flow.c (propagate_one_insn): Revise yesterday's patch.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
345 \f
346
347 void
348 check_function_return_warnings ()
349 {
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
356
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
361
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
367 {
368 int max_uid = get_max_uid ();
369
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 {
376 /* Recompute insn->block mapping, since the initial mapping is
377 set before we delete unreachable blocks. */
378 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
379 warning ("control reaches end of non-void function");
380 }
381 }
382 }
383 \f
384 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
385 note associated with the BLOCK. */
386
387 rtx
388 first_insn_after_basic_block_note (block)
389 basic_block block;
390 {
391 rtx insn;
392
393 /* Get the first instruction in the block. */
394 insn = block->head;
395
396 if (insn == NULL_RTX)
397 return NULL_RTX;
398 if (GET_CODE (insn) == CODE_LABEL)
399 insn = NEXT_INSN (insn);
400 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
401 abort ();
402
403 return NEXT_INSN (insn);
404 }
405 \f
406 /* Perform data flow analysis.
407 F is the first insn of the function; FLAGS is a set of PROP_* flags
408 to be used in accumulating flow info. */
409
410 void
411 life_analysis (f, file, flags)
412 rtx f;
413 FILE *file;
414 int flags;
415 {
416 #ifdef ELIMINABLE_REGS
417 int i;
418 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
419 #endif
420
421 /* Record which registers will be eliminated. We use this in
422 mark_used_regs. */
423
424 CLEAR_HARD_REG_SET (elim_reg_set);
425
426 #ifdef ELIMINABLE_REGS
427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
428 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
429 #else
430 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
431 #endif
432
433 if (! optimize)
434 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
435
436 /* The post-reload life analysis have (on a global basis) the same
437 registers live as was computed by reload itself. elimination
438 Otherwise offsets and such may be incorrect.
439
440 Reload will make some registers as live even though they do not
441 appear in the rtl.
442
443 We don't want to create new auto-incs after reload, since they
444 are unlikely to be useful and can cause problems with shared
445 stack slots. */
446 if (reload_completed)
447 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
448
449 /* We want alias analysis information for local dead store elimination. */
450 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
451 init_alias_analysis ();
452
453 /* Always remove no-op moves. Do this before other processing so
454 that we don't have to keep re-scanning them. */
455 delete_noop_moves (f);
456
457 /* Some targets can emit simpler epilogues if they know that sp was
458 not ever modified during the function. After reload, of course,
459 we've already emitted the epilogue so there's no sense searching. */
460 if (! reload_completed)
461 notice_stack_pointer_modification (f);
462
463 /* Allocate and zero out data structures that will record the
464 data from lifetime analysis. */
465 allocate_reg_life_data ();
466 allocate_bb_life_data ();
467
468 /* Find the set of registers live on function exit. */
469 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
470
471 /* "Update" life info from zero. It'd be nice to begin the
472 relaxation with just the exit and noreturn blocks, but that set
473 is not immediately handy. */
474
475 if (flags & PROP_REG_INFO)
476 memset (regs_ever_live, 0, sizeof (regs_ever_live));
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478
479 /* Clean up. */
480 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
481 end_alias_analysis ();
482
483 if (file)
484 dump_flow_info (file);
485
486 free_basic_block_vars (1);
487
488 /* Removing dead insns should've made jumptables really dead. */
489 delete_dead_jumptables ();
490 }
491
492 /* A subroutine of verify_wide_reg, called through for_each_rtx.
493 Search for REGNO. If found, return 2 if it is not wider than
494 word_mode. */
495
496 static int
497 verify_wide_reg_1 (px, pregno)
498 rtx *px;
499 void *pregno;
500 {
501 rtx x = *px;
502 unsigned int regno = *(int *) pregno;
503
504 if (GET_CODE (x) == REG && REGNO (x) == regno)
505 {
506 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
507 return 2;
508 return 1;
509 }
510 return 0;
511 }
512
513 /* A subroutine of verify_local_live_at_start. Search through insns
514 of BB looking for register REGNO. */
515
516 static void
517 verify_wide_reg (regno, bb)
518 int regno;
519 basic_block bb;
520 {
521 rtx head = bb->head, end = bb->end;
522
523 while (1)
524 {
525 if (INSN_P (head))
526 {
527 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
528 if (r == 1)
529 return;
530 if (r == 2)
531 break;
532 }
533 if (head == end)
534 break;
535 head = NEXT_INSN (head);
536 }
537
538 if (rtl_dump_file)
539 {
540 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
541 dump_bb (bb, rtl_dump_file);
542 }
543 abort ();
544 }
545
546 /* A subroutine of update_life_info. Verify that there are no untoward
547 changes in live_at_start during a local update. */
548
549 static void
550 verify_local_live_at_start (new_live_at_start, bb)
551 regset new_live_at_start;
552 basic_block bb;
553 {
554 if (reload_completed)
555 {
556 /* After reload, there are no pseudos, nor subregs of multi-word
557 registers. The regsets should exactly match. */
558 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
559 {
560 if (rtl_dump_file)
561 {
562 fprintf (rtl_dump_file,
563 "live_at_start mismatch in bb %d, aborting\nNew:\n",
564 bb->index);
565 debug_bitmap_file (rtl_dump_file, new_live_at_start);
566 fputs ("Old:\n", rtl_dump_file);
567 dump_bb (bb, rtl_dump_file);
568 }
569 abort ();
570 }
571 }
572 else
573 {
574 int i;
575
576 /* Find the set of changed registers. */
577 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
578
579 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
580 {
581 /* No registers should die. */
582 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
583 {
584 if (rtl_dump_file)
585 {
586 fprintf (rtl_dump_file,
587 "Register %d died unexpectedly.\n", i);
588 dump_bb (bb, rtl_dump_file);
589 }
590 abort ();
591 }
592
593 /* Verify that the now-live register is wider than word_mode. */
594 verify_wide_reg (i, bb);
595 });
596 }
597 }
598
599 /* Updates life information starting with the basic blocks set in BLOCKS.
600 If BLOCKS is null, consider it to be the universal set.
601
602 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
603 we are only expecting local modifications to basic blocks. If we find
604 extra registers live at the beginning of a block, then we either killed
605 useful data, or we have a broken split that wants data not provided.
606 If we find registers removed from live_at_start, that means we have
607 a broken peephole that is killing a register it shouldn't.
608
609 ??? This is not true in one situation -- when a pre-reload splitter
610 generates subregs of a multi-word pseudo, current life analysis will
611 lose the kill. So we _can_ have a pseudo go live. How irritating.
612
613 Including PROP_REG_INFO does not properly refresh regs_ever_live
614 unless the caller resets it to zero. */
615
616 int
617 update_life_info (blocks, extent, prop_flags)
618 sbitmap blocks;
619 enum update_life_extent extent;
620 int prop_flags;
621 {
622 regset tmp;
623 regset_head tmp_head;
624 int i;
625 int stabilized_prop_flags = prop_flags;
626 basic_block bb;
627
628 tmp = INITIALIZE_REG_SET (tmp_head);
629 ndead = 0;
630
631 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
632 ? TV_LIFE_UPDATE : TV_LIFE);
633
634 /* Changes to the CFG are only allowed when
635 doing a global update for the entire CFG. */
636 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
637 && (extent == UPDATE_LIFE_LOCAL || blocks))
638 abort ();
639
640 /* For a global update, we go through the relaxation process again. */
641 if (extent != UPDATE_LIFE_LOCAL)
642 {
643 for ( ; ; )
644 {
645 int changed = 0;
646
647 calculate_global_regs_live (blocks, blocks,
648 prop_flags & (PROP_SCAN_DEAD_CODE
649 | PROP_SCAN_DEAD_STORES
650 | PROP_ALLOW_CFG_CHANGES));
651
652 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 break;
655
656 /* Removing dead code may allow the CFG to be simplified which
657 in turn may allow for further dead code detection / removal. */
658 FOR_EACH_BB_REVERSE (bb)
659 {
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 changed |= propagate_block (bb, tmp, NULL, NULL,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_SCAN_DEAD_STORES
664 | PROP_KILL_DEAD_CODE));
665 }
666
667 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
668 subsequent propagate_block calls, since removing or acting as
669 removing dead code can affect global register liveness, which
670 is supposed to be finalized for this call after this loop. */
671 stabilized_prop_flags
672 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE);
674
675 if (! changed)
676 break;
677
678 /* We repeat regardless of what cleanup_cfg says. If there were
679 instructions deleted above, that might have been only a
680 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
681 Further improvement may be possible. */
682 cleanup_cfg (CLEANUP_EXPENSIVE);
683 }
684
685 /* If asked, remove notes from the blocks we'll update. */
686 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
687 count_or_remove_death_notes (blocks, 1);
688 }
689
690 /* Clear log links in case we are asked to (re)compute them. */
691 if (prop_flags & PROP_LOG_LINKS)
692 clear_log_links (blocks);
693
694 if (blocks)
695 {
696 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
697 {
698 bb = BASIC_BLOCK (i);
699
700 COPY_REG_SET (tmp, bb->global_live_at_end);
701 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
702
703 if (extent == UPDATE_LIFE_LOCAL)
704 verify_local_live_at_start (tmp, bb);
705 });
706 }
707 else
708 {
709 FOR_EACH_BB_REVERSE (bb)
710 {
711 COPY_REG_SET (tmp, bb->global_live_at_end);
712
713 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
714
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
717 }
718 }
719
720 FREE_REG_SET (tmp);
721
722 if (prop_flags & PROP_REG_INFO)
723 {
724 /* The only pseudos that are live at the beginning of the function
725 are those that were not set anywhere in the function. local-alloc
726 doesn't know how to handle these correctly, so mark them as not
727 local to any one basic block. */
728 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
729 FIRST_PSEUDO_REGISTER, i,
730 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
731
732 /* We have a problem with any pseudoreg that lives across the setjmp.
733 ANSI says that if a user variable does not change in value between
734 the setjmp and the longjmp, then the longjmp preserves it. This
735 includes longjmp from a place where the pseudo appears dead.
736 (In principle, the value still exists if it is in scope.)
737 If the pseudo goes in a hard reg, some other value may occupy
738 that hard reg where this pseudo is dead, thus clobbering the pseudo.
739 Conclusion: such a pseudo must not go in a hard reg. */
740 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
741 FIRST_PSEUDO_REGISTER, i,
742 {
743 if (regno_reg_rtx[i] != 0)
744 {
745 REG_LIVE_LENGTH (i) = -1;
746 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
747 }
748 });
749 }
750 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
751 ? TV_LIFE_UPDATE : TV_LIFE);
752 if (ndead && rtl_dump_file)
753 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
754 return ndead;
755 }
756
757 /* Update life information in all blocks where BB_DIRTY is set. */
758
759 int
760 update_life_info_in_dirty_blocks (extent, prop_flags)
761 enum update_life_extent extent;
762 int prop_flags;
763 {
764 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
765 int n = 0;
766 basic_block bb;
767 int retval = 0;
768
769 sbitmap_zero (update_life_blocks);
770 FOR_EACH_BB (bb)
771 {
772 if (extent == UPDATE_LIFE_LOCAL)
773 {
774 if (bb->flags & BB_DIRTY)
775 {
776 SET_BIT (update_life_blocks, bb->index);
777 n++;
778 }
779 }
780 else
781 {
782 /* ??? Bootstrap with -march=pentium4 fails to terminate
783 with only a partial life update. */
784 SET_BIT (update_life_blocks, bb->index);
785 if (bb->flags & BB_DIRTY)
786 n++;
787 }
788 }
789
790 if (n)
791 retval = update_life_info (update_life_blocks, extent, prop_flags);
792
793 sbitmap_free (update_life_blocks);
794 return retval;
795 }
796
797 /* Free the variables allocated by find_basic_blocks.
798
799 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
800
801 void
802 free_basic_block_vars (keep_head_end_p)
803 int keep_head_end_p;
804 {
805 if (! keep_head_end_p)
806 {
807 if (basic_block_info)
808 {
809 clear_edges ();
810 VARRAY_FREE (basic_block_info);
811 }
812 n_basic_blocks = 0;
813 last_basic_block = 0;
814
815 ENTRY_BLOCK_PTR->aux = NULL;
816 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
817 EXIT_BLOCK_PTR->aux = NULL;
818 EXIT_BLOCK_PTR->global_live_at_start = NULL;
819 }
820 }
821
822 /* Delete any insns that copy a register to itself. */
823
824 int
825 delete_noop_moves (f)
826 rtx f ATTRIBUTE_UNUSED;
827 {
828 rtx insn, next;
829 basic_block bb;
830 int nnoops = 0;
831
832 FOR_EACH_BB (bb)
833 {
834 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
835 {
836 next = NEXT_INSN (insn);
837 if (INSN_P (insn) && noop_move_p (insn))
838 {
839 rtx note;
840
841 /* If we're about to remove the first insn of a libcall
842 then move the libcall note to the next real insn and
843 update the retval note. */
844 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
845 && XEXP (note, 0) != insn)
846 {
847 rtx new_libcall_insn = next_real_insn (insn);
848 rtx retval_note = find_reg_note (XEXP (note, 0),
849 REG_RETVAL, NULL_RTX);
850 REG_NOTES (new_libcall_insn)
851 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
852 REG_NOTES (new_libcall_insn));
853 XEXP (retval_note, 0) = new_libcall_insn;
854 }
855
856 delete_insn_and_edges (insn);
857 nnoops++;
858 }
859 }
860 }
861 if (nnoops && rtl_dump_file)
862 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
863 return nnoops;
864 }
865
866 /* Delete any jump tables never referenced. We can't delete them at the
867 time of removing tablejump insn as they are referenced by the preceding
868 insns computing the destination, so we delay deleting and garbagecollect
869 them once life information is computed. */
870 void
871 delete_dead_jumptables ()
872 {
873 rtx insn, next;
874 for (insn = get_insns (); insn; insn = next)
875 {
876 next = NEXT_INSN (insn);
877 if (GET_CODE (insn) == CODE_LABEL
878 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
879 && GET_CODE (next) == JUMP_INSN
880 && (GET_CODE (PATTERN (next)) == ADDR_VEC
881 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
882 {
883 if (rtl_dump_file)
884 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
885 delete_insn (NEXT_INSN (insn));
886 delete_insn (insn);
887 next = NEXT_INSN (next);
888 }
889 }
890 }
891
892 /* Determine if the stack pointer is constant over the life of the function.
