flow.c (propagate_one_insn): Preserve live-at-end registers across tail calls.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
141
142 #include "obstack.h"
143 #include "splay-tree.h"
144
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
152
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
162
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
172
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
178
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
181
182 /* Maximum register number used in this function, plus one. */
183
184 int max_regno;
185
186 /* Indexed by n, giving various register information */
187
188 varray_type reg_n_info;
189
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
192
193 int regset_bytes;
194 int regset_size;
195
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
198
199 regset regs_live_at_setjmp;
200
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
206
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
210
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
213
214 static HARD_REG_SET elim_reg_set;
215
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
218 {
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
223
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
227
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
230 };
231
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
234
235 struct propagate_block_info
236 {
237 /* The basic block we're considering. */
238 basic_block bb;
239
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
242
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
245
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
249
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
253
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
257
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
261
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
266
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
270
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
273
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
276
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
279 };
280
281 /* Number of dead insns removed. */
282 static int ndead;
283
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void debug_flow_info PARAMS ((void));
337 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
338 rtx));
339 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
340 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
341 rtx));
342 static void clear_log_links PARAMS ((sbitmap));
343 \f
344
345 void
346 check_function_return_warnings ()
347 {
348 if (warn_missing_noreturn
349 && !TREE_THIS_VOLATILE (cfun->decl)
350 && EXIT_BLOCK_PTR->pred == NULL
351 && (lang_missing_noreturn_ok_p
352 && !lang_missing_noreturn_ok_p (cfun->decl)))
353 warning ("function might be possible candidate for attribute `noreturn'");
354
355 /* If we have a path to EXIT, then we do return. */
356 if (TREE_THIS_VOLATILE (cfun->decl)
357 && EXIT_BLOCK_PTR->pred != NULL)
358 warning ("`noreturn' function does return");
359
360 /* If the clobber_return_insn appears in some basic block, then we
361 do reach the end without returning a value. */
362 else if (warn_return_type
363 && cfun->x_clobber_return_insn != NULL
364 && EXIT_BLOCK_PTR->pred != NULL)
365 {
366 int max_uid = get_max_uid ();
367
368 /* If clobber_return_insn was excised by jump1, then renumber_insns
369 can make max_uid smaller than the number still recorded in our rtx.
370 That's fine, since this is a quick way of verifying that the insn
371 is no longer in the chain. */
372 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
373 {
374 rtx insn;
375
376 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
377 if (insn == cfun->x_clobber_return_insn)
378 {
379 warning ("control reaches end of non-void function");
380 break;
381 }
382 }
383 }
384 }
385 \f
386 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
387 note associated with the BLOCK. */
388
389 rtx
390 first_insn_after_basic_block_note (block)
391 basic_block block;
392 {
393 rtx insn;
394
395 /* Get the first instruction in the block. */
396 insn = block->head;
397
398 if (insn == NULL_RTX)
399 return NULL_RTX;
400 if (GET_CODE (insn) == CODE_LABEL)
401 insn = NEXT_INSN (insn);
402 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
403 abort ();
404
405 return NEXT_INSN (insn);
406 }
407 \f
408 /* Perform data flow analysis.
409 F is the first insn of the function; FLAGS is a set of PROP_* flags
410 to be used in accumulating flow info. */
411
412 void
413 life_analysis (f, file, flags)
414 rtx f;
415 FILE *file;
416 int flags;
417 {
418 #ifdef ELIMINABLE_REGS
419 int i;
420 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
421 #endif
422
423 /* Record which registers will be eliminated. We use this in
424 mark_used_regs. */
425
426 CLEAR_HARD_REG_SET (elim_reg_set);
427
428 #ifdef ELIMINABLE_REGS
429 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
430 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
431 #else
432 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
433 #endif
434
435
436 #ifdef CANNOT_CHANGE_MODE_CLASS
437 if (flags & PROP_REG_INFO)
438 bitmap_initialize (&subregs_of_mode, 1);
439 #endif
440
441 if (! optimize)
442 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
443
444 /* The post-reload life analysis have (on a global basis) the same
445 registers live as was computed by reload itself. elimination
446 Otherwise offsets and such may be incorrect.
447
448 Reload will make some registers as live even though they do not
449 appear in the rtl.
450
451 We don't want to create new auto-incs after reload, since they
452 are unlikely to be useful and can cause problems with shared
453 stack slots. */
454 if (reload_completed)
455 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
456
457 /* We want alias analysis information for local dead store elimination. */
458 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
459 init_alias_analysis ();
460
461 /* Always remove no-op moves. Do this before other processing so
462 that we don't have to keep re-scanning them. */
463 delete_noop_moves (f);
464
465 /* Some targets can emit simpler epilogues if they know that sp was
466 not ever modified during the function. After reload, of course,
467 we've already emitted the epilogue so there's no sense searching. */
468 if (! reload_completed)
469 notice_stack_pointer_modification (f);
470
471 /* Allocate and zero out data structures that will record the
472 data from lifetime analysis. */
473 allocate_reg_life_data ();
474 allocate_bb_life_data ();
475
476 /* Find the set of registers live on function exit. */
477 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
478
479 /* "Update" life info from zero. It'd be nice to begin the
480 relaxation with just the exit and noreturn blocks, but that set
481 is not immediately handy. */
482
483 if (flags & PROP_REG_INFO)
484 memset (regs_ever_live, 0, sizeof (regs_ever_live));
485 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
486
487 /* Clean up. */
488 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
489 end_alias_analysis ();
490
491 if (file)
492 dump_flow_info (file);
493
494 free_basic_block_vars (1);
495
496 /* Removing dead insns should've made jumptables really dead. */
497 delete_dead_jumptables ();
498 }
499
500 /* A subroutine of verify_wide_reg, called through for_each_rtx.
501 Search for REGNO. If found, return 2 if it is not wider than
502 word_mode. */
503
504 static int
505 verify_wide_reg_1 (px, pregno)
506 rtx *px;
507 void *pregno;
508 {
509 rtx x = *px;
510 unsigned int regno = *(int *) pregno;
511
512 if (GET_CODE (x) == REG && REGNO (x) == regno)
513 {
514 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
515 return 2;
516 return 1;
517 }
518 return 0;
519 }
520
521 /* A subroutine of verify_local_live_at_start. Search through insns
522 of BB looking for register REGNO. */
523
524 static void
525 verify_wide_reg (regno, bb)
526 int regno;
527 basic_block bb;
528 {
529 rtx head = bb->head, end = bb->end;
530
531 while (1)
532 {
533 if (INSN_P (head))
534 {
535 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
536 if (r == 1)
537 return;
538 if (r == 2)
539 break;
540 }
541 if (head == end)
542 break;
543 head = NEXT_INSN (head);
544 }
545
546 if (rtl_dump_file)
547 {
548 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
549 dump_bb (bb, rtl_dump_file);
550 }
551 abort ();
552 }
553
554 /* A subroutine of update_life_info. Verify that there are no untoward
555 changes in live_at_start during a local update. */
556
557 static void
558 verify_local_live_at_start (new_live_at_start, bb)
559 regset new_live_at_start;
560 basic_block bb;
561 {
562 if (reload_completed)
563 {
564 /* After reload, there are no pseudos, nor subregs of multi-word
565 registers. The regsets should exactly match. */
566 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
567 {
568 if (rtl_dump_file)
569 {
570 fprintf (rtl_dump_file,
571 "live_at_start mismatch in bb %d, aborting\nNew:\n",
572 bb->index);
573 debug_bitmap_file (rtl_dump_file, new_live_at_start);
574 fputs ("Old:\n", rtl_dump_file);
575 dump_bb (bb, rtl_dump_file);
576 }
577 abort ();
578 }
579 }
580 else
581 {
582 int i;
583
584 /* Find the set of changed registers. */
585 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
586
587 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
588 {
589 /* No registers should die. */
590 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
591 {
592 if (rtl_dump_file)
593 {
594 fprintf (rtl_dump_file,
595 "Register %d died unexpectedly.\n", i);
596 dump_bb (bb, rtl_dump_file);
597 }
598 abort ();
599 }
600
601 /* Verify that the now-live register is wider than word_mode. */
602 verify_wide_reg (i, bb);
603 });
604 }
605 }
606
607 /* Updates life information starting with the basic blocks set in BLOCKS.
608 If BLOCKS is null, consider it to be the universal set.
609
610 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
611 we are only expecting local modifications to basic blocks. If we find
612 extra registers live at the beginning of a block, then we either killed
613 useful data, or we have a broken split that wants data not provided.
614 If we find registers removed from live_at_start, that means we have
615 a broken peephole that is killing a register it shouldn't.
616
617 ??? This is not true in one situation -- when a pre-reload splitter
618 generates subregs of a multi-word pseudo, current life analysis will
619 lose the kill. So we _can_ have a pseudo go live. How irritating.
620
621 Including PROP_REG_INFO does not properly refresh regs_ever_live
622 unless the caller resets it to zero. */
623
624 int
625 update_life_info (blocks, extent, prop_flags)
626 sbitmap blocks;
627 enum update_life_extent extent;
628 int prop_flags;
629 {
630 regset tmp;
631 regset_head tmp_head;
632 int i;
633 int stabilized_prop_flags = prop_flags;
634 basic_block bb;
635
636 tmp = INITIALIZE_REG_SET (tmp_head);
637 ndead = 0;
638
639 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
640 ? TV_LIFE_UPDATE : TV_LIFE);
641
642 /* Changes to the CFG are only allowed when
643 doing a global update for the entire CFG. */
644 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
645 && (extent == UPDATE_LIFE_LOCAL || blocks))
646 abort ();
647
648 /* For a global update, we go through the relaxation process again. */
649 if (extent != UPDATE_LIFE_LOCAL)
650 {
651 for ( ; ; )
652 {
653 int changed = 0;
654
655 calculate_global_regs_live (blocks, blocks,
656 prop_flags & (PROP_SCAN_DEAD_CODE
657 | PROP_SCAN_DEAD_STORES
658 | PROP_ALLOW_CFG_CHANGES));
659
660 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
661 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
662 break;
663
664 /* Removing dead code may allow the CFG to be simplified which
665 in turn may allow for further dead code detection / removal. */
666 FOR_EACH_BB_REVERSE (bb)
667 {
668 COPY_REG_SET (tmp, bb->global_live_at_end);
669 changed |= propagate_block (bb, tmp, NULL, NULL,
670 prop_flags & (PROP_SCAN_DEAD_CODE
671 | PROP_SCAN_DEAD_STORES
672 | PROP_KILL_DEAD_CODE));
673 }
674
675 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
676 subsequent propagate_block calls, since removing or acting as
677 removing dead code can affect global register liveness, which
678 is supposed to be finalized for this call after this loop. */
679 stabilized_prop_flags
680 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
681 | PROP_KILL_DEAD_CODE);
682
683 if (! changed)
684 break;
685
686 /* We repeat regardless of what cleanup_cfg says. If there were
687 instructions deleted above, that might have been only a
688 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
689 Further improvement may be possible. */
690 cleanup_cfg (CLEANUP_EXPENSIVE);
691
692 /* Zap the life information from the last round. If we don't
693 do this, we can wind up with registers that no longer appear
694 in the code being marked live at entry, which twiggs bogus
695 warnings from regno_uninitialized. */
696 FOR_EACH_BB (bb)
697 {
698 CLEAR_REG_SET (bb->global_live_at_start);
699 CLEAR_REG_SET (bb->global_live_at_end);
700 }
701 }
702
703 /* If asked, remove notes from the blocks we'll update. */
704 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
705 count_or_remove_death_notes (blocks, 1);
706 }
707
708 /* Clear log links in case we are asked to (re)compute them. */
709 if (prop_flags & PROP_LOG_LINKS)
710 clear_log_links (blocks);
711
712 if (blocks)
713 {
714 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
715 {
716 bb = BASIC_BLOCK (i);
717
718 COPY_REG_SET (tmp, bb->global_live_at_end);
719 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
720
721 if (extent == UPDATE_LIFE_LOCAL)
722 verify_local_live_at_start (tmp, bb);
723 });
724 }
725 else
726 {
727 FOR_EACH_BB_REVERSE (bb)
728 {
729 COPY_REG_SET (tmp, bb->global_live_at_end);
730
731 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
732
733 if (extent == UPDATE_LIFE_LOCAL)
734 verify_local_live_at_start (tmp, bb);
735 }
736 }
737
738 FREE_REG_SET (tmp);
739
740 if (prop_flags & PROP_REG_INFO)
741 {
742 /* The only pseudos that are live at the beginning of the function
743 are those that were not set anywhere in the function. local-alloc
744 doesn't know how to handle these correctly, so mark them as not
745 local to any one basic block. */
746 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
747 FIRST_PSEUDO_REGISTER, i,
748 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
749
750 /* We have a problem with any pseudoreg that lives across the setjmp.
751 ANSI says that if a user variable does not change in value between
752 the setjmp and the longjmp, then the longjmp preserves it. This
753 includes longjmp from a place where the pseudo appears dead.
754 (In principle, the value still exists if it is in scope.)
755 If the pseudo goes in a hard reg, some other value may occupy
756 that hard reg where this pseudo is dead, thus clobbering the pseudo.
757 Conclusion: such a pseudo must not go in a hard reg. */
758 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
759 FIRST_PSEUDO_REGISTER, i,
760 {
761 if (regno_reg_rtx[i] != 0)
762 {
763 REG_LIVE_LENGTH (i) = -1;
764 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
765 }
766 });
767 }
768 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
769 ? TV_LIFE_UPDATE : TV_LIFE);
770 if (ndead && rtl_dump_file)
771 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
772 return ndead;
773 }
774
775 /* Update life information in all blocks where BB_DIRTY is set. */
776
777 int
778 update_life_info_in_dirty_blocks (extent, prop_flags)
779 enum update_life_extent extent;
780 int prop_flags;
781 {
782 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
783 int n = 0;
784 basic_block bb;
785 int retval = 0;
786
787 sbitmap_zero (update_life_blocks);
788 FOR_EACH_BB (bb)
789 {
790 if (extent == UPDATE_LIFE_LOCAL)
791 {
792 if (bb->flags & BB_DIRTY)
793 {
794 SET_BIT (update_life_blocks, bb->index);
795 n++;
796 }
797 }
798 else
799 {
800 /* ??? Bootstrap with -march=pentium4 fails to terminate
801 with only a partial life update. */
802 SET_BIT (update_life_blocks, bb->index);
803 if (bb->flags & BB_DIRTY)
804 n++;
805 }
806 }
807
808 if (n)
809 retval = update_life_info (update_life_blocks, extent, prop_flags);
810
811 sbitmap_free (update_life_blocks);
812 return retval;
813 }
814
815 /* Free the variables allocated by find_basic_blocks.
