basic-block.h (last_basic_block): Defined as synonym for n_basic_blocks.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
345 \f
346
347 void
348 check_function_return_warnings ()
349 {
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
356
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
361
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
367 {
368 int max_uid = get_max_uid ();
369
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 {
376 /* Recompute insn->block mapping, since the initial mapping is
377 set before we delete unreachable blocks. */
378 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
379 warning ("control reaches end of non-void function");
380 }
381 }
382 }
383 \f
384 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
385 note associated with the BLOCK. */
386
387 rtx
388 first_insn_after_basic_block_note (block)
389 basic_block block;
390 {
391 rtx insn;
392
393 /* Get the first instruction in the block. */
394 insn = block->head;
395
396 if (insn == NULL_RTX)
397 return NULL_RTX;
398 if (GET_CODE (insn) == CODE_LABEL)
399 insn = NEXT_INSN (insn);
400 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
401 abort ();
402
403 return NEXT_INSN (insn);
404 }
405 \f
406 /* Perform data flow analysis.
407 F is the first insn of the function; FLAGS is a set of PROP_* flags
408 to be used in accumulating flow info. */
409
410 void
411 life_analysis (f, file, flags)
412 rtx f;
413 FILE *file;
414 int flags;
415 {
416 #ifdef ELIMINABLE_REGS
417 int i;
418 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
419 #endif
420
421 /* Record which registers will be eliminated. We use this in
422 mark_used_regs. */
423
424 CLEAR_HARD_REG_SET (elim_reg_set);
425
426 #ifdef ELIMINABLE_REGS
427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
428 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
429 #else
430 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
431 #endif
432
433 if (! optimize)
434 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
435
436 /* The post-reload life analysis have (on a global basis) the same
437 registers live as was computed by reload itself. elimination
438 Otherwise offsets and such may be incorrect.
439
440 Reload will make some registers as live even though they do not
441 appear in the rtl.
442
443 We don't want to create new auto-incs after reload, since they
444 are unlikely to be useful and can cause problems with shared
445 stack slots. */
446 if (reload_completed)
447 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
448
449 /* We want alias analysis information for local dead store elimination. */
450 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
451 init_alias_analysis ();
452
453 /* Always remove no-op moves. Do this before other processing so
454 that we don't have to keep re-scanning them. */
455 delete_noop_moves (f);
456
457 /* Some targets can emit simpler epilogues if they know that sp was
458 not ever modified during the function. After reload, of course,
459 we've already emitted the epilogue so there's no sense searching. */
460 if (! reload_completed)
461 notice_stack_pointer_modification (f);
462
463 /* Allocate and zero out data structures that will record the
464 data from lifetime analysis. */
465 allocate_reg_life_data ();
466 allocate_bb_life_data ();
467
468 /* Find the set of registers live on function exit. */
469 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
470
471 /* "Update" life info from zero. It'd be nice to begin the
472 relaxation with just the exit and noreturn blocks, but that set
473 is not immediately handy. */
474
475 if (flags & PROP_REG_INFO)
476 memset (regs_ever_live, 0, sizeof (regs_ever_live));
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478
479 /* Clean up. */
480 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
481 end_alias_analysis ();
482
483 if (file)
484 dump_flow_info (file);
485
486 free_basic_block_vars (1);
487
488 /* Removing dead insns should've made jumptables really dead. */
489 delete_dead_jumptables ();
490 }
491
492 /* A subroutine of verify_wide_reg, called through for_each_rtx.
493 Search for REGNO. If found, return 2 if it is not wider than
494 word_mode. */
495
496 static int
497 verify_wide_reg_1 (px, pregno)
498 rtx *px;
499 void *pregno;
500 {
501 rtx x = *px;
502 unsigned int regno = *(int *) pregno;
503
504 if (GET_CODE (x) == REG && REGNO (x) == regno)
505 {
506 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
507 return 2;
508 return 1;
509 }
510 return 0;
511 }
512
513 /* A subroutine of verify_local_live_at_start. Search through insns
514 of BB looking for register REGNO. */
515
516 static void
517 verify_wide_reg (regno, bb)
518 int regno;
519 basic_block bb;
520 {
521 rtx head = bb->head, end = bb->end;
522
523 while (1)
524 {
525 if (INSN_P (head))
526 {
527 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
528 if (r == 1)
529 return;
530 if (r == 2)
531 break;
532 }
533 if (head == end)
534 break;
535 head = NEXT_INSN (head);
536 }
537
538 if (rtl_dump_file)
539 {
540 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
541 dump_bb (bb, rtl_dump_file);
542 }
543 abort ();
544 }
545
546 /* A subroutine of update_life_info. Verify that there are no untoward
547 changes in live_at_start during a local update. */
548
549 static void
550 verify_local_live_at_start (new_live_at_start, bb)
551 regset new_live_at_start;
552 basic_block bb;
553 {
554 if (reload_completed)
555 {
556 /* After reload, there are no pseudos, nor subregs of multi-word
557 registers. The regsets should exactly match. */
558 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
559 {
560 if (rtl_dump_file)
561 {
562 fprintf (rtl_dump_file,
563 "live_at_start mismatch in bb %d, aborting\nNew:\n",
564 bb->index);
565 debug_bitmap_file (rtl_dump_file, new_live_at_start);
566 fputs ("Old:\n", rtl_dump_file);
567 dump_bb (bb, rtl_dump_file);
568 }
569 abort ();
570 }
571 }
572 else
573 {
574 int i;
575
576 /* Find the set of changed registers. */
577 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
578
579 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
580 {
581 /* No registers should die. */
582 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
583 {
584 if (rtl_dump_file)
585 {
586 fprintf (rtl_dump_file,
587 "Register %d died unexpectedly.\n", i);
588 dump_bb (bb, rtl_dump_file);
589 }
590 abort ();
591 }
592
593 /* Verify that the now-live register is wider than word_mode. */
594 verify_wide_reg (i, bb);
595 });
596 }
597 }
598
599 /* Updates life information starting with the basic blocks set in BLOCKS.
600 If BLOCKS is null, consider it to be the universal set.
601
602 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
603 we are only expecting local modifications to basic blocks. If we find
604 extra registers live at the beginning of a block, then we either killed
605 useful data, or we have a broken split that wants data not provided.
606 If we find registers removed from live_at_start, that means we have
607 a broken peephole that is killing a register it shouldn't.
608
609 ??? This is not true in one situation -- when a pre-reload splitter
610 generates subregs of a multi-word pseudo, current life analysis will
611 lose the kill. So we _can_ have a pseudo go live. How irritating.
612
613 Including PROP_REG_INFO does not properly refresh regs_ever_live
614 unless the caller resets it to zero. */
615
616 int
617 update_life_info (blocks, extent, prop_flags)
618 sbitmap blocks;
619 enum update_life_extent extent;
620 int prop_flags;
621 {
622 regset tmp;
623 regset_head tmp_head;
624 int i;
625 int stabilized_prop_flags = prop_flags;
626 basic_block bb;
627
628 tmp = INITIALIZE_REG_SET (tmp_head);
629 ndead = 0;
630
631 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
632 ? TV_LIFE_UPDATE : TV_LIFE);
633
634 /* Changes to the CFG are only allowed when
635 doing a global update for the entire CFG. */
636 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
637 && (extent == UPDATE_LIFE_LOCAL || blocks))
638 abort ();
639
640 /* For a global update, we go through the relaxation process again. */
641 if (extent != UPDATE_LIFE_LOCAL)
642 {
643 for ( ; ; )
644 {
645 int changed = 0;
646
647 calculate_global_regs_live (blocks, blocks,
648 prop_flags & (PROP_SCAN_DEAD_CODE
649 | PROP_SCAN_DEAD_STORES
650 | PROP_ALLOW_CFG_CHANGES));
651
652 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 break;
655
656 /* Removing dead code may allow the CFG to be simplified which
657 in turn may allow for further dead code detection / removal. */
658 FOR_EACH_BB_REVERSE (bb)
659 {
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 changed |= propagate_block (bb, tmp, NULL, NULL,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_SCAN_DEAD_STORES
664 | PROP_KILL_DEAD_CODE));
665 }
666
667 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
668 subsequent propagate_block calls, since removing or acting as
669 removing dead code can affect global register liveness, which
670 is supposed to be finalized for this call after this loop. */
671 stabilized_prop_flags
672 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE);
674
675 if (! changed)
676 break;
677
678 /* We repeat regardless of what cleanup_cfg says. If there were
679 instructions deleted above, that might have been only a
680 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
681 Further improvement may be possible. */
682 cleanup_cfg (CLEANUP_EXPENSIVE);
683 }
684
685 /* If asked, remove notes from the blocks we'll update. */
686 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
687 count_or_remove_death_notes (blocks, 1);
688 }
689
690 /* Clear log links in case we are asked to (re)compute them. */
691 if (prop_flags & PROP_LOG_LINKS)
692 clear_log_links (blocks);
693
694 if (blocks)
695 {
696 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
697 {
698 bb = BASIC_BLOCK (i);
699
700 COPY_REG_SET (tmp, bb->global_live_at_end);
701 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
702
703 if (extent == UPDATE_LIFE_LOCAL)
704 verify_local_live_at_start (tmp, bb);
705 });
706 }
707 else
708 {
709 FOR_EACH_BB_REVERSE (bb)
710 {
711 COPY_REG_SET (tmp, bb->global_live_at_end);
712
713 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
714
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
717 }
718 }
719
720 FREE_REG_SET (tmp);
721
722 if (prop_flags & PROP_REG_INFO)
723 {
724 /* The only pseudos that are live at the beginning of the function
725 are those that were not set anywhere in the function. local-alloc
726 doesn't know how to handle these correctly, so mark them as not
727 local to any one basic block. */
728 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
729 FIRST_PSEUDO_REGISTER, i,
730 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
731
732 /* We have a problem with any pseudoreg that lives across the setjmp.
733 ANSI says that if a user variable does not change in value between
734 the setjmp and the longjmp, then the longjmp preserves it. This
735 includes longjmp from a place where the pseudo appears dead.
736 (In principle, the value still exists if it is in scope.)
737 If the pseudo goes in a hard reg, some other value may occupy
738 that hard reg where this pseudo is dead, thus clobbering the pseudo.
739 Conclusion: such a pseudo must not go in a hard reg. */
740 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
741 FIRST_PSEUDO_REGISTER, i,
742 {
743 if (regno_reg_rtx[i] != 0)
744 {
745 REG_LIVE_LENGTH (i) = -1;
746 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
747 }
748 });
749 }
750 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
751 ? TV_LIFE_UPDATE : TV_LIFE);
752 if (ndead && rtl_dump_file)
753 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
754 return ndead;
755 }
756
757 /* Update life information in all blocks where BB_DIRTY is set. */
758
759 int
760 update_life_info_in_dirty_blocks (extent, prop_flags)
761 enum update_life_extent extent;
762 int prop_flags;
763 {
764 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
765 int n = 0;
766 basic_block bb;
767 int retval = 0;
768
769 sbitmap_zero (update_life_blocks);
770 FOR_EACH_BB (bb)
771 if (bb->flags & BB_DIRTY)
772 {
773 SET_BIT (update_life_blocks, bb->index);
774 n++;
775 }
776
777 if (n)
778 retval = update_life_info (update_life_blocks, extent, prop_flags);
779
780 sbitmap_free (update_life_blocks);
781 return retval;
782 }
783
784 /* Free the variables allocated by find_basic_blocks.
785
786 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
787
788 void
789 free_basic_block_vars (keep_head_end_p)
790 int keep_head_end_p;
791 {
792 if (! keep_head_end_p)
793 {
794 if (basic_block_info)
795 {
796 clear_edges ();
797 VARRAY_FREE (basic_block_info);
798 }
799 n_basic_blocks = 0;
800 last_basic_block = 0;
801
802 ENTRY_BLOCK_PTR->aux = NULL;
803 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
804 EXIT_BLOCK_PTR->aux = NULL;
805 EXIT_BLOCK_PTR->global_live_at_start = NULL;
806 }
807 }
808
809 /* Delete any insns that copy a register to itself. */
810
811 int
812 delete_noop_moves (f)
813 rtx f ATTRIBUTE_UNUSED;
814 {
815 rtx insn, next;
816 basic_block bb;
817 int nnoops = 0;
818
819 FOR_EACH_BB (bb)
820 {
821 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
822 {
823 next = NEXT_INSN (insn);
824 if (INSN_P (insn) && noop_move_p (insn))
825 {
826 rtx note;
827
828 /* If we're about to remove the first insn of a libcall
829 then move the libcall note to the next real insn and
830 update the retval note. */
831 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
832 && XEXP (note, 0) != insn)
833 {
834 rtx new_libcall_insn = next_real_insn (insn);
835 rtx retval_note = find_reg_note (XEXP (note, 0),
836 REG_RETVAL, NULL_RTX);
837 REG_NOTES (new_libcall_insn)
838 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
839 REG_NOTES (new_libcall_insn));
840 XEXP (retval_note, 0) = new_libcall_insn;
841 }
842
843 delete_insn_and_edges (insn);
844 nnoops++;
845 }
846 }
847 }
848 if (nnoops && rtl_dump_file)
849 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
850 return nnoops;
851 }
852
853 /* Delete any jump tables never referenced. We can't delete them at the
854 time of removing tablejump insn as they are referenced by the preceding
855 insns computing the destination, so we delay deleting and garbagecollect
856 them once life information is computed. */
857 void
858 delete_dead_jumptables ()
859 {
860 rtx insn, next;
861 for (insn = get_insns (); insn; insn = next)
862 {
863 next = NEXT_INSN (insn);
864 if (GET_CODE (insn) == CODE_LABEL
865 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
866 && GET_CODE (next) == JUMP_INSN
867 && (GET_CODE (PATTERN (next)) == ADDR_VEC
868 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
869 {
870 if (rtl_dump_file)
871 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
872 delete_insn (NEXT_INSN (insn));
873 delete_insn (insn);
874 next = NEXT_INSN (next);
875 }
876 }
877 }
878
879 /* Determine if the stack pointer is constant over the life of the function.
