flow.c (update_life_info_in_dirty_blocks): Only do a partial update if UPDATE_LIFE_LOCAL.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "tree.h"
124 #include "rtl.h"
125 #include "tm_p.h"
126 #include "hard-reg-set.h"
127 #include "basic-block.h"
128 #include "insn-config.h"
129 #include "regs.h"
130 #include "flags.h"
131 #include "output.h"
132 #include "function.h"
133 #include "except.h"
134 #include "toplev.h"
135 #include "recog.h"
136 #include "expr.h"
137 #include "ssa.h"
138 #include "timevar.h"
139
140 #include "obstack.h"
141 #include "splay-tree.h"
142
143 #define obstack_chunk_alloc xmalloc
144 #define obstack_chunk_free free
145
146 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
147 the stack pointer does not matter. The value is tested only in
148 functions that have frame pointers.
149 No definition is equivalent to always zero. */
150 #ifndef EXIT_IGNORE_STACK
151 #define EXIT_IGNORE_STACK 0
152 #endif
153
154 #ifndef HAVE_epilogue
155 #define HAVE_epilogue 0
156 #endif
157 #ifndef HAVE_prologue
158 #define HAVE_prologue 0
159 #endif
160 #ifndef HAVE_sibcall_epilogue
161 #define HAVE_sibcall_epilogue 0
162 #endif
163
164 #ifndef LOCAL_REGNO
165 #define LOCAL_REGNO(REGNO) 0
166 #endif
167 #ifndef EPILOGUE_USES
168 #define EPILOGUE_USES(REGNO) 0
169 #endif
170 #ifndef EH_USES
171 #define EH_USES(REGNO) 0
172 #endif
173
174 #ifdef HAVE_conditional_execution
175 #ifndef REVERSE_CONDEXEC_PREDICATES_P
176 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
177 #endif
178 #endif
179
180 /* Nonzero if the second flow pass has completed. */
181 int flow2_completed;
182
183 /* Maximum register number used in this function, plus one. */
184
185 int max_regno;
186
187 /* Indexed by n, giving various register information */
188
189 varray_type reg_n_info;
190
191 /* Size of a regset for the current function,
192 in (1) bytes and (2) elements. */
193
194 int regset_bytes;
195 int regset_size;
196
197 /* Regset of regs live when calls to `setjmp'-like functions happen. */
198 /* ??? Does this exist only for the setjmp-clobbered warning message? */
199
200 regset regs_live_at_setjmp;
201
202 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
203 that have to go in the same hard reg.
204 The first two regs in the list are a pair, and the next two
205 are another pair, etc. */
206 rtx regs_may_share;
207
208 /* Callback that determines if it's ok for a function to have no
209 noreturn attribute. */
210 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
211
212 /* Set of registers that may be eliminable. These are handled specially
213 in updating regs_ever_live. */
214
215 static HARD_REG_SET elim_reg_set;
216
217 /* Holds information for tracking conditional register life information. */
218 struct reg_cond_life_info
219 {
220 /* A boolean expression of conditions under which a register is dead. */
221 rtx condition;
222 /* Conditions under which a register is dead at the basic block end. */
223 rtx orig_condition;
224
225 /* A boolean expression of conditions under which a register has been
226 stored into. */
227 rtx stores;
228
229 /* ??? Could store mask of bytes that are dead, so that we could finally
230 track lifetimes of multi-word registers accessed via subregs. */
231 };
232
233 /* For use in communicating between propagate_block and its subroutines.
234 Holds all information needed to compute life and def-use information. */
235
236 struct propagate_block_info
237 {
238 /* The basic block we're considering. */
239 basic_block bb;
240
241 /* Bit N is set if register N is conditionally or unconditionally live. */
242 regset reg_live;
243
244 /* Bit N is set if register N is set this insn. */
245 regset new_set;
246
247 /* Element N is the next insn that uses (hard or pseudo) register N
248 within the current basic block; or zero, if there is no such insn. */
249 rtx *reg_next_use;
250
251 /* Contains a list of all the MEMs we are tracking for dead store
252 elimination. */
253 rtx mem_set_list;
254
255 /* If non-null, record the set of registers set unconditionally in the
256 basic block. */
257 regset local_set;
258
259 /* If non-null, record the set of registers set conditionally in the
260 basic block. */
261 regset cond_local_set;
262
263 #ifdef HAVE_conditional_execution
264 /* Indexed by register number, holds a reg_cond_life_info for each
265 register that is not unconditionally live or dead. */
266 splay_tree reg_cond_dead;
267
268 /* Bit N is set if register N is in an expression in reg_cond_dead. */
269 regset reg_cond_reg;
270 #endif
271
272 /* The length of mem_set_list. */
273 int mem_set_list_len;
274
275 /* Non-zero if the value of CC0 is live. */
276 int cc0_live;
277
278 /* Flags controling the set of information propagate_block collects. */
279 int flags;
280 };
281
282 /* Number of dead insns removed. */
283 static int ndead;
284
285 /* Maximum length of pbi->mem_set_list before we start dropping
286 new elements on the floor. */
287 #define MAX_MEM_SET_LIST_LEN 100
288
289 /* Forward declarations */
290 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
291 static void verify_wide_reg PARAMS ((int, basic_block));
292 static void verify_local_live_at_start PARAMS ((regset, basic_block));
293 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
294 static void notice_stack_pointer_modification PARAMS ((rtx));
295 static void mark_reg PARAMS ((rtx, void *));
296 static void mark_regs_live_at_end PARAMS ((regset));
297 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
298 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
299 static void propagate_block_delete_insn PARAMS ((rtx));
300 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
301 static int insn_dead_p PARAMS ((struct propagate_block_info *,
302 rtx, int, rtx));
303 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
304 rtx, rtx));
305 static void mark_set_regs PARAMS ((struct propagate_block_info *,
306 rtx, rtx));
307 static void mark_set_1 PARAMS ((struct propagate_block_info *,
308 enum rtx_code, rtx, rtx,
309 rtx, int));
310 static int find_regno_partial PARAMS ((rtx *, void *));
311
312 #ifdef HAVE_conditional_execution
313 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
314 int, rtx));
315 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
316 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
317 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
318 int));
319 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
320 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
321 static rtx not_reg_cond PARAMS ((rtx));
322 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
323 #endif
324 #ifdef AUTO_INC_DEC
325 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
326 rtx, rtx, rtx, rtx, rtx));
327 static void find_auto_inc PARAMS ((struct propagate_block_info *,
328 rtx, rtx));
329 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
330 rtx));
331 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
332 #endif
333 static void mark_used_reg PARAMS ((struct propagate_block_info *,
334 rtx, rtx, rtx));
335 static void mark_used_regs PARAMS ((struct propagate_block_info *,
336 rtx, rtx, rtx));
337 void dump_flow_info PARAMS ((FILE *));
338 void debug_flow_info PARAMS ((void));
339 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
340 rtx));
341 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
342 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
343 rtx));
344 static void clear_log_links PARAMS ((sbitmap));
345 \f
346
347 void
348 check_function_return_warnings ()
349 {
350 if (warn_missing_noreturn
351 && !TREE_THIS_VOLATILE (cfun->decl)
352 && EXIT_BLOCK_PTR->pred == NULL
353 && (lang_missing_noreturn_ok_p
354 && !lang_missing_noreturn_ok_p (cfun->decl)))
355 warning ("function might be possible candidate for attribute `noreturn'");
356
357 /* If we have a path to EXIT, then we do return. */
358 if (TREE_THIS_VOLATILE (cfun->decl)
359 && EXIT_BLOCK_PTR->pred != NULL)
360 warning ("`noreturn' function does return");
361
362 /* If the clobber_return_insn appears in some basic block, then we
363 do reach the end without returning a value. */
364 else if (warn_return_type
365 && cfun->x_clobber_return_insn != NULL
366 && EXIT_BLOCK_PTR->pred != NULL)
367 {
368 int max_uid = get_max_uid ();
369
370 /* If clobber_return_insn was excised by jump1, then renumber_insns
371 can make max_uid smaller than the number still recorded in our rtx.
