basic-block.h (last_basic_block): Declare.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
345 \f
346
347 void
348 check_function_return_warnings ()
349 {
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
356
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
361
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
367 {
368 int max_uid = get_max_uid ();
369
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 {
376 /* Recompute insn->block mapping, since the initial mapping is
377 set before we delete unreachable blocks. */
378 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
379 warning ("control reaches end of non-void function");
380 }
381 }
382 }
383 \f
384 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
385 note associated with the BLOCK. */
386
387 rtx
388 first_insn_after_basic_block_note (block)
389 basic_block block;
390 {
391 rtx insn;
392
393 /* Get the first instruction in the block. */
394 insn = block->head;
395
396 if (insn == NULL_RTX)
397 return NULL_RTX;
398 if (GET_CODE (insn) == CODE_LABEL)
399 insn = NEXT_INSN (insn);
400 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
401 abort ();
402
403 return NEXT_INSN (insn);
404 }
405 \f
406 /* Perform data flow analysis.
407 F is the first insn of the function; FLAGS is a set of PROP_* flags
408 to be used in accumulating flow info. */
409
410 void
411 life_analysis (f, file, flags)
412 rtx f;
413 FILE *file;
414 int flags;
415 {
416 #ifdef ELIMINABLE_REGS
417 int i;
418 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
419 #endif
420
421 /* Record which registers will be eliminated. We use this in
422 mark_used_regs. */
423
424 CLEAR_HARD_REG_SET (elim_reg_set);
425
426 #ifdef ELIMINABLE_REGS
427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
428 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
429 #else
430 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
431 #endif
432
433 if (! optimize)
434 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
435
436 /* The post-reload life analysis have (on a global basis) the same
437 registers live as was computed by reload itself. elimination
438 Otherwise offsets and such may be incorrect.
439
440 Reload will make some registers as live even though they do not
441 appear in the rtl.
442
443 We don't want to create new auto-incs after reload, since they
444 are unlikely to be useful and can cause problems with shared
445 stack slots. */
446 if (reload_completed)
447 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
448
449 /* We want alias analysis information for local dead store elimination. */
450 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
451 init_alias_analysis ();
452
453 /* Always remove no-op moves. Do this before other processing so
454 that we don't have to keep re-scanning them. */
455 delete_noop_moves (f);
456
457 /* Some targets can emit simpler epilogues if they know that sp was
458 not ever modified during the function. After reload, of course,
459 we've already emitted the epilogue so there's no sense searching. */
460 if (! reload_completed)
461 notice_stack_pointer_modification (f);
462
463 /* Allocate and zero out data structures that will record the
464 data from lifetime analysis. */
465 allocate_reg_life_data ();
466 allocate_bb_life_data ();
467
468 /* Find the set of registers live on function exit. */
469 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
470
471 /* "Update" life info from zero. It'd be nice to begin the
472 relaxation with just the exit and noreturn blocks, but that set
473 is not immediately handy. */
474
475 if (flags & PROP_REG_INFO)
476 memset (regs_ever_live, 0, sizeof (regs_ever_live));
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478
479 /* Clean up. */
480 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
481 end_alias_analysis ();
482
483 if (file)
484 dump_flow_info (file);
485
486 free_basic_block_vars (1);
487
488 /* Removing dead insns should've made jumptables really dead. */
489 delete_dead_jumptables ();
490 }
491
492 /* A subroutine of verify_wide_reg, called through for_each_rtx.
493 Search for REGNO. If found, return 2 if it is not wider than
494 word_mode. */
495
496 static int
497 verify_wide_reg_1 (px, pregno)
498 rtx *px;
499 void *pregno;
500 {
501 rtx x = *px;
502 unsigned int regno = *(int *) pregno;
503
504 if (GET_CODE (x) == REG && REGNO (x) == regno)
505 {
506 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
507 return 2;
508 return 1;
509 }
510 return 0;
511 }
512
513 /* A subroutine of verify_local_live_at_start. Search through insns
514 of BB looking for register REGNO. */
515
516 static void
517 verify_wide_reg (regno, bb)
518 int regno;
519 basic_block bb;
520 {
521 rtx head = bb->head, end = bb->end;
522
523 while (1)
524 {
525 if (INSN_P (head))
526 {
527 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
528 if (r == 1)
529 return;
530 if (r == 2)
531 break;
532 }
533 if (head == end)
534 break;
535 head = NEXT_INSN (head);
536 }
537
538 if (rtl_dump_file)
539 {
540 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
541 dump_bb (bb, rtl_dump_file);
542 }
543 abort ();
544 }
545
546 /* A subroutine of update_life_info. Verify that there are no untoward
547 changes in live_at_start during a local update. */
548
549 static void
550 verify_local_live_at_start (new_live_at_start, bb)
551 regset new_live_at_start;
552 basic_block bb;
553 {
554 if (reload_completed)
555 {
556 /* After reload, there are no pseudos, nor subregs of multi-word
557 registers. The regsets should exactly match. */
558 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
559 {
560 if (rtl_dump_file)
561 {
562 fprintf (rtl_dump_file,
563 "live_at_start mismatch in bb %d, aborting\nNew:\n",
564 bb->index);
565 debug_bitmap_file (rtl_dump_file, new_live_at_start);
566 fputs ("Old:\n", rtl_dump_file);
567 dump_bb (bb, rtl_dump_file);
568 }
569 abort ();
570 }
571 }
572 else
573 {
574 int i;
575
576 /* Find the set of changed registers. */
577 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
578
579 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
580 {
581 /* No registers should die. */
582 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
583 {
584 if (rtl_dump_file)
585 {
586 fprintf (rtl_dump_file,
587 "Register %d died unexpectedly.\n", i);
588 dump_bb (bb, rtl_dump_file);
589 }
590 abort ();
591 }
592
593 /* Verify that the now-live register is wider than word_mode. */
594 verify_wide_reg (i, bb);
595 });
596 }
597 }
598
599 /* Updates life information starting with the basic blocks set in BLOCKS.
600 If BLOCKS is null, consider it to be the universal set.
601
602 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
603 we are only expecting local modifications to basic blocks. If we find
604 extra registers live at the beginning of a block, then we either killed
605 useful data, or we have a broken split that wants data not provided.
606 If we find registers removed from live_at_start, that means we have
607 a broken peephole that is killing a register it shouldn't.
608
609 ??? This is not true in one situation -- when a pre-reload splitter
610 generates subregs of a multi-word pseudo, current life analysis will
611 lose the kill. So we _can_ have a pseudo go live. How irritating.
612
613 Including PROP_REG_INFO does not properly refresh regs_ever_live
614 unless the caller resets it to zero. */
615
616 int
617 update_life_info (blocks, extent, prop_flags)
618 sbitmap blocks;
619 enum update_life_extent extent;
620 int prop_flags;
621 {
622 regset tmp;
623 regset_head tmp_head;
624 int i;
625 int stabilized_prop_flags = prop_flags;
626 basic_block bb;
627
628 tmp = INITIALIZE_REG_SET (tmp_head);
629 ndead = 0;
630
631 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
632 ? TV_LIFE_UPDATE : TV_LIFE);
633
634 /* Changes to the CFG are only allowed when
635 doing a global update for the entire CFG. */
636 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
637 && (extent == UPDATE_LIFE_LOCAL || blocks))
638 abort ();
639
640 /* For a global update, we go through the relaxation process again. */
641 if (extent != UPDATE_LIFE_LOCAL)
642 {
643 for ( ; ; )
644 {
645 int changed = 0;
646
647 calculate_global_regs_live (blocks, blocks,
648 prop_flags & (PROP_SCAN_DEAD_CODE
649 | PROP_SCAN_DEAD_STORES
650 | PROP_ALLOW_CFG_CHANGES));
651
652 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 break;
655
656 /* Removing dead code may allow the CFG to be simplified which
657 in turn may allow for further dead code detection / removal. */
658 FOR_EACH_BB_REVERSE (bb)
659 {
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 changed |= propagate_block (bb, tmp, NULL, NULL,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_SCAN_DEAD_STORES
664 | PROP_KILL_DEAD_CODE));
665 }
666
667 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
668 subsequent propagate_block calls, since removing or acting as
669 removing dead code can affect global register liveness, which
670 is supposed to be finalized for this call after this loop. */
671 stabilized_prop_flags
672 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE);
674
675 if (! changed)
676 break;
677
678 /* We repeat regardless of what cleanup_cfg says. If there were
679 instructions deleted above, that might have been only a
680 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
681 Further improvement may be possible. */
682 cleanup_cfg (CLEANUP_EXPENSIVE);
683 }
684
685 /* If asked, remove notes from the blocks we'll update. */
686 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
687 count_or_remove_death_notes (blocks, 1);
688 }
689
690 /* Clear log links in case we are asked to (re)compute them. */
691 if (prop_flags & PROP_LOG_LINKS)
692 clear_log_links (blocks);
693
694 if (blocks)
695 {
696 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
697 {
698 bb = BASIC_BLOCK (i);
699
700 COPY_REG_SET (tmp, bb->global_live_at_end);
701 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
702
703 if (extent == UPDATE_LIFE_LOCAL)
704 verify_local_live_at_start (tmp, bb);
705 });
706 }
707 else
708 {
709 FOR_EACH_BB_REVERSE (bb)
710 {
711 COPY_REG_SET (tmp, bb->global_live_at_end);
712
713 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
714
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
717 }
718 }
719
720 FREE_REG_SET (tmp);
721
722 if (prop_flags & PROP_REG_INFO)
723 {
724 /* The only pseudos that are live at the beginning of the function
725 are those that were not set anywhere in the function. local-alloc
726 doesn't know how to handle these correctly, so mark them as not
727 local to any one basic block. */
728 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
729 FIRST_PSEUDO_REGISTER, i,
730 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
731
732 /* We have a problem with any pseudoreg that lives across the setjmp.
733 ANSI says that if a user variable does not change in value between
734 the setjmp and the longjmp, then the longjmp preserves it. This
735 includes longjmp from a place where the pseudo appears dead.
736 (In principle, the value still exists if it is in scope.)
737 If the pseudo goes in a hard reg, some other value may occupy
738 that hard reg where this pseudo is dead, thus clobbering the pseudo.
739 Conclusion: such a pseudo must not go in a hard reg. */
740 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
741 FIRST_PSEUDO_REGISTER, i,
742 {
743 if (regno_reg_rtx[i] != 0)
744 {
745 REG_LIVE_LENGTH (i) = -1;
746 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
747 }
748 });
749 }
750 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
751 ? TV_LIFE_UPDATE : TV_LIFE);
752 if (ndead && rtl_dump_file)
753 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
754 return ndead;
755 }
756
757 /* Update life information in all blocks where BB_DIRTY is set. */
758
759 int
760 update_life_info_in_dirty_blocks (extent, prop_flags)
761 enum update_life_extent extent;
762 int prop_flags;
763 {
764 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
765 int n = 0;
766 basic_block bb;
767 int retval = 0;
768
769 sbitmap_zero (update_life_blocks);
770 FOR_EACH_BB (bb)
771 if (bb->flags & BB_DIRTY)
772 {
773 SET_BIT (update_life_blocks, bb->index);
774 n++;
775 }
776
777 if (n)
778 retval = update_life_info (update_life_blocks, extent, prop_flags);
779
780 sbitmap_free (update_life_blocks);
781 return retval;
782 }
783
784 /* Free the variables allocated by find_basic_blocks.
785
786 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
787
788 void
789 free_basic_block_vars (keep_head_end_p)
790 int keep_head_end_p;
791 {
792 if (! keep_head_end_p)
793 {
794 if (basic_block_info)
795 {
796 clear_edges ();
797 VARRAY_FREE (basic_block_info);
798 }
799 n_basic_blocks = 0;
800 last_basic_block = 0;
801
802 ENTRY_BLOCK_PTR->aux = NULL;
803 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
804 EXIT_BLOCK_PTR->aux = NULL;
805 EXIT_BLOCK_PTR->global_live_at_start = NULL;
806 }
807 }
808
809 /* Delete any insns that copy a register to itself. */
810
811 int
812 delete_noop_moves (f)
813 rtx f ATTRIBUTE_UNUSED;
814 {
815 rtx insn, next;
816 basic_block bb;
817 int nnoops = 0;
818
819 FOR_EACH_BB (bb)
820 {
821 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
822 {
823 next = NEXT_INSN (insn);
824 if (INSN_P (insn) && noop_move_p (insn))
825 {
826 rtx note;
827
828 /* If we're about to remove the first insn of a libcall
829 then move the libcall note to the next real insn and
830 update the retval note. */
831 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
832 && XEXP (note, 0) != insn)
833 {
834 rtx new_libcall_insn = next_real_insn (insn);
835 rtx retval_note = find_reg_note (XEXP (note, 0),
836 REG_RETVAL, NULL_RTX);
837 REG_NOTES (new_libcall_insn)
838 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
839 REG_NOTES (new_libcall_insn));
840 XEXP (retval_note, 0) = new_libcall_insn;
841 }
842
843 delete_insn_and_edges (insn);
844 nnoops++;
845 }
846 }
847 }
848 if (nnoops && rtl_dump_file)
849 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
850 return nnoops;
851 }
852
853 /* Delete any jump tables never referenced. We can't delete them at the
854 time of removing tablejump insn as they are referenced by the preceding
855 insns computing the destination, so we delay deleting and garbagecollect
856 them once life information is computed. */
857 void
858 delete_dead_jumptables ()
859 {
860 rtx insn, next;
861 for (insn = get_insns (); insn; insn = next)
862 {
863 next = NEXT_INSN (insn);
864 if (GET_CODE (insn) == CODE_LABEL
865 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
866 && GET_CODE (next) == JUMP_INSN
867 && (GET_CODE (PATTERN (next)) == ADDR_VEC
868 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
869 {
870 if (rtl_dump_file)
871 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
872 delete_insn (NEXT_INSN (insn));
873 delete_insn (insn);
874 next = NEXT_INSN (next);
875 }
876 }
877 }
878
879 /* Determine if the stack pointer is constant over the life of the function.