893 Only useful before prologues have been emitted. */
894
895 static void
896 notice_stack_pointer_modification_1 (x, pat, data)
897 rtx x;
898 rtx pat ATTRIBUTE_UNUSED;
899 void *data ATTRIBUTE_UNUSED;
900 {
901 if (x == stack_pointer_rtx
902 /* The stack pointer is only modified indirectly as the result
903 of a push until later in flow. See the comments in rtl.texi
904 regarding Embedded Side-Effects on Addresses. */
905 || (GET_CODE (x) == MEM
906 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
907 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
908 current_function_sp_is_unchanging = 0;
909 }
910
911 static void
912 notice_stack_pointer_modification (f)
913 rtx f;
914 {
915 rtx insn;
916
917 /* Assume that the stack pointer is unchanging if alloca hasn't
918 been used. */
919 current_function_sp_is_unchanging = !current_function_calls_alloca;
920 if (! current_function_sp_is_unchanging)
921 return;
922
923 for (insn = f; insn; insn = NEXT_INSN (insn))
924 {
925 if (INSN_P (insn))
926 {
927 /* Check if insn modifies the stack pointer. */
928 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
929 NULL);
930 if (! current_function_sp_is_unchanging)
931 return;
932 }
933 }
934 }
935
936 /* Mark a register in SET. Hard registers in large modes get all
937 of their component registers set as well. */
938
939 static void
940 mark_reg (reg, xset)
941 rtx reg;
942 void *xset;
943 {
944 regset set = (regset) xset;
945 int regno = REGNO (reg);
946
947 if (GET_MODE (reg) == BLKmode)
948 abort ();
949
950 SET_REGNO_REG_SET (set, regno);
951 if (regno < FIRST_PSEUDO_REGISTER)
952 {
953 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
954 while (--n > 0)
955 SET_REGNO_REG_SET (set, regno + n);
956 }
957 }
958
959 /* Mark those regs which are needed at the end of the function as live
960 at the end of the last basic block. */
961
962 static void
963 mark_regs_live_at_end (set)
964 regset set;
965 {
966 unsigned int i;
967
968 /* If exiting needs the right stack value, consider the stack pointer
969 live at the end of the function. */
970 if ((HAVE_epilogue && reload_completed)
971 || ! EXIT_IGNORE_STACK
972 || (! FRAME_POINTER_REQUIRED
973 && ! current_function_calls_alloca
974 && flag_omit_frame_pointer)
975 || current_function_sp_is_unchanging)
976 {
977 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
978 }
979
980 /* Mark the frame pointer if needed at the end of the function. If
981 we end up eliminating it, it will be removed from the live list
982 of each basic block by reload. */
983
984 if (! reload_completed || frame_pointer_needed)
985 {
986 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
987 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
988 /* If they are different, also mark the hard frame pointer as live. */
989 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
990 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
991 #endif
992 }
993
994 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
995 /* Many architectures have a GP register even without flag_pic.
996 Assume the pic register is not in use, or will be handled by
997 other means, if it is not fixed. */
998 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
999 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1000 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1001 #endif
1002
1003 /* Mark all global registers, and all registers used by the epilogue
1004 as being live at the end of the function since they may be
1005 referenced by our caller. */
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1007 if (global_regs[i] || EPILOGUE_USES (i))
1008 SET_REGNO_REG_SET (set, i);
1009
1010 if (HAVE_epilogue && reload_completed)
1011 {
1012 /* Mark all call-saved registers that we actually used. */
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1015 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1016 SET_REGNO_REG_SET (set, i);
1017 }
1018
1019 #ifdef EH_RETURN_DATA_REGNO
1020 /* Mark the registers that will contain data for the handler. */
1021 if (reload_completed && current_function_calls_eh_return)
1022 for (i = 0; ; ++i)
1023 {
1024 unsigned regno = EH_RETURN_DATA_REGNO(i);
1025 if (regno == INVALID_REGNUM)
1026 break;
1027 SET_REGNO_REG_SET (set, regno);
1028 }
1029 #endif
1030 #ifdef EH_RETURN_STACKADJ_RTX
1031 if ((! HAVE_epilogue || ! reload_completed)
1032 && current_function_calls_eh_return)
1033 {
1034 rtx tmp = EH_RETURN_STACKADJ_RTX;
1035 if (tmp && REG_P (tmp))
1036 mark_reg (tmp, set);
1037 }
1038 #endif
1039 #ifdef EH_RETURN_HANDLER_RTX
1040 if ((! HAVE_epilogue || ! reload_completed)
1041 && current_function_calls_eh_return)
1042 {
1043 rtx tmp = EH_RETURN_HANDLER_RTX;
1044 if (tmp && REG_P (tmp))
1045 mark_reg (tmp, set);
1046 }
1047 #endif
1048
1049 /* Mark function return value. */
1050 diddle_return_value (mark_reg, set);
1051 }
1052
1053 /* Callback function for for_each_successor_phi. DATA is a regset.
1054 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1055 INSN, in the regset. */
1056
1057 static int
1058 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1059 rtx insn ATTRIBUTE_UNUSED;
1060 int dest_regno ATTRIBUTE_UNUSED;
1061 int src_regno;
1062 void *data;
1063 {
1064 regset live = (regset) data;
1065 SET_REGNO_REG_SET (live, src_regno);
1066 return 0;
1067 }
1068
1069 /* Propagate global life info around the graph of basic blocks. Begin
1070 considering blocks with their corresponding bit set in BLOCKS_IN.
1071 If BLOCKS_IN is null, consider it the universal set.
1072
1073 BLOCKS_OUT is set for every block that was changed. */
1074
1075 static void
1076 calculate_global_regs_live (blocks_in, blocks_out, flags)
1077 sbitmap blocks_in, blocks_out;
1078 int flags;
1079 {
1080 basic_block *queue, *qhead, *qtail, *qend, bb;
1081 regset tmp, new_live_at_end, invalidated_by_call;
1082 regset_head tmp_head, invalidated_by_call_head;
1083 regset_head new_live_at_end_head;
1084 int i;
1085
1086 /* Some passes used to forget clear aux field of basic block causing
1087 sick behaviour here. */
1088 #ifdef ENABLE_CHECKING
1089 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1090 if (bb->aux)
1091 abort ();
1092 #endif
1093
1094 tmp = INITIALIZE_REG_SET (tmp_head);
1095 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1096 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1097
1098 /* Inconveniently, this is only readily available in hard reg set form. */
1099 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1100 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1101 SET_REGNO_REG_SET (invalidated_by_call, i);
1102
1103 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1104 because the `head == tail' style test for an empty queue doesn't
1105 work with a full queue. */
1106 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1107 qtail = queue;
1108 qhead = qend = queue + n_basic_blocks + 2;
1109
1110 /* Queue the blocks set in the initial mask. Do this in reverse block
1111 number order so that we are more likely for the first round to do
1112 useful work. We use AUX non-null to flag that the block is queued. */
1113 if (blocks_in)
1114 {
1115 FOR_EACH_BB (bb)
1116 if (TEST_BIT (blocks_in, bb->index))
1117 {
1118 *--qhead = bb;
1119 bb->aux = bb;
1120 }
1121 }
1122 else
1123 {
1124 FOR_EACH_BB (bb)
1125 {
1126 *--qhead = bb;
1127 bb->aux = bb;
1128 }
1129 }
1130
1131 /* We clean aux when we remove the initially-enqueued bbs, but we
1132 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1133 unconditionally. */
1134 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1135
1136 if (blocks_out)
1137 sbitmap_zero (blocks_out);
1138
1139 /* We work through the queue until there are no more blocks. What
1140 is live at the end of this block is precisely the union of what
1141 is live at the beginning of all its successors. So, we set its
1142 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1143 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1144 this block by walking through the instructions in this block in
1145 reverse order and updating as we go. If that changed
1146 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1147 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1148
1149 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1150 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1151 must either be live at the end of the block, or used within the
1152 block. In the latter case, it will certainly never disappear
1153 from GLOBAL_LIVE_AT_START. In the former case, the register
1154 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1155 for one of the successor blocks. By induction, that cannot
1156 occur. */
1157 while (qhead != qtail)
1158 {
1159 int rescan, changed;
1160 basic_block bb;
1161 edge e;
1162
1163 bb = *qhead++;
1164 if (qhead == qend)
1165 qhead = queue;
1166 bb->aux = NULL;
1167
1168 /* Begin by propagating live_at_start from the successor blocks. */
1169 CLEAR_REG_SET (new_live_at_end);
1170
1171 if (bb->succ)
1172 for (e = bb->succ; e; e = e->succ_next)
1173 {
1174 basic_block sb = e->dest;
1175
1176 /* Call-clobbered registers die across exception and
1177 call edges. */
1178 /* ??? Abnormal call edges ignored for the moment, as this gets
1179 confused by sibling call edges, which crashes reg-stack. */
1180 if (e->flags & EDGE_EH)
1181 {
1182 bitmap_operation (tmp, sb->global_live_at_start,
1183 invalidated_by_call, BITMAP_AND_COMPL);
1184 IOR_REG_SET (new_live_at_end, tmp);
1185 }
1186 else
1187 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1188
1189 /* If a target saves one register in another (instead of on
1190 the stack) the save register will need to be live for EH. */
1191 if (e->flags & EDGE_EH)
1192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193 if (EH_USES (i))
1194 SET_REGNO_REG_SET (new_live_at_end, i);
1195 }
1196 else
1197 {
1198 /* This might be a noreturn function that throws. And
1199 even if it isn't, getting the unwind info right helps
1200 debugging. */
1201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1202 if (EH_USES (i))
1203 SET_REGNO_REG_SET (new_live_at_end, i);
1204 }
1205
1206 /* The all-important stack pointer must always be live. */
1207 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1208
1209 /* Before reload, there are a few registers that must be forced
1210 live everywhere -- which might not already be the case for
1211 blocks within infinite loops. */
1212 if (! reload_completed)
1213 {
1214 /* Any reference to any pseudo before reload is a potential
1215 reference of the frame pointer. */
1216 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1217
1218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219 /* Pseudos with argument area equivalences may require
1220 reloading via the argument pointer. */
1221 if (fixed_regs[ARG_POINTER_REGNUM])
1222 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1223 #endif
1224
1225 /* Any constant, or pseudo with constant equivalences, may
1226 require reloading from memory using the pic register. */
1227 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1228 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1230 }
1231
1232 /* Regs used in phi nodes are not included in
1233 global_live_at_start, since they are live only along a
1234 particular edge. Set those regs that are live because of a
1235 phi node alternative corresponding to this particular block. */
1236 if (in_ssa_form)
1237 for_each_successor_phi (bb, &set_phi_alternative_reg,
1238 new_live_at_end);
1239
1240 if (bb == ENTRY_BLOCK_PTR)
1241 {
1242 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1243 continue;
1244 }
1245
1246 /* On our first pass through this block, we'll go ahead and continue.
1247 Recognize first pass by local_set NULL. On subsequent passes, we
1248 get to skip out early if live_at_end wouldn't have changed. */
1249
1250 if (bb->local_set == NULL)
1251 {
1252 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1253 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1254 rescan = 1;
1255 }
1256 else
1257 {
1258 /* If any bits were removed from live_at_end, we'll have to
1259 rescan the block. This wouldn't be necessary if we had
1260 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1261 local_live is really dependent on live_at_end. */
1262 CLEAR_REG_SET (tmp);
1263 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1264 new_live_at_end, BITMAP_AND_COMPL);
1265
1266 if (! rescan)
1267 {
1268 /* If any of the registers in the new live_at_end set are
1269 conditionally set in this basic block, we must rescan.
1270 This is because conditional lifetimes at the end of the
1271 block do not just take the live_at_end set into account,
1272 but also the liveness at the start of each successor
1273 block. We can miss changes in those sets if we only
1274 compare the new live_at_end against the previous one. */
1275 CLEAR_REG_SET (tmp);
1276 rescan = bitmap_operation (tmp, new_live_at_end,
1277 bb->cond_local_set, BITMAP_AND);
1278 }
1279
1280 if (! rescan)
1281 {
1282 /* Find the set of changed bits. Take this opportunity
1283 to notice that this set is empty and early out. */
1284 CLEAR_REG_SET (tmp);
1285 changed = bitmap_operation (tmp, bb->global_live_at_end,
1286 new_live_at_end, BITMAP_XOR);
1287 if (! changed)
1288 continue;
1289
1290 /* If any of the changed bits overlap with local_set,
1291 we'll have to rescan the block. Detect overlap by
1292 the AND with ~local_set turning off bits. */
1293 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1294 BITMAP_AND_COMPL);
1295 }
1296 }
1297
1298 /* Let our caller know that BB changed enough to require its
1299 death notes updated. */
1300 if (blocks_out)
1301 SET_BIT (blocks_out, bb->index);
1302
1303 if (! rescan)
1304 {
1305 /* Add to live_at_start the set of all registers in
1306 new_live_at_end that aren't in the old live_at_end. */
1307
1308 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1309 BITMAP_AND_COMPL);
1310 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1311
1312 changed = bitmap_operation (bb->global_live_at_start,
1313 bb->global_live_at_start,
1314 tmp, BITMAP_IOR);
1315 if (! changed)
1316 continue;
1317 }
1318 else
1319 {
1320 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1321
1322 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1323 into live_at_start. */
1324 propagate_block (bb, new_live_at_end, bb->local_set,
1325 bb->cond_local_set, flags);
1326
1327 /* If live_at start didn't change, no need to go farther. */
1328 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1329 continue;
1330
1331 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1332 }
1333
1334 /* Queue all predecessors of BB so that we may re-examine
1335 their live_at_end. */
1336 for (e = bb->pred; e; e = e->pred_next)
1337 {
1338 basic_block pb = e->src;
1339 if (pb->aux == NULL)
1340 {
1341 *qtail++ = pb;
1342 if (qtail == qend)
1343 qtail = queue;
1344 pb->aux = pb;
1345 }
1346 }
1347 }
1348
1349 FREE_REG_SET (tmp);
1350 FREE_REG_SET (new_live_at_end);
1351 FREE_REG_SET (invalidated_by_call);
1352
1353 if (blocks_out)
1354 {
1355 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1356 {
1357 basic_block bb = BASIC_BLOCK (i);
1358 FREE_REG_SET (bb->local_set);
1359 FREE_REG_SET (bb->cond_local_set);
1360 });
1361 }
1362 else
1363 {
1364 FOR_EACH_BB (bb)
1365 {
1366 FREE_REG_SET (bb->local_set);
1367 FREE_REG_SET (bb->cond_local_set);
1368 }
1369 }
1370
1371 free (queue);
1372 }
1373
1374 \f
1375 /* This structure is used to pass parameters to an from the
1376 the function find_regno_partial(). It is used to pass in the
1377 register number we are looking, as well as to return any rtx
1378 we find. */
1379
1380 typedef struct {
1381 unsigned regno_to_find;
1382 rtx retval;
1383 } find_regno_partial_param;
1384
1385
1386 /* Find the rtx for the reg numbers specified in 'data' if it is
1387 part of an expression which only uses part of the register. Return
1388 it in the structure passed in. */
1389 static int
1390 find_regno_partial (ptr, data)
1391 rtx *ptr;
1392 void *data;
1393 {
1394 find_regno_partial_param *param = (find_regno_partial_param *)data;
1395 unsigned reg = param->regno_to_find;
1396 param->retval = NULL_RTX;
1397
1398 if (*ptr == NULL_RTX)
1399 return 0;
1400
1401 switch (GET_CODE (*ptr))
1402 {
1403 case ZERO_EXTRACT:
1404 case SIGN_EXTRACT:
1405 case STRICT_LOW_PART:
1406 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1407 {
1408 param->retval = XEXP (*ptr, 0);
1409 return 1;
1410 }
1411 break;
1412
1413 case SUBREG:
1414 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1415 && REGNO (SUBREG_REG (*ptr)) == reg)
1416 {
1417 param->retval = SUBREG_REG (*ptr);
1418 return 1;
1419 }
1420 break;
1421
1422 default:
1423 break;
1424 }
1425
1426 return 0;
1427 }
1428
1429 /* Process all immediate successors of the entry block looking for pseudo
1430 registers which are live on entry. Find all of those whose first
1431 instance is a partial register reference of some kind, and initialize
1432 them to 0 after the entry block. This will prevent bit sets within
1433 registers whose value is unknown, and may contain some kind of sticky
1434 bits we don't want. */
1435
1436 int
1437 initialize_uninitialized_subregs ()
1438 {
1439 rtx insn;
1440 edge e;
1441 int reg, did_something = 0;
1442 find_regno_partial_param param;
1443
1444 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1445 {
1446 basic_block bb = e->dest;
1447 regset map = bb->global_live_at_start;
1448 EXECUTE_IF_SET_IN_REG_SET (map,
1449 FIRST_PSEUDO_REGISTER, reg,
1450 {
1451 int uid = REGNO_FIRST_UID (reg);
1452 rtx i;
1453
1454 /* Find an insn which mentions the register we are looking for.
