno_first; i <= regno_last; ++i)
2854 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2855 REG_NOTES (insn)
2856 = alloc_EXPR_LIST (REG_UNUSED,
2857 regno_reg_rtx[i],
2858 REG_NOTES (insn));
2859 }
2860 }
2861 }
2862
2863 /* Mark the register as being dead. */
2864 if (some_was_live
2865 /* The stack pointer is never dead. Well, not strictly true,
2866 but it's very difficult to tell from here. Hopefully
2867 combine_stack_adjustments will fix up the most egregious
2868 errors. */
2869 && regno_first != STACK_POINTER_REGNUM)
2870 {
2871 for (i = regno_first; i <= regno_last; ++i)
2872 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2873 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2874 }
2875 }
2876 else if (GET_CODE (reg) == REG)
2877 {
2878 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2879 pbi->reg_next_use[regno_first] = 0;
2880 }
2881
2882 /* If this is the last pass and this is a SCRATCH, show it will be dying
2883 here and count it. */
2884 else if (GET_CODE (reg) == SCRATCH)
2885 {
2886 if (flags & PROP_DEATH_NOTES)
2887 REG_NOTES (insn)
2888 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2889 }
2890 }
2891 \f
2892 #ifdef HAVE_conditional_execution
2893 /* Mark REGNO conditionally dead.
2894 Return true if the register is now unconditionally dead. */
2895
2896 static int
2897 mark_regno_cond_dead (pbi, regno, cond)
2898 struct propagate_block_info *pbi;
2899 int regno;
2900 rtx cond;
2901 {
2902 /* If this is a store to a predicate register, the value of the
2903 predicate is changing, we don't know that the predicate as seen
2904 before is the same as that seen after. Flush all dependent
2905 conditions from reg_cond_dead. This will make all such
2906 conditionally live registers unconditionally live. */
2907 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2908 flush_reg_cond_reg (pbi, regno);
2909
2910 /* If this is an unconditional store, remove any conditional
2911 life that may have existed. */
2912 if (cond == NULL_RTX)
2913 splay_tree_remove (pbi->reg_cond_dead, regno);
2914 else
2915 {
2916 splay_tree_node node;
2917 struct reg_cond_life_info *rcli;
2918 rtx ncond;
2919
2920 /* Otherwise this is a conditional set. Record that fact.
2921 It may have been conditionally used, or there may be a
2922 subsequent set with a complimentary condition. */
2923
2924 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2925 if (node == NULL)
2926 {
2927 /* The register was unconditionally live previously.
2928 Record the current condition as the condition under
2929 which it is dead. */
2930 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2931 rcli->condition = cond;
2932 rcli->stores = cond;
2933 rcli->orig_condition = const0_rtx;
2934 splay_tree_insert (pbi->reg_cond_dead, regno,
2935 (splay_tree_value) rcli);
2936
2937 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2938
2939 /* Not unconditionally dead. */
2940 return 0;
2941 }
2942 else
2943 {
2944 /* The register was conditionally live previously.
2945 Add the new condition to the old. */
2946 rcli = (struct reg_cond_life_info *) node->value;
2947 ncond = rcli->condition;
2948 ncond = ior_reg_cond (ncond, cond, 1);
2949 if (rcli->stores == const0_rtx)
2950 rcli->stores = cond;
2951 else if (rcli->stores != const1_rtx)
2952 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2953
2954 /* If the register is now unconditionally dead, remove the entry
2955 in the splay_tree. A register is unconditionally dead if the
2956 dead condition ncond is true. A register is also unconditionally
2957 dead if the sum of all conditional stores is an unconditional
2958 store (stores is true), and the dead condition is identically the
2959 same as the original dead condition initialized at the end of
2960 the block. This is a pointer compare, not an rtx_equal_p
2961 compare. */
2962 if (ncond == const1_rtx
2963 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2964 splay_tree_remove (pbi->reg_cond_dead, regno);
2965 else
2966 {
2967 rcli->condition = ncond;
2968
2969 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2970
2971 /* Not unconditionally dead. */
2972 return 0;
2973 }
2974 }
2975 }
2976
2977 return 1;
2978 }
2979
2980 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2981
2982 static void
2983 free_reg_cond_life_info (value)
2984 splay_tree_value value;
2985 {
2986 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2987 free (rcli);
2988 }
2989
2990 /* Helper function for flush_reg_cond_reg. */
2991
2992 static int
2993 flush_reg_cond_reg_1 (node, data)
2994 splay_tree_node node;
2995 void *data;
2996 {
2997 struct reg_cond_life_info *rcli;
2998 int *xdata = (int *) data;
2999 unsigned int regno = xdata[0];
3000
3001 /* Don't need to search if last flushed value was farther on in
3002 the in-order traversal. */
3003 if (xdata[1] >= (int) node->key)
3004 return 0;
3005
3006 /* Splice out portions of the expression that refer to regno. */
3007 rcli = (struct reg_cond_life_info *) node->value;
3008 rcli->condition = elim_reg_cond (rcli->condition, regno);
3009 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3010 rcli->stores = elim_reg_cond (rcli->stores, regno);
3011
3012 /* If the entire condition is now false, signal the node to be removed. */
3013 if (rcli->condition == const0_rtx)
3014 {
3015 xdata[1] = node->key;
3016 return -1;
3017 }
3018 else if (rcli->condition == const1_rtx)
3019 abort ();
3020
3021 return 0;
3022 }
3023
3024 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3025
3026 static void
3027 flush_reg_cond_reg (pbi, regno)
3028 struct propagate_block_info *pbi;
3029 int regno;
3030 {
3031 int pair[2];
3032
3033 pair[0] = regno;
3034 pair[1] = -1;
3035 while (splay_tree_foreach (pbi->reg_cond_dead,
3036 flush_reg_cond_reg_1, pair) == -1)
3037 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3038
3039 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3040 }
3041
3042 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3043 For ior/and, the ADD flag determines whether we want to add the new