880 Only useful before prologues have been emitted. */
881
882 static void
883 notice_stack_pointer_modification_1 (x, pat, data)
884 rtx x;
885 rtx pat ATTRIBUTE_UNUSED;
886 void *data ATTRIBUTE_UNUSED;
887 {
888 if (x == stack_pointer_rtx
889 /* The stack pointer is only modified indirectly as the result
890 of a push until later in flow. See the comments in rtl.texi
891 regarding Embedded Side-Effects on Addresses. */
892 || (GET_CODE (x) == MEM
893 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
894 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
895 current_function_sp_is_unchanging = 0;
896 }
897
898 static void
899 notice_stack_pointer_modification (f)
900 rtx f;
901 {
902 rtx insn;
903
904 /* Assume that the stack pointer is unchanging if alloca hasn't
905 been used. */
906 current_function_sp_is_unchanging = !current_function_calls_alloca;
907 if (! current_function_sp_is_unchanging)
908 return;
909
910 for (insn = f; insn; insn = NEXT_INSN (insn))
911 {
912 if (INSN_P (insn))
913 {
914 /* Check if insn modifies the stack pointer. */
915 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
916 NULL);
917 if (! current_function_sp_is_unchanging)
918 return;
919 }
920 }
921 }
922
923 /* Mark a register in SET. Hard registers in large modes get all
924 of their component registers set as well. */
925
926 static void
927 mark_reg (reg, xset)
928 rtx reg;
929 void *xset;
930 {
931 regset set = (regset) xset;
932 int regno = REGNO (reg);
933
934 if (GET_MODE (reg) == BLKmode)
935 abort ();
936
937 SET_REGNO_REG_SET (set, regno);
938 if (regno < FIRST_PSEUDO_REGISTER)
939 {
940 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
941 while (--n > 0)
942 SET_REGNO_REG_SET (set, regno + n);
943 }
944 }
945
946 /* Mark those regs which are needed at the end of the function as live
947 at the end of the last basic block. */
948
949 static void
950 mark_regs_live_at_end (set)
951 regset set;
952 {
953 unsigned int i;
954
955 /* If exiting needs the right stack value, consider the stack pointer
956 live at the end of the function. */
957 if ((HAVE_epilogue && reload_completed)
958 || ! EXIT_IGNORE_STACK
959 || (! FRAME_POINTER_REQUIRED
960 && ! current_function_calls_alloca
961 && flag_omit_frame_pointer)
962 || current_function_sp_is_unchanging)
963 {
964 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
965 }
966
967 /* Mark the frame pointer if needed at the end of the function. If
968 we end up eliminating it, it will be removed from the live list
969 of each basic block by reload. */
970
971 if (! reload_completed || frame_pointer_needed)
972 {
973 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
974 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
975 /* If they are different, also mark the hard frame pointer as live. */
976 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
977 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
978 #endif
979 }
980
981 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
982 /* Many architectures have a GP register even without flag_pic.
983 Assume the pic register is not in use, or will be handled by
984 other means, if it is not fixed. */
985 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
986 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
987 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
988 #endif
989
990 /* Mark all global registers, and all registers used by the epilogue
991 as being live at the end of the function since they may be
992 referenced by our caller. */
993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
994 if (global_regs[i] || EPILOGUE_USES (i))
995 SET_REGNO_REG_SET (set, i);
996
997 if (HAVE_epilogue && reload_completed)
998 {
999 /* Mark all call-saved registers that we actually used. */
1000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1002 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1003 SET_REGNO_REG_SET (set, i);
1004 }
1005
1006 #ifdef EH_RETURN_DATA_REGNO
1007 /* Mark the registers that will contain data for the handler. */
1008 if (reload_completed && current_function_calls_eh_return)
1009 for (i = 0; ; ++i)
1010 {
1011 unsigned regno = EH_RETURN_DATA_REGNO(i);
1012 if (regno == INVALID_REGNUM)
1013 break;
1014 SET_REGNO_REG_SET (set, regno);
1015 }
1016 #endif
1017 #ifdef EH_RETURN_STACKADJ_RTX
1018 if ((! HAVE_epilogue || ! reload_completed)
1019 && current_function_calls_eh_return)
1020 {
1021 rtx tmp = EH_RETURN_STACKADJ_RTX;
1022 if (tmp && REG_P (tmp))
1023 mark_reg (tmp, set);
1024 }
1025 #endif
1026 #ifdef EH_RETURN_HANDLER_RTX
1027 if ((! HAVE_epilogue || ! reload_completed)
1028 && current_function_calls_eh_return)
1029 {
1030 rtx tmp = EH_RETURN_HANDLER_RTX;
1031 if (tmp && REG_P (tmp))
1032 mark_reg (tmp, set);
1033 }
1034 #endif
1035
1036 /* Mark function return value. */
1037 diddle_return_value (mark_reg, set);
1038 }
1039
1040 /* Callback function for for_each_successor_phi. DATA is a regset.
1041 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1042 INSN, in the regset. */
1043
1044 static int
1045 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1046 rtx insn ATTRIBUTE_UNUSED;
1047 int dest_regno ATTRIBUTE_UNUSED;
1048 int src_regno;
1049 void *data;
1050 {
1051 regset live = (regset) data;
1052 SET_REGNO_REG_SET (live, src_regno);
1053 return 0;
1054 }
1055
1056 /* Propagate global life info around the graph of basic blocks. Begin
1057 considering blocks with their corresponding bit set in BLOCKS_IN.
1058 If BLOCKS_IN is null, consider it the universal set.
1059
1060 BLOCKS_OUT is set for every block that was changed. */
1061
1062 static void
1063 calculate_global_regs_live (blocks_in, blocks_out, flags)
1064 sbitmap blocks_in, blocks_out;
1065 int flags;
1066 {
1067 basic_block *queue, *qhead, *qtail, *qend, bb;
1068 regset tmp, new_live_at_end, call_used;
1069 regset_head tmp_head, call_used_head;
1070 regset_head new_live_at_end_head;
1071 int i;
1072
1073 /* Some passes used to forget clear aux field of basic block causing
1074 sick behaviour here. */
1075 #ifdef ENABLE_CHECKING
1076 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1077 if (bb->aux)
1078 abort ();
1079 #endif
1080
1081 tmp = INITIALIZE_REG_SET (tmp_head);
1082 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1083 call_used = INITIALIZE_REG_SET (call_used_head);
1084
1085 /* Inconveniently, this is only readily available in hard reg set form. */
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1087 if (call_used_regs[i])
1088 SET_REGNO_REG_SET (call_used, i);
1089
1090 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1091 because the `head == tail' style test for an empty queue doesn't
1092 work with a full queue. */
1093 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1094 qtail = queue;
1095 qhead = qend = queue + n_basic_blocks + 2;
1096
1097 /* Queue the blocks set in the initial mask. Do this in reverse block
1098 number order so that we are more likely for the first round to do
1099 useful work. We use AUX non-null to flag that the block is queued. */
1100 if (blocks_in)
1101 {
1102 FOR_EACH_BB (bb)
1103 if (TEST_BIT (blocks_in, bb->index))
1104 {
1105 *--qhead = bb;
1106 bb->aux = bb;
1107 }
1108 }
1109 else
1110 {
1111 FOR_EACH_BB (bb)
1112 {
1113 *--qhead = bb;
1114 bb->aux = bb;
1115 }
1116 }
1117
1118 /* We clean aux when we remove the initially-enqueued bbs, but we
1119 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1120 unconditionally. */
1121 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1122
1123 if (blocks_out)
1124 sbitmap_zero (blocks_out);
1125
1126 /* We work through the queue until there are no more blocks. What
1127 is live at the end of this block is precisely the union of what
1128 is live at the beginning of all its successors. So, we set its
1129 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1130 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1131 this block by walking through the instructions in this block in
1132 reverse order and updating as we go. If that changed
1133 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1134 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1135
1136 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1137 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1138 must either be live at the end of the block, or used within the
1139 block. In the latter case, it will certainly never disappear
1140 from GLOBAL_LIVE_AT_START. In the former case, the register
1141 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1142 for one of the successor blocks. By induction, that cannot
1143 occur. */
1144 while (qhead != qtail)
1145 {
1146 int rescan, changed;
1147 basic_block bb;
1148 edge e;
1149
1150 bb = *qhead++;
1151 if (qhead == qend)
1152 qhead = queue;
1153 bb->aux = NULL;
1154
1155 /* Begin by propagating live_at_start from the successor blocks. */
1156 CLEAR_REG_SET (new_live_at_end);
1157
1158 if (bb->succ)
1159 for (e = bb->succ; e; e = e->succ_next)
1160 {
1161 basic_block sb = e->dest;
1162
1163 /* Call-clobbered registers die across exception and
1164 call edges. */
1165 /* ??? Abnormal call edges ignored for the moment, as this gets
1166 confused by sibling call edges, which crashes reg-stack. */
1167 if (e->flags & EDGE_EH)
1168 {
1169 bitmap_operation (tmp, sb->global_live_at_start,
1170 call_used, BITMAP_AND_COMPL);
1171 IOR_REG_SET (new_live_at_end, tmp);
1172 }
1173 else
1174 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1175
1176 /* If a target saves one register in another (instead of on
1177 the stack) the save register will need to be live for EH. */
1178 if (e->flags & EDGE_EH)
1179 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1180 if (EH_USES (i))
1181 SET_REGNO_REG_SET (new_live_at_end, i);
1182 }
1183 else
1184 {
1185 /* This might be a noreturn function that throws. And
1186 even if it isn't, getting the unwind info right helps
1187 debugging. */
1188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1189 if (EH_USES (i))
1190 SET_REGNO_REG_SET (new_live_at_end, i);
1191 }
1192
1193 /* The all-important stack pointer must always be live. */
1194 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1195
1196 /* Before reload, there are a few registers that must be forced
1197 live everywhere -- which might not already be the case for
1198 blocks within infinite loops. */
1199 if (! reload_completed)
1200 {
1201 /* Any reference to any pseudo before reload is a potential
1202 reference of the frame pointer. */
1203 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1204
1205 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1206 /* Pseudos with argument area equivalences may require
1207 reloading via the argument pointer. */
1208 if (fixed_regs[ARG_POINTER_REGNUM])
1209 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1210 #endif
1211
1212 /* Any constant, or pseudo with constant equivalences, may
1213 require reloading from memory using the pic register. */
1214 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1215 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1216 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1217 }
1218
1219 /* Regs used in phi nodes are not included in
1220 global_live_at_start, since they are live only along a
1221 particular edge. Set those regs that are live because of a
1222 phi node alternative corresponding to this particular block. */
1223 if (in_ssa_form)
1224 for_each_successor_phi (bb, &set_phi_alternative_reg,
1225 new_live_at_end);
1226
1227 if (bb == ENTRY_BLOCK_PTR)
1228 {
1229 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1230 continue;
1231 }
1232
1233 /* On our first pass through this block, we'll go ahead and continue.
1234 Recognize first pass by local_set NULL. On subsequent passes, we
1235 get to skip out early if live_at_end wouldn't have changed. */
1236
1237 if (bb->local_set == NULL)
1238 {
1239 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1240 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1241 rescan = 1;
1242 }
1243 else
1244 {
1245 /* If any bits were removed from live_at_end, we'll have to
1246 rescan the block. This wouldn't be necessary if we had
1247 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1248 local_live is really dependent on live_at_end. */
1249 CLEAR_REG_SET (tmp);
1250 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1251 new_live_at_end, BITMAP_AND_COMPL);
1252
1253 if (! rescan)
1254 {
1255 /* If any of the registers in the new live_at_end set are
1256 conditionally set in this basic block, we must rescan.
1257 This is because conditional lifetimes at the end of the
1258 block do not just take the live_at_end set into account,
1259 but also the liveness at the start of each successor
1260 block. We can miss changes in those sets if we only
1261 compare the new live_at_end against the previous one. */
1262 CLEAR_REG_SET (tmp);
1263 rescan = bitmap_operation (tmp, new_live_at_end,
1264 bb->cond_local_set, BITMAP_AND);
1265 }
1266
1267 if (! rescan)
1268 {
1269 /* Find the set of changed bits. Take this opportunity
1270 to notice that this set is empty and early out. */
1271 CLEAR_REG_SET (tmp);
1272 changed = bitmap_operation (tmp, bb->global_live_at_end,
1273 new_live_at_end, BITMAP_XOR);
1274 if (! changed)
1275 continue;
1276
1277 /* If any of the changed bits overlap with local_set,
1278 we'll have to rescan the block. Detect overlap by
1279 the AND with ~local_set turning off bits. */
1280 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1281 BITMAP_AND_COMPL);
1282 }
1283 }
1284
1285 /* Let our caller know that BB changed enough to require its
1286 death notes updated. */
1287 if (blocks_out)
1288 SET_BIT (blocks_out, bb->index);
1289
1290 if (! rescan)
1291 {
1292 /* Add to live_at_start the set of all registers in
1293 new_live_at_end that aren't in the old live_at_end. */
1294
1295 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1296 BITMAP_AND_COMPL);
1297 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1298
1299 changed = bitmap_operation (bb->global_live_at_start,
1300 bb->global_live_at_start,
1301 tmp, BITMAP_IOR);
1302 if (! changed)
1303 continue;
1304 }
1305 else
1306 {
1307 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1308
1309 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1310 into live_at_start. */
1311 propagate_block (bb, new_live_at_end, bb->local_set,
1312 bb->cond_local_set, flags);
1313
1314 /* If live_at start didn't change, no need to go farther. */
1315 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1316 continue;
1317
1318 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1319 }
1320
1321 /* Queue all predecessors of BB so that we may re-examine
1322 their live_at_end. */
1323 for (e = bb->pred; e; e = e->pred_next)
1324 {
1325 basic_block pb = e->src;
1326 if (pb->aux == NULL)
1327 {
1328 *qtail++ = pb;
1329 if (qtail == qend)
1330 qtail = queue;
1331 pb->aux = pb;
1332 }
1333 }
1334 }
1335
1336 FREE_REG_SET (tmp);
1337 FREE_REG_SET (new_live_at_end);
1338 FREE_REG_SET (call_used);
1339
1340 if (blocks_out)
1341 {
1342 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1343 {
1344 basic_block bb = BASIC_BLOCK (i);
1345 FREE_REG_SET (bb->local_set);
1346 FREE_REG_SET (bb->cond_local_set);
1347 });
1348 }
1349 else
1350 {
1351 FOR_EACH_BB (bb)
1352 {
1353 FREE_REG_SET (bb->local_set);
1354 FREE_REG_SET (bb->cond_local_set);
1355 }
1356 }
1357
1358 free (queue);
1359 }
1360
1361 \f
1362 /* This structure is used to pass parameters to an from the
1363 the function find_regno_partial(). It is used to pass in the
1364 register number we are looking, as well as to return any rtx
1365 we find. */
1366
1367 typedef struct {
1368 unsigned regno_to_find;
1369 rtx retval;
1370 } find_regno_partial_param;
1371
1372
1373 /* Find the rtx for the reg numbers specified in 'data' if it is
1374 part of an expression which only uses part of the register. Return
1375 it in the structure passed in. */
1376 static int
1377 find_regno_partial (ptr, data)
1378 rtx *ptr;
1379 void *data;
1380 {
1381 find_regno_partial_param *param = (find_regno_partial_param *)data;
1382 unsigned reg = param->regno_to_find;
1383 param->retval = NULL_RTX;
1384
1385 if (*ptr == NULL_RTX)
1386 return 0;
1387
1388 switch (GET_CODE (*ptr))
1389 {
1390 case ZERO_EXTRACT:
1391 case SIGN_EXTRACT:
1392 case STRICT_LOW_PART:
1393 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1394 {
1395 param->retval = XEXP (*ptr, 0);
1396 return 1;
1397 }
1398 break;
1399
1400 case SUBREG:
1401 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1402 && REGNO (SUBREG_REG (*ptr)) == reg)
1403 {
1404 param->retval = SUBREG_REG (*ptr);
1405 return 1;
1406 }
1407 break;
1408
1409 default:
1410 break;
1411 }
1412
1413 return 0;
1414 }
1415
1416 /* Process all immediate successors of the entry block looking for pseudo
1417 registers which are live on entry. Find all of those whose first
1418 instance is a partial register reference of some kind, and initialize
1419 them to 0 after the entry block. This will prevent bit sets within
1420 registers whose value is unknown, and may contain some kind of sticky
1421 bits we don't want. */
1422
1423 int
1424 initialize_uninitialized_subregs ()
1425 {
1426 rtx insn;
1427 edge e;
1428 int reg, did_something = 0;
1429 find_regno_partial_param param;
1430
1431 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1432 {
1433 basic_block bb = e->dest;
1434 regset map = bb->global_live_at_start;
1435 EXECUTE_IF_SET_IN_REG_SET (map,
1436 FIRST_PSEUDO_REGISTER, reg,
1437 {
1438 int uid = REGNO_FIRST_UID (reg);
1439 rtx i;
1440
1441 /* Find an insn which mentions the register we are looking for.