880 Only useful before prologues have been emitted. */
881
882 static void
883 notice_stack_pointer_modification_1 (x, pat, data)
884 rtx x;
885 rtx pat ATTRIBUTE_UNUSED;
886 void *data ATTRIBUTE_UNUSED;
887 {
888 if (x == stack_pointer_rtx
889 /* The stack pointer is only modified indirectly as the result
890 of a push until later in flow. See the comments in rtl.texi
891 regarding Embedded Side-Effects on Addresses. */
892 || (GET_CODE (x) == MEM
893 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
894 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
895 current_function_sp_is_unchanging = 0;
896 }
897
898 static void
899 notice_stack_pointer_modification (f)
900 rtx f;
901 {
902 rtx insn;
903
904 /* Assume that the stack pointer is unchanging if alloca hasn't
905 been used. */
906 current_function_sp_is_unchanging = !current_function_calls_alloca;
907 if (! current_function_sp_is_unchanging)
908 return;
909
910 for (insn = f; insn; insn = NEXT_INSN (insn))
911 {
912 if (INSN_P (insn))
913 {
914 /* Check if insn modifies the stack pointer. */
915 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
916 NULL);
917 if (! current_function_sp_is_unchanging)
918 return;
919 }
920 }
921 }
922
923 /* Mark a register in SET. Hard registers in large modes get all
924 of their component registers set as well. */
925
926 static void
927 mark_reg (reg, xset)
928 rtx reg;
929 void *xset;
930 {
931 regset set = (regset) xset;
932 int regno = REGNO (reg);
933
934 if (GET_MODE (reg) == BLKmode)
935 abort ();
936
937 SET_REGNO_REG_SET (set, regno);
938 if (regno < FIRST_PSEUDO_REGISTER)
939 {
940 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
941 while (--n > 0)
942 SET_REGNO_REG_SET (set, regno + n);
943 }
944 }
945
946 /* Mark those regs which are needed at the end of the function as live
947 at the end of the last basic block. */
948
949 static void
950 mark_regs_live_at_end (set)
951 regset set;
952 {
953 unsigned int i;
954
955 /* If exiting needs the right stack value, consider the stack pointer
956 live at the end of the function. */
957 if ((HAVE_epilogue && reload_completed)
958 || ! EXIT_IGNORE_STACK
959 || (! FRAME_POINTER_REQUIRED
960 && ! current_function_calls_alloca
961 && flag_omit_frame_pointer)
962 || current_function_sp_is_unchanging)
963 {
964 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
965 }
966
967 /* Mark the frame pointer if needed at the end of the function. If
968 we end up eliminating it, it will be removed from the live list
969 of each basic block by reload. */
970
971 if (! reload_completed || frame_pointer_needed)
972 {
973 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
974 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
975 /* If they are different, also mark the hard frame pointer as live. */
976 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
977 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
978 #endif
979 }
980
981 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
982 /* Many architectures have a GP register even without flag_pic.
983 Assume the pic register is not in use, or will be handled by
984 other means, if it is not fixed. */
985 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
986 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
987 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
988 #endif
989
990 /* Mark all global registers, and all registers used by the epilogue
991 as being live at the end of the function since they may be
992 referenced by our caller. */
993 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
994 if (global_regs[i] || EPILOGUE_USES (i))
995 SET_REGNO_REG_SET (set, i);
996
997 if (HAVE_epilogue && reload_completed)
998 {
999 /* Mark all call-saved registers that we actually used. */
1000 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1001 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1002 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1003 SET_REGNO_REG_SET (set, i);
1004 }
1005
1006 #ifdef EH_RETURN_DATA_REGNO
1007 /* Mark the registers that will contain data for the handler. */
1008 if (reload_completed && current_function_calls_eh_return)
1009 for (i = 0; ; ++i)
1010 {
1011 unsigned regno = EH_RETURN_DATA_REGNO(i);
1012 if (regno == INVALID_REGNUM)
1013 break;
1014 SET_REGNO_REG_SET (set, regno);
1015 }
1016 #endif
1017 #ifdef EH_RETURN_STACKADJ_RTX
1018 if ((! HAVE_epilogue || ! reload_completed)
1019 && current_function_calls_eh_return)
1020 {
1021 rtx tmp = EH_RETURN_STACKADJ_RTX;
1022 if (tmp && REG_P (tmp))
1023 mark_reg (tmp, set);
1024 }
1025 #endif
1026 #ifdef EH_RETURN_HANDLER_RTX
1027 if ((! HAVE_epilogue || ! reload_completed)
1028 && current_function_calls_eh_return)
1029 {
1030 rtx tmp = EH_RETURN_HANDLER_RTX;
1031 if (tmp && REG_P (tmp))
1032 mark_reg (tmp, set);
1033 }
1034 #endif
1035
1036 /* Mark function return value. */
1037 diddle_return_value (mark_reg, set);
1038 }
1039
1040 /* Callback function for for_each_successor_phi. DATA is a regset.
1041 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1042 INSN, in the regset. */
1043
1044 static int
1045 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1046 rtx insn ATTRIBUTE_UNUSED;
1047 int dest_regno ATTRIBUTE_UNUSED;
1048 int src_regno;
1049 void *data;
1050 {
1051 regset live = (regset) data;
1052 SET_REGNO_REG_SET (live, src_regno);
1053 return 0;
1054 }
1055
1056 /* Propagate global life info around the graph of basic blocks. Begin
1057 considering blocks with their corresponding bit set in BLOCKS_IN.
1058 If BLOCKS_IN is null, consider it the universal set.
1059
1060 BLOCKS_OUT is set for every block that was changed. */
1061
1062 static void
1063 calculate_global_regs_live (blocks_in, blocks_out, flags)
1064 sbitmap blocks_in, blocks_out;
1065 int flags;
1066 {
1067 basic_block *queue, *qhead, *qtail, *qend, bb;
1068 regset tmp, new_live_at_end, call_used;
1069 regset_head tmp_head, call_used_head;
1070 regset_head new_live_at_end_head;
1071 int i;
1072
1073 /* Some passes used to forget clear aux field of basic block causing
1074 sick behaviour here. */
1075 #ifdef ENABLE_CHECKING
1076 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1077 if (bb->aux)
1078 abort ();
1079 #endif
1080
1081 tmp = INITIALIZE_REG_SET (tmp_head);
1082 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1083 call_used = INITIALIZE_REG_SET (call_used_head);
1084
1085 /* Inconveniently, this is only readily available in hard reg set form. */
1086 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1087 if (call_used_regs[i])
1088 SET_REGNO_REG_SET (call_used, i);
1089
1090 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1091 because the `head == tail' style test for an empty queue doesn't
1092 work with a full queue. */
1093 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1094 qtail = queue;
1095 qhead = qend = queue + n_basic_blocks + 2;
1096
1097 /* Queue the blocks set in the initial mask. Do this in reverse block
1098 number order so that we are more likely for the first round to do
1099 useful work. We use AUX non-null to flag that the block is queued. */
1100 if (blocks_in)
1101 {
1102 FOR_EACH_BB (bb)
1103 if (TEST_BIT (blocks_in, bb->index))
1104 {
1105 *--qhead = bb;
1106 bb->aux = bb;
1107 }
1108 }
1109 else
1110 {
1111 for (i = 0; i < n_basic_blocks; ++i)
1112 {
1113 basic_block bb = BASIC_BLOCK (i);
1114 *--qhead = bb;
1115 bb->aux = bb;
1116 }
1117 }
1118
1119 /* We clean aux when we remove the initially-enqueued bbs, but we
1120 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1121 unconditionally. */
1122 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1123
1124 if (blocks_out)
1125 sbitmap_zero (blocks_out);
1126
1127 /* We work through the queue until there are no more blocks. What
1128 is live at the end of this block is precisely the union of what
1129 is live at the beginning of all its successors. So, we set its
1130 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1131 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1132 this block by walking through the instructions in this block in
1133 reverse order and updating as we go. If that changed
1134 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1135 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1136
1137 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1138 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1139 must either be live at the end of the block, or used within the
1140 block. In the latter case, it will certainly never disappear
1141 from GLOBAL_LIVE_AT_START. In the former case, the register
1142 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1143 for one of the successor blocks. By induction, that cannot
1144 occur. */
1145 while (qhead != qtail)
1146 {
1147 int rescan, changed;
1148 basic_block bb;
1149 edge e;
1150
1151 bb = *qhead++;
1152 if (qhead == qend)
1153 qhead = queue;
1154 bb->aux = NULL;
1155
1156 /* Begin by propagating live_at_start from the successor blocks. */
1157 CLEAR_REG_SET (new_live_at_end);
1158
1159 if (bb->succ)
1160 for (e = bb->succ; e; e = e->succ_next)
1161 {
1162 basic_block sb = e->dest;
1163
1164 /* Call-clobbered registers die across exception and
1165 call edges. */
1166 /* ??? Abnormal call edges ignored for the moment, as this gets
1167 confused by sibling call edges, which crashes reg-stack. */
1168 if (e->flags & EDGE_EH)
1169 {
1170 bitmap_operation (tmp, sb->global_live_at_start,
1171 call_used, BITMAP_AND_COMPL);
1172 IOR_REG_SET (new_live_at_end, tmp);
1173 }
1174 else
1175 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1176
1177 /* If a target saves one register in another (instead of on
1178 the stack) the save register will need to be live for EH. */
1179 if (e->flags & EDGE_EH)
1180 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1181 if (EH_USES (i))
1182 SET_REGNO_REG_SET (new_live_at_end, i);
1183 }
1184 else
1185 {
1186 /* This might be a noreturn function that throws. And
1187 even if it isn't, getting the unwind info right helps
1188 debugging. */
1189 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1190 if (EH_USES (i))
1191 SET_REGNO_REG_SET (new_live_at_end, i);
1192 }
1193
1194 /* The all-important stack pointer must always be live. */
1195 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1196
1197 /* Before reload, there are a few registers that must be forced
1198 live everywhere -- which might not already be the case for
1199 blocks within infinite loops. */
1200 if (! reload_completed)
1201 {
1202 /* Any reference to any pseudo before reload is a potential
1203 reference of the frame pointer. */
1204 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1205
1206 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1207 /* Pseudos with argument area equivalences may require
1208 reloading via the argument pointer. */
1209 if (fixed_regs[ARG_POINTER_REGNUM])
1210 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1211 #endif
1212
1213 /* Any constant, or pseudo with constant equivalences, may
1214 require reloading from memory using the pic register. */
1215 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1216 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1217 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1218 }
1219
1220 /* Regs used in phi nodes are not included in
1221 global_live_at_start, since they are live only along a
1222 particular edge. Set those regs that are live because of a
1223 phi node alternative corresponding to this particular block. */
1224 if (in_ssa_form)
1225 for_each_successor_phi (bb, &set_phi_alternative_reg,
1226 new_live_at_end);
1227
1228 if (bb == ENTRY_BLOCK_PTR)
1229 {
1230 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1231 continue;
1232 }
1233
1234 /* On our first pass through this block, we'll go ahead and continue.
1235 Recognize first pass by local_set NULL. On subsequent passes, we
1236 get to skip out early if live_at_end wouldn't have changed. */
1237
1238 if (bb->local_set == NULL)
1239 {
1240 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1241 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1242 rescan = 1;
1243 }
1244 else
1245 {
1246 /* If any bits were removed from live_at_end, we'll have to
1247 rescan the block. This wouldn't be necessary if we had
1248 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1249 local_live is really dependent on live_at_end. */
1250 CLEAR_REG_SET (tmp);
1251 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1252 new_live_at_end, BITMAP_AND_COMPL);
1253
1254 if (! rescan)
1255 {
1256 /* If any of the registers in the new live_at_end set are
1257 conditionally set in this basic block, we must rescan.
1258 This is because conditional lifetimes at the end of the
1259 block do not just take the live_at_end set into account,
1260 but also the liveness at the start of each successor
1261 block. We can miss changes in those sets if we only
1262 compare the new live_at_end against the previous one. */
1263 CLEAR_REG_SET (tmp);
1264 rescan = bitmap_operation (tmp, new_live_at_end,
1265 bb->cond_local_set, BITMAP_AND);
1266 }
1267
1268 if (! rescan)
1269 {
1270 /* Find the set of changed bits. Take this opportunity
1271 to notice that this set is empty and early out. */
1272 CLEAR_REG_SET (tmp);
1273 changed = bitmap_operation (tmp, bb->global_live_at_end,
1274 new_live_at_end, BITMAP_XOR);
1275 if (! changed)
1276 continue;
1277
1278 /* If any of the changed bits overlap with local_set,
1279 we'll have to rescan the block. Detect overlap by
1280 the AND with ~local_set turning off bits. */
1281 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1282 BITMAP_AND_COMPL);
1283 }
1284 }
1285
1286 /* Let our caller know that BB changed enough to require its
1287 death notes updated. */
1288 if (blocks_out)
1289 SET_BIT (blocks_out, bb->index);
1290
1291 if (! rescan)
1292 {
1293 /* Add to live_at_start the set of all registers in
1294 new_live_at_end that aren't in the old live_at_end. */
1295
1296 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1297 BITMAP_AND_COMPL);
1298 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1299
1300 changed = bitmap_operation (bb->global_live_at_start,
1301 bb->global_live_at_start,
1302 tmp, BITMAP_IOR);
1303 if (! changed)
1304 continue;
1305 }
1306 else
1307 {
1308 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1309
1310 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1311 into live_at_start. */
1312 propagate_block (bb, new_live_at_end, bb->local_set,
1313 bb->cond_local_set, flags);
1314
1315 /* If live_at start didn't change, no need to go farther. */
1316 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1317 continue;
1318
1319 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1320 }
1321
1322 /* Queue all predecessors of BB so that we may re-examine
1323 their live_at_end. */
1324 for (e = bb->pred; e; e = e->pred_next)
1325 {
1326 basic_block pb = e->src;
1327 if (pb->aux == NULL)
1328 {
1329 *qtail++ = pb;
1330 if (qtail == qend)
1331 qtail = queue;
1332 pb->aux = pb;
1333 }
1334 }
1335 }
1336
1337 FREE_REG_SET (tmp);
1338 FREE_REG_SET (new_live_at_end);
1339 FREE_REG_SET (call_used);
1340
1341 if (blocks_out)
1342 {
1343 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1344 {
1345 basic_block bb = BASIC_BLOCK (i);
1346 FREE_REG_SET (bb->local_set);
1347 FREE_REG_SET (bb->cond_local_set);
1348 });
1349 }
1350 else
1351 {
1352 FOR_EACH_BB (bb)
1353 {
1354 FREE_REG_SET (bb->local_set);
1355 FREE_REG_SET (bb->cond_local_set);
1356 }
1357 }
1358
1359 free (queue);
1360 }
1361
1362 \f
1363 /* This structure is used to pass parameters to an from the
1364 the function find_regno_partial(). It is used to pass in the
1365 register number we are looking, as well as to return any rtx
1366 we find. */
1367
1368 typedef struct {
1369 unsigned regno_to_find;
1370 rtx retval;
1371 } find_regno_partial_param;
1372
1373
1374 /* Find the rtx for the reg numbers specified in 'data' if it is
1375 part of an expression which only uses part of the register. Return
1376 it in the structure passed in. */
1377 static int
1378 find_regno_partial (ptr, data)
1379 rtx *ptr;
1380 void *data;
1381 {
1382 find_regno_partial_param *param = (find_regno_partial_param *)data;
1383 unsigned reg = param->regno_to_find;
1384 param->retval = NULL_RTX;
1385
1386 if (*ptr == NULL_RTX)
1387 return 0;
1388
1389 switch (GET_CODE (*ptr))
1390 {
1391 case ZERO_EXTRACT:
1392 case SIGN_EXTRACT:
1393 case STRICT_LOW_PART:
1394 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1395 {
1396 param->retval = XEXP (*ptr, 0);
1397 return 1;
1398 }
1399 break;
1400
1401 case SUBREG:
1402 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1403 && REGNO (SUBREG_REG (*ptr)) == reg)
1404 {
1405 param->retval = SUBREG_REG (*ptr);
1406 return 1;
1407 }
1408 break;
1409
1410 default:
1411 break;
1412 }
1413
1414 return 0;
1415 }
1416
1417 /* Process all immediate successors of the entry block looking for pseudo
1418 registers which are live on entry. Find all of those whose first
1419 instance is a partial register reference of some kind, and initialize
1420 them to 0 after the entry block. This will prevent bit sets within
1421 registers whose value is unknown, and may contain some kind of sticky
1422 bits we don't want. */
1423
1424 int
1425 initialize_uninitialized_subregs ()
1426 {
1427 rtx insn;
1428 edge e;
1429 int reg, did_something = 0;
1430 find_regno_partial_param param;
1431
1432 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1433 {
1434 basic_block bb = e->dest;
1435 regset map = bb->global_live_at_start;
1436 EXECUTE_IF_SET_IN_REG_SET (map,
1437 FIRST_PSEUDO_REGISTER, reg,
1438 {
1439 int uid = REGNO_FIRST_UID (reg);
1440 rtx i;
1441
1442 /* Find an insn which mentions the register we are looking for.
