basic-block.h (free_basic_block_vars): Update prototype.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "timevar.h"
140
141 #include "obstack.h"
142 #include "splay-tree.h"
143
144 #ifndef HAVE_epilogue
145 #define HAVE_epilogue 0
146 #endif
147 #ifndef HAVE_prologue
148 #define HAVE_prologue 0
149 #endif
150 #ifndef HAVE_sibcall_epilogue
151 #define HAVE_sibcall_epilogue 0
152 #endif
153
154 #ifndef EPILOGUE_USES
155 #define EPILOGUE_USES(REGNO) 0
156 #endif
157 #ifndef EH_USES
158 #define EH_USES(REGNO) 0
159 #endif
160
161 #ifdef HAVE_conditional_execution
162 #ifndef REVERSE_CONDEXEC_PREDICATES_P
163 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
164 #endif
165 #endif
166
167 /* Nonzero if the second flow pass has completed. */
168 int flow2_completed;
169
170 /* Maximum register number used in this function, plus one. */
171
172 int max_regno;
173
174 /* Indexed by n, giving various register information */
175
176 varray_type reg_n_info;
177
178 /* Size of a regset for the current function,
179 in (1) bytes and (2) elements. */
180
181 int regset_bytes;
182 int regset_size;
183
184 /* Regset of regs live when calls to `setjmp'-like functions happen. */
185 /* ??? Does this exist only for the setjmp-clobbered warning message? */
186
187 regset regs_live_at_setjmp;
188
189 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
190 that have to go in the same hard reg.
191 The first two regs in the list are a pair, and the next two
192 are another pair, etc. */
193 rtx regs_may_share;
194
195 /* Callback that determines if it's ok for a function to have no
196 noreturn attribute. */
197 int (*lang_missing_noreturn_ok_p) (tree);
198
199 /* Set of registers that may be eliminable. These are handled specially
200 in updating regs_ever_live. */
201
202 static HARD_REG_SET elim_reg_set;
203
204 /* Holds information for tracking conditional register life information. */
205 struct reg_cond_life_info
206 {
207 /* A boolean expression of conditions under which a register is dead. */
208 rtx condition;
209 /* Conditions under which a register is dead at the basic block end. */
210 rtx orig_condition;
211
212 /* A boolean expression of conditions under which a register has been
213 stored into. */
214 rtx stores;
215
216 /* ??? Could store mask of bytes that are dead, so that we could finally
217 track lifetimes of multi-word registers accessed via subregs. */
218 };
219
220 /* For use in communicating between propagate_block and its subroutines.
221 Holds all information needed to compute life and def-use information. */
222
223 struct propagate_block_info
224 {
225 /* The basic block we're considering. */
226 basic_block bb;
227
228 /* Bit N is set if register N is conditionally or unconditionally live. */
229 regset reg_live;
230
231 /* Bit N is set if register N is set this insn. */
232 regset new_set;
233
234 /* Element N is the next insn that uses (hard or pseudo) register N
235 within the current basic block; or zero, if there is no such insn. */
236 rtx *reg_next_use;
237
238 /* Contains a list of all the MEMs we are tracking for dead store
239 elimination. */
240 rtx mem_set_list;
241
242 /* If non-null, record the set of registers set unconditionally in the
243 basic block. */
244 regset local_set;
245
246 /* If non-null, record the set of registers set conditionally in the
247 basic block. */
248 regset cond_local_set;
249
250 #ifdef HAVE_conditional_execution
251 /* Indexed by register number, holds a reg_cond_life_info for each
252 register that is not unconditionally live or dead. */
253 splay_tree reg_cond_dead;
254
255 /* Bit N is set if register N is in an expression in reg_cond_dead. */
256 regset reg_cond_reg;
257 #endif
258
259 /* The length of mem_set_list. */
260 int mem_set_list_len;
261
262 /* Nonzero if the value of CC0 is live. */
263 int cc0_live;
264
265 /* Flags controlling the set of information propagate_block collects. */
266 int flags;
267 /* Index of instruction being processed. */
268 int insn_num;
269 };
270
271 /* Number of dead insns removed. */
272 static int ndead;
273
274 /* When PROP_REG_INFO set, array contains pbi->insn_num of instruction
275 where given register died. When the register is marked alive, we use the
276 information to compute amount of instructions life range cross.
277 (remember, we are walking backward). This can be computed as current
278 pbi->insn_num - reg_deaths[regno].
279 At the end of processing each basic block, the remaining live registers
280 are inspected and liferanges are increased same way so liverange of global
281 registers are computed correctly.
282
283 The array is maintained clear for dead registers, so it can be safely reused
284 for next basic block without expensive memset of the whole array after
285 reseting pbi->insn_num to 0. */
286
287 static int *reg_deaths;
288
289 /* Maximum length of pbi->mem_set_list before we start dropping
290 new elements on the floor. */
291 #define MAX_MEM_SET_LIST_LEN 100
292
293 /* Forward declarations */
294 static int verify_wide_reg_1 (rtx *, void *);
295 static void verify_wide_reg (int, basic_block);
296 static void verify_local_live_at_start (regset, basic_block);
297 static void notice_stack_pointer_modification_1 (rtx, rtx, void *);
298 static void notice_stack_pointer_modification (rtx);
299 static void mark_reg (rtx, void *);
300 static void mark_regs_live_at_end (regset);
301 static void calculate_global_regs_live (sbitmap, sbitmap, int);
302 static void propagate_block_delete_insn (rtx);
303 static rtx propagate_block_delete_libcall (rtx, rtx);
304 static int insn_dead_p (struct propagate_block_info *, rtx, int, rtx);
305 static int libcall_dead_p (struct propagate_block_info *, rtx, rtx);
306 static void mark_set_regs (struct propagate_block_info *, rtx, rtx);
307 static void mark_set_1 (struct propagate_block_info *, enum rtx_code, rtx,
308 rtx, rtx, int);
309 static int find_regno_partial (rtx *, void *);
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead (struct propagate_block_info *, int, rtx);
313 static void free_reg_cond_life_info (splay_tree_value);
314 static int flush_reg_cond_reg_1 (splay_tree_node, void *);
315 static void flush_reg_cond_reg (struct propagate_block_info *, int);
316 static rtx elim_reg_cond (rtx, unsigned int);
317 static rtx ior_reg_cond (rtx, rtx, int);
318 static rtx not_reg_cond (rtx);
319 static rtx and_reg_cond (rtx, rtx, int);
320 #endif
321 #ifdef AUTO_INC_DEC
322 static void attempt_auto_inc (struct propagate_block_info *, rtx, rtx, rtx,
323 rtx, rtx);
324 static void find_auto_inc (struct propagate_block_info *, rtx, rtx);
325 static int try_pre_increment_1 (struct propagate_block_info *, rtx);
326 static int try_pre_increment (rtx, rtx, HOST_WIDE_INT);
327 #endif
328 static void mark_used_reg (struct propagate_block_info *, rtx, rtx, rtx);
329 static void mark_used_regs (struct propagate_block_info *, rtx, rtx, rtx);
330 void debug_flow_info (void);
331 static void add_to_mem_set_list (struct propagate_block_info *, rtx);
332 static int invalidate_mems_from_autoinc (rtx *, void *);
333 static void invalidate_mems_from_set (struct propagate_block_info *, rtx);
334 static void clear_log_links (sbitmap);
335 static int count_or_remove_death_notes_bb (basic_block, int);
336 \f
337
338 void
339 check_function_return_warnings (void)
340 {
341 if (warn_missing_noreturn
342 && !TREE_THIS_VOLATILE (cfun->decl)
343 && EXIT_BLOCK_PTR->pred == NULL
344 && (lang_missing_noreturn_ok_p
345 && !lang_missing_noreturn_ok_p (cfun->decl)))
346 warning ("function might be possible candidate for attribute `noreturn'");
347
348 /* If we have a path to EXIT, then we do return. */
349 if (TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred != NULL)
351 warning ("`noreturn' function does return");
352
353 /* If the clobber_return_insn appears in some basic block, then we
354 do reach the end without returning a value. */
355 else if (warn_return_type
356 && cfun->x_clobber_return_insn != NULL
357 && EXIT_BLOCK_PTR->pred != NULL)
358 {
359 int max_uid = get_max_uid ();
360
361 /* If clobber_return_insn was excised by jump1, then renumber_insns
362 can make max_uid smaller than the number still recorded in our rtx.
363 That's fine, since this is a quick way of verifying that the insn
364 is no longer in the chain. */
365 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
366 {
367 rtx insn;
368
369 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
370 if (insn == cfun->x_clobber_return_insn)
371 {
372 warning ("control reaches end of non-void function");
373 break;
374 }
375 }
376 }
377 }
378 \f
379 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
380 note associated with the BLOCK. */
381
382 rtx
383 first_insn_after_basic_block_note (basic_block block)
384 {
385 rtx insn;
386
387 /* Get the first instruction in the block. */
388 insn = BB_HEAD (block);
389
390 if (insn == NULL_RTX)
391 return NULL_RTX;
392 if (GET_CODE (insn) == CODE_LABEL)
393 insn = NEXT_INSN (insn);
394 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
395 abort ();
396
397 return NEXT_INSN (insn);
398 }
399 \f
400 /* Perform data flow analysis.
401 F is the first insn of the function; FLAGS is a set of PROP_* flags
402 to be used in accumulating flow info. */
403
404 void
405 life_analysis (rtx f, FILE *file, int flags)
406 {
407 #ifdef ELIMINABLE_REGS
408 int i;
409 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
410 #endif
411
412 /* Record which registers will be eliminated. We use this in
413 mark_used_regs. */
414
415 CLEAR_HARD_REG_SET (elim_reg_set);
416
417 #ifdef ELIMINABLE_REGS
418 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
419 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
420 #else
421 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
422 #endif
423
424
425 #ifdef CANNOT_CHANGE_MODE_CLASS
426 if (flags & PROP_REG_INFO)
427 bitmap_initialize (&subregs_of_mode, 1);
428 #endif
429
430 if (! optimize)
431 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
432
433 /* The post-reload life analysis have (on a global basis) the same
434 registers live as was computed by reload itself. elimination
435 Otherwise offsets and such may be incorrect.
436
437 Reload will make some registers as live even though they do not
438 appear in the rtl.
439
440 We don't want to create new auto-incs after reload, since they
441 are unlikely to be useful and can cause problems with shared
442 stack slots. */
443 if (reload_completed)
444 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
445
446 /* We want alias analysis information for local dead store elimination. */
447 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
448 init_alias_analysis ();
449
450 /* Always remove no-op moves. Do this before other processing so
451 that we don't have to keep re-scanning them. */
452 delete_noop_moves (f);
453
454 /* Some targets can emit simpler epilogues if they know that sp was
455 not ever modified during the function. After reload, of course,
456 we've already emitted the epilogue so there's no sense searching. */
457 if (! reload_completed)
458 notice_stack_pointer_modification (f);
459
460 /* Allocate and zero out data structures that will record the
461 data from lifetime analysis. */
462 allocate_reg_life_data ();
463 allocate_bb_life_data ();
464
465 /* Find the set of registers live on function exit. */
466 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
467
468 /* "Update" life info from zero. It'd be nice to begin the
469 relaxation with just the exit and noreturn blocks, but that set
470 is not immediately handy. */
471
472 if (flags & PROP_REG_INFO)
473 {
474 memset (regs_ever_live, 0, sizeof (regs_ever_live));
475 memset (regs_asm_clobbered, 0, sizeof (regs_asm_clobbered));
476 }
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478 if (reg_deaths)
479 {
480 free (reg_deaths);
481 reg_deaths = NULL;
482 }
483
484 /* Clean up. */
485 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
486 end_alias_analysis ();
487
488 if (file)
489 dump_flow_info (file);
490
491 /* Removing dead insns should have made jumptables really dead. */
492 delete_dead_jumptables ();
493 }
494
495 /* A subroutine of verify_wide_reg, called through for_each_rtx.
496 Search for REGNO. If found, return 2 if it is not wider than
497 word_mode. */
498
499 static int
500 verify_wide_reg_1 (rtx *px, void *pregno)
501 {
502 rtx x = *px;
503 unsigned int regno = *(int *) pregno;
504
505 if (GET_CODE (x) == REG && REGNO (x) == regno)
506 {
507 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
508 return 2;
509 return 1;
510 }
511 return 0;
512 }
513
514 /* A subroutine of verify_local_live_at_start. Search through insns
515 of BB looking for register REGNO. */
516
517 static void
518 verify_wide_reg (int regno, basic_block bb)
519 {
520 rtx head = BB_HEAD (bb), end = BB_END (bb);
521
522 while (1)
523 {
524 if (INSN_P (head))
525 {
526 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
527 if (r == 1)
528 return;
529 if (r == 2)
530 break;
531 }
532 if (head == end)
533 break;
534 head = NEXT_INSN (head);
535 }
536
537 if (dump_file)
538 {
539 fprintf (dump_file, "Register %d died unexpectedly.\n", regno);
540 dump_bb (bb, dump_file, 0);
541 }
542 abort ();
543 }
544
545 /* A subroutine of update_life_info. Verify that there are no untoward
546 changes in live_at_start during a local update. */
547
548 static void
549 verify_local_live_at_start (regset new_live_at_start, basic_block bb)
550 {
551 if (reload_completed)
552 {
553 /* After reload, there are no pseudos, nor subregs of multi-word
554 registers. The regsets should exactly match. */
555 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
556 {
557 if (dump_file)
558 {
559 fprintf (dump_file,
560 "live_at_start mismatch in bb %d, aborting\nNew:\n",
561 bb->index);
562 debug_bitmap_file (dump_file, new_live_at_start);
563 fputs ("Old:\n", dump_file);
564 dump_bb (bb, dump_file, 0);
565 }
566 abort ();
567 }
568 }
569 else
570 {
571 int i;
572
573 /* Find the set of changed registers. */
574 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
575
576 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
577 {
578 /* No registers should die. */
579 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
580 {
581 if (dump_file)
582 {
583 fprintf (dump_file,
584 "Register %d died unexpectedly.\n", i);
585 dump_bb (bb, dump_file, 0);
586 }
587 abort ();
588 }
589
590 /* Verify that the now-live register is wider than word_mode. */
591 verify_wide_reg (i, bb);
592 });
593 }
594 }
595
596 /* Updates life information starting with the basic blocks set in BLOCKS.
597 If BLOCKS is null, consider it to be the universal set.
598
599 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholing,
600 we are only expecting local modifications to basic blocks. If we find
601 extra registers live at the beginning of a block, then we either killed
602 useful data, or we have a broken split that wants data not provided.
603 If we find registers removed from live_at_start, that means we have
604 a broken peephole that is killing a register it shouldn't.
605
606 ??? This is not true in one situation -- when a pre-reload splitter
607 generates subregs of a multi-word pseudo, current life analysis will
608 lose the kill. So we _can_ have a pseudo go live. How irritating.
609
610 It is also not true when a peephole decides that it doesn't need one
611 or more of the inputs.