1442 Its preferable to have an instance of the register's rtl since
1443 there may be various flags set which we need to duplicate.
1444 If we can't find it, its probably an automatic whose initial
1445 value doesn't matter, or hopefully something we don't care about. */
1446 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1447 ;
1448 if (i != NULL_RTX)
1449 {
1450 /* Found the insn, now get the REG rtx, if we can. */
1451 param.regno_to_find = reg;
1452 for_each_rtx (&i, find_regno_partial, &param);
1453 if (param.retval != NULL_RTX)
1454 {
1455 insn = gen_move_insn (param.retval,
1456 CONST0_RTX (GET_MODE (param.retval)));
1457 insert_insn_on_edge (insn, e);
1458 did_something = 1;
1459 }
1460 }
1461 });
1462 }
1463
1464 if (did_something)
1465 commit_edge_insertions ();
1466 return did_something;
1467 }
1468
1469 \f
1470 /* Subroutines of life analysis. */
1471
1472 /* Allocate the permanent data structures that represent the results
1473 of life analysis. Not static since used also for stupid life analysis. */
1474
1475 void
1476 allocate_bb_life_data ()
1477 {
1478 basic_block bb;
1479
1480 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1481 {
1482 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1483 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1484 }
1485
1486 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1487 }
1488
1489 void
1490 allocate_reg_life_data ()
1491 {
1492 int i;
1493
1494 max_regno = max_reg_num ();
1495
1496 /* Recalculate the register space, in case it has grown. Old style
1497 vector oriented regsets would set regset_{size,bytes} here also. */
1498 allocate_reg_info (max_regno, FALSE, FALSE);
1499
1500 /* Reset all the data we'll collect in propagate_block and its
1501 subroutines. */
1502 for (i = 0; i < max_regno; i++)
1503 {
1504 REG_N_SETS (i) = 0;
1505 REG_N_REFS (i) = 0;
1506 REG_N_DEATHS (i) = 0;
1507 REG_N_CALLS_CROSSED (i) = 0;
1508 REG_LIVE_LENGTH (i) = 0;
1509 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1510 }
1511 }
1512
1513 /* Delete dead instructions for propagate_block. */
1514
1515 static void
1516 propagate_block_delete_insn (insn)
1517 rtx insn;
1518 {
1519 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1520
1521 /* If the insn referred to a label, and that label was attached to
1522 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1523 pretty much mandatory to delete it, because the ADDR_VEC may be
1524 referencing labels that no longer exist.
1525
1526 INSN may reference a deleted label, particularly when a jump
1527 table has been optimized into a direct jump. There's no
1528 real good way to fix up the reference to the deleted label
1529 when the label is deleted, so we just allow it here. */
1530
1531 if (inote && GET_CODE (inote) == CODE_LABEL)
1532 {
1533 rtx label = XEXP (inote, 0);
1534 rtx next;
1535
1536 /* The label may be forced if it has been put in the constant
1537 pool. If that is the only use we must discard the table
1538 jump following it, but not the label itself. */
1539 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1540 && (next = next_nonnote_insn (label)) != NULL
1541 && GET_CODE (next) == JUMP_INSN
1542 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1543 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1544 {
1545 rtx pat = PATTERN (next);
1546 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1547 int len = XVECLEN (pat, diff_vec_p);
1548 int i;
1549
1550 for (i = 0; i < len; i++)
1551 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1552
1553 delete_insn_and_edges (next);
1554 ndead++;
1555 }
1556 }
1557
1558 delete_insn_and_edges (insn);
1559 ndead++;
1560 }
1561
1562 /* Delete dead libcalls for propagate_block. Return the insn
1563 before the libcall. */
1564
1565 static rtx
1566 propagate_block_delete_libcall ( insn, note)
1567 rtx insn, note;
1568 {
1569 rtx first = XEXP (note, 0);
1570 rtx before = PREV_INSN (first);
1571
1572 delete_insn_chain_and_edges (first, insn);
1573 ndead++;
1574 return before;
1575 }
1576
1577 /* Update the life-status of regs for one insn. Return the previous insn. */
1578
1579 rtx
1580 propagate_one_insn (pbi, insn)
1581 struct propagate_block_info *pbi;
1582 rtx insn;
1583 {
1584 rtx prev = PREV_INSN (insn);
1585 int flags = pbi->flags;
1586 int insn_is_dead = 0;
1587 int libcall_is_dead = 0;
1588 rtx note;
1589 int i;
1590
1591 if (! INSN_P (insn))
1592 return prev;
1593
1594 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1595 if (flags & PROP_SCAN_DEAD_CODE)
1596 {
1597 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1598 libcall_is_dead = (insn_is_dead && note != 0
1599 && libcall_dead_p (pbi, note, insn));
1600 }
1601
1602 /* If an instruction consists of just dead store(s) on final pass,
1603 delete it. */
1604 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1605 {
1606 /* If we're trying to delete a prologue or epilogue instruction
1607 that isn't flagged as possibly being dead, something is wrong.
1608 But if we are keeping the stack pointer depressed, we might well
1609 be deleting insns that are used to compute the amount to update
1610 it by, so they are fine. */
1611 if (reload_completed
1612 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1613 && (TYPE_RETURNS_STACK_DEPRESSED
1614 (TREE_TYPE (current_function_decl))))
1615 && (((HAVE_epilogue || HAVE_prologue)
1616 && prologue_epilogue_contains (insn))
1617 || (HAVE_sibcall_epilogue
1618 && sibcall_epilogue_contains (insn)))
1619 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1620 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1621
1622 /* Record sets. Do this even for dead instructions, since they
1623 would have killed the values if they hadn't been deleted. */
1624 mark_set_regs (pbi, PATTERN (insn), insn);
1625
1626 /* CC0 is now known to be dead. Either this insn used it,
1627 in which case it doesn't anymore, or clobbered it,
1628 so the next insn can't use it. */
1629 pbi->cc0_live = 0;
1630
1631 if (libcall_is_dead)
1632 prev = propagate_block_delete_libcall ( insn, note);
1633 else
1634 propagate_block_delete_insn (insn);
1635
1636 return prev;
1637 }
1638
1639 /* See if this is an increment or decrement that can be merged into
1640 a following memory address. */
1641 #ifdef AUTO_INC_DEC
1642 {
1643 rtx x = single_set (insn);
1644
1645 /* Does this instruction increment or decrement a register? */
1646 if ((flags & PROP_AUTOINC)
1647 && x != 0
1648 && GET_CODE (SET_DEST (x)) == REG
1649 && (GET_CODE (SET_SRC (x)) == PLUS
1650 || GET_CODE (SET_SRC (x)) == MINUS)
1651 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1652 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1653 /* Ok, look for a following memory ref we can combine with.
1654 If one is found, change the memory ref to a PRE_INC
1655 or PRE_DEC, cancel this insn, and return 1.
1656 Return 0 if nothing has been done. */
1657 && try_pre_increment_1 (pbi, insn))
1658 return prev;
1659 }
1660 #endif /* AUTO_INC_DEC */
1661
1662 CLEAR_REG_SET (pbi->new_set);
1663
1664 /* If this is not the final pass, and this insn is copying the value of
1665 a library call and it's dead, don't scan the insns that perform the
1666 library call, so that the call's arguments are not marked live. */
1667 if (libcall_is_dead)
1668 {
1669 /* Record the death of the dest reg. */
1670 mark_set_regs (pbi, PATTERN (insn), insn);
1671
1672 insn = XEXP (note, 0);
1673 return PREV_INSN (insn);
1674 }
1675 else if (GET_CODE (PATTERN (insn)) == SET
1676 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1677 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1678 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1679 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1680 /* We have an insn to pop a constant amount off the stack.
1681 (Such insns use PLUS regardless of the direction of the stack,
1682 and any insn to adjust the stack by a constant is always a pop.)
1683 These insns, if not dead stores, have no effect on life, though
1684 they do have an effect on the memory stores we are tracking. */
1685 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1686 else
1687 {
1688 rtx note;
1689 /* Any regs live at the time of a call instruction must not go
1690 in a register clobbered by calls. Find all regs now live and
1691 record this for them. */
1692
1693 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1694 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1695 { REG_N_CALLS_CROSSED (i)++; });
1696
1697 /* Record sets. Do this even for dead instructions, since they
1698 would have killed the values if they hadn't been deleted. */
1699 mark_set_regs (pbi, PATTERN (insn), insn);
1700
1701 if (GET_CODE (insn) == CALL_INSN)
1702 {
1703 int i;
1704 rtx note, cond;
1705
1706 cond = NULL_RTX;
1707 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1708 cond = COND_EXEC_TEST (PATTERN (insn));
1709
1710 /* Non-constant calls clobber memory, constant calls do not
1711 clobber memory, though they may clobber outgoing arguments
1712 on the stack. */
1713 if (! CONST_OR_PURE_CALL_P (insn))
1714 {
1715 free_EXPR_LIST_list (&pbi->mem_set_list);
1716 pbi->mem_set_list_len = 0;
1717 }
1718 else
1719 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1720
1721 /* There may be extra registers to be clobbered. */
1722 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1723 note;
1724 note = XEXP (note, 1))
1725 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1726 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1727 cond, insn, pbi->flags);
1728
1729 /* Calls change all call-used and global registers. */
1730 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1731 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1732 {
1733 /* We do not want REG_UNUSED notes for these registers. */
1734 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1735 cond, insn,
1736 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1737 }
1738 }
1739
1740 /* If an insn doesn't use CC0, it becomes dead since we assume
1741 that every insn clobbers it. So show it dead here;
1742 mark_used_regs will set it live if it is referenced. */
1743 pbi->cc0_live = 0;
1744
1745 /* Record uses. */
1746 if (! insn_is_dead)
1747 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1748 if ((flags & PROP_EQUAL_NOTES)
1749 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1750 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1751 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1752
1753 /* Sometimes we may have inserted something before INSN (such as a move)
1754 when we make an auto-inc. So ensure we will scan those insns. */
1755 #ifdef AUTO_INC_DEC
1756 prev = PREV_INSN (insn);
1757 #endif
1758
1759 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1760 {
1761 int i;
1762 rtx note, cond;
1763
1764 cond = NULL_RTX;
1765 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1766 cond = COND_EXEC_TEST (PATTERN (insn));
1767
1768 /* Calls use their arguments. */
1769 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1770 note;
1771 note = XEXP (note, 1))
1772 if (GET_CODE (XEXP (note, 0)) == USE)
1773 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1774 cond, insn);
1775
1776 /* The stack ptr is used (honorarily) by a CALL insn. */
1777 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1778
1779 /* Calls may also reference any of the global registers,
1780 so they are made live. */
1781 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1782 if (global_regs[i])
1783 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1784 cond, insn);
1785 }
1786 }
1787
1788 /* On final pass, update counts of how many insns in which each reg
1789 is live. */
1790 if (flags & PROP_REG_INFO)
1791 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1792 { REG_LIVE_LENGTH (i)++; });
1793
1794 return prev;
1795 }
1796
1797 /* Initialize a propagate_block_info struct for public consumption.