1443 Its preferable to have an instance of the register's rtl since
1444 there may be various flags set which we need to duplicate.
1445 If we can't find it, its probably an automatic whose initial
1446 value doesn't matter, or hopefully something we don't care about. */
1447 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1448 ;
1449 if (i != NULL_RTX)
1450 {
1451 /* Found the insn, now get the REG rtx, if we can. */
1452 param.regno_to_find = reg;
1453 for_each_rtx (&i, find_regno_partial, &param);
1454 if (param.retval != NULL_RTX)
1455 {
1456 insn = gen_move_insn (param.retval,
1457 CONST0_RTX (GET_MODE (param.retval)));
1458 insert_insn_on_edge (insn, e);
1459 did_something = 1;
1460 }
1461 }
1462 });
1463 }
1464
1465 if (did_something)
1466 commit_edge_insertions ();
1467 return did_something;
1468 }
1469
1470 \f
1471 /* Subroutines of life analysis. */
1472
1473 /* Allocate the permanent data structures that represent the results
1474 of life analysis. Not static since used also for stupid life analysis. */
1475
1476 void
1477 allocate_bb_life_data ()
1478 {
1479 basic_block bb;
1480
1481 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1482 {
1483 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1484 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1485 }
1486
1487 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1488 }
1489
1490 void
1491 allocate_reg_life_data ()
1492 {
1493 int i;
1494
1495 max_regno = max_reg_num ();
1496
1497 /* Recalculate the register space, in case it has grown. Old style
1498 vector oriented regsets would set regset_{size,bytes} here also. */
1499 allocate_reg_info (max_regno, FALSE, FALSE);
1500
1501 /* Reset all the data we'll collect in propagate_block and its
1502 subroutines. */
1503 for (i = 0; i < max_regno; i++)
1504 {
1505 REG_N_SETS (i) = 0;
1506 REG_N_REFS (i) = 0;
1507 REG_N_DEATHS (i) = 0;
1508 REG_N_CALLS_CROSSED (i) = 0;
1509 REG_LIVE_LENGTH (i) = 0;
1510 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1511 }
1512 }
1513
1514 /* Delete dead instructions for propagate_block. */
1515
1516 static void
1517 propagate_block_delete_insn (insn)
1518 rtx insn;
1519 {
1520 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1521
1522 /* If the insn referred to a label, and that label was attached to
1523 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1524 pretty much mandatory to delete it, because the ADDR_VEC may be
1525 referencing labels that no longer exist.
1526
1527 INSN may reference a deleted label, particularly when a jump
1528 table has been optimized into a direct jump. There's no
1529 real good way to fix up the reference to the deleted label
1530 when the label is deleted, so we just allow it here. */
1531
1532 if (inote && GET_CODE (inote) == CODE_LABEL)
1533 {
1534 rtx label = XEXP (inote, 0);
1535 rtx next;
1536
1537 /* The label may be forced if it has been put in the constant
1538 pool. If that is the only use we must discard the table
1539 jump following it, but not the label itself. */
1540 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1541 && (next = next_nonnote_insn (label)) != NULL
1542 && GET_CODE (next) == JUMP_INSN
1543 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1544 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1545 {
1546 rtx pat = PATTERN (next);
1547 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1548 int len = XVECLEN (pat, diff_vec_p);
1549 int i;
1550
1551 for (i = 0; i < len; i++)
1552 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1553
1554 delete_insn_and_edges (next);
1555 ndead++;
1556 }
1557 }
1558
1559 delete_insn_and_edges (insn);
1560 ndead++;
1561 }
1562
1563 /* Delete dead libcalls for propagate_block. Return the insn
1564 before the libcall. */
1565
1566 static rtx
1567 propagate_block_delete_libcall ( insn, note)
1568 rtx insn, note;
1569 {
1570 rtx first = XEXP (note, 0);
1571 rtx before = PREV_INSN (first);
1572
1573 delete_insn_chain_and_edges (first, insn);
1574 ndead++;
1575 return before;
1576 }
1577
1578 /* Update the life-status of regs for one insn. Return the previous insn. */
1579
1580 rtx
1581 propagate_one_insn (pbi, insn)
1582 struct propagate_block_info *pbi;
1583 rtx insn;
1584 {
1585 rtx prev = PREV_INSN (insn);
1586 int flags = pbi->flags;
1587 int insn_is_dead = 0;
1588 int libcall_is_dead = 0;
1589 rtx note;
1590 int i;
1591
1592 if (! INSN_P (insn))
1593 return prev;
1594
1595 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1596 if (flags & PROP_SCAN_DEAD_CODE)
1597 {
1598 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1599 libcall_is_dead = (insn_is_dead && note != 0
1600 && libcall_dead_p (pbi, note, insn));
1601 }
1602
1603 /* If an instruction consists of just dead store(s) on final pass,
1604 delete it. */
1605 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1606 {
1607 /* If we're trying to delete a prologue or epilogue instruction
1608 that isn't flagged as possibly being dead, something is wrong.
1609 But if we are keeping the stack pointer depressed, we might well
1610 be deleting insns that are used to compute the amount to update
1611 it by, so they are fine. */
1612 if (reload_completed
1613 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1614 && (TYPE_RETURNS_STACK_DEPRESSED
1615 (TREE_TYPE (current_function_decl))))
1616 && (((HAVE_epilogue || HAVE_prologue)
1617 && prologue_epilogue_contains (insn))
1618 || (HAVE_sibcall_epilogue
1619 && sibcall_epilogue_contains (insn)))
1620 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1621 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1622
1623 /* Record sets. Do this even for dead instructions, since they
1624 would have killed the values if they hadn't been deleted. */
1625 mark_set_regs (pbi, PATTERN (insn), insn);
1626
1627 /* CC0 is now known to be dead. Either this insn used it,
1628 in which case it doesn't anymore, or clobbered it,
1629 so the next insn can't use it. */
1630 pbi->cc0_live = 0;
1631
1632 if (libcall_is_dead)
1633 prev = propagate_block_delete_libcall ( insn, note);
1634 else
1635 propagate_block_delete_insn (insn);
1636
1637 return prev;
1638 }
1639
1640 /* See if this is an increment or decrement that can be merged into
1641 a following memory address. */
1642 #ifdef AUTO_INC_DEC
1643 {
1644 rtx x = single_set (insn);
1645
1646 /* Does this instruction increment or decrement a register? */
1647 if ((flags & PROP_AUTOINC)
1648 && x != 0
1649 && GET_CODE (SET_DEST (x)) == REG
1650 && (GET_CODE (SET_SRC (x)) == PLUS
1651 || GET_CODE (SET_SRC (x)) == MINUS)
1652 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1653 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1654 /* Ok, look for a following memory ref we can combine with.
1655 If one is found, change the memory ref to a PRE_INC
1656 or PRE_DEC, cancel this insn, and return 1.
1657 Return 0 if nothing has been done. */
1658 && try_pre_increment_1 (pbi, insn))
1659 return prev;
1660 }
1661 #endif /* AUTO_INC_DEC */
1662
1663 CLEAR_REG_SET (pbi->new_set);
1664
1665 /* If this is not the final pass, and this insn is copying the value of
1666 a library call and it's dead, don't scan the insns that perform the
1667 library call, so that the call's arguments are not marked live. */
1668 if (libcall_is_dead)
1669 {
1670 /* Record the death of the dest reg. */
1671 mark_set_regs (pbi, PATTERN (insn), insn);
1672
1673 insn = XEXP (note, 0);
1674 return PREV_INSN (insn);
1675 }
1676 else if (GET_CODE (PATTERN (insn)) == SET
1677 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1678 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1679 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1680 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1681 /* We have an insn to pop a constant amount off the stack.
1682 (Such insns use PLUS regardless of the direction of the stack,
1683 and any insn to adjust the stack by a constant is always a pop.)
1684 These insns, if not dead stores, have no effect on life, though
1685 they do have an effect on the memory stores we are tracking. */
1686 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1687 else
1688 {
1689 rtx note;
1690 /* Any regs live at the time of a call instruction must not go
1691 in a register clobbered by calls. Find all regs now live and
1692 record this for them. */
1693
1694 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1695 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1696 { REG_N_CALLS_CROSSED (i)++; });
1697
1698 /* Record sets. Do this even for dead instructions, since they
1699 would have killed the values if they hadn't been deleted. */
1700 mark_set_regs (pbi, PATTERN (insn), insn);
1701
1702 if (GET_CODE (insn) == CALL_INSN)
1703 {
1704 int i;
1705 rtx note, cond;
1706
1707 cond = NULL_RTX;
1708 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1709 cond = COND_EXEC_TEST (PATTERN (insn));
1710
1711 /* Non-constant calls clobber memory, constant calls do not
1712 clobber memory, though they may clobber outgoing arguments
1713 on the stack. */
1714 if (! CONST_OR_PURE_CALL_P (insn))
1715 {
1716 free_EXPR_LIST_list (&pbi->mem_set_list);
1717 pbi->mem_set_list_len = 0;
1718 }
1719 else
1720 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1721
1722 /* There may be extra registers to be clobbered. */
1723 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1724 note;
1725 note = XEXP (note, 1))
1726 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1727 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1728 cond, insn, pbi->flags);
1729
1730 /* Calls change all call-used and global registers. */
1731 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1732 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1733 {
1734 /* We do not want REG_UNUSED notes for these registers. */
1735 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1736 cond, insn,
1737 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1738 }
1739 }
1740
1741 /* If an insn doesn't use CC0, it becomes dead since we assume
1742 that every insn clobbers it. So show it dead here;
1743 mark_used_regs will set it live if it is referenced. */
1744 pbi->cc0_live = 0;
1745
1746 /* Record uses. */
1747 if (! insn_is_dead)
1748 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1749 if ((flags & PROP_EQUAL_NOTES)
1750 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1751 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1752 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1753
1754 /* Sometimes we may have inserted something before INSN (such as a move)
1755 when we make an auto-inc. So ensure we will scan those insns. */
1756 #ifdef AUTO_INC_DEC
1757 prev = PREV_INSN (insn);
1758 #endif
1759
1760 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1761 {
1762 int i;
1763 rtx note, cond;
1764
1765 cond = NULL_RTX;
1766 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1767 cond = COND_EXEC_TEST (PATTERN (insn));
1768
1769 /* Calls use their arguments. */
1770 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1771 note;
1772 note = XEXP (note, 1))
1773 if (GET_CODE (XEXP (note, 0)) == USE)
1774 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1775 cond, insn);
1776
1777 /* The stack ptr is used (honorarily) by a CALL insn. */
1778 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1779
1780 /* Calls may also reference any of the global registers,
1781 so they are made live. */
1782 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1783 if (global_regs[i])
1784 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1785 cond, insn);
1786 }
1787 }
1788
1789 /* On final pass, update counts of how many insns in which each reg
1790 is live. */
1791 if (flags & PROP_REG_INFO)
1792 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1793 { REG_LIVE_LENGTH (i)++; });
1794
1795 return prev;
1796 }
1797
1798 /* Initialize a propagate_block_info struct for public consumption.