1455 Its preferable to have an instance of the register's rtl since
1456 there may be various flags set which we need to duplicate.
1457 If we can't find it, its probably an automatic whose initial
1458 value doesn't matter, or hopefully something we don't care about. */
1459 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1460 ;
1461 if (i != NULL_RTX)
1462 {
1463 /* Found the insn, now get the REG rtx, if we can. */
1464 param.regno_to_find = reg;
1465 for_each_rtx (&i, find_regno_partial, &param);
1466 if (param.retval != NULL_RTX)
1467 {
1468 insn = gen_move_insn (param.retval,
1469 CONST0_RTX (GET_MODE (param.retval)));
1470 insert_insn_on_edge (insn, e);
1471 did_something = 1;
1472 }
1473 }
1474 });
1475 }
1476
1477 if (did_something)
1478 commit_edge_insertions ();
1479 return did_something;
1480 }
1481
1482 \f
1483 /* Subroutines of life analysis. */
1484
1485 /* Allocate the permanent data structures that represent the results
1486 of life analysis. Not static since used also for stupid life analysis. */
1487
1488 void
1489 allocate_bb_life_data ()
1490 {
1491 basic_block bb;
1492
1493 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1494 {
1495 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1496 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1497 }
1498
1499 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1500 }
1501
1502 void
1503 allocate_reg_life_data ()
1504 {
1505 int i;
1506
1507 max_regno = max_reg_num ();
1508
1509 /* Recalculate the register space, in case it has grown. Old style
1510 vector oriented regsets would set regset_{size,bytes} here also. */
1511 allocate_reg_info (max_regno, FALSE, FALSE);
1512
1513 /* Reset all the data we'll collect in propagate_block and its
1514 subroutines. */
1515 for (i = 0; i < max_regno; i++)
1516 {
1517 REG_N_SETS (i) = 0;
1518 REG_N_REFS (i) = 0;
1519 REG_N_DEATHS (i) = 0;
1520 REG_N_CALLS_CROSSED (i) = 0;
1521 REG_LIVE_LENGTH (i) = 0;
1522 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1523 }
1524 }
1525
1526 /* Delete dead instructions for propagate_block. */
1527
1528 static void
1529 propagate_block_delete_insn (insn)
1530 rtx insn;
1531 {
1532 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1533
1534 /* If the insn referred to a label, and that label was attached to
1535 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1536 pretty much mandatory to delete it, because the ADDR_VEC may be
1537 referencing labels that no longer exist.
1538
1539 INSN may reference a deleted label, particularly when a jump
1540 table has been optimized into a direct jump. There's no
1541 real good way to fix up the reference to the deleted label
1542 when the label is deleted, so we just allow it here. */
1543
1544 if (inote && GET_CODE (inote) == CODE_LABEL)
1545 {
1546 rtx label = XEXP (inote, 0);
1547 rtx next;
1548
1549 /* The label may be forced if it has been put in the constant
1550 pool. If that is the only use we must discard the table
1551 jump following it, but not the label itself. */
1552 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1553 && (next = next_nonnote_insn (label)) != NULL
1554 && GET_CODE (next) == JUMP_INSN
1555 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1556 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1557 {
1558 rtx pat = PATTERN (next);
1559 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1560 int len = XVECLEN (pat, diff_vec_p);
1561 int i;
1562
1563 for (i = 0; i < len; i++)
1564 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1565
1566 delete_insn_and_edges (next);
1567 ndead++;
1568 }
1569 }
1570
1571 delete_insn_and_edges (insn);
1572 ndead++;
1573 }
1574
1575 /* Delete dead libcalls for propagate_block. Return the insn
1576 before the libcall. */
1577
1578 static rtx
1579 propagate_block_delete_libcall ( insn, note)
1580 rtx insn, note;
1581 {
1582 rtx first = XEXP (note, 0);
1583 rtx before = PREV_INSN (first);
1584
1585 delete_insn_chain_and_edges (first, insn);
1586 ndead++;
1587 return before;
1588 }
1589
1590 /* Update the life-status of regs for one insn. Return the previous insn. */
1591
1592 rtx
1593 propagate_one_insn (pbi, insn)
1594 struct propagate_block_info *pbi;
1595 rtx insn;
1596 {
1597 rtx prev = PREV_INSN (insn);
1598 int flags = pbi->flags;
1599 int insn_is_dead = 0;
1600 int libcall_is_dead = 0;
1601 rtx note;
1602 int i;
1603
1604 if (! INSN_P (insn))
1605 return prev;
1606
1607 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1608 if (flags & PROP_SCAN_DEAD_CODE)
1609 {
1610 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1611 libcall_is_dead = (insn_is_dead && note != 0
1612 && libcall_dead_p (pbi, note, insn));
1613 }
1614
1615 /* If an instruction consists of just dead store(s) on final pass,
1616 delete it. */
1617 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1618 {
1619 /* If we're trying to delete a prologue or epilogue instruction
1620 that isn't flagged as possibly being dead, something is wrong.
1621 But if we are keeping the stack pointer depressed, we might well
1622 be deleting insns that are used to compute the amount to update
1623 it by, so they are fine. */
1624 if (reload_completed
1625 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1626 && (TYPE_RETURNS_STACK_DEPRESSED
1627 (TREE_TYPE (current_function_decl))))
1628 && (((HAVE_epilogue || HAVE_prologue)
1629 && prologue_epilogue_contains (insn))
1630 || (HAVE_sibcall_epilogue
1631 && sibcall_epilogue_contains (insn)))
1632 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1633 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1634
1635 /* Record sets. Do this even for dead instructions, since they
1636 would have killed the values if they hadn't been deleted. */
1637 mark_set_regs (pbi, PATTERN (insn), insn);
1638
1639 /* CC0 is now known to be dead. Either this insn used it,
1640 in which case it doesn't anymore, or clobbered it,
1641 so the next insn can't use it. */
1642 pbi->cc0_live = 0;
1643
1644 if (libcall_is_dead)
1645 prev = propagate_block_delete_libcall ( insn, note);
1646 else
1647 {
1648
1649 if (note)
1650 {
1651 /* If INSN contains a RETVAL note and is dead, but the libcall
1652 as a whole is not dead, then we want to remove INSN, but
1653 not the whole libcall sequence.
1654
1655 However, we need to also remove the dangling REG_LIBCALL
1656 note so that we do not have mis-matched LIBCALL/RETVAL
1657 notes. In theory we could find a new location for the
1658 REG_RETVAL note, but it hardly seems worth the effort. */
1659 rtx libcall_note;
1660
1661 libcall_note
1662 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1663 remove_note (XEXP (note, 0), libcall_note);
1664 }
1665 propagate_block_delete_insn (insn);
1666 }
1667
1668 return prev;
1669 }
1670
1671 /* See if this is an increment or decrement that can be merged into
1672 a following memory address. */
1673 #ifdef AUTO_INC_DEC
1674 {
1675 rtx x = single_set (insn);
1676
1677 /* Does this instruction increment or decrement a register? */
1678 if ((flags & PROP_AUTOINC)
1679 && x != 0
1680 && GET_CODE (SET_DEST (x)) == REG
1681 && (GET_CODE (SET_SRC (x)) == PLUS
1682 || GET_CODE (SET_SRC (x)) == MINUS)
1683 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1684 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1685 /* Ok, look for a following memory ref we can combine with.
1686 If one is found, change the memory ref to a PRE_INC
1687 or PRE_DEC, cancel this insn, and return 1.
1688 Return 0 if nothing has been done. */
1689 && try_pre_increment_1 (pbi, insn))
1690 return prev;
1691 }
1692 #endif /* AUTO_INC_DEC */
1693
1694 CLEAR_REG_SET (pbi->new_set);
1695
1696 /* If this is not the final pass, and this insn is copying the value of
1697 a library call and it's dead, don't scan the insns that perform the
1698 library call, so that the call's arguments are not marked live. */
1699 if (libcall_is_dead)
1700 {
1701 /* Record the death of the dest reg. */
1702 mark_set_regs (pbi, PATTERN (insn), insn);
1703
1704 insn = XEXP (note, 0);
1705 return PREV_INSN (insn);
1706 }
1707 else if (GET_CODE (PATTERN (insn)) == SET
1708 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1709 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1710 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1711 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1712 /* We have an insn to pop a constant amount off the stack.
1713 (Such insns use PLUS regardless of the direction of the stack,
1714 and any insn to adjust the stack by a constant is always a pop.)
1715 These insns, if not dead stores, have no effect on life, though
1716 they do have an effect on the memory stores we are tracking. */
1717 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1718 else
1719 {
1720 rtx note;
1721 /* Any regs live at the time of a call instruction must not go
1722 in a register clobbered by calls. Find all regs now live and
1723 record this for them. */
1724
1725 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1726 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1727 { REG_N_CALLS_CROSSED (i)++; });
1728
1729 /* Record sets. Do this even for dead instructions, since they
1730 would have killed the values if they hadn't been deleted. */
1731 mark_set_regs (pbi, PATTERN (insn), insn);
1732
1733 if (GET_CODE (insn) == CALL_INSN)
1734 {
1735 int i;
1736 rtx note, cond;
1737
1738 cond = NULL_RTX;
1739 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1740 cond = COND_EXEC_TEST (PATTERN (insn));
1741
1742 /* Non-constant calls clobber memory, constant calls do not
1743 clobber memory, though they may clobber outgoing arguments
1744 on the stack. */
1745 if (! CONST_OR_PURE_CALL_P (insn))
1746 {
1747 free_EXPR_LIST_list (&pbi->mem_set_list);
1748 pbi->mem_set_list_len = 0;
1749 }
1750 else
1751 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1752
1753 /* There may be extra registers to be clobbered. */
1754 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1755 note;
1756 note = XEXP (note, 1))
1757 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1758 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1759 cond, insn, pbi->flags);
1760
1761 /* Calls change all call-used and global registers. */
1762 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1763 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1764 {
1765 /* We do not want REG_UNUSED notes for these registers. */
1766 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1767 cond, insn,
1768 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1769 }
1770 }
1771
1772 /* If an insn doesn't use CC0, it becomes dead since we assume
1773 that every insn clobbers it. So show it dead here;
1774 mark_used_regs will set it live if it is referenced. */
1775 pbi->cc0_live = 0;
1776
1777 /* Record uses. */
1778 if (! insn_is_dead)
1779 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1780 if ((flags & PROP_EQUAL_NOTES)
1781 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1782 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1783 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1784
1785 /* Sometimes we may have inserted something before INSN (such as a move)
1786 when we make an auto-inc. So ensure we will scan those insns. */
1787 #ifdef AUTO_INC_DEC
1788 prev = PREV_INSN (insn);
1789 #endif
1790
1791 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1792 {
1793 int i;
1794 rtx note, cond;
1795
1796 cond = NULL_RTX;
1797 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1798 cond = COND_EXEC_TEST (PATTERN (insn));
1799
1800 /* Calls use their arguments. */
1801 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1802 note;
1803 note = XEXP (note, 1))
1804 if (GET_CODE (XEXP (note, 0)) == USE)
1805 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1806 cond, insn);
1807
1808 /* The stack ptr is used (honorarily) by a CALL insn. */
1809 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1810
1811 /* Calls may also reference any of the global registers,
1812 so they are made live. */
1813 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1814 if (global_regs[i])
1815 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1816 cond, insn);
1817 }
1818 }
1819
1820 /* On final pass, update counts of how many insns in which each reg
1821 is live. */
1822 if (flags & PROP_REG_INFO)
1823 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1824 { REG_LIVE_LENGTH (i)++; });
1825
1826 return prev;
1827 }
1828
1829 /* Initialize a propagate_block_info struct for public consumption.