816
817 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
818
819 void
820 free_basic_block_vars (keep_head_end_p)
821 int keep_head_end_p;
822 {
823 if (! keep_head_end_p)
824 {
825 if (basic_block_info)
826 {
827 clear_edges ();
828 VARRAY_FREE (basic_block_info);
829 }
830 n_basic_blocks = 0;
831 last_basic_block = 0;
832
833 ENTRY_BLOCK_PTR->aux = NULL;
834 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
835 EXIT_BLOCK_PTR->aux = NULL;
836 EXIT_BLOCK_PTR->global_live_at_start = NULL;
837 }
838 }
839
840 /* Delete any insns that copy a register to itself. */
841
842 int
843 delete_noop_moves (f)
844 rtx f ATTRIBUTE_UNUSED;
845 {
846 rtx insn, next;
847 basic_block bb;
848 int nnoops = 0;
849
850 FOR_EACH_BB (bb)
851 {
852 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
853 {
854 next = NEXT_INSN (insn);
855 if (INSN_P (insn) && noop_move_p (insn))
856 {
857 rtx note;
858
859 /* If we're about to remove the first insn of a libcall
860 then move the libcall note to the next real insn and
861 update the retval note. */
862 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
863 && XEXP (note, 0) != insn)
864 {
865 rtx new_libcall_insn = next_real_insn (insn);
866 rtx retval_note = find_reg_note (XEXP (note, 0),
867 REG_RETVAL, NULL_RTX);
868 REG_NOTES (new_libcall_insn)
869 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
870 REG_NOTES (new_libcall_insn));
871 XEXP (retval_note, 0) = new_libcall_insn;
872 }
873
874 delete_insn_and_edges (insn);
875 nnoops++;
876 }
877 }
878 }
879 if (nnoops && rtl_dump_file)
880 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
881 return nnoops;
882 }
883
884 /* Delete any jump tables never referenced. We can't delete them at the
885 time of removing tablejump insn as they are referenced by the preceding
886 insns computing the destination, so we delay deleting and garbagecollect
887 them once life information is computed. */
888 void
889 delete_dead_jumptables ()
890 {
891 rtx insn, next;
892 for (insn = get_insns (); insn; insn = next)
893 {
894 next = NEXT_INSN (insn);
895 if (GET_CODE (insn) == CODE_LABEL
896 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
897 && GET_CODE (next) == JUMP_INSN
898 && (GET_CODE (PATTERN (next)) == ADDR_VEC
899 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
900 {
901 if (rtl_dump_file)
902 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
903 delete_insn (NEXT_INSN (insn));
904 delete_insn (insn);
905 next = NEXT_INSN (next);
906 }
907 }
908 }
909
910 /* Determine if the stack pointer is constant over the life of the function.
911 Only useful before prologues have been emitted. */
912
913 static void
914 notice_stack_pointer_modification_1 (x, pat, data)
915 rtx x;
916 rtx pat ATTRIBUTE_UNUSED;
917 void *data ATTRIBUTE_UNUSED;
918 {
919 if (x == stack_pointer_rtx
920 /* The stack pointer is only modified indirectly as the result
921 of a push until later in flow. See the comments in rtl.texi
922 regarding Embedded Side-Effects on Addresses. */
923 || (GET_CODE (x) == MEM
924 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
925 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
926 current_function_sp_is_unchanging = 0;
927 }
928
929 static void
930 notice_stack_pointer_modification (f)
931 rtx f;
932 {
933 rtx insn;
934
935 /* Assume that the stack pointer is unchanging if alloca hasn't
936 been used. */
937 current_function_sp_is_unchanging = !current_function_calls_alloca;
938 if (! current_function_sp_is_unchanging)
939 return;
940
941 for (insn = f; insn; insn = NEXT_INSN (insn))
942 {
943 if (INSN_P (insn))
944 {
945 /* Check if insn modifies the stack pointer. */
946 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
947 NULL);
948 if (! current_function_sp_is_unchanging)
949 return;
950 }
951 }
952 }
953
954 /* Mark a register in SET. Hard registers in large modes get all
955 of their component registers set as well. */
956
957 static void
958 mark_reg (reg, xset)
959 rtx reg;
960 void *xset;
961 {
962 regset set = (regset) xset;
963 int regno = REGNO (reg);
964
965 if (GET_MODE (reg) == BLKmode)
966 abort ();
967
968 SET_REGNO_REG_SET (set, regno);
969 if (regno < FIRST_PSEUDO_REGISTER)
970 {
971 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
972 while (--n > 0)
973 SET_REGNO_REG_SET (set, regno + n);
974 }
975 }
976
977 /* Mark those regs which are needed at the end of the function as live
978 at the end of the last basic block. */
979
980 static void
981 mark_regs_live_at_end (set)
982 regset set;
983 {
984 unsigned int i;
985
986 /* If exiting needs the right stack value, consider the stack pointer
987 live at the end of the function. */
988 if ((HAVE_epilogue && epilogue_completed)
989 || ! EXIT_IGNORE_STACK
990 || (! FRAME_POINTER_REQUIRED
991 && ! current_function_calls_alloca
992 && flag_omit_frame_pointer)
993 || current_function_sp_is_unchanging)
994 {
995 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
996 }
997
998 /* Mark the frame pointer if needed at the end of the function. If
999 we end up eliminating it, it will be removed from the live list
1000 of each basic block by reload. */
1001
1002 if (! reload_completed || frame_pointer_needed)
1003 {
1004 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1005 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1006 /* If they are different, also mark the hard frame pointer as live. */
1007 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1008 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1009 #endif
1010 }
1011
1012 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1013 /* Many architectures have a GP register even without flag_pic.
1014 Assume the pic register is not in use, or will be handled by
1015 other means, if it is not fixed. */
1016 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1017 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1018 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1019 #endif
1020
1021 /* Mark all global registers, and all registers used by the epilogue
1022 as being live at the end of the function since they may be
1023 referenced by our caller. */
1024 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1025 if (global_regs[i] || EPILOGUE_USES (i))
1026 SET_REGNO_REG_SET (set, i);
1027
1028 if (HAVE_epilogue && epilogue_completed)
1029 {
1030 /* Mark all call-saved registers that we actually used. */
1031 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1032 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1033 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1034 SET_REGNO_REG_SET (set, i);
1035 }
1036
1037 #ifdef EH_RETURN_DATA_REGNO
1038 /* Mark the registers that will contain data for the handler. */
1039 if (reload_completed && current_function_calls_eh_return)
1040 for (i = 0; ; ++i)
1041 {
1042 unsigned regno = EH_RETURN_DATA_REGNO(i);
1043 if (regno == INVALID_REGNUM)
1044 break;
1045 SET_REGNO_REG_SET (set, regno);
1046 }
1047 #endif
1048 #ifdef EH_RETURN_STACKADJ_RTX
1049 if ((! HAVE_epilogue || ! epilogue_completed)
1050 && current_function_calls_eh_return)
1051 {
1052 rtx tmp = EH_RETURN_STACKADJ_RTX;
1053 if (tmp && REG_P (tmp))
1054 mark_reg (tmp, set);
1055 }
1056 #endif
1057 #ifdef EH_RETURN_HANDLER_RTX
1058 if ((! HAVE_epilogue || ! epilogue_completed)
1059 && current_function_calls_eh_return)
1060 {
1061 rtx tmp = EH_RETURN_HANDLER_RTX;
1062 if (tmp && REG_P (tmp))
1063 mark_reg (tmp, set);
1064 }
1065 #endif
1066
1067 /* Mark function return value. */
1068 diddle_return_value (mark_reg, set);
1069 }
1070
1071 /* Callback function for for_each_successor_phi. DATA is a regset.
1072 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1073 INSN, in the regset. */
1074
1075 static int
1076 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1077 rtx insn ATTRIBUTE_UNUSED;
1078 int dest_regno ATTRIBUTE_UNUSED;
1079 int src_regno;
1080 void *data;
1081 {
1082 regset live = (regset) data;
1083 SET_REGNO_REG_SET (live, src_regno);
1084 return 0;
1085 }
1086
1087 /* Propagate global life info around the graph of basic blocks. Begin
1088 considering blocks with their corresponding bit set in BLOCKS_IN.
1089 If BLOCKS_IN is null, consider it the universal set.
1090
1091 BLOCKS_OUT is set for every block that was changed. */
1092
1093 static void
1094 calculate_global_regs_live (blocks_in, blocks_out, flags)
1095 sbitmap blocks_in, blocks_out;
1096 int flags;
1097 {
1098 basic_block *queue, *qhead, *qtail, *qend, bb;
1099 regset tmp, new_live_at_end, invalidated_by_call;
1100 regset_head tmp_head, invalidated_by_call_head;
1101 regset_head new_live_at_end_head;
1102 int i;
1103
1104 /* Some passes used to forget clear aux field of basic block causing
1105 sick behavior here. */
1106 #ifdef ENABLE_CHECKING
1107 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1108 if (bb->aux)
1109 abort ();
1110 #endif
1111
1112 tmp = INITIALIZE_REG_SET (tmp_head);
1113 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1114 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1115
1116 /* Inconveniently, this is only readily available in hard reg set form. */
1117 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1118 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1119 SET_REGNO_REG_SET (invalidated_by_call, i);
1120
1121 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1122 because the `head == tail' style test for an empty queue doesn't
1123 work with a full queue. */
1124 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1125 qtail = queue;
1126 qhead = qend = queue + n_basic_blocks + 2;
1127
1128 /* Queue the blocks set in the initial mask. Do this in reverse block
1129 number order so that we are more likely for the first round to do
1130 useful work. We use AUX non-null to flag that the block is queued. */
1131 if (blocks_in)
1132 {
1133 FOR_EACH_BB (bb)
1134 if (TEST_BIT (blocks_in, bb->index))
1135 {
1136 *--qhead = bb;
1137 bb->aux = bb;
1138 }
1139 }
1140 else
1141 {
1142 FOR_EACH_BB (bb)
1143 {
1144 *--qhead = bb;
1145 bb->aux = bb;
1146 }
1147 }
1148
1149 /* We clean aux when we remove the initially-enqueued bbs, but we
1150 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1151 unconditionally. */
1152 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1153
1154 if (blocks_out)
1155 sbitmap_zero (blocks_out);
1156
1157 /* We work through the queue until there are no more blocks. What
1158 is live at the end of this block is precisely the union of what
1159 is live at the beginning of all its successors. So, we set its
1160 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1161 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1162 this block by walking through the instructions in this block in
1163 reverse order and updating as we go. If that changed
1164 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1165 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1166
1167 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1168 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1169 must either be live at the end of the block, or used within the
1170 block. In the latter case, it will certainly never disappear
1171 from GLOBAL_LIVE_AT_START. In the former case, the register
1172 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1173 for one of the successor blocks. By induction, that cannot
1174 occur. */
1175 while (qhead != qtail)
1176 {
1177 int rescan, changed;
1178 basic_block bb;
1179 edge e;
1180
1181 bb = *qhead++;
1182 if (qhead == qend)
1183 qhead = queue;
1184 bb->aux = NULL;
1185
1186 /* Begin by propagating live_at_start from the successor blocks. */
1187 CLEAR_REG_SET (new_live_at_end);
1188
1189 if (bb->succ)
1190 for (e = bb->succ; e; e = e->succ_next)
1191 {
1192 basic_block sb = e->dest;
1193
1194 /* Call-clobbered registers die across exception and
1195 call edges. */
1196 /* ??? Abnormal call edges ignored for the moment, as this gets
1197 confused by sibling call edges, which crashes reg-stack. */
1198 if (e->flags & EDGE_EH)
1199 {
1200 bitmap_operation (tmp, sb->global_live_at_start,
1201 invalidated_by_call, BITMAP_AND_COMPL);
1202 IOR_REG_SET (new_live_at_end, tmp);
1203 }
1204 else
1205 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1206
1207 /* If a target saves one register in another (instead of on
1208 the stack) the save register will need to be live for EH. */
1209 if (e->flags & EDGE_EH)
1210 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1211 if (EH_USES (i))
1212 SET_REGNO_REG_SET (new_live_at_end, i);
1213 }
1214 else
1215 {
1216 /* This might be a noreturn function that throws. And
1217 even if it isn't, getting the unwind info right helps
1218 debugging. */
1219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1220 if (EH_USES (i))
1221 SET_REGNO_REG_SET (new_live_at_end, i);
1222 }
1223
1224 /* The all-important stack pointer must always be live. */
1225 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1226
1227 /* Before reload, there are a few registers that must be forced
1228 live everywhere -- which might not already be the case for
1229 blocks within infinite loops. */
1230 if (! reload_completed)
1231 {
1232 /* Any reference to any pseudo before reload is a potential
1233 reference of the frame pointer. */
1234 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1235
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 /* Pseudos with argument area equivalences may require
1238 reloading via the argument pointer. */
1239 if (fixed_regs[ARG_POINTER_REGNUM])
1240 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1241 #endif
1242
1243 /* Any constant, or pseudo with constant equivalences, may
1244 require reloading from memory using the pic register. */
1245 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1246 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1247 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1248 }
1249
1250 /* Regs used in phi nodes are not included in
1251 global_live_at_start, since they are live only along a
1252 particular edge. Set those regs that are live because of a
1253 phi node alternative corresponding to this particular block. */
1254 if (in_ssa_form)
1255 for_each_successor_phi (bb, &set_phi_alternative_reg,
1256 new_live_at_end);
1257
1258 if (bb == ENTRY_BLOCK_PTR)
1259 {
1260 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1261 continue;
1262 }
1263
1264 /* On our first pass through this block, we'll go ahead and continue.
1265 Recognize first pass by local_set NULL. On subsequent passes, we
1266 get to skip out early if live_at_end wouldn't have changed. */
1267
1268 if (bb->local_set == NULL)
1269 {
1270 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1271 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1272 rescan = 1;
1273 }
1274 else
1275 {
1276 /* If any bits were removed from live_at_end, we'll have to
1277 rescan the block. This wouldn't be necessary if we had
1278 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1279 local_live is really dependent on live_at_end. */
1280 CLEAR_REG_SET (tmp);
1281 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1282 new_live_at_end, BITMAP_AND_COMPL);
1283
1284 if (! rescan)
1285 {
1286 /* If any of the registers in the new live_at_end set are
1287 conditionally set in this basic block, we must rescan.