3044 condition X to the old one unconditionally. If it is zero, we will
3045 only return a new expression if X allows us to simplify part of
3046 OLD, otherwise we return NULL to the caller.
3047 If ADD is nonzero, we will return a new condition in all cases. The
3048 toplevel caller of one of these functions should always pass 1 for
3049 ADD. */
3050
3051 static rtx
3052 ior_reg_cond (old, x, add)
3053 rtx old, x;
3054 int add;
3055 {
3056 rtx op0, op1;
3057
3058 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3059 {
3060 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3061 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3062 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3063 return const1_rtx;
3064 if (GET_CODE (x) == GET_CODE (old)
3065 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3066 return old;
3067 if (! add)
3068 return NULL;
3069 return gen_rtx_IOR (0, old, x);
3070 }
3071
3072 switch (GET_CODE (old))
3073 {
3074 case IOR:
3075 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3076 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3077 if (op0 != NULL || op1 != NULL)
3078 {
3079 if (op0 == const0_rtx)
3080 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3081 if (op1 == const0_rtx)
3082 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3083 if (op0 == const1_rtx || op1 == const1_rtx)
3084 return const1_rtx;
3085 if (op0 == NULL)
3086 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3087 else if (rtx_equal_p (x, op0))
3088 /* (x | A) | x ~ (x | A). */
3089 return old;
3090 if (op1 == NULL)
3091 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3092 else if (rtx_equal_p (x, op1))
3093 /* (A | x) | x ~ (A | x). */
3094 return old;
3095 return gen_rtx_IOR (0, op0, op1);
3096 }
3097 if (! add)
3098 return NULL;
3099 return gen_rtx_IOR (0, old, x);
3100
3101 case AND:
3102 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3103 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3104 if (op0 != NULL || op1 != NULL)
3105 {
3106 if (op0 == const1_rtx)
3107 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3108 if (op1 == const1_rtx)
3109 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3110 if (op0 == const0_rtx || op1 == const0_rtx)
3111 return const0_rtx;
3112 if (op0 == NULL)
3113 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3114 else if (rtx_equal_p (x, op0))
3115 /* (x & A) | x ~ x. */
3116 return op0;
3117 if (op1 == NULL)
3118 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3119 else if (rtx_equal_p (x, op1))
3120 /* (A & x) | x ~ x. */
3121 return op1;
3122 return gen_rtx_AND (0, op0, op1);
3123 }
3124 if (! add)
3125 return NULL;
3126 return gen_rtx_IOR (0, old, x);
3127
3128 case NOT:
3129 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3130 if (op0 != NULL)
3131 return not_reg_cond (op0);
3132 if (! add)
3133 return NULL;
3134 return gen_rtx_IOR (0, old, x);
3135
3136 default:
3137 abort ();
3138 }
3139 }
3140
3141 static rtx
3142 not_reg_cond (x)
3143 rtx x;
3144 {
3145 enum rtx_code x_code;
3146
3147 if (x == const0_rtx)
3148 return const1_rtx;
3149 else if (x == const1_rtx)
3150 return const0_rtx;
3151 x_code = GET_CODE (x);
3152 if (x_code == NOT)
3153 return XEXP (x, 0);
3154 if (GET_RTX_CLASS (x_code) == '<'
3155 && GET_CODE (XEXP (x, 0)) == REG)
3156 {
3157 if (XEXP (x, 1) != const0_rtx)
3158 abort ();
3159
3160 return gen_rtx_fmt_ee (reverse_condition (x_code),
3161 VOIDmode, XEXP (x, 0), const0_rtx);
3162 }
3163 return gen_rtx_NOT (0, x);
3164 }
3165
3166 static rtx
3167 and_reg_cond (old, x, add)
3168 rtx old, x;
3169 int add;
3170 {
3171 rtx op0, op1;
3172
3173 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3174 {
3175 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3176 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3177 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3178 return const0_rtx;
3179 if (GET_CODE (x) == GET_CODE (old)
3180 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3181 return old;
3182 if (! add)
3183 return NULL;
3184 return gen_rtx_AND (0, old, x);
3185 }
3186
3187 switch (GET_CODE (old))
3188 {
3189 case IOR:
3190 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3191 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3192 if (op0 != NULL || op1 != NULL)
3193 {
3194 if (op0 == const0_rtx)
3195 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3196 if (op1 == const0_rtx)
3197 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3198 if (op0 == const1_rtx || op1 == const1_rtx)
3199 return const1_rtx;
3200 if (op0 == NULL)
3201 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3202 else if (rtx_equal_p (x, op0))
3203 /* (x | A) & x ~ x. */
3204 return op0;
3205 if (op1 == NULL)
3206 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3207 else if (rtx_equal_p (x, op1))
3208 /* (A | x) & x ~ x. */
3209 return op1;
3210 return gen_rtx_IOR (0, op0, op1);
3211 }
3212 if (! add)
3213 return NULL;
3214 return gen_rtx_AND (0, old, x);
3215
3216 case AND:
3217 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3218 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3219 if (op0 != NULL || op1 != NULL)
3220 {
3221 if (op0 == const1_rtx)
3222 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3223 if (op1 == const1_rtx)