612
613 Including PROP_REG_INFO does not properly refresh regs_ever_live
614 unless the caller resets it to zero. */
615
616 int
617 update_life_info (sbitmap blocks, enum update_life_extent extent, int prop_flags)
618 {
619 regset tmp;
620 regset_head tmp_head;
621 int i;
622 int stabilized_prop_flags = prop_flags;
623 basic_block bb;
624
625 tmp = INITIALIZE_REG_SET (tmp_head);
626 ndead = 0;
627
628 if ((prop_flags & PROP_REG_INFO) && !reg_deaths)
629 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
630
631 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
632 ? TV_LIFE_UPDATE : TV_LIFE);
633
634 /* Changes to the CFG are only allowed when
635 doing a global update for the entire CFG. */
636 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
637 && (extent == UPDATE_LIFE_LOCAL || blocks))
638 abort ();
639
640 /* For a global update, we go through the relaxation process again. */
641 if (extent != UPDATE_LIFE_LOCAL)
642 {
643 for ( ; ; )
644 {
645 int changed = 0;
646
647 calculate_global_regs_live (blocks, blocks,
648 prop_flags & (PROP_SCAN_DEAD_CODE
649 | PROP_SCAN_DEAD_STORES
650 | PROP_ALLOW_CFG_CHANGES));
651
652 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 break;
655
656 /* Removing dead code may allow the CFG to be simplified which
657 in turn may allow for further dead code detection / removal. */
658 FOR_EACH_BB_REVERSE (bb)
659 {
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 changed |= propagate_block (bb, tmp, NULL, NULL,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_SCAN_DEAD_STORES
664 | PROP_KILL_DEAD_CODE));
665 }
666
667 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
668 subsequent propagate_block calls, since removing or acting as
669 removing dead code can affect global register liveness, which
670 is supposed to be finalized for this call after this loop. */
671 stabilized_prop_flags
672 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE);
674
675 if (! changed)
676 break;
677
678 /* We repeat regardless of what cleanup_cfg says. If there were
679 instructions deleted above, that might have been only a
680 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
681 Further improvement may be possible. */
682 cleanup_cfg (CLEANUP_EXPENSIVE);
683
684 /* Zap the life information from the last round. If we don't
685 do this, we can wind up with registers that no longer appear
686 in the code being marked live at entry, which twiggs bogus
687 warnings from regno_uninitialized. */
688 FOR_EACH_BB (bb)
689 {
690 CLEAR_REG_SET (bb->global_live_at_start);
691 CLEAR_REG_SET (bb->global_live_at_end);
692 }
693 }
694
695 /* If asked, remove notes from the blocks we'll update. */
696 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
697 count_or_remove_death_notes (blocks, 1);
698 }
699
700 /* Clear log links in case we are asked to (re)compute them. */
701 if (prop_flags & PROP_LOG_LINKS)
702 clear_log_links (blocks);
703
704 if (blocks)
705 {
706 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
707 {
708 bb = BASIC_BLOCK (i);
709
710 COPY_REG_SET (tmp, bb->global_live_at_end);
711 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
712
713 if (extent == UPDATE_LIFE_LOCAL)
714 verify_local_live_at_start (tmp, bb);
715 });
716 }
717 else
718 {
719 FOR_EACH_BB_REVERSE (bb)
720 {
721 COPY_REG_SET (tmp, bb->global_live_at_end);
722
723 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
724
725 if (extent == UPDATE_LIFE_LOCAL)
726 verify_local_live_at_start (tmp, bb);
727 }
728 }
729
730 FREE_REG_SET (tmp);
731
732 if (prop_flags & PROP_REG_INFO)
733 {
734 /* The only pseudos that are live at the beginning of the function
735 are those that were not set anywhere in the function. local-alloc
736 doesn't know how to handle these correctly, so mark them as not
737 local to any one basic block. */
738 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
739 FIRST_PSEUDO_REGISTER, i,
740 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
741
742 /* We have a problem with any pseudoreg that lives across the setjmp.
743 ANSI says that if a user variable does not change in value between
744 the setjmp and the longjmp, then the longjmp preserves it. This
745 includes longjmp from a place where the pseudo appears dead.
746 (In principle, the value still exists if it is in scope.)
747 If the pseudo goes in a hard reg, some other value may occupy
748 that hard reg where this pseudo is dead, thus clobbering the pseudo.
749 Conclusion: such a pseudo must not go in a hard reg. */
750 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
751 FIRST_PSEUDO_REGISTER, i,
752 {
753 if (regno_reg_rtx[i] != 0)
754 {
755 REG_LIVE_LENGTH (i) = -1;
756 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
757 }
758 });
759 }
760 if (reg_deaths)
761 {
762 free (reg_deaths);
763 reg_deaths = NULL;
764 }
765 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
766 ? TV_LIFE_UPDATE : TV_LIFE);
767 if (ndead && dump_file)
768 fprintf (dump_file, "deleted %i dead insns\n", ndead);
769 return ndead;
770 }
771
772 /* Update life information in all blocks where BB_DIRTY is set. */
773
774 int
775 update_life_info_in_dirty_blocks (enum update_life_extent extent, int prop_flags)
776 {
777 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
778 int n = 0;
779 basic_block bb;
780 int retval = 0;
781
782 sbitmap_zero (update_life_blocks);
783 FOR_EACH_BB (bb)
784 {
785 if (extent == UPDATE_LIFE_LOCAL)
786 {
787 if (bb->flags & BB_DIRTY)
788 {
789 SET_BIT (update_life_blocks, bb->index);
790 n++;
791 }
792 }
793 else
794 {
795 /* ??? Bootstrap with -march=pentium4 fails to terminate
796 with only a partial life update. */
797 SET_BIT (update_life_blocks, bb->index);
798 if (bb->flags & BB_DIRTY)
799 n++;
800 }
801 }
802
803 if (n)
804 retval = update_life_info (update_life_blocks, extent, prop_flags);
805
806 sbitmap_free (update_life_blocks);
807 return retval;
808 }
809
810 /* Free the variables allocated by find_basic_blocks. */
811
812 void
813 free_basic_block_vars (void)
814 {
815 if (basic_block_info)
816 {
817 clear_edges ();
818 VARRAY_FREE (basic_block_info);
819 }
820 n_basic_blocks = 0;
821 last_basic_block = 0;
822
823 ENTRY_BLOCK_PTR->aux = NULL;
824 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
825 EXIT_BLOCK_PTR->aux = NULL;
826 EXIT_BLOCK_PTR->global_live_at_start = NULL;
827 }
828
829 /* Delete any insns that copy a register to itself. */
830
831 int
832 delete_noop_moves (rtx f ATTRIBUTE_UNUSED)
833 {
834 rtx insn, next;
835 basic_block bb;
836 int nnoops = 0;
837
838 FOR_EACH_BB (bb)
839 {
840 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
841 {
842 next = NEXT_INSN (insn);
843 if (INSN_P (insn) && noop_move_p (insn))
844 {
845 rtx note;
846
847 /* If we're about to remove the first insn of a libcall
848 then move the libcall note to the next real insn and
849 update the retval note. */
850 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
851 && XEXP (note, 0) != insn)
852 {
853 rtx new_libcall_insn = next_real_insn (insn);
854 rtx retval_note = find_reg_note (XEXP (note, 0),
855 REG_RETVAL, NULL_RTX);
856 REG_NOTES (new_libcall_insn)
857 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
858 REG_NOTES (new_libcall_insn));
859 XEXP (retval_note, 0) = new_libcall_insn;
860 }
861
862 delete_insn_and_edges (insn);
863 nnoops++;
864 }
865 }
866 }
867 if (nnoops && dump_file)
868 fprintf (dump_file, "deleted %i noop moves", nnoops);
869 return nnoops;
870 }
871
872 /* Delete any jump tables never referenced. We can't delete them at the
873 time of removing tablejump insn as they are referenced by the preceding
874 insns computing the destination, so we delay deleting and garbagecollect
875 them once life information is computed. */
876 void
877 delete_dead_jumptables (void)
878 {
879 rtx insn, next;
880 for (insn = get_insns (); insn; insn = next)
881 {
882 next = NEXT_INSN (insn);
883 if (GET_CODE (insn) == CODE_LABEL
884 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
885 && GET_CODE (next) == JUMP_INSN
886 && (GET_CODE (PATTERN (next)) == ADDR_VEC
887 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
888 {
889 if (dump_file)
890 fprintf (dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
891 delete_insn (NEXT_INSN (insn));
892 delete_insn (insn);
893 next = NEXT_INSN (next);
894 }
895 }
896 }
897
898 /* Determine if the stack pointer is constant over the life of the function.
899 Only useful before prologues have been emitted. */
900
901 static void
902 notice_stack_pointer_modification_1 (rtx x, rtx pat ATTRIBUTE_UNUSED,
903 void *data ATTRIBUTE_UNUSED)
904 {
905 if (x == stack_pointer_rtx
906 /* The stack pointer is only modified indirectly as the result
907 of a push until later in flow. See the comments in rtl.texi
908 regarding Embedded Side-Effects on Addresses. */
909 || (GET_CODE (x) == MEM
910 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == RTX_AUTOINC
911 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
912 current_function_sp_is_unchanging = 0;
913 }
914
915 static void
916 notice_stack_pointer_modification (rtx f)
917 {
918 rtx insn;
919
920 /* Assume that the stack pointer is unchanging if alloca hasn't
921 been used. */
922 current_function_sp_is_unchanging = !current_function_calls_alloca;
923 if (! current_function_sp_is_unchanging)
924 return;
925
926 for (insn = f; insn; insn = NEXT_INSN (insn))
927 {
928 if (INSN_P (insn))
929 {
930 /* Check if insn modifies the stack pointer. */
931 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
932 NULL);
933 if (! current_function_sp_is_unchanging)
934 return;
935 }
936 }
937 }
938
939 /* Mark a register in SET. Hard registers in large modes get all
940 of their component registers set as well. */
941
942 static void
943 mark_reg (rtx reg, void *xset)
944 {
945 regset set = (regset) xset;
946 int regno = REGNO (reg);
947
948 if (GET_MODE (reg) == BLKmode)
949 abort ();
950
951 SET_REGNO_REG_SET (set, regno);
952 if (regno < FIRST_PSEUDO_REGISTER)
953 {
954 int n = hard_regno_nregs[regno][GET_MODE (reg)];
955 while (--n > 0)
956 SET_REGNO_REG_SET (set, regno + n);
957 }
958 }
959
960 /* Mark those regs which are needed at the end of the function as live
961 at the end of the last basic block. */
962
963 static void
964 mark_regs_live_at_end (regset set)
965 {
966 unsigned int i;
967
968 /* If exiting needs the right stack value, consider the stack pointer
969 live at the end of the function. */
970 if ((HAVE_epilogue && epilogue_completed)
971 || ! EXIT_IGNORE_STACK
972 || (! FRAME_POINTER_REQUIRED
973 && ! current_function_calls_alloca
974 && flag_omit_frame_pointer)
975 || current_function_sp_is_unchanging)
976 {
977 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
978 }
979
980 /* Mark the frame pointer if needed at the end of the function. If
981 we end up eliminating it, it will be removed from the live list
982 of each basic block by reload. */
983
984 if (! reload_completed || frame_pointer_needed)
985 {
986 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
987 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
988 /* If they are different, also mark the hard frame pointer as live. */
989 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
990 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
991 #endif
992 }
993
994 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
995 /* Many architectures have a GP register even without flag_pic.
996 Assume the pic register is not in use, or will be handled by
997 other means, if it is not fixed. */
998 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
999 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1000 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1001 #endif
1002
1003 /* Mark all global registers, and all registers used by the epilogue
1004 as being live at the end of the function since they may be
1005 referenced by our caller. */
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1007 if (global_regs[i] || EPILOGUE_USES (i))
1008 SET_REGNO_REG_SET (set, i);
1009
1010 if (HAVE_epilogue && epilogue_completed)
1011 {
1012 /* Mark all call-saved registers that we actually used. */
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1015 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1016 SET_REGNO_REG_SET (set, i);
1017 }
1018
1019 #ifdef EH_RETURN_DATA_REGNO
1020 /* Mark the registers that will contain data for the handler. */
1021 if (reload_completed && current_function_calls_eh_return)
1022 for (i = 0; ; ++i)
1023 {
1024 unsigned regno = EH_RETURN_DATA_REGNO(i);
1025 if (regno == INVALID_REGNUM)
1026 break;
1027 SET_REGNO_REG_SET (set, regno);
1028 }
1029 #endif
1030 #ifdef EH_RETURN_STACKADJ_RTX
1031 if ((! HAVE_epilogue || ! epilogue_completed)
1032 && current_function_calls_eh_return)
1033 {
1034 rtx tmp = EH_RETURN_STACKADJ_RTX;
1035 if (tmp && REG_P (tmp))
1036 mark_reg (tmp, set);
1037 }
1038 #endif
1039 #ifdef EH_RETURN_HANDLER_RTX
1040 if ((! HAVE_epilogue || ! epilogue_completed)
1041 && current_function_calls_eh_return)
1042 {
1043 rtx tmp = EH_RETURN_HANDLER_RTX;
1044 if (tmp && REG_P (tmp))
1045 mark_reg (tmp, set);
1046 }
1047 #endif
1048
1049 /* Mark function return value. */
1050 diddle_return_value (mark_reg, set);
1051 }
1052
1053 /* Propagate global life info around the graph of basic blocks. Begin
1054 considering blocks with their corresponding bit set in BLOCKS_IN.
1055 If BLOCKS_IN is null, consider it the universal set.
1056
1057 BLOCKS_OUT is set for every block that was changed. */
1058
1059 static void
1060 calculate_global_regs_live (sbitmap blocks_in, sbitmap blocks_out, int flags)
1061 {
1062 basic_block *queue, *qhead, *qtail, *qend, bb;
1063 regset tmp, new_live_at_end, invalidated_by_call;
1064 regset_head tmp_head, invalidated_by_call_head;
1065 regset_head new_live_at_end_head;
1066 int i;
1067
1068 /* Some passes used to forget clear aux field of basic block causing
1069 sick behavior here. */
1070 #ifdef ENABLE_CHECKING
1071 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1072 if (bb->aux)
1073 abort ();
1074 #endif
1075
1076 tmp = INITIALIZE_REG_SET (tmp_head);
1077 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1078 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1079
1080 /* Inconveniently, this is only readily available in hard reg set form. */
1081 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1082 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1083 SET_REGNO_REG_SET (invalidated_by_call, i);
1084
1085 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1086 because the `head == tail' style test for an empty queue doesn't
1087 work with a full queue. */
1088 queue = xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1089 qtail = queue;
1090 qhead = qend = queue + n_basic_blocks + 2;
1091
1092 /* Queue the blocks set in the initial mask. Do this in reverse block
1093 number order so that we are more likely for the first round to do
1094 useful work. We use AUX non-null to flag that the block is queued. */
1095 if (blocks_in)
1096 {
1097 FOR_EACH_BB (bb)
1098 if (TEST_BIT (blocks_in, bb->index))
1099 {
1100 *--qhead = bb;
1101 bb->aux = bb;
1102 }
1103 }
1104 else
1105 {
1106 FOR_EACH_BB (bb)
1107 {
1108 *--qhead = bb;
1109 bb->aux = bb;
1110 }
1111 }
1112
1113 /* We clean aux when we remove the initially-enqueued bbs, but we
1114 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1115 unconditionally. */
1116 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1117
1118 if (blocks_out)
1119 sbitmap_zero (blocks_out);
1120
1121 /* We work through the queue until there are no more blocks. What
1122 is live at the end of this block is precisely the union of what
1123 is live at the beginning of all its successors. So, we set its
1124 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1125 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1126 this block by walking through the instructions in this block in
1127 reverse order and updating as we go. If that changed
1128 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1129 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1130
1131 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1132 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1133 must either be live at the end of the block, or used within the
1134 block. In the latter case, it will certainly never disappear
1135 from GLOBAL_LIVE_AT_START. In the former case, the register
1136 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1137 for one of the successor blocks. By induction, that cannot
1138 occur. */
1139 while (qhead != qtail)
1140 {
1141 int rescan, changed;
1142 basic_block bb;
1143 edge e;
1144
1145 bb = *qhead++;
1146 if (qhead == qend)
1147 qhead = queue;
1148 bb->aux = NULL;
1149
1150 /* Begin by propagating live_at_start from the successor blocks. */
1151 CLEAR_REG_SET (new_live_at_end);
1152
1153 if (bb->succ)
1154 for (e = bb->succ; e; e = e->succ_next)
1155 {
1156 basic_block sb = e->dest;
1157
1158 /* Call-clobbered registers die across exception and
1159 call edges. */
1160 /* ??? Abnormal call edges ignored for the moment, as this gets
1161 confused by sibling call edges, which crashes reg-stack. */
1162 if (e->flags & EDGE_EH)
1163 {
1164 bitmap_operation (tmp, sb->global_live_at_start,
1165 invalidated_by_call, BITMAP_AND_COMPL);
1166 IOR_REG_SET (new_live_at_end, tmp);
1167 }
1168 else
1169 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1170
1171 /* If a target saves one register in another (instead of on
1172 the stack) the save register will need to be live for EH. */
1173 if (e->flags & EDGE_EH)
1174 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1175 if (EH_USES (i))
1176 SET_REGNO_REG_SET (new_live_at_end, i);
1177 }
1178 else
1179 {
1180 /* This might be a noreturn function that throws. And
1181 even if it isn't, getting the unwind info right helps
1182 debugging. */
1183 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1184 if (EH_USES (i))
1185 SET_REGNO_REG_SET (new_live_at_end, i);
1186 }
1187
1188 /* The all-important stack pointer must always be live. */
1189 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1190
1191 /* Before reload, there are a few registers that must be forced
1192 live everywhere -- which might not already be the case for
1193 blocks within infinite loops. */
1194 if (! reload_completed)
1195 {
1196 /* Any reference to any pseudo before reload is a potential
1197 reference of the frame pointer. */
1198 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1199
1200 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1201 /* Pseudos with argument area equivalences may require
1202 reloading via the argument pointer. */
1203 if (fixed_regs[ARG_POINTER_REGNUM])
1204 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1205 #endif
1206
1207 /* Any constant, or pseudo with constant equivalences, may
1208 require reloading from memory using the pic register. */
1209 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1210 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1211 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1212 }
1213
1214 if (bb == ENTRY_BLOCK_PTR)
1215 {
1216 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1217 continue;
1218 }
1219
1220 /* On our first pass through this block, we'll go ahead and continue.