1830 Note that the structure itself is opaque to this file, but that
1831 the user can use the regsets provided here. */
1832
1833 struct propagate_block_info *
1834 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1835 basic_block bb;
1836 regset live, local_set, cond_local_set;
1837 int flags;
1838 {
1839 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1840
1841 pbi->bb = bb;
1842 pbi->reg_live = live;
1843 pbi->mem_set_list = NULL_RTX;
1844 pbi->mem_set_list_len = 0;
1845 pbi->local_set = local_set;
1846 pbi->cond_local_set = cond_local_set;
1847 pbi->cc0_live = 0;
1848 pbi->flags = flags;
1849
1850 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1851 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1852 else
1853 pbi->reg_next_use = NULL;
1854
1855 pbi->new_set = BITMAP_XMALLOC ();
1856
1857 #ifdef HAVE_conditional_execution
1858 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1859 free_reg_cond_life_info);
1860 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1861
1862 /* If this block ends in a conditional branch, for each register live
1863 from one side of the branch and not the other, record the register
1864 as conditionally dead. */
1865 if (GET_CODE (bb->end) == JUMP_INSN
1866 && any_condjump_p (bb->end))
1867 {
1868 regset_head diff_head;
1869 regset diff = INITIALIZE_REG_SET (diff_head);
1870 basic_block bb_true, bb_false;
1871 rtx cond_true, cond_false, set_src;
1872 int i;
1873
1874 /* Identify the successor blocks. */
1875 bb_true = bb->succ->dest;
1876 if (bb->succ->succ_next != NULL)
1877 {
1878 bb_false = bb->succ->succ_next->dest;
1879
1880 if (bb->succ->flags & EDGE_FALLTHRU)
1881 {
1882 basic_block t = bb_false;
1883 bb_false = bb_true;
1884 bb_true = t;
1885 }
1886 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1887 abort ();
1888 }
1889 else
1890 {
1891 /* This can happen with a conditional jump to the next insn. */
1892 if (JUMP_LABEL (bb->end) != bb_true->head)
1893 abort ();
1894
1895 /* Simplest way to do nothing. */
1896 bb_false = bb_true;
1897 }
1898
1899 /* Extract the condition from the branch. */
1900 set_src = SET_SRC (pc_set (bb->end));
1901 cond_true = XEXP (set_src, 0);
1902 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1903 GET_MODE (cond_true), XEXP (cond_true, 0),
1904 XEXP (cond_true, 1));
1905 if (GET_CODE (XEXP (set_src, 1)) == PC)
1906 {
1907 rtx t = cond_false;
1908 cond_false = cond_true;
1909 cond_true = t;
1910 }
1911
1912 /* Compute which register lead different lives in the successors. */
1913 if (bitmap_operation (diff, bb_true->global_live_at_start,
1914 bb_false->global_live_at_start, BITMAP_XOR))
1915 {
1916 rtx reg = XEXP (cond_true, 0);
1917
1918 if (GET_CODE (reg) == SUBREG)
1919 reg = SUBREG_REG (reg);
1920
1921 if (GET_CODE (reg) != REG)
1922 abort ();
1923
1924 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1925
1926 /* For each such register, mark it conditionally dead. */
1927 EXECUTE_IF_SET_IN_REG_SET
1928 (diff, 0, i,
1929 {
1930 struct reg_cond_life_info *rcli;
1931 rtx cond;
1932
1933 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1934
1935 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1936 cond = cond_false;
1937 else
1938 cond = cond_true;
1939 rcli->condition = cond;
1940 rcli->stores = const0_rtx;
1941 rcli->orig_condition = cond;
1942
1943 splay_tree_insert (pbi->reg_cond_dead, i,
1944 (splay_tree_value) rcli);
1945 });
1946 }
1947
1948 FREE_REG_SET (diff);
1949 }
1950 #endif
1951
1952 /* If this block has no successors, any stores to the frame that aren't
1953 used later in the block are dead. So make a pass over the block
1954 recording any such that are made and show them dead at the end. We do
1955 a very conservative and simple job here. */
1956 if (optimize
1957 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1958 && (TYPE_RETURNS_STACK_DEPRESSED
1959 (TREE_TYPE (current_function_decl))))
1960 && (flags & PROP_SCAN_DEAD_STORES)
1961 && (bb->succ == NULL
1962 || (bb->succ->succ_next == NULL
1963 && bb->succ->dest == EXIT_BLOCK_PTR
1964 && ! current_function_calls_eh_return)))
1965 {
1966 rtx insn, set;
1967 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1968 if (GET_CODE (insn) == INSN
1969 && (set = single_set (insn))
1970 && GET_CODE (SET_DEST (set)) == MEM)
1971 {
1972 rtx mem = SET_DEST (set);
1973 rtx canon_mem = canon_rtx (mem);
1974
1975 /* This optimization is performed by faking a store to the
1976 memory at the end of the block. This doesn't work for
1977 unchanging memories because multiple stores to unchanging
1978 memory is illegal and alias analysis doesn't consider it. */
1979 if (RTX_UNCHANGING_P (canon_mem))
1980 continue;
1981
1982 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1983 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1984 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1985 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1986 add_to_mem_set_list (pbi, canon_mem);
1987 }
1988 }
1989
1990 return pbi;
1991 }
1992
1993 /* Release a propagate_block_info struct. */
1994
1995 void
1996 free_propagate_block_info (pbi)
1997 struct propagate_block_info *pbi;
1998 {
1999 free_EXPR_LIST_list (&pbi->mem_set_list);
2000
2001 BITMAP_XFREE (pbi->new_set);
2002
2003 #ifdef HAVE_conditional_execution
2004 splay_tree_delete (pbi->reg_cond_dead);
2005 BITMAP_XFREE (pbi->reg_cond_reg);
2006 #endif
2007
2008 if (pbi->reg_next_use)
2009 free (pbi->reg_next_use);
2010
2011 free (pbi);
2012 }
2013
2014 /* Compute the registers live at the beginning of a basic block BB from
2015 those live at the end.
2016
2017 When called, REG_LIVE contains those live at the end. On return, it
2018 contains those live at the beginning.
2019
2020 LOCAL_SET, if non-null, will be set with all registers killed
2021 unconditionally by this basic block.
2022 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2023 killed conditionally by this basic block. If there is any unconditional
2024 set of a register, then the corresponding bit will be set in LOCAL_SET
2025 and cleared in COND_LOCAL_SET.
2026 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2027 case, the resulting set will be equal to the union of the two sets that
2028 would otherwise be computed.
2029
2030 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2031
2032 int
2033 propagate_block (bb, live, local_set, cond_local_set, flags)
2034 basic_block bb;
2035 regset live;
2036 regset local_set;
2037 regset cond_local_set;
2038 int flags;
2039 {
2040 struct propagate_block_info *pbi;
2041 rtx insn, prev;
2042 int changed;
2043
2044 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2045
2046 if (flags & PROP_REG_INFO)
2047 {
2048 int i;
2049
2050 /* Process the regs live at the end of the block.
2051 Mark them as not local to any one basic block. */
2052 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2053 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2054 }
2055
2056 /* Scan the block an insn at a time from end to beginning. */
2057
2058 changed = 0;
2059 for (insn = bb->end;; insn = prev)
2060 {
2061 /* If this is a call to `setjmp' et al, warn if any
2062 non-volatile datum is live. */
2063 if ((flags & PROP_REG_INFO)
2064 && GET_CODE (insn) == CALL_INSN
2065 && find_reg_note (insn, REG_SETJMP, NULL))
2066 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2067
2068 prev = propagate_one_insn (pbi, insn);
2069 changed |= NEXT_INSN (prev) != insn;
2070
2071 if (insn == bb->head)
2072 break;
2073 }
2074
2075 free_propagate_block_info (pbi);
2076
2077 return changed;
2078 }
2079 \f
2080 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2081 (SET expressions whose destinations are registers dead after the insn).
2082 NEEDED is the regset that says which regs are alive after the insn.
2083
2084 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2085
2086 If X is the entire body of an insn, NOTES contains the reg notes
2087 pertaining to the insn. */
2088
2089 static int
2090 insn_dead_p (pbi, x, call_ok, notes)
2091 struct propagate_block_info *pbi;
2092 rtx x;
2093 int call_ok;
2094 rtx notes ATTRIBUTE_UNUSED;
2095 {
2096 enum rtx_code code = GET_CODE (x);
2097
2098 #ifdef AUTO_INC_DEC
2099 /* As flow is invoked after combine, we must take existing AUTO_INC
2100 expressions into account. */
2101 for (; notes; notes = XEXP (notes, 1))
2102 {
2103 if (REG_NOTE_KIND (notes) == REG_INC)
2104 {
2105 int regno = REGNO (XEXP (notes, 0));
2106
2107 /* Don't delete insns to set global regs. */
2108 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2109 || REGNO_REG_SET_P (pbi->reg_live, regno))
2110 return 0;
2111 }
2112 }
2113 #endif
2114
2115 /* If setting something that's a reg or part of one,
2116 see if that register's altered value will be live. */
2117
2118 if (code == SET)
2119 {
2120 rtx r = SET_DEST (x);
2121
2122 #ifdef HAVE_cc0
2123 if (GET_CODE (r) == CC0)
2124 return ! pbi->cc0_live;
2125 #endif
2126
2127 /* A SET that is a subroutine call cannot be dead. */
2128 if (GET_CODE (SET_SRC (x)) == CALL)
2129 {
2130 if (! call_ok)
2131 return 0;
2132 }
2133
2134 /* Don't eliminate loads from volatile memory or volatile asms. */
2135 else if (volatile_refs_p (SET_SRC (x)))
2136 return 0;
2137
2138 if (GET_CODE (r) == MEM)
2139 {
2140 rtx temp, canon_r;
2141
2142 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2143 return 0;
2144
2145 canon_r = canon_rtx (r);
2146
2147 /* Walk the set of memory locations we are currently tracking
2148 and see if one is an identical match to this memory location.
2149 If so, this memory write is dead (remember, we're walking
2150 backwards from the end of the block to the start). Since
2151 rtx_equal_p does not check the alias set or flags, we also
2152 must have the potential for them to conflict (anti_dependence). */
2153 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2154 if (anti_dependence (r, XEXP (temp, 0)))
2155 {
2156 rtx mem = XEXP (temp, 0);
2157
2158 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2159 && (GET_MODE_SIZE (GET_MODE (canon_r))
2160 <= GET_MODE_SIZE (GET_MODE (mem))))
2161 return 1;
2162
2163 #ifdef AUTO_INC_DEC
2164 /* Check if memory reference matches an auto increment. Only
2165 post increment/decrement or modify are valid. */
2166 if (GET_MODE (mem) == GET_MODE (r)
2167 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2168 || GET_CODE (XEXP (mem, 0)) == POST_INC
2169 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2170 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2171 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2172 return 1;
2173 #endif
2174 }
2175 }
2176 else
2177 {
2178 while (GET_CODE (r) == SUBREG
2179 || GET_CODE (r) == STRICT_LOW_PART
2180 || GET_CODE (r) == ZERO_EXTRACT)
2181 r = XEXP (r, 0);
2182
2183 if (GET_CODE (r) == REG)
2184 {
2185 int regno = REGNO (r);
2186
2187 /* Obvious. */
2188 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2189 return 0;
2190
2191 /* If this is a hard register, verify that subsequent
2192 words are not needed. */
2193 if (regno < FIRST_PSEUDO_REGISTER)
2194 {
2195 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2196
2197 while (--n > 0)
2198 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2199 return 0;
2200 }
2201
2202 /* Don't delete insns to set global regs. */
2203 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2204 return 0;
2205
2206 /* Make sure insns to set the stack pointer aren't deleted. */
2207 if (regno == STACK_POINTER_REGNUM)
2208 return 0;
2209
2210 /* ??? These bits might be redundant with the force live bits
2211 in calculate_global_regs_live. We would delete from
2212 sequential sets; whether this actually affects real code
2213 for anything but the stack pointer I don't know. */
2214 /* Make sure insns to set the frame pointer aren't deleted. */
2215 if (regno == FRAME_POINTER_REGNUM
2216 && (! reload_completed || frame_pointer_needed))
2217 return 0;
2218 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2219 if (regno == HARD_FRAME_POINTER_REGNUM
2220 && (! reload_completed || frame_pointer_needed))
2221 return 0;
2222 #endif
2223
2224 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2225 /* Make sure insns to set arg pointer are never deleted
2226 (if the arg pointer isn't fixed, there will be a USE
2227 for it, so we can treat it normally). */
2228 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2229 return 0;
2230 #endif
2231
2232 /* Otherwise, the set is dead. */
2233 return 1;
2234 }
2235 }
2236 }
2237
2238 /* If performing several activities, insn is dead if each activity
2239 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2240 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2241 worth keeping. */
2242 else if (code == PARALLEL)
2243 {
2244 int i = XVECLEN (x, 0);
2245
2246 for (i--; i >= 0; i--)
2247 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2248 && GET_CODE (XVECEXP (x, 0, i)) != USE
2249 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2250 return 0;
2251
2252 return 1;
2253 }
2254
2255 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2256 is not necessarily true for hard registers. */
2257 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2258 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2259 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2260 return 1;
2261
2262 /* We do not check other CLOBBER or USE here. An insn consisting of just
2263 a CLOBBER or just a USE should not be deleted. */
2264 return 0;
2265 }
2266
2267 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2268 return 1 if the entire library call is dead.
2269 This is true if INSN copies a register (hard or pseudo)
2270 and if the hard return reg of the call insn is dead.
2271 (The caller should have tested the destination of the SET inside
2272 INSN already for death.)
2273
2274 If this insn doesn't just copy a register, then we don't
2275 have an ordinary libcall. In that case, cse could not have
2276 managed to substitute the source for the dest later on,
2277 so we can assume the libcall is dead.
2278
2279 PBI is the block info giving pseudoregs live before this insn.
2280 NOTE is the REG_RETVAL note of the insn. */
2281
2282 static int
2283 libcall_dead_p (pbi, note, insn)
2284 struct propagate_block_info *pbi;
2285 rtx note;
2286 rtx insn;
2287 {
2288 rtx x = single_set (insn);
2289
2290 if (x)
2291 {
2292 rtx r = SET_SRC (x);
2293
2294 if (GET_CODE (r) == REG)
2295 {
2296 rtx call = XEXP (note, 0);
2297 rtx call_pat;
2298 int i;
2299
2300 /* Find the call insn. */
2301 while (call != insn && GET_CODE (call) != CALL_INSN)
2302 call = NEXT_INSN (call);
2303
2304 /* If there is none, do nothing special,
2305 since ordinary death handling can understand these insns. */
2306 if (call == insn)
2307 return 0;
2308
2309 /* See if the hard reg holding the value is dead.
2310 If this is a PARALLEL, find the call within it. */
2311 call_pat = PATTERN (call);
2312 if (GET_CODE (call_pat) == PARALLEL)
2313 {
2314 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2315 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2316 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2317 break;
2318
2319 /* This may be a library call that is returning a value
2320 via invisible pointer. Do nothing special, since
2321 ordinary death handling can understand these insns. */
2322 if (i < 0)
2323 return 0;
2324
2325 call_pat = XVECEXP (call_pat, 0, i);
2326 }
2327
2328 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2329 }
2330 }
2331 return 1;
2332 }
2333
2334 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2335 live at function entry. Don't count global register variables, variables
2336 in registers that can be used for function arg passing, or variables in
2337 fixed hard registers. */
2338
2339 int
2340 regno_uninitialized (regno)
2341 unsigned int regno;
2342 {
2343 if (n_basic_blocks == 0
2344 || (regno < FIRST_PSEUDO_REGISTER
2345 && (global_regs[regno]
2346 || fixed_regs[regno]
2347 || FUNCTION_ARG_REGNO_P (regno))))
2348 return 0;
2349
2350 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2351 }
2352
2353 /* 1 if register REGNO was alive at a place where `setjmp' was called
2354 and was set more than once or is an argument.