3224 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3225 if (op0 == const0_rtx || op1 == const0_rtx)
3226 return const0_rtx;
3227 if (op0 == NULL)
3228 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3229 else if (rtx_equal_p (x, op0))
3230 /* (x & A) & x ~ (x & A). */
3231 return old;
3232 if (op1 == NULL)
3233 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3234 else if (rtx_equal_p (x, op1))
3235 /* (A & x) & x ~ (A & x). */
3236 return old;
3237 return gen_rtx_AND (0, op0, op1);
3238 }
3239 if (! add)
3240 return NULL;
3241 return gen_rtx_AND (0, old, x);
3242
3243 case NOT:
3244 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3245 if (op0 != NULL)
3246 return not_reg_cond (op0);
3247 if (! add)
3248 return NULL;
3249 return gen_rtx_AND (0, old, x);
3250
3251 default:
3252 abort ();
3253 }
3254 }
3255
3256 /* Given a condition X, remove references to reg REGNO and return the
3257 new condition. The removal will be done so that all conditions
3258 involving REGNO are considered to evaluate to false. This function
3259 is used when the value of REGNO changes. */
3260
3261 static rtx
3262 elim_reg_cond (x, regno)
3263 rtx x;
3264 unsigned int regno;
3265 {
3266 rtx op0, op1;
3267
3268 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3269 {
3270 if (REGNO (XEXP (x, 0)) == regno)
3271 return const0_rtx;
3272 return x;
3273 }
3274
3275 switch (GET_CODE (x))
3276 {
3277 case AND:
3278 op0 = elim_reg_cond (XEXP (x, 0), regno);
3279 op1 = elim_reg_cond (XEXP (x, 1), regno);
3280 if (op0 == const0_rtx || op1 == const0_rtx)
3281 return const0_rtx;
3282 if (op0 == const1_rtx)
3283 return op1;
3284 if (op1 == const1_rtx)
3285 return op0;
3286 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3287 return x;
3288 return gen_rtx_AND (0, op0, op1);
3289
3290 case IOR:
3291 op0 = elim_reg_cond (XEXP (x, 0), regno);
3292 op1 = elim_reg_cond (XEXP (x, 1), regno);
3293 if (op0 == const1_rtx || op1 == const1_rtx)
3294 return const1_rtx;
3295 if (op0 == const0_rtx)
3296 return op1;
3297 if (op1 == const0_rtx)
3298 return op0;
3299 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3300 return x;
3301 return gen_rtx_IOR (0, op0, op1);
3302
3303 case NOT:
3304 op0 = elim_reg_cond (XEXP (x, 0), regno);
3305 if (op0 == const0_rtx)
3306 return const1_rtx;
3307 if (op0 == const1_rtx)
3308 return const0_rtx;
3309 if (op0 != XEXP (x, 0))
3310 return not_reg_cond (op0);
3311 return x;
3312
3313 default:
3314 abort ();
3315 }
3316 }
3317 #endif /* HAVE_conditional_execution */
3318 \f
3319 #ifdef AUTO_INC_DEC
3320
3321 /* Try to substitute the auto-inc expression INC as the address inside
3322 MEM which occurs in INSN. Currently, the address of MEM is an expression
3323 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3324 that has a single set whose source is a PLUS of INCR_REG and something
3325 else. */
3326
3327 static void
3328 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3329 struct propagate_block_info *pbi;
3330 rtx inc, insn, mem, incr, incr_reg;
3331 {
3332 int regno = REGNO (incr_reg);
3333 rtx set = single_set (incr);
3334 rtx q = SET_DEST (set);
3335 rtx y = SET_SRC (set);
3336 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3337
3338 /* Make sure this reg appears only once in this insn. */
3339 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3340 return;
3341
3342 if (dead_or_set_p (incr, incr_reg)
3343 /* Mustn't autoinc an eliminable register. */
3344 && (regno >= FIRST_PSEUDO_REGISTER
3345 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3346 {
3347 /* This is the simple case. Try to make the auto-inc. If
3348 we can't, we are done. Otherwise, we will do any
3349 needed updates below. */
3350 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3351 return;
3352 }
3353 else if (GET_CODE (q) == REG
3354 /* PREV_INSN used here to check the semi-open interval
3355 [insn,incr). */
3356 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3357 /* We must also check for sets of q as q may be
3358 a call clobbered hard register and there may
3359 be a call between PREV_INSN (insn) and incr. */
3360 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3361 {
3362 /* We have *p followed sometime later by q = p+size.
3363 Both p and q must be live afterward,
3364 and q is not used between INSN and its assignment.
3365 Change it to q = p, ...*q..., q = q+size.
3366 Then fall into the usual case. */
3367 rtx insns, temp;
3368
3369 start_sequence ();
3370 emit_move_insn (q, incr_reg);
3371 insns = get_insns ();
3372 end_sequence ();
3373
3374 /* If we can't make the auto-inc, or can't make the
3375 replacement into Y, exit. There's no point in making
3376 the change below if we can't do the auto-inc and doing
3377 so is not correct in the pre-inc case. */
3378
3379 XEXP (inc, 0) = q;
3380 validate_change (insn, &XEXP (mem, 0), inc, 1);
3381 validate_change (incr, &XEXP (y, opnum), q, 1);
3382 if (! apply_change_group ())
3383 return;
3384
3385 /* We now know we'll be doing this change, so emit the
3386 new insn(s) and do the updates. */
3387 emit_insn_before (insns, insn);
3388
3389 if (pbi->bb->head == insn)
3390 pbi->bb->head = insns;
3391
3392 /* INCR will become a NOTE and INSN won't contain a
3393 use of INCR_REG. If a use of INCR_REG was just placed in
3394 the insn before INSN, make that the next use.