1799 Note that the structure itself is opaque to this file, but that
1800 the user can use the regsets provided here. */
1801
1802 struct propagate_block_info *
1803 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1804 basic_block bb;
1805 regset live, local_set, cond_local_set;
1806 int flags;
1807 {
1808 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1809
1810 pbi->bb = bb;
1811 pbi->reg_live = live;
1812 pbi->mem_set_list = NULL_RTX;
1813 pbi->mem_set_list_len = 0;
1814 pbi->local_set = local_set;
1815 pbi->cond_local_set = cond_local_set;
1816 pbi->cc0_live = 0;
1817 pbi->flags = flags;
1818
1819 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1820 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1821 else
1822 pbi->reg_next_use = NULL;
1823
1824 pbi->new_set = BITMAP_XMALLOC ();
1825
1826 #ifdef HAVE_conditional_execution
1827 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1828 free_reg_cond_life_info);
1829 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1830
1831 /* If this block ends in a conditional branch, for each register live
1832 from one side of the branch and not the other, record the register
1833 as conditionally dead. */
1834 if (GET_CODE (bb->end) == JUMP_INSN
1835 && any_condjump_p (bb->end))
1836 {
1837 regset_head diff_head;
1838 regset diff = INITIALIZE_REG_SET (diff_head);
1839 basic_block bb_true, bb_false;
1840 rtx cond_true, cond_false, set_src;
1841 int i;
1842
1843 /* Identify the successor blocks. */
1844 bb_true = bb->succ->dest;
1845 if (bb->succ->succ_next != NULL)
1846 {
1847 bb_false = bb->succ->succ_next->dest;
1848
1849 if (bb->succ->flags & EDGE_FALLTHRU)
1850 {
1851 basic_block t = bb_false;
1852 bb_false = bb_true;
1853 bb_true = t;
1854 }
1855 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1856 abort ();
1857 }
1858 else
1859 {
1860 /* This can happen with a conditional jump to the next insn. */
1861 if (JUMP_LABEL (bb->end) != bb_true->head)
1862 abort ();
1863
1864 /* Simplest way to do nothing. */
1865 bb_false = bb_true;
1866 }
1867
1868 /* Extract the condition from the branch. */
1869 set_src = SET_SRC (pc_set (bb->end));
1870 cond_true = XEXP (set_src, 0);
1871 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1872 GET_MODE (cond_true), XEXP (cond_true, 0),
1873 XEXP (cond_true, 1));
1874 if (GET_CODE (XEXP (set_src, 1)) == PC)
1875 {
1876 rtx t = cond_false;
1877 cond_false = cond_true;
1878 cond_true = t;
1879 }
1880
1881 /* Compute which register lead different lives in the successors. */
1882 if (bitmap_operation (diff, bb_true->global_live_at_start,
1883 bb_false->global_live_at_start, BITMAP_XOR))
1884 {
1885 rtx reg = XEXP (cond_true, 0);
1886
1887 if (GET_CODE (reg) == SUBREG)
1888 reg = SUBREG_REG (reg);
1889
1890 if (GET_CODE (reg) != REG)
1891 abort ();
1892
1893 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1894
1895 /* For each such register, mark it conditionally dead. */
1896 EXECUTE_IF_SET_IN_REG_SET
1897 (diff, 0, i,
1898 {
1899 struct reg_cond_life_info *rcli;
1900 rtx cond;
1901
1902 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1903
1904 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1905 cond = cond_false;
1906 else
1907 cond = cond_true;
1908 rcli->condition = cond;
1909 rcli->stores = const0_rtx;
1910 rcli->orig_condition = cond;
1911
1912 splay_tree_insert (pbi->reg_cond_dead, i,
1913 (splay_tree_value) rcli);
1914 });
1915 }
1916
1917 FREE_REG_SET (diff);
1918 }
1919 #endif
1920
1921 /* If this block has no successors, any stores to the frame that aren't
1922 used later in the block are dead. So make a pass over the block
1923 recording any such that are made and show them dead at the end. We do
1924 a very conservative and simple job here. */
1925 if (optimize
1926 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1927 && (TYPE_RETURNS_STACK_DEPRESSED
1928 (TREE_TYPE (current_function_decl))))
1929 && (flags & PROP_SCAN_DEAD_STORES)
1930 && (bb->succ == NULL
1931 || (bb->succ->succ_next == NULL
1932 && bb->succ->dest == EXIT_BLOCK_PTR
1933 && ! current_function_calls_eh_return)))
1934 {
1935 rtx insn, set;
1936 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1937 if (GET_CODE (insn) == INSN
1938 && (set = single_set (insn))
1939 && GET_CODE (SET_DEST (set)) == MEM)
1940 {
1941 rtx mem = SET_DEST (set);
1942 rtx canon_mem = canon_rtx (mem);
1943
1944 /* This optimization is performed by faking a store to the
1945 memory at the end of the block. This doesn't work for
1946 unchanging memories because multiple stores to unchanging
1947 memory is illegal and alias analysis doesn't consider it. */
1948 if (RTX_UNCHANGING_P (canon_mem))
1949 continue;
1950
1951 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1952 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1953 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1954 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1955 add_to_mem_set_list (pbi, canon_mem);
1956 }
1957 }
1958
1959 return pbi;
1960 }
1961
1962 /* Release a propagate_block_info struct. */
1963
1964 void
1965 free_propagate_block_info (pbi)
1966 struct propagate_block_info *pbi;
1967 {
1968 free_EXPR_LIST_list (&pbi->mem_set_list);
1969
1970 BITMAP_XFREE (pbi->new_set);
1971
1972 #ifdef HAVE_conditional_execution
1973 splay_tree_delete (pbi->reg_cond_dead);
1974 BITMAP_XFREE (pbi->reg_cond_reg);
1975 #endif
1976
1977 if (pbi->reg_next_use)
1978 free (pbi->reg_next_use);
1979
1980 free (pbi);
1981 }
1982
1983 /* Compute the registers live at the beginning of a basic block BB from
1984 those live at the end.
1985
1986 When called, REG_LIVE contains those live at the end. On return, it
1987 contains those live at the beginning.
1988
1989 LOCAL_SET, if non-null, will be set with all registers killed
1990 unconditionally by this basic block.
1991 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
1992 killed conditionally by this basic block. If there is any unconditional
1993 set of a register, then the corresponding bit will be set in LOCAL_SET
1994 and cleared in COND_LOCAL_SET.
1995 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
1996 case, the resulting set will be equal to the union of the two sets that
1997 would otherwise be computed.
1998
1999 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2000
2001 int
2002 propagate_block (bb, live, local_set, cond_local_set, flags)
2003 basic_block bb;
2004 regset live;
2005 regset local_set;
2006 regset cond_local_set;
2007 int flags;
2008 {
2009 struct propagate_block_info *pbi;
2010 rtx insn, prev;
2011 int changed;
2012
2013 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2014
2015 if (flags & PROP_REG_INFO)
2016 {
2017 int i;
2018
2019 /* Process the regs live at the end of the block.
2020 Mark them as not local to any one basic block. */
2021 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2022 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2023 }
2024
2025 /* Scan the block an insn at a time from end to beginning. */
2026
2027 changed = 0;
2028 for (insn = bb->end;; insn = prev)
2029 {
2030 /* If this is a call to `setjmp' et al, warn if any
2031 non-volatile datum is live. */
2032 if ((flags & PROP_REG_INFO)
2033 && GET_CODE (insn) == CALL_INSN
2034 && find_reg_note (insn, REG_SETJMP, NULL))
2035 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2036
2037 prev = propagate_one_insn (pbi, insn);
2038 changed |= NEXT_INSN (prev) != insn;
2039
2040 if (insn == bb->head)
2041 break;
2042 }
2043
2044 free_propagate_block_info (pbi);
2045
2046 return changed;
2047 }
2048 \f
2049 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2050 (SET expressions whose destinations are registers dead after the insn).
2051 NEEDED is the regset that says which regs are alive after the insn.
2052
2053 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2054
2055 If X is the entire body of an insn, NOTES contains the reg notes
2056 pertaining to the insn. */
2057
2058 static int
2059 insn_dead_p (pbi, x, call_ok, notes)
2060 struct propagate_block_info *pbi;
2061 rtx x;
2062 int call_ok;
2063 rtx notes ATTRIBUTE_UNUSED;
2064 {
2065 enum rtx_code code = GET_CODE (x);
2066
2067 #ifdef AUTO_INC_DEC
2068 /* As flow is invoked after combine, we must take existing AUTO_INC
2069 expressions into account. */
2070 for (; notes; notes = XEXP (notes, 1))
2071 {
2072 if (REG_NOTE_KIND (notes) == REG_INC)
2073 {
2074 int regno = REGNO (XEXP (notes, 0));
2075
2076 /* Don't delete insns to set global regs. */
2077 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2078 || REGNO_REG_SET_P (pbi->reg_live, regno))
2079 return 0;
2080 }
2081 }
2082 #endif
2083
2084 /* If setting something that's a reg or part of one,
2085 see if that register's altered value will be live. */
2086
2087 if (code == SET)
2088 {
2089 rtx r = SET_DEST (x);
2090
2091 #ifdef HAVE_cc0
2092 if (GET_CODE (r) == CC0)
2093 return ! pbi->cc0_live;
2094 #endif
2095
2096 /* A SET that is a subroutine call cannot be dead. */
2097 if (GET_CODE (SET_SRC (x)) == CALL)
2098 {
2099 if (! call_ok)
2100 return 0;
2101 }
2102
2103 /* Don't eliminate loads from volatile memory or volatile asms. */
2104 else if (volatile_refs_p (SET_SRC (x)))
2105 return 0;
2106
2107 if (GET_CODE (r) == MEM)
2108 {
2109 rtx temp, canon_r;
2110
2111 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2112 return 0;
2113
2114 canon_r = canon_rtx (r);
2115
2116 /* Walk the set of memory locations we are currently tracking
2117 and see if one is an identical match to this memory location.
2118 If so, this memory write is dead (remember, we're walking
2119 backwards from the end of the block to the start). Since
2120 rtx_equal_p does not check the alias set or flags, we also
2121 must have the potential for them to conflict (anti_dependence). */
2122 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2123 if (anti_dependence (r, XEXP (temp, 0)))
2124 {
2125 rtx mem = XEXP (temp, 0);
2126
2127 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2128 && (GET_MODE_SIZE (GET_MODE (canon_r))
2129 <= GET_MODE_SIZE (GET_MODE (mem))))
2130 return 1;
2131
2132 #ifdef AUTO_INC_DEC
2133 /* Check if memory reference matches an auto increment. Only
2134 post increment/decrement or modify are valid. */
2135 if (GET_MODE (mem) == GET_MODE (r)
2136 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2137 || GET_CODE (XEXP (mem, 0)) == POST_INC
2138 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2139 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2140 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2141 return 1;
2142 #endif
2143 }
2144 }
2145 else
2146 {
2147 while (GET_CODE (r) == SUBREG
2148 || GET_CODE (r) == STRICT_LOW_PART
2149 || GET_CODE (r) == ZERO_EXTRACT)
2150 r = XEXP (r, 0);
2151
2152 if (GET_CODE (r) == REG)
2153 {
2154 int regno = REGNO (r);
2155
2156 /* Obvious. */
2157 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2158 return 0;
2159
2160 /* If this is a hard register, verify that subsequent
2161 words are not needed. */
2162 if (regno < FIRST_PSEUDO_REGISTER)
2163 {
2164 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2165
2166 while (--n > 0)
2167 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2168 return 0;
2169 }
2170
2171 /* Don't delete insns to set global regs. */
2172 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2173 return 0;
2174
2175 /* Make sure insns to set the stack pointer aren't deleted. */
2176 if (regno == STACK_POINTER_REGNUM)
2177 return 0;
2178
2179 /* ??? These bits might be redundant with the force live bits
2180 in calculate_global_regs_live. We would delete from
2181 sequential sets; whether this actually affects real code
2182 for anything but the stack pointer I don't know. */
2183 /* Make sure insns to set the frame pointer aren't deleted. */
2184 if (regno == FRAME_POINTER_REGNUM
2185 && (! reload_completed || frame_pointer_needed))
2186 return 0;
2187 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2188 if (regno == HARD_FRAME_POINTER_REGNUM
2189 && (! reload_completed || frame_pointer_needed))
2190 return 0;
2191 #endif
2192
2193 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2194 /* Make sure insns to set arg pointer are never deleted
2195 (if the arg pointer isn't fixed, there will be a USE
2196 for it, so we can treat it normally). */
2197 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2198 return 0;
2199 #endif
2200
2201 /* Otherwise, the set is dead. */
2202 return 1;
2203 }
2204 }
2205 }
2206
2207 /* If performing several activities, insn is dead if each activity
2208 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2209 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2210 worth keeping. */
2211 else if (code == PARALLEL)
2212 {
2213 int i = XVECLEN (x, 0);
2214
2215 for (i--; i >= 0; i--)
2216 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2217 && GET_CODE (XVECEXP (x, 0, i)) != USE
2218 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2219 return 0;
2220
2221 return 1;
2222 }
2223
2224 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2225 is not necessarily true for hard registers. */
2226 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2227 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2228 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2229 return 1;
2230
2231 /* We do not check other CLOBBER or USE here. An insn consisting of just
2232 a CLOBBER or just a USE should not be deleted. */
2233 return 0;
2234 }
2235
2236 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2237 return 1 if the entire library call is dead.
2238 This is true if INSN copies a register (hard or pseudo)
2239 and if the hard return reg of the call insn is dead.
2240 (The caller should have tested the destination of the SET inside
2241 INSN already for death.)
2242
2243 If this insn doesn't just copy a register, then we don't
2244 have an ordinary libcall. In that case, cse could not have
2245 managed to substitute the source for the dest later on,
2246 so we can assume the libcall is dead.
2247
2248 PBI is the block info giving pseudoregs live before this insn.
2249 NOTE is the REG_RETVAL note of the insn. */
2250
2251 static int
2252 libcall_dead_p (pbi, note, insn)
2253 struct propagate_block_info *pbi;
2254 rtx note;
2255 rtx insn;
2256 {
2257 rtx x = single_set (insn);
2258
2259 if (x)
2260 {
2261 rtx r = SET_SRC (x);
2262
2263 if (GET_CODE (r) == REG)
2264 {
2265 rtx call = XEXP (note, 0);
2266 rtx call_pat;
2267 int i;
2268
2269 /* Find the call insn. */
2270 while (call != insn && GET_CODE (call) != CALL_INSN)
2271 call = NEXT_INSN (call);
2272
2273 /* If there is none, do nothing special,
2274 since ordinary death handling can understand these insns. */
2275 if (call == insn)
2276 return 0;
2277
2278 /* See if the hard reg holding the value is dead.
2279 If this is a PARALLEL, find the call within it. */
2280 call_pat = PATTERN (call);
2281 if (GET_CODE (call_pat) == PARALLEL)
2282 {
2283 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2284 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2285 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2286 break;
2287
2288 /* This may be a library call that is returning a value
2289 via invisible pointer. Do nothing special, since
2290 ordinary death handling can understand these insns. */
2291 if (i < 0)
2292 return 0;
2293
2294 call_pat = XVECEXP (call_pat, 0, i);
2295 }
2296
2297 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2298 }
2299 }
2300 return 1;
2301 }
2302
2303 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2304 live at function entry. Don't count global register variables, variables
2305 in registers that can be used for function arg passing, or variables in
2306 fixed hard registers. */
2307
2308 int
2309 regno_uninitialized (regno)
2310 unsigned int regno;
2311 {
2312 if (n_basic_blocks == 0
2313 || (regno < FIRST_PSEUDO_REGISTER
2314 && (global_regs[regno]
2315 || fixed_regs[regno]
2316 || FUNCTION_ARG_REGNO_P (regno))))
2317 return 0;
2318
2319 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2320 }
2321
2322 /* 1 if register REGNO was alive at a place where `setjmp' was called
2323 and was set more than once or is an argument.