1798 Note that the structure itself is opaque to this file, but that
1799 the user can use the regsets provided here. */
1800
1801 struct propagate_block_info *
1802 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1803 basic_block bb;
1804 regset live, local_set, cond_local_set;
1805 int flags;
1806 {
1807 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1808
1809 pbi->bb = bb;
1810 pbi->reg_live = live;
1811 pbi->mem_set_list = NULL_RTX;
1812 pbi->mem_set_list_len = 0;
1813 pbi->local_set = local_set;
1814 pbi->cond_local_set = cond_local_set;
1815 pbi->cc0_live = 0;
1816 pbi->flags = flags;
1817
1818 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1819 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1820 else
1821 pbi->reg_next_use = NULL;
1822
1823 pbi->new_set = BITMAP_XMALLOC ();
1824
1825 #ifdef HAVE_conditional_execution
1826 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1827 free_reg_cond_life_info);
1828 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1829
1830 /* If this block ends in a conditional branch, for each register live
1831 from one side of the branch and not the other, record the register
1832 as conditionally dead. */
1833 if (GET_CODE (bb->end) == JUMP_INSN
1834 && any_condjump_p (bb->end))
1835 {
1836 regset_head diff_head;
1837 regset diff = INITIALIZE_REG_SET (diff_head);
1838 basic_block bb_true, bb_false;
1839 rtx cond_true, cond_false, set_src;
1840 int i;
1841
1842 /* Identify the successor blocks. */
1843 bb_true = bb->succ->dest;
1844 if (bb->succ->succ_next != NULL)
1845 {
1846 bb_false = bb->succ->succ_next->dest;
1847
1848 if (bb->succ->flags & EDGE_FALLTHRU)
1849 {
1850 basic_block t = bb_false;
1851 bb_false = bb_true;
1852 bb_true = t;
1853 }
1854 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1855 abort ();
1856 }
1857 else
1858 {
1859 /* This can happen with a conditional jump to the next insn. */
1860 if (JUMP_LABEL (bb->end) != bb_true->head)
1861 abort ();
1862
1863 /* Simplest way to do nothing. */
1864 bb_false = bb_true;
1865 }
1866
1867 /* Extract the condition from the branch. */
1868 set_src = SET_SRC (pc_set (bb->end));
1869 cond_true = XEXP (set_src, 0);
1870 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1871 GET_MODE (cond_true), XEXP (cond_true, 0),
1872 XEXP (cond_true, 1));
1873 if (GET_CODE (XEXP (set_src, 1)) == PC)
1874 {
1875 rtx t = cond_false;
1876 cond_false = cond_true;
1877 cond_true = t;
1878 }
1879
1880 /* Compute which register lead different lives in the successors. */
1881 if (bitmap_operation (diff, bb_true->global_live_at_start,
1882 bb_false->global_live_at_start, BITMAP_XOR))
1883 {
1884 rtx reg = XEXP (cond_true, 0);
1885
1886 if (GET_CODE (reg) == SUBREG)
1887 reg = SUBREG_REG (reg);
1888
1889 if (GET_CODE (reg) != REG)
1890 abort ();
1891
1892 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1893
1894 /* For each such register, mark it conditionally dead. */
1895 EXECUTE_IF_SET_IN_REG_SET
1896 (diff, 0, i,
1897 {
1898 struct reg_cond_life_info *rcli;
1899 rtx cond;
1900
1901 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1902
1903 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1904 cond = cond_false;
1905 else
1906 cond = cond_true;
1907 rcli->condition = cond;
1908 rcli->stores = const0_rtx;
1909 rcli->orig_condition = cond;
1910
1911 splay_tree_insert (pbi->reg_cond_dead, i,
1912 (splay_tree_value) rcli);
1913 });
1914 }
1915
1916 FREE_REG_SET (diff);
1917 }
1918 #endif
1919
1920 /* If this block has no successors, any stores to the frame that aren't
1921 used later in the block are dead. So make a pass over the block
1922 recording any such that are made and show them dead at the end. We do
1923 a very conservative and simple job here. */
1924 if (optimize
1925 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1926 && (TYPE_RETURNS_STACK_DEPRESSED
1927 (TREE_TYPE (current_function_decl))))
1928 && (flags & PROP_SCAN_DEAD_STORES)
1929 && (bb->succ == NULL
1930 || (bb->succ->succ_next == NULL
1931 && bb->succ->dest == EXIT_BLOCK_PTR
1932 && ! current_function_calls_eh_return)))
1933 {
1934 rtx insn, set;
1935 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1936 if (GET_CODE (insn) == INSN
1937 && (set = single_set (insn))
1938 && GET_CODE (SET_DEST (set)) == MEM)
1939 {
1940 rtx mem = SET_DEST (set);
1941 rtx canon_mem = canon_rtx (mem);
1942
1943 /* This optimization is performed by faking a store to the
1944 memory at the end of the block. This doesn't work for
1945 unchanging memories because multiple stores to unchanging
1946 memory is illegal and alias analysis doesn't consider it. */
1947 if (RTX_UNCHANGING_P (canon_mem))
1948 continue;
1949
1950 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1951 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1952 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1953 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1954 add_to_mem_set_list (pbi, canon_mem);
1955 }
1956 }
1957
1958 return pbi;
1959 }
1960
1961 /* Release a propagate_block_info struct. */
1962
1963 void
1964 free_propagate_block_info (pbi)
1965 struct propagate_block_info *pbi;
1966 {
1967 free_EXPR_LIST_list (&pbi->mem_set_list);
1968
1969 BITMAP_XFREE (pbi->new_set);
1970
1971 #ifdef HAVE_conditional_execution
1972 splay_tree_delete (pbi->reg_cond_dead);
1973 BITMAP_XFREE (pbi->reg_cond_reg);
1974 #endif
1975
1976 if (pbi->reg_next_use)
1977 free (pbi->reg_next_use);
1978
1979 free (pbi);
1980 }
1981
1982 /* Compute the registers live at the beginning of a basic block BB from
1983 those live at the end.
1984
1985 When called, REG_LIVE contains those live at the end. On return, it
1986 contains those live at the beginning.
1987
1988 LOCAL_SET, if non-null, will be set with all registers killed
1989 unconditionally by this basic block.
1990 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1991 killed conditionally by this basic block. If there is any unconditional
1992 set of a register, then the corresponding bit will be set in LOCAL_SET
1993 and cleared in COND_LOCAL_SET.
1994 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1995 case, the resulting set will be equal to the union of the two sets that
1996 would otherwise be computed.
1997
1998 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
1999
2000 int
2001 propagate_block (bb, live, local_set, cond_local_set, flags)
2002 basic_block bb;
2003 regset live;
2004 regset local_set;
2005 regset cond_local_set;
2006 int flags;
2007 {
2008 struct propagate_block_info *pbi;
2009 rtx insn, prev;
2010 int changed;
2011
2012 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2013
2014 if (flags & PROP_REG_INFO)
2015 {
2016 int i;
2017
2018 /* Process the regs live at the end of the block.
2019 Mark them as not local to any one basic block. */
2020 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2021 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2022 }
2023
2024 /* Scan the block an insn at a time from end to beginning. */
2025
2026 changed = 0;
2027 for (insn = bb->end;; insn = prev)
2028 {
2029 /* If this is a call to `setjmp' et al, warn if any
2030 non-volatile datum is live. */
2031 if ((flags & PROP_REG_INFO)
2032 && GET_CODE (insn) == CALL_INSN
2033 && find_reg_note (insn, REG_SETJMP, NULL))
2034 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2035
2036 prev = propagate_one_insn (pbi, insn);
2037 changed |= NEXT_INSN (prev) != insn;
2038
2039 if (insn == bb->head)
2040 break;
2041 }
2042
2043 free_propagate_block_info (pbi);
2044
2045 return changed;
2046 }
2047 \f
2048 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2049 (SET expressions whose destinations are registers dead after the insn).
2050 NEEDED is the regset that says which regs are alive after the insn.
2051
2052 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2053
2054 If X is the entire body of an insn, NOTES contains the reg notes
2055 pertaining to the insn. */
2056
2057 static int
2058 insn_dead_p (pbi, x, call_ok, notes)
2059 struct propagate_block_info *pbi;
2060 rtx x;
2061 int call_ok;
2062 rtx notes ATTRIBUTE_UNUSED;
2063 {
2064 enum rtx_code code = GET_CODE (x);
2065
2066 #ifdef AUTO_INC_DEC
2067 /* As flow is invoked after combine, we must take existing AUTO_INC
2068 expressions into account. */
2069 for (; notes; notes = XEXP (notes, 1))
2070 {
2071 if (REG_NOTE_KIND (notes) == REG_INC)
2072 {
2073 int regno = REGNO (XEXP (notes, 0));
2074
2075 /* Don't delete insns to set global regs. */
2076 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2077 || REGNO_REG_SET_P (pbi->reg_live, regno))
2078 return 0;
2079 }
2080 }
2081 #endif
2082
2083 /* If setting something that's a reg or part of one,
2084 see if that register's altered value will be live. */
2085
2086 if (code == SET)
2087 {
2088 rtx r = SET_DEST (x);
2089
2090 #ifdef HAVE_cc0
2091 if (GET_CODE (r) == CC0)
2092 return ! pbi->cc0_live;
2093 #endif
2094
2095 /* A SET that is a subroutine call cannot be dead. */
2096 if (GET_CODE (SET_SRC (x)) == CALL)
2097 {
2098 if (! call_ok)
2099 return 0;
2100 }
2101
2102 /* Don't eliminate loads from volatile memory or volatile asms. */
2103 else if (volatile_refs_p (SET_SRC (x)))
2104 return 0;
2105
2106 if (GET_CODE (r) == MEM)
2107 {
2108 rtx temp, canon_r;
2109
2110 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2111 return 0;
2112
2113 canon_r = canon_rtx (r);
2114
2115 /* Walk the set of memory locations we are currently tracking
2116 and see if one is an identical match to this memory location.
2117 If so, this memory write is dead (remember, we're walking
2118 backwards from the end of the block to the start). Since
2119 rtx_equal_p does not check the alias set or flags, we also
2120 must have the potential for them to conflict (anti_dependence). */
2121 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2122 if (anti_dependence (r, XEXP (temp, 0)))
2123 {
2124 rtx mem = XEXP (temp, 0);
2125
2126 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2127 && (GET_MODE_SIZE (GET_MODE (canon_r))
2128 <= GET_MODE_SIZE (GET_MODE (mem))))
2129 return 1;
2130
2131 #ifdef AUTO_INC_DEC
2132 /* Check if memory reference matches an auto increment. Only
2133 post increment/decrement or modify are valid. */
2134 if (GET_MODE (mem) == GET_MODE (r)
2135 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2136 || GET_CODE (XEXP (mem, 0)) == POST_INC
2137 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2138 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2139 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2140 return 1;
2141 #endif
2142 }
2143 }
2144 else
2145 {
2146 while (GET_CODE (r) == SUBREG
2147 || GET_CODE (r) == STRICT_LOW_PART
2148 || GET_CODE (r) == ZERO_EXTRACT)
2149 r = XEXP (r, 0);
2150
2151 if (GET_CODE (r) == REG)
2152 {
2153 int regno = REGNO (r);
2154
2155 /* Obvious. */
2156 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2157 return 0;
2158
2159 /* If this is a hard register, verify that subsequent
2160 words are not needed. */
2161 if (regno < FIRST_PSEUDO_REGISTER)
2162 {
2163 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2164
2165 while (--n > 0)
2166 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2167 return 0;
2168 }
2169
2170 /* Don't delete insns to set global regs. */
2171 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2172 return 0;
2173
2174 /* Make sure insns to set the stack pointer aren't deleted. */
2175 if (regno == STACK_POINTER_REGNUM)
2176 return 0;
2177
2178 /* ??? These bits might be redundant with the force live bits
2179 in calculate_global_regs_live. We would delete from
2180 sequential sets; whether this actually affects real code
2181 for anything but the stack pointer I don't know. */
2182 /* Make sure insns to set the frame pointer aren't deleted. */
2183 if (regno == FRAME_POINTER_REGNUM
2184 && (! reload_completed || frame_pointer_needed))
2185 return 0;
2186 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2187 if (regno == HARD_FRAME_POINTER_REGNUM
2188 && (! reload_completed || frame_pointer_needed))
2189 return 0;
2190 #endif
2191
2192 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2193 /* Make sure insns to set arg pointer are never deleted
2194 (if the arg pointer isn't fixed, there will be a USE
2195 for it, so we can treat it normally). */
2196 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2197 return 0;
2198 #endif
2199
2200 /* Otherwise, the set is dead. */
2201 return 1;
2202 }
2203 }
2204 }
2205
2206 /* If performing several activities, insn is dead if each activity
2207 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2208 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2209 worth keeping. */
2210 else if (code == PARALLEL)
2211 {
2212 int i = XVECLEN (x, 0);
2213
2214 for (i--; i >= 0; i--)
2215 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2216 && GET_CODE (XVECEXP (x, 0, i)) != USE
2217 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2218 return 0;
2219
2220 return 1;
2221 }
2222
2223 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2224 is not necessarily true for hard registers. */
2225 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2226 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2227 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2228 return 1;
2229
2230 /* We do not check other CLOBBER or USE here. An insn consisting of just
2231 a CLOBBER or just a USE should not be deleted. */
2232 return 0;
2233 }
2234
2235 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2236 return 1 if the entire library call is dead.
2237 This is true if INSN copies a register (hard or pseudo)
2238 and if the hard return reg of the call insn is dead.
2239 (The caller should have tested the destination of the SET inside
2240 INSN already for death.)
2241
2242 If this insn doesn't just copy a register, then we don't
2243 have an ordinary libcall. In that case, cse could not have
2244 managed to substitute the source for the dest later on,
2245 so we can assume the libcall is dead.
2246
2247 PBI is the block info giving pseudoregs live before this insn.
2248 NOTE is the REG_RETVAL note of the insn. */
2249
2250 static int
2251 libcall_dead_p (pbi, note, insn)
2252 struct propagate_block_info *pbi;
2253 rtx note;
2254 rtx insn;
2255 {
2256 rtx x = single_set (insn);
2257
2258 if (x)
2259 {
2260 rtx r = SET_SRC (x);
2261
2262 if (GET_CODE (r) == REG)
2263 {
2264 rtx call = XEXP (note, 0);
2265 rtx call_pat;
2266 int i;
2267
2268 /* Find the call insn. */
2269 while (call != insn && GET_CODE (call) != CALL_INSN)
2270 call = NEXT_INSN (call);
2271
2272 /* If there is none, do nothing special,
2273 since ordinary death handling can understand these insns. */
2274 if (call == insn)
2275 return 0;
2276
2277 /* See if the hard reg holding the value is dead.
2278 If this is a PARALLEL, find the call within it. */
2279 call_pat = PATTERN (call);
2280 if (GET_CODE (call_pat) == PARALLEL)
2281 {
2282 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2283 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2284 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2285 break;
2286
2287 /* This may be a library call that is returning a value
2288 via invisible pointer. Do nothing special, since
2289 ordinary death handling can understand these insns. */
2290 if (i < 0)
2291 return 0;
2292
2293 call_pat = XVECEXP (call_pat, 0, i);
2294 }
2295
2296 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2297 }
2298 }
2299 return 1;
2300 }
2301
2302 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2303 live at function entry. Don't count global register variables, variables
2304 in registers that can be used for function arg passing, or variables in
2305 fixed hard registers. */
2306
2307 int
2308 regno_uninitialized (regno)
2309 unsigned int regno;
2310 {
2311 if (n_basic_blocks == 0
2312 || (regno < FIRST_PSEUDO_REGISTER
2313 && (global_regs[regno]
2314 || fixed_regs[regno]
2315 || FUNCTION_ARG_REGNO_P (regno))))
2316 return 0;
2317
2318 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2319 }
2320
2321 /* 1 if register REGNO was alive at a place where `setjmp' was called
2322 and was set more than once or is an argument.
2323 Such regs may be clobbered by `longjmp'. */
2324
2325 int
2326 regno_clobbered_at_setjmp (regno)
2327 int regno;
2328 {
2329 if (n_basic_blocks == 0)
2330 return 0;
2331
2332 return ((REG_N_SETS (regno) > 1
2333 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2334 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2335 }
2336 \f
2337 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2338 maximal list size; look for overlaps in mode and select the largest. */
2339 static void
2340 add_to_mem_set_list (pbi, mem)
2341 struct propagate_block_info *pbi;
2342 rtx mem;
2343 {
2344 rtx i;
2345
2346 /* We don't know how large a BLKmode store is, so we must not
2347 take them into consideration. */
2348 if (GET_MODE (mem) == BLKmode)
2349 return;
2350
2351 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2352 {
2353 rtx e = XEXP (i, 0);
2354 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2355 {
2356 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2357 {
2358 #ifdef AUTO_INC_DEC
2359 /* If we must store a copy of the mem, we can just modify
2360 the mode of the stored copy. */
2361 if (pbi->flags & PROP_AUTOINC)
2362 PUT_MODE (e, GET_MODE (mem));
2363 else
2364 #endif
2365 XEXP (i, 0) = mem;
2366 }
2367 return;
2368 }
2369 }
2370
2371 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2372 {
2373 #ifdef AUTO_INC_DEC
2374 /* Store a copy of mem, otherwise the address may be
2375 scrogged by find_auto_inc. */
2376 if (pbi->flags & PROP_AUTOINC)
2377 mem = shallow_copy_rtx (mem);
2378 #endif
2379 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2380 pbi->mem_set_list_len++;
2381 }
2382 }
2383
2384 /* INSN references memory, possibly using autoincrement addressing modes.