1221 Recognize first pass by local_set NULL. On subsequent passes, we
1222 get to skip out early if live_at_end wouldn't have changed. */
1223
1224 if (bb->local_set == NULL)
1225 {
1226 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1227 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1228 rescan = 1;
1229 }
1230 else
1231 {
1232 /* If any bits were removed from live_at_end, we'll have to
1233 rescan the block. This wouldn't be necessary if we had
1234 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1235 local_live is really dependent on live_at_end. */
1236 CLEAR_REG_SET (tmp);
1237 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1238 new_live_at_end, BITMAP_AND_COMPL);
1239
1240 if (! rescan)
1241 {
1242 /* If any of the registers in the new live_at_end set are
1243 conditionally set in this basic block, we must rescan.
1244 This is because conditional lifetimes at the end of the
1245 block do not just take the live_at_end set into account,
1246 but also the liveness at the start of each successor
1247 block. We can miss changes in those sets if we only
1248 compare the new live_at_end against the previous one. */
1249 CLEAR_REG_SET (tmp);
1250 rescan = bitmap_operation (tmp, new_live_at_end,
1251 bb->cond_local_set, BITMAP_AND);
1252 }
1253
1254 if (! rescan)
1255 {
1256 /* Find the set of changed bits. Take this opportunity
1257 to notice that this set is empty and early out. */
1258 CLEAR_REG_SET (tmp);
1259 changed = bitmap_operation (tmp, bb->global_live_at_end,
1260 new_live_at_end, BITMAP_XOR);
1261 if (! changed)
1262 continue;
1263
1264 /* If any of the changed bits overlap with local_set,
1265 we'll have to rescan the block. Detect overlap by
1266 the AND with ~local_set turning off bits. */
1267 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1268 BITMAP_AND_COMPL);
1269 }
1270 }
1271
1272 /* Let our caller know that BB changed enough to require its
1273 death notes updated. */
1274 if (blocks_out)
1275 SET_BIT (blocks_out, bb->index);
1276
1277 if (! rescan)
1278 {
1279 /* Add to live_at_start the set of all registers in
1280 new_live_at_end that aren't in the old live_at_end. */
1281
1282 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1283 BITMAP_AND_COMPL);
1284 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1285
1286 changed = bitmap_operation (bb->global_live_at_start,
1287 bb->global_live_at_start,
1288 tmp, BITMAP_IOR);
1289 if (! changed)
1290 continue;
1291 }
1292 else
1293 {
1294 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1295
1296 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1297 into live_at_start. */
1298 propagate_block (bb, new_live_at_end, bb->local_set,
1299 bb->cond_local_set, flags);
1300
1301 /* If live_at start didn't change, no need to go farther. */
1302 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1303 continue;
1304
1305 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1306 }
1307
1308 /* Queue all predecessors of BB so that we may re-examine
1309 their live_at_end. */
1310 for (e = bb->pred; e; e = e->pred_next)
1311 {
1312 basic_block pb = e->src;
1313 if (pb->aux == NULL)
1314 {
1315 *qtail++ = pb;
1316 if (qtail == qend)
1317 qtail = queue;
1318 pb->aux = pb;
1319 }
1320 }
1321 }
1322
1323 FREE_REG_SET (tmp);
1324 FREE_REG_SET (new_live_at_end);
1325 FREE_REG_SET (invalidated_by_call);
1326
1327 if (blocks_out)
1328 {
1329 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1330 {
1331 basic_block bb = BASIC_BLOCK (i);
1332 FREE_REG_SET (bb->local_set);
1333 FREE_REG_SET (bb->cond_local_set);
1334 });
1335 }
1336 else
1337 {
1338 FOR_EACH_BB (bb)
1339 {
1340 FREE_REG_SET (bb->local_set);
1341 FREE_REG_SET (bb->cond_local_set);
1342 }
1343 }
1344
1345 free (queue);
1346 }
1347
1348 \f
1349 /* This structure is used to pass parameters to and from the
1350 the function find_regno_partial(). It is used to pass in the
1351 register number we are looking, as well as to return any rtx
1352 we find. */
1353
1354 typedef struct {
1355 unsigned regno_to_find;
1356 rtx retval;
1357 } find_regno_partial_param;
1358
1359
1360 /* Find the rtx for the reg numbers specified in 'data' if it is
1361 part of an expression which only uses part of the register. Return
1362 it in the structure passed in. */
1363 static int
1364 find_regno_partial (rtx *ptr, void *data)
1365 {
1366 find_regno_partial_param *param = (find_regno_partial_param *)data;
1367 unsigned reg = param->regno_to_find;
1368 param->retval = NULL_RTX;
1369
1370 if (*ptr == NULL_RTX)
1371 return 0;
1372
1373 switch (GET_CODE (*ptr))
1374 {
1375 case ZERO_EXTRACT:
1376 case SIGN_EXTRACT:
1377 case STRICT_LOW_PART:
1378 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1379 {
1380 param->retval = XEXP (*ptr, 0);
1381 return 1;
1382 }
1383 break;
1384
1385 case SUBREG:
1386 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1387 && REGNO (SUBREG_REG (*ptr)) == reg)
1388 {
1389 param->retval = SUBREG_REG (*ptr);
1390 return 1;
1391 }
1392 break;
1393
1394 default:
1395 break;
1396 }
1397
1398 return 0;
1399 }
1400
1401 /* Process all immediate successors of the entry block looking for pseudo
1402 registers which are live on entry. Find all of those whose first
1403 instance is a partial register reference of some kind, and initialize
1404 them to 0 after the entry block. This will prevent bit sets within
1405 registers whose value is unknown, and may contain some kind of sticky
1406 bits we don't want. */
1407
1408 int
1409 initialize_uninitialized_subregs (void)
1410 {
1411 rtx insn;
1412 edge e;
1413 int reg, did_something = 0;
1414 find_regno_partial_param param;
1415
1416 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1417 {
1418 basic_block bb = e->dest;
1419 regset map = bb->global_live_at_start;
1420 EXECUTE_IF_SET_IN_REG_SET (map,
1421 FIRST_PSEUDO_REGISTER, reg,
1422 {
1423 int uid = REGNO_FIRST_UID (reg);
1424 rtx i;
1425
1426 /* Find an insn which mentions the register we are looking for.
1427 Its preferable to have an instance of the register's rtl since
1428 there may be various flags set which we need to duplicate.
1429 If we can't find it, its probably an automatic whose initial
1430 value doesn't matter, or hopefully something we don't care about. */
1431 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1432 ;
1433 if (i != NULL_RTX)
1434 {
1435 /* Found the insn, now get the REG rtx, if we can. */
1436 param.regno_to_find = reg;
1437 for_each_rtx (&i, find_regno_partial, &param);
1438 if (param.retval != NULL_RTX)
1439 {
1440 start_sequence ();
1441 emit_move_insn (param.retval,
1442 CONST0_RTX (GET_MODE (param.retval)));
1443 insn = get_insns ();
1444 end_sequence ();
1445 insert_insn_on_edge (insn, e);
1446 did_something = 1;
1447 }
1448 }
1449 });
1450 }
1451
1452 if (did_something)
1453 commit_edge_insertions ();
1454 return did_something;
1455 }
1456
1457 \f
1458 /* Subroutines of life analysis. */
1459
1460 /* Allocate the permanent data structures that represent the results
1461 of life analysis. Not static since used also for stupid life analysis. */
1462
1463 void
1464 allocate_bb_life_data (void)
1465 {
1466 basic_block bb;
1467
1468 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1469 {
1470 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1471 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1472 }
1473
1474 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1475 }
1476
1477 void
1478 allocate_reg_life_data (void)
1479 {
1480 int i;
1481
1482 max_regno = max_reg_num ();
1483 if (reg_deaths)
1484 abort ();
1485 reg_deaths = xcalloc (sizeof (*reg_deaths), max_regno);
1486
1487 /* Recalculate the register space, in case it has grown. Old style
1488 vector oriented regsets would set regset_{size,bytes} here also. */
1489 allocate_reg_info (max_regno, FALSE, FALSE);
1490
1491 /* Reset all the data we'll collect in propagate_block and its
1492 subroutines. */
1493 for (i = 0; i < max_regno; i++)
1494 {
1495 REG_N_SETS (i) = 0;
1496 REG_N_REFS (i) = 0;
1497 REG_N_DEATHS (i) = 0;
1498 REG_N_CALLS_CROSSED (i) = 0;
1499 REG_LIVE_LENGTH (i) = 0;
1500 REG_FREQ (i) = 0;
1501 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1502 }
1503 }
1504
1505 /* Delete dead instructions for propagate_block. */
1506
1507 static void
1508 propagate_block_delete_insn (rtx insn)
1509 {
1510 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1511
1512 /* If the insn referred to a label, and that label was attached to
1513 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1514 pretty much mandatory to delete it, because the ADDR_VEC may be
1515 referencing labels that no longer exist.
1516
1517 INSN may reference a deleted label, particularly when a jump
1518 table has been optimized into a direct jump. There's no
1519 real good way to fix up the reference to the deleted label
1520 when the label is deleted, so we just allow it here. */
1521
1522 if (inote && GET_CODE (inote) == CODE_LABEL)
1523 {
1524 rtx label = XEXP (inote, 0);
1525 rtx next;
1526
1527 /* The label may be forced if it has been put in the constant
1528 pool. If that is the only use we must discard the table
1529 jump following it, but not the label itself. */
1530 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1531 && (next = next_nonnote_insn (label)) != NULL
1532 && GET_CODE (next) == JUMP_INSN
1533 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1534 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1535 {
1536 rtx pat = PATTERN (next);
1537 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1538 int len = XVECLEN (pat, diff_vec_p);
1539 int i;
1540
1541 for (i = 0; i < len; i++)
1542 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1543
1544 delete_insn_and_edges (next);
1545 ndead++;
1546 }
1547 }
1548
1549 delete_insn_and_edges (insn);
1550 ndead++;
1551 }
1552
1553 /* Delete dead libcalls for propagate_block. Return the insn
1554 before the libcall. */
1555
1556 static rtx
1557 propagate_block_delete_libcall (rtx insn, rtx note)
1558 {
1559 rtx first = XEXP (note, 0);
1560 rtx before = PREV_INSN (first);
1561
1562 delete_insn_chain_and_edges (first, insn);
1563 ndead++;
1564 return before;
1565 }
1566
1567 /* Update the life-status of regs for one insn. Return the previous insn. */
1568
1569 rtx
1570 propagate_one_insn (struct propagate_block_info *pbi, rtx insn)
1571 {
1572 rtx prev = PREV_INSN (insn);
1573 int flags = pbi->flags;
1574 int insn_is_dead = 0;
1575 int libcall_is_dead = 0;
1576 rtx note;
1577 int i;
1578
1579 if (! INSN_P (insn))
1580 return prev;
1581
1582 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1583 if (flags & PROP_SCAN_DEAD_CODE)
1584 {
1585 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1586 libcall_is_dead = (insn_is_dead && note != 0
1587 && libcall_dead_p (pbi, note, insn));
1588 }
1589
1590 /* If an instruction consists of just dead store(s) on final pass,
1591 delete it. */
1592 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1593 {
1594 /* If we're trying to delete a prologue or epilogue instruction
1595 that isn't flagged as possibly being dead, something is wrong.
1596 But if we are keeping the stack pointer depressed, we might well
1597 be deleting insns that are used to compute the amount to update
1598 it by, so they are fine. */
1599 if (reload_completed
1600 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1601 && (TYPE_RETURNS_STACK_DEPRESSED
1602 (TREE_TYPE (current_function_decl))))
1603 && (((HAVE_epilogue || HAVE_prologue)
1604 && prologue_epilogue_contains (insn))
1605 || (HAVE_sibcall_epilogue
1606 && sibcall_epilogue_contains (insn)))
1607 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1608 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1609
1610 /* Record sets. Do this even for dead instructions, since they
1611 would have killed the values if they hadn't been deleted. */
1612 mark_set_regs (pbi, PATTERN (insn), insn);
1613
1614 /* CC0 is now known to be dead. Either this insn used it,
1615 in which case it doesn't anymore, or clobbered it,
1616 so the next insn can't use it. */
1617 pbi->cc0_live = 0;
1618
1619 if (libcall_is_dead)
1620 prev = propagate_block_delete_libcall ( insn, note);
1621 else
1622 {
1623
1624 /* If INSN contains a RETVAL note and is dead, but the libcall
1625 as a whole is not dead, then we want to remove INSN, but
1626 not the whole libcall sequence.
1627
1628 However, we need to also remove the dangling REG_LIBCALL
1629 note so that we do not have mis-matched LIBCALL/RETVAL
1630 notes. In theory we could find a new location for the
1631 REG_RETVAL note, but it hardly seems worth the effort.
1632
1633 NOTE at this point will be the RETVAL note if it exists. */
1634 if (note)
1635 {
1636 rtx libcall_note;
1637
1638 libcall_note
1639 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1640 remove_note (XEXP (note, 0), libcall_note);
1641 }
1642
1643 /* Similarly if INSN contains a LIBCALL note, remove the
1644 dangling REG_RETVAL note. */
1645 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1646 if (note)
1647 {
1648 rtx retval_note;
1649
1650 retval_note
1651 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1652 remove_note (XEXP (note, 0), retval_note);
1653 }
1654
1655 /* Now delete INSN. */
1656 propagate_block_delete_insn (insn);
1657 }
1658
1659 return prev;
1660 }
1661
1662 /* See if this is an increment or decrement that can be merged into
1663 a following memory address. */
1664 #ifdef AUTO_INC_DEC
1665 {
1666 rtx x = single_set (insn);
1667
1668 /* Does this instruction increment or decrement a register? */
1669 if ((flags & PROP_AUTOINC)
1670 && x != 0
1671 && GET_CODE (SET_DEST (x)) == REG
1672 && (GET_CODE (SET_SRC (x)) == PLUS
1673 || GET_CODE (SET_SRC (x)) == MINUS)
1674 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1675 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1676 /* Ok, look for a following memory ref we can combine with.
1677 If one is found, change the memory ref to a PRE_INC
1678 or PRE_DEC, cancel this insn, and return 1.
1679 Return 0 if nothing has been done. */
1680 && try_pre_increment_1 (pbi, insn))
1681 return prev;
1682 }
1683 #endif /* AUTO_INC_DEC */
1684
1685 CLEAR_REG_SET (pbi->new_set);
1686
1687 /* If this is not the final pass, and this insn is copying the value of
1688 a library call and it's dead, don't scan the insns that perform the
1689 library call, so that the call's arguments are not marked live. */
1690 if (libcall_is_dead)
1691 {
1692 /* Record the death of the dest reg. */
1693 mark_set_regs (pbi, PATTERN (insn), insn);
1694
1695 insn = XEXP (note, 0);
1696 return PREV_INSN (insn);
1697 }
1698 else if (GET_CODE (PATTERN (insn)) == SET
1699 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1700 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1701 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1702 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1703 {
1704 /* We have an insn to pop a constant amount off the stack.
1705 (Such insns use PLUS regardless of the direction of the stack,
1706 and any insn to adjust the stack by a constant is always a pop
1707 or part of a push.)