372 That's fine, since this is a quick way of verifying that the insn
373 is no longer in the chain. */
374 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
375 {
376 /* Recompute insn->block mapping, since the initial mapping is
377 set before we delete unreachable blocks. */
378 if (BLOCK_FOR_INSN (cfun->x_clobber_return_insn) != NULL)
379 warning ("control reaches end of non-void function");
380 }
381 }
382 }
383 \f
384 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
385 note associated with the BLOCK. */
386
387 rtx
388 first_insn_after_basic_block_note (block)
389 basic_block block;
390 {
391 rtx insn;
392
393 /* Get the first instruction in the block. */
394 insn = block->head;
395
396 if (insn == NULL_RTX)
397 return NULL_RTX;
398 if (GET_CODE (insn) == CODE_LABEL)
399 insn = NEXT_INSN (insn);
400 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
401 abort ();
402
403 return NEXT_INSN (insn);
404 }
405 \f
406 /* Perform data flow analysis.
407 F is the first insn of the function; FLAGS is a set of PROP_* flags
408 to be used in accumulating flow info. */
409
410 void
411 life_analysis (f, file, flags)
412 rtx f;
413 FILE *file;
414 int flags;
415 {
416 #ifdef ELIMINABLE_REGS
417 int i;
418 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
419 #endif
420
421 /* Record which registers will be eliminated. We use this in
422 mark_used_regs. */
423
424 CLEAR_HARD_REG_SET (elim_reg_set);
425
426 #ifdef ELIMINABLE_REGS
427 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
428 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
429 #else
430 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
431 #endif
432
433 if (! optimize)
434 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
435
436 /* The post-reload life analysis have (on a global basis) the same
437 registers live as was computed by reload itself. elimination
438 Otherwise offsets and such may be incorrect.
439
440 Reload will make some registers as live even though they do not
441 appear in the rtl.
442
443 We don't want to create new auto-incs after reload, since they
444 are unlikely to be useful and can cause problems with shared
445 stack slots. */
446 if (reload_completed)
447 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
448
449 /* We want alias analysis information for local dead store elimination. */
450 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
451 init_alias_analysis ();
452
453 /* Always remove no-op moves. Do this before other processing so
454 that we don't have to keep re-scanning them. */
455 delete_noop_moves (f);
456
457 /* Some targets can emit simpler epilogues if they know that sp was
458 not ever modified during the function. After reload, of course,
459 we've already emitted the epilogue so there's no sense searching. */
460 if (! reload_completed)
461 notice_stack_pointer_modification (f);
462
463 /* Allocate and zero out data structures that will record the
464 data from lifetime analysis. */
465 allocate_reg_life_data ();
466 allocate_bb_life_data ();
467
468 /* Find the set of registers live on function exit. */
469 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
470
471 /* "Update" life info from zero. It'd be nice to begin the
472 relaxation with just the exit and noreturn blocks, but that set
473 is not immediately handy. */
474
475 if (flags & PROP_REG_INFO)
476 memset (regs_ever_live, 0, sizeof (regs_ever_live));
477 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
478
479 /* Clean up. */
480 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
481 end_alias_analysis ();
482
483 if (file)
484 dump_flow_info (file);
485
486 free_basic_block_vars (1);
487
488 /* Removing dead insns should've made jumptables really dead. */
489 delete_dead_jumptables ();
490 }
491
492 /* A subroutine of verify_wide_reg, called through for_each_rtx.
493 Search for REGNO. If found, return 2 if it is not wider than
494 word_mode. */
495
496 static int
497 verify_wide_reg_1 (px, pregno)
498 rtx *px;
499 void *pregno;
500 {
501 rtx x = *px;
502 unsigned int regno = *(int *) pregno;
503
504 if (GET_CODE (x) == REG && REGNO (x) == regno)
505 {
506 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
507 return 2;
508 return 1;
509 }
510 return 0;
511 }
512
513 /* A subroutine of verify_local_live_at_start. Search through insns
514 of BB looking for register REGNO. */
515
516 static void
517 verify_wide_reg (regno, bb)
518 int regno;
519 basic_block bb;
520 {
521 rtx head = bb->head, end = bb->end;
522
523 while (1)
524 {
525 if (INSN_P (head))
526 {
527 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
528 if (r == 1)
529 return;
530 if (r == 2)
531 break;
532 }
533 if (head == end)
534 break;
535 head = NEXT_INSN (head);
536 }
537
538 if (rtl_dump_file)
539 {
540 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
541 dump_bb (bb, rtl_dump_file);
542 }
543 abort ();
544 }
545
546 /* A subroutine of update_life_info. Verify that there are no untoward
547 changes in live_at_start during a local update. */
548
549 static void
550 verify_local_live_at_start (new_live_at_start, bb)
551 regset new_live_at_start;
552 basic_block bb;
553 {
554 if (reload_completed)
555 {
556 /* After reload, there are no pseudos, nor subregs of multi-word
557 registers. The regsets should exactly match. */
558 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
559 {
560 if (rtl_dump_file)
561 {
562 fprintf (rtl_dump_file,
563 "live_at_start mismatch in bb %d, aborting\nNew:\n",
564 bb->index);
565 debug_bitmap_file (rtl_dump_file, new_live_at_start);
566 fputs ("Old:\n", rtl_dump_file);
567 dump_bb (bb, rtl_dump_file);
568 }
569 abort ();
570 }
571 }
572 else
573 {
574 int i;
575
576 /* Find the set of changed registers. */
577 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
578
579 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
580 {
581 /* No registers should die. */
582 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
583 {
584 if (rtl_dump_file)
585 {
586 fprintf (rtl_dump_file,
587 "Register %d died unexpectedly.\n", i);
588 dump_bb (bb, rtl_dump_file);
589 }
590 abort ();
591 }
592
593 /* Verify that the now-live register is wider than word_mode. */
594 verify_wide_reg (i, bb);
595 });
596 }
597 }
598
599 /* Updates life information starting with the basic blocks set in BLOCKS.
600 If BLOCKS is null, consider it to be the universal set.
601
602 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
603 we are only expecting local modifications to basic blocks. If we find
604 extra registers live at the beginning of a block, then we either killed
605 useful data, or we have a broken split that wants data not provided.