2324 Such regs may be clobbered by `longjmp'. */
2325
2326 int
2327 regno_clobbered_at_setjmp (regno)
2328 int regno;
2329 {
2330 if (n_basic_blocks == 0)
2331 return 0;
2332
2333 return ((REG_N_SETS (regno) > 1
2334 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2335 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2336 }
2337 \f
2338 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2339 maximal list size; look for overlaps in mode and select the largest. */
2340 static void
2341 add_to_mem_set_list (pbi, mem)
2342 struct propagate_block_info *pbi;
2343 rtx mem;
2344 {
2345 rtx i;
2346
2347 /* We don't know how large a BLKmode store is, so we must not
2348 take them into consideration. */
2349 if (GET_MODE (mem) == BLKmode)
2350 return;
2351
2352 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2353 {
2354 rtx e = XEXP (i, 0);
2355 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2356 {
2357 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2358 {
2359 #ifdef AUTO_INC_DEC
2360 /* If we must store a copy of the mem, we can just modify
2361 the mode of the stored copy. */
2362 if (pbi->flags & PROP_AUTOINC)
2363 PUT_MODE (e, GET_MODE (mem));
2364 else
2365 #endif
2366 XEXP (i, 0) = mem;
2367 }
2368 return;
2369 }
2370 }
2371
2372 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2373 {
2374 #ifdef AUTO_INC_DEC
2375 /* Store a copy of mem, otherwise the address may be
2376 scrogged by find_auto_inc. */
2377 if (pbi->flags & PROP_AUTOINC)
2378 mem = shallow_copy_rtx (mem);
2379 #endif
2380 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2381 pbi->mem_set_list_len++;
2382 }
2383 }
2384
2385 /* INSN references memory, possibly using autoincrement addressing modes.
2386 Find any entries on the mem_set_list that need to be invalidated due
2387 to an address change. */
2388
2389 static int
2390 invalidate_mems_from_autoinc (px, data)
2391 rtx *px;
2392 void *data;
2393 {
2394 rtx x = *px;
2395 struct propagate_block_info *pbi = data;
2396
2397 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2398 {
2399 invalidate_mems_from_set (pbi, XEXP (x, 0));
2400 return -1;
2401 }
2402
2403 return 0;
2404 }
2405
2406 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2407
2408 static void
2409 invalidate_mems_from_set (pbi, exp)
2410 struct propagate_block_info *pbi;
2411 rtx exp;
2412 {
2413 rtx temp = pbi->mem_set_list;
2414 rtx prev = NULL_RTX;
2415 rtx next;
2416
2417 while (temp)
2418 {
2419 next = XEXP (temp, 1);
2420 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2421 {
2422 /* Splice this entry out of the list. */
2423 if (prev)
2424 XEXP (prev, 1) = next;
2425 else
2426 pbi->mem_set_list = next;
2427 free_EXPR_LIST_node (temp);
2428 pbi->mem_set_list_len--;
2429 }
2430 else
2431 prev = temp;
2432 temp = next;
2433 }
2434 }
2435
2436 /* Process the registers that are set within X. Their bits are set to
2437 1 in the regset DEAD, because they are dead prior to this insn.
2438
2439 If INSN is nonzero, it is the insn being processed.
2440
2441 FLAGS is the set of operations to perform. */
2442
2443 static void
2444 mark_set_regs (pbi, x, insn)
2445 struct propagate_block_info *pbi;
2446 rtx x, insn;
2447 {
2448 rtx cond = NULL_RTX;
2449 rtx link;
2450 enum rtx_code code;
2451
2452 if (insn)
2453 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2454 {
2455 if (REG_NOTE_KIND (link) == REG_INC)
2456 mark_set_1 (pbi, SET, XEXP (link, 0),
2457 (GET_CODE (x) == COND_EXEC
2458 ? COND_EXEC_TEST (x) : NULL_RTX),
2459 insn, pbi->flags);
2460 }
2461 retry:
2462 switch (code = GET_CODE (x))
2463 {
2464 case SET:
2465 case CLOBBER:
2466 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2467 return;
2468
2469 case COND_EXEC:
2470 cond = COND_EXEC_TEST (x);
2471 x = COND_EXEC_CODE (x);
2472 goto retry;
2473
2474 case PARALLEL:
2475 {
2476 int i;
2477
2478 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2479 {
2480 rtx sub = XVECEXP (x, 0, i);
2481 switch (code = GET_CODE (sub))
2482 {
2483 case COND_EXEC:
2484 if (cond != NULL_RTX)
2485 abort ();
2486
2487 cond = COND_EXEC_TEST (sub);
2488 sub = COND_EXEC_CODE (sub);
2489 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2490 break;
2491 /* Fall through. */
2492
2493 case SET:
2494 case CLOBBER:
2495 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2496 break;
2497
2498 default:
2499 break;
2500 }
2501 }
2502 break;
2503 }
2504
2505 default:
2506 break;
2507 }
2508 }
2509
2510 /* Process a single set, which appears in INSN. REG (which may not
2511 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2512 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2513 If the set is conditional (because it appear in a COND_EXEC), COND
2514 will be the condition. */
2515
2516 static void
2517 mark_set_1 (pbi, code, reg, cond, insn, flags)
2518 struct propagate_block_info *pbi;
2519 enum rtx_code code;
2520 rtx reg, cond, insn;
2521 int flags;
2522 {
2523 int regno_first = -1, regno_last = -1;
2524 unsigned long not_dead = 0;
2525 int i;
2526
2527 /* Modifying just one hardware register of a multi-reg value or just a
2528 byte field of a register does not mean the value from before this insn
2529 is now dead. Of course, if it was dead after it's unused now. */
2530
2531 switch (GET_CODE (reg))
2532 {
2533 case PARALLEL:
2534 /* Some targets place small structures in registers for return values of
2535 functions. We have to detect this case specially here to get correct
2536 flow information. */
2537 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2538 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2539 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2540 flags);
2541 return;
2542
2543 case ZERO_EXTRACT:
2544 case SIGN_EXTRACT:
2545 case STRICT_LOW_PART:
2546 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2547 do
2548 reg = XEXP (reg, 0);
2549 while (GET_CODE (reg) == SUBREG
2550 || GET_CODE (reg) == ZERO_EXTRACT
2551 || GET_CODE (reg) == SIGN_EXTRACT
2552 || GET_CODE (reg) == STRICT_LOW_PART);
2553 if (GET_CODE (reg) == MEM)
2554 break;
2555 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2556 /* Fall through. */
2557
2558 case REG:
2559 regno_last = regno_first = REGNO (reg);
2560 if (regno_first < FIRST_PSEUDO_REGISTER)
2561 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2562 break;
2563
2564 case SUBREG:
2565 if (GET_CODE (SUBREG_REG (reg)) == REG)
2566 {
2567 enum machine_mode outer_mode = GET_MODE (reg);
2568 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2569
2570 /* Identify the range of registers affected. This is moderately
2571 tricky for hard registers. See alter_subreg. */
2572
2573 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2574 if (regno_first < FIRST_PSEUDO_REGISTER)
2575 {
2576 regno_first += subreg_regno_offset (regno_first, inner_mode,
2577 SUBREG_BYTE (reg),
2578 outer_mode);
2579 regno_last = (regno_first
2580 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2581
2582 /* Since we've just adjusted the register number ranges, make
2583 sure REG matches. Otherwise some_was_live will be clear
2584 when it shouldn't have been, and we'll create incorrect
2585 REG_UNUSED notes. */
2586 reg = gen_rtx_REG (outer_mode, regno_first);
2587 }
2588 else
2589 {
2590 /* If the number of words in the subreg is less than the number
2591 of words in the full register, we have a well-defined partial
2592 set. Otherwise the high bits are undefined.
2593
2594 This is only really applicable to pseudos, since we just took
2595 care of multi-word hard registers. */
2596 if (((GET_MODE_SIZE (outer_mode)
2597 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2598 < ((GET_MODE_SIZE (inner_mode)
2599 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2600 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2601 regno_first);
2602
2603 reg = SUBREG_REG (reg);
2604 }
2605 }
2606 else
2607 reg = SUBREG_REG (reg);
2608 break;
2609
2610 default:
2611 break;
2612 }
2613
2614 /* If this set is a MEM, then it kills any aliased writes.
2615 If this set is a REG, then it kills any MEMs which use the reg. */
2616 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2617 {
2618 if (GET_CODE (reg) == REG)
2619 invalidate_mems_from_set (pbi, reg);
2620
2621 /* If the memory reference had embedded side effects (autoincrement
2622 address modes. Then we may need to kill some entries on the
2623 memory set list. */
2624 if (insn && GET_CODE (reg) == MEM)
2625 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2626
2627 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2628 /* ??? With more effort we could track conditional memory life. */
2629 && ! cond)
2630 add_to_mem_set_list (pbi, canon_rtx (reg));
2631 }
2632
2633 if (GET_CODE (reg) == REG
2634 && ! (regno_first == FRAME_POINTER_REGNUM
2635 && (! reload_completed || frame_pointer_needed))
2636 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2637 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2638 && (! reload_completed || frame_pointer_needed))
2639 #endif
2640 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2641 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2642 #endif
2643 )
2644 {
2645 int some_was_live = 0, some_was_dead = 0;
2646
2647 for (i = regno_first; i <= regno_last; ++i)
2648 {
2649 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2650 if (pbi->local_set)
2651 {
2652 /* Order of the set operation matters here since both
2653 sets may be the same. */
2654 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2655 if (cond != NULL_RTX
2656 && ! REGNO_REG_SET_P (pbi->local_set, i))
2657 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2658 else
2659 SET_REGNO_REG_SET (pbi->local_set, i);
2660 }
2661 if (code != CLOBBER)
2662 SET_REGNO_REG_SET (pbi->new_set, i);
2663
2664 some_was_live |= needed_regno;
2665 some_was_dead |= ! needed_regno;
2666 }
2667
2668 #ifdef HAVE_conditional_execution
2669 /* Consider conditional death in deciding that the register needs
2670 a death note. */
2671 if (some_was_live && ! not_dead
2672 /* The stack pointer is never dead. Well, not strictly true,
2673 but it's very difficult to tell from here. Hopefully
2674 combine_stack_adjustments will fix up the most egregious
2675 errors. */
2676 && regno_first != STACK_POINTER_REGNUM)
2677 {
2678 for (i = regno_first; i <= regno_last; ++i)
2679 if (! mark_regno_cond_dead (pbi, i, cond))
2680 not_dead |= ((unsigned long) 1) << (i - regno_first);
2681 }
2682 #endif
2683
2684 /* Additional data to record if this is the final pass. */
2685 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2686 | PROP_DEATH_NOTES | PROP_AUTOINC))
2687 {
2688 rtx y;
2689 int blocknum = pbi->bb->index;
2690
2691 y = NULL_RTX;
2692 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2693 {
2694 y = pbi->reg_next_use[regno_first];
2695
2696 /* The next use is no longer next, since a store intervenes. */
2697 for (i = regno_first; i <= regno_last; ++i)
2698 pbi->reg_next_use[i] = 0;
2699 }
2700
2701 if (flags & PROP_REG_INFO)
2702 {
2703 for (i = regno_first; i <= regno_last; ++i)
2704 {
2705 /* Count (weighted) references, stores, etc. This counts a
2706 register twice if it is modified, but that is correct. */
2707 REG_N_SETS (i) += 1;
2708 REG_N_REFS (i) += 1;
2709 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2710
2711 /* The insns where a reg is live are normally counted
2712 elsewhere, but we want the count to include the insn
2713 where the reg is set, and the normal counting mechanism
2714 would not count it. */
2715 REG_LIVE_LENGTH (i) += 1;
2716 }
2717
2718 /* If this is a hard reg, record this function uses the reg. */
2719 if (regno_first < FIRST_PSEUDO_REGISTER)
2720 {
2721 for (i = regno_first; i <= regno_last; i++)
2722 regs_ever_live[i] = 1;
2723 }
2724 else
2725 {
2726 /* Keep track of which basic blocks each reg appears in. */
2727 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2728 REG_BASIC_BLOCK (regno_first) = blocknum;
2729 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2730 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2731 }
2732 }
2733
2734 if (! some_was_dead)
2735 {
2736 if (flags & PROP_LOG_LINKS)
2737 {
2738 /* Make a logical link from the next following insn
2739 that uses this register, back to this insn.
2740 The following insns have already been processed.
2741
2742 We don't build a LOG_LINK for hard registers containing
2743 in ASM_OPERANDs. If these registers get replaced,
2744 we might wind up changing the semantics of the insn,
2745 even if reload can make what appear to be valid
2746 assignments later. */
2747 if (y && (BLOCK_NUM (y) == blocknum)
2748 && (regno_first >= FIRST_PSEUDO_REGISTER
2749 || asm_noperands (PATTERN (y)) < 0))
2750 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2751 }
2752 }
2753 else if (not_dead)
2754 ;
2755 else if (! some_was_live)
2756 {
2757 if (flags & PROP_REG_INFO)
2758 REG_N_DEATHS (regno_first) += 1;
2759
2760 if (flags & PROP_DEATH_NOTES)
2761 {
2762 /* Note that dead stores have already been deleted
2763 when possible. If we get here, we have found a
2764 dead store that cannot be eliminated (because the
2765 same insn does something useful). Indicate this
2766 by marking the reg being set as dying here. */
2767 REG_NOTES (insn)
2768 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2769 }
2770 }
2771 else
2772 {
2773 if (flags & PROP_DEATH_NOTES)
2774 {
2775 /* This is a case where we have a multi-word hard register
2776 and some, but not all, of the words of the register are
2777 needed in subsequent insns. Write REG_UNUSED notes
2778 for those parts that were not needed. This case should
2779 be rare. */
2780
2781 for (i = regno_first; i <= regno_last; ++i)
2782 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2783 REG_NOTES (insn)
2784 = alloc_EXPR_LIST (REG_UNUSED,
2785 gen_rtx_REG (reg_raw_mode[i], i),
2786 REG_NOTES (insn));
2787 }
2788 }
2789 }
2790
2791 /* Mark the register as being dead. */
2792 if (some_was_live
2793 /* The stack pointer is never dead. Well, not strictly true,
2794 but it's very difficult to tell from here. Hopefully
2795 combine_stack_adjustments will fix up the most egregious
2796 errors. */
2797 && regno_first != STACK_POINTER_REGNUM)
2798 {
2799 for (i = regno_first; i <= regno_last; ++i)
2800 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2801 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2802 }
2803 }
2804 else if (GET_CODE (reg) == REG)
2805 {
2806 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2807 pbi->reg_next_use[regno_first] = 0;
2808 }
2809
2810 /* If this is the last pass and this is a SCRATCH, show it will be dying
2811 here and count it. */
2812 else if (GET_CODE (reg) == SCRATCH)
2813 {
2814 if (flags & PROP_DEATH_NOTES)
2815 REG_NOTES (insn)
2816 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2817 }
2818 }
2819 \f
2820 #ifdef HAVE_conditional_execution
2821 /* Mark REGNO conditionally dead.
2822 Return true if the register is now unconditionally dead. */
2823
2824 static int
2825 mark_regno_cond_dead (pbi, regno, cond)
2826 struct propagate_block_info *pbi;
2827 int regno;
2828 rtx cond;
2829 {
2830 /* If this is a store to a predicate register, the value of the
2831 predicate is changing, we don't know that the predicate as seen
2832 before is the same as that seen after. Flush all dependent
2833 conditions from reg_cond_dead. This will make all such
2834 conditionally live registers unconditionally live. */
2835 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2836 flush_reg_cond_reg (pbi, regno);
2837
2838 /* If this is an unconditional store, remove any conditional
2839 life that may have existed. */
2840 if (cond == NULL_RTX)
2841 splay_tree_remove (pbi->reg_cond_dead, regno);
2842 else
2843 {
2844 splay_tree_node node;
2845 struct reg_cond_life_info *rcli;
2846 rtx ncond;
2847
2848 /* Otherwise this is a conditional set. Record that fact.