2385 Find any entries on the mem_set_list that need to be invalidated due
2386 to an address change. */
2387
2388 static int
2389 invalidate_mems_from_autoinc (px, data)
2390 rtx *px;
2391 void *data;
2392 {
2393 rtx x = *px;
2394 struct propagate_block_info *pbi = data;
2395
2396 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2397 {
2398 invalidate_mems_from_set (pbi, XEXP (x, 0));
2399 return -1;
2400 }
2401
2402 return 0;
2403 }
2404
2405 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2406
2407 static void
2408 invalidate_mems_from_set (pbi, exp)
2409 struct propagate_block_info *pbi;
2410 rtx exp;
2411 {
2412 rtx temp = pbi->mem_set_list;
2413 rtx prev = NULL_RTX;
2414 rtx next;
2415
2416 while (temp)
2417 {
2418 next = XEXP (temp, 1);
2419 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2420 {
2421 /* Splice this entry out of the list. */
2422 if (prev)
2423 XEXP (prev, 1) = next;
2424 else
2425 pbi->mem_set_list = next;
2426 free_EXPR_LIST_node (temp);
2427 pbi->mem_set_list_len--;
2428 }
2429 else
2430 prev = temp;
2431 temp = next;
2432 }
2433 }
2434
2435 /* Process the registers that are set within X. Their bits are set to
2436 1 in the regset DEAD, because they are dead prior to this insn.
2437
2438 If INSN is nonzero, it is the insn being processed.
2439
2440 FLAGS is the set of operations to perform. */
2441
2442 static void
2443 mark_set_regs (pbi, x, insn)
2444 struct propagate_block_info *pbi;
2445 rtx x, insn;
2446 {
2447 rtx cond = NULL_RTX;
2448 rtx link;
2449 enum rtx_code code;
2450
2451 if (insn)
2452 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2453 {
2454 if (REG_NOTE_KIND (link) == REG_INC)
2455 mark_set_1 (pbi, SET, XEXP (link, 0),
2456 (GET_CODE (x) == COND_EXEC
2457 ? COND_EXEC_TEST (x) : NULL_RTX),
2458 insn, pbi->flags);
2459 }
2460 retry:
2461 switch (code = GET_CODE (x))
2462 {
2463 case SET:
2464 case CLOBBER:
2465 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2466 return;
2467
2468 case COND_EXEC:
2469 cond = COND_EXEC_TEST (x);
2470 x = COND_EXEC_CODE (x);
2471 goto retry;
2472
2473 case PARALLEL:
2474 {
2475 int i;
2476
2477 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2478 {
2479 rtx sub = XVECEXP (x, 0, i);
2480 switch (code = GET_CODE (sub))
2481 {
2482 case COND_EXEC:
2483 if (cond != NULL_RTX)
2484 abort ();
2485
2486 cond = COND_EXEC_TEST (sub);
2487 sub = COND_EXEC_CODE (sub);
2488 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2489 break;
2490 /* Fall through. */
2491
2492 case SET:
2493 case CLOBBER:
2494 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2495 break;
2496
2497 default:
2498 break;
2499 }
2500 }
2501 break;
2502 }
2503
2504 default:
2505 break;
2506 }
2507 }
2508
2509 /* Process a single set, which appears in INSN. REG (which may not
2510 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2511 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2512 If the set is conditional (because it appear in a COND_EXEC), COND
2513 will be the condition. */
2514
2515 static void
2516 mark_set_1 (pbi, code, reg, cond, insn, flags)
2517 struct propagate_block_info *pbi;
2518 enum rtx_code code;
2519 rtx reg, cond, insn;
2520 int flags;
2521 {
2522 int regno_first = -1, regno_last = -1;
2523 unsigned long not_dead = 0;
2524 int i;
2525
2526 /* Modifying just one hardware register of a multi-reg value or just a
2527 byte field of a register does not mean the value from before this insn
2528 is now dead. Of course, if it was dead after it's unused now. */
2529
2530 switch (GET_CODE (reg))
2531 {
2532 case PARALLEL:
2533 /* Some targets place small structures in registers for return values of
2534 functions. We have to detect this case specially here to get correct
2535 flow information. */
2536 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2537 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2538 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2539 flags);
2540 return;
2541
2542 case ZERO_EXTRACT:
2543 case SIGN_EXTRACT:
2544 case STRICT_LOW_PART:
2545 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2546 do
2547 reg = XEXP (reg, 0);
2548 while (GET_CODE (reg) == SUBREG
2549 || GET_CODE (reg) == ZERO_EXTRACT
2550 || GET_CODE (reg) == SIGN_EXTRACT
2551 || GET_CODE (reg) == STRICT_LOW_PART);
2552 if (GET_CODE (reg) == MEM)
2553 break;
2554 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2555 /* Fall through. */
2556
2557 case REG:
2558 regno_last = regno_first = REGNO (reg);
2559 if (regno_first < FIRST_PSEUDO_REGISTER)
2560 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2561 break;
2562
2563 case SUBREG:
2564 if (GET_CODE (SUBREG_REG (reg)) == REG)
2565 {
2566 enum machine_mode outer_mode = GET_MODE (reg);
2567 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2568
2569 /* Identify the range of registers affected. This is moderately
2570 tricky for hard registers. See alter_subreg. */
2571
2572 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2573 if (regno_first < FIRST_PSEUDO_REGISTER)
2574 {
2575 regno_first += subreg_regno_offset (regno_first, inner_mode,
2576 SUBREG_BYTE (reg),
2577 outer_mode);
2578 regno_last = (regno_first
2579 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2580
2581 /* Since we've just adjusted the register number ranges, make
2582 sure REG matches. Otherwise some_was_live will be clear
2583 when it shouldn't have been, and we'll create incorrect
2584 REG_UNUSED notes. */
2585 reg = gen_rtx_REG (outer_mode, regno_first);
2586 }
2587 else
2588 {
2589 /* If the number of words in the subreg is less than the number
2590 of words in the full register, we have a well-defined partial
2591 set. Otherwise the high bits are undefined.
2592
2593 This is only really applicable to pseudos, since we just took
2594 care of multi-word hard registers. */
2595 if (((GET_MODE_SIZE (outer_mode)
2596 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2597 < ((GET_MODE_SIZE (inner_mode)
2598 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2599 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2600 regno_first);
2601
2602 reg = SUBREG_REG (reg);
2603 }
2604 }
2605 else
2606 reg = SUBREG_REG (reg);
2607 break;
2608
2609 default:
2610 break;
2611 }
2612
2613 /* If this set is a MEM, then it kills any aliased writes.
2614 If this set is a REG, then it kills any MEMs which use the reg. */
2615 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2616 {
2617 if (GET_CODE (reg) == REG)
2618 invalidate_mems_from_set (pbi, reg);
2619
2620 /* If the memory reference had embedded side effects (autoincrement
2621 address modes. Then we may need to kill some entries on the
2622 memory set list. */
2623 if (insn && GET_CODE (reg) == MEM)
2624 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2625
2626 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2627 /* ??? With more effort we could track conditional memory life. */
2628 && ! cond)
2629 add_to_mem_set_list (pbi, canon_rtx (reg));
2630 }
2631
2632 if (GET_CODE (reg) == REG
2633 && ! (regno_first == FRAME_POINTER_REGNUM
2634 && (! reload_completed || frame_pointer_needed))
2635 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2636 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2637 && (! reload_completed || frame_pointer_needed))
2638 #endif
2639 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2640 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2641 #endif
2642 )
2643 {
2644 int some_was_live = 0, some_was_dead = 0;
2645
2646 for (i = regno_first; i <= regno_last; ++i)
2647 {
2648 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2649 if (pbi->local_set)
2650 {
2651 /* Order of the set operation matters here since both
2652 sets may be the same. */
2653 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2654 if (cond != NULL_RTX
2655 && ! REGNO_REG_SET_P (pbi->local_set, i))
2656 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2657 else
2658 SET_REGNO_REG_SET (pbi->local_set, i);
2659 }
2660 if (code != CLOBBER)
2661 SET_REGNO_REG_SET (pbi->new_set, i);
2662
2663 some_was_live |= needed_regno;
2664 some_was_dead |= ! needed_regno;
2665 }
2666
2667 #ifdef HAVE_conditional_execution
2668 /* Consider conditional death in deciding that the register needs
2669 a death note. */
2670 if (some_was_live && ! not_dead
2671 /* The stack pointer is never dead. Well, not strictly true,
2672 but it's very difficult to tell from here. Hopefully
2673 combine_stack_adjustments will fix up the most egregious
2674 errors. */
2675 && regno_first != STACK_POINTER_REGNUM)
2676 {
2677 for (i = regno_first; i <= regno_last; ++i)
2678 if (! mark_regno_cond_dead (pbi, i, cond))
2679 not_dead |= ((unsigned long) 1) << (i - regno_first);
2680 }
2681 #endif
2682
2683 /* Additional data to record if this is the final pass. */
2684 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2685 | PROP_DEATH_NOTES | PROP_AUTOINC))
2686 {
2687 rtx y;
2688 int blocknum = pbi->bb->index;
2689
2690 y = NULL_RTX;
2691 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2692 {
2693 y = pbi->reg_next_use[regno_first];
2694
2695 /* The next use is no longer next, since a store intervenes. */
2696 for (i = regno_first; i <= regno_last; ++i)
2697 pbi->reg_next_use[i] = 0;
2698 }
2699
2700 if (flags & PROP_REG_INFO)
2701 {
2702 for (i = regno_first; i <= regno_last; ++i)
2703 {
2704 /* Count (weighted) references, stores, etc. This counts a
2705 register twice if it is modified, but that is correct. */
2706 REG_N_SETS (i) += 1;
2707 REG_N_REFS (i) += 1;
2708 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2709
2710 /* The insns where a reg is live are normally counted
2711 elsewhere, but we want the count to include the insn
2712 where the reg is set, and the normal counting mechanism
2713 would not count it. */
2714 REG_LIVE_LENGTH (i) += 1;
2715 }
2716
2717 /* If this is a hard reg, record this function uses the reg. */
2718 if (regno_first < FIRST_PSEUDO_REGISTER)
2719 {
2720 for (i = regno_first; i <= regno_last; i++)
2721 regs_ever_live[i] = 1;
2722 }
2723 else
2724 {
2725 /* Keep track of which basic blocks each reg appears in. */
2726 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2727 REG_BASIC_BLOCK (regno_first) = blocknum;
2728 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2729 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2730 }
2731 }
2732
2733 if (! some_was_dead)
2734 {
2735 if (flags & PROP_LOG_LINKS)
2736 {
2737 /* Make a logical link from the next following insn
2738 that uses this register, back to this insn.
2739 The following insns have already been processed.
2740
2741 We don't build a LOG_LINK for hard registers containing
2742 in ASM_OPERANDs. If these registers get replaced,
2743 we might wind up changing the semantics of the insn,
2744 even if reload can make what appear to be valid
2745 assignments later. */
2746 if (y && (BLOCK_NUM (y) == blocknum)
2747 && (regno_first >= FIRST_PSEUDO_REGISTER
2748 || asm_noperands (PATTERN (y)) < 0))
2749 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2750 }
2751 }
2752 else if (not_dead)
2753 ;
2754 else if (! some_was_live)
2755 {
2756 if (flags & PROP_REG_INFO)
2757 REG_N_DEATHS (regno_first) += 1;
2758
2759 if (flags & PROP_DEATH_NOTES)
2760 {
2761 /* Note that dead stores have already been deleted
2762 when possible. If we get here, we have found a
2763 dead store that cannot be eliminated (because the
2764 same insn does something useful). Indicate this
2765 by marking the reg being set as dying here. */
2766 REG_NOTES (insn)
2767 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2768 }
2769 }
2770 else
2771 {
2772 if (flags & PROP_DEATH_NOTES)
2773 {
2774 /* This is a case where we have a multi-word hard register
2775 and some, but not all, of the words of the register are
2776 needed in subsequent insns. Write REG_UNUSED notes
2777 for those parts that were not needed. This case should
2778 be rare. */
2779
2780 for (i = regno_first; i <= regno_last; ++i)
2781 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2782 REG_NOTES (insn)
2783 = alloc_EXPR_LIST (REG_UNUSED,
2784 gen_rtx_REG (reg_raw_mode[i], i),
2785 REG_NOTES (insn));
2786 }
2787 }
2788 }
2789
2790 /* Mark the register as being dead. */
2791 if (some_was_live
2792 /* The stack pointer is never dead. Well, not strictly true,
2793 but it's very difficult to tell from here. Hopefully
2794 combine_stack_adjustments will fix up the most egregious
2795 errors. */
2796 && regno_first != STACK_POINTER_REGNUM)
2797 {
2798 for (i = regno_first; i <= regno_last; ++i)
2799 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2800 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2801 }
2802 }
2803 else if (GET_CODE (reg) == REG)
2804 {
2805 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2806 pbi->reg_next_use[regno_first] = 0;
2807 }
2808
2809 /* If this is the last pass and this is a SCRATCH, show it will be dying
2810 here and count it. */
2811 else if (GET_CODE (reg) == SCRATCH)
2812 {
2813 if (flags & PROP_DEATH_NOTES)
2814 REG_NOTES (insn)
2815 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2816 }
2817 }
2818 \f
2819 #ifdef HAVE_conditional_execution
2820 /* Mark REGNO conditionally dead.
2821 Return true if the register is now unconditionally dead. */
2822
2823 static int
2824 mark_regno_cond_dead (pbi, regno, cond)
2825 struct propagate_block_info *pbi;
2826 int regno;
2827 rtx cond;
2828 {
2829 /* If this is a store to a predicate register, the value of the
2830 predicate is changing, we don't know that the predicate as seen
2831 before is the same as that seen after. Flush all dependent
2832 conditions from reg_cond_dead. This will make all such
2833 conditionally live registers unconditionally live. */
2834 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2835 flush_reg_cond_reg (pbi, regno);
2836
2837 /* If this is an unconditional store, remove any conditional
2838 life that may have existed. */
2839 if (cond == NULL_RTX)
2840 splay_tree_remove (pbi->reg_cond_dead, regno);
2841 else
2842 {
2843 splay_tree_node node;
2844 struct reg_cond_life_info *rcli;
2845 rtx ncond;
2846
2847 /* Otherwise this is a conditional set. Record that fact.