2355 Such regs may be clobbered by `longjmp'. */
2356
2357 int
2358 regno_clobbered_at_setjmp (regno)
2359 int regno;
2360 {
2361 if (n_basic_blocks == 0)
2362 return 0;
2363
2364 return ((REG_N_SETS (regno) > 1
2365 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2366 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2367 }
2368 \f
2369 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2370 maximal list size; look for overlaps in mode and select the largest. */
2371 static void
2372 add_to_mem_set_list (pbi, mem)
2373 struct propagate_block_info *pbi;
2374 rtx mem;
2375 {
2376 rtx i;
2377
2378 /* We don't know how large a BLKmode store is, so we must not
2379 take them into consideration. */
2380 if (GET_MODE (mem) == BLKmode)
2381 return;
2382
2383 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2384 {
2385 rtx e = XEXP (i, 0);
2386 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2387 {
2388 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2389 {
2390 #ifdef AUTO_INC_DEC
2391 /* If we must store a copy of the mem, we can just modify
2392 the mode of the stored copy. */
2393 if (pbi->flags & PROP_AUTOINC)
2394 PUT_MODE (e, GET_MODE (mem));
2395 else
2396 #endif
2397 XEXP (i, 0) = mem;
2398 }
2399 return;
2400 }
2401 }
2402
2403 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2404 {
2405 #ifdef AUTO_INC_DEC
2406 /* Store a copy of mem, otherwise the address may be
2407 scrogged by find_auto_inc. */
2408 if (pbi->flags & PROP_AUTOINC)
2409 mem = shallow_copy_rtx (mem);
2410 #endif
2411 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2412 pbi->mem_set_list_len++;
2413 }
2414 }
2415
2416 /* INSN references memory, possibly using autoincrement addressing modes.
2417 Find any entries on the mem_set_list that need to be invalidated due
2418 to an address change. */
2419
2420 static int
2421 invalidate_mems_from_autoinc (px, data)
2422 rtx *px;
2423 void *data;
2424 {
2425 rtx x = *px;
2426 struct propagate_block_info *pbi = data;
2427
2428 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2429 {
2430 invalidate_mems_from_set (pbi, XEXP (x, 0));
2431 return -1;
2432 }
2433
2434 return 0;
2435 }
2436
2437 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2438
2439 static void
2440 invalidate_mems_from_set (pbi, exp)
2441 struct propagate_block_info *pbi;
2442 rtx exp;
2443 {
2444 rtx temp = pbi->mem_set_list;
2445 rtx prev = NULL_RTX;
2446 rtx next;
2447
2448 while (temp)
2449 {
2450 next = XEXP (temp, 1);
2451 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2452 {
2453 /* Splice this entry out of the list. */
2454 if (prev)
2455 XEXP (prev, 1) = next;
2456 else
2457 pbi->mem_set_list = next;
2458 free_EXPR_LIST_node (temp);
2459 pbi->mem_set_list_len--;
2460 }
2461 else
2462 prev = temp;
2463 temp = next;
2464 }
2465 }
2466
2467 /* Process the registers that are set within X. Their bits are set to
2468 1 in the regset DEAD, because they are dead prior to this insn.
2469
2470 If INSN is nonzero, it is the insn being processed.
2471
2472 FLAGS is the set of operations to perform. */
2473
2474 static void
2475 mark_set_regs (pbi, x, insn)
2476 struct propagate_block_info *pbi;
2477 rtx x, insn;
2478 {
2479 rtx cond = NULL_RTX;
2480 rtx link;
2481 enum rtx_code code;
2482
2483 if (insn)
2484 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2485 {
2486 if (REG_NOTE_KIND (link) == REG_INC)
2487 mark_set_1 (pbi, SET, XEXP (link, 0),
2488 (GET_CODE (x) == COND_EXEC
2489 ? COND_EXEC_TEST (x) : NULL_RTX),
2490 insn, pbi->flags);
2491 }
2492 retry:
2493 switch (code = GET_CODE (x))
2494 {
2495 case SET:
2496 case CLOBBER:
2497 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2498 return;
2499
2500 case COND_EXEC:
2501 cond = COND_EXEC_TEST (x);
2502 x = COND_EXEC_CODE (x);
2503 goto retry;
2504
2505 case PARALLEL:
2506 {
2507 int i;
2508
2509 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2510 {
2511 rtx sub = XVECEXP (x, 0, i);
2512 switch (code = GET_CODE (sub))
2513 {
2514 case COND_EXEC:
2515 if (cond != NULL_RTX)
2516 abort ();
2517
2518 cond = COND_EXEC_TEST (sub);
2519 sub = COND_EXEC_CODE (sub);
2520 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2521 break;
2522 /* Fall through. */
2523
2524 case SET:
2525 case CLOBBER:
2526 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2527 break;
2528
2529 default:
2530 break;
2531 }
2532 }
2533 break;
2534 }
2535
2536 default:
2537 break;
2538 }
2539 }
2540
2541 /* Process a single set, which appears in INSN. REG (which may not
2542 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2543 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2544 If the set is conditional (because it appear in a COND_EXEC), COND
2545 will be the condition. */
2546
2547 static void
2548 mark_set_1 (pbi, code, reg, cond, insn, flags)
2549 struct propagate_block_info *pbi;
2550 enum rtx_code code;
2551 rtx reg, cond, insn;
2552 int flags;
2553 {
2554 int regno_first = -1, regno_last = -1;
2555 unsigned long not_dead = 0;
2556 int i;
2557
2558 /* Modifying just one hardware register of a multi-reg value or just a
2559 byte field of a register does not mean the value from before this insn
2560 is now dead. Of course, if it was dead after it's unused now. */
2561
2562 switch (GET_CODE (reg))
2563 {
2564 case PARALLEL:
2565 /* Some targets place small structures in registers for return values of
2566 functions. We have to detect this case specially here to get correct
2567 flow information. */
2568 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2569 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2570 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2571 flags);
2572 return;
2573
2574 case ZERO_EXTRACT:
2575 case SIGN_EXTRACT:
2576 case STRICT_LOW_PART:
2577 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2578 do
2579 reg = XEXP (reg, 0);
2580 while (GET_CODE (reg) == SUBREG
2581 || GET_CODE (reg) == ZERO_EXTRACT
2582 || GET_CODE (reg) == SIGN_EXTRACT
2583 || GET_CODE (reg) == STRICT_LOW_PART);
2584 if (GET_CODE (reg) == MEM)
2585 break;
2586 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2587 /* Fall through. */
2588
2589 case REG:
2590 regno_last = regno_first = REGNO (reg);
2591 if (regno_first < FIRST_PSEUDO_REGISTER)
2592 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2593 break;
2594
2595 case SUBREG:
2596 if (GET_CODE (SUBREG_REG (reg)) == REG)
2597 {
2598 enum machine_mode outer_mode = GET_MODE (reg);
2599 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2600
2601 /* Identify the range of registers affected. This is moderately
2602 tricky for hard registers. See alter_subreg. */
2603
2604 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2605 if (regno_first < FIRST_PSEUDO_REGISTER)
2606 {
2607 regno_first += subreg_regno_offset (regno_first, inner_mode,
2608 SUBREG_BYTE (reg),
2609 outer_mode);
2610 regno_last = (regno_first
2611 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2612
2613 /* Since we've just adjusted the register number ranges, make
2614 sure REG matches. Otherwise some_was_live will be clear
2615 when it shouldn't have been, and we'll create incorrect
2616 REG_UNUSED notes. */
2617 reg = gen_rtx_REG (outer_mode, regno_first);
2618 }
2619 else
2620 {
2621 /* If the number of words in the subreg is less than the number
2622 of words in the full register, we have a well-defined partial
2623 set. Otherwise the high bits are undefined.
2624
2625 This is only really applicable to pseudos, since we just took
2626 care of multi-word hard registers. */
2627 if (((GET_MODE_SIZE (outer_mode)
2628 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2629 < ((GET_MODE_SIZE (inner_mode)
2630 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2631 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2632 regno_first);
2633
2634 reg = SUBREG_REG (reg);
2635 }
2636 }
2637 else
2638 reg = SUBREG_REG (reg);
2639 break;
2640
2641 default:
2642 break;
2643 }
2644
2645 /* If this set is a MEM, then it kills any aliased writes.
2646 If this set is a REG, then it kills any MEMs which use the reg. */
2647 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2648 {
2649 if (GET_CODE (reg) == REG)
2650 invalidate_mems_from_set (pbi, reg);
2651
2652 /* If the memory reference had embedded side effects (autoincrement
2653 address modes. Then we may need to kill some entries on the
2654 memory set list. */
2655 if (insn && GET_CODE (reg) == MEM)
2656 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2657
2658 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2659 /* ??? With more effort we could track conditional memory life. */
2660 && ! cond)
2661 add_to_mem_set_list (pbi, canon_rtx (reg));
2662 }
2663
2664 if (GET_CODE (reg) == REG
2665 && ! (regno_first == FRAME_POINTER_REGNUM
2666 && (! reload_completed || frame_pointer_needed))
2667 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2668 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2669 && (! reload_completed || frame_pointer_needed))
2670 #endif
2671 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2672 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2673 #endif
2674 )
2675 {
2676 int some_was_live = 0, some_was_dead = 0;
2677
2678 for (i = regno_first; i <= regno_last; ++i)
2679 {
2680 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2681 if (pbi->local_set)
2682 {
2683 /* Order of the set operation matters here since both
2684 sets may be the same. */
2685 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2686 if (cond != NULL_RTX
2687 && ! REGNO_REG_SET_P (pbi->local_set, i))
2688 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2689 else
2690 SET_REGNO_REG_SET (pbi->local_set, i);
2691 }
2692 if (code != CLOBBER)
2693 SET_REGNO_REG_SET (pbi->new_set, i);
2694
2695 some_was_live |= needed_regno;
2696 some_was_dead |= ! needed_regno;
2697 }
2698
2699 #ifdef HAVE_conditional_execution
2700 /* Consider conditional death in deciding that the register needs
2701 a death note. */
2702 if (some_was_live && ! not_dead
2703 /* The stack pointer is never dead. Well, not strictly true,
2704 but it's very difficult to tell from here. Hopefully
2705 combine_stack_adjustments will fix up the most egregious
2706 errors. */
2707 && regno_first != STACK_POINTER_REGNUM)
2708 {
2709 for (i = regno_first; i <= regno_last; ++i)
2710 if (! mark_regno_cond_dead (pbi, i, cond))
2711 not_dead |= ((unsigned long) 1) << (i - regno_first);
2712 }
2713 #endif
2714
2715 /* Additional data to record if this is the final pass. */
2716 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2717 | PROP_DEATH_NOTES | PROP_AUTOINC))
2718 {
2719 rtx y;
2720 int blocknum = pbi->bb->index;
2721
2722 y = NULL_RTX;
2723 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2724 {
2725 y = pbi->reg_next_use[regno_first];
2726
2727 /* The next use is no longer next, since a store intervenes. */
2728 for (i = regno_first; i <= regno_last; ++i)
2729 pbi->reg_next_use[i] = 0;
2730 }
2731
2732 if (flags & PROP_REG_INFO)
2733 {
2734 for (i = regno_first; i <= regno_last; ++i)
2735 {
2736 /* Count (weighted) references, stores, etc. This counts a
2737 register twice if it is modified, but that is correct. */
2738 REG_N_SETS (i) += 1;
2739 REG_N_REFS (i) += 1;
2740 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2741
2742 /* The insns where a reg is live are normally counted
2743 elsewhere, but we want the count to include the insn
2744 where the reg is set, and the normal counting mechanism
2745 would not count it. */
2746 REG_LIVE_LENGTH (i) += 1;
2747 }
2748
2749 /* If this is a hard reg, record this function uses the reg. */
2750 if (regno_first < FIRST_PSEUDO_REGISTER)
2751 {
2752 for (i = regno_first; i <= regno_last; i++)
2753 regs_ever_live[i] = 1;
2754 }
2755 else
2756 {
2757 /* Keep track of which basic blocks each reg appears in. */
2758 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2759 REG_BASIC_BLOCK (regno_first) = blocknum;
2760 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2761 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2762 }
2763 }
2764
2765 if (! some_was_dead)
2766 {
2767 if (flags & PROP_LOG_LINKS)
2768 {
2769 /* Make a logical link from the next following insn
2770 that uses this register, back to this insn.
2771 The following insns have already been processed.
2772
2773 We don't build a LOG_LINK for hard registers containing
2774 in ASM_OPERANDs. If these registers get replaced,
2775 we might wind up changing the semantics of the insn,
2776 even if reload can make what appear to be valid
2777 assignments later. */
2778 if (y && (BLOCK_NUM (y) == blocknum)
2779 && (regno_first >= FIRST_PSEUDO_REGISTER
2780 || asm_noperands (PATTERN (y)) < 0))
2781 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2782 }
2783 }
2784 else if (not_dead)
2785 ;
2786 else if (! some_was_live)
2787 {
2788 if (flags & PROP_REG_INFO)
2789 REG_N_DEATHS (regno_first) += 1;
2790
2791 if (flags & PROP_DEATH_NOTES)
2792 {
2793 /* Note that dead stores have already been deleted
2794 when possible. If we get here, we have found a
2795 dead store that cannot be eliminated (because the
2796 same insn does something useful). Indicate this
2797 by marking the reg being set as dying here. */
2798 REG_NOTES (insn)
2799 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2800 }
2801 }
2802 else
2803 {
2804 if (flags & PROP_DEATH_NOTES)
2805 {
2806 /* This is a case where we have a multi-word hard register
2807 and some, but not all, of the words of the register are
2808 needed in subsequent insns. Write REG_UNUSED notes
2809 for those parts that were not needed. This case should
2810 be rare. */
2811
2812 for (i = regno_first; i <= regno_last; ++i)
2813 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2814 REG_NOTES (insn)
2815 = alloc_EXPR_LIST (REG_UNUSED,
2816 gen_rtx_REG (reg_raw_mode[i], i),
2817 REG_NOTES (insn));
2818 }
2819 }
2820 }
2821
2822 /* Mark the register as being dead. */
2823 if (some_was_live
2824 /* The stack pointer is never dead. Well, not strictly true,
2825 but it's very difficult to tell from here. Hopefully
2826 combine_stack_adjustments will fix up the most egregious
2827 errors. */
2828 && regno_first != STACK_POINTER_REGNUM)
2829 {
2830 for (i = regno_first; i <= regno_last; ++i)
2831 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2832 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2833 }
2834 }
2835 else if (GET_CODE (reg) == REG)
2836 {
2837 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2838 pbi->reg_next_use[regno_first] = 0;
2839 }
2840
2841 /* If this is the last pass and this is a SCRATCH, show it will be dying
2842 here and count it. */
2843 else if (GET_CODE (reg) == SCRATCH)
2844 {
2845 if (flags & PROP_DEATH_NOTES)
2846 REG_NOTES (insn)
2847 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2848 }
2849 }
2850 \f
2851 #ifdef HAVE_conditional_execution
2852 /* Mark REGNO conditionally dead.