3395 Otherwise, invalidate it. */
3396 if (GET_CODE (PREV_INSN (insn)) == INSN
3397 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3398 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3399 pbi->reg_next_use[regno] = PREV_INSN (insn);
3400 else
3401 pbi->reg_next_use[regno] = 0;
3402
3403 incr_reg = q;
3404 regno = REGNO (q);
3405
3406 /* REGNO is now used in INCR which is below INSN, but
3407 it previously wasn't live here. If we don't mark
3408 it as live, we'll put a REG_DEAD note for it
3409 on this insn, which is incorrect. */
3410 SET_REGNO_REG_SET (pbi->reg_live, regno);
3411
3412 /* If there are any calls between INSN and INCR, show
3413 that REGNO now crosses them. */
3414 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3415 if (GET_CODE (temp) == CALL_INSN)
3416 REG_N_CALLS_CROSSED (regno)++;
3417
3418 /* Invalidate alias info for Q since we just changed its value. */
3419 clear_reg_alias_info (q);
3420 }
3421 else
3422 return;
3423
3424 /* If we haven't returned, it means we were able to make the
3425 auto-inc, so update the status. First, record that this insn
3426 has an implicit side effect. */
3427
3428 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3429
3430 /* Modify the old increment-insn to simply copy
3431 the already-incremented value of our register. */
3432 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3433 abort ();
3434
3435 /* If that makes it a no-op (copying the register into itself) delete
3436 it so it won't appear to be a "use" and a "set" of this
3437 register. */
3438 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3439 {
3440 /* If the original source was dead, it's dead now. */
3441 rtx note;
3442
3443 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3444 {
3445 remove_note (incr, note);
3446 if (XEXP (note, 0) != incr_reg)
3447 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3448 }
3449
3450 PUT_CODE (incr, NOTE);
3451 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3452 NOTE_SOURCE_FILE (incr) = 0;
3453 }
3454
3455 if (regno >= FIRST_PSEUDO_REGISTER)
3456 {
3457 /* Count an extra reference to the reg. When a reg is
3458 incremented, spilling it is worse, so we want to make
3459 that less likely. */
3460 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3461
3462 /* Count the increment as a setting of the register,
3463 even though it isn't a SET in rtl. */
3464 REG_N_SETS (regno)++;
3465 }
3466 }
3467
3468 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3469 reference. */
3470
3471 static void
3472 find_auto_inc (pbi, x, insn)
3473 struct propagate_block_info *pbi;
3474 rtx x;
3475 rtx insn;
3476 {
3477 rtx addr = XEXP (x, 0);
3478 HOST_WIDE_INT offset = 0;
3479 rtx set, y, incr, inc_val;
3480 int regno;
3481 int size = GET_MODE_SIZE (GET_MODE (x));
3482
3483 if (GET_CODE (insn) == JUMP_INSN)
3484 return;
3485
3486 /* Here we detect use of an index register which might be good for
3487 postincrement, postdecrement, preincrement, or predecrement. */
3488
3489 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3490 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3491
3492 if (GET_CODE (addr) != REG)
3493 return;
3494
3495 regno = REGNO (addr);
3496
3497 /* Is the next use an increment that might make auto-increment? */
3498 incr = pbi->reg_next_use[regno];
3499 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3500 return;
3501 set = single_set (incr);
3502 if (set == 0 || GET_CODE (set) != SET)
3503 return;
3504 y = SET_SRC (set);
3505
3506 if (GET_CODE (y) != PLUS)
3507 return;
3508
3509 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3510 inc_val = XEXP (y, 1);
3511 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3512 inc_val = XEXP (y, 0);
3513 else
3514 return;
3515
3516 if (GET_CODE (inc_val) == CONST_INT)
3517 {
3518 if (HAVE_POST_INCREMENT
3519 && (INTVAL (inc_val) == size && offset == 0))
3520 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3521 incr, addr);
3522 else if (HAVE_POST_DECREMENT
3523 && (INTVAL (inc_val) == -size && offset == 0))
3524 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3525 incr, addr);
3526 else if (HAVE_PRE_INCREMENT
3527 && (INTVAL (inc_val) == size && offset == size))
3528 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3529 incr, addr);
3530 else if (HAVE_PRE_DECREMENT
3531 && (INTVAL (inc_val) == -size && offset == -size))
3532 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3533 incr, addr);
3534 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3535 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3536 gen_rtx_PLUS (Pmode,
3537 addr,
3538 inc_val)),
3539 insn, x, incr, addr);
3540 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3541 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3542 gen_rtx_PLUS (Pmode,
3543 addr,
3544 inc_val)),
3545 insn, x, incr, addr);
3546 }
3547 else if (GET_CODE (inc_val) == REG
3548 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3549 NEXT_INSN (incr)))
3550
3551 {
3552 if (HAVE_POST_MODIFY_REG && offset == 0)
3553 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3554 gen_rtx_PLUS (Pmode,
3555 addr,
3556 inc_val)),
3557 insn, x, incr, addr);
3558 }
3559 }
3560
3561 #endif /* AUTO_INC_DEC */
3562 \f
3563 static void
3564 mark_used_reg (pbi, reg, cond, insn)
3565 struct propagate_block_info *pbi;
3566 rtx reg;
3567 rtx cond ATTRIBUTE_UNUSED;
3568 rtx insn;
3569 {
3570 unsigned int regno_first, regno_last, i;
3571 int some_was_live, some_was_dead, some_not_set;
3572
3573 regno_last = regno_first = REGNO (reg);
3574 if (regno_first < FIRST_PSEUDO_REGISTER)
3575 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3576
3577 /* Find out if any of this register is live after this instruction. */
3578 some_was_live = some_was_dead = 0;
3579 for (i = regno_first; i <= regno_last; ++i)
3580 {
3581 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3582 some_was_live |= needed_regno;
3583 some_was_dead |= ! needed_regno;
3584 }
3585
3586 /* Find out if any of the register was set this insn. */
3587 some_not_set = 0;
3588 for (i = regno_first; i <= regno_last; ++i)
3589 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3590
3591 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3592 {
3593 /* Record where each reg is used, so when the reg is set we know
3594 the next insn that uses it. */
3595 pbi->reg_next_use[regno_first] = insn;
3596 }
3597
3598 if (pbi->flags & PROP_REG_INFO)
3599 {
3600 if (regno_first < FIRST_PSEUDO_REGISTER)
3601 {
3602 /* If this is a register we are going to try to eliminate,
3603 don't mark it live here. If we are successful in
3604 eliminating it, it need not be live unless it is used for
3605 pseudos, in which case it will have been set live when it
3606 was allocated to the pseudos. If the register will not
3607 be eliminated, reload will set it live at that point.