2848 It may have been conditionally used, or there may be a
2849 subsequent set with a complimentary condition. */
2850
2851 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2852 if (node == NULL)
2853 {
2854 /* The register was unconditionally live previously.
2855 Record the current condition as the condition under
2856 which it is dead. */
2857 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2858 rcli->condition = cond;
2859 rcli->stores = cond;
2860 rcli->orig_condition = const0_rtx;
2861 splay_tree_insert (pbi->reg_cond_dead, regno,
2862 (splay_tree_value) rcli);
2863
2864 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2865
2866 /* Not unconditionally dead. */
2867 return 0;
2868 }
2869 else
2870 {
2871 /* The register was conditionally live previously.
2872 Add the new condition to the old. */
2873 rcli = (struct reg_cond_life_info *) node->value;
2874 ncond = rcli->condition;
2875 ncond = ior_reg_cond (ncond, cond, 1);
2876 if (rcli->stores == const0_rtx)
2877 rcli->stores = cond;
2878 else if (rcli->stores != const1_rtx)
2879 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2880
2881 /* If the register is now unconditionally dead, remove the entry
2882 in the splay_tree. A register is unconditionally dead if the
2883 dead condition ncond is true. A register is also unconditionally
2884 dead if the sum of all conditional stores is an unconditional
2885 store (stores is true), and the dead condition is identically the
2886 same as the original dead condition initialized at the end of
2887 the block. This is a pointer compare, not an rtx_equal_p
2888 compare. */
2889 if (ncond == const1_rtx
2890 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2891 splay_tree_remove (pbi->reg_cond_dead, regno);
2892 else
2893 {
2894 rcli->condition = ncond;
2895
2896 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2897
2898 /* Not unconditionally dead. */
2899 return 0;
2900 }
2901 }
2902 }
2903
2904 return 1;
2905 }
2906
2907 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2908
2909 static void
2910 free_reg_cond_life_info (value)
2911 splay_tree_value value;
2912 {
2913 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2914 free (rcli);
2915 }
2916
2917 /* Helper function for flush_reg_cond_reg. */
2918
2919 static int
2920 flush_reg_cond_reg_1 (node, data)
2921 splay_tree_node node;
2922 void *data;
2923 {
2924 struct reg_cond_life_info *rcli;
2925 int *xdata = (int *) data;
2926 unsigned int regno = xdata[0];
2927
2928 /* Don't need to search if last flushed value was farther on in
2929 the in-order traversal. */
2930 if (xdata[1] >= (int) node->key)
2931 return 0;
2932
2933 /* Splice out portions of the expression that refer to regno. */
2934 rcli = (struct reg_cond_life_info *) node->value;
2935 rcli->condition = elim_reg_cond (rcli->condition, regno);
2936 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2937 rcli->stores = elim_reg_cond (rcli->stores, regno);
2938
2939 /* If the entire condition is now false, signal the node to be removed. */
2940 if (rcli->condition == const0_rtx)
2941 {
2942 xdata[1] = node->key;
2943 return -1;
2944 }
2945 else if (rcli->condition == const1_rtx)
2946 abort ();
2947
2948 return 0;
2949 }
2950
2951 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2952
2953 static void
2954 flush_reg_cond_reg (pbi, regno)
2955 struct propagate_block_info *pbi;
2956 int regno;
2957 {
2958 int pair[2];
2959
2960 pair[0] = regno;
2961 pair[1] = -1;
2962 while (splay_tree_foreach (pbi->reg_cond_dead,
2963 flush_reg_cond_reg_1, pair) == -1)
2964 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2965
2966 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2967 }
2968
2969 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2970 For ior/and, the ADD flag determines whether we want to add the new
2971 condition X to the old one unconditionally. If it is zero, we will
2972 only return a new expression if X allows us to simplify part of
2973 OLD, otherwise we return NULL to the caller.
2974 If ADD is nonzero, we will return a new condition in all cases. The
2975 toplevel caller of one of these functions should always pass 1 for
2976 ADD. */
2977
2978 static rtx
2979 ior_reg_cond (old, x, add)
2980 rtx old, x;
2981 int add;
2982 {
2983 rtx op0, op1;
2984
2985 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2986 {
2987 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2988 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2989 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2990 return const1_rtx;
2991 if (GET_CODE (x) == GET_CODE (old)
2992 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2993 return old;
2994 if (! add)
2995 return NULL;
2996 return gen_rtx_IOR (0, old, x);
2997 }
2998
2999 switch (GET_CODE (old))
3000 {
3001 case IOR:
3002 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3003 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3004 if (op0 != NULL || op1 != NULL)
3005 {
3006 if (op0 == const0_rtx)
3007 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3008 if (op1 == const0_rtx)
3009 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3010 if (op0 == const1_rtx || op1 == const1_rtx)
3011 return const1_rtx;
3012 if (op0 == NULL)
3013 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3014 else if (rtx_equal_p (x, op0))
3015 /* (x | A) | x ~ (x | A). */
3016 return old;
3017 if (op1 == NULL)
3018 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3019 else if (rtx_equal_p (x, op1))
3020 /* (A | x) | x ~ (A | x). */
3021 return old;
3022 return gen_rtx_IOR (0, op0, op1);
3023 }
3024 if (! add)
3025 return NULL;
3026 return gen_rtx_IOR (0, old, x);
3027
3028 case AND:
3029 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3030 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3031 if (op0 != NULL || op1 != NULL)
3032 {
3033 if (op0 == const1_rtx)
3034 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3035 if (op1 == const1_rtx)
3036 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3037 if (op0 == const0_rtx || op1 == const0_rtx)
3038 return const0_rtx;
3039 if (op0 == NULL)
3040 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3041 else if (rtx_equal_p (x, op0))
3042 /* (x & A) | x ~ x. */
3043 return op0;
3044 if (op1 == NULL)
3045 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3046 else if (rtx_equal_p (x, op1))
3047 /* (A & x) | x ~ x. */
3048 return op1;
3049 return gen_rtx_AND (0, op0, op1);
3050 }
3051 if (! add)
3052 return NULL;
3053 return gen_rtx_IOR (0, old, x);
3054
3055 case NOT:
3056 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3057 if (op0 != NULL)
3058 return not_reg_cond (op0);
3059 if (! add)
3060 return NULL;
3061 return gen_rtx_IOR (0, old, x);
3062
3063 default:
3064 abort ();
3065 }
3066 }
3067
3068 static rtx
3069 not_reg_cond (x)
3070 rtx x;
3071 {
3072 enum rtx_code x_code;
3073
3074 if (x == const0_rtx)
3075 return const1_rtx;
3076 else if (x == const1_rtx)
3077 return const0_rtx;
3078 x_code = GET_CODE (x);
3079 if (x_code == NOT)
3080 return XEXP (x, 0);
3081 if (GET_RTX_CLASS (x_code) == '<'
3082 && GET_CODE (XEXP (x, 0)) == REG)
3083 {
3084 if (XEXP (x, 1) != const0_rtx)
3085 abort ();
3086
3087 return gen_rtx_fmt_ee (reverse_condition (x_code),
3088 VOIDmode, XEXP (x, 0), const0_rtx);
3089 }
3090 return gen_rtx_NOT (0, x);
3091 }
3092
3093 static rtx
3094 and_reg_cond (old, x, add)
3095 rtx old, x;
3096 int add;
3097 {
3098 rtx op0, op1;
3099
3100 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3101 {
3102 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3103 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3104 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3105 return const0_rtx;
3106 if (GET_CODE (x) == GET_CODE (old)
3107 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3108 return old;
3109 if (! add)
3110 return NULL;
3111 return gen_rtx_AND (0, old, x);
3112 }
3113
3114 switch (GET_CODE (old))
3115 {
3116 case IOR:
3117 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3118 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3119 if (op0 != NULL || op1 != NULL)
3120 {
3121 if (op0 == const0_rtx)
3122 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3123 if (op1 == const0_rtx)
3124 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3125 if (op0 == const1_rtx || op1 == const1_rtx)
3126 return const1_rtx;
3127 if (op0 == NULL)
3128 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3129 else if (rtx_equal_p (x, op0))
3130 /* (x | A) & x ~ x. */
3131 return op0;
3132 if (op1 == NULL)
3133 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3134 else if (rtx_equal_p (x, op1))
3135 /* (A | x) & x ~ x. */
3136 return op1;
3137 return gen_rtx_IOR (0, op0, op1);
3138 }
3139 if (! add)
3140 return NULL;
3141 return gen_rtx_AND (0, old, x);
3142
3143 case AND:
3144 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3145 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3146 if (op0 != NULL || op1 != NULL)
3147 {
3148 if (op0 == const1_rtx)
3149 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3150 if (op1 == const1_rtx)
3151 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3152 if (op0 == const0_rtx || op1 == const0_rtx)
3153 return const0_rtx;
3154 if (op0 == NULL)
3155 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3156 else if (rtx_equal_p (x, op0))
3157 /* (x & A) & x ~ (x & A). */
3158 return old;
3159 if (op1 == NULL)
3160 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3161 else if (rtx_equal_p (x, op1))
3162 /* (A & x) & x ~ (A & x). */
3163 return old;
3164 return gen_rtx_AND (0, op0, op1);
3165 }
3166 if (! add)
3167 return NULL;
3168 return gen_rtx_AND (0, old, x);
3169
3170 case NOT:
3171 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3172 if (op0 != NULL)
3173 return not_reg_cond (op0);
3174 if (! add)
3175 return NULL;
3176 return gen_rtx_AND (0, old, x);
3177
3178 default:
3179 abort ();
3180 }
3181 }
3182
3183 /* Given a condition X, remove references to reg REGNO and return the
3184 new condition. The removal will be done so that all conditions
3185 involving REGNO are considered to evaluate to false. This function
3186 is used when the value of REGNO changes. */
3187
3188 static rtx
3189 elim_reg_cond (x, regno)
3190 rtx x;
3191 unsigned int regno;
3192 {
3193 rtx op0, op1;
3194
3195 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3196 {
3197 if (REGNO (XEXP (x, 0)) == regno)
3198 return const0_rtx;
3199 return x;
3200 }
3201
3202 switch (GET_CODE (x))
3203 {
3204 case AND:
3205 op0 = elim_reg_cond (XEXP (x, 0), regno);
3206 op1 = elim_reg_cond (XEXP (x, 1), regno);
3207 if (op0 == const0_rtx || op1 == const0_rtx)
3208 return const0_rtx;
3209 if (op0 == const1_rtx)
3210 return op1;
3211 if (op1 == const1_rtx)
3212 return op0;
3213 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3214 return x;
3215 return gen_rtx_AND (0, op0, op1);
3216
3217 case IOR:
3218 op0 = elim_reg_cond (XEXP (x, 0), regno);
3219 op1 = elim_reg_cond (XEXP (x, 1), regno);
3220 if (op0 == const1_rtx || op1 == const1_rtx)
3221 return const1_rtx;
3222 if (op0 == const0_rtx)
3223 return op1;
3224 if (op1 == const0_rtx)
3225 return op0;
3226 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3227 return x;
3228 return gen_rtx_IOR (0, op0, op1);
3229
3230 case NOT:
3231 op0 = elim_reg_cond (XEXP (x, 0), regno);
3232 if (op0 == const0_rtx)
3233 return const1_rtx;
3234 if (op0 == const1_rtx)
3235 return const0_rtx;
3236 if (op0 != XEXP (x, 0))
3237 return not_reg_cond (op0);
3238 return x;
3239
3240 default:
3241 abort ();
3242 }
3243 }
3244 #endif /* HAVE_conditional_execution */
3245 \f
3246 #ifdef AUTO_INC_DEC
3247
3248 /* Try to substitute the auto-inc expression INC as the address inside
3249 MEM which occurs in INSN. Currently, the address of MEM is an expression
3250 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3251 that has a single set whose source is a PLUS of INCR_REG and something
3252 else. */
3253
3254 static void
3255 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3256 struct propagate_block_info *pbi;
3257 rtx inc, insn, mem, incr, incr_reg;
3258 {
3259 int regno = REGNO (incr_reg);
3260 rtx set = single_set (incr);
3261 rtx q = SET_DEST (set);
3262 rtx y = SET_SRC (set);
3263 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3264
3265 /* Make sure this reg appears only once in this insn. */
3266 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3267 return;
3268
3269 if (dead_or_set_p (incr, incr_reg)
3270 /* Mustn't autoinc an eliminable register. */
3271 && (regno >= FIRST_PSEUDO_REGISTER
3272 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3273 {
3274 /* This is the simple case. Try to make the auto-inc. If
3275 we can't, we are done. Otherwise, we will do any
3276 needed updates below. */
3277 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3278 return;
3279 }
3280 else if (GET_CODE (q) == REG
3281 /* PREV_INSN used here to check the semi-open interval
3282 [insn,incr). */
3283 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3284 /* We must also check for sets of q as q may be
3285 a call clobbered hard register and there may
3286 be a call between PREV_INSN (insn) and incr. */
3287 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3288 {
3289 /* We have *p followed sometime later by q = p+size.
3290 Both p and q must be live afterward,
3291 and q is not used between INSN and its assignment.
3292 Change it to q = p, ...*q..., q = q+size.
3293 Then fall into the usual case. */
3294 rtx insns, temp;
3295
3296 start_sequence ();
3297 emit_move_insn (q, incr_reg);
3298 insns = get_insns ();
3299 end_sequence ();
3300
3301 /* If we can't make the auto-inc, or can't make the
3302 replacement into Y, exit. There's no point in making
3303 the change below if we can't do the auto-inc and doing
3304 so is not correct in the pre-inc case. */
3305
3306 XEXP (inc, 0) = q;
3307 validate_change (insn, &XEXP (mem, 0), inc, 1);
3308 validate_change (incr, &XEXP (y, opnum), q, 1);
3309 if (! apply_change_group ())
3310 return;
3311
3312 /* We now know we'll be doing this change, so emit the
3313 new insn(s) and do the updates. */
3314 emit_insns_before (insns, insn);
3315
3316 if (pbi->bb->head == insn)
3317 pbi->bb->head = insns;
3318
3319 /* INCR will become a NOTE and INSN won't contain a
3320 use of INCR_REG. If a use of INCR_REG was just placed in
3321 the insn before INSN, make that the next use.