1708 These insns, if not dead stores, have no effect on life, though
1709 they do have an effect on the memory stores we are tracking. */
1710 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1711 /* Still, we need to update local_set, lest ifcvt.c:dead_or_predicable
1712 concludes that the stack pointer is not modified. */
1713 mark_set_regs (pbi, PATTERN (insn), insn);
1714 }
1715 else
1716 {
1717 rtx note;
1718 /* Any regs live at the time of a call instruction must not go
1719 in a register clobbered by calls. Find all regs now live and
1720 record this for them. */
1721
1722 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1723 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1724 { REG_N_CALLS_CROSSED (i)++; });
1725
1726 /* Record sets. Do this even for dead instructions, since they
1727 would have killed the values if they hadn't been deleted. */
1728 mark_set_regs (pbi, PATTERN (insn), insn);
1729
1730 if (GET_CODE (insn) == CALL_INSN)
1731 {
1732 regset live_at_end;
1733 bool sibcall_p;
1734 rtx note, cond;
1735 int i;
1736
1737 cond = NULL_RTX;
1738 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1739 cond = COND_EXEC_TEST (PATTERN (insn));
1740
1741 /* Non-constant calls clobber memory, constant calls do not
1742 clobber memory, though they may clobber outgoing arguments
1743 on the stack. */
1744 if (! CONST_OR_PURE_CALL_P (insn))
1745 {
1746 free_EXPR_LIST_list (&pbi->mem_set_list);
1747 pbi->mem_set_list_len = 0;
1748 }
1749 else
1750 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1751
1752 /* There may be extra registers to be clobbered. */
1753 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1754 note;
1755 note = XEXP (note, 1))
1756 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1757 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1758 cond, insn, pbi->flags);
1759
1760 /* Calls change all call-used and global registers; sibcalls do not
1761 clobber anything that must be preserved at end-of-function,
1762 except for return values. */
1763
1764 sibcall_p = SIBLING_CALL_P (insn);
1765 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1766 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1767 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1768 && ! (sibcall_p
1769 && REGNO_REG_SET_P (live_at_end, i)
1770 && ! refers_to_regno_p (i, i+1,
1771 current_function_return_rtx,
1772 (rtx *) 0)))
1773 {
1774 enum rtx_code code = global_regs[i] ? SET : CLOBBER;
1775 /* We do not want REG_UNUSED notes for these registers. */
1776 mark_set_1 (pbi, code, regno_reg_rtx[i], cond, insn,
1777 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1778 }
1779 }
1780
1781 /* If an insn doesn't use CC0, it becomes dead since we assume
1782 that every insn clobbers it. So show it dead here;
1783 mark_used_regs will set it live if it is referenced. */
1784 pbi->cc0_live = 0;
1785
1786 /* Record uses. */
1787 if (! insn_is_dead)
1788 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1789 if ((flags & PROP_EQUAL_NOTES)
1790 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1791 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1792 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1793
1794 /* Sometimes we may have inserted something before INSN (such as a move)
1795 when we make an auto-inc. So ensure we will scan those insns. */
1796 #ifdef AUTO_INC_DEC
1797 prev = PREV_INSN (insn);
1798 #endif
1799
1800 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1801 {
1802 int i;
1803 rtx note, cond;
1804
1805 cond = NULL_RTX;
1806 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1807 cond = COND_EXEC_TEST (PATTERN (insn));
1808
1809 /* Calls use their arguments, and may clobber memory which
1810 address involves some register. */
1811 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1812 note;
1813 note = XEXP (note, 1))
1814 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1815 of which mark_used_regs knows how to handle. */
1816 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1817
1818 /* The stack ptr is used (honorarily) by a CALL insn. */
1819 if ((flags & PROP_REG_INFO)
1820 && !REGNO_REG_SET_P (pbi->reg_live, STACK_POINTER_REGNUM))
1821 reg_deaths[STACK_POINTER_REGNUM] = pbi->insn_num;
1822 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1823
1824 /* Calls may also reference any of the global registers,
1825 so they are made live. */
1826 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1827 if (global_regs[i])
1828 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1829 }
1830 }
1831
1832 pbi->insn_num++;
1833
1834 return prev;
1835 }
1836
1837 /* Initialize a propagate_block_info struct for public consumption.
1838 Note that the structure itself is opaque to this file, but that
1839 the user can use the regsets provided here. */
1840
1841 struct propagate_block_info *
1842 init_propagate_block_info (basic_block bb, regset live, regset local_set,
1843 regset cond_local_set, int flags)
1844 {
1845 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1846
1847 pbi->bb = bb;
1848 pbi->reg_live = live;
1849 pbi->mem_set_list = NULL_RTX;
1850 pbi->mem_set_list_len = 0;
1851 pbi->local_set = local_set;
1852 pbi->cond_local_set = cond_local_set;
1853 pbi->cc0_live = 0;
1854 pbi->flags = flags;
1855 pbi->insn_num = 0;
1856
1857 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1858 pbi->reg_next_use = xcalloc (max_reg_num (), sizeof (rtx));
1859 else
1860 pbi->reg_next_use = NULL;
1861
1862 pbi->new_set = BITMAP_XMALLOC ();
1863
1864 #ifdef HAVE_conditional_execution
1865 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1866 free_reg_cond_life_info);
1867 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1868
1869 /* If this block ends in a conditional branch, for each register
1870 live from one side of the branch and not the other, record the
1871 register as conditionally dead. */
1872 if (GET_CODE (BB_END (bb)) == JUMP_INSN
1873 && any_condjump_p (BB_END (bb)))
1874 {
1875 regset_head diff_head;
1876 regset diff = INITIALIZE_REG_SET (diff_head);
1877 basic_block bb_true, bb_false;
1878 int i;
1879
1880 /* Identify the successor blocks. */
1881 bb_true = bb->succ->dest;
1882 if (bb->succ->succ_next != NULL)
1883 {
1884 bb_false = bb->succ->succ_next->dest;
1885
1886 if (bb->succ->flags & EDGE_FALLTHRU)
1887 {
1888 basic_block t = bb_false;
1889 bb_false = bb_true;
1890 bb_true = t;
1891 }
1892 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1893 abort ();
1894 }
1895 else
1896 {
1897 /* This can happen with a conditional jump to the next insn. */
1898 if (JUMP_LABEL (BB_END (bb)) != BB_HEAD (bb_true))
1899 abort ();
1900
1901 /* Simplest way to do nothing. */
1902 bb_false = bb_true;
1903 }
1904
1905 /* Compute which register lead different lives in the successors. */
1906 if (bitmap_operation (diff, bb_true->global_live_at_start,
1907 bb_false->global_live_at_start, BITMAP_XOR))
1908 {
1909 /* Extract the condition from the branch. */
1910 rtx set_src = SET_SRC (pc_set (BB_END (bb)));
1911 rtx cond_true = XEXP (set_src, 0);
1912 rtx reg = XEXP (cond_true, 0);
1913
1914 if (GET_CODE (reg) == SUBREG)
1915 reg = SUBREG_REG (reg);
1916
1917 /* We can only track conditional lifetimes if the condition is
1918 in the form of a comparison of a register against zero.
1919 If the condition is more complex than that, then it is safe
1920 not to record any information. */
1921 if (GET_CODE (reg) == REG
1922 && XEXP (cond_true, 1) == const0_rtx)
1923 {
1924 rtx cond_false
1925 = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1926 GET_MODE (cond_true), XEXP (cond_true, 0),
1927 XEXP (cond_true, 1));
1928 if (GET_CODE (XEXP (set_src, 1)) == PC)
1929 {
1930 rtx t = cond_false;
1931 cond_false = cond_true;
1932 cond_true = t;
1933 }
1934
1935 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1936
1937 /* For each such register, mark it conditionally dead. */
1938 EXECUTE_IF_SET_IN_REG_SET
1939 (diff, 0, i,
1940 {
1941 struct reg_cond_life_info *rcli;
1942 rtx cond;
1943
1944 rcli = xmalloc (sizeof (*rcli));
1945
1946 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1947 cond = cond_false;
1948 else
1949 cond = cond_true;
1950 rcli->condition = cond;
1951 rcli->stores = const0_rtx;
1952 rcli->orig_condition = cond;
1953
1954 splay_tree_insert (pbi->reg_cond_dead, i,
1955 (splay_tree_value) rcli);
1956 });
1957 }
1958 }
1959
1960 FREE_REG_SET (diff);
1961 }
1962 #endif
1963
1964 /* If this block has no successors, any stores to the frame that aren't
1965 used later in the block are dead. So make a pass over the block
1966 recording any such that are made and show them dead at the end. We do
1967 a very conservative and simple job here. */
1968 if (optimize
1969 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1970 && (TYPE_RETURNS_STACK_DEPRESSED
1971 (TREE_TYPE (current_function_decl))))
1972 && (flags & PROP_SCAN_DEAD_STORES)
1973 && (bb->succ == NULL
1974 || (bb->succ->succ_next == NULL
1975 && bb->succ->dest == EXIT_BLOCK_PTR
1976 && ! current_function_calls_eh_return)))
1977 {
1978 rtx insn, set;
1979 for (insn = BB_END (bb); insn != BB_HEAD (bb); insn = PREV_INSN (insn))
1980 if (GET_CODE (insn) == INSN
1981 && (set = single_set (insn))
1982 && GET_CODE (SET_DEST (set)) == MEM)
1983 {
1984 rtx mem = SET_DEST (set);
1985 rtx canon_mem = canon_rtx (mem);
1986
1987 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1988 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1989 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1990 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1991 add_to_mem_set_list (pbi, canon_mem);
1992 }
1993 }
1994
1995 return pbi;
1996 }
1997
1998 /* Release a propagate_block_info struct. */
1999
2000 void
2001 free_propagate_block_info (struct propagate_block_info *pbi)
2002 {
2003 free_EXPR_LIST_list (&pbi->mem_set_list);
2004
2005 BITMAP_XFREE (pbi->new_set);
2006
2007 #ifdef HAVE_conditional_execution
2008 splay_tree_delete (pbi->reg_cond_dead);
2009 BITMAP_XFREE (pbi->reg_cond_reg);
2010 #endif
2011
2012 if (pbi->flags & PROP_REG_INFO)
2013 {
2014 int num = pbi->insn_num;
2015 int i;
2016
2017 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
2018 { REG_LIVE_LENGTH (i) += num - reg_deaths[i];
2019 reg_deaths[i] = 0;
2020 });
2021 }
2022 if (pbi->reg_next_use)
2023 free (pbi->reg_next_use);
2024
2025 free (pbi);
2026 }
2027
2028 /* Compute the registers live at the beginning of a basic block BB from
2029 those live at the end.
2030
2031 When called, REG_LIVE contains those live at the end. On return, it
2032 contains those live at the beginning.
2033
2034 LOCAL_SET, if non-null, will be set with all registers killed
2035 unconditionally by this basic block.
2036 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2037 killed conditionally by this basic block. If there is any unconditional
2038 set of a register, then the corresponding bit will be set in LOCAL_SET
2039 and cleared in COND_LOCAL_SET.
2040 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2041 case, the resulting set will be equal to the union of the two sets that
2042 would otherwise be computed.
2043
2044 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2045
2046 int
2047 propagate_block (basic_block bb, regset live, regset local_set,
2048 regset cond_local_set, int flags)
2049 {
2050 struct propagate_block_info *pbi;
2051 rtx insn, prev;
2052 int changed;
2053
2054 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2055
2056 if (flags & PROP_REG_INFO)
2057 {
2058 int i;
2059
2060 /* Process the regs live at the end of the block.
2061 Mark them as not local to any one basic block. */
2062 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2063 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2064 }
2065
2066 /* Scan the block an insn at a time from end to beginning. */
2067
2068 changed = 0;
2069 for (insn = BB_END (bb); ; insn = prev)
2070 {
2071 /* If this is a call to `setjmp' et al, warn if any
2072 non-volatile datum is live. */
2073 if ((flags & PROP_REG_INFO)
2074 && GET_CODE (insn) == CALL_INSN
2075 && find_reg_note (insn, REG_SETJMP, NULL))
2076 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2077
2078 prev = propagate_one_insn (pbi, insn);
2079 if (!prev)
2080 changed |= insn != get_insns ();
2081 else
2082 changed |= NEXT_INSN (prev) != insn;
2083
2084 if (insn == BB_HEAD (bb))
2085 break;
2086 }
2087
2088 free_propagate_block_info (pbi);
2089
2090 return changed;
2091 }
2092 \f
2093 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2094 (SET expressions whose destinations are registers dead after the insn).
2095 NEEDED is the regset that says which regs are alive after the insn.
2096
2097 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2098
2099 If X is the entire body of an insn, NOTES contains the reg notes
2100 pertaining to the insn. */
2101
2102 static int
2103 insn_dead_p (struct propagate_block_info *pbi, rtx x, int call_ok,
2104 rtx notes ATTRIBUTE_UNUSED)
2105 {
2106 enum rtx_code code = GET_CODE (x);
2107
2108 /* Don't eliminate insns that may trap. */
2109 if (flag_non_call_exceptions && may_trap_p (x))
2110 return 0;
2111
2112 #ifdef AUTO_INC_DEC
2113 /* As flow is invoked after combine, we must take existing AUTO_INC
2114 expressions into account. */
2115 for (; notes; notes = XEXP (notes, 1))
2116 {
2117 if (REG_NOTE_KIND (notes) == REG_INC)
2118 {
2119 int regno = REGNO (XEXP (notes, 0));
2120
2121 /* Don't delete insns to set global regs. */
2122 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2123 || REGNO_REG_SET_P (pbi->reg_live, regno))
2124 return 0;
2125 }
2126 }
2127 #endif
2128
2129 /* If setting something that's a reg or part of one,
2130 see if that register's altered value will be live. */
2131
2132 if (code == SET)
2133 {
2134 rtx r = SET_DEST (x);
2135
2136 #ifdef HAVE_cc0
2137 if (GET_CODE (r) == CC0)
2138 return ! pbi->cc0_live;
2139 #endif
2140
2141 /* A SET that is a subroutine call cannot be dead. */
2142 if (GET_CODE (SET_SRC (x)) == CALL)
2143 {
2144 if (! call_ok)
2145 return 0;
2146 }
2147
2148 /* Don't eliminate loads from volatile memory or volatile asms. */
2149 else if (volatile_refs_p (SET_SRC (x)))
2150 return 0;
2151
2152 if (GET_CODE (r) == MEM)
2153 {
2154 rtx temp, canon_r;
2155
2156 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2157 return 0;
2158
2159 canon_r = canon_rtx (r);
2160
2161 /* Walk the set of memory locations we are currently tracking
2162 and see if one is an identical match to this memory location.
2163 If so, this memory write is dead (remember, we're walking
2164 backwards from the end of the block to the start). Since
2165 rtx_equal_p does not check the alias set or flags, we also
2166 must have the potential for them to conflict (anti_dependence). */
2167 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2168 if (unchanging_anti_dependence (r, XEXP (temp, 0)))
2169 {
2170 rtx mem = XEXP (temp, 0);
2171
2172 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2173 && (GET_MODE_SIZE (GET_MODE (canon_r))
2174 <= GET_MODE_SIZE (GET_MODE (mem))))
2175 return 1;
2176
2177 #ifdef AUTO_INC_DEC
2178 /* Check if memory reference matches an auto increment. Only
2179 post increment/decrement or modify are valid. */
2180 if (GET_MODE (mem) == GET_MODE (r)
2181 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2182 || GET_CODE (XEXP (mem, 0)) == POST_INC
2183 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2184 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2185 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2186 return 1;
2187 #endif
2188 }
2189 }
2190 else
2191 {
2192 while (GET_CODE (r) == SUBREG
2193 || GET_CODE (r) == STRICT_LOW_PART
2194 || GET_CODE (r) == ZERO_EXTRACT)
2195 r = XEXP (r, 0);
2196
2197 if (GET_CODE (r) == REG)
2198 {
2199 int regno = REGNO (r);
2200
2201 /* Obvious. */
2202 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2203 return 0;
2204
2205 /* If this is a hard register, verify that subsequent
2206 words are not needed. */
2207 if (regno < FIRST_PSEUDO_REGISTER)
2208 {
2209 int n = hard_regno_nregs[regno][GET_MODE (r)];
2210
2211 while (--n > 0)
2212 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2213 return 0;
2214 }
2215
2216 /* Don't delete insns to set global regs. */
2217 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2218 return 0;
2219
2220 /* Make sure insns to set the stack pointer aren't deleted. */
2221 if (regno == STACK_POINTER_REGNUM)
2222 return 0;
2223
2224 /* ??? These bits might be redundant with the force live bits
2225 in calculate_global_regs_live. We would delete from
2226 sequential sets; whether this actually affects real code
2227 for anything but the stack pointer I don't know. */
2228 /* Make sure insns to set the frame pointer aren't deleted. */
2229 if (regno == FRAME_POINTER_REGNUM
2230 && (! reload_completed || frame_pointer_needed))
2231 return 0;
2232 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2233 if (regno == HARD_FRAME_POINTER_REGNUM
2234 && (! reload_completed || frame_pointer_needed))
2235 return 0;
2236 #endif
2237
2238 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2239 /* Make sure insns to set arg pointer are never deleted
2240 (if the arg pointer isn't fixed, there will be a USE
2241 for it, so we can treat it normally). */
2242 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2243 return 0;
2244 #endif
2245
2246 /* Otherwise, the set is dead. */
2247 return 1;
2248 }
2249 }
2250 }
2251
2252 /* If performing several activities, insn is dead if each activity
2253 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2254 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2255 worth keeping. */
2256 else if (code == PARALLEL)
2257 {
2258 int i = XVECLEN (x, 0);
2259
2260 for (i--; i >= 0; i--)
2261 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2262 && GET_CODE (XVECEXP (x, 0, i)) != USE
2263 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2264 return 0;
2265
2266 return 1;
2267 }
2268
2269 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2270 is not necessarily true for hard registers until after reload. */
2271 else if (code == CLOBBER)
2272 {
2273 if (GET_CODE (XEXP (x, 0)) == REG
2274 && (REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2275 || reload_completed)
2276 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2277 return 1;
2278 }
2279
2280 /* ??? A base USE is a historical relic. It ought not be needed anymore.