606 If we find registers removed from live_at_start, that means we have
607 a broken peephole that is killing a register it shouldn't.
608
609 ??? This is not true in one situation -- when a pre-reload splitter
610 generates subregs of a multi-word pseudo, current life analysis will
611 lose the kill. So we _can_ have a pseudo go live. How irritating.
612
613 Including PROP_REG_INFO does not properly refresh regs_ever_live
614 unless the caller resets it to zero. */
615
616 int
617 update_life_info (blocks, extent, prop_flags)
618 sbitmap blocks;
619 enum update_life_extent extent;
620 int prop_flags;
621 {
622 regset tmp;
623 regset_head tmp_head;
624 int i;
625 int stabilized_prop_flags = prop_flags;
626 basic_block bb;
627
628 tmp = INITIALIZE_REG_SET (tmp_head);
629 ndead = 0;
630
631 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
632 ? TV_LIFE_UPDATE : TV_LIFE);
633
634 /* Changes to the CFG are only allowed when
635 doing a global update for the entire CFG. */
636 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
637 && (extent == UPDATE_LIFE_LOCAL || blocks))
638 abort ();
639
640 /* For a global update, we go through the relaxation process again. */
641 if (extent != UPDATE_LIFE_LOCAL)
642 {
643 for ( ; ; )
644 {
645 int changed = 0;
646
647 calculate_global_regs_live (blocks, blocks,
648 prop_flags & (PROP_SCAN_DEAD_CODE
649 | PROP_SCAN_DEAD_STORES
650 | PROP_ALLOW_CFG_CHANGES));
651
652 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
653 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
654 break;
655
656 /* Removing dead code may allow the CFG to be simplified which
657 in turn may allow for further dead code detection / removal. */
658 FOR_EACH_BB_REVERSE (bb)
659 {
660 COPY_REG_SET (tmp, bb->global_live_at_end);
661 changed |= propagate_block (bb, tmp, NULL, NULL,
662 prop_flags & (PROP_SCAN_DEAD_CODE
663 | PROP_SCAN_DEAD_STORES
664 | PROP_KILL_DEAD_CODE));
665 }
666
667 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
668 subsequent propagate_block calls, since removing or acting as
669 removing dead code can affect global register liveness, which
670 is supposed to be finalized for this call after this loop. */
671 stabilized_prop_flags
672 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE);
674
675 if (! changed)
676 break;
677
678 /* We repeat regardless of what cleanup_cfg says. If there were
679 instructions deleted above, that might have been only a
680 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
681 Further improvement may be possible. */
682 cleanup_cfg (CLEANUP_EXPENSIVE);
683 }
684
685 /* If asked, remove notes from the blocks we'll update. */
686 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
687 count_or_remove_death_notes (blocks, 1);
688 }
689
690 /* Clear log links in case we are asked to (re)compute them. */
691 if (prop_flags & PROP_LOG_LINKS)
692 clear_log_links (blocks);
693
694 if (blocks)
695 {
696 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
697 {
698 bb = BASIC_BLOCK (i);
699
700 COPY_REG_SET (tmp, bb->global_live_at_end);
701 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
702
703 if (extent == UPDATE_LIFE_LOCAL)
704 verify_local_live_at_start (tmp, bb);
705 });
706 }
707 else
708 {
709 FOR_EACH_BB_REVERSE (bb)
710 {
711 COPY_REG_SET (tmp, bb->global_live_at_end);
712
713 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
714
715 if (extent == UPDATE_LIFE_LOCAL)
716 verify_local_live_at_start (tmp, bb);
717 }
718 }
719
720 FREE_REG_SET (tmp);
721
722 if (prop_flags & PROP_REG_INFO)
723 {
724 /* The only pseudos that are live at the beginning of the function
725 are those that were not set anywhere in the function. local-alloc
726 doesn't know how to handle these correctly, so mark them as not
727 local to any one basic block. */
728 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
729 FIRST_PSEUDO_REGISTER, i,
730 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
731
732 /* We have a problem with any pseudoreg that lives across the setjmp.
733 ANSI says that if a user variable does not change in value between
734 the setjmp and the longjmp, then the longjmp preserves it. This
735 includes longjmp from a place where the pseudo appears dead.
736 (In principle, the value still exists if it is in scope.)
737 If the pseudo goes in a hard reg, some other value may occupy
738 that hard reg where this pseudo is dead, thus clobbering the pseudo.
739 Conclusion: such a pseudo must not go in a hard reg. */
740 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
741 FIRST_PSEUDO_REGISTER, i,
742 {
743 if (regno_reg_rtx[i] != 0)
744 {
745 REG_LIVE_LENGTH (i) = -1;
746 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
747 }
748 });
749 }
750 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
751 ? TV_LIFE_UPDATE : TV_LIFE);
752 if (ndead && rtl_dump_file)
753 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
754 return ndead;
755 }
756
757 /* Update life information in all blocks where BB_DIRTY is set. */
758
759 int
760 update_life_info_in_dirty_blocks (extent, prop_flags)
761 enum update_life_extent extent;
762 int prop_flags;
763 {
764 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
765 int n = 0;
766 basic_block bb;
767 int retval = 0;
768
769 sbitmap_zero (update_life_blocks);
770 FOR_EACH_BB (bb)
771 {
772 if (extent == UPDATE_LIFE_LOCAL)
773 {
774 if (bb->flags & BB_DIRTY)
775 {
776 SET_BIT (update_life_blocks, bb->index);
777 n++;
778 }
779 }
780 else
781 {
782 /* ??? Bootstrap with -march=pentium4 fails to terminate
783 with only a partial life update. */
784 SET_BIT (update_life_blocks, bb->index);
785 if (bb->flags & BB_DIRTY)
786 n++;
787 }
788 }
789
790 if (n)
791 retval = update_life_info (update_life_blocks, extent, prop_flags);
792
793 sbitmap_free (update_life_blocks);
794 return retval;
795 }
796
797 /* Free the variables allocated by find_basic_blocks.