1288 This is because conditional lifetimes at the end of the
1289 block do not just take the live_at_end set into account,
1290 but also the liveness at the start of each successor
1291 block. We can miss changes in those sets if we only
1292 compare the new live_at_end against the previous one. */
1293 CLEAR_REG_SET (tmp);
1294 rescan = bitmap_operation (tmp, new_live_at_end,
1295 bb->cond_local_set, BITMAP_AND);
1296 }
1297
1298 if (! rescan)
1299 {
1300 /* Find the set of changed bits. Take this opportunity
1301 to notice that this set is empty and early out. */
1302 CLEAR_REG_SET (tmp);
1303 changed = bitmap_operation (tmp, bb->global_live_at_end,
1304 new_live_at_end, BITMAP_XOR);
1305 if (! changed)
1306 continue;
1307
1308 /* If any of the changed bits overlap with local_set,
1309 we'll have to rescan the block. Detect overlap by
1310 the AND with ~local_set turning off bits. */
1311 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1312 BITMAP_AND_COMPL);
1313 }
1314 }
1315
1316 /* Let our caller know that BB changed enough to require its
1317 death notes updated. */
1318 if (blocks_out)
1319 SET_BIT (blocks_out, bb->index);
1320
1321 if (! rescan)
1322 {
1323 /* Add to live_at_start the set of all registers in
1324 new_live_at_end that aren't in the old live_at_end. */
1325
1326 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1327 BITMAP_AND_COMPL);
1328 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1329
1330 changed = bitmap_operation (bb->global_live_at_start,
1331 bb->global_live_at_start,
1332 tmp, BITMAP_IOR);
1333 if (! changed)
1334 continue;
1335 }
1336 else
1337 {
1338 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1339
1340 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1341 into live_at_start. */
1342 propagate_block (bb, new_live_at_end, bb->local_set,
1343 bb->cond_local_set, flags);
1344
1345 /* If live_at start didn't change, no need to go farther. */
1346 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1347 continue;
1348
1349 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1350 }
1351
1352 /* Queue all predecessors of BB so that we may re-examine
1353 their live_at_end. */
1354 for (e = bb->pred; e; e = e->pred_next)
1355 {
1356 basic_block pb = e->src;
1357 if (pb->aux == NULL)
1358 {
1359 *qtail++ = pb;
1360 if (qtail == qend)
1361 qtail = queue;
1362 pb->aux = pb;
1363 }
1364 }
1365 }
1366
1367 FREE_REG_SET (tmp);
1368 FREE_REG_SET (new_live_at_end);
1369 FREE_REG_SET (invalidated_by_call);
1370
1371 if (blocks_out)
1372 {
1373 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1374 {
1375 basic_block bb = BASIC_BLOCK (i);
1376 FREE_REG_SET (bb->local_set);
1377 FREE_REG_SET (bb->cond_local_set);
1378 });
1379 }
1380 else
1381 {
1382 FOR_EACH_BB (bb)
1383 {
1384 FREE_REG_SET (bb->local_set);
1385 FREE_REG_SET (bb->cond_local_set);
1386 }
1387 }
1388
1389 free (queue);
1390 }
1391
1392 \f
1393 /* This structure is used to pass parameters to and from the
1394 the function find_regno_partial(). It is used to pass in the
1395 register number we are looking, as well as to return any rtx
1396 we find. */
1397
1398 typedef struct {
1399 unsigned regno_to_find;
1400 rtx retval;
1401 } find_regno_partial_param;
1402
1403
1404 /* Find the rtx for the reg numbers specified in 'data' if it is
1405 part of an expression which only uses part of the register. Return
1406 it in the structure passed in. */
1407 static int
1408 find_regno_partial (ptr, data)
1409 rtx *ptr;
1410 void *data;
1411 {
1412 find_regno_partial_param *param = (find_regno_partial_param *)data;
1413 unsigned reg = param->regno_to_find;
1414 param->retval = NULL_RTX;
1415
1416 if (*ptr == NULL_RTX)
1417 return 0;
1418
1419 switch (GET_CODE (*ptr))
1420 {
1421 case ZERO_EXTRACT:
1422 case SIGN_EXTRACT:
1423 case STRICT_LOW_PART:
1424 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1425 {
1426 param->retval = XEXP (*ptr, 0);
1427 return 1;
1428 }
1429 break;
1430
1431 case SUBREG:
1432 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1433 && REGNO (SUBREG_REG (*ptr)) == reg)
1434 {
1435 param->retval = SUBREG_REG (*ptr);
1436 return 1;
1437 }
1438 break;
1439
1440 default:
1441 break;
1442 }
1443
1444 return 0;
1445 }
1446
1447 /* Process all immediate successors of the entry block looking for pseudo
1448 registers which are live on entry. Find all of those whose first
1449 instance is a partial register reference of some kind, and initialize
1450 them to 0 after the entry block. This will prevent bit sets within
1451 registers whose value is unknown, and may contain some kind of sticky
1452 bits we don't want. */
1453
1454 int
1455 initialize_uninitialized_subregs ()
1456 {
1457 rtx insn;
1458 edge e;
1459 int reg, did_something = 0;
1460 find_regno_partial_param param;
1461
1462 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1463 {
1464 basic_block bb = e->dest;
1465 regset map = bb->global_live_at_start;
1466 EXECUTE_IF_SET_IN_REG_SET (map,
1467 FIRST_PSEUDO_REGISTER, reg,
1468 {
1469 int uid = REGNO_FIRST_UID (reg);
1470 rtx i;
1471
1472 /* Find an insn which mentions the register we are looking for.
1473 Its preferable to have an instance of the register's rtl since
1474 there may be various flags set which we need to duplicate.
1475 If we can't find it, its probably an automatic whose initial
1476 value doesn't matter, or hopefully something we don't care about. */
1477 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1478 ;
1479 if (i != NULL_RTX)
1480 {
1481 /* Found the insn, now get the REG rtx, if we can. */
1482 param.regno_to_find = reg;
1483 for_each_rtx (&i, find_regno_partial, &param);
1484 if (param.retval != NULL_RTX)
1485 {
1486 start_sequence ();
1487 emit_move_insn (param.retval,
1488 CONST0_RTX (GET_MODE (param.retval)));
1489 insn = get_insns ();
1490 end_sequence ();
1491 insert_insn_on_edge (insn, e);
1492 did_something = 1;
1493 }
1494 }
1495 });
1496 }
1497
1498 if (did_something)
1499 commit_edge_insertions ();
1500 return did_something;
1501 }
1502
1503 \f
1504 /* Subroutines of life analysis. */
1505
1506 /* Allocate the permanent data structures that represent the results
1507 of life analysis. Not static since used also for stupid life analysis. */
1508
1509 void
1510 allocate_bb_life_data ()
1511 {
1512 basic_block bb;
1513
1514 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1515 {
1516 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1517 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1518 }
1519
1520 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1521 }
1522
1523 void
1524 allocate_reg_life_data ()
1525 {
1526 int i;
1527
1528 max_regno = max_reg_num ();
1529
1530 /* Recalculate the register space, in case it has grown. Old style
1531 vector oriented regsets would set regset_{size,bytes} here also. */
1532 allocate_reg_info (max_regno, FALSE, FALSE);
1533
1534 /* Reset all the data we'll collect in propagate_block and its
1535 subroutines. */
1536 for (i = 0; i < max_regno; i++)
1537 {
1538 REG_N_SETS (i) = 0;
1539 REG_N_REFS (i) = 0;
1540 REG_N_DEATHS (i) = 0;
1541 REG_N_CALLS_CROSSED (i) = 0;
1542 REG_LIVE_LENGTH (i) = 0;
1543 REG_FREQ (i) = 0;
1544 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1545 }
1546 }
1547
1548 /* Delete dead instructions for propagate_block. */
1549
1550 static void
1551 propagate_block_delete_insn (insn)
1552 rtx insn;
1553 {
1554 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1555
1556 /* If the insn referred to a label, and that label was attached to
1557 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1558 pretty much mandatory to delete it, because the ADDR_VEC may be
1559 referencing labels that no longer exist.
1560
1561 INSN may reference a deleted label, particularly when a jump
1562 table has been optimized into a direct jump. There's no
1563 real good way to fix up the reference to the deleted label
1564 when the label is deleted, so we just allow it here. */
1565
1566 if (inote && GET_CODE (inote) == CODE_LABEL)
1567 {
1568 rtx label = XEXP (inote, 0);
1569 rtx next;
1570
1571 /* The label may be forced if it has been put in the constant
1572 pool. If that is the only use we must discard the table
1573 jump following it, but not the label itself. */
1574 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1575 && (next = next_nonnote_insn (label)) != NULL
1576 && GET_CODE (next) == JUMP_INSN
1577 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1578 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1579 {
1580 rtx pat = PATTERN (next);
1581 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1582 int len = XVECLEN (pat, diff_vec_p);
1583 int i;
1584
1585 for (i = 0; i < len; i++)
1586 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1587
1588 delete_insn_and_edges (next);
1589 ndead++;
1590 }
1591 }
1592
1593 delete_insn_and_edges (insn);
1594 ndead++;
1595 }
1596
1597 /* Delete dead libcalls for propagate_block. Return the insn
1598 before the libcall. */
1599
1600 static rtx
1601 propagate_block_delete_libcall ( insn, note)
1602 rtx insn, note;
1603 {
1604 rtx first = XEXP (note, 0);
1605 rtx before = PREV_INSN (first);
1606
1607 delete_insn_chain_and_edges (first, insn);
1608 ndead++;
1609 return before;
1610 }
1611
1612 /* Update the life-status of regs for one insn. Return the previous insn. */
1613
1614 rtx
1615 propagate_one_insn (pbi, insn)
1616 struct propagate_block_info *pbi;
1617 rtx insn;
1618 {
1619 rtx prev = PREV_INSN (insn);
1620 int flags = pbi->flags;
1621 int insn_is_dead = 0;
1622 int libcall_is_dead = 0;
1623 rtx note;
1624 int i;
1625
1626 if (! INSN_P (insn))
1627 return prev;
1628
1629 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1630 if (flags & PROP_SCAN_DEAD_CODE)
1631 {
1632 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1633 libcall_is_dead = (insn_is_dead && note != 0
1634 && libcall_dead_p (pbi, note, insn));
1635 }
1636
1637 /* If an instruction consists of just dead store(s) on final pass,
1638 delete it. */
1639 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1640 {
1641 /* If we're trying to delete a prologue or epilogue instruction
1642 that isn't flagged as possibly being dead, something is wrong.
1643 But if we are keeping the stack pointer depressed, we might well
1644 be deleting insns that are used to compute the amount to update
1645 it by, so they are fine. */
1646 if (reload_completed
1647 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1648 && (TYPE_RETURNS_STACK_DEPRESSED
1649 (TREE_TYPE (current_function_decl))))
1650 && (((HAVE_epilogue || HAVE_prologue)
1651 && prologue_epilogue_contains (insn))
1652 || (HAVE_sibcall_epilogue
1653 && sibcall_epilogue_contains (insn)))
1654 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1655 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1656
1657 /* Record sets. Do this even for dead instructions, since they
1658 would have killed the values if they hadn't been deleted. */
1659 mark_set_regs (pbi, PATTERN (insn), insn);
1660
1661 /* CC0 is now known to be dead. Either this insn used it,
1662 in which case it doesn't anymore, or clobbered it,
1663 so the next insn can't use it. */
1664 pbi->cc0_live = 0;
1665
1666 if (libcall_is_dead)
1667 prev = propagate_block_delete_libcall ( insn, note);
1668 else
1669 {
1670
1671 /* If INSN contains a RETVAL note and is dead, but the libcall
1672 as a whole is not dead, then we want to remove INSN, but
1673 not the whole libcall sequence.
1674
1675 However, we need to also remove the dangling REG_LIBCALL
1676 note so that we do not have mis-matched LIBCALL/RETVAL
1677 notes. In theory we could find a new location for the
1678 REG_RETVAL note, but it hardly seems worth the effort.
1679
1680 NOTE at this point will be the RETVAL note if it exists. */
1681 if (note)
1682 {
1683 rtx libcall_note;
1684
1685 libcall_note
1686 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1687 remove_note (XEXP (note, 0), libcall_note);
1688 }
1689
1690 /* Similarly if INSN contains a LIBCALL note, remove the
1691 dangling REG_RETVAL note. */
1692 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1693 if (note)
1694 {
1695 rtx retval_note;
1696
1697 retval_note
1698 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1699 remove_note (XEXP (note, 0), retval_note);
1700 }
1701
1702 /* Now delete INSN. */
1703 propagate_block_delete_insn (insn);
1704 }
1705
1706 return prev;
1707 }
1708
1709 /* See if this is an increment or decrement that can be merged into
1710 a following memory address. */
1711 #ifdef AUTO_INC_DEC
1712 {
1713 rtx x = single_set (insn);
1714
1715 /* Does this instruction increment or decrement a register? */
1716 if ((flags & PROP_AUTOINC)
1717 && x != 0
1718 && GET_CODE (SET_DEST (x)) == REG
1719 && (GET_CODE (SET_SRC (x)) == PLUS
1720 || GET_CODE (SET_SRC (x)) == MINUS)
1721 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1722 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1723 /* Ok, look for a following memory ref we can combine with.
1724 If one is found, change the memory ref to a PRE_INC
1725 or PRE_DEC, cancel this insn, and return 1.
1726 Return 0 if nothing has been done. */
1727 && try_pre_increment_1 (pbi, insn))
1728 return prev;
1729 }
1730 #endif /* AUTO_INC_DEC */
1731
1732 CLEAR_REG_SET (pbi->new_set);
1733
1734 /* If this is not the final pass, and this insn is copying the value of
1735 a library call and it's dead, don't scan the insns that perform the
1736 library call, so that the call's arguments are not marked live. */
1737 if (libcall_is_dead)
1738 {
1739 /* Record the death of the dest reg. */
1740 mark_set_regs (pbi, PATTERN (insn), insn);
1741
1742 insn = XEXP (note, 0);
1743 return PREV_INSN (insn);
1744 }
1745 else if (GET_CODE (PATTERN (insn)) == SET
1746 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1747 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1748 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1749 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1750 /* We have an insn to pop a constant amount off the stack.
1751 (Such insns use PLUS regardless of the direction of the stack,
1752 and any insn to adjust the stack by a constant is always a pop.)
1753 These insns, if not dead stores, have no effect on life, though
1754 they do have an effect on the memory stores we are tracking. */
1755 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1756 else
1757 {
1758 rtx note;
1759 /* Any regs live at the time of a call instruction must not go
1760 in a register clobbered by calls. Find all regs now live and
1761 record this for them. */
1762
1763 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1764 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1765 { REG_N_CALLS_CROSSED (i)++; });
1766
1767 /* Record sets. Do this even for dead instructions, since they
1768 would have killed the values if they hadn't been deleted. */
1769 mark_set_regs (pbi, PATTERN (insn), insn);
1770
1771 if (GET_CODE (insn) == CALL_INSN)
1772 {
1773 regset live_at_end;
1774 bool sibcall_p;
1775 rtx note, cond;
1776 int i;
1777
1778 cond = NULL_RTX;
1779 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1780 cond = COND_EXEC_TEST (PATTERN (insn));
1781
1782 /* Non-constant calls clobber memory, constant calls do not
1783 clobber memory, though they may clobber outgoing arguments
1784 on the stack. */
1785 if (! CONST_OR_PURE_CALL_P (insn))
1786 {
1787 free_EXPR_LIST_list (&pbi->mem_set_list);
1788 pbi->mem_set_list_len = 0;
1789 }
1790 else
1791 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1792
1793 /* There may be extra registers to be clobbered. */
1794 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1795 note;
1796 note = XEXP (note, 1))
1797 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1798 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1799 cond, insn, pbi->flags);
1800
1801 /* Calls change all call-used and global registers; sibcalls do not
1802 clobber anything that must be preserved at end-of-function. */
1803
1804 sibcall_p = SIBLING_CALL_P (insn);
1805 live_at_end = EXIT_BLOCK_PTR->global_live_at_start;
1806 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1807 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i)
1808 && ! (sibcall_p && REGNO_REG_SET_P (live_at_end, i)))
1809 {
1810 /* We do not want REG_UNUSED notes for these registers. */
1811 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1812 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1813 }
1814 }
1815
1816 /* If an insn doesn't use CC0, it becomes dead since we assume
1817 that every insn clobbers it. So show it dead here;
1818 mark_used_regs will set it live if it is referenced. */
1819 pbi->cc0_live = 0;
1820
1821 /* Record uses. */
1822 if (! insn_is_dead)
1823 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1824 if ((flags & PROP_EQUAL_NOTES)
1825 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1826 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1827 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1828
1829 /* Sometimes we may have inserted something before INSN (such as a move)
1830 when we make an auto-inc. So ensure we will scan those insns. */
1831 #ifdef AUTO_INC_DEC
1832 prev = PREV_INSN (insn);
1833 #endif
1834
1835 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1836 {
1837 int i;
1838 rtx note, cond;
1839
1840 cond = NULL_RTX;
1841 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1842 cond = COND_EXEC_TEST (PATTERN (insn));
1843
1844 /* Calls use their arguments, and may clobber memory which
1845 address involves some register. */
1846 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1847 note;
1848 note = XEXP (note, 1))
1849 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1850 of which mark_used_regs knows how to handle. */
1851 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1852
1853 /* The stack ptr is used (honorarily) by a CALL insn. */
1854 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1855
1856 /* Calls may also reference any of the global registers,
1857 so they are made live. */
1858 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1859 if (global_regs[i])
1860 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1861 }
1862 }
1863
1864 /* On final pass, update counts of how many insns in which each reg
1865 is live. */
1866 if (flags & PROP_REG_INFO)
1867 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1868 { REG_LIVE_LENGTH (i)++; });
1869
1870 return prev;
1871 }
1872
1873 /* Initialize a propagate_block_info struct for public consumption.