2281 Instances where it is still used are either (1) temporary and the USE
2282 escaped the pass, (2) cruft and the USE need not be emitted anymore,
2283 or (3) hiding bugs elsewhere that are not properly representing data
2284 flow. */
2285
2286 return 0;
2287 }
2288
2289 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2290 return 1 if the entire library call is dead.
2291 This is true if INSN copies a register (hard or pseudo)
2292 and if the hard return reg of the call insn is dead.
2293 (The caller should have tested the destination of the SET inside
2294 INSN already for death.)
2295
2296 If this insn doesn't just copy a register, then we don't
2297 have an ordinary libcall. In that case, cse could not have
2298 managed to substitute the source for the dest later on,
2299 so we can assume the libcall is dead.
2300
2301 PBI is the block info giving pseudoregs live before this insn.
2302 NOTE is the REG_RETVAL note of the insn. */
2303
2304 static int
2305 libcall_dead_p (struct propagate_block_info *pbi, rtx note, rtx insn)
2306 {
2307 rtx x = single_set (insn);
2308
2309 if (x)
2310 {
2311 rtx r = SET_SRC (x);
2312
2313 if (GET_CODE (r) == REG)
2314 {
2315 rtx call = XEXP (note, 0);
2316 rtx call_pat;
2317 int i;
2318
2319 /* Find the call insn. */
2320 while (call != insn && GET_CODE (call) != CALL_INSN)
2321 call = NEXT_INSN (call);
2322
2323 /* If there is none, do nothing special,
2324 since ordinary death handling can understand these insns. */
2325 if (call == insn)
2326 return 0;
2327
2328 /* See if the hard reg holding the value is dead.
2329 If this is a PARALLEL, find the call within it. */
2330 call_pat = PATTERN (call);
2331 if (GET_CODE (call_pat) == PARALLEL)
2332 {
2333 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2334 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2335 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2336 break;
2337
2338 /* This may be a library call that is returning a value
2339 via invisible pointer. Do nothing special, since
2340 ordinary death handling can understand these insns. */
2341 if (i < 0)
2342 return 0;
2343
2344 call_pat = XVECEXP (call_pat, 0, i);
2345 }
2346
2347 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2348 }
2349 }
2350 return 1;
2351 }
2352
2353 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2354 live at function entry. Don't count global register variables, variables
2355 in registers that can be used for function arg passing, or variables in
2356 fixed hard registers. */
2357
2358 int
2359 regno_uninitialized (unsigned int regno)
2360 {
2361 if (n_basic_blocks == 0
2362 || (regno < FIRST_PSEUDO_REGISTER
2363 && (global_regs[regno]
2364 || fixed_regs[regno]
2365 || FUNCTION_ARG_REGNO_P (regno))))
2366 return 0;
2367
2368 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2369 }
2370
2371 /* 1 if register REGNO was alive at a place where `setjmp' was called
2372 and was set more than once or is an argument.
2373 Such regs may be clobbered by `longjmp'. */
2374
2375 int
2376 regno_clobbered_at_setjmp (int regno)
2377 {
2378 if (n_basic_blocks == 0)
2379 return 0;
2380
2381 return ((REG_N_SETS (regno) > 1
2382 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2383 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2384 }
2385 \f
2386 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2387 maximal list size; look for overlaps in mode and select the largest. */
2388 static void
2389 add_to_mem_set_list (struct propagate_block_info *pbi, rtx mem)
2390 {
2391 rtx i;
2392
2393 /* We don't know how large a BLKmode store is, so we must not
2394 take them into consideration. */
2395 if (GET_MODE (mem) == BLKmode)
2396 return;
2397
2398 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2399 {
2400 rtx e = XEXP (i, 0);
2401 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2402 {
2403 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2404 {
2405 #ifdef AUTO_INC_DEC
2406 /* If we must store a copy of the mem, we can just modify
2407 the mode of the stored copy. */
2408 if (pbi->flags & PROP_AUTOINC)
2409 PUT_MODE (e, GET_MODE (mem));
2410 else
2411 #endif
2412 XEXP (i, 0) = mem;
2413 }
2414 return;
2415 }
2416 }
2417
2418 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2419 {
2420 #ifdef AUTO_INC_DEC
2421 /* Store a copy of mem, otherwise the address may be
2422 scrogged by find_auto_inc. */
2423 if (pbi->flags & PROP_AUTOINC)
2424 mem = shallow_copy_rtx (mem);
2425 #endif
2426 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2427 pbi->mem_set_list_len++;
2428 }
2429 }
2430
2431 /* INSN references memory, possibly using autoincrement addressing modes.
2432 Find any entries on the mem_set_list that need to be invalidated due
2433 to an address change. */
2434
2435 static int
2436 invalidate_mems_from_autoinc (rtx *px, void *data)
2437 {
2438 rtx x = *px;
2439 struct propagate_block_info *pbi = data;
2440
2441 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
2442 {
2443 invalidate_mems_from_set (pbi, XEXP (x, 0));
2444 return -1;
2445 }
2446
2447 return 0;
2448 }
2449
2450 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2451
2452 static void
2453 invalidate_mems_from_set (struct propagate_block_info *pbi, rtx exp)
2454 {
2455 rtx temp = pbi->mem_set_list;
2456 rtx prev = NULL_RTX;
2457 rtx next;
2458
2459 while (temp)
2460 {
2461 next = XEXP (temp, 1);
2462 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2463 {
2464 /* Splice this entry out of the list. */
2465 if (prev)
2466 XEXP (prev, 1) = next;
2467 else
2468 pbi->mem_set_list = next;
2469 free_EXPR_LIST_node (temp);
2470 pbi->mem_set_list_len--;
2471 }
2472 else
2473 prev = temp;
2474 temp = next;
2475 }
2476 }
2477
2478 /* Process the registers that are set within X. Their bits are set to
2479 1 in the regset DEAD, because they are dead prior to this insn.
2480
2481 If INSN is nonzero, it is the insn being processed.
2482
2483 FLAGS is the set of operations to perform. */
2484
2485 static void
2486 mark_set_regs (struct propagate_block_info *pbi, rtx x, rtx insn)
2487 {
2488 rtx cond = NULL_RTX;
2489 rtx link;
2490 enum rtx_code code;
2491 int flags = pbi->flags;
2492
2493 if (insn)
2494 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2495 {
2496 if (REG_NOTE_KIND (link) == REG_INC)
2497 mark_set_1 (pbi, SET, XEXP (link, 0),
2498 (GET_CODE (x) == COND_EXEC
2499 ? COND_EXEC_TEST (x) : NULL_RTX),
2500 insn, flags);
2501 }
2502 retry:
2503 switch (code = GET_CODE (x))
2504 {
2505 case SET:
2506 if (GET_CODE (XEXP (x, 1)) == ASM_OPERANDS)
2507 flags |= PROP_ASM_SCAN;
2508 /* Fall through */
2509 case CLOBBER:
2510 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, flags);
2511 return;
2512
2513 case COND_EXEC:
2514 cond = COND_EXEC_TEST (x);
2515 x = COND_EXEC_CODE (x);
2516 goto retry;
2517
2518 case PARALLEL:
2519 {
2520 int i;
2521
2522 /* We must scan forwards. If we have an asm, we need to set
2523 the PROP_ASM_SCAN flag before scanning the clobbers. */
2524 for (i = 0; i < XVECLEN (x, 0); i++)
2525 {
2526 rtx sub = XVECEXP (x, 0, i);
2527 switch (code = GET_CODE (sub))
2528 {
2529 case COND_EXEC:
2530 if (cond != NULL_RTX)
2531 abort ();
2532
2533 cond = COND_EXEC_TEST (sub);
2534 sub = COND_EXEC_CODE (sub);
2535 if (GET_CODE (sub) == SET)
2536 goto mark_set;
2537 if (GET_CODE (sub) == CLOBBER)
2538 goto mark_clob;
2539 break;
2540
2541 case SET:
2542 mark_set:
2543 if (GET_CODE (XEXP (sub, 1)) == ASM_OPERANDS)
2544 flags |= PROP_ASM_SCAN;
2545 /* Fall through */
2546 case CLOBBER:
2547 mark_clob:
2548 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, flags);
2549 break;
2550
2551 case ASM_OPERANDS:
2552 flags |= PROP_ASM_SCAN;
2553 break;
2554
2555 default:
2556 break;
2557 }
2558 }
2559 break;
2560 }
2561
2562 default:
2563 break;
2564 }
2565 }
2566
2567 /* Process a single set, which appears in INSN. REG (which may not
2568 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2569 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2570 If the set is conditional (because it appear in a COND_EXEC), COND
2571 will be the condition. */
2572
2573 static void
2574 mark_set_1 (struct propagate_block_info *pbi, enum rtx_code code, rtx reg, rtx cond, rtx insn, int flags)
2575 {
2576 int regno_first = -1, regno_last = -1;
2577 unsigned long not_dead = 0;
2578 int i;
2579
2580 /* Modifying just one hardware register of a multi-reg value or just a
2581 byte field of a register does not mean the value from before this insn
2582 is now dead. Of course, if it was dead after it's unused now. */
2583
2584 switch (GET_CODE (reg))
2585 {
2586 case PARALLEL:
2587 /* Some targets place small structures in registers for return values of
2588 functions. We have to detect this case specially here to get correct
2589 flow information. */
2590 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2591 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2592 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2593 flags);
2594 return;
2595
2596 case ZERO_EXTRACT:
2597 case SIGN_EXTRACT:
2598 case STRICT_LOW_PART:
2599 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2600 do
2601 reg = XEXP (reg, 0);
2602 while (GET_CODE (reg) == SUBREG
2603 || GET_CODE (reg) == ZERO_EXTRACT
2604 || GET_CODE (reg) == SIGN_EXTRACT
2605 || GET_CODE (reg) == STRICT_LOW_PART);
2606 if (GET_CODE (reg) == MEM)
2607 break;
2608 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2609 /* Fall through. */
2610
2611 case REG:
2612 regno_last = regno_first = REGNO (reg);
2613 if (regno_first < FIRST_PSEUDO_REGISTER)
2614 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
2615 break;
2616
2617 case SUBREG:
2618 if (GET_CODE (SUBREG_REG (reg)) == REG)
2619 {
2620 enum machine_mode outer_mode = GET_MODE (reg);
2621 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2622
2623 /* Identify the range of registers affected. This is moderately
2624 tricky for hard registers. See alter_subreg. */
2625
2626 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2627 if (regno_first < FIRST_PSEUDO_REGISTER)
2628 {
2629 regno_first += subreg_regno_offset (regno_first, inner_mode,
2630 SUBREG_BYTE (reg),
2631 outer_mode);
2632 regno_last = (regno_first
2633 + hard_regno_nregs[regno_first][outer_mode] - 1);
2634
2635 /* Since we've just adjusted the register number ranges, make
2636 sure REG matches. Otherwise some_was_live will be clear
2637 when it shouldn't have been, and we'll create incorrect
2638 REG_UNUSED notes. */
2639 reg = gen_rtx_REG (outer_mode, regno_first);
2640 }
2641 else
2642 {
2643 /* If the number of words in the subreg is less than the number
2644 of words in the full register, we have a well-defined partial
2645 set. Otherwise the high bits are undefined.
2646
2647 This is only really applicable to pseudos, since we just took
2648 care of multi-word hard registers. */
2649 if (((GET_MODE_SIZE (outer_mode)
2650 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2651 < ((GET_MODE_SIZE (inner_mode)
2652 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2653 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2654 regno_first);
2655
2656 reg = SUBREG_REG (reg);
2657 }
2658 }
2659 else
2660 reg = SUBREG_REG (reg);
2661 break;
2662
2663 default:
2664 break;
2665 }
2666
2667 /* If this set is a MEM, then it kills any aliased writes.
2668 If this set is a REG, then it kills any MEMs which use the reg. */
2669 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2670 {
2671 if (GET_CODE (reg) == REG)
2672 invalidate_mems_from_set (pbi, reg);
2673
2674 /* If the memory reference had embedded side effects (autoincrement
2675 address modes. Then we may need to kill some entries on the
2676 memory set list. */
2677 if (insn && GET_CODE (reg) == MEM)
2678 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2679
2680 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2681 /* ??? With more effort we could track conditional memory life. */
2682 && ! cond)
2683 add_to_mem_set_list (pbi, canon_rtx (reg));
2684 }
2685
2686 if (GET_CODE (reg) == REG
2687 && ! (regno_first == FRAME_POINTER_REGNUM
2688 && (! reload_completed || frame_pointer_needed))
2689 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2690 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2691 && (! reload_completed || frame_pointer_needed))
2692 #endif
2693 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2694 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2695 #endif
2696 )
2697 {
2698 int some_was_live = 0, some_was_dead = 0;
2699
2700 for (i = regno_first; i <= regno_last; ++i)
2701 {
2702 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2703 if (pbi->local_set)
2704 {
2705 /* Order of the set operation matters here since both
2706 sets may be the same. */
2707 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2708 if (cond != NULL_RTX
2709 && ! REGNO_REG_SET_P (pbi->local_set, i))
2710 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2711 else
2712 SET_REGNO_REG_SET (pbi->local_set, i);
2713 }
2714 if (code != CLOBBER)
2715 SET_REGNO_REG_SET (pbi->new_set, i);
2716
2717 some_was_live |= needed_regno;
2718 some_was_dead |= ! needed_regno;
2719 }
2720
2721 #ifdef HAVE_conditional_execution
2722 /* Consider conditional death in deciding that the register needs
2723 a death note. */
2724 if (some_was_live && ! not_dead
2725 /* The stack pointer is never dead. Well, not strictly true,
2726 but it's very difficult to tell from here. Hopefully
2727 combine_stack_adjustments will fix up the most egregious
2728 errors. */
2729 && regno_first != STACK_POINTER_REGNUM)
2730 {
2731 for (i = regno_first; i <= regno_last; ++i)
2732 if (! mark_regno_cond_dead (pbi, i, cond))
2733 not_dead |= ((unsigned long) 1) << (i - regno_first);
2734 }
2735 #endif
2736
2737 /* Additional data to record if this is the final pass. */
2738 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2739 | PROP_DEATH_NOTES | PROP_AUTOINC))
2740 {
2741 rtx y;
2742 int blocknum = pbi->bb->index;
2743
2744 y = NULL_RTX;
2745 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2746 {
2747 y = pbi->reg_next_use[regno_first];
2748
2749 /* The next use is no longer next, since a store intervenes. */
2750 for (i = regno_first; i <= regno_last; ++i)
2751 pbi->reg_next_use[i] = 0;
2752 }
2753
2754 if (flags & PROP_REG_INFO)
2755 {
2756 for (i = regno_first; i <= regno_last; ++i)
2757 {
2758 /* Count (weighted) references, stores, etc. This counts a
2759 register twice if it is modified, but that is correct. */
2760 REG_N_SETS (i) += 1;
2761 REG_N_REFS (i) += 1;
2762 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2763
2764 /* The insns where a reg is live are normally counted
2765 elsewhere, but we want the count to include the insn
2766 where the reg is set, and the normal counting mechanism
2767 would not count it. */
2768 REG_LIVE_LENGTH (i) += 1;
2769 }
2770
2771 /* If this is a hard reg, record this function uses the reg. */
2772 if (regno_first < FIRST_PSEUDO_REGISTER)
2773 {
2774 for (i = regno_first; i <= regno_last; i++)
2775 regs_ever_live[i] = 1;
2776 if (flags & PROP_ASM_SCAN)
2777 for (i = regno_first; i <= regno_last; i++)
2778 regs_asm_clobbered[i] = 1;
2779 }
2780 else
2781 {
2782 /* Keep track of which basic blocks each reg appears in. */
2783 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2784 REG_BASIC_BLOCK (regno_first) = blocknum;
2785 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2786 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2787 }
2788 }
2789
2790 if (! some_was_dead)
2791 {
2792 if (flags & PROP_LOG_LINKS)
2793 {
2794 /* Make a logical link from the next following insn
2795 that uses this register, back to this insn.
2796 The following insns have already been processed.
2797
2798 We don't build a LOG_LINK for hard registers containing
2799 in ASM_OPERANDs. If these registers get replaced,
2800 we might wind up changing the semantics of the insn,
2801 even if reload can make what appear to be valid
2802 assignments later.