798
799 KEEP_HEAD_END_P is non-zero if basic_block_info is not to be freed. */
800
801 void
802 free_basic_block_vars (keep_head_end_p)
803 int keep_head_end_p;
804 {
805 if (! keep_head_end_p)
806 {
807 if (basic_block_info)
808 {
809 clear_edges ();
810 VARRAY_FREE (basic_block_info);
811 }
812 n_basic_blocks = 0;
813 last_basic_block = 0;
814
815 ENTRY_BLOCK_PTR->aux = NULL;
816 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
817 EXIT_BLOCK_PTR->aux = NULL;
818 EXIT_BLOCK_PTR->global_live_at_start = NULL;
819 }
820 }
821
822 /* Delete any insns that copy a register to itself. */
823
824 int
825 delete_noop_moves (f)
826 rtx f ATTRIBUTE_UNUSED;
827 {
828 rtx insn, next;
829 basic_block bb;
830 int nnoops = 0;
831
832 FOR_EACH_BB (bb)
833 {
834 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
835 {
836 next = NEXT_INSN (insn);
837 if (INSN_P (insn) && noop_move_p (insn))
838 {
839 rtx note;
840
841 /* If we're about to remove the first insn of a libcall
842 then move the libcall note to the next real insn and
843 update the retval note. */
844 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
845 && XEXP (note, 0) != insn)
846 {
847 rtx new_libcall_insn = next_real_insn (insn);
848 rtx retval_note = find_reg_note (XEXP (note, 0),
849 REG_RETVAL, NULL_RTX);
850 REG_NOTES (new_libcall_insn)
851 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
852 REG_NOTES (new_libcall_insn));
853 XEXP (retval_note, 0) = new_libcall_insn;
854 }
855
856 delete_insn_and_edges (insn);
857 nnoops++;
858 }
859 }
860 }
861 if (nnoops && rtl_dump_file)
862 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
863 return nnoops;
864 }
865
866 /* Delete any jump tables never referenced. We can't delete them at the
867 time of removing tablejump insn as they are referenced by the preceding
868 insns computing the destination, so we delay deleting and garbagecollect
869 them once life information is computed. */
870 void
871 delete_dead_jumptables ()
872 {
873 rtx insn, next;
874 for (insn = get_insns (); insn; insn = next)
875 {
876 next = NEXT_INSN (insn);
877 if (GET_CODE (insn) == CODE_LABEL
878 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
879 && GET_CODE (next) == JUMP_INSN
880 && (GET_CODE (PATTERN (next)) == ADDR_VEC
881 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
882 {
883 if (rtl_dump_file)
884 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
885 delete_insn (NEXT_INSN (insn));
886 delete_insn (insn);
887 next = NEXT_INSN (next);
888 }
889 }
890 }
891
892 /* Determine if the stack pointer is constant over the life of the function.
893 Only useful before prologues have been emitted. */
894
895 static void
896 notice_stack_pointer_modification_1 (x, pat, data)
897 rtx x;
898 rtx pat ATTRIBUTE_UNUSED;
899 void *data ATTRIBUTE_UNUSED;
900 {
901 if (x == stack_pointer_rtx
902 /* The stack pointer is only modified indirectly as the result
903 of a push until later in flow. See the comments in rtl.texi
904 regarding Embedded Side-Effects on Addresses. */
905 || (GET_CODE (x) == MEM
906 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
907 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
908 current_function_sp_is_unchanging = 0;
909 }
910
911 static void
912 notice_stack_pointer_modification (f)
913 rtx f;
914 {
915 rtx insn;
916
917 /* Assume that the stack pointer is unchanging if alloca hasn't
918 been used. */
919 current_function_sp_is_unchanging = !current_function_calls_alloca;
920 if (! current_function_sp_is_unchanging)
921 return;
922
923 for (insn = f; insn; insn = NEXT_INSN (insn))
924 {
925 if (INSN_P (insn))
926 {
927 /* Check if insn modifies the stack pointer. */
928 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
929 NULL);
930 if (! current_function_sp_is_unchanging)
931 return;
932 }
933 }
934 }
935
936 /* Mark a register in SET. Hard registers in large modes get all
937 of their component registers set as well. */
938
939 static void
940 mark_reg (reg, xset)
941 rtx reg;
942 void *xset;
943 {
944 regset set = (regset) xset;
945 int regno = REGNO (reg);
946
947 if (GET_MODE (reg) == BLKmode)
948 abort ();
949
950 SET_REGNO_REG_SET (set, regno);
951 if (regno < FIRST_PSEUDO_REGISTER)
952 {
953 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
954 while (--n > 0)
955 SET_REGNO_REG_SET (set, regno + n);
956 }
957 }
958
959 /* Mark those regs which are needed at the end of the function as live
960 at the end of the last basic block. */
961
962 static void
963 mark_regs_live_at_end (set)
964 regset set;
965 {
966 unsigned int i;
967
968 /* If exiting needs the right stack value, consider the stack pointer
969 live at the end of the function. */
970 if ((HAVE_epilogue && reload_completed)
971 || ! EXIT_IGNORE_STACK
972 || (! FRAME_POINTER_REQUIRED
973 && ! current_function_calls_alloca
974 && flag_omit_frame_pointer)
975 || current_function_sp_is_unchanging)
976 {
977 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
978 }
979
980 /* Mark the frame pointer if needed at the end of the function. If
981 we end up eliminating it, it will be removed from the live list
982 of each basic block by reload. */
983
984 if (! reload_completed || frame_pointer_needed)
985 {
986 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
987 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
988 /* If they are different, also mark the hard frame pointer as live. */
989 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
990 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
991 #endif
992 }
993
994 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
995 /* Many architectures have a GP register even without flag_pic.
996 Assume the pic register is not in use, or will be handled by
997 other means, if it is not fixed. */
998 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
999 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1000 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1001 #endif
1002
1003 /* Mark all global registers, and all registers used by the epilogue
1004 as being live at the end of the function since they may be
1005 referenced by our caller. */
1006 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1007 if (global_regs[i] || EPILOGUE_USES (i))
1008 SET_REGNO_REG_SET (set, i);
1009
1010 if (HAVE_epilogue && reload_completed)
1011 {
1012 /* Mark all call-saved registers that we actually used. */
1013 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1014 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1015 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1016 SET_REGNO_REG_SET (set, i);
1017 }
1018
1019 #ifdef EH_RETURN_DATA_REGNO
1020 /* Mark the registers that will contain data for the handler. */
1021 if (reload_completed && current_function_calls_eh_return)
1022 for (i = 0; ; ++i)
1023 {
1024 unsigned regno = EH_RETURN_DATA_REGNO(i);
1025 if (regno == INVALID_REGNUM)
1026 break;
1027 SET_REGNO_REG_SET (set, regno);
1028 }
1029 #endif
1030 #ifdef EH_RETURN_STACKADJ_RTX
1031 if ((! HAVE_epilogue || ! reload_completed)
1032 && current_function_calls_eh_return)
1033 {
1034 rtx tmp = EH_RETURN_STACKADJ_RTX;
1035 if (tmp && REG_P (tmp))
1036 mark_reg (tmp, set);
1037 }
1038 #endif
1039 #ifdef EH_RETURN_HANDLER_RTX
1040 if ((! HAVE_epilogue || ! reload_completed)
1041 && current_function_calls_eh_return)
1042 {
1043 rtx tmp = EH_RETURN_HANDLER_RTX;
1044 if (tmp && REG_P (tmp))
1045 mark_reg (tmp, set);
1046 }
1047 #endif
1048
1049 /* Mark function return value. */
1050 diddle_return_value (mark_reg, set);
1051 }
1052
1053 /* Callback function for for_each_successor_phi. DATA is a regset.
1054 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1055 INSN, in the regset. */
1056
1057 static int
1058 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1059 rtx insn ATTRIBUTE_UNUSED;
1060 int dest_regno ATTRIBUTE_UNUSED;
1061 int src_regno;
1062 void *data;
1063 {
1064 regset live = (regset) data;
1065 SET_REGNO_REG_SET (live, src_regno);
1066 return 0;
1067 }
1068
1069 /* Propagate global life info around the graph of basic blocks. Begin
1070 considering blocks with their corresponding bit set in BLOCKS_IN.