1874 Note that the structure itself is opaque to this file, but that
1875 the user can use the regsets provided here. */
1876
1877 struct propagate_block_info *
1878 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1879 basic_block bb;
1880 regset live, local_set, cond_local_set;
1881 int flags;
1882 {
1883 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1884
1885 pbi->bb = bb;
1886 pbi->reg_live = live;
1887 pbi->mem_set_list = NULL_RTX;
1888 pbi->mem_set_list_len = 0;
1889 pbi->local_set = local_set;
1890 pbi->cond_local_set = cond_local_set;
1891 pbi->cc0_live = 0;
1892 pbi->flags = flags;
1893
1894 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1895 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1896 else
1897 pbi->reg_next_use = NULL;
1898
1899 pbi->new_set = BITMAP_XMALLOC ();
1900
1901 #ifdef HAVE_conditional_execution
1902 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1903 free_reg_cond_life_info);
1904 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1905
1906 /* If this block ends in a conditional branch, for each register live
1907 from one side of the branch and not the other, record the register
1908 as conditionally dead. */
1909 if (GET_CODE (bb->end) == JUMP_INSN
1910 && any_condjump_p (bb->end))
1911 {
1912 regset_head diff_head;
1913 regset diff = INITIALIZE_REG_SET (diff_head);
1914 basic_block bb_true, bb_false;
1915 rtx cond_true, cond_false, set_src;
1916 int i;
1917
1918 /* Identify the successor blocks. */
1919 bb_true = bb->succ->dest;
1920 if (bb->succ->succ_next != NULL)
1921 {
1922 bb_false = bb->succ->succ_next->dest;
1923
1924 if (bb->succ->flags & EDGE_FALLTHRU)
1925 {
1926 basic_block t = bb_false;
1927 bb_false = bb_true;
1928 bb_true = t;
1929 }
1930 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1931 abort ();
1932 }
1933 else
1934 {
1935 /* This can happen with a conditional jump to the next insn. */
1936 if (JUMP_LABEL (bb->end) != bb_true->head)
1937 abort ();
1938
1939 /* Simplest way to do nothing. */
1940 bb_false = bb_true;
1941 }
1942
1943 /* Extract the condition from the branch. */
1944 set_src = SET_SRC (pc_set (bb->end));
1945 cond_true = XEXP (set_src, 0);
1946 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1947 GET_MODE (cond_true), XEXP (cond_true, 0),
1948 XEXP (cond_true, 1));
1949 if (GET_CODE (XEXP (set_src, 1)) == PC)
1950 {
1951 rtx t = cond_false;
1952 cond_false = cond_true;
1953 cond_true = t;
1954 }
1955
1956 /* Compute which register lead different lives in the successors. */
1957 if (bitmap_operation (diff, bb_true->global_live_at_start,
1958 bb_false->global_live_at_start, BITMAP_XOR))
1959 {
1960 rtx reg = XEXP (cond_true, 0);
1961
1962 if (GET_CODE (reg) == SUBREG)
1963 reg = SUBREG_REG (reg);
1964
1965 if (GET_CODE (reg) != REG)
1966 abort ();
1967
1968 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1969
1970 /* For each such register, mark it conditionally dead. */
1971 EXECUTE_IF_SET_IN_REG_SET
1972 (diff, 0, i,
1973 {
1974 struct reg_cond_life_info *rcli;
1975 rtx cond;
1976
1977 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1978
1979 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1980 cond = cond_false;
1981 else
1982 cond = cond_true;
1983 rcli->condition = cond;
1984 rcli->stores = const0_rtx;
1985 rcli->orig_condition = cond;
1986
1987 splay_tree_insert (pbi->reg_cond_dead, i,
1988 (splay_tree_value) rcli);
1989 });
1990 }
1991
1992 FREE_REG_SET (diff);
1993 }
1994 #endif
1995
1996 /* If this block has no successors, any stores to the frame that aren't
1997 used later in the block are dead. So make a pass over the block
1998 recording any such that are made and show them dead at the end. We do
1999 a very conservative and simple job here. */
2000 if (optimize
2001 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
2002 && (TYPE_RETURNS_STACK_DEPRESSED
2003 (TREE_TYPE (current_function_decl))))
2004 && (flags & PROP_SCAN_DEAD_STORES)
2005 && (bb->succ == NULL
2006 || (bb->succ->succ_next == NULL
2007 && bb->succ->dest == EXIT_BLOCK_PTR
2008 && ! current_function_calls_eh_return)))
2009 {
2010 rtx insn, set;
2011 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
2012 if (GET_CODE (insn) == INSN
2013 && (set = single_set (insn))
2014 && GET_CODE (SET_DEST (set)) == MEM)
2015 {
2016 rtx mem = SET_DEST (set);
2017 rtx canon_mem = canon_rtx (mem);
2018
2019 /* This optimization is performed by faking a store to the
2020 memory at the end of the block. This doesn't work for
2021 unchanging memories because multiple stores to unchanging
2022 memory is illegal and alias analysis doesn't consider it. */
2023 if (RTX_UNCHANGING_P (canon_mem))
2024 continue;
2025
2026 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2027 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2028 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2029 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2030 add_to_mem_set_list (pbi, canon_mem);
2031 }
2032 }
2033
2034 return pbi;
2035 }
2036
2037 /* Release a propagate_block_info struct. */
2038
2039 void
2040 free_propagate_block_info (pbi)
2041 struct propagate_block_info *pbi;
2042 {
2043 free_EXPR_LIST_list (&pbi->mem_set_list);
2044
2045 BITMAP_XFREE (pbi->new_set);
2046
2047 #ifdef HAVE_conditional_execution
2048 splay_tree_delete (pbi->reg_cond_dead);
2049 BITMAP_XFREE (pbi->reg_cond_reg);
2050 #endif
2051
2052 if (pbi->reg_next_use)
2053 free (pbi->reg_next_use);
2054
2055 free (pbi);
2056 }
2057
2058 /* Compute the registers live at the beginning of a basic block BB from
2059 those live at the end.
2060
2061 When called, REG_LIVE contains those live at the end. On return, it
2062 contains those live at the beginning.
2063
2064 LOCAL_SET, if non-null, will be set with all registers killed
2065 unconditionally by this basic block.
2066 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2067 killed conditionally by this basic block. If there is any unconditional
2068 set of a register, then the corresponding bit will be set in LOCAL_SET
2069 and cleared in COND_LOCAL_SET.
2070 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2071 case, the resulting set will be equal to the union of the two sets that
2072 would otherwise be computed.
2073
2074 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2075
2076 int
2077 propagate_block (bb, live, local_set, cond_local_set, flags)
2078 basic_block bb;
2079 regset live;
2080 regset local_set;
2081 regset cond_local_set;
2082 int flags;
2083 {
2084 struct propagate_block_info *pbi;
2085 rtx insn, prev;
2086 int changed;
2087
2088 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2089
2090 if (flags & PROP_REG_INFO)
2091 {
2092 int i;
2093
2094 /* Process the regs live at the end of the block.
2095 Mark them as not local to any one basic block. */
2096 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2097 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2098 }
2099
2100 /* Scan the block an insn at a time from end to beginning. */
2101
2102 changed = 0;
2103 for (insn = bb->end;; insn = prev)
2104 {
2105 /* If this is a call to `setjmp' et al, warn if any
2106 non-volatile datum is live. */
2107 if ((flags & PROP_REG_INFO)
2108 && GET_CODE (insn) == CALL_INSN
2109 && find_reg_note (insn, REG_SETJMP, NULL))
2110 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2111
2112 prev = propagate_one_insn (pbi, insn);
2113 changed |= NEXT_INSN (prev) != insn;
2114
2115 if (insn == bb->head)
2116 break;
2117 }
2118
2119 free_propagate_block_info (pbi);
2120
2121 return changed;
2122 }
2123 \f
2124 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2125 (SET expressions whose destinations are registers dead after the insn).
2126 NEEDED is the regset that says which regs are alive after the insn.
2127
2128 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2129
2130 If X is the entire body of an insn, NOTES contains the reg notes
2131 pertaining to the insn. */
2132
2133 static int
2134 insn_dead_p (pbi, x, call_ok, notes)
2135 struct propagate_block_info *pbi;
2136 rtx x;
2137 int call_ok;
2138 rtx notes ATTRIBUTE_UNUSED;
2139 {
2140 enum rtx_code code = GET_CODE (x);
2141
2142 /* Don't eliminate insns that may trap. */
2143 if (flag_non_call_exceptions && may_trap_p (x))
2144 return 0;
2145
2146 #ifdef AUTO_INC_DEC
2147 /* As flow is invoked after combine, we must take existing AUTO_INC
2148 expressions into account. */
2149 for (; notes; notes = XEXP (notes, 1))
2150 {
2151 if (REG_NOTE_KIND (notes) == REG_INC)
2152 {
2153 int regno = REGNO (XEXP (notes, 0));
2154
2155 /* Don't delete insns to set global regs. */
2156 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2157 || REGNO_REG_SET_P (pbi->reg_live, regno))
2158 return 0;
2159 }
2160 }
2161 #endif
2162
2163 /* If setting something that's a reg or part of one,
2164 see if that register's altered value will be live. */
2165
2166 if (code == SET)
2167 {
2168 rtx r = SET_DEST (x);
2169
2170 #ifdef HAVE_cc0
2171 if (GET_CODE (r) == CC0)
2172 return ! pbi->cc0_live;
2173 #endif
2174
2175 /* A SET that is a subroutine call cannot be dead. */
2176 if (GET_CODE (SET_SRC (x)) == CALL)
2177 {
2178 if (! call_ok)
2179 return 0;
2180 }
2181
2182 /* Don't eliminate loads from volatile memory or volatile asms. */
2183 else if (volatile_refs_p (SET_SRC (x)))
2184 return 0;
2185
2186 if (GET_CODE (r) == MEM)
2187 {
2188 rtx temp, canon_r;
2189
2190 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2191 return 0;
2192
2193 canon_r = canon_rtx (r);
2194
2195 /* Walk the set of memory locations we are currently tracking
2196 and see if one is an identical match to this memory location.
2197 If so, this memory write is dead (remember, we're walking
2198 backwards from the end of the block to the start). Since
2199 rtx_equal_p does not check the alias set or flags, we also
2200 must have the potential for them to conflict (anti_dependence). */
2201 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2202 if (anti_dependence (r, XEXP (temp, 0)))
2203 {
2204 rtx mem = XEXP (temp, 0);
2205
2206 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2207 && (GET_MODE_SIZE (GET_MODE (canon_r))
2208 <= GET_MODE_SIZE (GET_MODE (mem))))
2209 return 1;
2210
2211 #ifdef AUTO_INC_DEC
2212 /* Check if memory reference matches an auto increment. Only
2213 post increment/decrement or modify are valid. */
2214 if (GET_MODE (mem) == GET_MODE (r)
2215 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2216 || GET_CODE (XEXP (mem, 0)) == POST_INC
2217 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2218 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2219 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2220 return 1;
2221 #endif
2222 }
2223 }
2224 else
2225 {
2226 while (GET_CODE (r) == SUBREG
2227 || GET_CODE (r) == STRICT_LOW_PART
2228 || GET_CODE (r) == ZERO_EXTRACT)
2229 r = XEXP (r, 0);
2230
2231 if (GET_CODE (r) == REG)
2232 {
2233 int regno = REGNO (r);
2234
2235 /* Obvious. */
2236 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2237 return 0;
2238
2239 /* If this is a hard register, verify that subsequent
2240 words are not needed. */
2241 if (regno < FIRST_PSEUDO_REGISTER)
2242 {
2243 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2244
2245 while (--n > 0)
2246 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2247 return 0;
2248 }
2249
2250 /* Don't delete insns to set global regs. */
2251 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2252 return 0;
2253
2254 /* Make sure insns to set the stack pointer aren't deleted. */
2255 if (regno == STACK_POINTER_REGNUM)
2256 return 0;
2257
2258 /* ??? These bits might be redundant with the force live bits
2259 in calculate_global_regs_live. We would delete from
2260 sequential sets; whether this actually affects real code
2261 for anything but the stack pointer I don't know. */
2262 /* Make sure insns to set the frame pointer aren't deleted. */
2263 if (regno == FRAME_POINTER_REGNUM
2264 && (! reload_completed || frame_pointer_needed))
2265 return 0;
2266 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2267 if (regno == HARD_FRAME_POINTER_REGNUM
2268 && (! reload_completed || frame_pointer_needed))
2269 return 0;
2270 #endif
2271
2272 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2273 /* Make sure insns to set arg pointer are never deleted
2274 (if the arg pointer isn't fixed, there will be a USE
2275 for it, so we can treat it normally). */
2276 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2277 return 0;
2278 #endif
2279
2280 /* Otherwise, the set is dead. */
2281 return 1;
2282 }
2283 }
2284 }
2285
2286 /* If performing several activities, insn is dead if each activity
2287 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2288 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2289 worth keeping. */
2290 else if (code == PARALLEL)
2291 {
2292 int i = XVECLEN (x, 0);
2293
2294 for (i--; i >= 0; i--)
2295 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2296 && GET_CODE (XVECEXP (x, 0, i)) != USE
2297 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2298 return 0;
2299
2300 return 1;
2301 }
2302
2303 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2304 is not necessarily true for hard registers. */
2305 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2306 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2307 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2308 return 1;
2309
2310 /* We do not check other CLOBBER or USE here. An insn consisting of just
2311 a CLOBBER or just a USE should not be deleted. */
2312 return 0;
2313 }
2314
2315 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2316 return 1 if the entire library call is dead.
2317 This is true if INSN copies a register (hard or pseudo)
2318 and if the hard return reg of the call insn is dead.
2319 (The caller should have tested the destination of the SET inside
2320 INSN already for death.)
2321
2322 If this insn doesn't just copy a register, then we don't
2323 have an ordinary libcall. In that case, cse could not have
2324 managed to substitute the source for the dest later on,
2325 so we can assume the libcall is dead.
2326
2327 PBI is the block info giving pseudoregs live before this insn.
2328 NOTE is the REG_RETVAL note of the insn. */
2329
2330 static int
2331 libcall_dead_p (pbi, note, insn)
2332 struct propagate_block_info *pbi;
2333 rtx note;
2334 rtx insn;
2335 {
2336 rtx x = single_set (insn);
2337
2338 if (x)
2339 {
2340 rtx r = SET_SRC (x);
2341
2342 if (GET_CODE (r) == REG)
2343 {
2344 rtx call = XEXP (note, 0);
2345 rtx call_pat;
2346 int i;
2347
2348 /* Find the call insn. */
2349 while (call != insn && GET_CODE (call) != CALL_INSN)
2350 call = NEXT_INSN (call);
2351
2352 /* If there is none, do nothing special,
2353 since ordinary death handling can understand these insns. */
2354 if (call == insn)
2355 return 0;
2356
2357 /* See if the hard reg holding the value is dead.