3608
3609 Otherwise, record that this function uses this register. */
3610 /* ??? The PPC backend tries to "eliminate" on the pic
3611 register to itself. This should be fixed. In the mean
3612 time, hack around it. */
3613
3614 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3615 && (regno_first == FRAME_POINTER_REGNUM
3616 || regno_first == ARG_POINTER_REGNUM)))
3617 for (i = regno_first; i <= regno_last; ++i)
3618 regs_ever_live[i] = 1;
3619 }
3620 else
3621 {
3622 /* Keep track of which basic block each reg appears in. */
3623
3624 int blocknum = pbi->bb->index;
3625 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3626 REG_BASIC_BLOCK (regno_first) = blocknum;
3627 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3628 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3629
3630 /* Count (weighted) number of uses of each reg. */
3631 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3632 REG_N_REFS (regno_first)++;
3633 }
3634 }
3635
3636 /* Record and count the insns in which a reg dies. If it is used in
3637 this insn and was dead below the insn then it dies in this insn.
3638 If it was set in this insn, we do not make a REG_DEAD note;
3639 likewise if we already made such a note. */
3640 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3641 && some_was_dead
3642 && some_not_set)
3643 {
3644 /* Check for the case where the register dying partially
3645 overlaps the register set by this insn. */
3646 if (regno_first != regno_last)
3647 for (i = regno_first; i <= regno_last; ++i)
3648 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3649
3650 /* If none of the words in X is needed, make a REG_DEAD note.
3651 Otherwise, we must make partial REG_DEAD notes. */
3652 if (! some_was_live)
3653 {
3654 if ((pbi->flags & PROP_DEATH_NOTES)
3655 && ! find_regno_note (insn, REG_DEAD, regno_first))
3656 REG_NOTES (insn)
3657 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3658
3659 if (pbi->flags & PROP_REG_INFO)
3660 REG_N_DEATHS (regno_first)++;
3661 }
3662 else
3663 {
3664 /* Don't make a REG_DEAD note for a part of a register
3665 that is set in the insn. */
3666 for (i = regno_first; i <= regno_last; ++i)
3667 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3668 && ! dead_or_set_regno_p (insn, i))
3669 REG_NOTES (insn)
3670 = alloc_EXPR_LIST (REG_DEAD,
3671 regno_reg_rtx[i],
3672 REG_NOTES (insn));
3673 }
3674 }
3675
3676 /* Mark the register as being live. */
3677 for (i = regno_first; i <= regno_last; ++i)
3678 {
3679 #ifdef HAVE_conditional_execution
3680 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3681 #endif
3682
3683 SET_REGNO_REG_SET (pbi->reg_live, i);
3684
3685 #ifdef HAVE_conditional_execution
3686 /* If this is a conditional use, record that fact. If it is later
3687 conditionally set, we'll know to kill the register. */
3688 if (cond != NULL_RTX)
3689 {
3690 splay_tree_node node;
3691 struct reg_cond_life_info *rcli;
3692 rtx ncond;
3693
3694 if (this_was_live)
3695 {
3696 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3697 if (node == NULL)
3698 {
3699 /* The register was unconditionally live previously.
3700 No need to do anything. */
3701 }
3702 else
3703 {
3704 /* The register was conditionally live previously.
3705 Subtract the new life cond from the old death cond. */
3706 rcli = (struct reg_cond_life_info *) node->value;
3707 ncond = rcli->condition;
3708 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3709
3710 /* If the register is now unconditionally live,
3711 remove the entry in the splay_tree. */
3712 if (ncond == const0_rtx)
3713 splay_tree_remove (pbi->reg_cond_dead, i);
3714 else
3715 {
3716 rcli->condition = ncond;
3717 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3718 REGNO (XEXP (cond, 0)));
3719 }
3720 }
3721 }
3722 else
3723 {
3724 /* The register was not previously live at all. Record
3725 the condition under which it is still dead. */
3726 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3727 rcli->condition = not_reg_cond (cond);
3728 rcli->stores = const0_rtx;
3729 rcli->orig_condition = const0_rtx;
3730 splay_tree_insert (pbi->reg_cond_dead, i,
3731 (splay_tree_value) rcli);
3732
3733 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3734 }
3735 }
3736 else if (this_was_live)
3737 {
3738 /* The register may have been conditionally live previously, but
3739 is now unconditionally live. Remove it from the conditionally
3740 dead list, so that a conditional set won't cause us to think
3741 it dead. */
3742 splay_tree_remove (pbi->reg_cond_dead, i);
3743 }
3744 #endif
3745 }
3746 }
3747
3748 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3749 This is done assuming the registers needed from X are those that
3750 have 1-bits in PBI->REG_LIVE.