1071 If BLOCKS_IN is null, consider it the universal set.
1072
1073 BLOCKS_OUT is set for every block that was changed. */
1074
1075 static void
1076 calculate_global_regs_live (blocks_in, blocks_out, flags)
1077 sbitmap blocks_in, blocks_out;
1078 int flags;
1079 {
1080 basic_block *queue, *qhead, *qtail, *qend, bb;
1081 regset tmp, new_live_at_end, invalidated_by_call;
1082 regset_head tmp_head, invalidated_by_call_head;
1083 regset_head new_live_at_end_head;
1084 int i;
1085
1086 /* Some passes used to forget clear aux field of basic block causing
1087 sick behaviour here. */
1088 #ifdef ENABLE_CHECKING
1089 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1090 if (bb->aux)
1091 abort ();
1092 #endif
1093
1094 tmp = INITIALIZE_REG_SET (tmp_head);
1095 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1096 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1097
1098 /* Inconveniently, this is only readily available in hard reg set form. */
1099 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1100 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1101 SET_REGNO_REG_SET (invalidated_by_call, i);
1102
1103 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1104 because the `head == tail' style test for an empty queue doesn't
1105 work with a full queue. */
1106 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1107 qtail = queue;
1108 qhead = qend = queue + n_basic_blocks + 2;
1109
1110 /* Queue the blocks set in the initial mask. Do this in reverse block
1111 number order so that we are more likely for the first round to do
1112 useful work. We use AUX non-null to flag that the block is queued. */
1113 if (blocks_in)
1114 {
1115 FOR_EACH_BB (bb)
1116 if (TEST_BIT (blocks_in, bb->index))
1117 {
1118 *--qhead = bb;
1119 bb->aux = bb;
1120 }
1121 }
1122 else
1123 {
1124 FOR_EACH_BB (bb)
1125 {
1126 *--qhead = bb;
1127 bb->aux = bb;
1128 }
1129 }
1130
1131 /* We clean aux when we remove the initially-enqueued bbs, but we
1132 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1133 unconditionally. */
1134 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1135
1136 if (blocks_out)
1137 sbitmap_zero (blocks_out);
1138
1139 /* We work through the queue until there are no more blocks. What
1140 is live at the end of this block is precisely the union of what
1141 is live at the beginning of all its successors. So, we set its
1142 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1143 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1144 this block by walking through the instructions in this block in
1145 reverse order and updating as we go. If that changed
1146 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1147 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1148
1149 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1150 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1151 must either be live at the end of the block, or used within the
1152 block. In the latter case, it will certainly never disappear
1153 from GLOBAL_LIVE_AT_START. In the former case, the register
1154 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1155 for one of the successor blocks. By induction, that cannot
1156 occur. */
1157 while (qhead != qtail)
1158 {
1159 int rescan, changed;
1160 basic_block bb;
1161 edge e;
1162
1163 bb = *qhead++;
1164 if (qhead == qend)
1165 qhead = queue;
1166 bb->aux = NULL;
1167
1168 /* Begin by propagating live_at_start from the successor blocks. */
1169 CLEAR_REG_SET (new_live_at_end);
1170
1171 if (bb->succ)
1172 for (e = bb->succ; e; e = e->succ_next)
1173 {
1174 basic_block sb = e->dest;
1175
1176 /* Call-clobbered registers die across exception and
1177 call edges. */
1178 /* ??? Abnormal call edges ignored for the moment, as this gets
1179 confused by sibling call edges, which crashes reg-stack. */
1180 if (e->flags & EDGE_EH)
1181 {
1182 bitmap_operation (tmp, sb->global_live_at_start,
1183 invalidated_by_call, BITMAP_AND_COMPL);
1184 IOR_REG_SET (new_live_at_end, tmp);
1185 }
1186 else
1187 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1188
1189 /* If a target saves one register in another (instead of on
1190 the stack) the save register will need to be live for EH. */
1191 if (e->flags & EDGE_EH)
1192 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1193 if (EH_USES (i))
1194 SET_REGNO_REG_SET (new_live_at_end, i);
1195 }
1196 else
1197 {
1198 /* This might be a noreturn function that throws. And
1199 even if it isn't, getting the unwind info right helps
1200 debugging. */
1201 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1202 if (EH_USES (i))
1203 SET_REGNO_REG_SET (new_live_at_end, i);
1204 }
1205
1206 /* The all-important stack pointer must always be live. */
1207 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1208
1209 /* Before reload, there are a few registers that must be forced
1210 live everywhere -- which might not already be the case for
1211 blocks within infinite loops. */
1212 if (! reload_completed)
1213 {
1214 /* Any reference to any pseudo before reload is a potential
1215 reference of the frame pointer. */
1216 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1217
1218 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1219 /* Pseudos with argument area equivalences may require
1220 reloading via the argument pointer. */
1221 if (fixed_regs[ARG_POINTER_REGNUM])
1222 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1223 #endif
1224
1225 /* Any constant, or pseudo with constant equivalences, may
1226 require reloading from memory using the pic register. */
1227 if (PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1228 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1229 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1230 }
1231
1232 /* Regs used in phi nodes are not included in
1233 global_live_at_start, since they are live only along a
1234 particular edge. Set those regs that are live because of a
1235 phi node alternative corresponding to this particular block. */
1236 if (in_ssa_form)
1237 for_each_successor_phi (bb, &set_phi_alternative_reg,
1238 new_live_at_end);
1239
1240 if (bb == ENTRY_BLOCK_PTR)
1241 {
1242 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1243 continue;
1244 }
1245
1246 /* On our first pass through this block, we'll go ahead and continue.
1247 Recognize first pass by local_set NULL. On subsequent passes, we
1248 get to skip out early if live_at_end wouldn't have changed. */
1249
1250 if (bb->local_set == NULL)
1251 {
1252 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1253 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1254 rescan = 1;
1255 }
1256 else
1257 {
1258 /* If any bits were removed from live_at_end, we'll have to
1259 rescan the block. This wouldn't be necessary if we had
1260 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1261 local_live is really dependent on live_at_end. */
1262 CLEAR_REG_SET (tmp);
1263 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1264 new_live_at_end, BITMAP_AND_COMPL);
1265
1266 if (! rescan)
1267 {
1268 /* If any of the registers in the new live_at_end set are
1269 conditionally set in this basic block, we must rescan.