2358 If this is a PARALLEL, find the call within it. */
2359 call_pat = PATTERN (call);
2360 if (GET_CODE (call_pat) == PARALLEL)
2361 {
2362 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2363 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2364 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2365 break;
2366
2367 /* This may be a library call that is returning a value
2368 via invisible pointer. Do nothing special, since
2369 ordinary death handling can understand these insns. */
2370 if (i < 0)
2371 return 0;
2372
2373 call_pat = XVECEXP (call_pat, 0, i);
2374 }
2375
2376 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2377 }
2378 }
2379 return 1;
2380 }
2381
2382 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2383 live at function entry. Don't count global register variables, variables
2384 in registers that can be used for function arg passing, or variables in
2385 fixed hard registers. */
2386
2387 int
2388 regno_uninitialized (regno)
2389 unsigned int regno;
2390 {
2391 if (n_basic_blocks == 0
2392 || (regno < FIRST_PSEUDO_REGISTER
2393 && (global_regs[regno]
2394 || fixed_regs[regno]
2395 || FUNCTION_ARG_REGNO_P (regno))))
2396 return 0;
2397
2398 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2399 }
2400
2401 /* 1 if register REGNO was alive at a place where `setjmp' was called
2402 and was set more than once or is an argument.
2403 Such regs may be clobbered by `longjmp'. */
2404
2405 int
2406 regno_clobbered_at_setjmp (regno)
2407 int regno;
2408 {
2409 if (n_basic_blocks == 0)
2410 return 0;
2411
2412 return ((REG_N_SETS (regno) > 1
2413 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2414 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2415 }
2416 \f
2417 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2418 maximal list size; look for overlaps in mode and select the largest. */
2419 static void
2420 add_to_mem_set_list (pbi, mem)
2421 struct propagate_block_info *pbi;
2422 rtx mem;
2423 {
2424 rtx i;
2425
2426 /* We don't know how large a BLKmode store is, so we must not
2427 take them into consideration. */
2428 if (GET_MODE (mem) == BLKmode)
2429 return;
2430
2431 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2432 {
2433 rtx e = XEXP (i, 0);
2434 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2435 {
2436 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2437 {
2438 #ifdef AUTO_INC_DEC
2439 /* If we must store a copy of the mem, we can just modify
2440 the mode of the stored copy. */
2441 if (pbi->flags & PROP_AUTOINC)
2442 PUT_MODE (e, GET_MODE (mem));
2443 else
2444 #endif
2445 XEXP (i, 0) = mem;
2446 }
2447 return;
2448 }
2449 }
2450
2451 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2452 {
2453 #ifdef AUTO_INC_DEC
2454 /* Store a copy of mem, otherwise the address may be
2455 scrogged by find_auto_inc. */
2456 if (pbi->flags & PROP_AUTOINC)
2457 mem = shallow_copy_rtx (mem);
2458 #endif
2459 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2460 pbi->mem_set_list_len++;
2461 }
2462 }
2463
2464 /* INSN references memory, possibly using autoincrement addressing modes.
2465 Find any entries on the mem_set_list that need to be invalidated due
2466 to an address change. */
2467
2468 static int
2469 invalidate_mems_from_autoinc (px, data)
2470 rtx *px;
2471 void *data;
2472 {
2473 rtx x = *px;
2474 struct propagate_block_info *pbi = data;
2475
2476 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2477 {
2478 invalidate_mems_from_set (pbi, XEXP (x, 0));
2479 return -1;
2480 }
2481
2482 return 0;
2483 }
2484
2485 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2486
2487 static void
2488 invalidate_mems_from_set (pbi, exp)
2489 struct propagate_block_info *pbi;
2490 rtx exp;
2491 {
2492 rtx temp = pbi->mem_set_list;
2493 rtx prev = NULL_RTX;
2494 rtx next;
2495
2496 while (temp)
2497 {
2498 next = XEXP (temp, 1);
2499 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2500 {
2501 /* Splice this entry out of the list. */
2502 if (prev)
2503 XEXP (prev, 1) = next;
2504 else
2505 pbi->mem_set_list = next;
2506 free_EXPR_LIST_node (temp);
2507 pbi->mem_set_list_len--;
2508 }
2509 else
2510 prev = temp;
2511 temp = next;
2512 }
2513 }
2514
2515 /* Process the registers that are set within X. Their bits are set to
2516 1 in the regset DEAD, because they are dead prior to this insn.
2517
2518 If INSN is nonzero, it is the insn being processed.
2519
2520 FLAGS is the set of operations to perform. */
2521
2522 static void
2523 mark_set_regs (pbi, x, insn)
2524 struct propagate_block_info *pbi;
2525 rtx x, insn;
2526 {
2527 rtx cond = NULL_RTX;
2528 rtx link;
2529 enum rtx_code code;
2530
2531 if (insn)
2532 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2533 {
2534 if (REG_NOTE_KIND (link) == REG_INC)
2535 mark_set_1 (pbi, SET, XEXP (link, 0),
2536 (GET_CODE (x) == COND_EXEC
2537 ? COND_EXEC_TEST (x) : NULL_RTX),
2538 insn, pbi->flags);
2539 }
2540 retry:
2541 switch (code = GET_CODE (x))
2542 {
2543 case SET:
2544 case CLOBBER:
2545 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2546 return;
2547
2548 case COND_EXEC:
2549 cond = COND_EXEC_TEST (x);
2550 x = COND_EXEC_CODE (x);
2551 goto retry;
2552
2553 case PARALLEL:
2554 {
2555 int i;
2556
2557 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2558 {
2559 rtx sub = XVECEXP (x, 0, i);
2560 switch (code = GET_CODE (sub))
2561 {
2562 case COND_EXEC:
2563 if (cond != NULL_RTX)
2564 abort ();
2565
2566 cond = COND_EXEC_TEST (sub);
2567 sub = COND_EXEC_CODE (sub);
2568 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2569 break;
2570 /* Fall through. */
2571
2572 case SET:
2573 case CLOBBER:
2574 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2575 break;
2576
2577 default:
2578 break;
2579 }
2580 }
2581 break;
2582 }
2583
2584 default:
2585 break;
2586 }
2587 }
2588
2589 /* Process a single set, which appears in INSN. REG (which may not
2590 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2591 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2592 If the set is conditional (because it appear in a COND_EXEC), COND
2593 will be the condition. */
2594
2595 static void
2596 mark_set_1 (pbi, code, reg, cond, insn, flags)
2597 struct propagate_block_info *pbi;
2598 enum rtx_code code;
2599 rtx reg, cond, insn;
2600 int flags;
2601 {
2602 int regno_first = -1, regno_last = -1;
2603 unsigned long not_dead = 0;
2604 int i;
2605
2606 /* Modifying just one hardware register of a multi-reg value or just a
2607 byte field of a register does not mean the value from before this insn
2608 is now dead. Of course, if it was dead after it's unused now. */
2609
2610 switch (GET_CODE (reg))
2611 {
2612 case PARALLEL:
2613 /* Some targets place small structures in registers for return values of
2614 functions. We have to detect this case specially here to get correct
2615 flow information. */
2616 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2617 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2618 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2619 flags);
2620 return;
2621
2622 case ZERO_EXTRACT:
2623 case SIGN_EXTRACT:
2624 case STRICT_LOW_PART:
2625 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2626 do
2627 reg = XEXP (reg, 0);
2628 while (GET_CODE (reg) == SUBREG
2629 || GET_CODE (reg) == ZERO_EXTRACT
2630 || GET_CODE (reg) == SIGN_EXTRACT
2631 || GET_CODE (reg) == STRICT_LOW_PART);
2632 if (GET_CODE (reg) == MEM)
2633 break;
2634 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2635 /* Fall through. */
2636
2637 case REG:
2638 regno_last = regno_first = REGNO (reg);
2639 if (regno_first < FIRST_PSEUDO_REGISTER)
2640 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2641 break;
2642
2643 case SUBREG:
2644 if (GET_CODE (SUBREG_REG (reg)) == REG)
2645 {
2646 enum machine_mode outer_mode = GET_MODE (reg);
2647 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2648
2649 /* Identify the range of registers affected. This is moderately
2650 tricky for hard registers. See alter_subreg. */
2651
2652 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2653 if (regno_first < FIRST_PSEUDO_REGISTER)
2654 {
2655 regno_first += subreg_regno_offset (regno_first, inner_mode,
2656 SUBREG_BYTE (reg),
2657 outer_mode);
2658 regno_last = (regno_first
2659 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2660
2661 /* Since we've just adjusted the register number ranges, make
2662 sure REG matches. Otherwise some_was_live will be clear
2663 when it shouldn't have been, and we'll create incorrect
2664 REG_UNUSED notes. */
2665 reg = gen_rtx_REG (outer_mode, regno_first);
2666 }
2667 else
2668 {
2669 /* If the number of words in the subreg is less than the number
2670 of words in the full register, we have a well-defined partial
2671 set. Otherwise the high bits are undefined.
2672
2673 This is only really applicable to pseudos, since we just took
2674 care of multi-word hard registers. */
2675 if (((GET_MODE_SIZE (outer_mode)
2676 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2677 < ((GET_MODE_SIZE (inner_mode)
2678 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2679 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2680 regno_first);
2681
2682 reg = SUBREG_REG (reg);
2683 }
2684 }
2685 else
2686 reg = SUBREG_REG (reg);
2687 break;
2688
2689 default:
2690 break;
2691 }
2692
2693 /* If this set is a MEM, then it kills any aliased writes.
2694 If this set is a REG, then it kills any MEMs which use the reg. */
2695 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2696 {
2697 if (GET_CODE (reg) == REG)
2698 invalidate_mems_from_set (pbi, reg);
2699
2700 /* If the memory reference had embedded side effects (autoincrement
2701 address modes. Then we may need to kill some entries on the
2702 memory set list. */
2703 if (insn && GET_CODE (reg) == MEM)
2704 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2705
2706 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2707 /* ??? With more effort we could track conditional memory life. */
2708 && ! cond)
2709 add_to_mem_set_list (pbi, canon_rtx (reg));
2710 }
2711
2712 if (GET_CODE (reg) == REG
2713 && ! (regno_first == FRAME_POINTER_REGNUM
2714 && (! reload_completed || frame_pointer_needed))
2715 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2716 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2717 && (! reload_completed || frame_pointer_needed))
2718 #endif
2719 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2720 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2721 #endif
2722 )
2723 {
2724 int some_was_live = 0, some_was_dead = 0;
2725
2726 for (i = regno_first; i <= regno_last; ++i)
2727 {
2728 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2729 if (pbi->local_set)
2730 {
2731 /* Order of the set operation matters here since both
2732 sets may be the same. */
2733 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2734 if (cond != NULL_RTX
2735 && ! REGNO_REG_SET_P (pbi->local_set, i))
2736 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2737 else
2738 SET_REGNO_REG_SET (pbi->local_set, i);
2739 }
2740 if (code != CLOBBER)
2741 SET_REGNO_REG_SET (pbi->new_set, i);
2742
2743 some_was_live |= needed_regno;
2744 some_was_dead |= ! needed_regno;
2745 }
2746
2747 #ifdef HAVE_conditional_execution
2748 /* Consider conditional death in deciding that the register needs
2749 a death note. */
2750 if (some_was_live && ! not_dead
2751 /* The stack pointer is never dead. Well, not strictly true,
2752 but it's very difficult to tell from here. Hopefully
2753 combine_stack_adjustments will fix up the most egregious
2754 errors. */
2755 && regno_first != STACK_POINTER_REGNUM)
2756 {
2757 for (i = regno_first; i <= regno_last; ++i)
2758 if (! mark_regno_cond_dead (pbi, i, cond))
2759 not_dead |= ((unsigned long) 1) << (i - regno_first);
2760 }
2761 #endif
2762
2763 /* Additional data to record if this is the final pass. */
2764 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2765 | PROP_DEATH_NOTES | PROP_AUTOINC))
2766 {
2767 rtx y;
2768 int blocknum = pbi->bb->index;
2769
2770 y = NULL_RTX;
2771 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2772 {
2773 y = pbi->reg_next_use[regno_first];
2774
2775 /* The next use is no longer next, since a store intervenes. */
2776 for (i = regno_first; i <= regno_last; ++i)
2777 pbi->reg_next_use[i] = 0;
2778 }
2779
2780 if (flags & PROP_REG_INFO)
2781 {
2782 for (i = regno_first; i <= regno_last; ++i)
2783 {
2784 /* Count (weighted) references, stores, etc. This counts a
2785 register twice if it is modified, but that is correct. */
2786 REG_N_SETS (i) += 1;
2787 REG_N_REFS (i) += 1;
2788 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2789
2790 /* The insns where a reg is live are normally counted
2791 elsewhere, but we want the count to include the insn
2792 where the reg is set, and the normal counting mechanism
2793 would not count it. */
2794 REG_LIVE_LENGTH (i) += 1;
2795 }
2796
2797 /* If this is a hard reg, record this function uses the reg. */
2798 if (regno_first < FIRST_PSEUDO_REGISTER)
2799 {
2800 for (i = regno_first; i <= regno_last; i++)
2801 regs_ever_live[i] = 1;
2802 }
2803 else
2804 {
2805 /* Keep track of which basic blocks each reg appears in. */
2806 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2807 REG_BASIC_BLOCK (regno_first) = blocknum;
2808 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2809 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2810 }
2811 }
2812
2813 if (! some_was_dead)
2814 {
2815 if (flags & PROP_LOG_LINKS)
2816 {
2817 /* Make a logical link from the next following insn
2818 that uses this register, back to this insn.
2819 The following insns have already been processed.
2820
2821 We don't build a LOG_LINK for hard registers containing
2822 in ASM_OPERANDs. If these registers get replaced,
2823 we might wind up changing the semantics of the insn,
2824 even if reload can make what appear to be valid
2825 assignments later. */
2826 if (y && (BLOCK_NUM (y) == blocknum)
2827 && (regno_first >= FIRST_PSEUDO_REGISTER
2828 || asm_noperands (PATTERN (y)) < 0))
2829 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2830 }
2831 }
2832 else if (not_dead)
2833 ;
2834 else if (! some_was_live)
2835 {
2836 if (flags & PROP_REG_INFO)
2837 REG_N_DEATHS (regno_first) += 1;
2838
2839 if (flags & PROP_DEATH_NOTES)
2840 {
2841 /* Note that dead stores have already been deleted
2842 when possible. If we get here, we have found a
2843 dead store that cannot be eliminated (because the
2844 same insn does something useful). Indicate this
2845 by marking the reg being set as dying here. */
2846 REG_NOTES (insn)
2847 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2848 }
2849 }
2850 else
2851 {
2852 if (flags & PROP_DEATH_NOTES)
2853 {
2854 /* This is a case where we have a multi-word hard register
2855 and some, but not all, of the words of the register are
2856 needed in subsequent insns. Write REG_UNUSED notes
2857 for those parts that were not needed. This case should
2858 be rare. */
2859
2860 for (i = regno_first; i <= regno_last; ++i)
2861 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2862 REG_NOTES (insn)
2863 = alloc_EXPR_LIST (REG_UNUSED,
2864 regno_reg_rtx[i],
2865 REG_NOTES (insn));
2866 }
2867 }
2868 }
2869
2870 /* Mark the register as being dead. */
2871 if (some_was_live
2872 /* The stack pointer is never dead. Well, not strictly true,
2873 but it's very difficult to tell from here. Hopefully
2874 combine_stack_adjustments will fix up the most egregious
2875 errors. */
2876 && regno_first != STACK_POINTER_REGNUM)
2877 {
2878 for (i = regno_first; i <= regno_last; ++i)
2879 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2880 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2881 }
2882 }
2883 else if (GET_CODE (reg) == REG)
2884 {
2885 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2886 pbi->reg_next_use[regno_first] = 0;
2887 }
2888
2889 /* If this is the last pass and this is a SCRATCH, show it will be dying
2890 here and count it. */
2891 else if (GET_CODE (reg) == SCRATCH)
2892 {
2893 if (flags & PROP_DEATH_NOTES)
2894 REG_NOTES (insn)
2895 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2896 }
2897 }
2898 \f
2899 #ifdef HAVE_conditional_execution
2900 /* Mark REGNO conditionally dead.