3751
3752 INSN is the containing instruction. If INSN is dead, this function
3753 is not called. */
3754
3755 static void
3756 mark_used_regs (pbi, x, cond, insn)
3757 struct propagate_block_info *pbi;
3758 rtx x, cond, insn;
3759 {
3760 RTX_CODE code;
3761 int regno;
3762 int flags = pbi->flags;
3763
3764 retry:
3765 if (!x)
3766 return;
3767 code = GET_CODE (x);
3768 switch (code)
3769 {
3770 case LABEL_REF:
3771 case SYMBOL_REF:
3772 case CONST_INT:
3773 case CONST:
3774 case CONST_DOUBLE:
3775 case CONST_VECTOR:
3776 case PC:
3777 case ADDR_VEC:
3778 case ADDR_DIFF_VEC:
3779 return;
3780
3781 #ifdef HAVE_cc0
3782 case CC0:
3783 pbi->cc0_live = 1;
3784 return;
3785 #endif
3786
3787 case CLOBBER:
3788 /* If we are clobbering a MEM, mark any registers inside the address
3789 as being used. */
3790 if (GET_CODE (XEXP (x, 0)) == MEM)
3791 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3792 return;
3793
3794 case MEM:
3795 /* Don't bother watching stores to mems if this is not the
3796 final pass. We'll not be deleting dead stores this round. */
3797 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3798 {
3799 /* Invalidate the data for the last MEM stored, but only if MEM is
3800 something that can be stored into. */
3801 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3802 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3803 /* Needn't clear the memory set list. */
3804 ;
3805 else
3806 {
3807 rtx temp = pbi->mem_set_list;
3808 rtx prev = NULL_RTX;
3809 rtx next;
3810
3811 while (temp)
3812 {
3813 next = XEXP (temp, 1);
3814 if (anti_dependence (XEXP (temp, 0), x))
3815 {
3816 /* Splice temp out of the list. */
3817 if (prev)
3818 XEXP (prev, 1) = next;
3819 else
3820 pbi->mem_set_list = next;
3821 free_EXPR_LIST_node (temp);
3822 pbi->mem_set_list_len--;
3823 }
3824 else
3825 prev = temp;
3826 temp = next;
3827 }
3828 }
3829
3830 /* If the memory reference had embedded side effects (autoincrement
3831 address modes. Then we may need to kill some entries on the
3832 memory set list. */
3833 if (insn)
3834 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3835 }
3836
3837 #ifdef AUTO_INC_DEC
3838 if (flags & PROP_AUTOINC)
3839 find_auto_inc (pbi, x, insn);
3840 #endif
3841 break;
3842
3843 case SUBREG:
3844 #ifdef CANNOT_CHANGE_MODE_CLASS
3845 if (GET_CODE (SUBREG_REG (x)) == REG
3846 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3847 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3848 * MAX_MACHINE_MODE
3849 + GET_MODE (x));
3850 #endif
3851
3852 /* While we're here, optimize this case. */
3853 x = SUBREG_REG (x);
3854 if (GET_CODE (x) != REG)
3855 goto retry;
3856 /* Fall through. */
3857
3858 case REG:
3859 /* See a register other than being set => mark it as needed. */
3860 mark_used_reg (pbi, x, cond, insn);
3861 return;
3862
3863 case SET:
3864 {
3865 rtx testreg = SET_DEST (x);
3866 int mark_dest = 0;
3867
3868 /* If storing into MEM, don't show it as being used. But do
3869 show the address as being used. */
3870 if (GET_CODE (testreg) == MEM)
3871 {
3872 #ifdef AUTO_INC_DEC
3873 if (flags & PROP_AUTOINC)
3874 find_auto_inc (pbi, testreg, insn);
3875 #endif
3876 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3877 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3878 return;
3879 }
3880
3881 /* Storing in STRICT_LOW_PART is like storing in a reg
3882 in that this SET might be dead, so ignore it in TESTREG.
3883 but in some other ways it is like using the reg.
3884
3885 Storing in a SUBREG or a bit field is like storing the entire
3886 register in that if the register's value is not used
3887 then this SET is not needed. */
3888 while (GET_CODE (testreg) == STRICT_LOW_PART
3889 || GET_CODE (testreg) == ZERO_EXTRACT
3890 || GET_CODE (testreg) == SIGN_EXTRACT
3891 || GET_CODE (testreg) == SUBREG)
3892 {
3893 #ifdef CANNOT_CHANGE_MODE_CLASS
3894 if (GET_CODE (testreg) == SUBREG
3895 && GET_CODE (SUBREG_REG (testreg)) == REG
3896 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3897 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3898 * MAX_MACHINE_MODE
3899 + GET_MODE (testreg));
3900 #endif
3901
3902 /* Modifying a single register in an alternate mode
3903 does not use any of the old value. But these other
3904 ways of storing in a register do use the old value. */
3905 if (GET_CODE (testreg) == SUBREG
3906 && !((REG_BYTES (SUBREG_REG (testreg))
3907 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3908 > (REG_BYTES (testreg)
3909 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3910 ;
3911 else
3912 mark_dest = 1;
3913
3914 testreg = XEXP (testreg, 0);
3915 }
3916
3917 /* If this is a store into a register or group of registers,
3918 recursively scan the value being stored. */
3919
3920 if ((GET_CODE (testreg) == PARALLEL
3921 && GET_MODE (testreg) == BLKmode)
3922 || (GET_CODE (testreg) == REG
3923 && (regno = REGNO (testreg),
3924 ! (regno == FRAME_POINTER_REGNUM
3925 && (! reload_completed || frame_pointer_needed)))
3926 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3927 && ! (regno == HARD_FRAME_POINTER_REGNUM
3928 && (! reload_completed || frame_pointer_needed))
3929 #endif
3930 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3931 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3932 #endif
3933 ))
3934 {
3935 if (mark_dest)
3936 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3937 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3938 return;
3939 }
3940 }
3941 break;
3942
3943 case ASM_OPERANDS:
3944 case UNSPEC_VOLATILE:
3945 case TRAP_IF:
3946 case ASM_INPUT:
3947 {
3948 /* Traditional and volatile asm instructions must be considered to use
3949 and clobber all hard registers, all pseudo-registers and all of
3950 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3951
3952 Consider for instance a volatile asm that changes the fpu rounding
3953 mode. An insn should not be moved across this even if it only uses
3954 pseudo-regs because it might give an incorrectly rounded result.
3955
3956 ?!? Unfortunately, marking all hard registers as live causes massive
3957 problems for the register allocator and marking all pseudos as live
3958 creates mountains of uninitialized variable warnings.