2849 It may have been conditionally used, or there may be a
2850 subsequent set with a complimentary condition. */
2851
2852 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2853 if (node == NULL)
2854 {
2855 /* The register was unconditionally live previously.
2856 Record the current condition as the condition under
2857 which it is dead. */
2858 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2859 rcli->condition = cond;
2860 rcli->stores = cond;
2861 rcli->orig_condition = const0_rtx;
2862 splay_tree_insert (pbi->reg_cond_dead, regno,
2863 (splay_tree_value) rcli);
2864
2865 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2866
2867 /* Not unconditionally dead. */
2868 return 0;
2869 }
2870 else
2871 {
2872 /* The register was conditionally live previously.
2873 Add the new condition to the old. */
2874 rcli = (struct reg_cond_life_info *) node->value;
2875 ncond = rcli->condition;
2876 ncond = ior_reg_cond (ncond, cond, 1);
2877 if (rcli->stores == const0_rtx)
2878 rcli->stores = cond;
2879 else if (rcli->stores != const1_rtx)
2880 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2881
2882 /* If the register is now unconditionally dead, remove the entry
2883 in the splay_tree. A register is unconditionally dead if the
2884 dead condition ncond is true. A register is also unconditionally
2885 dead if the sum of all conditional stores is an unconditional
2886 store (stores is true), and the dead condition is identically the
2887 same as the original dead condition initialized at the end of
2888 the block. This is a pointer compare, not an rtx_equal_p
2889 compare. */
2890 if (ncond == const1_rtx
2891 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2892 splay_tree_remove (pbi->reg_cond_dead, regno);
2893 else
2894 {
2895 rcli->condition = ncond;
2896
2897 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2898
2899 /* Not unconditionally dead. */
2900 return 0;
2901 }
2902 }
2903 }
2904
2905 return 1;
2906 }
2907
2908 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2909
2910 static void
2911 free_reg_cond_life_info (value)
2912 splay_tree_value value;
2913 {
2914 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2915 free (rcli);
2916 }
2917
2918 /* Helper function for flush_reg_cond_reg. */
2919
2920 static int
2921 flush_reg_cond_reg_1 (node, data)
2922 splay_tree_node node;
2923 void *data;
2924 {
2925 struct reg_cond_life_info *rcli;
2926 int *xdata = (int *) data;
2927 unsigned int regno = xdata[0];
2928
2929 /* Don't need to search if last flushed value was farther on in
2930 the in-order traversal. */
2931 if (xdata[1] >= (int) node->key)
2932 return 0;
2933
2934 /* Splice out portions of the expression that refer to regno. */
2935 rcli = (struct reg_cond_life_info *) node->value;
2936 rcli->condition = elim_reg_cond (rcli->condition, regno);
2937 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2938 rcli->stores = elim_reg_cond (rcli->stores, regno);
2939
2940 /* If the entire condition is now false, signal the node to be removed. */
2941 if (rcli->condition == const0_rtx)
2942 {
2943 xdata[1] = node->key;
2944 return -1;
2945 }
2946 else if (rcli->condition == const1_rtx)
2947 abort ();
2948
2949 return 0;
2950 }
2951
2952 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2953
2954 static void
2955 flush_reg_cond_reg (pbi, regno)
2956 struct propagate_block_info *pbi;
2957 int regno;
2958 {
2959 int pair[2];
2960
2961 pair[0] = regno;
2962 pair[1] = -1;
2963 while (splay_tree_foreach (pbi->reg_cond_dead,
2964 flush_reg_cond_reg_1, pair) == -1)
2965 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2966
2967 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2968 }
2969
2970 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2971 For ior/and, the ADD flag determines whether we want to add the new
2972 condition X to the old one unconditionally. If it is zero, we will
2973 only return a new expression if X allows us to simplify part of
2974 OLD, otherwise we return NULL to the caller.
2975 If ADD is nonzero, we will return a new condition in all cases. The
2976 toplevel caller of one of these functions should always pass 1 for
2977 ADD. */
2978
2979 static rtx
2980 ior_reg_cond (old, x, add)
2981 rtx old, x;
2982 int add;
2983 {
2984 rtx op0, op1;
2985
2986 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2987 {
2988 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
2989 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
2990 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2991 return const1_rtx;
2992 if (GET_CODE (x) == GET_CODE (old)
2993 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
2994 return old;
2995 if (! add)
2996 return NULL;
2997 return gen_rtx_IOR (0, old, x);
2998 }
2999
3000 switch (GET_CODE (old))
3001 {
3002 case IOR:
3003 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3004 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3005 if (op0 != NULL || op1 != NULL)
3006 {
3007 if (op0 == const0_rtx)
3008 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3009 if (op1 == const0_rtx)
3010 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3011 if (op0 == const1_rtx || op1 == const1_rtx)
3012 return const1_rtx;
3013 if (op0 == NULL)
3014 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3015 else if (rtx_equal_p (x, op0))
3016 /* (x | A) | x ~ (x | A). */
3017 return old;
3018 if (op1 == NULL)
3019 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3020 else if (rtx_equal_p (x, op1))
3021 /* (A | x) | x ~ (A | x). */
3022 return old;
3023 return gen_rtx_IOR (0, op0, op1);
3024 }
3025 if (! add)
3026 return NULL;
3027 return gen_rtx_IOR (0, old, x);
3028
3029 case AND:
3030 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3031 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3032 if (op0 != NULL || op1 != NULL)
3033 {
3034 if (op0 == const1_rtx)
3035 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3036 if (op1 == const1_rtx)
3037 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3038 if (op0 == const0_rtx || op1 == const0_rtx)
3039 return const0_rtx;
3040 if (op0 == NULL)
3041 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3042 else if (rtx_equal_p (x, op0))
3043 /* (x & A) | x ~ x. */
3044 return op0;
3045 if (op1 == NULL)
3046 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3047 else if (rtx_equal_p (x, op1))
3048 /* (A & x) | x ~ x. */
3049 return op1;
3050 return gen_rtx_AND (0, op0, op1);
3051 }
3052 if (! add)
3053 return NULL;
3054 return gen_rtx_IOR (0, old, x);
3055
3056 case NOT:
3057 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3058 if (op0 != NULL)
3059 return not_reg_cond (op0);
3060 if (! add)
3061 return NULL;
3062 return gen_rtx_IOR (0, old, x);
3063
3064 default:
3065 abort ();
3066 }
3067 }
3068
3069 static rtx
3070 not_reg_cond (x)
3071 rtx x;
3072 {
3073 enum rtx_code x_code;
3074
3075 if (x == const0_rtx)
3076 return const1_rtx;
3077 else if (x == const1_rtx)
3078 return const0_rtx;
3079 x_code = GET_CODE (x);
3080 if (x_code == NOT)
3081 return XEXP (x, 0);
3082 if (GET_RTX_CLASS (x_code) == '<'
3083 && GET_CODE (XEXP (x, 0)) == REG)
3084 {
3085 if (XEXP (x, 1) != const0_rtx)
3086 abort ();
3087
3088 return gen_rtx_fmt_ee (reverse_condition (x_code),
3089 VOIDmode, XEXP (x, 0), const0_rtx);
3090 }
3091 return gen_rtx_NOT (0, x);
3092 }
3093
3094 static rtx
3095 and_reg_cond (old, x, add)
3096 rtx old, x;
3097 int add;
3098 {
3099 rtx op0, op1;
3100
3101 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3102 {
3103 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3104 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3105 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3106 return const0_rtx;
3107 if (GET_CODE (x) == GET_CODE (old)
3108 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3109 return old;
3110 if (! add)
3111 return NULL;
3112 return gen_rtx_AND (0, old, x);
3113 }
3114
3115 switch (GET_CODE (old))
3116 {
3117 case IOR:
3118 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3119 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3120 if (op0 != NULL || op1 != NULL)
3121 {
3122 if (op0 == const0_rtx)
3123 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3124 if (op1 == const0_rtx)
3125 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3126 if (op0 == const1_rtx || op1 == const1_rtx)
3127 return const1_rtx;
3128 if (op0 == NULL)
3129 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3130 else if (rtx_equal_p (x, op0))
3131 /* (x | A) & x ~ x. */
3132 return op0;
3133 if (op1 == NULL)
3134 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3135 else if (rtx_equal_p (x, op1))
3136 /* (A | x) & x ~ x. */
3137 return op1;
3138 return gen_rtx_IOR (0, op0, op1);
3139 }
3140 if (! add)
3141 return NULL;
3142 return gen_rtx_AND (0, old, x);
3143
3144 case AND:
3145 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3146 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3147 if (op0 != NULL || op1 != NULL)
3148 {
3149 if (op0 == const1_rtx)
3150 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3151 if (op1 == const1_rtx)
3152 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3153 if (op0 == const0_rtx || op1 == const0_rtx)
3154 return const0_rtx;
3155 if (op0 == NULL)
3156 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3157 else if (rtx_equal_p (x, op0))
3158 /* (x & A) & x ~ (x & A). */
3159 return old;
3160 if (op1 == NULL)
3161 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3162 else if (rtx_equal_p (x, op1))
3163 /* (A & x) & x ~ (A & x). */
3164 return old;
3165 return gen_rtx_AND (0, op0, op1);
3166 }
3167 if (! add)
3168 return NULL;
3169 return gen_rtx_AND (0, old, x);
3170
3171 case NOT:
3172 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3173 if (op0 != NULL)
3174 return not_reg_cond (op0);
3175 if (! add)
3176 return NULL;
3177 return gen_rtx_AND (0, old, x);
3178
3179 default:
3180 abort ();
3181 }
3182 }
3183
3184 /* Given a condition X, remove references to reg REGNO and return the
3185 new condition. The removal will be done so that all conditions
3186 involving REGNO are considered to evaluate to false. This function
3187 is used when the value of REGNO changes. */
3188
3189 static rtx
3190 elim_reg_cond (x, regno)
3191 rtx x;
3192 unsigned int regno;
3193 {
3194 rtx op0, op1;
3195
3196 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3197 {
3198 if (REGNO (XEXP (x, 0)) == regno)
3199 return const0_rtx;
3200 return x;
3201 }
3202
3203 switch (GET_CODE (x))
3204 {
3205 case AND:
3206 op0 = elim_reg_cond (XEXP (x, 0), regno);
3207 op1 = elim_reg_cond (XEXP (x, 1), regno);
3208 if (op0 == const0_rtx || op1 == const0_rtx)
3209 return const0_rtx;
3210 if (op0 == const1_rtx)
3211 return op1;
3212 if (op1 == const1_rtx)
3213 return op0;
3214 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3215 return x;
3216 return gen_rtx_AND (0, op0, op1);
3217
3218 case IOR:
3219 op0 = elim_reg_cond (XEXP (x, 0), regno);
3220 op1 = elim_reg_cond (XEXP (x, 1), regno);
3221 if (op0 == const1_rtx || op1 == const1_rtx)
3222 return const1_rtx;
3223 if (op0 == const0_rtx)
3224 return op1;
3225 if (op1 == const0_rtx)
3226 return op0;
3227 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3228 return x;
3229 return gen_rtx_IOR (0, op0, op1);
3230
3231 case NOT:
3232 op0 = elim_reg_cond (XEXP (x, 0), regno);
3233 if (op0 == const0_rtx)
3234 return const1_rtx;
3235 if (op0 == const1_rtx)
3236 return const0_rtx;
3237 if (op0 != XEXP (x, 0))
3238 return not_reg_cond (op0);
3239 return x;
3240
3241 default:
3242 abort ();
3243 }
3244 }
3245 #endif /* HAVE_conditional_execution */
3246 \f
3247 #ifdef AUTO_INC_DEC
3248
3249 /* Try to substitute the auto-inc expression INC as the address inside
3250 MEM which occurs in INSN. Currently, the address of MEM is an expression
3251 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3252 that has a single set whose source is a PLUS of INCR_REG and something
3253 else. */
3254
3255 static void
3256 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3257 struct propagate_block_info *pbi;
3258 rtx inc, insn, mem, incr, incr_reg;
3259 {
3260 int regno = REGNO (incr_reg);
3261 rtx set = single_set (incr);
3262 rtx q = SET_DEST (set);
3263 rtx y = SET_SRC (set);
3264 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3265
3266 /* Make sure this reg appears only once in this insn. */
3267 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3268 return;
3269
3270 if (dead_or_set_p (incr, incr_reg)
3271 /* Mustn't autoinc an eliminable register. */
3272 && (regno >= FIRST_PSEUDO_REGISTER
3273 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3274 {
3275 /* This is the simple case. Try to make the auto-inc. If
3276 we can't, we are done. Otherwise, we will do any
3277 needed updates below. */
3278 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3279 return;
3280 }
3281 else if (GET_CODE (q) == REG
3282 /* PREV_INSN used here to check the semi-open interval
3283 [insn,incr). */
3284 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3285 /* We must also check for sets of q as q may be
3286 a call clobbered hard register and there may
3287 be a call between PREV_INSN (insn) and incr. */
3288 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3289 {
3290 /* We have *p followed sometime later by q = p+size.
3291 Both p and q must be live afterward,
3292 and q is not used between INSN and its assignment.
3293 Change it to q = p, ...*q..., q = q+size.
3294 Then fall into the usual case. */
3295 rtx insns, temp;
3296
3297 start_sequence ();
3298 emit_move_insn (q, incr_reg);
3299 insns = get_insns ();
3300 end_sequence ();
3301
3302 /* If we can't make the auto-inc, or can't make the
3303 replacement into Y, exit. There's no point in making
3304 the change below if we can't do the auto-inc and doing
3305 so is not correct in the pre-inc case. */
3306
3307 XEXP (inc, 0) = q;
3308 validate_change (insn, &XEXP (mem, 0), inc, 1);
3309 validate_change (incr, &XEXP (y, opnum), q, 1);
3310 if (! apply_change_group ())
3311 return;
3312
3313 /* We now know we'll be doing this change, so emit the
3314 new insn(s) and do the updates. */
3315 emit_insns_before (insns, insn);
3316
3317 if (pbi->bb->head == insn)
3318 pbi->bb->head = insns;
3319
3320 /* INCR will become a NOTE and INSN won't contain a
3321 use of INCR_REG. If a use of INCR_REG was just placed in
3322 the insn before INSN, make that the next use.