2901 Return true if the register is now unconditionally dead. */
2902
2903 static int
2904 mark_regno_cond_dead (pbi, regno, cond)
2905 struct propagate_block_info *pbi;
2906 int regno;
2907 rtx cond;
2908 {
2909 /* If this is a store to a predicate register, the value of the
2910 predicate is changing, we don't know that the predicate as seen
2911 before is the same as that seen after. Flush all dependent
2912 conditions from reg_cond_dead. This will make all such
2913 conditionally live registers unconditionally live. */
2914 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2915 flush_reg_cond_reg (pbi, regno);
2916
2917 /* If this is an unconditional store, remove any conditional
2918 life that may have existed. */
2919 if (cond == NULL_RTX)
2920 splay_tree_remove (pbi->reg_cond_dead, regno);
2921 else
2922 {
2923 splay_tree_node node;
2924 struct reg_cond_life_info *rcli;
2925 rtx ncond;
2926
2927 /* Otherwise this is a conditional set. Record that fact.
2928 It may have been conditionally used, or there may be a
2929 subsequent set with a complimentary condition. */
2930
2931 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2932 if (node == NULL)
2933 {
2934 /* The register was unconditionally live previously.
2935 Record the current condition as the condition under
2936 which it is dead. */
2937 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2938 rcli->condition = cond;
2939 rcli->stores = cond;
2940 rcli->orig_condition = const0_rtx;
2941 splay_tree_insert (pbi->reg_cond_dead, regno,
2942 (splay_tree_value) rcli);
2943
2944 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2945
2946 /* Not unconditionally dead. */
2947 return 0;
2948 }
2949 else
2950 {
2951 /* The register was conditionally live previously.
2952 Add the new condition to the old. */
2953 rcli = (struct reg_cond_life_info *) node->value;
2954 ncond = rcli->condition;
2955 ncond = ior_reg_cond (ncond, cond, 1);
2956 if (rcli->stores == const0_rtx)
2957 rcli->stores = cond;
2958 else if (rcli->stores != const1_rtx)
2959 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2960
2961 /* If the register is now unconditionally dead, remove the entry
2962 in the splay_tree. A register is unconditionally dead if the
2963 dead condition ncond is true. A register is also unconditionally
2964 dead if the sum of all conditional stores is an unconditional
2965 store (stores is true), and the dead condition is identically the
2966 same as the original dead condition initialized at the end of
2967 the block. This is a pointer compare, not an rtx_equal_p
2968 compare. */
2969 if (ncond == const1_rtx
2970 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2971 splay_tree_remove (pbi->reg_cond_dead, regno);
2972 else
2973 {
2974 rcli->condition = ncond;
2975
2976 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2977
2978 /* Not unconditionally dead. */
2979 return 0;
2980 }
2981 }
2982 }
2983
2984 return 1;
2985 }
2986
2987 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2988
2989 static void
2990 free_reg_cond_life_info (value)
2991 splay_tree_value value;
2992 {
2993 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2994 free (rcli);
2995 }
2996
2997 /* Helper function for flush_reg_cond_reg. */
2998
2999 static int
3000 flush_reg_cond_reg_1 (node, data)
3001 splay_tree_node node;
3002 void *data;
3003 {
3004 struct reg_cond_life_info *rcli;
3005 int *xdata = (int *) data;
3006 unsigned int regno = xdata[0];
3007
3008 /* Don't need to search if last flushed value was farther on in
3009 the in-order traversal. */
3010 if (xdata[1] >= (int) node->key)
3011 return 0;
3012
3013 /* Splice out portions of the expression that refer to regno. */
3014 rcli = (struct reg_cond_life_info *) node->value;
3015 rcli->condition = elim_reg_cond (rcli->condition, regno);
3016 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3017 rcli->stores = elim_reg_cond (rcli->stores, regno);
3018
3019 /* If the entire condition is now false, signal the node to be removed. */
3020 if (rcli->condition == const0_rtx)
3021 {
3022 xdata[1] = node->key;
3023 return -1;
3024 }
3025 else if (rcli->condition == const1_rtx)
3026 abort ();
3027
3028 return 0;
3029 }
3030
3031 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3032
3033 static void
3034 flush_reg_cond_reg (pbi, regno)
3035 struct propagate_block_info *pbi;
3036 int regno;
3037 {
3038 int pair[2];
3039
3040 pair[0] = regno;
3041 pair[1] = -1;
3042 while (splay_tree_foreach (pbi->reg_cond_dead,
3043 flush_reg_cond_reg_1, pair) == -1)
3044 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3045
3046 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3047 }
3048
3049 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3050 For ior/and, the ADD flag determines whether we want to add the new
3051 condition X to the old one unconditionally. If it is zero, we will
3052 only return a new expression if X allows us to simplify part of
3053 OLD, otherwise we return NULL to the caller.
3054 If ADD is nonzero, we will return a new condition in all cases. The
3055 toplevel caller of one of these functions should always pass 1 for
3056 ADD. */
3057
3058 static rtx
3059 ior_reg_cond (old, x, add)
3060 rtx old, x;
3061 int add;
3062 {
3063 rtx op0, op1;
3064
3065 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3066 {
3067 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3068 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3069 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3070 return const1_rtx;
3071 if (GET_CODE (x) == GET_CODE (old)
3072 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3073 return old;
3074 if (! add)
3075 return NULL;
3076 return gen_rtx_IOR (0, old, x);
3077 }
3078
3079 switch (GET_CODE (old))
3080 {
3081 case IOR:
3082 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3083 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3084 if (op0 != NULL || op1 != NULL)
3085 {
3086 if (op0 == const0_rtx)
3087 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3088 if (op1 == const0_rtx)
3089 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3090 if (op0 == const1_rtx || op1 == const1_rtx)
3091 return const1_rtx;
3092 if (op0 == NULL)
3093 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3094 else if (rtx_equal_p (x, op0))
3095 /* (x | A) | x ~ (x | A). */
3096 return old;
3097 if (op1 == NULL)
3098 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3099 else if (rtx_equal_p (x, op1))
3100 /* (A | x) | x ~ (A | x). */
3101 return old;
3102 return gen_rtx_IOR (0, op0, op1);
3103 }
3104 if (! add)
3105 return NULL;
3106 return gen_rtx_IOR (0, old, x);
3107
3108 case AND:
3109 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3110 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3111 if (op0 != NULL || op1 != NULL)
3112 {
3113 if (op0 == const1_rtx)
3114 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3115 if (op1 == const1_rtx)
3116 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3117 if (op0 == const0_rtx || op1 == const0_rtx)
3118 return const0_rtx;
3119 if (op0 == NULL)
3120 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3121 else if (rtx_equal_p (x, op0))
3122 /* (x & A) | x ~ x. */
3123 return op0;
3124 if (op1 == NULL)
3125 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3126 else if (rtx_equal_p (x, op1))
3127 /* (A & x) | x ~ x. */
3128 return op1;
3129 return gen_rtx_AND (0, op0, op1);
3130 }
3131 if (! add)
3132 return NULL;
3133 return gen_rtx_IOR (0, old, x);
3134
3135 case NOT:
3136 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3137 if (op0 != NULL)
3138 return not_reg_cond (op0);
3139 if (! add)
3140 return NULL;
3141 return gen_rtx_IOR (0, old, x);
3142
3143 default:
3144 abort ();
3145 }
3146 }
3147
3148 static rtx
3149 not_reg_cond (x)
3150 rtx x;
3151 {
3152 enum rtx_code x_code;
3153
3154 if (x == const0_rtx)
3155 return const1_rtx;
3156 else if (x == const1_rtx)
3157 return const0_rtx;
3158 x_code = GET_CODE (x);
3159 if (x_code == NOT)
3160 return XEXP (x, 0);
3161 if (GET_RTX_CLASS (x_code) == '<'
3162 && GET_CODE (XEXP (x, 0)) == REG)
3163 {
3164 if (XEXP (x, 1) != const0_rtx)
3165 abort ();
3166
3167 return gen_rtx_fmt_ee (reverse_condition (x_code),
3168 VOIDmode, XEXP (x, 0), const0_rtx);
3169 }
3170 return gen_rtx_NOT (0, x);
3171 }
3172
3173 static rtx
3174 and_reg_cond (old, x, add)
3175 rtx old, x;
3176 int add;
3177 {
3178 rtx op0, op1;
3179
3180 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3181 {
3182 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3183 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3184 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3185 return const0_rtx;
3186 if (GET_CODE (x) == GET_CODE (old)
3187 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3188 return old;
3189 if (! add)
3190 return NULL;
3191 return gen_rtx_AND (0, old, x);
3192 }
3193
3194 switch (GET_CODE (old))
3195 {
3196 case IOR:
3197 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3198 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3199 if (op0 != NULL || op1 != NULL)
3200 {
3201 if (op0 == const0_rtx)
3202 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3203 if (op1 == const0_rtx)
3204 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3205 if (op0 == const1_rtx || op1 == const1_rtx)
3206 return const1_rtx;
3207 if (op0 == NULL)
3208 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3209 else if (rtx_equal_p (x, op0))
3210 /* (x | A) & x ~ x. */
3211 return op0;
3212 if (op1 == NULL)
3213 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3214 else if (rtx_equal_p (x, op1))
3215 /* (A | x) & x ~ x. */
3216 return op1;
3217 return gen_rtx_IOR (0, op0, op1);
3218 }
3219 if (! add)
3220 return NULL;
3221 return gen_rtx_AND (0, old, x);
3222
3223 case AND:
3224 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3225 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3226 if (op0 != NULL || op1 != NULL)
3227 {
3228 if (op0 == const1_rtx)
3229 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3230 if (op1 == const1_rtx)
3231 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3232 if (op0 == const0_rtx || op1 == const0_rtx)
3233 return const0_rtx;
3234 if (op0 == NULL)
3235 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3236 else if (rtx_equal_p (x, op0))
3237 /* (x & A) & x ~ (x & A). */
3238 return old;
3239 if (op1 == NULL)
3240 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3241 else if (rtx_equal_p (x, op1))
3242 /* (A & x) & x ~ (A & x). */
3243 return old;
3244 return gen_rtx_AND (0, op0, op1);
3245 }
3246 if (! add)
3247 return NULL;
3248 return gen_rtx_AND (0, old, x);
3249
3250 case NOT:
3251 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3252 if (op0 != NULL)
3253 return not_reg_cond (op0);
3254 if (! add)
3255 return NULL;
3256 return gen_rtx_AND (0, old, x);
3257
3258 default:
3259 abort ();
3260 }
3261 }
3262
3263 /* Given a condition X, remove references to reg REGNO and return the
3264 new condition. The removal will be done so that all conditions
3265 involving REGNO are considered to evaluate to false. This function
3266 is used when the value of REGNO changes. */
3267
3268 static rtx
3269 elim_reg_cond (x, regno)
3270 rtx x;
3271 unsigned int regno;
3272 {
3273 rtx op0, op1;
3274
3275 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3276 {
3277 if (REGNO (XEXP (x, 0)) == regno)
3278 return const0_rtx;
3279 return x;
3280 }
3281
3282 switch (GET_CODE (x))
3283 {
3284 case AND:
3285 op0 = elim_reg_cond (XEXP (x, 0), regno);
3286 op1 = elim_reg_cond (XEXP (x, 1), regno);
3287 if (op0 == const0_rtx || op1 == const0_rtx)
3288 return const0_rtx;
3289 if (op0 == const1_rtx)
3290 return op1;
3291 if (op1 == const1_rtx)
3292 return op0;
3293 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3294 return x;
3295 return gen_rtx_AND (0, op0, op1);
3296
3297 case IOR:
3298 op0 = elim_reg_cond (XEXP (x, 0), regno);
3299 op1 = elim_reg_cond (XEXP (x, 1), regno);
3300 if (op0 == const1_rtx || op1 == const1_rtx)
3301 return const1_rtx;
3302 if (op0 == const0_rtx)
3303 return op1;
3304 if (op1 == const0_rtx)
3305 return op0;
3306 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3307 return x;
3308 return gen_rtx_IOR (0, op0, op1);
3309
3310 case NOT:
3311 op0 = elim_reg_cond (XEXP (x, 0), regno);
3312 if (op0 == const0_rtx)
3313 return const1_rtx;
3314 if (op0 == const1_rtx)
3315 return const0_rtx;
3316 if (op0 != XEXP (x, 0))
3317 return not_reg_cond (op0);
3318 return x;
3319
3320 default:
3321 abort ();
3322 }
3323 }
3324 #endif /* HAVE_conditional_execution */
3325 \f
3326 #ifdef AUTO_INC_DEC
3327
3328 /* Try to substitute the auto-inc expression INC as the address inside
3329 MEM which occurs in INSN. Currently, the address of MEM is an expression
3330 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3331 that has a single set whose source is a PLUS of INCR_REG and something
3332 else. */
3333
3334 static void
3335 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3336 struct propagate_block_info *pbi;
3337 rtx inc, insn, mem, incr, incr_reg;
3338 {
3339 int regno = REGNO (incr_reg);
3340 rtx set = single_set (incr);
3341 rtx q = SET_DEST (set);
3342 rtx y = SET_SRC (set);
3343 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3344
3345 /* Make sure this reg appears only once in this insn. */
3346 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3347 return;
3348
3349 if (dead_or_set_p (incr, incr_reg)
3350 /* Mustn't autoinc an eliminable register. */
3351 && (regno >= FIRST_PSEUDO_REGISTER
3352 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3353 {
3354 /* This is the simple case. Try to make the auto-inc. If
3355 we can't, we are done. Otherwise, we will do any
3356 needed updates below. */
3357 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3358 return;
3359 }
3360 else if (GET_CODE (q) == REG
3361 /* PREV_INSN used here to check the semi-open interval
3362 [insn,incr). */
3363 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3364 /* We must also check for sets of q as q may be
3365 a call clobbered hard register and there may
3366 be a call between PREV_INSN (insn) and incr. */
3367 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3368 {
3369 /* We have *p followed sometime later by q = p+size.
3370 Both p and q must be live afterward,
3371 and q is not used between INSN and its assignment.