2853 Return true if the register is now unconditionally dead. */
2854
2855 static int
2856 mark_regno_cond_dead (pbi, regno, cond)
2857 struct propagate_block_info *pbi;
2858 int regno;
2859 rtx cond;
2860 {
2861 /* If this is a store to a predicate register, the value of the
2862 predicate is changing, we don't know that the predicate as seen
2863 before is the same as that seen after. Flush all dependent
2864 conditions from reg_cond_dead. This will make all such
2865 conditionally live registers unconditionally live. */
2866 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2867 flush_reg_cond_reg (pbi, regno);
2868
2869 /* If this is an unconditional store, remove any conditional
2870 life that may have existed. */
2871 if (cond == NULL_RTX)
2872 splay_tree_remove (pbi->reg_cond_dead, regno);
2873 else
2874 {
2875 splay_tree_node node;
2876 struct reg_cond_life_info *rcli;
2877 rtx ncond;
2878
2879 /* Otherwise this is a conditional set. Record that fact.
2880 It may have been conditionally used, or there may be a
2881 subsequent set with a complimentary condition. */
2882
2883 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2884 if (node == NULL)
2885 {
2886 /* The register was unconditionally live previously.
2887 Record the current condition as the condition under
2888 which it is dead. */
2889 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2890 rcli->condition = cond;
2891 rcli->stores = cond;
2892 rcli->orig_condition = const0_rtx;
2893 splay_tree_insert (pbi->reg_cond_dead, regno,
2894 (splay_tree_value) rcli);
2895
2896 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2897
2898 /* Not unconditionally dead. */
2899 return 0;
2900 }
2901 else
2902 {
2903 /* The register was conditionally live previously.
2904 Add the new condition to the old. */
2905 rcli = (struct reg_cond_life_info *) node->value;
2906 ncond = rcli->condition;
2907 ncond = ior_reg_cond (ncond, cond, 1);
2908 if (rcli->stores == const0_rtx)
2909 rcli->stores = cond;
2910 else if (rcli->stores != const1_rtx)
2911 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2912
2913 /* If the register is now unconditionally dead, remove the entry
2914 in the splay_tree. A register is unconditionally dead if the
2915 dead condition ncond is true. A register is also unconditionally
2916 dead if the sum of all conditional stores is an unconditional
2917 store (stores is true), and the dead condition is identically the
2918 same as the original dead condition initialized at the end of
2919 the block. This is a pointer compare, not an rtx_equal_p
2920 compare. */
2921 if (ncond == const1_rtx
2922 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2923 splay_tree_remove (pbi->reg_cond_dead, regno);
2924 else
2925 {
2926 rcli->condition = ncond;
2927
2928 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2929
2930 /* Not unconditionally dead. */
2931 return 0;
2932 }
2933 }
2934 }
2935
2936 return 1;
2937 }
2938
2939 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2940
2941 static void
2942 free_reg_cond_life_info (value)
2943 splay_tree_value value;
2944 {
2945 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2946 free (rcli);
2947 }
2948
2949 /* Helper function for flush_reg_cond_reg. */
2950
2951 static int
2952 flush_reg_cond_reg_1 (node, data)
2953 splay_tree_node node;
2954 void *data;
2955 {
2956 struct reg_cond_life_info *rcli;
2957 int *xdata = (int *) data;
2958 unsigned int regno = xdata[0];
2959
2960 /* Don't need to search if last flushed value was farther on in
2961 the in-order traversal. */
2962 if (xdata[1] >= (int) node->key)
2963 return 0;
2964
2965 /* Splice out portions of the expression that refer to regno. */
2966 rcli = (struct reg_cond_life_info *) node->value;
2967 rcli->condition = elim_reg_cond (rcli->condition, regno);
2968 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2969 rcli->stores = elim_reg_cond (rcli->stores, regno);
2970
2971 /* If the entire condition is now false, signal the node to be removed. */
2972 if (rcli->condition == const0_rtx)
2973 {
2974 xdata[1] = node->key;
2975 return -1;
2976 }
2977 else if (rcli->condition == const1_rtx)
2978 abort ();
2979
2980 return 0;
2981 }
2982
2983 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2984
2985 static void
2986 flush_reg_cond_reg (pbi, regno)
2987 struct propagate_block_info *pbi;
2988 int regno;
2989 {
2990 int pair[2];
2991
2992 pair[0] = regno;
2993 pair[1] = -1;
2994 while (splay_tree_foreach (pbi->reg_cond_dead,
2995 flush_reg_cond_reg_1, pair) == -1)
2996 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2997
2998 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2999 }
3000
3001 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3002 For ior/and, the ADD flag determines whether we want to add the new
3003 condition X to the old one unconditionally. If it is zero, we will
3004 only return a new expression if X allows us to simplify part of
3005 OLD, otherwise we return NULL to the caller.
3006 If ADD is nonzero, we will return a new condition in all cases. The
3007 toplevel caller of one of these functions should always pass 1 for
3008 ADD. */
3009
3010 static rtx
3011 ior_reg_cond (old, x, add)
3012 rtx old, x;
3013 int add;
3014 {
3015 rtx op0, op1;
3016
3017 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3018 {
3019 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3020 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3021 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3022 return const1_rtx;
3023 if (GET_CODE (x) == GET_CODE (old)
3024 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3025 return old;
3026 if (! add)
3027 return NULL;
3028 return gen_rtx_IOR (0, old, x);
3029 }
3030
3031 switch (GET_CODE (old))
3032 {
3033 case IOR:
3034 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3035 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3036 if (op0 != NULL || op1 != NULL)
3037 {
3038 if (op0 == const0_rtx)
3039 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3040 if (op1 == const0_rtx)
3041 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3042 if (op0 == const1_rtx || op1 == const1_rtx)
3043 return const1_rtx;
3044 if (op0 == NULL)
3045 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3046 else if (rtx_equal_p (x, op0))
3047 /* (x | A) | x ~ (x | A). */
3048 return old;
3049 if (op1 == NULL)
3050 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3051 else if (rtx_equal_p (x, op1))
3052 /* (A | x) | x ~ (A | x). */
3053 return old;
3054 return gen_rtx_IOR (0, op0, op1);
3055 }
3056 if (! add)
3057 return NULL;
3058 return gen_rtx_IOR (0, old, x);
3059
3060 case AND:
3061 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3062 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3063 if (op0 != NULL || op1 != NULL)
3064 {
3065 if (op0 == const1_rtx)
3066 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3067 if (op1 == const1_rtx)
3068 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3069 if (op0 == const0_rtx || op1 == const0_rtx)
3070 return const0_rtx;
3071 if (op0 == NULL)
3072 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3073 else if (rtx_equal_p (x, op0))
3074 /* (x & A) | x ~ x. */
3075 return op0;
3076 if (op1 == NULL)
3077 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3078 else if (rtx_equal_p (x, op1))
3079 /* (A & x) | x ~ x. */
3080 return op1;
3081 return gen_rtx_AND (0, op0, op1);
3082 }
3083 if (! add)
3084 return NULL;
3085 return gen_rtx_IOR (0, old, x);
3086
3087 case NOT:
3088 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3089 if (op0 != NULL)
3090 return not_reg_cond (op0);
3091 if (! add)
3092 return NULL;
3093 return gen_rtx_IOR (0, old, x);
3094
3095 default:
3096 abort ();
3097 }
3098 }
3099
3100 static rtx
3101 not_reg_cond (x)
3102 rtx x;
3103 {
3104 enum rtx_code x_code;
3105
3106 if (x == const0_rtx)
3107 return const1_rtx;
3108 else if (x == const1_rtx)
3109 return const0_rtx;
3110 x_code = GET_CODE (x);
3111 if (x_code == NOT)
3112 return XEXP (x, 0);
3113 if (GET_RTX_CLASS (x_code) == '<'
3114 && GET_CODE (XEXP (x, 0)) == REG)
3115 {
3116 if (XEXP (x, 1) != const0_rtx)
3117 abort ();
3118
3119 return gen_rtx_fmt_ee (reverse_condition (x_code),
3120 VOIDmode, XEXP (x, 0), const0_rtx);
3121 }
3122 return gen_rtx_NOT (0, x);
3123 }
3124
3125 static rtx
3126 and_reg_cond (old, x, add)
3127 rtx old, x;
3128 int add;
3129 {
3130 rtx op0, op1;
3131
3132 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3133 {
3134 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3135 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3136 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3137 return const0_rtx;
3138 if (GET_CODE (x) == GET_CODE (old)
3139 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3140 return old;
3141 if (! add)
3142 return NULL;
3143 return gen_rtx_AND (0, old, x);
3144 }
3145
3146 switch (GET_CODE (old))
3147 {
3148 case IOR:
3149 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3150 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3151 if (op0 != NULL || op1 != NULL)
3152 {
3153 if (op0 == const0_rtx)
3154 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3155 if (op1 == const0_rtx)
3156 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3157 if (op0 == const1_rtx || op1 == const1_rtx)
3158 return const1_rtx;
3159 if (op0 == NULL)
3160 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3161 else if (rtx_equal_p (x, op0))
3162 /* (x | A) & x ~ x. */
3163 return op0;
3164 if (op1 == NULL)
3165 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3166 else if (rtx_equal_p (x, op1))
3167 /* (A | x) & x ~ x. */
3168 return op1;
3169 return gen_rtx_IOR (0, op0, op1);
3170 }
3171 if (! add)
3172 return NULL;
3173 return gen_rtx_AND (0, old, x);
3174
3175 case AND:
3176 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3177 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3178 if (op0 != NULL || op1 != NULL)
3179 {
3180 if (op0 == const1_rtx)
3181 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3182 if (op1 == const1_rtx)
3183 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3184 if (op0 == const0_rtx || op1 == const0_rtx)
3185 return const0_rtx;
3186 if (op0 == NULL)
3187 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3188 else if (rtx_equal_p (x, op0))
3189 /* (x & A) & x ~ (x & A). */
3190 return old;
3191 if (op1 == NULL)
3192 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3193 else if (rtx_equal_p (x, op1))
3194 /* (A & x) & x ~ (A & x). */
3195 return old;
3196 return gen_rtx_AND (0, op0, op1);
3197 }
3198 if (! add)
3199 return NULL;
3200 return gen_rtx_AND (0, old, x);
3201
3202 case NOT:
3203 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3204 if (op0 != NULL)
3205 return not_reg_cond (op0);
3206 if (! add)
3207 return NULL;
3208 return gen_rtx_AND (0, old, x);
3209
3210 default:
3211 abort ();
3212 }
3213 }
3214
3215 /* Given a condition X, remove references to reg REGNO and return the
3216 new condition. The removal will be done so that all conditions
3217 involving REGNO are considered to evaluate to false. This function
3218 is used when the value of REGNO changes. */
3219
3220 static rtx
3221 elim_reg_cond (x, regno)
3222 rtx x;
3223 unsigned int regno;
3224 {
3225 rtx op0, op1;
3226
3227 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3228 {
3229 if (REGNO (XEXP (x, 0)) == regno)
3230 return const0_rtx;
3231 return x;
3232 }
3233
3234 switch (GET_CODE (x))
3235 {
3236 case AND:
3237 op0 = elim_reg_cond (XEXP (x, 0), regno);
3238 op1 = elim_reg_cond (XEXP (x, 1), regno);
3239 if (op0 == const0_rtx || op1 == const0_rtx)
3240 return const0_rtx;
3241 if (op0 == const1_rtx)
3242 return op1;
3243 if (op1 == const1_rtx)
3244 return op0;
3245 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3246 return x;
3247 return gen_rtx_AND (0, op0, op1);
3248
3249 case IOR:
3250 op0 = elim_reg_cond (XEXP (x, 0), regno);
3251 op1 = elim_reg_cond (XEXP (x, 1), regno);
3252 if (op0 == const1_rtx || op1 == const1_rtx)
3253 return const1_rtx;
3254 if (op0 == const0_rtx)
3255 return op1;
3256 if (op1 == const0_rtx)
3257 return op0;
3258 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3259 return x;
3260 return gen_rtx_IOR (0, op0, op1);
3261
3262 case NOT:
3263 op0 = elim_reg_cond (XEXP (x, 0), regno);
3264 if (op0 == const0_rtx)
3265 return const1_rtx;
3266 if (op0 == const1_rtx)
3267 return const0_rtx;
3268 if (op0 != XEXP (x, 0))
3269 return not_reg_cond (op0);
3270 return x;
3271
3272 default:
3273 abort ();
3274 }
3275 }
3276 #endif /* HAVE_conditional_execution */
3277 \f
3278 #ifdef AUTO_INC_DEC
3279
3280 /* Try to substitute the auto-inc expression INC as the address inside
3281 MEM which occurs in INSN. Currently, the address of MEM is an expression
3282 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3283 that has a single set whose source is a PLUS of INCR_REG and something
3284 else. */
3285
3286 static void
3287 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3288 struct propagate_block_info *pbi;
3289 rtx inc, insn, mem, incr, incr_reg;
3290 {
3291 int regno = REGNO (incr_reg);
3292 rtx set = single_set (incr);
3293 rtx q = SET_DEST (set);
3294 rtx y = SET_SRC (set);
3295 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3296
3297 /* Make sure this reg appears only once in this insn. */
3298 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3299 return;
3300
3301 if (dead_or_set_p (incr, incr_reg)
3302 /* Mustn't autoinc an eliminable register. */
3303 && (regno >= FIRST_PSEUDO_REGISTER
3304 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3305 {
3306 /* This is the simple case. Try to make the auto-inc. If
3307 we can't, we are done. Otherwise, we will do any
3308 needed updates below. */
3309 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3310 return;
3311 }
3312 else if (GET_CODE (q) == REG
3313 /* PREV_INSN used here to check the semi-open interval
3314 [insn,incr). */
3315 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3316 /* We must also check for sets of q as q may be
3317 a call clobbered hard register and there may
3318 be a call between PREV_INSN (insn) and incr. */
3319 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3320 {
3321 /* We have *p followed sometime later by q = p+size.
3322 Both p and q must be live afterward,
3323 and q is not used between INSN and its assignment.
3324 Change it to q = p, ...*q..., q = q+size.
3325 Then fall into the usual case. */
3326 rtx insns, temp;
3327
3328 start_sequence ();
3329 emit_move_insn (q, incr_reg);
3330 insns = get_insns ();
3331 end_sequence ();
3332
3333 /* If we can't make the auto-inc, or can't make the
3334 replacement into Y, exit. There's no point in making
3335 the change below if we can't do the auto-inc and doing
3336 so is not correct in the pre-inc case. */
3337
3338 XEXP (inc, 0) = q;
3339 validate_change (insn, &XEXP (mem, 0), inc, 1);
3340 validate_change (incr, &XEXP (y, opnum), q, 1);
3341 if (! apply_change_group ())
3342 return;
3343
3344 /* We now know we'll be doing this change, so emit the
3345 new insn(s) and do the updates. */
3346 emit_insns_before (insns, insn);
3347
3348 if (pbi->bb->head == insn)
3349 pbi->bb->head = insns;
3350
3351 /* INCR will become a NOTE and INSN won't contain a
3352 use of INCR_REG. If a use of INCR_REG was just placed in
3353 the insn before INSN, make that the next use.