2803
2804 We don't build a LOG_LINK for global registers to
2805 or from a function call. We don't want to let
2806 combine think that it knows what is going on with
2807 global registers. */
2808 if (y && (BLOCK_NUM (y) == blocknum)
2809 && (regno_first >= FIRST_PSEUDO_REGISTER
2810 || (asm_noperands (PATTERN (y)) < 0
2811 && ! ((GET_CODE (insn) == CALL_INSN
2812 || GET_CODE (y) == CALL_INSN)
2813 && global_regs[regno_first]))))
2814 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2815 }
2816 }
2817 else if (not_dead)
2818 ;
2819 else if (! some_was_live)
2820 {
2821 if (flags & PROP_REG_INFO)
2822 REG_N_DEATHS (regno_first) += 1;
2823
2824 if (flags & PROP_DEATH_NOTES)
2825 {
2826 /* Note that dead stores have already been deleted
2827 when possible. If we get here, we have found a
2828 dead store that cannot be eliminated (because the
2829 same insn does something useful). Indicate this
2830 by marking the reg being set as dying here. */
2831 REG_NOTES (insn)
2832 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2833 }
2834 }
2835 else
2836 {
2837 if (flags & PROP_DEATH_NOTES)
2838 {
2839 /* This is a case where we have a multi-word hard register
2840 and some, but not all, of the words of the register are
2841 needed in subsequent insns. Write REG_UNUSED notes
2842 for those parts that were not needed. This case should
2843 be rare. */
2844
2845 for (i = regno_first; i <= regno_last; ++i)
2846 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2847 REG_NOTES (insn)
2848 = alloc_EXPR_LIST (REG_UNUSED,
2849 regno_reg_rtx[i],
2850 REG_NOTES (insn));
2851 }
2852 }
2853 }
2854
2855 /* Mark the register as being dead. */
2856 if (some_was_live
2857 /* The stack pointer is never dead. Well, not strictly true,
2858 but it's very difficult to tell from here. Hopefully
2859 combine_stack_adjustments will fix up the most egregious
2860 errors. */
2861 && regno_first != STACK_POINTER_REGNUM)
2862 {
2863 for (i = regno_first; i <= regno_last; ++i)
2864 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2865 {
2866 if ((pbi->flags & PROP_REG_INFO)
2867 && REGNO_REG_SET_P (pbi->reg_live, i))
2868 {
2869 REG_LIVE_LENGTH (i) += pbi->insn_num - reg_deaths[i];
2870 reg_deaths[i] = 0;
2871 }
2872 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2873 }
2874 }
2875 }
2876 else if (GET_CODE (reg) == REG)
2877 {
2878 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2879 pbi->reg_next_use[regno_first] = 0;
2880
2881 if ((flags & PROP_REG_INFO) != 0
2882 && (flags & PROP_ASM_SCAN) != 0
2883 && regno_first < FIRST_PSEUDO_REGISTER)
2884 {
2885 for (i = regno_first; i <= regno_last; i++)
2886 regs_asm_clobbered[i] = 1;
2887 }
2888 }
2889
2890 /* If this is the last pass and this is a SCRATCH, show it will be dying
2891 here and count it. */
2892 else if (GET_CODE (reg) == SCRATCH)
2893 {
2894 if (flags & PROP_DEATH_NOTES)
2895 REG_NOTES (insn)
2896 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2897 }
2898 }
2899 \f
2900 #ifdef HAVE_conditional_execution
2901 /* Mark REGNO conditionally dead.
2902 Return true if the register is now unconditionally dead. */
2903
2904 static int
2905 mark_regno_cond_dead (struct propagate_block_info *pbi, int regno, rtx cond)
2906 {
2907 /* If this is a store to a predicate register, the value of the
2908 predicate is changing, we don't know that the predicate as seen
2909 before is the same as that seen after. Flush all dependent
2910 conditions from reg_cond_dead. This will make all such
2911 conditionally live registers unconditionally live. */
2912 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2913 flush_reg_cond_reg (pbi, regno);
2914
2915 /* If this is an unconditional store, remove any conditional
2916 life that may have existed. */
2917 if (cond == NULL_RTX)
2918 splay_tree_remove (pbi->reg_cond_dead, regno);
2919 else
2920 {
2921 splay_tree_node node;
2922 struct reg_cond_life_info *rcli;
2923 rtx ncond;
2924
2925 /* Otherwise this is a conditional set. Record that fact.
2926 It may have been conditionally used, or there may be a
2927 subsequent set with a complimentary condition. */
2928
2929 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2930 if (node == NULL)
2931 {
2932 /* The register was unconditionally live previously.
2933 Record the current condition as the condition under
2934 which it is dead. */
2935 rcli = xmalloc (sizeof (*rcli));
2936 rcli->condition = cond;
2937 rcli->stores = cond;
2938 rcli->orig_condition = const0_rtx;
2939 splay_tree_insert (pbi->reg_cond_dead, regno,
2940 (splay_tree_value) rcli);
2941
2942 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2943
2944 /* Not unconditionally dead. */
2945 return 0;
2946 }
2947 else
2948 {
2949 /* The register was conditionally live previously.
2950 Add the new condition to the old. */
2951 rcli = (struct reg_cond_life_info *) node->value;
2952 ncond = rcli->condition;
2953 ncond = ior_reg_cond (ncond, cond, 1);
2954 if (rcli->stores == const0_rtx)
2955 rcli->stores = cond;
2956 else if (rcli->stores != const1_rtx)
2957 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2958
2959 /* If the register is now unconditionally dead, remove the entry
2960 in the splay_tree. A register is unconditionally dead if the
2961 dead condition ncond is true. A register is also unconditionally
2962 dead if the sum of all conditional stores is an unconditional
2963 store (stores is true), and the dead condition is identically the
2964 same as the original dead condition initialized at the end of
2965 the block. This is a pointer compare, not an rtx_equal_p
2966 compare. */
2967 if (ncond == const1_rtx
2968 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2969 splay_tree_remove (pbi->reg_cond_dead, regno);
2970 else
2971 {
2972 rcli->condition = ncond;
2973
2974 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2975
2976 /* Not unconditionally dead. */
2977 return 0;
2978 }
2979 }
2980 }
2981
2982 return 1;
2983 }
2984
2985 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2986
2987 static void
2988 free_reg_cond_life_info (splay_tree_value value)
2989 {
2990 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2991 free (rcli);
2992 }
2993
2994 /* Helper function for flush_reg_cond_reg. */
2995
2996 static int
2997 flush_reg_cond_reg_1 (splay_tree_node node, void *data)
2998 {
2999 struct reg_cond_life_info *rcli;
3000 int *xdata = (int *) data;
3001 unsigned int regno = xdata[0];
3002
3003 /* Don't need to search if last flushed value was farther on in
3004 the in-order traversal. */
3005 if (xdata[1] >= (int) node->key)
3006 return 0;
3007
3008 /* Splice out portions of the expression that refer to regno. */
3009 rcli = (struct reg_cond_life_info *) node->value;
3010 rcli->condition = elim_reg_cond (rcli->condition, regno);
3011 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3012 rcli->stores = elim_reg_cond (rcli->stores, regno);
3013
3014 /* If the entire condition is now false, signal the node to be removed. */
3015 if (rcli->condition == const0_rtx)
3016 {
3017 xdata[1] = node->key;
3018 return -1;
3019 }
3020 else if (rcli->condition == const1_rtx)
3021 abort ();
3022
3023 return 0;
3024 }
3025
3026 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3027
3028 static void
3029 flush_reg_cond_reg (struct propagate_block_info *pbi, int regno)
3030 {
3031 int pair[2];
3032
3033 pair[0] = regno;
3034 pair[1] = -1;
3035 while (splay_tree_foreach (pbi->reg_cond_dead,
3036 flush_reg_cond_reg_1, pair) == -1)
3037 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3038
3039 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3040 }
3041
3042 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3043 For ior/and, the ADD flag determines whether we want to add the new
3044 condition X to the old one unconditionally. If it is zero, we will
3045 only return a new expression if X allows us to simplify part of
3046 OLD, otherwise we return NULL to the caller.
3047 If ADD is nonzero, we will return a new condition in all cases. The
3048 toplevel caller of one of these functions should always pass 1 for
3049 ADD. */
3050
3051 static rtx
3052 ior_reg_cond (rtx old, rtx x, int add)
3053 {
3054 rtx op0, op1;
3055
3056 if (COMPARISON_P (old))
3057 {
3058 if (COMPARISON_P (x)
3059 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3060 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3061 return const1_rtx;
3062 if (GET_CODE (x) == GET_CODE (old)
3063 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3064 return old;
3065 if (! add)
3066 return NULL;
3067 return gen_rtx_IOR (0, old, x);
3068 }
3069
3070 switch (GET_CODE (old))
3071 {
3072 case IOR:
3073 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3074 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3075 if (op0 != NULL || op1 != NULL)
3076 {
3077 if (op0 == const0_rtx)
3078 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3079 if (op1 == const0_rtx)
3080 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3081 if (op0 == const1_rtx || op1 == const1_rtx)
3082 return const1_rtx;
3083 if (op0 == NULL)
3084 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3085 else if (rtx_equal_p (x, op0))
3086 /* (x | A) | x ~ (x | A). */
3087 return old;
3088 if (op1 == NULL)
3089 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3090 else if (rtx_equal_p (x, op1))
3091 /* (A | x) | x ~ (A | x). */
3092 return old;
3093 return gen_rtx_IOR (0, op0, op1);
3094 }
3095 if (! add)
3096 return NULL;
3097 return gen_rtx_IOR (0, old, x);
3098
3099 case AND:
3100 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3101 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3102 if (op0 != NULL || op1 != NULL)
3103 {
3104 if (op0 == const1_rtx)
3105 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3106 if (op1 == const1_rtx)
3107 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3108 if (op0 == const0_rtx || op1 == const0_rtx)
3109 return const0_rtx;
3110 if (op0 == NULL)
3111 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3112 else if (rtx_equal_p (x, op0))
3113 /* (x & A) | x ~ x. */
3114 return op0;
3115 if (op1 == NULL)
3116 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3117 else if (rtx_equal_p (x, op1))
3118 /* (A & x) | x ~ x. */
3119 return op1;
3120 return gen_rtx_AND (0, op0, op1);
3121 }
3122 if (! add)
3123 return NULL;
3124 return gen_rtx_IOR (0, old, x);
3125
3126 case NOT:
3127 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3128 if (op0 != NULL)
3129 return not_reg_cond (op0);
3130 if (! add)
3131 return NULL;
3132 return gen_rtx_IOR (0, old, x);
3133
3134 default:
3135 abort ();
3136 }
3137 }
3138
3139 static rtx
3140 not_reg_cond (rtx x)
3141 {
3142 enum rtx_code x_code;
3143
3144 if (x == const0_rtx)
3145 return const1_rtx;
3146 else if (x == const1_rtx)
3147 return const0_rtx;
3148 x_code = GET_CODE (x);
3149 if (x_code == NOT)
3150 return XEXP (x, 0);
3151 if (COMPARISON_P (x)
3152 && GET_CODE (XEXP (x, 0)) == REG)
3153 {
3154 if (XEXP (x, 1) != const0_rtx)
3155 abort ();
3156
3157 return gen_rtx_fmt_ee (reverse_condition (x_code),
3158 VOIDmode, XEXP (x, 0), const0_rtx);
3159 }
3160 return gen_rtx_NOT (0, x);
3161 }
3162
3163 static rtx
3164 and_reg_cond (rtx old, rtx x, int add)
3165 {
3166 rtx op0, op1;
3167
3168 if (COMPARISON_P (old))
3169 {
3170 if (COMPARISON_P (x)
3171 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3172 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3173 return const0_rtx;
3174 if (GET_CODE (x) == GET_CODE (old)
3175 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3176 return old;
3177 if (! add)
3178 return NULL;
3179 return gen_rtx_AND (0, old, x);
3180 }
3181
3182 switch (GET_CODE (old))
3183 {
3184 case IOR:
3185 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3186 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3187 if (op0 != NULL || op1 != NULL)
3188 {
3189 if (op0 == const0_rtx)
3190 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3191 if (op1 == const0_rtx)
3192 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3193 if (op0 == const1_rtx || op1 == const1_rtx)
3194 return const1_rtx;
3195 if (op0 == NULL)
3196 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3197 else if (rtx_equal_p (x, op0))
3198 /* (x | A) & x ~ x. */
3199 return op0;
3200 if (op1 == NULL)
3201 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3202 else if (rtx_equal_p (x, op1))
3203 /* (A | x) & x ~ x. */
3204 return op1;
3205 return gen_rtx_IOR (0, op0, op1);
3206 }
3207 if (! add)
3208 return NULL;
3209 return gen_rtx_AND (0, old, x);
3210
3211 case AND:
3212 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3213 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3214 if (op0 != NULL || op1 != NULL)
3215 {
3216 if (op0 == const1_rtx)
3217 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3218 if (op1 == const1_rtx)
3219 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3220 if (op0 == const0_rtx || op1 == const0_rtx)
3221 return const0_rtx;
3222 if (op0 == NULL)
3223 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3224 else if (rtx_equal_p (x, op0))
3225 /* (x & A) & x ~ (x & A). */
3226 return old;
3227 if (op1 == NULL)
3228 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3229 else if (rtx_equal_p (x, op1))
3230 /* (A & x) & x ~ (A & x). */
3231 return old;
3232 return gen_rtx_AND (0, op0, op1);
3233 }
3234 if (! add)
3235 return NULL;
3236 return gen_rtx_AND (0, old, x);
3237
3238 case NOT:
3239 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3240 if (op0 != NULL)
3241 return not_reg_cond (op0);
3242 if (! add)
3243 return NULL;
3244 return gen_rtx_AND (0, old, x);
3245
3246 default:
3247 abort ();
3248 }
3249 }
3250
3251 /* Given a condition X, remove references to reg REGNO and return the
3252 new condition. The removal will be done so that all conditions
3253 involving REGNO are considered to evaluate to false. This function
3254 is used when the value of REGNO changes. */
3255
3256 static rtx
3257 elim_reg_cond (rtx x, unsigned int regno)
3258 {
3259 rtx op0, op1;
3260
3261 if (COMPARISON_P (x))
3262 {
3263 if (REGNO (XEXP (x, 0)) == regno)
3264 return const0_rtx;
3265 return x;
3266 }
3267
3268 switch (GET_CODE (x))
3269 {
3270 case AND:
3271 op0 = elim_reg_cond (XEXP (x, 0), regno);
3272 op1 = elim_reg_cond (XEXP (x, 1), regno);
3273 if (op0 == const0_rtx || op1 == const0_rtx)
3274 return const0_rtx;
3275 if (op0 == const1_rtx)
3276 return op1;
3277 if (op1 == const1_rtx)
3278 return op0;
3279 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3280 return x;
3281 return gen_rtx_AND (0, op0, op1);
3282
3283 case IOR:
3284 op0 = elim_reg_cond (XEXP (x, 0), regno);
3285 op1 = elim_reg_cond (XEXP (x, 1), regno);
3286 if (op0 == const1_rtx || op1 == const1_rtx)
3287 return const1_rtx;
3288 if (op0 == const0_rtx)
3289 return op1;
3290 if (op1 == const0_rtx)
3291 return op0;
3292 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3293 return x;
3294 return gen_rtx_IOR (0, op0, op1);
3295
3296 case NOT:
3297 op0 = elim_reg_cond (XEXP (x, 0), regno);
3298 if (op0 == const0_rtx)
3299 return const1_rtx;
3300 if (op0 == const1_rtx)
3301 return const0_rtx;
3302 if (op0 != XEXP (x, 0))
3303 return not_reg_cond (op0);
3304 return x;
3305
3306 default:
3307 abort ();
3308 }
3309 }
3310 #endif /* HAVE_conditional_execution */
3311 \f
3312 #ifdef AUTO_INC_DEC
3313
3314 /* Try to substitute the auto-inc expression INC as the address inside
3315 MEM which occurs in INSN. Currently, the address of MEM is an expression
3316 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3317 that has a single set whose source is a PLUS of INCR_REG and something
3318 else. */
3319
3320 static void
3321 attempt_auto_inc (struct propagate_block_info *pbi, rtx inc, rtx insn,
3322 rtx mem, rtx incr, rtx incr_reg)
3323 {
3324 int regno = REGNO (incr_reg);
3325 rtx set = single_set (incr);
3326 rtx q = SET_DEST (set);
3327 rtx y = SET_SRC (set);
3328 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3329
3330 /* Make sure this reg appears only once in this insn. */
3331 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3332 return;
3333
3334 if (dead_or_set_p (incr, incr_reg)
3335 /* Mustn't autoinc an eliminable register. */
3336 && (regno >= FIRST_PSEUDO_REGISTER
3337 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3338 {
3339 /* This is the simple case. Try to make the auto-inc. If
3340 we can't, we are done. Otherwise, we will do any
3341 needed updates below. */
3342 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3343 return;
3344 }
3345 else if (GET_CODE (q) == REG
3346 /* PREV_INSN used here to check the semi-open interval
3347 [insn,incr). */
3348 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3349 /* We must also check for sets of q as q may be
3350 a call clobbered hard register and there may
3351 be a call between PREV_INSN (insn) and incr. */
3352 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3353 {
3354 /* We have *p followed sometime later by q = p+size.