3372 Change it to q = p, ...*q..., q = q+size.
3373 Then fall into the usual case. */
3374 rtx insns, temp;
3375
3376 start_sequence ();
3377 emit_move_insn (q, incr_reg);
3378 insns = get_insns ();
3379 end_sequence ();
3380
3381 /* If we can't make the auto-inc, or can't make the
3382 replacement into Y, exit. There's no point in making
3383 the change below if we can't do the auto-inc and doing
3384 so is not correct in the pre-inc case. */
3385
3386 XEXP (inc, 0) = q;
3387 validate_change (insn, &XEXP (mem, 0), inc, 1);
3388 validate_change (incr, &XEXP (y, opnum), q, 1);
3389 if (! apply_change_group ())
3390 return;
3391
3392 /* We now know we'll be doing this change, so emit the
3393 new insn(s) and do the updates. */
3394 emit_insn_before (insns, insn);
3395
3396 if (pbi->bb->head == insn)
3397 pbi->bb->head = insns;
3398
3399 /* INCR will become a NOTE and INSN won't contain a
3400 use of INCR_REG. If a use of INCR_REG was just placed in
3401 the insn before INSN, make that the next use.
3402 Otherwise, invalidate it. */
3403 if (GET_CODE (PREV_INSN (insn)) == INSN
3404 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3405 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3406 pbi->reg_next_use[regno] = PREV_INSN (insn);
3407 else
3408 pbi->reg_next_use[regno] = 0;
3409
3410 incr_reg = q;
3411 regno = REGNO (q);
3412
3413 /* REGNO is now used in INCR which is below INSN, but
3414 it previously wasn't live here. If we don't mark
3415 it as live, we'll put a REG_DEAD note for it
3416 on this insn, which is incorrect. */
3417 SET_REGNO_REG_SET (pbi->reg_live, regno);
3418
3419 /* If there are any calls between INSN and INCR, show
3420 that REGNO now crosses them. */
3421 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3422 if (GET_CODE (temp) == CALL_INSN)
3423 REG_N_CALLS_CROSSED (regno)++;
3424
3425 /* Invalidate alias info for Q since we just changed its value. */
3426 clear_reg_alias_info (q);
3427 }
3428 else
3429 return;
3430
3431 /* If we haven't returned, it means we were able to make the
3432 auto-inc, so update the status. First, record that this insn
3433 has an implicit side effect. */
3434
3435 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3436
3437 /* Modify the old increment-insn to simply copy
3438 the already-incremented value of our register. */
3439 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3440 abort ();
3441
3442 /* If that makes it a no-op (copying the register into itself) delete
3443 it so it won't appear to be a "use" and a "set" of this
3444 register. */
3445 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3446 {
3447 /* If the original source was dead, it's dead now. */
3448 rtx note;
3449
3450 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3451 {
3452 remove_note (incr, note);
3453 if (XEXP (note, 0) != incr_reg)
3454 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3455 }
3456
3457 PUT_CODE (incr, NOTE);
3458 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3459 NOTE_SOURCE_FILE (incr) = 0;
3460 }
3461
3462 if (regno >= FIRST_PSEUDO_REGISTER)
3463 {
3464 /* Count an extra reference to the reg. When a reg is
3465 incremented, spilling it is worse, so we want to make
3466 that less likely. */
3467 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3468
3469 /* Count the increment as a setting of the register,
3470 even though it isn't a SET in rtl. */
3471 REG_N_SETS (regno)++;
3472 }
3473 }
3474
3475 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3476 reference. */
3477
3478 static void
3479 find_auto_inc (pbi, x, insn)
3480 struct propagate_block_info *pbi;
3481 rtx x;
3482 rtx insn;
3483 {
3484 rtx addr = XEXP (x, 0);
3485 HOST_WIDE_INT offset = 0;
3486 rtx set, y, incr, inc_val;
3487 int regno;
3488 int size = GET_MODE_SIZE (GET_MODE (x));
3489
3490 if (GET_CODE (insn) == JUMP_INSN)
3491 return;
3492
3493 /* Here we detect use of an index register which might be good for
3494 postincrement, postdecrement, preincrement, or predecrement. */
3495
3496 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3497 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3498
3499 if (GET_CODE (addr) != REG)
3500 return;
3501
3502 regno = REGNO (addr);
3503
3504 /* Is the next use an increment that might make auto-increment? */
3505 incr = pbi->reg_next_use[regno];
3506 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3507 return;
3508 set = single_set (incr);
3509 if (set == 0 || GET_CODE (set) != SET)
3510 return;
3511 y = SET_SRC (set);
3512
3513 if (GET_CODE (y) != PLUS)
3514 return;
3515
3516 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3517 inc_val = XEXP (y, 1);
3518 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3519 inc_val = XEXP (y, 0);
3520 else
3521 return;
3522
3523 if (GET_CODE (inc_val) == CONST_INT)
3524 {
3525 if (HAVE_POST_INCREMENT
3526 && (INTVAL (inc_val) == size && offset == 0))
3527 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3528 incr, addr);
3529 else if (HAVE_POST_DECREMENT
3530 && (INTVAL (inc_val) == -size && offset == 0))
3531 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3532 incr, addr);
3533 else if (HAVE_PRE_INCREMENT
3534 && (INTVAL (inc_val) == size && offset == size))
3535 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3536 incr, addr);
3537 else if (HAVE_PRE_DECREMENT
3538 && (INTVAL (inc_val) == -size && offset == -size))
3539 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3540 incr, addr);
3541 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3542 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3543 gen_rtx_PLUS (Pmode,
3544 addr,
3545 inc_val)),
3546 insn, x, incr, addr);
3547 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3548 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3549 gen_rtx_PLUS (Pmode,
3550 addr,
3551 inc_val)),
3552 insn, x, incr, addr);
3553 }
3554 else if (GET_CODE (inc_val) == REG
3555 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3556 NEXT_INSN (incr)))
3557
3558 {
3559 if (HAVE_POST_MODIFY_REG && offset == 0)
3560 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3561 gen_rtx_PLUS (Pmode,
3562 addr,
3563 inc_val)),
3564 insn, x, incr, addr);
3565 }
3566 }
3567
3568 #endif /* AUTO_INC_DEC */
3569 \f
3570 static void
3571 mark_used_reg (pbi, reg, cond, insn)
3572 struct propagate_block_info *pbi;
3573 rtx reg;
3574 rtx cond ATTRIBUTE_UNUSED;
3575 rtx insn;
3576 {
3577 unsigned int regno_first, regno_last, i;
3578 int some_was_live, some_was_dead, some_not_set;
3579
3580 regno_last = regno_first = REGNO (reg);
3581 if (regno_first < FIRST_PSEUDO_REGISTER)
3582 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3583
3584 /* Find out if any of this register is live after this instruction. */
3585 some_was_live = some_was_dead = 0;
3586 for (i = regno_first; i <= regno_last; ++i)
3587 {
3588 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3589 some_was_live |= needed_regno;
3590 some_was_dead |= ! needed_regno;
3591 }
3592
3593 /* Find out if any of the register was set this insn. */
3594 some_not_set = 0;
3595 for (i = regno_first; i <= regno_last; ++i)
3596 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3597
3598 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3599 {
3600 /* Record where each reg is used, so when the reg is set we know
3601 the next insn that uses it. */
3602 pbi->reg_next_use[regno_first] = insn;
3603 }
3604
3605 if (pbi->flags & PROP_REG_INFO)
3606 {
3607 if (regno_first < FIRST_PSEUDO_REGISTER)
3608 {
3609 /* If this is a register we are going to try to eliminate,
3610 don't mark it live here. If we are successful in
3611 eliminating it, it need not be live unless it is used for
3612 pseudos, in which case it will have been set live when it
3613 was allocated to the pseudos. If the register will not
3614 be eliminated, reload will set it live at that point.
3615
3616 Otherwise, record that this function uses this register. */
3617 /* ??? The PPC backend tries to "eliminate" on the pic
3618 register to itself. This should be fixed. In the mean
3619 time, hack around it. */
3620
3621 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3622 && (regno_first == FRAME_POINTER_REGNUM
3623 || regno_first == ARG_POINTER_REGNUM)))
3624 for (i = regno_first; i <= regno_last; ++i)
3625 regs_ever_live[i] = 1;
3626 }
3627 else
3628 {
3629 /* Keep track of which basic block each reg appears in. */
3630
3631 int blocknum = pbi->bb->index;
3632 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3633 REG_BASIC_BLOCK (regno_first) = blocknum;
3634 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3635 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3636
3637 /* Count (weighted) number of uses of each reg. */
3638 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3639 REG_N_REFS (regno_first)++;
3640 }
3641 }
3642
3643 /* Record and count the insns in which a reg dies. If it is used in
3644 this insn and was dead below the insn then it dies in this insn.
3645 If it was set in this insn, we do not make a REG_DEAD note;
3646 likewise if we already made such a note. */
3647 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3648 && some_was_dead
3649 && some_not_set)
3650 {
3651 /* Check for the case where the register dying partially
3652 overlaps the register set by this insn. */
3653 if (regno_first != regno_last)
3654 for (i = regno_first; i <= regno_last; ++i)
3655 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3656
3657 /* If none of the words in X is needed, make a REG_DEAD note.
3658 Otherwise, we must make partial REG_DEAD notes. */
3659 if (! some_was_live)
3660 {
3661 if ((pbi->flags & PROP_DEATH_NOTES)
3662 && ! find_regno_note (insn, REG_DEAD, regno_first))
3663 REG_NOTES (insn)
3664 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3665
3666 if (pbi->flags & PROP_REG_INFO)
3667 REG_N_DEATHS (regno_first)++;
3668 }
3669 else
3670 {
3671 /* Don't make a REG_DEAD note for a part of a register
3672 that is set in the insn. */
3673 for (i = regno_first; i <= regno_last; ++i)
3674 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3675 && ! dead_or_set_regno_p (insn, i))
3676 REG_NOTES (insn)
3677 = alloc_EXPR_LIST (REG_DEAD,
3678 regno_reg_rtx[i],
3679 REG_NOTES (insn));
3680 }
3681 }
3682
3683 /* Mark the register as being live. */
3684 for (i = regno_first; i <= regno_last; ++i)
3685 {
3686 #ifdef HAVE_conditional_execution
3687 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3688 #endif
3689
3690 SET_REGNO_REG_SET (pbi->reg_live, i);
3691
3692 #ifdef HAVE_conditional_execution
3693 /* If this is a conditional use, record that fact. If it is later
3694 conditionally set, we'll know to kill the register. */
3695 if (cond != NULL_RTX)
3696 {
3697 splay_tree_node node;
3698 struct reg_cond_life_info *rcli;
3699 rtx ncond;
3700
3701 if (this_was_live)
3702 {
3703 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3704 if (node == NULL)
3705 {
3706 /* The register was unconditionally live previously.
3707 No need to do anything. */
3708 }
3709 else
3710 {
3711 /* The register was conditionally live previously.
3712 Subtract the new life cond from the old death cond. */
3713 rcli = (struct reg_cond_life_info *) node->value;
3714 ncond = rcli->condition;
3715 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3716
3717 /* If the register is now unconditionally live,
3718 remove the entry in the splay_tree. */
3719 if (ncond == const0_rtx)
3720 splay_tree_remove (pbi->reg_cond_dead, i);
3721 else
3722 {
3723 rcli->condition = ncond;
3724 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3725 REGNO (XEXP (cond, 0)));
3726 }
3727 }
3728 }
3729 else
3730 {
3731 /* The register was not previously live at all. Record
3732 the condition under which it is still dead. */
3733 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3734 rcli->condition = not_reg_cond (cond);
3735 rcli->stores = const0_rtx;
3736 rcli->orig_condition = const0_rtx;
3737 splay_tree_insert (pbi->reg_cond_dead, i,
3738 (splay_tree_value) rcli);
3739
3740 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3741 }
3742 }
3743 else if (this_was_live)
3744 {
3745 /* The register may have been conditionally live previously, but
3746 is now unconditionally live. Remove it from the conditionally
3747 dead list, so that a conditional set won't cause us to think
3748 it dead. */
3749 splay_tree_remove (pbi->reg_cond_dead, i);
3750 }
3751 #endif
3752 }
3753 }
3754
3755 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3756 This is done assuming the registers needed from X are those that
3757 have 1-bits in PBI->REG_LIVE.
3758
3759 INSN is the containing instruction. If INSN is dead, this function
3760 is not called. */
3761
3762 static void
3763 mark_used_regs (pbi, x, cond, insn)
3764 struct propagate_block_info *pbi;
3765 rtx x, cond, insn;
3766 {
3767 RTX_CODE code;
3768 int regno;
3769 int flags = pbi->flags;
3770
3771 retry:
3772 if (!x)
3773 return;
3774 code = GET_CODE (x);
3775 switch (code)
3776 {
3777 case LABEL_REF:
3778 case SYMBOL_REF:
3779 case CONST_INT:
3780 case CONST:
3781 case CONST_DOUBLE:
3782 case CONST_VECTOR:
3783 case PC:
3784 case ADDR_VEC:
3785 case ADDR_DIFF_VEC:
3786 return;
3787
3788 #ifdef HAVE_cc0
3789 case CC0:
3790 pbi->cc0_live = 1;
3791 return;
3792 #endif
3793
3794 case CLOBBER:
3795 /* If we are clobbering a MEM, mark any registers inside the address
3796 as being used. */
3797 if (GET_CODE (XEXP (x, 0)) == MEM)
3798 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3799 return;
3800
3801 case MEM:
3802 /* Don't bother watching stores to mems if this is not the
3803 final pass. We'll not be deleting dead stores this round. */
3804 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3805 {
3806 /* Invalidate the data for the last MEM stored, but only if MEM is
3807 something that can be stored into. */
3808 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3809 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3810 /* Needn't clear the memory set list. */
3811 ;
3812 else
3813 {
3814 rtx temp = pbi->mem_set_list;
3815 rtx prev = NULL_RTX;
3816 rtx next;
3817
3818 while (temp)
3819 {
3820 next = XEXP (temp, 1);
3821 if (anti_dependence (XEXP (temp, 0), x))
3822 {
3823 /* Splice temp out of the list. */
3824 if (prev)
3825 XEXP (prev, 1) = next;
3826 else
3827 pbi->mem_set_list = next;
3828 free_EXPR_LIST_node (temp);
3829 pbi->mem_set_list_len--;
3830 }
3831 else
3832 prev = temp;
3833 temp = next;
3834 }
3835 }
3836
3837 /* If the memory reference had embedded side effects (autoincrement
3838 address modes. Then we may need to kill some entries on the
3839 memory set list. */
3840 if (insn)
3841 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3842 }
3843
3844 #ifdef AUTO_INC_DEC
3845 if (flags & PROP_AUTOINC)
3846 find_auto_inc (pbi, x, insn);
3847 #endif
3848 break;
3849
3850 case SUBREG:
3851 #ifdef CANNOT_CHANGE_MODE_CLASS
3852 if ((flags & PROP_REG_INFO)
3853 && GET_CODE (SUBREG_REG (x)) == REG
3854 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3855 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3856 * MAX_MACHINE_MODE
3857 + GET_MODE (x));
3858 #endif
3859
3860 /* While we're here, optimize this case. */
3861 x = SUBREG_REG (x);
3862 if (GET_CODE (x) != REG)
3863 goto retry;
3864 /* Fall through. */
3865
3866 case REG:
3867 /* See a register other than being set => mark it as needed. */
3868 mark_used_reg (pbi, x, cond, insn);
3869 return;
3870
3871 case SET:
3872 {
3873 rtx testreg = SET_DEST (x);
3874 int mark_dest = 0;
3875
3876 /* If storing into MEM, don't show it as being used. But do
3877 show the address as being used. */
3878 if (GET_CODE (testreg) == MEM)
3879 {
3880 #ifdef AUTO_INC_DEC
3881 if (flags & PROP_AUTOINC)
3882 find_auto_inc (pbi, testreg, insn);
3883 #endif
3884 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3885 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3886 return;
3887 }
3888
3889 /* Storing in STRICT_LOW_PART is like storing in a reg
3890 in that this SET might be dead, so ignore it in TESTREG.