1270 This is because conditional lifetimes at the end of the
1271 block do not just take the live_at_end set into account,
1272 but also the liveness at the start of each successor
1273 block. We can miss changes in those sets if we only
1274 compare the new live_at_end against the previous one. */
1275 CLEAR_REG_SET (tmp);
1276 rescan = bitmap_operation (tmp, new_live_at_end,
1277 bb->cond_local_set, BITMAP_AND);
1278 }
1279
1280 if (! rescan)
1281 {
1282 /* Find the set of changed bits. Take this opportunity
1283 to notice that this set is empty and early out. */
1284 CLEAR_REG_SET (tmp);
1285 changed = bitmap_operation (tmp, bb->global_live_at_end,
1286 new_live_at_end, BITMAP_XOR);
1287 if (! changed)
1288 continue;
1289
1290 /* If any of the changed bits overlap with local_set,
1291 we'll have to rescan the block. Detect overlap by
1292 the AND with ~local_set turning off bits. */
1293 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1294 BITMAP_AND_COMPL);
1295 }
1296 }
1297
1298 /* Let our caller know that BB changed enough to require its
1299 death notes updated. */
1300 if (blocks_out)
1301 SET_BIT (blocks_out, bb->index);
1302
1303 if (! rescan)
1304 {
1305 /* Add to live_at_start the set of all registers in
1306 new_live_at_end that aren't in the old live_at_end. */
1307
1308 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1309 BITMAP_AND_COMPL);
1310 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1311
1312 changed = bitmap_operation (bb->global_live_at_start,
1313 bb->global_live_at_start,
1314 tmp, BITMAP_IOR);
1315 if (! changed)
1316 continue;
1317 }
1318 else
1319 {
1320 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1321
1322 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1323 into live_at_start. */
1324 propagate_block (bb, new_live_at_end, bb->local_set,
1325 bb->cond_local_set, flags);
1326
1327 /* If live_at start didn't change, no need to go farther. */
1328 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1329 continue;
1330
1331 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1332 }
1333
1334 /* Queue all predecessors of BB so that we may re-examine
1335 their live_at_end. */
1336 for (e = bb->pred; e; e = e->pred_next)
1337 {
1338 basic_block pb = e->src;
1339 if (pb->aux == NULL)
1340 {
1341 *qtail++ = pb;
1342 if (qtail == qend)
1343 qtail = queue;
1344 pb->aux = pb;
1345 }
1346 }
1347 }
1348
1349 FREE_REG_SET (tmp);
1350 FREE_REG_SET (new_live_at_end);
1351 FREE_REG_SET (invalidated_by_call);
1352
1353 if (blocks_out)
1354 {
1355 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1356 {
1357 basic_block bb = BASIC_BLOCK (i);
1358 FREE_REG_SET (bb->local_set);
1359 FREE_REG_SET (bb->cond_local_set);
1360 });
1361 }
1362 else
1363 {
1364 FOR_EACH_BB (bb)
1365 {
1366 FREE_REG_SET (bb->local_set);
1367 FREE_REG_SET (bb->cond_local_set);
1368 }
1369 }
1370
1371 free (queue);
1372 }
1373
1374 \f
1375 /* This structure is used to pass parameters to an from the
1376 the function find_regno_partial(). It is used to pass in the
1377 register number we are looking, as well as to return any rtx
1378 we find. */
1379
1380 typedef struct {
1381 unsigned regno_to_find;
1382 rtx retval;
1383 } find_regno_partial_param;
1384
1385
1386 /* Find the rtx for the reg numbers specified in 'data' if it is
1387 part of an expression which only uses part of the register. Return
1388 it in the structure passed in. */
1389 static int
1390 find_regno_partial (ptr, data)
1391 rtx *ptr;
1392 void *data;
1393 {
1394 find_regno_partial_param *param = (find_regno_partial_param *)data;
1395 unsigned reg = param->regno_to_find;
1396 param->retval = NULL_RTX;
1397
1398 if (*ptr == NULL_RTX)
1399 return 0;
1400
1401 switch (GET_CODE (*ptr))
1402 {
1403 case ZERO_EXTRACT:
1404 case SIGN_EXTRACT:
1405 case STRICT_LOW_PART:
1406 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1407 {
1408 param->retval = XEXP (*ptr, 0);
1409 return 1;
1410 }
1411 break;
1412
1413 case SUBREG:
1414 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1415 && REGNO (SUBREG_REG (*ptr)) == reg)
1416 {
1417 param->retval = SUBREG_REG (*ptr);
1418 return 1;
1419 }
1420 break;
1421
1422 default:
1423 break;
1424 }
1425
1426 return 0;
1427 }
1428
1429 /* Process all immediate successors of the entry block looking for pseudo
1430 registers which are live on entry. Find all of those whose first
1431 instance is a partial register reference of some kind, and initialize
1432 them to 0 after the entry block. This will prevent bit sets within
1433 registers whose value is unknown, and may contain some kind of sticky
1434 bits we don't want. */
1435
1436 int
1437 initialize_uninitialized_subregs ()
1438 {
1439 rtx insn;
1440 edge e;
1441 int reg, did_something = 0;
1442 find_regno_partial_param param;
1443
1444 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1445 {
1446 basic_block bb = e->dest;
1447 regset map = bb->global_live_at_start;
1448 EXECUTE_IF_SET_IN_REG_SET (map,
1449 FIRST_PSEUDO_REGISTER, reg,
1450 {
1451 int uid = REGNO_FIRST_UID (reg);
1452 rtx i;
1453
1454 /* Find an insn which mentions the register we are looking for.
1455 Its preferable to have an instance of the register's rtl since
1456 there may be various flags set which we need to duplicate.
1457 If we can't find it, its probably an automatic whose initial
1458 value doesn't matter, or hopefully something we don't care about. */
1459 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1460 ;
1461 if (i != NULL_RTX)
1462 {
1463 /* Found the insn, now get the REG rtx, if we can. */
1464 param.regno_to_find = reg;
1465 for_each_rtx (&i, find_regno_partial, &param);
1466 if (param.retval != NULL_RTX)
1467 {
1468 insn = gen_move_insn (param.retval,
1469 CONST0_RTX (GET_MODE (param.retval)));
1470 insert_insn_on_edge (insn, e);
1471 did_something = 1;
1472 }
1473 }
1474 });
1475 }
1476
1477 if (did_something)
1478 commit_edge_insertions ();
1479 return did_something;
1480 }
1481
1482 \f
1483 /* Subroutines of life analysis. */
1484
1485 /* Allocate the permanent data structures that represent the results
1486 of life analysis. Not static since used also for stupid life analysis. */
1487
1488 void
1489 allocate_bb_life_data ()
1490 {
1491 basic_block bb;
1492
1493 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1494 {
1495 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1496 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1497 }
1498
1499 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1500 }
1501
1502 void
1503 allocate_reg_life_data ()
1504 {
1505 int i;
1506
1507 max_regno = max_reg_num ();
1508
1509 /* Recalculate the register space, in case it has grown. Old style
1510 vector oriented regsets would set regset_{size,bytes} here also. */
1511 allocate_reg_info (max_regno, FALSE, FALSE);
1512
1513 /* Reset all the data we'll collect in propagate_block and its
1514 subroutines. */
1515 for (i = 0; i < max_regno; i++)
1516 {
1517 REG_N_SETS (i) = 0;
1518 REG_N_REFS (i) = 0;
1519 REG_N_DEATHS (i) = 0;
1520 REG_N_CALLS_CROSSED (i) = 0;
1521 REG_LIVE_LENGTH (i) = 0;
1522 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1523 }
1524 }
1525
1526 /* Delete dead instructions for propagate_block. */
1527
1528 static void
1529 propagate_block_delete_insn (insn)
1530 rtx insn;
1531 {
1532 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1533
1534 /* If the insn referred to a label, and that label was attached to
1535 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1536 pretty much mandatory to delete it, because the ADDR_VEC may be
1537 referencing labels that no longer exist.