3355 Both p and q must be live afterward,
3356 and q is not used between INSN and its assignment.
3357 Change it to q = p, ...*q..., q = q+size.
3358 Then fall into the usual case. */
3359 rtx insns, temp;
3360
3361 start_sequence ();
3362 emit_move_insn (q, incr_reg);
3363 insns = get_insns ();
3364 end_sequence ();
3365
3366 /* If we can't make the auto-inc, or can't make the
3367 replacement into Y, exit. There's no point in making
3368 the change below if we can't do the auto-inc and doing
3369 so is not correct in the pre-inc case. */
3370
3371 XEXP (inc, 0) = q;
3372 validate_change (insn, &XEXP (mem, 0), inc, 1);
3373 validate_change (incr, &XEXP (y, opnum), q, 1);
3374 if (! apply_change_group ())
3375 return;
3376
3377 /* We now know we'll be doing this change, so emit the
3378 new insn(s) and do the updates. */
3379 emit_insn_before (insns, insn);
3380
3381 if (BB_HEAD (pbi->bb) == insn)
3382 BB_HEAD (pbi->bb) = insns;
3383
3384 /* INCR will become a NOTE and INSN won't contain a
3385 use of INCR_REG. If a use of INCR_REG was just placed in
3386 the insn before INSN, make that the next use.
3387 Otherwise, invalidate it. */
3388 if (GET_CODE (PREV_INSN (insn)) == INSN
3389 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3390 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3391 pbi->reg_next_use[regno] = PREV_INSN (insn);
3392 else
3393 pbi->reg_next_use[regno] = 0;
3394
3395 incr_reg = q;
3396 regno = REGNO (q);
3397
3398 if ((pbi->flags & PROP_REG_INFO)
3399 && !REGNO_REG_SET_P (pbi->reg_live, regno))
3400 reg_deaths[regno] = pbi->insn_num;
3401
3402 /* REGNO is now used in INCR which is below INSN, but
3403 it previously wasn't live here. If we don't mark
3404 it as live, we'll put a REG_DEAD note for it
3405 on this insn, which is incorrect. */
3406 SET_REGNO_REG_SET (pbi->reg_live, regno);
3407
3408 /* If there are any calls between INSN and INCR, show
3409 that REGNO now crosses them. */
3410 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3411 if (GET_CODE (temp) == CALL_INSN)
3412 REG_N_CALLS_CROSSED (regno)++;
3413
3414 /* Invalidate alias info for Q since we just changed its value. */
3415 clear_reg_alias_info (q);
3416 }
3417 else
3418 return;
3419
3420 /* If we haven't returned, it means we were able to make the
3421 auto-inc, so update the status. First, record that this insn
3422 has an implicit side effect. */
3423
3424 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3425
3426 /* Modify the old increment-insn to simply copy
3427 the already-incremented value of our register. */
3428 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3429 abort ();
3430
3431 /* If that makes it a no-op (copying the register into itself) delete
3432 it so it won't appear to be a "use" and a "set" of this
3433 register. */
3434 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3435 {
3436 /* If the original source was dead, it's dead now. */
3437 rtx note;
3438
3439 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3440 {
3441 remove_note (incr, note);
3442 if (XEXP (note, 0) != incr_reg)
3443 {
3444 unsigned int regno = REGNO (XEXP (note, 0));
3445
3446 if ((pbi->flags & PROP_REG_INFO)
3447 && REGNO_REG_SET_P (pbi->reg_live, regno))
3448 {
3449 REG_LIVE_LENGTH (regno) += pbi->insn_num - reg_deaths[regno];
3450 reg_deaths[regno] = 0;
3451 }
3452 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3453 }
3454 }
3455
3456 PUT_CODE (incr, NOTE);
3457 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3458 NOTE_SOURCE_FILE (incr) = 0;
3459 }
3460
3461 if (regno >= FIRST_PSEUDO_REGISTER)
3462 {
3463 /* Count an extra reference to the reg. When a reg is
3464 incremented, spilling it is worse, so we want to make
3465 that less likely. */
3466 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3467
3468 /* Count the increment as a setting of the register,
3469 even though it isn't a SET in rtl. */
3470 REG_N_SETS (regno)++;
3471 }
3472 }
3473
3474 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3475 reference. */
3476
3477 static void
3478 find_auto_inc (struct propagate_block_info *pbi, rtx x, rtx insn)
3479 {
3480 rtx addr = XEXP (x, 0);
3481 HOST_WIDE_INT offset = 0;
3482 rtx set, y, incr, inc_val;
3483 int regno;
3484 int size = GET_MODE_SIZE (GET_MODE (x));
3485
3486 if (GET_CODE (insn) == JUMP_INSN)
3487 return;
3488
3489 /* Here we detect use of an index register which might be good for
3490 postincrement, postdecrement, preincrement, or predecrement. */
3491
3492 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3493 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3494
3495 if (GET_CODE (addr) != REG)
3496 return;
3497
3498 regno = REGNO (addr);
3499
3500 /* Is the next use an increment that might make auto-increment? */
3501 incr = pbi->reg_next_use[regno];
3502 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3503 return;
3504 set = single_set (incr);
3505 if (set == 0 || GET_CODE (set) != SET)
3506 return;
3507 y = SET_SRC (set);
3508
3509 if (GET_CODE (y) != PLUS)
3510 return;
3511
3512 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3513 inc_val = XEXP (y, 1);
3514 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3515 inc_val = XEXP (y, 0);
3516 else
3517 return;
3518
3519 if (GET_CODE (inc_val) == CONST_INT)
3520 {
3521 if (HAVE_POST_INCREMENT
3522 && (INTVAL (inc_val) == size && offset == 0))
3523 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3524 incr, addr);
3525 else if (HAVE_POST_DECREMENT
3526 && (INTVAL (inc_val) == -size && offset == 0))
3527 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3528 incr, addr);
3529 else if (HAVE_PRE_INCREMENT
3530 && (INTVAL (inc_val) == size && offset == size))
3531 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3532 incr, addr);
3533 else if (HAVE_PRE_DECREMENT
3534 && (INTVAL (inc_val) == -size && offset == -size))
3535 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3536 incr, addr);
3537 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3538 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3539 gen_rtx_PLUS (Pmode,
3540 addr,
3541 inc_val)),
3542 insn, x, incr, addr);
3543 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3544 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3545 gen_rtx_PLUS (Pmode,
3546 addr,
3547 inc_val)),
3548 insn, x, incr, addr);
3549 }
3550 else if (GET_CODE (inc_val) == REG
3551 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3552 NEXT_INSN (incr)))
3553
3554 {
3555 if (HAVE_POST_MODIFY_REG && offset == 0)
3556 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3557 gen_rtx_PLUS (Pmode,
3558 addr,
3559 inc_val)),
3560 insn, x, incr, addr);
3561 }
3562 }
3563
3564 #endif /* AUTO_INC_DEC */
3565 \f
3566 static void
3567 mark_used_reg (struct propagate_block_info *pbi, rtx reg,
3568 rtx cond ATTRIBUTE_UNUSED, rtx insn)
3569 {
3570 unsigned int regno_first, regno_last, i;
3571 int some_was_live, some_was_dead, some_not_set;
3572
3573 regno_last = regno_first = REGNO (reg);
3574 if (regno_first < FIRST_PSEUDO_REGISTER)
3575 regno_last += hard_regno_nregs[regno_first][GET_MODE (reg)] - 1;
3576
3577 /* Find out if any of this register is live after this instruction. */
3578 some_was_live = some_was_dead = 0;
3579 for (i = regno_first; i <= regno_last; ++i)
3580 {
3581 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3582 some_was_live |= needed_regno;
3583 some_was_dead |= ! needed_regno;
3584 }
3585
3586 /* Find out if any of the register was set this insn. */
3587 some_not_set = 0;
3588 for (i = regno_first; i <= regno_last; ++i)
3589 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3590
3591 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3592 {
3593 /* Record where each reg is used, so when the reg is set we know
3594 the next insn that uses it. */
3595 pbi->reg_next_use[regno_first] = insn;
3596 }
3597
3598 if (pbi->flags & PROP_REG_INFO)
3599 {
3600 if (regno_first < FIRST_PSEUDO_REGISTER)
3601 {
3602 /* If this is a register we are going to try to eliminate,
3603 don't mark it live here. If we are successful in
3604 eliminating it, it need not be live unless it is used for
3605 pseudos, in which case it will have been set live when it
3606 was allocated to the pseudos. If the register will not
3607 be eliminated, reload will set it live at that point.
3608
3609 Otherwise, record that this function uses this register. */
3610 /* ??? The PPC backend tries to "eliminate" on the pic
3611 register to itself. This should be fixed. In the mean
3612 time, hack around it. */
3613
3614 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3615 && (regno_first == FRAME_POINTER_REGNUM
3616 || regno_first == ARG_POINTER_REGNUM)))
3617 for (i = regno_first; i <= regno_last; ++i)
3618 regs_ever_live[i] = 1;
3619 }
3620 else
3621 {
3622 /* Keep track of which basic block each reg appears in. */
3623
3624 int blocknum = pbi->bb->index;
3625 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3626 REG_BASIC_BLOCK (regno_first) = blocknum;
3627 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3628 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3629
3630 /* Count (weighted) number of uses of each reg. */
3631 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3632 REG_N_REFS (regno_first)++;
3633 }
3634 for (i = regno_first; i <= regno_last; ++i)
3635 if (! REGNO_REG_SET_P (pbi->reg_live, i))
3636 {
3637 #ifdef ENABLE_CHECKING
3638 if (reg_deaths[i])
3639 abort ();
3640 #endif
3641 reg_deaths[i] = pbi->insn_num;
3642 }
3643 }
3644
3645 /* Record and count the insns in which a reg dies. If it is used in
3646 this insn and was dead below the insn then it dies in this insn.
3647 If it was set in this insn, we do not make a REG_DEAD note;
3648 likewise if we already made such a note. */
3649 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3650 && some_was_dead
3651 && some_not_set)
3652 {
3653 /* Check for the case where the register dying partially
3654 overlaps the register set by this insn. */
3655 if (regno_first != regno_last)
3656 for (i = regno_first; i <= regno_last; ++i)
3657 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3658
3659 /* If none of the words in X is needed, make a REG_DEAD note.
3660 Otherwise, we must make partial REG_DEAD notes. */
3661 if (! some_was_live)
3662 {
3663 if ((pbi->flags & PROP_DEATH_NOTES)
3664 && ! find_regno_note (insn, REG_DEAD, regno_first))
3665 REG_NOTES (insn)
3666 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3667
3668 if (pbi->flags & PROP_REG_INFO)
3669 REG_N_DEATHS (regno_first)++;
3670 }
3671 else
3672 {
3673 /* Don't make a REG_DEAD note for a part of a register
3674 that is set in the insn. */
3675 for (i = regno_first; i <= regno_last; ++i)
3676 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3677 && ! dead_or_set_regno_p (insn, i))
3678 REG_NOTES (insn)
3679 = alloc_EXPR_LIST (REG_DEAD,
3680 regno_reg_rtx[i],
3681 REG_NOTES (insn));
3682 }
3683 }
3684
3685 /* Mark the register as being live. */
3686 for (i = regno_first; i <= regno_last; ++i)
3687 {
3688 #ifdef HAVE_conditional_execution
3689 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3690 #endif
3691
3692 SET_REGNO_REG_SET (pbi->reg_live, i);
3693
3694 #ifdef HAVE_conditional_execution
3695 /* If this is a conditional use, record that fact. If it is later
3696 conditionally set, we'll know to kill the register. */
3697 if (cond != NULL_RTX)
3698 {
3699 splay_tree_node node;
3700 struct reg_cond_life_info *rcli;
3701 rtx ncond;
3702
3703 if (this_was_live)
3704 {
3705 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3706 if (node == NULL)
3707 {
3708 /* The register was unconditionally live previously.
3709 No need to do anything. */
3710 }
3711 else
3712 {
3713 /* The register was conditionally live previously.
3714 Subtract the new life cond from the old death cond. */
3715 rcli = (struct reg_cond_life_info *) node->value;
3716 ncond = rcli->condition;
3717 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3718
3719 /* If the register is now unconditionally live,
3720 remove the entry in the splay_tree. */
3721 if (ncond == const0_rtx)
3722 splay_tree_remove (pbi->reg_cond_dead, i);
3723 else
3724 {
3725 rcli->condition = ncond;
3726 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3727 REGNO (XEXP (cond, 0)));
3728 }
3729 }
3730 }
3731 else
3732 {
3733 /* The register was not previously live at all. Record
3734 the condition under which it is still dead. */
3735 rcli = xmalloc (sizeof (*rcli));
3736 rcli->condition = not_reg_cond (cond);
3737 rcli->stores = const0_rtx;
3738 rcli->orig_condition = const0_rtx;
3739 splay_tree_insert (pbi->reg_cond_dead, i,
3740 (splay_tree_value) rcli);
3741
3742 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3743 }
3744 }
3745 else if (this_was_live)
3746 {
3747 /* The register may have been conditionally live previously, but
3748 is now unconditionally live. Remove it from the conditionally
3749 dead list, so that a conditional set won't cause us to think
3750 it dead. */
3751 splay_tree_remove (pbi->reg_cond_dead, i);
3752 }
3753 #endif
3754 }
3755 }
3756
3757 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3758 This is done assuming the registers needed from X are those that
3759 have 1-bits in PBI->REG_LIVE.
3760
3761 INSN is the containing instruction. If INSN is dead, this function
3762 is not called. */
3763
3764 static void
3765 mark_used_regs (struct propagate_block_info *pbi, rtx x, rtx cond, rtx insn)
3766 {
3767 RTX_CODE code;
3768 int regno;
3769 int flags = pbi->flags;
3770
3771 retry:
3772 if (!x)
3773 return;
3774 code = GET_CODE (x);
3775 switch (code)
3776 {
3777 case LABEL_REF:
3778 case SYMBOL_REF:
3779 case CONST_INT:
3780 case CONST:
3781 case CONST_DOUBLE:
3782 case CONST_VECTOR:
3783 case PC:
3784 case ADDR_VEC:
3785 case ADDR_DIFF_VEC:
3786 return;
3787
3788 #ifdef HAVE_cc0
3789 case CC0:
3790 pbi->cc0_live = 1;
3791 return;
3792 #endif
3793
3794 case CLOBBER:
3795 /* If we are clobbering a MEM, mark any registers inside the address
3796 as being used. */
3797 if (GET_CODE (XEXP (x, 0)) == MEM)
3798 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3799 return;
3800
3801 case MEM:
3802 /* Don't bother watching stores to mems if this is not the
3803 final pass. We'll not be deleting dead stores this round. */
3804 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3805 {
3806 /* Invalidate the data for the last MEM stored, but only if MEM is
3807 something that can be stored into. */
3808 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3809 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3810 /* Needn't clear the memory set list. */
3811 ;
3812 else
3813 {
3814 rtx temp = pbi->mem_set_list;
3815 rtx prev = NULL_RTX;
3816 rtx next;
3817
3818 while (temp)
3819 {
3820 next = XEXP (temp, 1);
3821 if (unchanging_anti_dependence (XEXP (temp, 0), x))
3822 {
3823 /* Splice temp out of the list. */
3824 if (prev)
3825 XEXP (prev, 1) = next;
3826 else
3827 pbi->mem_set_list = next;
3828 free_EXPR_LIST_node (temp);
3829 pbi->mem_set_list_len--;
3830 }
3831 else
3832 prev = temp;
3833 temp = next;
3834 }
3835 }
3836
3837 /* If the memory reference had embedded side effects (autoincrement
3838 address modes. Then we may need to kill some entries on the
3839 memory set list. */
3840 if (insn)
3841 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3842 }
3843
3844 #ifdef AUTO_INC_DEC
3845 if (flags & PROP_AUTOINC)
3846 find_auto_inc (pbi, x, insn);
3847 #endif
3848 break;
3849
3850 case SUBREG:
3851 #ifdef CANNOT_CHANGE_MODE_CLASS
3852 if ((flags & PROP_REG_INFO)
3853 && GET_CODE (SUBREG_REG (x)) == REG
3854 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3855 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3856 * MAX_MACHINE_MODE
3857 + GET_MODE (x));
3858 #endif
3859
3860 /* While we're here, optimize this case. */
3861 x = SUBREG_REG (x);
3862 if (GET_CODE (x) != REG)
3863 goto retry;
3864 /* Fall through. */
3865
3866 case REG:
3867 /* See a register other than being set => mark it as needed. */
3868 mark_used_reg (pbi, x, cond, insn);
3869 return;
3870
3871 case SET:
3872 {
3873 rtx testreg = SET_DEST (x);
3874 int mark_dest = 0;
3875
3876 /* If storing into MEM, don't show it as being used. But do
3877 show the address as being used. */
3878 if (GET_CODE (testreg) == MEM)
3879 {
3880 #ifdef AUTO_INC_DEC
3881 if (flags & PROP_AUTOINC)
3882 find_auto_inc (pbi, testreg, insn);
3883 #endif
3884 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3885 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3886 return;
3887 }
3888
3889 /* Storing in STRICT_LOW_PART is like storing in a reg
3890 in that this SET might be dead, so ignore it in TESTREG.