3959
3960 So for now, just clear the memory set list and mark any regs
3961 we can find in ASM_OPERANDS as used. */
3962 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3963 {
3964 free_EXPR_LIST_list (&pbi->mem_set_list);
3965 pbi->mem_set_list_len = 0;
3966 }
3967
3968 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3969 We can not just fall through here since then we would be confused
3970 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3971 traditional asms unlike their normal usage. */
3972 if (code == ASM_OPERANDS)
3973 {
3974 int j;
3975
3976 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3977 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3978 }
3979 break;
3980 }
3981
3982 case COND_EXEC:
3983 if (cond != NULL_RTX)
3984 abort ();
3985
3986 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3987
3988 cond = COND_EXEC_TEST (x);
3989 x = COND_EXEC_CODE (x);
3990 goto retry;
3991
3992 case PHI:
3993 /* We _do_not_ want to scan operands of phi nodes. Operands of
3994 a phi function are evaluated only when control reaches this
3995 block along a particular edge. Therefore, regs that appear
3996 as arguments to phi should not be added to the global live at
3997 start. */
3998 return;
3999
4000 default:
4001 break;
4002 }
4003
4004 /* Recursively scan the operands of this expression. */
4005
4006 {
4007 const char * const fmt = GET_RTX_FORMAT (code);
4008 int i;
4009
4010 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4011 {
4012 if (fmt[i] == 'e')
4013 {
4014 /* Tail recursive case: save a function call level. */
4015 if (i == 0)
4016 {
4017 x = XEXP (x, 0);
4018 goto retry;
4019 }
4020 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4021 }
4022 else if (fmt[i] == 'E')
4023 {
4024 int j;
4025 for (j = 0; j < XVECLEN (x, i); j++)
4026 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4027 }
4028 }
4029 }
4030 }
4031 \f
4032 #ifdef AUTO_INC_DEC
4033
4034 static int
4035 try_pre_increment_1 (pbi, insn)
4036 struct propagate_block_info *pbi;
4037 rtx insn;
4038 {
4039 /* Find the next use of this reg. If in same basic block,
4040 make it do pre-increment or pre-decrement if appropriate. */
4041 rtx x = single_set (insn);
4042 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4043 * INTVAL (XEXP (SET_SRC (x), 1)));
4044 int regno = REGNO (SET_DEST (x));
4045 rtx y = pbi->reg_next_use[regno];
4046 if (y != 0
4047 && SET_DEST (x) != stack_pointer_rtx
4048 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4049 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4050 mode would be better. */
4051 && ! dead_or_set_p (y, SET_DEST (x))
4052 && try_pre_increment (y, SET_DEST (x), amount))
4053 {
4054 /* We have found a suitable auto-increment and already changed
4055 insn Y to do it. So flush this increment instruction. */
4056 propagate_block_delete_insn (insn);
4057
4058 /* Count a reference to this reg for the increment insn we are
4059 deleting. When a reg is incremented, spilling it is worse,
4060 so we want to make that less likely. */
4061 if (regno >= FIRST_PSEUDO_REGISTER)
4062 {
4063 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4064 REG_N_SETS (regno)++;
4065 }
4066
4067 /* Flush any remembered memories depending on the value of
4068 the incremented register. */
4069 invalidate_mems_from_set (pbi, SET_DEST (x));
4070
4071 return 1;
4072 }
4073 return 0;
4074 }
4075
4076 /* Try to change INSN so that it does pre-increment or pre-decrement
4077 addressing on register REG in order to add AMOUNT to REG.
4078 AMOUNT is negative for pre-decrement.
4079 Returns 1 if the change could be made.
4080 This checks all about the validity of the result of modifying INSN. */
4081
4082 static int
4083 try_pre_increment (insn, reg, amount)
4084 rtx insn, reg;
4085 HOST_WIDE_INT amount;
4086 {
4087 rtx use;
4088
4089 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4090 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4091 int pre_ok = 0;
4092 /* Nonzero if we can try to make a post-increment or post-decrement.
4093 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4094 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4095 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4096 int post_ok = 0;
4097
4098 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4099 int do_post = 0;
4100
4101 /* From the sign of increment, see which possibilities are conceivable
4102 on this target machine. */
4103 if (HAVE_PRE_INCREMENT && amount > 0)
4104 pre_ok = 1;
4105 if (HAVE_POST_INCREMENT && amount > 0)
4106 post_ok = 1;
4107
4108 if (HAVE_PRE_DECREMENT && amount < 0)
4109 pre_ok = 1;
4110 if (HAVE_POST_DECREMENT && amount < 0)
4111 post_ok = 1;
4112
4113 if (! (pre_ok || post_ok))
4114 return 0;
4115
4116 /* It is not safe to add a side effect to a jump insn
4117 because if the incremented register is spilled and must be reloaded
4118 there would be no way to store the incremented value back in memory. */
4119
4120 if (GET_CODE (insn) == JUMP_INSN)
4121 return 0;
4122
4123 use = 0;
4124 if (pre_ok)
4125 use = find_use_as_address (PATTERN (insn), reg, 0);
4126 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4127 {
4128 use = find_use_as_address (PATTERN (insn), reg, -amount);
4129 do_post = 1;
4130 }
4131
4132 if (use == 0 || use == (rtx) (size_t) 1)
4133 return 0;
4134
4135 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4136 return 0;
4137
4138 /* See if this combination of instruction and addressing mode exists. */
4139 if (! validate_change (insn, &XEXP (use, 0),
4140 gen_rtx_fmt_e (amount > 0
4141 ? (do_post ? POST_INC : PRE_INC)
4142 : (do_post ? POST_DEC : PRE_DEC),
4143 Pmode, reg), 0))
4144 return 0;
4145
4146 /* Record that this insn now has an implicit side effect on X. */
4147 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4148 return 1;
4149 }
4150
4151 #endif /* AUTO_INC_DEC */
4152 \f
4153 /* Find the place in the rtx X where REG is used as a memory address.
4154 Return the MEM rtx that so uses it.
4155 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4156 (plus REG (const_int PLUSCONST)).