1538
1539 INSN may reference a deleted label, particularly when a jump
1540 table has been optimized into a direct jump. There's no
1541 real good way to fix up the reference to the deleted label
1542 when the label is deleted, so we just allow it here. */
1543
1544 if (inote && GET_CODE (inote) == CODE_LABEL)
1545 {
1546 rtx label = XEXP (inote, 0);
1547 rtx next;
1548
1549 /* The label may be forced if it has been put in the constant
1550 pool. If that is the only use we must discard the table
1551 jump following it, but not the label itself. */
1552 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1553 && (next = next_nonnote_insn (label)) != NULL
1554 && GET_CODE (next) == JUMP_INSN
1555 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1556 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1557 {
1558 rtx pat = PATTERN (next);
1559 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1560 int len = XVECLEN (pat, diff_vec_p);
1561 int i;
1562
1563 for (i = 0; i < len; i++)
1564 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1565
1566 delete_insn_and_edges (next);
1567 ndead++;
1568 }
1569 }
1570
1571 delete_insn_and_edges (insn);
1572 ndead++;
1573 }
1574
1575 /* Delete dead libcalls for propagate_block. Return the insn
1576 before the libcall. */
1577
1578 static rtx
1579 propagate_block_delete_libcall ( insn, note)
1580 rtx insn, note;
1581 {
1582 rtx first = XEXP (note, 0);
1583 rtx before = PREV_INSN (first);
1584
1585 delete_insn_chain_and_edges (first, insn);
1586 ndead++;
1587 return before;
1588 }
1589
1590 /* Update the life-status of regs for one insn. Return the previous insn. */
1591
1592 rtx
1593 propagate_one_insn (pbi, insn)
1594 struct propagate_block_info *pbi;
1595 rtx insn;
1596 {
1597 rtx prev = PREV_INSN (insn);
1598 int flags = pbi->flags;
1599 int insn_is_dead = 0;
1600 int libcall_is_dead = 0;
1601 rtx note;
1602 int i;
1603
1604 if (! INSN_P (insn))
1605 return prev;
1606
1607 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1608 if (flags & PROP_SCAN_DEAD_CODE)
1609 {
1610 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1611 libcall_is_dead = (insn_is_dead && note != 0
1612 && libcall_dead_p (pbi, note, insn));
1613 }
1614
1615 /* If an instruction consists of just dead store(s) on final pass,
1616 delete it. */
1617 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1618 {
1619 /* If we're trying to delete a prologue or epilogue instruction
1620 that isn't flagged as possibly being dead, something is wrong.
1621 But if we are keeping the stack pointer depressed, we might well
1622 be deleting insns that are used to compute the amount to update
1623 it by, so they are fine. */
1624 if (reload_completed
1625 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1626 && (TYPE_RETURNS_STACK_DEPRESSED
1627 (TREE_TYPE (current_function_decl))))
1628 && (((HAVE_epilogue || HAVE_prologue)
1629 && prologue_epilogue_contains (insn))
1630 || (HAVE_sibcall_epilogue
1631 && sibcall_epilogue_contains (insn)))
1632 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1633 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1634
1635 /* Record sets. Do this even for dead instructions, since they
1636 would have killed the values if they hadn't been deleted. */
1637 mark_set_regs (pbi, PATTERN (insn), insn);
1638
1639 /* CC0 is now known to be dead. Either this insn used it,
1640 in which case it doesn't anymore, or clobbered it,
1641 so the next insn can't use it. */
1642 pbi->cc0_live = 0;
1643
1644 if (libcall_is_dead)
1645 prev = propagate_block_delete_libcall ( insn, note);
1646 else
1647 propagate_block_delete_insn (insn);
1648
1649 return prev;
1650 }
1651
1652 /* See if this is an increment or decrement that can be merged into
1653 a following memory address. */
1654 #ifdef AUTO_INC_DEC
1655 {
1656 rtx x = single_set (insn);
1657
1658 /* Does this instruction increment or decrement a register? */
1659 if ((flags & PROP_AUTOINC)
1660 && x != 0
1661 && GET_CODE (SET_DEST (x)) == REG
1662 && (GET_CODE (SET_SRC (x)) == PLUS
1663 || GET_CODE (SET_SRC (x)) == MINUS)
1664 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1665 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1666 /* Ok, look for a following memory ref we can combine with.
1667 If one is found, change the memory ref to a PRE_INC
1668 or PRE_DEC, cancel this insn, and return 1.
1669 Return 0 if nothing has been done. */
1670 && try_pre_increment_1 (pbi, insn))
1671 return prev;
1672 }
1673 #endif /* AUTO_INC_DEC */
1674
1675 CLEAR_REG_SET (pbi->new_set);
1676
1677 /* If this is not the final pass, and this insn is copying the value of
1678 a library call and it's dead, don't scan the insns that perform the
1679 library call, so that the call's arguments are not marked live. */
1680 if (libcall_is_dead)
1681 {
1682 /* Record the death of the dest reg. */
1683 mark_set_regs (pbi, PATTERN (insn), insn);
1684
1685 insn = XEXP (note, 0);
1686 return PREV_INSN (insn);
1687 }
1688 else if (GET_CODE (PATTERN (insn)) == SET
1689 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1690 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1691 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1692 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1693 /* We have an insn to pop a constant amount off the stack.
1694 (Such insns use PLUS regardless of the direction of the stack,
1695 and any insn to adjust the stack by a constant is always a pop.)
1696 These insns, if not dead stores, have no effect on life, though
1697 they do have an effect on the memory stores we are tracking. */
1698 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1699 else
1700 {
1701 rtx note;
1702 /* Any regs live at the time of a call instruction must not go
1703 in a register clobbered by calls. Find all regs now live and
1704 record this for them. */
1705
1706 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1707 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1708 { REG_N_CALLS_CROSSED (i)++; });
1709
1710 /* Record sets. Do this even for dead instructions, since they
1711 would have killed the values if they hadn't been deleted. */
1712 mark_set_regs (pbi, PATTERN (insn), insn);
1713
1714 if (GET_CODE (insn) == CALL_INSN)
1715 {
1716 int i;
1717 rtx note, cond;
1718
1719 cond = NULL_RTX;
1720 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1721 cond = COND_EXEC_TEST (PATTERN (insn));
1722
1723 /* Non-constant calls clobber memory, constant calls do not
1724 clobber memory, though they may clobber outgoing arguments
1725 on the stack. */
1726 if (! CONST_OR_PURE_CALL_P (insn))
1727 {
1728 free_EXPR_LIST_list (&pbi->mem_set_list);
1729 pbi->mem_set_list_len = 0;
1730 }
1731 else
1732 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1733
1734 /* There may be extra registers to be clobbered. */
1735 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1736 note;
1737 note = XEXP (note, 1))
1738 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1739 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1740 cond, insn, pbi->flags);
1741
1742 /* Calls change all call-used and global registers. */
1743 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1744 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1745 {
1746 /* We do not want REG_UNUSED notes for these registers. */
1747 mark_set_1 (pbi, CLOBBER, gen_rtx_REG (reg_raw_mode[i], i),
1748 cond, insn,
1749 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1750 }
1751 }
1752
1753 /* If an insn doesn't use CC0, it becomes dead since we assume
1754 that every insn clobbers it. So show it dead here;
1755 mark_used_regs will set it live if it is referenced. */
1756 pbi->cc0_live = 0;
1757
1758 /* Record uses. */
1759 if (! insn_is_dead)
1760 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1761 if ((flags & PROP_EQUAL_NOTES)
1762 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1763 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1764 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1765
1766 /* Sometimes we may have inserted something before INSN (such as a move)
1767 when we make an auto-inc. So ensure we will scan those insns. */
1768 #ifdef AUTO_INC_DEC
1769 prev = PREV_INSN (insn);
1770 #endif
1771
1772 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1773 {
1774 int i;
1775 rtx note, cond;
1776
1777 cond = NULL_RTX;
1778 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1779 cond = COND_EXEC_TEST (PATTERN (insn));
1780
1781 /* Calls use their arguments. */
1782 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1783 note;
1784 note = XEXP (note, 1))
1785 if (GET_CODE (XEXP (note, 0)) == USE)
1786 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0),
1787 cond, insn);
1788
1789 /* The stack ptr is used (honorarily) by a CALL insn. */
1790 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1791
1792 /* Calls may also reference any of the global registers,
1793 so they are made live. */
1794 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1795 if (global_regs[i])
1796 mark_used_reg (pbi, gen_rtx_REG (reg_raw_mode[i], i),
1797 cond, insn);
1798 }
1799 }
1800
1801 /* On final pass, update counts of how many insns in which each reg
1802 is live. */
1803 if (flags & PROP_REG_INFO)
1804 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1805 { REG_LIVE_LENGTH (i)++; });
1806
1807 return prev;
1808 }
1809
1810 /* Initialize a propagate_block_info struct for public consumption.