3322 Otherwise, invalidate it. */
3323 if (GET_CODE (PREV_INSN (insn)) == INSN
3324 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3325 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3326 pbi->reg_next_use[regno] = PREV_INSN (insn);
3327 else
3328 pbi->reg_next_use[regno] = 0;
3329
3330 incr_reg = q;
3331 regno = REGNO (q);
3332
3333 /* REGNO is now used in INCR which is below INSN, but
3334 it previously wasn't live here. If we don't mark
3335 it as live, we'll put a REG_DEAD note for it
3336 on this insn, which is incorrect. */
3337 SET_REGNO_REG_SET (pbi->reg_live, regno);
3338
3339 /* If there are any calls between INSN and INCR, show
3340 that REGNO now crosses them. */
3341 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3342 if (GET_CODE (temp) == CALL_INSN)
3343 REG_N_CALLS_CROSSED (regno)++;
3344
3345 /* Invalidate alias info for Q since we just changed its value. */
3346 clear_reg_alias_info (q);
3347 }
3348 else
3349 return;
3350
3351 /* If we haven't returned, it means we were able to make the
3352 auto-inc, so update the status. First, record that this insn
3353 has an implicit side effect. */
3354
3355 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3356
3357 /* Modify the old increment-insn to simply copy
3358 the already-incremented value of our register. */
3359 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3360 abort ();
3361
3362 /* If that makes it a no-op (copying the register into itself) delete
3363 it so it won't appear to be a "use" and a "set" of this
3364 register. */
3365 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3366 {
3367 /* If the original source was dead, it's dead now. */
3368 rtx note;
3369
3370 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3371 {
3372 remove_note (incr, note);
3373 if (XEXP (note, 0) != incr_reg)
3374 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3375 }
3376
3377 PUT_CODE (incr, NOTE);
3378 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3379 NOTE_SOURCE_FILE (incr) = 0;
3380 }
3381
3382 if (regno >= FIRST_PSEUDO_REGISTER)
3383 {
3384 /* Count an extra reference to the reg. When a reg is
3385 incremented, spilling it is worse, so we want to make
3386 that less likely. */
3387 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3388
3389 /* Count the increment as a setting of the register,
3390 even though it isn't a SET in rtl. */
3391 REG_N_SETS (regno)++;
3392 }
3393 }
3394
3395 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3396 reference. */
3397
3398 static void
3399 find_auto_inc (pbi, x, insn)
3400 struct propagate_block_info *pbi;
3401 rtx x;
3402 rtx insn;
3403 {
3404 rtx addr = XEXP (x, 0);
3405 HOST_WIDE_INT offset = 0;
3406 rtx set, y, incr, inc_val;
3407 int regno;
3408 int size = GET_MODE_SIZE (GET_MODE (x));
3409
3410 if (GET_CODE (insn) == JUMP_INSN)
3411 return;
3412
3413 /* Here we detect use of an index register which might be good for
3414 postincrement, postdecrement, preincrement, or predecrement. */
3415
3416 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3417 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3418
3419 if (GET_CODE (addr) != REG)
3420 return;
3421
3422 regno = REGNO (addr);
3423
3424 /* Is the next use an increment that might make auto-increment? */
3425 incr = pbi->reg_next_use[regno];
3426 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3427 return;
3428 set = single_set (incr);
3429 if (set == 0 || GET_CODE (set) != SET)
3430 return;
3431 y = SET_SRC (set);
3432
3433 if (GET_CODE (y) != PLUS)
3434 return;
3435
3436 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3437 inc_val = XEXP (y, 1);
3438 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3439 inc_val = XEXP (y, 0);
3440 else
3441 return;
3442
3443 if (GET_CODE (inc_val) == CONST_INT)
3444 {
3445 if (HAVE_POST_INCREMENT
3446 && (INTVAL (inc_val) == size && offset == 0))
3447 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3448 incr, addr);
3449 else if (HAVE_POST_DECREMENT
3450 && (INTVAL (inc_val) == -size && offset == 0))
3451 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3452 incr, addr);
3453 else if (HAVE_PRE_INCREMENT
3454 && (INTVAL (inc_val) == size && offset == size))
3455 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3456 incr, addr);
3457 else if (HAVE_PRE_DECREMENT
3458 && (INTVAL (inc_val) == -size && offset == -size))
3459 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3460 incr, addr);
3461 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3462 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3463 gen_rtx_PLUS (Pmode,
3464 addr,
3465 inc_val)),
3466 insn, x, incr, addr);
3467 }
3468 else if (GET_CODE (inc_val) == REG
3469 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3470 NEXT_INSN (incr)))
3471
3472 {
3473 if (HAVE_POST_MODIFY_REG && offset == 0)
3474 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3475 gen_rtx_PLUS (Pmode,
3476 addr,
3477 inc_val)),
3478 insn, x, incr, addr);
3479 }
3480 }
3481
3482 #endif /* AUTO_INC_DEC */
3483 \f
3484 static void
3485 mark_used_reg (pbi, reg, cond, insn)
3486 struct propagate_block_info *pbi;
3487 rtx reg;
3488 rtx cond ATTRIBUTE_UNUSED;
3489 rtx insn;
3490 {
3491 unsigned int regno_first, regno_last, i;
3492 int some_was_live, some_was_dead, some_not_set;
3493
3494 regno_last = regno_first = REGNO (reg);
3495 if (regno_first < FIRST_PSEUDO_REGISTER)
3496 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3497
3498 /* Find out if any of this register is live after this instruction. */
3499 some_was_live = some_was_dead = 0;
3500 for (i = regno_first; i <= regno_last; ++i)
3501 {
3502 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3503 some_was_live |= needed_regno;
3504 some_was_dead |= ! needed_regno;
3505 }
3506
3507 /* Find out if any of the register was set this insn. */
3508 some_not_set = 0;
3509 for (i = regno_first; i <= regno_last; ++i)
3510 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3511
3512 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3513 {
3514 /* Record where each reg is used, so when the reg is set we know
3515 the next insn that uses it. */
3516 pbi->reg_next_use[regno_first] = insn;
3517 }
3518
3519 if (pbi->flags & PROP_REG_INFO)
3520 {
3521 if (regno_first < FIRST_PSEUDO_REGISTER)
3522 {
3523 /* If this is a register we are going to try to eliminate,
3524 don't mark it live here. If we are successful in
3525 eliminating it, it need not be live unless it is used for
3526 pseudos, in which case it will have been set live when it
3527 was allocated to the pseudos. If the register will not
3528 be eliminated, reload will set it live at that point.
3529
3530 Otherwise, record that this function uses this register. */
3531 /* ??? The PPC backend tries to "eliminate" on the pic
3532 register to itself. This should be fixed. In the mean
3533 time, hack around it. */
3534
3535 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3536 && (regno_first == FRAME_POINTER_REGNUM
3537 || regno_first == ARG_POINTER_REGNUM)))
3538 for (i = regno_first; i <= regno_last; ++i)
3539 regs_ever_live[i] = 1;
3540 }
3541 else
3542 {
3543 /* Keep track of which basic block each reg appears in. */
3544
3545 int blocknum = pbi->bb->index;
3546 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3547 REG_BASIC_BLOCK (regno_first) = blocknum;
3548 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3549 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3550
3551 /* Count (weighted) number of uses of each reg. */
3552 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3553 REG_N_REFS (regno_first)++;
3554 }
3555 }
3556
3557 /* Record and count the insns in which a reg dies. If it is used in
3558 this insn and was dead below the insn then it dies in this insn.
3559 If it was set in this insn, we do not make a REG_DEAD note;
3560 likewise if we already made such a note. */
3561 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3562 && some_was_dead
3563 && some_not_set)
3564 {
3565 /* Check for the case where the register dying partially
3566 overlaps the register set by this insn. */
3567 if (regno_first != regno_last)
3568 for (i = regno_first; i <= regno_last; ++i)
3569 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3570
3571 /* If none of the words in X is needed, make a REG_DEAD note.
3572 Otherwise, we must make partial REG_DEAD notes. */
3573 if (! some_was_live)
3574 {
3575 if ((pbi->flags & PROP_DEATH_NOTES)
3576 && ! find_regno_note (insn, REG_DEAD, regno_first))
3577 REG_NOTES (insn)
3578 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3579
3580 if (pbi->flags & PROP_REG_INFO)
3581 REG_N_DEATHS (regno_first)++;
3582 }
3583 else
3584 {
3585 /* Don't make a REG_DEAD note for a part of a register
3586 that is set in the insn. */
3587 for (i = regno_first; i <= regno_last; ++i)
3588 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3589 && ! dead_or_set_regno_p (insn, i))
3590 REG_NOTES (insn)
3591 = alloc_EXPR_LIST (REG_DEAD,
3592 gen_rtx_REG (reg_raw_mode[i], i),
3593 REG_NOTES (insn));
3594 }
3595 }
3596
3597 /* Mark the register as being live. */
3598 for (i = regno_first; i <= regno_last; ++i)
3599 {
3600 #ifdef HAVE_conditional_execution
3601 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3602 #endif
3603
3604 SET_REGNO_REG_SET (pbi->reg_live, i);
3605
3606 #ifdef HAVE_conditional_execution
3607 /* If this is a conditional use, record that fact. If it is later
3608 conditionally set, we'll know to kill the register. */
3609 if (cond != NULL_RTX)
3610 {
3611 splay_tree_node node;
3612 struct reg_cond_life_info *rcli;
3613 rtx ncond;
3614
3615 if (this_was_live)
3616 {
3617 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3618 if (node == NULL)
3619 {
3620 /* The register was unconditionally live previously.
3621 No need to do anything. */
3622 }
3623 else
3624 {
3625 /* The register was conditionally live previously.
3626 Subtract the new life cond from the old death cond. */
3627 rcli = (struct reg_cond_life_info *) node->value;
3628 ncond = rcli->condition;
3629 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3630
3631 /* If the register is now unconditionally live,
3632 remove the entry in the splay_tree. */
3633 if (ncond == const0_rtx)
3634 splay_tree_remove (pbi->reg_cond_dead, i);
3635 else
3636 {
3637 rcli->condition = ncond;
3638 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3639 REGNO (XEXP (cond, 0)));
3640 }
3641 }
3642 }
3643 else
3644 {
3645 /* The register was not previously live at all. Record
3646 the condition under which it is still dead. */
3647 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3648 rcli->condition = not_reg_cond (cond);
3649 rcli->stores = const0_rtx;
3650 rcli->orig_condition = const0_rtx;
3651 splay_tree_insert (pbi->reg_cond_dead, i,
3652 (splay_tree_value) rcli);
3653
3654 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3655 }
3656 }
3657 else if (this_was_live)
3658 {
3659 /* The register may have been conditionally live previously, but
3660 is now unconditionally live. Remove it from the conditionally
3661 dead list, so that a conditional set won't cause us to think
3662 it dead. */
3663 splay_tree_remove (pbi->reg_cond_dead, i);
3664 }
3665 #endif
3666 }
3667 }
3668
3669 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3670 This is done assuming the registers needed from X are those that
3671 have 1-bits in PBI->REG_LIVE.
3672
3673 INSN is the containing instruction. If INSN is dead, this function
3674 is not called. */
3675
3676 static void
3677 mark_used_regs (pbi, x, cond, insn)
3678 struct propagate_block_info *pbi;
3679 rtx x, cond, insn;
3680 {
3681 RTX_CODE code;
3682 int regno;
3683 int flags = pbi->flags;
3684
3685 retry:
3686 if (!x)
3687 return;
3688 code = GET_CODE (x);
3689 switch (code)
3690 {
3691 case LABEL_REF:
3692 case SYMBOL_REF:
3693 case CONST_INT:
3694 case CONST:
3695 case CONST_DOUBLE:
3696 case CONST_VECTOR:
3697 case PC:
3698 case ADDR_VEC:
3699 case ADDR_DIFF_VEC:
3700 return;
3701
3702 #ifdef HAVE_cc0
3703 case CC0:
3704 pbi->cc0_live = 1;
3705 return;
3706 #endif
3707
3708 case CLOBBER:
3709 /* If we are clobbering a MEM, mark any registers inside the address
3710 as being used. */
3711 if (GET_CODE (XEXP (x, 0)) == MEM)
3712 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3713 return;
3714
3715 case MEM:
3716 /* Don't bother watching stores to mems if this is not the
3717 final pass. We'll not be deleting dead stores this round. */
3718 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3719 {
3720 /* Invalidate the data for the last MEM stored, but only if MEM is
3721 something that can be stored into. */
3722 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3723 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3724 /* Needn't clear the memory set list. */
3725 ;
3726 else
3727 {
3728 rtx temp = pbi->mem_set_list;
3729 rtx prev = NULL_RTX;
3730 rtx next;
3731
3732 while (temp)
3733 {
3734 next = XEXP (temp, 1);
3735 if (anti_dependence (XEXP (temp, 0), x))
3736 {
3737 /* Splice temp out of the list. */
3738 if (prev)
3739 XEXP (prev, 1) = next;
3740 else
3741 pbi->mem_set_list = next;
3742 free_EXPR_LIST_node (temp);
3743 pbi->mem_set_list_len--;
3744 }
3745 else
3746 prev = temp;
3747 temp = next;
3748 }
3749 }
3750
3751 /* If the memory reference had embedded side effects (autoincrement
3752 address modes. Then we may need to kill some entries on the
3753 memory set list. */
3754 if (insn)
3755 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3756 }
3757
3758 #ifdef AUTO_INC_DEC
3759 if (flags & PROP_AUTOINC)
3760 find_auto_inc (pbi, x, insn);
3761 #endif
3762 break;
3763
3764 case SUBREG:
3765 #ifdef CLASS_CANNOT_CHANGE_MODE
3766 if (GET_CODE (SUBREG_REG (x)) == REG
3767 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3768 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3769 GET_MODE (SUBREG_REG (x))))
3770 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3771 #endif
3772
3773 /* While we're here, optimize this case. */
3774 x = SUBREG_REG (x);
3775 if (GET_CODE (x) != REG)
3776 goto retry;
3777 /* Fall through. */
3778
3779 case REG:
3780 /* See a register other than being set => mark it as needed. */
3781 mark_used_reg (pbi, x, cond, insn);
3782 return;
3783
3784 case SET:
3785 {
3786 rtx testreg = SET_DEST (x);
3787 int mark_dest = 0;
3788
3789 /* If storing into MEM, don't show it as being used. But do
3790 show the address as being used. */
3791 if (GET_CODE (testreg) == MEM)
3792 {
3793 #ifdef AUTO_INC_DEC
3794 if (flags & PROP_AUTOINC)
3795 find_auto_inc (pbi, testreg, insn);
3796 #endif
3797 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3798 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3799 return;
3800 }
3801
3802 /* Storing in STRICT_LOW_PART is like storing in a reg
3803 in that this SET might be dead, so ignore it in TESTREG.