4157
4158 If such an address does not appear, return 0.
4159 If REG appears more than once, or is used other than in such an address,
4160 return (rtx) 1. */
4161
4162 rtx
4163 find_use_as_address (x, reg, plusconst)
4164 rtx x;
4165 rtx reg;
4166 HOST_WIDE_INT plusconst;
4167 {
4168 enum rtx_code code = GET_CODE (x);
4169 const char * const fmt = GET_RTX_FORMAT (code);
4170 int i;
4171 rtx value = 0;
4172 rtx tem;
4173
4174 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4175 return x;
4176
4177 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4178 && XEXP (XEXP (x, 0), 0) == reg
4179 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4180 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4181 return x;
4182
4183 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4184 {
4185 /* If REG occurs inside a MEM used in a bit-field reference,
4186 that is unacceptable. */
4187 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4188 return (rtx) (size_t) 1;
4189 }
4190
4191 if (x == reg)
4192 return (rtx) (size_t) 1;
4193
4194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4195 {
4196 if (fmt[i] == 'e')
4197 {
4198 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4199 if (value == 0)
4200 value = tem;
4201 else if (tem != 0)
4202 return (rtx) (size_t) 1;
4203 }
4204 else if (fmt[i] == 'E')
4205 {
4206 int j;
4207 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4208 {
4209 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4210 if (value == 0)
4211 value = tem;
4212 else if (tem != 0)
4213 return (rtx) (size_t) 1;
4214 }
4215 }
4216 }
4217
4218 return value;
4219 }
4220 \f
4221 /* Write information about registers and basic blocks into FILE.
4222 This is part of making a debugging dump. */
4223
4224 void
4225 dump_regset (r, outf)
4226 regset r;
4227 FILE *outf;
4228 {
4229 int i;
4230 if (r == NULL)
4231 {
4232 fputs (" (nil)", outf);
4233 return;
4234 }
4235
4236 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4237 {
4238 fprintf (outf, " %d", i);
4239 if (i < FIRST_PSEUDO_REGISTER)
4240 fprintf (outf, " [%s]",
4241 reg_names[i]);
4242 });
4243 }
4244
4245 /* Print a human-readable representation of R on the standard error
4246 stream. This function is designed to be used from within the
4247 debugger. */
4248
4249 void
4250 debug_regset (r)
4251 regset r;
4252 {
4253 dump_regset (r, stderr);
4254 putc ('\n', stderr);
4255 }
4256
4257 /* Recompute register set/reference counts immediately prior to register
4258 allocation.
4259
4260 This avoids problems with set/reference counts changing to/from values
4261 which have special meanings to the register allocators.
4262
4263 Additionally, the reference counts are the primary component used by the
4264 register allocators to prioritize pseudos for allocation to hard regs.
4265 More accurate reference counts generally lead to better register allocation.
4266
4267 F is the first insn to be scanned.
4268
4269 LOOP_STEP denotes how much loop_depth should be incremented per
4270 loop nesting level in order to increase the ref count more for
4271 references in a loop.
4272
4273 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4274 possibly other information which is used by the register allocators. */
4275
4276 void
4277 recompute_reg_usage (f, loop_step)
4278 rtx f ATTRIBUTE_UNUSED;
4279 int loop_step ATTRIBUTE_UNUSED;
4280 {
4281 allocate_reg_life_data ();
4282 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4283 }
4284
4285 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4286 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4287 of the number of registers that died. */
4288
4289 int
4290 count_or_remove_death_notes (blocks, kill)
4291 sbitmap blocks;
4292 int kill;
4293 {
4294 int count = 0;
4295 basic_block bb;
4296
4297 FOR_EACH_BB_REVERSE (bb)
4298 {
4299 rtx insn;
4300
4301 if (blocks && ! TEST_BIT (blocks, bb->index))
4302 continue;
4303
4304 for (insn = bb->head;; insn = NEXT_INSN (insn))
4305 {
4306 if (INSN_P (insn))
4307 {
4308 rtx *pprev = &REG_NOTES (insn);
4309 rtx link = *pprev;
4310
4311 while (link)
4312 {
4313 switch (REG_NOTE_KIND (link))
4314 {
4315 case REG_DEAD:
4316 if (GET_CODE (XEXP (link, 0)) == REG)
4317 {
4318 rtx reg = XEXP (link, 0);
4319 int n;
4320
4321 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4322 n = 1;
4323 else
4324 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4325 count += n;
4326 }
4327 /* Fall through. */
4328
4329 case REG_UNUSED:
4330 if (kill)
4331 {
4332 rtx next = XEXP (link, 1);
4333 free_EXPR_LIST_node (link);
4334 *pprev = link = next;
4335 break;
4336 }
4337 /* Fall through. */
4338
4339 default:
4340 pprev = &XEXP (link, 1);
4341 link = *pprev;
4342 break;
4343 }
4344 }
4345 }
4346
4347 if (insn == bb->end)
4348 break;
4349 }
4350 }
4351
4352 return count;
4353 }
4354 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4355 if blocks is NULL. */
4356
4357 static void
4358 clear_log_links (blocks)
4359 sbitmap blocks;
4360 {
4361 rtx insn;
4362 int i;
4363
4364 if (!blocks)
4365 {
4366 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4367 if (INSN_P (insn))
4368 free_INSN_LIST_list (&LOG_LINKS (insn));
4369 }
4370 else
4371 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4372 {
4373 basic_block bb = BASIC_BLOCK (i);
4374
4375 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4376 insn = NEXT_INSN (insn))
4377 if (INSN_P (insn))
4378 free_INSN_LIST_list (&LOG_LINKS (insn));
4379 });
4380 }
4381
4382 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4383 correspond to the hard registers, if any, set in that map. This
4384 could be done far more efficiently by having all sorts of special-cases
4385 with moving single words, but probably isn't worth the trouble. */
4386
4387 void
4388 reg_set_to_hard_reg_set (to, from)
4389 HARD_REG_SET *to;
4390 bitmap from;
4391 {
4392 int i;
4393
4394 EXECUTE_IF_SET_IN_BITMAP
4395 (from, 0, i,
4396 {
4397 if (i >= FIRST_PSEUDO_REGISTER)
4398 return;
4399 SET_HARD_REG_BIT (*to, i);
4400 });
4401 }