3891 but in some other ways it is like using the reg.
3892
3893 Storing in a SUBREG or a bit field is like storing the entire
3894 register in that if the register's value is not used
3895 then this SET is not needed. */
3896 while (GET_CODE (testreg) == STRICT_LOW_PART
3897 || GET_CODE (testreg) == ZERO_EXTRACT
3898 || GET_CODE (testreg) == SIGN_EXTRACT
3899 || GET_CODE (testreg) == SUBREG)
3900 {
3901 #ifdef CANNOT_CHANGE_MODE_CLASS
3902 if ((flags & PROP_REG_INFO)
3903 && GET_CODE (testreg) == SUBREG
3904 && GET_CODE (SUBREG_REG (testreg)) == REG
3905 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3906 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3907 * MAX_MACHINE_MODE
3908 + GET_MODE (testreg));
3909 #endif
3910
3911 /* Modifying a single register in an alternate mode
3912 does not use any of the old value. But these other
3913 ways of storing in a register do use the old value. */
3914 if (GET_CODE (testreg) == SUBREG
3915 && !((REG_BYTES (SUBREG_REG (testreg))
3916 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3917 > (REG_BYTES (testreg)
3918 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3919 ;
3920 else
3921 mark_dest = 1;
3922
3923 testreg = XEXP (testreg, 0);
3924 }
3925
3926 /* If this is a store into a register or group of registers,
3927 recursively scan the value being stored. */
3928
3929 if ((GET_CODE (testreg) == PARALLEL
3930 && GET_MODE (testreg) == BLKmode)
3931 || (GET_CODE (testreg) == REG
3932 && (regno = REGNO (testreg),
3933 ! (regno == FRAME_POINTER_REGNUM
3934 && (! reload_completed || frame_pointer_needed)))
3935 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3936 && ! (regno == HARD_FRAME_POINTER_REGNUM
3937 && (! reload_completed || frame_pointer_needed))
3938 #endif
3939 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3940 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3941 #endif
3942 ))
3943 {
3944 if (mark_dest)
3945 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3946 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3947 return;
3948 }
3949 }
3950 break;
3951
3952 case ASM_OPERANDS:
3953 case UNSPEC_VOLATILE:
3954 case TRAP_IF:
3955 case ASM_INPUT:
3956 {
3957 /* Traditional and volatile asm instructions must be considered to use
3958 and clobber all hard registers, all pseudo-registers and all of
3959 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3960
3961 Consider for instance a volatile asm that changes the fpu rounding
3962 mode. An insn should not be moved across this even if it only uses
3963 pseudo-regs because it might give an incorrectly rounded result.
3964
3965 ?!? Unfortunately, marking all hard registers as live causes massive
3966 problems for the register allocator and marking all pseudos as live
3967 creates mountains of uninitialized variable warnings.
3968
3969 So for now, just clear the memory set list and mark any regs
3970 we can find in ASM_OPERANDS as used. */
3971 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3972 {
3973 free_EXPR_LIST_list (&pbi->mem_set_list);
3974 pbi->mem_set_list_len = 0;
3975 }
3976
3977 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3978 We can not just fall through here since then we would be confused
3979 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3980 traditional asms unlike their normal usage. */
3981 if (code == ASM_OPERANDS)
3982 {
3983 int j;
3984
3985 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3986 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3987 }
3988 break;
3989 }
3990
3991 case COND_EXEC:
3992 if (cond != NULL_RTX)
3993 abort ();
3994
3995 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3996
3997 cond = COND_EXEC_TEST (x);
3998 x = COND_EXEC_CODE (x);
3999 goto retry;
4000
4001 default:
4002 break;
4003 }
4004
4005 /* Recursively scan the operands of this expression. */
4006
4007 {
4008 const char * const fmt = GET_RTX_FORMAT (code);
4009 int i;
4010
4011 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4012 {
4013 if (fmt[i] == 'e')
4014 {
4015 /* Tail recursive case: save a function call level. */
4016 if (i == 0)
4017 {
4018 x = XEXP (x, 0);
4019 goto retry;
4020 }
4021 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4022 }
4023 else if (fmt[i] == 'E')
4024 {
4025 int j;
4026 for (j = 0; j < XVECLEN (x, i); j++)
4027 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4028 }
4029 }
4030 }
4031 }
4032 \f
4033 #ifdef AUTO_INC_DEC
4034
4035 static int
4036 try_pre_increment_1 (struct propagate_block_info *pbi, rtx insn)
4037 {
4038 /* Find the next use of this reg. If in same basic block,
4039 make it do pre-increment or pre-decrement if appropriate. */
4040 rtx x = single_set (insn);
4041 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4042 * INTVAL (XEXP (SET_SRC (x), 1)));
4043 int regno = REGNO (SET_DEST (x));
4044 rtx y = pbi->reg_next_use[regno];
4045 if (y != 0
4046 && SET_DEST (x) != stack_pointer_rtx
4047 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4048 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4049 mode would be better. */
4050 && ! dead_or_set_p (y, SET_DEST (x))
4051 && try_pre_increment (y, SET_DEST (x), amount))
4052 {
4053 /* We have found a suitable auto-increment and already changed
4054 insn Y to do it. So flush this increment instruction. */
4055 propagate_block_delete_insn (insn);
4056
4057 /* Count a reference to this reg for the increment insn we are
4058 deleting. When a reg is incremented, spilling it is worse,
4059 so we want to make that less likely. */
4060 if (regno >= FIRST_PSEUDO_REGISTER)
4061 {
4062 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4063 REG_N_SETS (regno)++;
4064 }
4065
4066 /* Flush any remembered memories depending on the value of
4067 the incremented register. */
4068 invalidate_mems_from_set (pbi, SET_DEST (x));
4069
4070 return 1;
4071 }
4072 return 0;
4073 }
4074
4075 /* Try to change INSN so that it does pre-increment or pre-decrement
4076 addressing on register REG in order to add AMOUNT to REG.
4077 AMOUNT is negative for pre-decrement.
4078 Returns 1 if the change could be made.
4079 This checks all about the validity of the result of modifying INSN. */
4080
4081 static int
4082 try_pre_increment (rtx insn, rtx reg, HOST_WIDE_INT amount)
4083 {
4084 rtx use;
4085
4086 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4087 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4088 int pre_ok = 0;
4089 /* Nonzero if we can try to make a post-increment or post-decrement.
4090 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4091 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4092 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4093 int post_ok = 0;
4094
4095 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4096 int do_post = 0;
4097
4098 /* From the sign of increment, see which possibilities are conceivable
4099 on this target machine. */
4100 if (HAVE_PRE_INCREMENT && amount > 0)
4101 pre_ok = 1;
4102 if (HAVE_POST_INCREMENT && amount > 0)
4103 post_ok = 1;
4104
4105 if (HAVE_PRE_DECREMENT && amount < 0)
4106 pre_ok = 1;
4107 if (HAVE_POST_DECREMENT && amount < 0)
4108 post_ok = 1;
4109
4110 if (! (pre_ok || post_ok))
4111 return 0;
4112
4113 /* It is not safe to add a side effect to a jump insn
4114 because if the incremented register is spilled and must be reloaded
4115 there would be no way to store the incremented value back in memory. */
4116
4117 if (GET_CODE (insn) == JUMP_INSN)
4118 return 0;
4119
4120 use = 0;
4121 if (pre_ok)
4122 use = find_use_as_address (PATTERN (insn), reg, 0);
4123 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4124 {
4125 use = find_use_as_address (PATTERN (insn), reg, -amount);
4126 do_post = 1;
4127 }
4128
4129 if (use == 0 || use == (rtx) (size_t) 1)
4130 return 0;
4131
4132 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4133 return 0;
4134
4135 /* See if this combination of instruction and addressing mode exists. */
4136 if (! validate_change (insn, &XEXP (use, 0),
4137 gen_rtx_fmt_e (amount > 0
4138 ? (do_post ? POST_INC : PRE_INC)
4139 : (do_post ? POST_DEC : PRE_DEC),
4140 Pmode, reg), 0))
4141 return 0;
4142
4143 /* Record that this insn now has an implicit side effect on X. */
4144 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4145 return 1;
4146 }
4147
4148 #endif /* AUTO_INC_DEC */
4149 \f
4150 /* Find the place in the rtx X where REG is used as a memory address.
4151 Return the MEM rtx that so uses it.
4152 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4153 (plus REG (const_int PLUSCONST)).
4154
4155 If such an address does not appear, return 0.
4156 If REG appears more than once, or is used other than in such an address,
4157 return (rtx) 1. */
4158
4159 rtx
4160 find_use_as_address (rtx x, rtx reg, HOST_WIDE_INT plusconst)
4161 {
4162 enum rtx_code code = GET_CODE (x);
4163 const char * const fmt = GET_RTX_FORMAT (code);
4164 int i;
4165 rtx value = 0;
4166 rtx tem;
4167
4168 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4169 return x;
4170
4171 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4172 && XEXP (XEXP (x, 0), 0) == reg
4173 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4174 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4175 return x;
4176
4177 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4178 {
4179 /* If REG occurs inside a MEM used in a bit-field reference,
4180 that is unacceptable. */
4181 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4182 return (rtx) (size_t) 1;
4183 }
4184
4185 if (x == reg)
4186 return (rtx) (size_t) 1;
4187
4188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4189 {
4190 if (fmt[i] == 'e')
4191 {
4192 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4193 if (value == 0)
4194 value = tem;
4195 else if (tem != 0)
4196 return (rtx) (size_t) 1;
4197 }
4198 else if (fmt[i] == 'E')
4199 {
4200 int j;
4201 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4202 {
4203 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4204 if (value == 0)
4205 value = tem;
4206 else if (tem != 0)
4207 return (rtx) (size_t) 1;
4208 }
4209 }
4210 }
4211
4212 return value;
4213 }
4214 \f
4215 /* Write information about registers and basic blocks into FILE.
4216 This is part of making a debugging dump. */
4217
4218 void
4219 dump_regset (regset r, FILE *outf)
4220 {
4221 int i;
4222 if (r == NULL)
4223 {
4224 fputs (" (nil)", outf);
4225 return;
4226 }
4227
4228 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4229 {
4230 fprintf (outf, " %d", i);
4231 if (i < FIRST_PSEUDO_REGISTER)
4232 fprintf (outf, " [%s]",
4233 reg_names[i]);
4234 });
4235 }
4236
4237 /* Print a human-readable representation of R on the standard error
4238 stream. This function is designed to be used from within the
4239 debugger. */
4240
4241 void
4242 debug_regset (regset r)
4243 {
4244 dump_regset (r, stderr);
4245 putc ('\n', stderr);
4246 }
4247
4248 /* Recompute register set/reference counts immediately prior to register
4249 allocation.
4250
4251 This avoids problems with set/reference counts changing to/from values
4252 which have special meanings to the register allocators.
4253
4254 Additionally, the reference counts are the primary component used by the
4255 register allocators to prioritize pseudos for allocation to hard regs.
4256 More accurate reference counts generally lead to better register allocation.
4257
4258 F is the first insn to be scanned.
4259
4260 LOOP_STEP denotes how much loop_depth should be incremented per
4261 loop nesting level in order to increase the ref count more for
4262 references in a loop.
4263
4264 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4265 possibly other information which is used by the register allocators. */
4266
4267 void
4268 recompute_reg_usage (rtx f ATTRIBUTE_UNUSED, int loop_step ATTRIBUTE_UNUSED)
4269 {
4270 allocate_reg_life_data ();
4271 /* distribute_notes in combiner fails to convert some of the REG_UNUSED notes
4272 to REG_DEAD notes. This causes CHECK_DEAD_NOTES in sched1 to abort. To
4273 solve this update the DEATH_NOTES here. */
4274 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO | PROP_DEATH_NOTES);
4275 }
4276
4277 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4278 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4279 of the number of registers that died. */
4280
4281 int
4282 count_or_remove_death_notes (sbitmap blocks, int kill)
4283 {
4284 int count = 0;
4285 int i;
4286 basic_block bb;
4287
4288
4289 /* This used to be a loop over all the blocks with a membership test
4290 inside the loop. That can be amazingly expensive on a large CFG
4291 when only a small number of bits are set in BLOCKs (for example,
4292 the calls from the scheduler typically have very few bits set).
4293
4294 For extra credit, someone should convert BLOCKS to a bitmap rather
4295 than an sbitmap. */
4296 if (blocks)
4297 {
4298 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4299 {
4300 count += count_or_remove_death_notes_bb (BASIC_BLOCK (i), kill);
4301 });
4302 }
4303 else
4304 {
4305 FOR_EACH_BB (bb)
4306 {
4307 count += count_or_remove_death_notes_bb (bb, kill);
4308 }
4309 }
4310
4311 return count;
4312 }
4313
4314 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from basic
4315 block BB. Returns a count of the number of registers that died. */
4316
4317 static int
4318 count_or_remove_death_notes_bb (basic_block bb, int kill)
4319 {
4320 int count = 0;
4321 rtx insn;
4322
4323 for (insn = BB_HEAD (bb); ; insn = NEXT_INSN (insn))
4324 {
4325 if (INSN_P (insn))
4326 {
4327 rtx *pprev = &REG_NOTES (insn);
4328 rtx link = *pprev;
4329
4330 while (link)
4331 {
4332 switch (REG_NOTE_KIND (link))
4333 {
4334 case REG_DEAD:
4335 if (GET_CODE (XEXP (link, 0)) == REG)
4336 {
4337 rtx reg = XEXP (link, 0);
4338 int n;
4339
4340 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4341 n = 1;
4342 else
4343 n = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
4344 count += n;
4345 }
4346
4347 /* Fall through. */
4348
4349 case REG_UNUSED:
4350 if (kill)
4351 {
4352 rtx next = XEXP (link, 1);
4353 free_EXPR_LIST_node (link);
4354 *pprev = link = next;
4355 break;
4356 }
4357 /* Fall through. */
4358
4359 default:
4360 pprev = &XEXP (link, 1);
4361 link = *pprev;
4362 break;
4363 }
4364 }
4365 }
4366
4367 if (insn == BB_END (bb))
4368 break;
4369 }
4370
4371 return count;
4372 }
4373
4374 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4375 if blocks is NULL. */
4376
4377 static void
4378 clear_log_links (sbitmap blocks)
4379 {
4380 rtx insn;
4381 int i;
4382
4383 if (!blocks)
4384 {
4385 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4386 if (INSN_P (insn))
4387 free_INSN_LIST_list (&LOG_LINKS (insn));
4388 }
4389 else
4390 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4391 {
4392 basic_block bb = BASIC_BLOCK (i);
4393
4394 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
4395 insn = NEXT_INSN (insn))
4396 if (INSN_P (insn))
4397 free_INSN_LIST_list (&LOG_LINKS (insn));
4398 });
4399 }
4400
4401 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4402 correspond to the hard registers, if any, set in that map. This
4403 could be done far more efficiently by having all sorts of special-cases
4404 with moving single words, but probably isn't worth the trouble. */
4405
4406 void
4407 reg_set_to_hard_reg_set (HARD_REG_SET *to, bitmap from)
4408 {
4409 int i;
4410
4411 EXECUTE_IF_SET_IN_BITMAP
4412 (from, 0, i,
4413 {
4414 if (i >= FIRST_PSEUDO_REGISTER)
4415 return;
4416 SET_HARD_REG_BIT (*to, i);
4417 });
4418 }