3891 but in some other ways it is like using the reg.
3892
3893 Storing in a SUBREG or a bit field is like storing the entire
3894 register in that if the register's value is not used
3895 then this SET is not needed. */
3896 while (GET_CODE (testreg) == STRICT_LOW_PART
3897 || GET_CODE (testreg) == ZERO_EXTRACT
3898 || GET_CODE (testreg) == SIGN_EXTRACT
3899 || GET_CODE (testreg) == SUBREG)
3900 {
3901 #ifdef CANNOT_CHANGE_MODE_CLASS
3902 if ((flags & PROP_REG_INFO)
3903 && GET_CODE (testreg) == SUBREG
3904 && GET_CODE (SUBREG_REG (testreg)) == REG
3905 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3906 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3907 * MAX_MACHINE_MODE
3908 + GET_MODE (testreg));
3909 #endif
3910
3911 /* Modifying a single register in an alternate mode
3912 does not use any of the old value. But these other
3913 ways of storing in a register do use the old value. */
3914 if (GET_CODE (testreg) == SUBREG
3915 && !((REG_BYTES (SUBREG_REG (testreg))
3916 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3917 > (REG_BYTES (testreg)
3918 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3919 ;
3920 else
3921 mark_dest = 1;
3922
3923 testreg = XEXP (testreg, 0);
3924 }
3925
3926 /* If this is a store into a register or group of registers,
3927 recursively scan the value being stored. */
3928
3929 if ((GET_CODE (testreg) == PARALLEL
3930 && GET_MODE (testreg) == BLKmode)
3931 || (GET_CODE (testreg) == REG
3932 && (regno = REGNO (testreg),
3933 ! (regno == FRAME_POINTER_REGNUM
3934 && (! reload_completed || frame_pointer_needed)))
3935 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3936 && ! (regno == HARD_FRAME_POINTER_REGNUM
3937 && (! reload_completed || frame_pointer_needed))
3938 #endif
3939 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3940 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3941 #endif
3942 ))
3943 {
3944 if (mark_dest)
3945 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3946 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3947 return;
3948 }
3949 }
3950 break;
3951
3952 case ASM_OPERANDS:
3953 case UNSPEC_VOLATILE:
3954 case TRAP_IF:
3955 case ASM_INPUT:
3956 {
3957 /* Traditional and volatile asm instructions must be considered to use
3958 and clobber all hard registers, all pseudo-registers and all of
3959 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3960
3961 Consider for instance a volatile asm that changes the fpu rounding
3962 mode. An insn should not be moved across this even if it only uses
3963 pseudo-regs because it might give an incorrectly rounded result.
3964
3965 ?!? Unfortunately, marking all hard registers as live causes massive
3966 problems for the register allocator and marking all pseudos as live
3967 creates mountains of uninitialized variable warnings.
3968
3969 So for now, just clear the memory set list and mark any regs
3970 we can find in ASM_OPERANDS as used. */
3971 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3972 {
3973 free_EXPR_LIST_list (&pbi->mem_set_list);
3974 pbi->mem_set_list_len = 0;
3975 }
3976
3977 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3978 We can not just fall through here since then we would be confused
3979 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3980 traditional asms unlike their normal usage. */
3981 if (code == ASM_OPERANDS)
3982 {
3983 int j;
3984
3985 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3986 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3987 }
3988 break;
3989 }
3990
3991 case COND_EXEC:
3992 if (cond != NULL_RTX)
3993 abort ();
3994
3995 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3996
3997 cond = COND_EXEC_TEST (x);
3998 x = COND_EXEC_CODE (x);
3999 goto retry;
4000
4001 case PHI:
4002 /* We _do_not_ want to scan operands of phi nodes. Operands of
4003 a phi function are evaluated only when control reaches this
4004 block along a particular edge. Therefore, regs that appear
4005 as arguments to phi should not be added to the global live at
4006 start. */
4007 return;
4008
4009 default:
4010 break;
4011 }
4012
4013 /* Recursively scan the operands of this expression. */
4014
4015 {
4016 const char * const fmt = GET_RTX_FORMAT (code);
4017 int i;
4018
4019 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4020 {
4021 if (fmt[i] == 'e')
4022 {
4023 /* Tail recursive case: save a function call level. */
4024 if (i == 0)
4025 {
4026 x = XEXP (x, 0);
4027 goto retry;
4028 }
4029 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4030 }
4031 else if (fmt[i] == 'E')
4032 {
4033 int j;
4034 for (j = 0; j < XVECLEN (x, i); j++)
4035 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4036 }
4037 }
4038 }
4039 }
4040 \f
4041 #ifdef AUTO_INC_DEC
4042
4043 static int
4044 try_pre_increment_1 (pbi, insn)
4045 struct propagate_block_info *pbi;
4046 rtx insn;
4047 {
4048 /* Find the next use of this reg. If in same basic block,
4049 make it do pre-increment or pre-decrement if appropriate. */
4050 rtx x = single_set (insn);
4051 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4052 * INTVAL (XEXP (SET_SRC (x), 1)));
4053 int regno = REGNO (SET_DEST (x));
4054 rtx y = pbi->reg_next_use[regno];
4055 if (y != 0
4056 && SET_DEST (x) != stack_pointer_rtx
4057 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4058 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4059 mode would be better. */
4060 && ! dead_or_set_p (y, SET_DEST (x))
4061 && try_pre_increment (y, SET_DEST (x), amount))
4062 {
4063 /* We have found a suitable auto-increment and already changed
4064 insn Y to do it. So flush this increment instruction. */
4065 propagate_block_delete_insn (insn);
4066
4067 /* Count a reference to this reg for the increment insn we are
4068 deleting. When a reg is incremented, spilling it is worse,
4069 so we want to make that less likely. */
4070 if (regno >= FIRST_PSEUDO_REGISTER)
4071 {
4072 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4073 REG_N_SETS (regno)++;
4074 }
4075
4076 /* Flush any remembered memories depending on the value of
4077 the incremented register. */
4078 invalidate_mems_from_set (pbi, SET_DEST (x));
4079
4080 return 1;
4081 }
4082 return 0;
4083 }
4084
4085 /* Try to change INSN so that it does pre-increment or pre-decrement
4086 addressing on register REG in order to add AMOUNT to REG.
4087 AMOUNT is negative for pre-decrement.
4088 Returns 1 if the change could be made.
4089 This checks all about the validity of the result of modifying INSN. */
4090
4091 static int
4092 try_pre_increment (insn, reg, amount)
4093 rtx insn, reg;
4094 HOST_WIDE_INT amount;
4095 {
4096 rtx use;
4097
4098 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4099 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4100 int pre_ok = 0;
4101 /* Nonzero if we can try to make a post-increment or post-decrement.
4102 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4103 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4104 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4105 int post_ok = 0;
4106
4107 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4108 int do_post = 0;
4109
4110 /* From the sign of increment, see which possibilities are conceivable
4111 on this target machine. */
4112 if (HAVE_PRE_INCREMENT && amount > 0)
4113 pre_ok = 1;
4114 if (HAVE_POST_INCREMENT && amount > 0)
4115 post_ok = 1;
4116
4117 if (HAVE_PRE_DECREMENT && amount < 0)
4118 pre_ok = 1;
4119 if (HAVE_POST_DECREMENT && amount < 0)
4120 post_ok = 1;
4121
4122 if (! (pre_ok || post_ok))
4123 return 0;
4124
4125 /* It is not safe to add a side effect to a jump insn
4126 because if the incremented register is spilled and must be reloaded
4127 there would be no way to store the incremented value back in memory. */
4128
4129 if (GET_CODE (insn) == JUMP_INSN)
4130 return 0;
4131
4132 use = 0;
4133 if (pre_ok)
4134 use = find_use_as_address (PATTERN (insn), reg, 0);
4135 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4136 {
4137 use = find_use_as_address (PATTERN (insn), reg, -amount);
4138 do_post = 1;
4139 }
4140
4141 if (use == 0 || use == (rtx) (size_t) 1)
4142 return 0;
4143
4144 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4145 return 0;
4146
4147 /* See if this combination of instruction and addressing mode exists. */
4148 if (! validate_change (insn, &XEXP (use, 0),
4149 gen_rtx_fmt_e (amount > 0
4150 ? (do_post ? POST_INC : PRE_INC)
4151 : (do_post ? POST_DEC : PRE_DEC),
4152 Pmode, reg), 0))
4153 return 0;
4154
4155 /* Record that this insn now has an implicit side effect on X. */
4156 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4157 return 1;
4158 }
4159
4160 #endif /* AUTO_INC_DEC */
4161 \f
4162 /* Find the place in the rtx X where REG is used as a memory address.
4163 Return the MEM rtx that so uses it.
4164 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4165 (plus REG (const_int PLUSCONST)).
4166
4167 If such an address does not appear, return 0.
4168 If REG appears more than once, or is used other than in such an address,
4169 return (rtx) 1. */
4170
4171 rtx
4172 find_use_as_address (x, reg, plusconst)
4173 rtx x;
4174 rtx reg;
4175 HOST_WIDE_INT plusconst;
4176 {
4177 enum rtx_code code = GET_CODE (x);
4178 const char * const fmt = GET_RTX_FORMAT (code);
4179 int i;
4180 rtx value = 0;
4181 rtx tem;
4182
4183 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4184 return x;
4185
4186 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4187 && XEXP (XEXP (x, 0), 0) == reg
4188 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4189 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4190 return x;
4191
4192 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4193 {
4194 /* If REG occurs inside a MEM used in a bit-field reference,
4195 that is unacceptable. */
4196 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4197 return (rtx) (size_t) 1;
4198 }
4199
4200 if (x == reg)
4201 return (rtx) (size_t) 1;
4202
4203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4204 {
4205 if (fmt[i] == 'e')
4206 {
4207 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4208 if (value == 0)
4209 value = tem;
4210 else if (tem != 0)
4211 return (rtx) (size_t) 1;
4212 }
4213 else if (fmt[i] == 'E')
4214 {
4215 int j;
4216 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4217 {
4218 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4219 if (value == 0)
4220 value = tem;
4221 else if (tem != 0)
4222 return (rtx) (size_t) 1;
4223 }
4224 }
4225 }
4226
4227 return value;
4228 }
4229 \f
4230 /* Write information about registers and basic blocks into FILE.
4231 This is part of making a debugging dump. */
4232
4233 void
4234 dump_regset (r, outf)
4235 regset r;
4236 FILE *outf;
4237 {
4238 int i;
4239 if (r == NULL)
4240 {
4241 fputs (" (nil)", outf);
4242 return;
4243 }
4244
4245 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4246 {
4247 fprintf (outf, " %d", i);
4248 if (i < FIRST_PSEUDO_REGISTER)
4249 fprintf (outf, " [%s]",
4250 reg_names[i]);
4251 });
4252 }
4253
4254 /* Print a human-readable representation of R on the standard error
4255 stream. This function is designed to be used from within the
4256 debugger. */
4257
4258 void
4259 debug_regset (r)
4260 regset r;
4261 {
4262 dump_regset (r, stderr);
4263 putc ('\n', stderr);
4264 }
4265
4266 /* Recompute register set/reference counts immediately prior to register
4267 allocation.
4268
4269 This avoids problems with set/reference counts changing to/from values
4270 which have special meanings to the register allocators.
4271
4272 Additionally, the reference counts are the primary component used by the
4273 register allocators to prioritize pseudos for allocation to hard regs.
4274 More accurate reference counts generally lead to better register allocation.
4275
4276 F is the first insn to be scanned.
4277
4278 LOOP_STEP denotes how much loop_depth should be incremented per
4279 loop nesting level in order to increase the ref count more for
4280 references in a loop.
4281
4282 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4283 possibly other information which is used by the register allocators. */
4284
4285 void
4286 recompute_reg_usage (f, loop_step)
4287 rtx f ATTRIBUTE_UNUSED;
4288 int loop_step ATTRIBUTE_UNUSED;
4289 {
4290 allocate_reg_life_data ();
4291 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4292 }
4293
4294 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4295 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4296 of the number of registers that died. */
4297
4298 int
4299 count_or_remove_death_notes (blocks, kill)
4300 sbitmap blocks;
4301 int kill;
4302 {
4303 int count = 0;
4304 basic_block bb;
4305
4306 FOR_EACH_BB_REVERSE (bb)
4307 {
4308 rtx insn;
4309
4310 if (blocks && ! TEST_BIT (blocks, bb->index))
4311 continue;
4312
4313 for (insn = bb->head;; insn = NEXT_INSN (insn))
4314 {
4315 if (INSN_P (insn))
4316 {
4317 rtx *pprev = &REG_NOTES (insn);
4318 rtx link = *pprev;
4319
4320 while (link)
4321 {
4322 switch (REG_NOTE_KIND (link))
4323 {
4324 case REG_DEAD:
4325 if (GET_CODE (XEXP (link, 0)) == REG)
4326 {
4327 rtx reg = XEXP (link, 0);
4328 int n;
4329
4330 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4331 n = 1;
4332 else
4333 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4334 count += n;
4335 }
4336 /* Fall through. */
4337
4338 case REG_UNUSED:
4339 if (kill)
4340 {
4341 rtx next = XEXP (link, 1);
4342 free_EXPR_LIST_node (link);
4343 *pprev = link = next;
4344 break;
4345 }
4346 /* Fall through. */
4347
4348 default:
4349 pprev = &XEXP (link, 1);
4350 link = *pprev;
4351 break;
4352 }
4353 }
4354 }
4355
4356 if (insn == bb->end)
4357 break;
4358 }
4359 }
4360
4361 return count;
4362 }
4363 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4364 if blocks is NULL. */
4365
4366 static void
4367 clear_log_links (blocks)
4368 sbitmap blocks;
4369 {
4370 rtx insn;
4371 int i;
4372
4373 if (!blocks)
4374 {
4375 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4376 if (INSN_P (insn))
4377 free_INSN_LIST_list (&LOG_LINKS (insn));
4378 }
4379 else
4380 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4381 {
4382 basic_block bb = BASIC_BLOCK (i);
4383
4384 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4385 insn = NEXT_INSN (insn))
4386 if (INSN_P (insn))
4387 free_INSN_LIST_list (&LOG_LINKS (insn));
4388 });
4389 }
4390
4391 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4392 correspond to the hard registers, if any, set in that map. This
4393 could be done far more efficiently by having all sorts of special-cases
4394 with moving single words, but probably isn't worth the trouble. */
4395
4396 void
4397 reg_set_to_hard_reg_set (to, from)
4398 HARD_REG_SET *to;
4399 bitmap from;
4400 {
4401 int i;
4402
4403 EXECUTE_IF_SET_IN_BITMAP
4404 (from, 0, i,
4405 {
4406 if (i >= FIRST_PSEUDO_REGISTER)
4407 return;
4408 SET_HARD_REG_BIT (*to, i);
4409 });
4410 }