3804 but in some other ways it is like using the reg.
3805
3806 Storing in a SUBREG or a bit field is like storing the entire
3807 register in that if the register's value is not used
3808 then this SET is not needed. */
3809 while (GET_CODE (testreg) == STRICT_LOW_PART
3810 || GET_CODE (testreg) == ZERO_EXTRACT
3811 || GET_CODE (testreg) == SIGN_EXTRACT
3812 || GET_CODE (testreg) == SUBREG)
3813 {
3814 #ifdef CLASS_CANNOT_CHANGE_MODE
3815 if (GET_CODE (testreg) == SUBREG
3816 && GET_CODE (SUBREG_REG (testreg)) == REG
3817 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3818 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3819 GET_MODE (testreg)))
3820 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3821 #endif
3822
3823 /* Modifying a single register in an alternate mode
3824 does not use any of the old value. But these other
3825 ways of storing in a register do use the old value. */
3826 if (GET_CODE (testreg) == SUBREG
3827 && !((REG_BYTES (SUBREG_REG (testreg))
3828 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3829 > (REG_BYTES (testreg)
3830 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3831 ;
3832 else
3833 mark_dest = 1;
3834
3835 testreg = XEXP (testreg, 0);
3836 }
3837
3838 /* If this is a store into a register or group of registers,
3839 recursively scan the value being stored. */
3840
3841 if ((GET_CODE (testreg) == PARALLEL
3842 && GET_MODE (testreg) == BLKmode)
3843 || (GET_CODE (testreg) == REG
3844 && (regno = REGNO (testreg),
3845 ! (regno == FRAME_POINTER_REGNUM
3846 && (! reload_completed || frame_pointer_needed)))
3847 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3848 && ! (regno == HARD_FRAME_POINTER_REGNUM
3849 && (! reload_completed || frame_pointer_needed))
3850 #endif
3851 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3852 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3853 #endif
3854 ))
3855 {
3856 if (mark_dest)
3857 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3858 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3859 return;
3860 }
3861 }
3862 break;
3863
3864 case ASM_OPERANDS:
3865 case UNSPEC_VOLATILE:
3866 case TRAP_IF:
3867 case ASM_INPUT:
3868 {
3869 /* Traditional and volatile asm instructions must be considered to use
3870 and clobber all hard registers, all pseudo-registers and all of
3871 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3872
3873 Consider for instance a volatile asm that changes the fpu rounding
3874 mode. An insn should not be moved across this even if it only uses
3875 pseudo-regs because it might give an incorrectly rounded result.
3876
3877 ?!? Unfortunately, marking all hard registers as live causes massive
3878 problems for the register allocator and marking all pseudos as live
3879 creates mountains of uninitialized variable warnings.
3880
3881 So for now, just clear the memory set list and mark any regs
3882 we can find in ASM_OPERANDS as used. */
3883 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3884 {
3885 free_EXPR_LIST_list (&pbi->mem_set_list);
3886 pbi->mem_set_list_len = 0;
3887 }
3888
3889 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3890 We can not just fall through here since then we would be confused
3891 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3892 traditional asms unlike their normal usage. */
3893 if (code == ASM_OPERANDS)
3894 {
3895 int j;
3896
3897 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3898 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3899 }
3900 break;
3901 }
3902
3903 case COND_EXEC:
3904 if (cond != NULL_RTX)
3905 abort ();
3906
3907 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3908
3909 cond = COND_EXEC_TEST (x);
3910 x = COND_EXEC_CODE (x);
3911 goto retry;
3912
3913 case PHI:
3914 /* We _do_not_ want to scan operands of phi nodes. Operands of
3915 a phi function are evaluated only when control reaches this
3916 block along a particular edge. Therefore, regs that appear
3917 as arguments to phi should not be added to the global live at
3918 start. */
3919 return;
3920
3921 default:
3922 break;
3923 }
3924
3925 /* Recursively scan the operands of this expression. */
3926
3927 {
3928 const char * const fmt = GET_RTX_FORMAT (code);
3929 int i;
3930
3931 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3932 {
3933 if (fmt[i] == 'e')
3934 {
3935 /* Tail recursive case: save a function call level. */
3936 if (i == 0)
3937 {
3938 x = XEXP (x, 0);
3939 goto retry;
3940 }
3941 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3942 }
3943 else if (fmt[i] == 'E')
3944 {
3945 int j;
3946 for (j = 0; j < XVECLEN (x, i); j++)
3947 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3948 }
3949 }
3950 }
3951 }
3952 \f
3953 #ifdef AUTO_INC_DEC
3954
3955 static int
3956 try_pre_increment_1 (pbi, insn)
3957 struct propagate_block_info *pbi;
3958 rtx insn;
3959 {
3960 /* Find the next use of this reg. If in same basic block,
3961 make it do pre-increment or pre-decrement if appropriate. */
3962 rtx x = single_set (insn);
3963 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3964 * INTVAL (XEXP (SET_SRC (x), 1)));
3965 int regno = REGNO (SET_DEST (x));
3966 rtx y = pbi->reg_next_use[regno];
3967 if (y != 0
3968 && SET_DEST (x) != stack_pointer_rtx
3969 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3970 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3971 mode would be better. */
3972 && ! dead_or_set_p (y, SET_DEST (x))
3973 && try_pre_increment (y, SET_DEST (x), amount))
3974 {
3975 /* We have found a suitable auto-increment and already changed
3976 insn Y to do it. So flush this increment instruction. */
3977 propagate_block_delete_insn (insn);
3978
3979 /* Count a reference to this reg for the increment insn we are
3980 deleting. When a reg is incremented, spilling it is worse,
3981 so we want to make that less likely. */
3982 if (regno >= FIRST_PSEUDO_REGISTER)
3983 {
3984 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3985 REG_N_SETS (regno)++;
3986 }
3987
3988 /* Flush any remembered memories depending on the value of
3989 the incremented register. */
3990 invalidate_mems_from_set (pbi, SET_DEST (x));
3991
3992 return 1;
3993 }
3994 return 0;
3995 }
3996
3997 /* Try to change INSN so that it does pre-increment or pre-decrement
3998 addressing on register REG in order to add AMOUNT to REG.
3999 AMOUNT is negative for pre-decrement.
4000 Returns 1 if the change could be made.
4001 This checks all about the validity of the result of modifying INSN. */
4002
4003 static int
4004 try_pre_increment (insn, reg, amount)
4005 rtx insn, reg;
4006 HOST_WIDE_INT amount;
4007 {
4008 rtx use;
4009
4010 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4011 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4012 int pre_ok = 0;
4013 /* Nonzero if we can try to make a post-increment or post-decrement.
4014 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4015 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4016 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4017 int post_ok = 0;
4018
4019 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4020 int do_post = 0;
4021
4022 /* From the sign of increment, see which possibilities are conceivable
4023 on this target machine. */
4024 if (HAVE_PRE_INCREMENT && amount > 0)
4025 pre_ok = 1;
4026 if (HAVE_POST_INCREMENT && amount > 0)
4027 post_ok = 1;
4028
4029 if (HAVE_PRE_DECREMENT && amount < 0)
4030 pre_ok = 1;
4031 if (HAVE_POST_DECREMENT && amount < 0)
4032 post_ok = 1;
4033
4034 if (! (pre_ok || post_ok))
4035 return 0;
4036
4037 /* It is not safe to add a side effect to a jump insn
4038 because if the incremented register is spilled and must be reloaded
4039 there would be no way to store the incremented value back in memory. */
4040
4041 if (GET_CODE (insn) == JUMP_INSN)
4042 return 0;
4043
4044 use = 0;
4045 if (pre_ok)
4046 use = find_use_as_address (PATTERN (insn), reg, 0);
4047 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4048 {
4049 use = find_use_as_address (PATTERN (insn), reg, -amount);
4050 do_post = 1;
4051 }
4052
4053 if (use == 0 || use == (rtx) (size_t) 1)
4054 return 0;
4055
4056 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4057 return 0;
4058
4059 /* See if this combination of instruction and addressing mode exists. */
4060 if (! validate_change (insn, &XEXP (use, 0),
4061 gen_rtx_fmt_e (amount > 0
4062 ? (do_post ? POST_INC : PRE_INC)
4063 : (do_post ? POST_DEC : PRE_DEC),
4064 Pmode, reg), 0))
4065 return 0;
4066
4067 /* Record that this insn now has an implicit side effect on X. */
4068 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4069 return 1;
4070 }
4071
4072 #endif /* AUTO_INC_DEC */
4073 \f
4074 /* Find the place in the rtx X where REG is used as a memory address.
4075 Return the MEM rtx that so uses it.
4076 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4077 (plus REG (const_int PLUSCONST)).
4078
4079 If such an address does not appear, return 0.
4080 If REG appears more than once, or is used other than in such an address,
4081 return (rtx) 1. */
4082
4083 rtx
4084 find_use_as_address (x, reg, plusconst)
4085 rtx x;
4086 rtx reg;
4087 HOST_WIDE_INT plusconst;
4088 {
4089 enum rtx_code code = GET_CODE (x);
4090 const char * const fmt = GET_RTX_FORMAT (code);
4091 int i;
4092 rtx value = 0;
4093 rtx tem;
4094
4095 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4096 return x;
4097
4098 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4099 && XEXP (XEXP (x, 0), 0) == reg
4100 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4101 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4102 return x;
4103
4104 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4105 {
4106 /* If REG occurs inside a MEM used in a bit-field reference,
4107 that is unacceptable. */
4108 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4109 return (rtx) (size_t) 1;
4110 }
4111
4112 if (x == reg)
4113 return (rtx) (size_t) 1;
4114
4115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4116 {
4117 if (fmt[i] == 'e')
4118 {
4119 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4120 if (value == 0)
4121 value = tem;
4122 else if (tem != 0)
4123 return (rtx) (size_t) 1;
4124 }
4125 else if (fmt[i] == 'E')
4126 {
4127 int j;
4128 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4129 {
4130 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4131 if (value == 0)
4132 value = tem;
4133 else if (tem != 0)
4134 return (rtx) (size_t) 1;
4135 }
4136 }
4137 }
4138
4139 return value;
4140 }
4141 \f
4142 /* Write information about registers and basic blocks into FILE.
4143 This is part of making a debugging dump. */
4144
4145 void
4146 dump_regset (r, outf)
4147 regset r;
4148 FILE *outf;
4149 {
4150 int i;
4151 if (r == NULL)
4152 {
4153 fputs (" (nil)", outf);
4154 return;
4155 }
4156
4157 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4158 {
4159 fprintf (outf, " %d", i);
4160 if (i < FIRST_PSEUDO_REGISTER)
4161 fprintf (outf, " [%s]",
4162 reg_names[i]);
4163 });
4164 }
4165
4166 /* Print a human-reaable representation of R on the standard error
4167 stream. This function is designed to be used from within the
4168 debugger. */
4169
4170 void
4171 debug_regset (r)
4172 regset r;
4173 {
4174 dump_regset (r, stderr);
4175 putc ('\n', stderr);
4176 }
4177
4178 /* Recompute register set/reference counts immediately prior to register
4179 allocation.
4180
4181 This avoids problems with set/reference counts changing to/from values
4182 which have special meanings to the register allocators.
4183
4184 Additionally, the reference counts are the primary component used by the
4185 register allocators to prioritize pseudos for allocation to hard regs.
4186 More accurate reference counts generally lead to better register allocation.
4187
4188 F is the first insn to be scanned.
4189
4190 LOOP_STEP denotes how much loop_depth should be incremented per
4191 loop nesting level in order to increase the ref count more for
4192 references in a loop.
4193
4194 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4195 possibly other information which is used by the register allocators. */
4196
4197 void
4198 recompute_reg_usage (f, loop_step)
4199 rtx f ATTRIBUTE_UNUSED;
4200 int loop_step ATTRIBUTE_UNUSED;
4201 {
4202 allocate_reg_life_data ();
4203 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4204 }
4205
4206 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4207 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4208 of the number of registers that died. */
4209
4210 int
4211 count_or_remove_death_notes (blocks, kill)
4212 sbitmap blocks;
4213 int kill;
4214 {
4215 int count = 0;
4216 basic_block bb;
4217
4218 FOR_EACH_BB_REVERSE (bb)
4219 {
4220 rtx insn;
4221
4222 if (blocks && ! TEST_BIT (blocks, bb->index))
4223 continue;
4224
4225 for (insn = bb->head;; insn = NEXT_INSN (insn))
4226 {
4227 if (INSN_P (insn))
4228 {
4229 rtx *pprev = &REG_NOTES (insn);
4230 rtx link = *pprev;
4231
4232 while (link)
4233 {
4234 switch (REG_NOTE_KIND (link))
4235 {
4236 case REG_DEAD:
4237 if (GET_CODE (XEXP (link, 0)) == REG)
4238 {
4239 rtx reg = XEXP (link, 0);
4240 int n;
4241
4242 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4243 n = 1;
4244 else
4245 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4246 count += n;
4247 }
4248 /* Fall through. */
4249
4250 case REG_UNUSED:
4251 if (kill)
4252 {
4253 rtx next = XEXP (link, 1);
4254 free_EXPR_LIST_node (link);
4255 *pprev = link = next;
4256 break;
4257 }
4258 /* Fall through. */
4259
4260 default:
4261 pprev = &XEXP (link, 1);
4262 link = *pprev;
4263 break;
4264 }
4265 }
4266 }
4267
4268 if (insn == bb->end)
4269 break;
4270 }
4271 }
4272
4273 return count;
4274 }
4275 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4276 if blocks is NULL. */
4277
4278 static void
4279 clear_log_links (blocks)
4280 sbitmap blocks;
4281 {
4282 rtx insn;
4283 int i;
4284
4285 if (!blocks)
4286 {
4287 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4288 if (INSN_P (insn))
4289 free_INSN_LIST_list (&LOG_LINKS (insn));
4290 }
4291 else
4292 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4293 {
4294 basic_block bb = BASIC_BLOCK (i);
4295
4296 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4297 insn = NEXT_INSN (insn))
4298 if (INSN_P (insn))
4299 free_INSN_LIST_list (&LOG_LINKS (insn));
4300 });
4301 }
4302
4303 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4304 correspond to the hard registers, if any, set in that map. This
4305 could be done far more efficiently by having all sorts of special-cases
4306 with moving single words, but probably isn't worth the trouble. */
4307
4308 void
4309 reg_set_to_hard_reg_set (to, from)
4310 HARD_REG_SET *to;
4311 bitmap from;
4312 {
4313 int i;
4314
4315 EXECUTE_IF_SET_IN_BITMAP
4316 (from, 0, i,
4317 {
4318 if (i >= FIRST_PSEUDO_REGISTER)
4319 return;
4320 SET_HARD_REG_BIT (*to, i);
4321 });
4322 }