3354 Otherwise, invalidate it. */
3355 if (GET_CODE (PREV_INSN (insn)) == INSN
3356 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3357 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3358 pbi->reg_next_use[regno] = PREV_INSN (insn);
3359 else
3360 pbi->reg_next_use[regno] = 0;
3361
3362 incr_reg = q;
3363 regno = REGNO (q);
3364
3365 /* REGNO is now used in INCR which is below INSN, but
3366 it previously wasn't live here. If we don't mark
3367 it as live, we'll put a REG_DEAD note for it
3368 on this insn, which is incorrect. */
3369 SET_REGNO_REG_SET (pbi->reg_live, regno);
3370
3371 /* If there are any calls between INSN and INCR, show
3372 that REGNO now crosses them. */
3373 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3374 if (GET_CODE (temp) == CALL_INSN)
3375 REG_N_CALLS_CROSSED (regno)++;
3376
3377 /* Invalidate alias info for Q since we just changed its value. */
3378 clear_reg_alias_info (q);
3379 }
3380 else
3381 return;
3382
3383 /* If we haven't returned, it means we were able to make the
3384 auto-inc, so update the status. First, record that this insn
3385 has an implicit side effect. */
3386
3387 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3388
3389 /* Modify the old increment-insn to simply copy
3390 the already-incremented value of our register. */
3391 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3392 abort ();
3393
3394 /* If that makes it a no-op (copying the register into itself) delete
3395 it so it won't appear to be a "use" and a "set" of this
3396 register. */
3397 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3398 {
3399 /* If the original source was dead, it's dead now. */
3400 rtx note;
3401
3402 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3403 {
3404 remove_note (incr, note);
3405 if (XEXP (note, 0) != incr_reg)
3406 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3407 }
3408
3409 PUT_CODE (incr, NOTE);
3410 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3411 NOTE_SOURCE_FILE (incr) = 0;
3412 }
3413
3414 if (regno >= FIRST_PSEUDO_REGISTER)
3415 {
3416 /* Count an extra reference to the reg. When a reg is
3417 incremented, spilling it is worse, so we want to make
3418 that less likely. */
3419 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3420
3421 /* Count the increment as a setting of the register,
3422 even though it isn't a SET in rtl. */
3423 REG_N_SETS (regno)++;
3424 }
3425 }
3426
3427 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3428 reference. */
3429
3430 static void
3431 find_auto_inc (pbi, x, insn)
3432 struct propagate_block_info *pbi;
3433 rtx x;
3434 rtx insn;
3435 {
3436 rtx addr = XEXP (x, 0);
3437 HOST_WIDE_INT offset = 0;
3438 rtx set, y, incr, inc_val;
3439 int regno;
3440 int size = GET_MODE_SIZE (GET_MODE (x));
3441
3442 if (GET_CODE (insn) == JUMP_INSN)
3443 return;
3444
3445 /* Here we detect use of an index register which might be good for
3446 postincrement, postdecrement, preincrement, or predecrement. */
3447
3448 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3449 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3450
3451 if (GET_CODE (addr) != REG)
3452 return;
3453
3454 regno = REGNO (addr);
3455
3456 /* Is the next use an increment that might make auto-increment? */
3457 incr = pbi->reg_next_use[regno];
3458 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3459 return;
3460 set = single_set (incr);
3461 if (set == 0 || GET_CODE (set) != SET)
3462 return;
3463 y = SET_SRC (set);
3464
3465 if (GET_CODE (y) != PLUS)
3466 return;
3467
3468 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3469 inc_val = XEXP (y, 1);
3470 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3471 inc_val = XEXP (y, 0);
3472 else
3473 return;
3474
3475 if (GET_CODE (inc_val) == CONST_INT)
3476 {
3477 if (HAVE_POST_INCREMENT
3478 && (INTVAL (inc_val) == size && offset == 0))
3479 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3480 incr, addr);
3481 else if (HAVE_POST_DECREMENT
3482 && (INTVAL (inc_val) == -size && offset == 0))
3483 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3484 incr, addr);
3485 else if (HAVE_PRE_INCREMENT
3486 && (INTVAL (inc_val) == size && offset == size))
3487 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3488 incr, addr);
3489 else if (HAVE_PRE_DECREMENT
3490 && (INTVAL (inc_val) == -size && offset == -size))
3491 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3492 incr, addr);
3493 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3494 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3495 gen_rtx_PLUS (Pmode,
3496 addr,
3497 inc_val)),
3498 insn, x, incr, addr);
3499 }
3500 else if (GET_CODE (inc_val) == REG
3501 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3502 NEXT_INSN (incr)))
3503
3504 {
3505 if (HAVE_POST_MODIFY_REG && offset == 0)
3506 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3507 gen_rtx_PLUS (Pmode,
3508 addr,
3509 inc_val)),
3510 insn, x, incr, addr);
3511 }
3512 }
3513
3514 #endif /* AUTO_INC_DEC */
3515 \f
3516 static void
3517 mark_used_reg (pbi, reg, cond, insn)
3518 struct propagate_block_info *pbi;
3519 rtx reg;
3520 rtx cond ATTRIBUTE_UNUSED;
3521 rtx insn;
3522 {
3523 unsigned int regno_first, regno_last, i;
3524 int some_was_live, some_was_dead, some_not_set;
3525
3526 regno_last = regno_first = REGNO (reg);
3527 if (regno_first < FIRST_PSEUDO_REGISTER)
3528 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3529
3530 /* Find out if any of this register is live after this instruction. */
3531 some_was_live = some_was_dead = 0;
3532 for (i = regno_first; i <= regno_last; ++i)
3533 {
3534 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3535 some_was_live |= needed_regno;
3536 some_was_dead |= ! needed_regno;
3537 }
3538
3539 /* Find out if any of the register was set this insn. */
3540 some_not_set = 0;
3541 for (i = regno_first; i <= regno_last; ++i)
3542 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3543
3544 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3545 {
3546 /* Record where each reg is used, so when the reg is set we know
3547 the next insn that uses it. */
3548 pbi->reg_next_use[regno_first] = insn;
3549 }
3550
3551 if (pbi->flags & PROP_REG_INFO)
3552 {
3553 if (regno_first < FIRST_PSEUDO_REGISTER)
3554 {
3555 /* If this is a register we are going to try to eliminate,
3556 don't mark it live here. If we are successful in
3557 eliminating it, it need not be live unless it is used for
3558 pseudos, in which case it will have been set live when it
3559 was allocated to the pseudos. If the register will not
3560 be eliminated, reload will set it live at that point.
3561
3562 Otherwise, record that this function uses this register. */
3563 /* ??? The PPC backend tries to "eliminate" on the pic
3564 register to itself. This should be fixed. In the mean
3565 time, hack around it. */
3566
3567 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3568 && (regno_first == FRAME_POINTER_REGNUM
3569 || regno_first == ARG_POINTER_REGNUM)))
3570 for (i = regno_first; i <= regno_last; ++i)
3571 regs_ever_live[i] = 1;
3572 }
3573 else
3574 {
3575 /* Keep track of which basic block each reg appears in. */
3576
3577 int blocknum = pbi->bb->index;
3578 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3579 REG_BASIC_BLOCK (regno_first) = blocknum;
3580 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3581 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3582
3583 /* Count (weighted) number of uses of each reg. */
3584 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3585 REG_N_REFS (regno_first)++;
3586 }
3587 }
3588
3589 /* Record and count the insns in which a reg dies. If it is used in
3590 this insn and was dead below the insn then it dies in this insn.
3591 If it was set in this insn, we do not make a REG_DEAD note;
3592 likewise if we already made such a note. */
3593 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3594 && some_was_dead
3595 && some_not_set)
3596 {
3597 /* Check for the case where the register dying partially
3598 overlaps the register set by this insn. */
3599 if (regno_first != regno_last)
3600 for (i = regno_first; i <= regno_last; ++i)
3601 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3602
3603 /* If none of the words in X is needed, make a REG_DEAD note.
3604 Otherwise, we must make partial REG_DEAD notes. */
3605 if (! some_was_live)
3606 {
3607 if ((pbi->flags & PROP_DEATH_NOTES)
3608 && ! find_regno_note (insn, REG_DEAD, regno_first))
3609 REG_NOTES (insn)
3610 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3611
3612 if (pbi->flags & PROP_REG_INFO)
3613 REG_N_DEATHS (regno_first)++;
3614 }
3615 else
3616 {
3617 /* Don't make a REG_DEAD note for a part of a register
3618 that is set in the insn. */
3619 for (i = regno_first; i <= regno_last; ++i)
3620 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3621 && ! dead_or_set_regno_p (insn, i))
3622 REG_NOTES (insn)
3623 = alloc_EXPR_LIST (REG_DEAD,
3624 gen_rtx_REG (reg_raw_mode[i], i),
3625 REG_NOTES (insn));
3626 }
3627 }
3628
3629 /* Mark the register as being live. */
3630 for (i = regno_first; i <= regno_last; ++i)
3631 {
3632 #ifdef HAVE_conditional_execution
3633 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3634 #endif
3635
3636 SET_REGNO_REG_SET (pbi->reg_live, i);
3637
3638 #ifdef HAVE_conditional_execution
3639 /* If this is a conditional use, record that fact. If it is later
3640 conditionally set, we'll know to kill the register. */
3641 if (cond != NULL_RTX)
3642 {
3643 splay_tree_node node;
3644 struct reg_cond_life_info *rcli;
3645 rtx ncond;
3646
3647 if (this_was_live)
3648 {
3649 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3650 if (node == NULL)
3651 {
3652 /* The register was unconditionally live previously.
3653 No need to do anything. */
3654 }
3655 else
3656 {
3657 /* The register was conditionally live previously.
3658 Subtract the new life cond from the old death cond. */
3659 rcli = (struct reg_cond_life_info *) node->value;
3660 ncond = rcli->condition;
3661 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3662
3663 /* If the register is now unconditionally live,
3664 remove the entry in the splay_tree. */
3665 if (ncond == const0_rtx)
3666 splay_tree_remove (pbi->reg_cond_dead, i);
3667 else
3668 {
3669 rcli->condition = ncond;
3670 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3671 REGNO (XEXP (cond, 0)));
3672 }
3673 }
3674 }
3675 else
3676 {
3677 /* The register was not previously live at all. Record
3678 the condition under which it is still dead. */
3679 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3680 rcli->condition = not_reg_cond (cond);
3681 rcli->stores = const0_rtx;
3682 rcli->orig_condition = const0_rtx;
3683 splay_tree_insert (pbi->reg_cond_dead, i,
3684 (splay_tree_value) rcli);
3685
3686 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3687 }
3688 }
3689 else if (this_was_live)
3690 {
3691 /* The register may have been conditionally live previously, but
3692 is now unconditionally live. Remove it from the conditionally
3693 dead list, so that a conditional set won't cause us to think
3694 it dead. */
3695 splay_tree_remove (pbi->reg_cond_dead, i);
3696 }
3697 #endif
3698 }
3699 }
3700
3701 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3702 This is done assuming the registers needed from X are those that
3703 have 1-bits in PBI->REG_LIVE.
3704
3705 INSN is the containing instruction. If INSN is dead, this function
3706 is not called. */
3707
3708 static void
3709 mark_used_regs (pbi, x, cond, insn)
3710 struct propagate_block_info *pbi;
3711 rtx x, cond, insn;
3712 {
3713 RTX_CODE code;
3714 int regno;
3715 int flags = pbi->flags;
3716
3717 retry:
3718 if (!x)
3719 return;
3720 code = GET_CODE (x);
3721 switch (code)
3722 {
3723 case LABEL_REF:
3724 case SYMBOL_REF:
3725 case CONST_INT:
3726 case CONST:
3727 case CONST_DOUBLE:
3728 case CONST_VECTOR:
3729 case PC:
3730 case ADDR_VEC:
3731 case ADDR_DIFF_VEC:
3732 return;
3733
3734 #ifdef HAVE_cc0
3735 case CC0:
3736 pbi->cc0_live = 1;
3737 return;
3738 #endif
3739
3740 case CLOBBER:
3741 /* If we are clobbering a MEM, mark any registers inside the address
3742 as being used. */
3743 if (GET_CODE (XEXP (x, 0)) == MEM)
3744 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3745 return;
3746
3747 case MEM:
3748 /* Don't bother watching stores to mems if this is not the
3749 final pass. We'll not be deleting dead stores this round. */
3750 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3751 {
3752 /* Invalidate the data for the last MEM stored, but only if MEM is
3753 something that can be stored into. */
3754 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3755 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3756 /* Needn't clear the memory set list. */
3757 ;
3758 else
3759 {
3760 rtx temp = pbi->mem_set_list;
3761 rtx prev = NULL_RTX;
3762 rtx next;
3763
3764 while (temp)
3765 {
3766 next = XEXP (temp, 1);
3767 if (anti_dependence (XEXP (temp, 0), x))
3768 {
3769 /* Splice temp out of the list. */
3770 if (prev)
3771 XEXP (prev, 1) = next;
3772 else
3773 pbi->mem_set_list = next;
3774 free_EXPR_LIST_node (temp);
3775 pbi->mem_set_list_len--;
3776 }
3777 else
3778 prev = temp;
3779 temp = next;
3780 }
3781 }
3782
3783 /* If the memory reference had embedded side effects (autoincrement
3784 address modes. Then we may need to kill some entries on the
3785 memory set list. */
3786 if (insn)
3787 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3788 }
3789
3790 #ifdef AUTO_INC_DEC
3791 if (flags & PROP_AUTOINC)
3792 find_auto_inc (pbi, x, insn);
3793 #endif
3794 break;
3795
3796 case SUBREG:
3797 #ifdef CLASS_CANNOT_CHANGE_MODE
3798 if (GET_CODE (SUBREG_REG (x)) == REG
3799 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3800 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3801 GET_MODE (SUBREG_REG (x))))
3802 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3803 #endif
3804
3805 /* While we're here, optimize this case. */
3806 x = SUBREG_REG (x);
3807 if (GET_CODE (x) != REG)
3808 goto retry;
3809 /* Fall through. */
3810
3811 case REG:
3812 /* See a register other than being set => mark it as needed. */
3813 mark_used_reg (pbi, x, cond, insn);
3814 return;
3815
3816 case SET:
3817 {
3818 rtx testreg = SET_DEST (x);
3819 int mark_dest = 0;
3820
3821 /* If storing into MEM, don't show it as being used. But do
3822 show the address as being used. */
3823 if (GET_CODE (testreg) == MEM)
3824 {
3825 #ifdef AUTO_INC_DEC
3826 if (flags & PROP_AUTOINC)
3827 find_auto_inc (pbi, testreg, insn);
3828 #endif
3829 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3830 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3831 return;
3832 }
3833
3834 /* Storing in STRICT_LOW_PART is like storing in a reg
3835 in that this SET might be dead, so ignore it in TESTREG.