3323 Otherwise, invalidate it. */
3324 if (GET_CODE (PREV_INSN (insn)) == INSN
3325 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3326 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3327 pbi->reg_next_use[regno] = PREV_INSN (insn);
3328 else
3329 pbi->reg_next_use[regno] = 0;
3330
3331 incr_reg = q;
3332 regno = REGNO (q);
3333
3334 /* REGNO is now used in INCR which is below INSN, but
3335 it previously wasn't live here. If we don't mark
3336 it as live, we'll put a REG_DEAD note for it
3337 on this insn, which is incorrect. */
3338 SET_REGNO_REG_SET (pbi->reg_live, regno);
3339
3340 /* If there are any calls between INSN and INCR, show
3341 that REGNO now crosses them. */
3342 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3343 if (GET_CODE (temp) == CALL_INSN)
3344 REG_N_CALLS_CROSSED (regno)++;
3345
3346 /* Invalidate alias info for Q since we just changed its value. */
3347 clear_reg_alias_info (q);
3348 }
3349 else
3350 return;
3351
3352 /* If we haven't returned, it means we were able to make the
3353 auto-inc, so update the status. First, record that this insn
3354 has an implicit side effect. */
3355
3356 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3357
3358 /* Modify the old increment-insn to simply copy
3359 the already-incremented value of our register. */
3360 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3361 abort ();
3362
3363 /* If that makes it a no-op (copying the register into itself) delete
3364 it so it won't appear to be a "use" and a "set" of this
3365 register. */
3366 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3367 {
3368 /* If the original source was dead, it's dead now. */
3369 rtx note;
3370
3371 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3372 {
3373 remove_note (incr, note);
3374 if (XEXP (note, 0) != incr_reg)
3375 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3376 }
3377
3378 PUT_CODE (incr, NOTE);
3379 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3380 NOTE_SOURCE_FILE (incr) = 0;
3381 }
3382
3383 if (regno >= FIRST_PSEUDO_REGISTER)
3384 {
3385 /* Count an extra reference to the reg. When a reg is
3386 incremented, spilling it is worse, so we want to make
3387 that less likely. */
3388 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3389
3390 /* Count the increment as a setting of the register,
3391 even though it isn't a SET in rtl. */
3392 REG_N_SETS (regno)++;
3393 }
3394 }
3395
3396 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3397 reference. */
3398
3399 static void
3400 find_auto_inc (pbi, x, insn)
3401 struct propagate_block_info *pbi;
3402 rtx x;
3403 rtx insn;
3404 {
3405 rtx addr = XEXP (x, 0);
3406 HOST_WIDE_INT offset = 0;
3407 rtx set, y, incr, inc_val;
3408 int regno;
3409 int size = GET_MODE_SIZE (GET_MODE (x));
3410
3411 if (GET_CODE (insn) == JUMP_INSN)
3412 return;
3413
3414 /* Here we detect use of an index register which might be good for
3415 postincrement, postdecrement, preincrement, or predecrement. */
3416
3417 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3418 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3419
3420 if (GET_CODE (addr) != REG)
3421 return;
3422
3423 regno = REGNO (addr);
3424
3425 /* Is the next use an increment that might make auto-increment? */
3426 incr = pbi->reg_next_use[regno];
3427 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3428 return;
3429 set = single_set (incr);
3430 if (set == 0 || GET_CODE (set) != SET)
3431 return;
3432 y = SET_SRC (set);
3433
3434 if (GET_CODE (y) != PLUS)
3435 return;
3436
3437 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3438 inc_val = XEXP (y, 1);
3439 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3440 inc_val = XEXP (y, 0);
3441 else
3442 return;
3443
3444 if (GET_CODE (inc_val) == CONST_INT)
3445 {
3446 if (HAVE_POST_INCREMENT
3447 && (INTVAL (inc_val) == size && offset == 0))
3448 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3449 incr, addr);
3450 else if (HAVE_POST_DECREMENT
3451 && (INTVAL (inc_val) == -size && offset == 0))
3452 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3453 incr, addr);
3454 else if (HAVE_PRE_INCREMENT
3455 && (INTVAL (inc_val) == size && offset == size))
3456 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3457 incr, addr);
3458 else if (HAVE_PRE_DECREMENT
3459 && (INTVAL (inc_val) == -size && offset == -size))
3460 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3461 incr, addr);
3462 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3463 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3464 gen_rtx_PLUS (Pmode,
3465 addr,
3466 inc_val)),
3467 insn, x, incr, addr);
3468 }
3469 else if (GET_CODE (inc_val) == REG
3470 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3471 NEXT_INSN (incr)))
3472
3473 {
3474 if (HAVE_POST_MODIFY_REG && offset == 0)
3475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3476 gen_rtx_PLUS (Pmode,
3477 addr,
3478 inc_val)),
3479 insn, x, incr, addr);
3480 }
3481 }
3482
3483 #endif /* AUTO_INC_DEC */
3484 \f
3485 static void
3486 mark_used_reg (pbi, reg, cond, insn)
3487 struct propagate_block_info *pbi;
3488 rtx reg;
3489 rtx cond ATTRIBUTE_UNUSED;
3490 rtx insn;
3491 {
3492 unsigned int regno_first, regno_last, i;
3493 int some_was_live, some_was_dead, some_not_set;
3494
3495 regno_last = regno_first = REGNO (reg);
3496 if (regno_first < FIRST_PSEUDO_REGISTER)
3497 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3498
3499 /* Find out if any of this register is live after this instruction. */
3500 some_was_live = some_was_dead = 0;
3501 for (i = regno_first; i <= regno_last; ++i)
3502 {
3503 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3504 some_was_live |= needed_regno;
3505 some_was_dead |= ! needed_regno;
3506 }
3507
3508 /* Find out if any of the register was set this insn. */
3509 some_not_set = 0;
3510 for (i = regno_first; i <= regno_last; ++i)
3511 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3512
3513 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3514 {
3515 /* Record where each reg is used, so when the reg is set we know
3516 the next insn that uses it. */
3517 pbi->reg_next_use[regno_first] = insn;
3518 }
3519
3520 if (pbi->flags & PROP_REG_INFO)
3521 {
3522 if (regno_first < FIRST_PSEUDO_REGISTER)
3523 {
3524 /* If this is a register we are going to try to eliminate,
3525 don't mark it live here. If we are successful in
3526 eliminating it, it need not be live unless it is used for
3527 pseudos, in which case it will have been set live when it
3528 was allocated to the pseudos. If the register will not
3529 be eliminated, reload will set it live at that point.
3530
3531 Otherwise, record that this function uses this register. */
3532 /* ??? The PPC backend tries to "eliminate" on the pic
3533 register to itself. This should be fixed. In the mean
3534 time, hack around it. */
3535
3536 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3537 && (regno_first == FRAME_POINTER_REGNUM
3538 || regno_first == ARG_POINTER_REGNUM)))
3539 for (i = regno_first; i <= regno_last; ++i)
3540 regs_ever_live[i] = 1;
3541 }
3542 else
3543 {
3544 /* Keep track of which basic block each reg appears in. */
3545
3546 int blocknum = pbi->bb->index;
3547 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3548 REG_BASIC_BLOCK (regno_first) = blocknum;
3549 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3550 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3551
3552 /* Count (weighted) number of uses of each reg. */
3553 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3554 REG_N_REFS (regno_first)++;
3555 }
3556 }
3557
3558 /* Record and count the insns in which a reg dies. If it is used in
3559 this insn and was dead below the insn then it dies in this insn.
3560 If it was set in this insn, we do not make a REG_DEAD note;
3561 likewise if we already made such a note. */
3562 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3563 && some_was_dead
3564 && some_not_set)
3565 {
3566 /* Check for the case where the register dying partially
3567 overlaps the register set by this insn. */
3568 if (regno_first != regno_last)
3569 for (i = regno_first; i <= regno_last; ++i)
3570 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3571
3572 /* If none of the words in X is needed, make a REG_DEAD note.
3573 Otherwise, we must make partial REG_DEAD notes. */
3574 if (! some_was_live)
3575 {
3576 if ((pbi->flags & PROP_DEATH_NOTES)
3577 && ! find_regno_note (insn, REG_DEAD, regno_first))
3578 REG_NOTES (insn)
3579 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3580
3581 if (pbi->flags & PROP_REG_INFO)
3582 REG_N_DEATHS (regno_first)++;
3583 }
3584 else
3585 {
3586 /* Don't make a REG_DEAD note for a part of a register
3587 that is set in the insn. */
3588 for (i = regno_first; i <= regno_last; ++i)
3589 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3590 && ! dead_or_set_regno_p (insn, i))
3591 REG_NOTES (insn)
3592 = alloc_EXPR_LIST (REG_DEAD,
3593 gen_rtx_REG (reg_raw_mode[i], i),
3594 REG_NOTES (insn));
3595 }
3596 }
3597
3598 /* Mark the register as being live. */
3599 for (i = regno_first; i <= regno_last; ++i)
3600 {
3601 #ifdef HAVE_conditional_execution
3602 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3603 #endif
3604
3605 SET_REGNO_REG_SET (pbi->reg_live, i);
3606
3607 #ifdef HAVE_conditional_execution
3608 /* If this is a conditional use, record that fact. If it is later
3609 conditionally set, we'll know to kill the register. */
3610 if (cond != NULL_RTX)
3611 {
3612 splay_tree_node node;
3613 struct reg_cond_life_info *rcli;
3614 rtx ncond;
3615
3616 if (this_was_live)
3617 {
3618 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3619 if (node == NULL)
3620 {
3621 /* The register was unconditionally live previously.
3622 No need to do anything. */
3623 }
3624 else
3625 {
3626 /* The register was conditionally live previously.
3627 Subtract the new life cond from the old death cond. */
3628 rcli = (struct reg_cond_life_info *) node->value;
3629 ncond = rcli->condition;
3630 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3631
3632 /* If the register is now unconditionally live,
3633 remove the entry in the splay_tree. */
3634 if (ncond == const0_rtx)
3635 splay_tree_remove (pbi->reg_cond_dead, i);
3636 else
3637 {
3638 rcli->condition = ncond;
3639 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3640 REGNO (XEXP (cond, 0)));
3641 }
3642 }
3643 }
3644 else
3645 {
3646 /* The register was not previously live at all. Record
3647 the condition under which it is still dead. */
3648 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3649 rcli->condition = not_reg_cond (cond);
3650 rcli->stores = const0_rtx;
3651 rcli->orig_condition = const0_rtx;
3652 splay_tree_insert (pbi->reg_cond_dead, i,
3653 (splay_tree_value) rcli);
3654
3655 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3656 }
3657 }
3658 else if (this_was_live)
3659 {
3660 /* The register may have been conditionally live previously, but
3661 is now unconditionally live. Remove it from the conditionally
3662 dead list, so that a conditional set won't cause us to think
3663 it dead. */
3664 splay_tree_remove (pbi->reg_cond_dead, i);
3665 }
3666 #endif
3667 }
3668 }
3669
3670 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3671 This is done assuming the registers needed from X are those that
3672 have 1-bits in PBI->REG_LIVE.
3673
3674 INSN is the containing instruction. If INSN is dead, this function
3675 is not called. */
3676
3677 static void
3678 mark_used_regs (pbi, x, cond, insn)
3679 struct propagate_block_info *pbi;
3680 rtx x, cond, insn;
3681 {
3682 RTX_CODE code;
3683 int regno;
3684 int flags = pbi->flags;
3685
3686 retry:
3687 if (!x)
3688 return;
3689 code = GET_CODE (x);
3690 switch (code)
3691 {
3692 case LABEL_REF:
3693 case SYMBOL_REF:
3694 case CONST_INT:
3695 case CONST:
3696 case CONST_DOUBLE:
3697 case CONST_VECTOR:
3698 case PC:
3699 case ADDR_VEC:
3700 case ADDR_DIFF_VEC:
3701 return;
3702
3703 #ifdef HAVE_cc0
3704 case CC0:
3705 pbi->cc0_live = 1;
3706 return;
3707 #endif
3708
3709 case CLOBBER:
3710 /* If we are clobbering a MEM, mark any registers inside the address
3711 as being used. */
3712 if (GET_CODE (XEXP (x, 0)) == MEM)
3713 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3714 return;
3715
3716 case MEM:
3717 /* Don't bother watching stores to mems if this is not the
3718 final pass. We'll not be deleting dead stores this round. */
3719 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3720 {
3721 /* Invalidate the data for the last MEM stored, but only if MEM is
3722 something that can be stored into. */
3723 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3724 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3725 /* Needn't clear the memory set list. */
3726 ;
3727 else
3728 {
3729 rtx temp = pbi->mem_set_list;
3730 rtx prev = NULL_RTX;
3731 rtx next;
3732
3733 while (temp)
3734 {
3735 next = XEXP (temp, 1);
3736 if (anti_dependence (XEXP (temp, 0), x))
3737 {
3738 /* Splice temp out of the list. */
3739 if (prev)
3740 XEXP (prev, 1) = next;
3741 else
3742 pbi->mem_set_list = next;
3743 free_EXPR_LIST_node (temp);
3744 pbi->mem_set_list_len--;
3745 }
3746 else
3747 prev = temp;
3748 temp = next;
3749 }
3750 }
3751
3752 /* If the memory reference had embedded side effects (autoincrement
3753 address modes. Then we may need to kill some entries on the
3754 memory set list. */
3755 if (insn)
3756 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3757 }
3758
3759 #ifdef AUTO_INC_DEC
3760 if (flags & PROP_AUTOINC)
3761 find_auto_inc (pbi, x, insn);
3762 #endif
3763 break;
3764
3765 case SUBREG:
3766 #ifdef CLASS_CANNOT_CHANGE_MODE
3767 if (GET_CODE (SUBREG_REG (x)) == REG
3768 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3769 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3770 GET_MODE (SUBREG_REG (x))))
3771 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3772 #endif
3773
3774 /* While we're here, optimize this case. */
3775 x = SUBREG_REG (x);
3776 if (GET_CODE (x) != REG)
3777 goto retry;
3778 /* Fall through. */
3779
3780 case REG:
3781 /* See a register other than being set => mark it as needed. */
3782 mark_used_reg (pbi, x, cond, insn);
3783 return;
3784
3785 case SET:
3786 {
3787 rtx testreg = SET_DEST (x);
3788 int mark_dest = 0;
3789
3790 /* If storing into MEM, don't show it as being used. But do
3791 show the address as being used. */
3792 if (GET_CODE (testreg) == MEM)
3793 {
3794 #ifdef AUTO_INC_DEC
3795 if (flags & PROP_AUTOINC)
3796 find_auto_inc (pbi, testreg, insn);
3797 #endif
3798 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3799 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3800 return;
3801 }
3802
3803 /* Storing in STRICT_LOW_PART is like storing in a reg
3804 in that this SET might be dead, so ignore it in TESTREG.
3805 but in some other ways it is like using the reg.
3806
3807 Storing in a SUBREG or a bit field is like storing the entire
3808 register in that if the register's value is not used
3809 then this SET is not needed. */
3810 while (GET_CODE (testreg) == STRICT_LOW_PART
3811 || GET_CODE (testreg) == ZERO_EXTRACT
3812 || GET_CODE (testreg) == SIGN_EXTRACT
3813 || GET_CODE (testreg) == SUBREG)
3814 {
3815 #ifdef CLASS_CANNOT_CHANGE_MODE
3816 if (GET_CODE (testreg) == SUBREG
3817 && GET_CODE (SUBREG_REG (testreg)) == REG
3818 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3819 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3820 GET_MODE (testreg)))
3821 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3822 #endif
3823
3824 /* Modifying a single register in an alternate mode
3825 does not use any of the old value. But these other
3826 ways of storing in a register do use the old value. */
3827 if (GET_CODE (testreg) == SUBREG
3828 && !((REG_BYTES (SUBREG_REG (testreg))
3829 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3830 > (REG_BYTES (testreg)
3831 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3832 ;
3833 else
3834 mark_dest = 1;
3835
3836 testreg = XEXP (testreg, 0);
3837 }
3838
3839 /* If this is a store into a register or group of registers,
3840 recursively scan the value being stored. */
3841
3842 if ((GET_CODE (testreg) == PARALLEL
3843 && GET_MODE (testreg) == BLKmode)
3844 || (GET_CODE (testreg) == REG
3845 && (regno = REGNO (testreg),
3846 ! (regno == FRAME_POINTER_REGNUM
3847 && (! reload_completed || frame_pointer_needed)))
3848 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3849 && ! (regno == HARD_FRAME_POINTER_REGNUM
3850 && (! reload_completed || frame_pointer_needed))
3851 #endif
3852 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3853 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3854 #endif
3855 ))
3856 {
3857 if (mark_dest)
3858 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3859 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3860 return;
3861 }
3862 }
3863 break;
3864
3865 case ASM_OPERANDS:
3866 case UNSPEC_VOLATILE:
3867 case TRAP_IF:
3868 case ASM_INPUT:
3869 {
3870 /* Traditional and volatile asm instructions must be considered to use
3871 and clobber all hard registers, all pseudo-registers and all of
3872 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3873
3874 Consider for instance a volatile asm that changes the fpu rounding
3875 mode. An insn should not be moved across this even if it only uses
3876 pseudo-regs because it might give an incorrectly rounded result.
3877
3878 ?!? Unfortunately, marking all hard registers as live causes massive
3879 problems for the register allocator and marking all pseudos as live
3880 creates mountains of uninitialized variable warnings.
3881
3882 So for now, just clear the memory set list and mark any regs
3883 we can find in ASM_OPERANDS as used. */
3884 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3885 {
3886 free_EXPR_LIST_list (&pbi->mem_set_list);
3887 pbi->mem_set_list_len = 0;
3888 }
3889
3890 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3891 We can not just fall through here since then we would be confused
3892 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3893 traditional asms unlike their normal usage. */
3894 if (code == ASM_OPERANDS)
3895 {
3896 int j;
3897
3898 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3899 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3900 }
3901 break;
3902 }
3903
3904 case COND_EXEC:
3905 if (cond != NULL_RTX)
3906 abort ();
3907
3908 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3909
3910 cond = COND_EXEC_TEST (x);
3911 x = COND_EXEC_CODE (x);
3912 goto retry;
3913
3914 case PHI:
3915 /* We _do_not_ want to scan operands of phi nodes. Operands of
3916 a phi function are evaluated only when control reaches this
3917 block along a particular edge. Therefore, regs that appear
3918 as arguments to phi should not be added to the global live at
3919 start. */
3920 return;
3921
3922 default:
3923 break;
3924 }
3925
3926 /* Recursively scan the operands of this expression. */
3927
3928 {
3929 const char * const fmt = GET_RTX_FORMAT (code);
3930 int i;
3931
3932 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3933 {
3934 if (fmt[i] == 'e')
3935 {
3936 /* Tail recursive case: save a function call level. */
3937 if (i == 0)
3938 {
3939 x = XEXP (x, 0);
3940 goto retry;
3941 }
3942 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3943 }
3944 else if (fmt[i] == 'E')
3945 {
3946 int j;
3947 for (j = 0; j < XVECLEN (x, i); j++)
3948 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3949 }
3950 }
3951 }
3952 }
3953 \f
3954 #ifdef AUTO_INC_DEC
3955
3956 static int
3957 try_pre_increment_1 (pbi, insn)
3958 struct propagate_block_info *pbi;
3959 rtx insn;
3960 {
3961 /* Find the next use of this reg. If in same basic block,
3962 make it do pre-increment or pre-decrement if appropriate. */
3963 rtx x = single_set (insn);
3964 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3965 * INTVAL (XEXP (SET_SRC (x), 1)));
3966 int regno = REGNO (SET_DEST (x));
3967 rtx y = pbi->reg_next_use[regno];
3968 if (y != 0
3969 && SET_DEST (x) != stack_pointer_rtx
3970 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3971 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3972 mode would be better. */
3973 && ! dead_or_set_p (y, SET_DEST (x))
3974 && try_pre_increment (y, SET_DEST (x), amount))
3975 {
3976 /* We have found a suitable auto-increment and already changed
3977 insn Y to do it. So flush this increment instruction. */
3978 propagate_block_delete_insn (insn);
3979
3980 /* Count a reference to this reg for the increment insn we are
3981 deleting. When a reg is incremented, spilling it is worse,
3982 so we want to make that less likely. */
3983 if (regno >= FIRST_PSEUDO_REGISTER)
3984 {
3985 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3986 REG_N_SETS (regno)++;
3987 }
3988
3989 /* Flush any remembered memories depending on the value of
3990 the incremented register. */
3991 invalidate_mems_from_set (pbi, SET_DEST (x));
3992
3993 return 1;
3994 }
3995 return 0;
3996 }
3997
3998 /* Try to change INSN so that it does pre-increment or pre-decrement
3999 addressing on register REG in order to add AMOUNT to REG.
4000 AMOUNT is negative for pre-decrement.
4001 Returns 1 if the change could be made.
4002 This checks all about the validity of the result of modifying INSN. */
4003
4004 static int
4005 try_pre_increment (insn, reg, amount)
4006 rtx insn, reg;
4007 HOST_WIDE_INT amount;
4008 {
4009 rtx use;
4010
4011 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4012 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4013 int pre_ok = 0;
4014 /* Nonzero if we can try to make a post-increment or post-decrement.
4015 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4016 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4017 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4018 int post_ok = 0;
4019
4020 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4021 int do_post = 0;
4022
4023 /* From the sign of increment, see which possibilities are conceivable
4024 on this target machine. */
4025 if (HAVE_PRE_INCREMENT && amount > 0)
4026 pre_ok = 1;
4027 if (HAVE_POST_INCREMENT && amount > 0)
4028 post_ok = 1;
4029
4030 if (HAVE_PRE_DECREMENT && amount < 0)
4031 pre_ok = 1;
4032 if (HAVE_POST_DECREMENT && amount < 0)
4033 post_ok = 1;
4034
4035 if (! (pre_ok || post_ok))
4036 return 0;
4037
4038 /* It is not safe to add a side effect to a jump insn
4039 because if the incremented register is spilled and must be reloaded
4040 there would be no way to store the incremented value back in memory. */
4041
4042 if (GET_CODE (insn) == JUMP_INSN)
4043 return 0;
4044
4045 use = 0;
4046 if (pre_ok)
4047 use = find_use_as_address (PATTERN (insn), reg, 0);
4048 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4049 {
4050 use = find_use_as_address (PATTERN (insn), reg, -amount);
4051 do_post = 1;
4052 }
4053
4054 if (use == 0 || use == (rtx) (size_t) 1)
4055 return 0;
4056
4057 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4058 return 0;
4059
4060 /* See if this combination of instruction and addressing mode exists. */
4061 if (! validate_change (insn, &XEXP (use, 0),
4062 gen_rtx_fmt_e (amount > 0
4063 ? (do_post ? POST_INC : PRE_INC)
4064 : (do_post ? POST_DEC : PRE_DEC),
4065 Pmode, reg), 0))
4066 return 0;
4067
4068 /* Record that this insn now has an implicit side effect on X. */
4069 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4070 return 1;
4071 }
4072
4073 #endif /* AUTO_INC_DEC */
4074 \f
4075 /* Find the place in the rtx X where REG is used as a memory address.
4076 Return the MEM rtx that so uses it.
4077 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4078 (plus REG (const_int PLUSCONST)).
4079
4080 If such an address does not appear, return 0.
4081 If REG appears more than once, or is used other than in such an address,
4082 return (rtx) 1. */
4083
4084 rtx
4085 find_use_as_address (x, reg, plusconst)
4086 rtx x;
4087 rtx reg;
4088 HOST_WIDE_INT plusconst;
4089 {
4090 enum rtx_code code = GET_CODE (x);
4091 const char * const fmt = GET_RTX_FORMAT (code);
4092 int i;
4093 rtx value = 0;
4094 rtx tem;
4095
4096 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4097 return x;
4098
4099 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4100 && XEXP (XEXP (x, 0), 0) == reg
4101 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4102 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4103 return x;
4104
4105 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4106 {
4107 /* If REG occurs inside a MEM used in a bit-field reference,
4108 that is unacceptable. */
4109 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4110 return (rtx) (size_t) 1;
4111 }
4112
4113 if (x == reg)
4114 return (rtx) (size_t) 1;
4115
4116 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4117 {
4118 if (fmt[i] == 'e')
4119 {
4120 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4121 if (value == 0)
4122 value = tem;
4123 else if (tem != 0)
4124 return (rtx) (size_t) 1;
4125 }
4126 else if (fmt[i] == 'E')
4127 {
4128 int j;
4129 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4130 {
4131 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4132 if (value == 0)
4133 value = tem;
4134 else if (tem != 0)
4135 return (rtx) (size_t) 1;
4136 }
4137 }
4138 }
4139
4140 return value;
4141 }
4142 \f
4143 /* Write information about registers and basic blocks into FILE.
4144 This is part of making a debugging dump. */
4145
4146 void
4147 dump_regset (r, outf)
4148 regset r;
4149 FILE *outf;
4150 {
4151 int i;
4152 if (r == NULL)
4153 {
4154 fputs (" (nil)", outf);
4155 return;
4156 }
4157
4158 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4159 {
4160 fprintf (outf, " %d", i);
4161 if (i < FIRST_PSEUDO_REGISTER)
4162 fprintf (outf, " [%s]",
4163 reg_names[i]);
4164 });
4165 }
4166
4167 /* Print a human-reaable representation of R on the standard error
4168 stream. This function is designed to be used from within the
4169 debugger. */
4170
4171 void
4172 debug_regset (r)
4173 regset r;
4174 {
4175 dump_regset (r, stderr);
4176 putc ('\n', stderr);
4177 }
4178
4179 /* Recompute register set/reference counts immediately prior to register
4180 allocation.
4181
4182 This avoids problems with set/reference counts changing to/from values
4183 which have special meanings to the register allocators.
4184
4185 Additionally, the reference counts are the primary component used by the
4186 register allocators to prioritize pseudos for allocation to hard regs.
4187 More accurate reference counts generally lead to better register allocation.
4188
4189 F is the first insn to be scanned.
4190
4191 LOOP_STEP denotes how much loop_depth should be incremented per
4192 loop nesting level in order to increase the ref count more for
4193 references in a loop.
4194
4195 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4196 possibly other information which is used by the register allocators. */
4197
4198 void
4199 recompute_reg_usage (f, loop_step)
4200 rtx f ATTRIBUTE_UNUSED;
4201 int loop_step ATTRIBUTE_UNUSED;
4202 {
4203 allocate_reg_life_data ();
4204 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4205 }
4206
4207 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4208 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4209 of the number of registers that died. */
4210
4211 int
4212 count_or_remove_death_notes (blocks, kill)
4213 sbitmap blocks;
4214 int kill;
4215 {
4216 int count = 0;
4217 basic_block bb;
4218
4219 FOR_EACH_BB_REVERSE (bb)
4220 {
4221 rtx insn;
4222
4223 if (blocks && ! TEST_BIT (blocks, bb->index))
4224 continue;
4225
4226 for (insn = bb->head;; insn = NEXT_INSN (insn))
4227 {
4228 if (INSN_P (insn))
4229 {
4230 rtx *pprev = &REG_NOTES (insn);
4231 rtx link = *pprev;
4232
4233 while (link)
4234 {
4235 switch (REG_NOTE_KIND (link))
4236 {
4237 case REG_DEAD:
4238 if (GET_CODE (XEXP (link, 0)) == REG)
4239 {
4240 rtx reg = XEXP (link, 0);
4241 int n;
4242
4243 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4244 n = 1;
4245 else
4246 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4247 count += n;
4248 }
4249 /* Fall through. */
4250
4251 case REG_UNUSED:
4252 if (kill)
4253 {
4254 rtx next = XEXP (link, 1);
4255 free_EXPR_LIST_node (link);
4256 *pprev = link = next;
4257 break;
4258 }
4259 /* Fall through. */
4260
4261 default:
4262 pprev = &XEXP (link, 1);
4263 link = *pprev;
4264 break;
4265 }
4266 }
4267 }
4268
4269 if (insn == bb->end)
4270 break;
4271 }
4272 }
4273
4274 return count;
4275 }
4276 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4277 if blocks is NULL. */
4278
4279 static void
4280 clear_log_links (blocks)
4281 sbitmap blocks;
4282 {
4283 rtx insn;
4284 int i;
4285
4286 if (!blocks)
4287 {
4288 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4289 if (INSN_P (insn))
4290 free_INSN_LIST_list (&LOG_LINKS (insn));
4291 }
4292 else
4293 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4294 {
4295 basic_block bb = BASIC_BLOCK (i);
4296
4297 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4298 insn = NEXT_INSN (insn))
4299 if (INSN_P (insn))
4300 free_INSN_LIST_list (&LOG_LINKS (insn));
4301 });
4302 }
4303
4304 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4305 correspond to the hard registers, if any, set in that map. This
4306 could be done far more efficiently by having all sorts of special-cases
4307 with moving single words, but probably isn't worth the trouble. */
4308
4309 void
4310 reg_set_to_hard_reg_set (to, from)
4311 HARD_REG_SET *to;
4312 bitmap from;
4313 {
4314 int i;
4315
4316 EXECUTE_IF_SET_IN_BITMAP
4317 (from, 0, i,
4318 {
4319 if (i >= FIRST_PSEUDO_REGISTER)
4320 return;
4321 SET_HARD_REG_BIT (*to, i);
4322 });
4323 }