3836 but in some other ways it is like using the reg.
3837
3838 Storing in a SUBREG or a bit field is like storing the entire
3839 register in that if the register's value is not used
3840 then this SET is not needed. */
3841 while (GET_CODE (testreg) == STRICT_LOW_PART
3842 || GET_CODE (testreg) == ZERO_EXTRACT
3843 || GET_CODE (testreg) == SIGN_EXTRACT
3844 || GET_CODE (testreg) == SUBREG)
3845 {
3846 #ifdef CLASS_CANNOT_CHANGE_MODE
3847 if (GET_CODE (testreg) == SUBREG
3848 && GET_CODE (SUBREG_REG (testreg)) == REG
3849 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3850 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3851 GET_MODE (testreg)))
3852 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3853 #endif
3854
3855 /* Modifying a single register in an alternate mode
3856 does not use any of the old value. But these other
3857 ways of storing in a register do use the old value. */
3858 if (GET_CODE (testreg) == SUBREG
3859 && !((REG_BYTES (SUBREG_REG (testreg))
3860 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3861 > (REG_BYTES (testreg)
3862 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3863 ;
3864 else
3865 mark_dest = 1;
3866
3867 testreg = XEXP (testreg, 0);
3868 }
3869
3870 /* If this is a store into a register or group of registers,
3871 recursively scan the value being stored. */
3872
3873 if ((GET_CODE (testreg) == PARALLEL
3874 && GET_MODE (testreg) == BLKmode)
3875 || (GET_CODE (testreg) == REG
3876 && (regno = REGNO (testreg),
3877 ! (regno == FRAME_POINTER_REGNUM
3878 && (! reload_completed || frame_pointer_needed)))
3879 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3880 && ! (regno == HARD_FRAME_POINTER_REGNUM
3881 && (! reload_completed || frame_pointer_needed))
3882 #endif
3883 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3884 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3885 #endif
3886 ))
3887 {
3888 if (mark_dest)
3889 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3890 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3891 return;
3892 }
3893 }
3894 break;
3895
3896 case ASM_OPERANDS:
3897 case UNSPEC_VOLATILE:
3898 case TRAP_IF:
3899 case ASM_INPUT:
3900 {
3901 /* Traditional and volatile asm instructions must be considered to use
3902 and clobber all hard registers, all pseudo-registers and all of
3903 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3904
3905 Consider for instance a volatile asm that changes the fpu rounding
3906 mode. An insn should not be moved across this even if it only uses
3907 pseudo-regs because it might give an incorrectly rounded result.
3908
3909 ?!? Unfortunately, marking all hard registers as live causes massive
3910 problems for the register allocator and marking all pseudos as live
3911 creates mountains of uninitialized variable warnings.
3912
3913 So for now, just clear the memory set list and mark any regs
3914 we can find in ASM_OPERANDS as used. */
3915 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3916 {
3917 free_EXPR_LIST_list (&pbi->mem_set_list);
3918 pbi->mem_set_list_len = 0;
3919 }
3920
3921 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3922 We can not just fall through here since then we would be confused
3923 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3924 traditional asms unlike their normal usage. */
3925 if (code == ASM_OPERANDS)
3926 {
3927 int j;
3928
3929 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3930 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3931 }
3932 break;
3933 }
3934
3935 case COND_EXEC:
3936 if (cond != NULL_RTX)
3937 abort ();
3938
3939 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3940
3941 cond = COND_EXEC_TEST (x);
3942 x = COND_EXEC_CODE (x);
3943 goto retry;
3944
3945 case PHI:
3946 /* We _do_not_ want to scan operands of phi nodes. Operands of
3947 a phi function are evaluated only when control reaches this
3948 block along a particular edge. Therefore, regs that appear
3949 as arguments to phi should not be added to the global live at
3950 start. */
3951 return;
3952
3953 default:
3954 break;
3955 }
3956
3957 /* Recursively scan the operands of this expression. */
3958
3959 {
3960 const char * const fmt = GET_RTX_FORMAT (code);
3961 int i;
3962
3963 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3964 {
3965 if (fmt[i] == 'e')
3966 {
3967 /* Tail recursive case: save a function call level. */
3968 if (i == 0)
3969 {
3970 x = XEXP (x, 0);
3971 goto retry;
3972 }
3973 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3974 }
3975 else if (fmt[i] == 'E')
3976 {
3977 int j;
3978 for (j = 0; j < XVECLEN (x, i); j++)
3979 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3980 }
3981 }
3982 }
3983 }
3984 \f
3985 #ifdef AUTO_INC_DEC
3986
3987 static int
3988 try_pre_increment_1 (pbi, insn)
3989 struct propagate_block_info *pbi;
3990 rtx insn;
3991 {
3992 /* Find the next use of this reg. If in same basic block,
3993 make it do pre-increment or pre-decrement if appropriate. */
3994 rtx x = single_set (insn);
3995 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3996 * INTVAL (XEXP (SET_SRC (x), 1)));
3997 int regno = REGNO (SET_DEST (x));
3998 rtx y = pbi->reg_next_use[regno];
3999 if (y != 0
4000 && SET_DEST (x) != stack_pointer_rtx
4001 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4002 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4003 mode would be better. */
4004 && ! dead_or_set_p (y, SET_DEST (x))
4005 && try_pre_increment (y, SET_DEST (x), amount))
4006 {
4007 /* We have found a suitable auto-increment and already changed
4008 insn Y to do it. So flush this increment instruction. */
4009 propagate_block_delete_insn (insn);
4010
4011 /* Count a reference to this reg for the increment insn we are
4012 deleting. When a reg is incremented, spilling it is worse,
4013 so we want to make that less likely. */
4014 if (regno >= FIRST_PSEUDO_REGISTER)
4015 {
4016 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4017 REG_N_SETS (regno)++;
4018 }
4019
4020 /* Flush any remembered memories depending on the value of
4021 the incremented register. */
4022 invalidate_mems_from_set (pbi, SET_DEST (x));
4023
4024 return 1;
4025 }
4026 return 0;
4027 }
4028
4029 /* Try to change INSN so that it does pre-increment or pre-decrement
4030 addressing on register REG in order to add AMOUNT to REG.
4031 AMOUNT is negative for pre-decrement.
4032 Returns 1 if the change could be made.
4033 This checks all about the validity of the result of modifying INSN. */
4034
4035 static int
4036 try_pre_increment (insn, reg, amount)
4037 rtx insn, reg;
4038 HOST_WIDE_INT amount;
4039 {
4040 rtx use;
4041
4042 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4043 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4044 int pre_ok = 0;
4045 /* Nonzero if we can try to make a post-increment or post-decrement.
4046 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4047 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4048 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4049 int post_ok = 0;
4050
4051 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4052 int do_post = 0;
4053
4054 /* From the sign of increment, see which possibilities are conceivable
4055 on this target machine. */
4056 if (HAVE_PRE_INCREMENT && amount > 0)
4057 pre_ok = 1;
4058 if (HAVE_POST_INCREMENT && amount > 0)
4059 post_ok = 1;
4060
4061 if (HAVE_PRE_DECREMENT && amount < 0)
4062 pre_ok = 1;
4063 if (HAVE_POST_DECREMENT && amount < 0)
4064 post_ok = 1;
4065
4066 if (! (pre_ok || post_ok))
4067 return 0;
4068
4069 /* It is not safe to add a side effect to a jump insn
4070 because if the incremented register is spilled and must be reloaded
4071 there would be no way to store the incremented value back in memory. */
4072
4073 if (GET_CODE (insn) == JUMP_INSN)
4074 return 0;
4075
4076 use = 0;
4077 if (pre_ok)
4078 use = find_use_as_address (PATTERN (insn), reg, 0);
4079 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4080 {
4081 use = find_use_as_address (PATTERN (insn), reg, -amount);
4082 do_post = 1;
4083 }
4084
4085 if (use == 0 || use == (rtx) (size_t) 1)
4086 return 0;
4087
4088 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4089 return 0;
4090
4091 /* See if this combination of instruction and addressing mode exists. */
4092 if (! validate_change (insn, &XEXP (use, 0),
4093 gen_rtx_fmt_e (amount > 0
4094 ? (do_post ? POST_INC : PRE_INC)
4095 : (do_post ? POST_DEC : PRE_DEC),
4096 Pmode, reg), 0))
4097 return 0;
4098
4099 /* Record that this insn now has an implicit side effect on X. */
4100 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4101 return 1;
4102 }
4103
4104 #endif /* AUTO_INC_DEC */
4105 \f
4106 /* Find the place in the rtx X where REG is used as a memory address.
4107 Return the MEM rtx that so uses it.
4108 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4109 (plus REG (const_int PLUSCONST)).
4110
4111 If such an address does not appear, return 0.
4112 If REG appears more than once, or is used other than in such an address,
4113 return (rtx) 1. */
4114
4115 rtx
4116 find_use_as_address (x, reg, plusconst)
4117 rtx x;
4118 rtx reg;
4119 HOST_WIDE_INT plusconst;
4120 {
4121 enum rtx_code code = GET_CODE (x);
4122 const char * const fmt = GET_RTX_FORMAT (code);
4123 int i;
4124 rtx value = 0;
4125 rtx tem;
4126
4127 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4128 return x;
4129
4130 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4131 && XEXP (XEXP (x, 0), 0) == reg
4132 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4133 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4134 return x;
4135
4136 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4137 {
4138 /* If REG occurs inside a MEM used in a bit-field reference,
4139 that is unacceptable. */
4140 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4141 return (rtx) (size_t) 1;
4142 }
4143
4144 if (x == reg)
4145 return (rtx) (size_t) 1;
4146
4147 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4148 {
4149 if (fmt[i] == 'e')
4150 {
4151 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4152 if (value == 0)
4153 value = tem;
4154 else if (tem != 0)
4155 return (rtx) (size_t) 1;
4156 }
4157 else if (fmt[i] == 'E')
4158 {
4159 int j;
4160 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4161 {
4162 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4163 if (value == 0)
4164 value = tem;
4165 else if (tem != 0)
4166 return (rtx) (size_t) 1;
4167 }
4168 }
4169 }
4170
4171 return value;
4172 }
4173 \f
4174 /* Write information about registers and basic blocks into FILE.
4175 This is part of making a debugging dump. */
4176
4177 void
4178 dump_regset (r, outf)
4179 regset r;
4180 FILE *outf;
4181 {
4182 int i;
4183 if (r == NULL)
4184 {
4185 fputs (" (nil)", outf);
4186 return;
4187 }
4188
4189 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4190 {
4191 fprintf (outf, " %d", i);
4192 if (i < FIRST_PSEUDO_REGISTER)
4193 fprintf (outf, " [%s]",
4194 reg_names[i]);
4195 });
4196 }
4197
4198 /* Print a human-reaable representation of R on the standard error
4199 stream. This function is designed to be used from within the
4200 debugger. */
4201
4202 void
4203 debug_regset (r)
4204 regset r;
4205 {
4206 dump_regset (r, stderr);
4207 putc ('\n', stderr);
4208 }
4209
4210 /* Recompute register set/reference counts immediately prior to register
4211 allocation.
4212
4213 This avoids problems with set/reference counts changing to/from values
4214 which have special meanings to the register allocators.
4215
4216 Additionally, the reference counts are the primary component used by the
4217 register allocators to prioritize pseudos for allocation to hard regs.
4218 More accurate reference counts generally lead to better register allocation.
4219
4220 F is the first insn to be scanned.
4221
4222 LOOP_STEP denotes how much loop_depth should be incremented per
4223 loop nesting level in order to increase the ref count more for
4224 references in a loop.
4225
4226 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4227 possibly other information which is used by the register allocators. */
4228
4229 void
4230 recompute_reg_usage (f, loop_step)
4231 rtx f ATTRIBUTE_UNUSED;
4232 int loop_step ATTRIBUTE_UNUSED;
4233 {
4234 allocate_reg_life_data ();
4235 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4236 }
4237
4238 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4239 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4240 of the number of registers that died. */
4241
4242 int
4243 count_or_remove_death_notes (blocks, kill)
4244 sbitmap blocks;
4245 int kill;
4246 {
4247 int count = 0;
4248 basic_block bb;
4249
4250 FOR_EACH_BB_REVERSE (bb)
4251 {
4252 rtx insn;
4253
4254 if (blocks && ! TEST_BIT (blocks, bb->index))
4255 continue;
4256
4257 for (insn = bb->head;; insn = NEXT_INSN (insn))
4258 {
4259 if (INSN_P (insn))
4260 {
4261 rtx *pprev = &REG_NOTES (insn);
4262 rtx link = *pprev;
4263
4264 while (link)
4265 {
4266 switch (REG_NOTE_KIND (link))
4267 {
4268 case REG_DEAD:
4269 if (GET_CODE (XEXP (link, 0)) == REG)
4270 {
4271 rtx reg = XEXP (link, 0);
4272 int n;
4273
4274 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4275 n = 1;
4276 else
4277 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4278 count += n;
4279 }
4280 /* Fall through. */
4281
4282 case REG_UNUSED:
4283 if (kill)
4284 {
4285 rtx next = XEXP (link, 1);
4286 free_EXPR_LIST_node (link);
4287 *pprev = link = next;
4288 break;
4289 }
4290 /* Fall through. */
4291
4292 default:
4293 pprev = &XEXP (link, 1);
4294 link = *pprev;
4295 break;
4296 }
4297 }
4298 }
4299
4300 if (insn == bb->end)
4301 break;
4302 }
4303 }
4304
4305 return count;
4306 }
4307 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4308 if blocks is NULL. */
4309
4310 static void
4311 clear_log_links (blocks)
4312 sbitmap blocks;
4313 {
4314 rtx insn;
4315 int i;
4316
4317 if (!blocks)
4318 {
4319 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4320 if (INSN_P (insn))
4321 free_INSN_LIST_list (&LOG_LINKS (insn));
4322 }
4323 else
4324 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4325 {
4326 basic_block bb = BASIC_BLOCK (i);
4327
4328 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4329 insn = NEXT_INSN (insn))
4330 if (INSN_P (insn))
4331 free_INSN_LIST_list (&LOG_LINKS (insn));
4332 });
4333 }
4334
4335 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4336 correspond to the hard registers, if any, set in that map. This
4337 could be done far more efficiently by having all sorts of special-cases
4338 with moving single words, but probably isn't worth the trouble. */
4339
4340 void
4341 reg_set_to_hard_reg_set (to, from)
4342 HARD_REG_SET *to;
4343 bitmap from;
4344 {
4345 int i;
4346
4347 EXECUTE_IF_SET_IN_BITMAP
4348 (from, 0, i,
4349 {
4350 if (i >= FIRST_PSEUDO_REGISTER)
4351 return;
4352 SET_HARD_REG_BIT (*to, i);
4353 });
4354 }