1811 Note that the structure itself is opaque to this file, but that
1812 the user can use the regsets provided here. */
1813
1814 struct propagate_block_info *
1815 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1816 basic_block bb;
1817 regset live, local_set, cond_local_set;
1818 int flags;
1819 {
1820 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1821
1822 pbi->bb = bb;
1823 pbi->reg_live = live;
1824 pbi->mem_set_list = NULL_RTX;
1825 pbi->mem_set_list_len = 0;
1826 pbi->local_set = local_set;
1827 pbi->cond_local_set = cond_local_set;
1828 pbi->cc0_live = 0;
1829 pbi->flags = flags;
1830
1831 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1832 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1833 else
1834 pbi->reg_next_use = NULL;
1835
1836 pbi->new_set = BITMAP_XMALLOC ();
1837
1838 #ifdef HAVE_conditional_execution
1839 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1840 free_reg_cond_life_info);
1841 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1842
1843 /* If this block ends in a conditional branch, for each register live
1844 from one side of the branch and not the other, record the register
1845 as conditionally dead. */
1846 if (GET_CODE (bb->end) == JUMP_INSN
1847 && any_condjump_p (bb->end))
1848 {
1849 regset_head diff_head;
1850 regset diff = INITIALIZE_REG_SET (diff_head);
1851 basic_block bb_true, bb_false;
1852 rtx cond_true, cond_false, set_src;
1853 int i;
1854
1855 /* Identify the successor blocks. */
1856 bb_true = bb->succ->dest;
1857 if (bb->succ->succ_next != NULL)
1858 {
1859 bb_false = bb->succ->succ_next->dest;
1860
1861 if (bb->succ->flags & EDGE_FALLTHRU)
1862 {
1863 basic_block t = bb_false;
1864 bb_false = bb_true;
1865 bb_true = t;
1866 }
1867 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1868 abort ();
1869 }
1870 else
1871 {
1872 /* This can happen with a conditional jump to the next insn. */
1873 if (JUMP_LABEL (bb->end) != bb_true->head)
1874 abort ();
1875
1876 /* Simplest way to do nothing. */
1877 bb_false = bb_true;
1878 }
1879
1880 /* Extract the condition from the branch. */
1881 set_src = SET_SRC (pc_set (bb->end));
1882 cond_true = XEXP (set_src, 0);
1883 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1884 GET_MODE (cond_true), XEXP (cond_true, 0),
1885 XEXP (cond_true, 1));
1886 if (GET_CODE (XEXP (set_src, 1)) == PC)
1887 {
1888 rtx t = cond_false;
1889 cond_false = cond_true;
1890 cond_true = t;
1891 }
1892
1893 /* Compute which register lead different lives in the successors. */
1894 if (bitmap_operation (diff, bb_true->global_live_at_start,
1895 bb_false->global_live_at_start, BITMAP_XOR))
1896 {
1897 rtx reg = XEXP (cond_true, 0);
1898
1899 if (GET_CODE (reg) == SUBREG)
1900 reg = SUBREG_REG (reg);
1901
1902 if (GET_CODE (reg) != REG)
1903 abort ();
1904
1905 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1906
1907 /* For each such register, mark it conditionally dead. */
1908 EXECUTE_IF_SET_IN_REG_SET
1909 (diff, 0, i,
1910 {
1911 struct reg_cond_life_info *rcli;
1912 rtx cond;
1913
1914 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1915
1916 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1917 cond = cond_false;
1918 else
1919 cond = cond_true;
1920 rcli->condition = cond;
1921 rcli->stores = const0_rtx;
1922 rcli->orig_condition = cond;
1923
1924 splay_tree_insert (pbi->reg_cond_dead, i,
1925 (splay_tree_value) rcli);
1926 });
1927 }
1928
1929 FREE_REG_SET (diff);
1930 }
1931 #endif
1932
1933 /* If this block has no successors, any stores to the frame that aren't
1934 used later in the block are dead. So make a pass over the block
1935 recording any such that are made and show them dead at the end. We do
1936 a very conservative and simple job here. */
1937 if (optimize
1938 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1939 && (TYPE_RETURNS_STACK_DEPRESSED
1940 (TREE_TYPE (current_function_decl))))
1941 && (flags & PROP_SCAN_DEAD_STORES)
1942 && (bb->succ == NULL
1943 || (bb->succ->succ_next == NULL
1944 && bb->succ->dest == EXIT_BLOCK_PTR
1945 && ! current_function_calls_eh_return)))
1946 {
1947 rtx insn, set;
1948 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
1949 if (GET_CODE (insn) == INSN
1950 && (set = single_set (insn))
1951 && GET_CODE (SET_DEST (set)) == MEM)
1952 {
1953 rtx mem = SET_DEST (set);
1954 rtx canon_mem = canon_rtx (mem);
1955
1956 /* This optimization is performed by faking a store to the
1957 memory at the end of the block. This doesn't work for
1958 unchanging memories because multiple stores to unchanging
1959 memory is illegal and alias analysis doesn't consider it. */
1960 if (RTX_UNCHANGING_P (canon_mem))
1961 continue;
1962
1963 if (XEXP (canon_mem, 0) == frame_pointer_rtx
1964 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
1965 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
1966 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
1967 add_to_mem_set_list (pbi, canon_mem);
1968 }
1969 }
1970
1971 return pbi;
1972 }
1973
1974 /* Release a propagate_block_info struct. */
1975
1976 void
1977 free_propagate_block_info (pbi)
1978 struct propagate_block_info *pbi;
1979 {
1980 free_EXPR_LIST_list (&pbi->mem_set_list);
1981
1982 BITMAP_XFREE (pbi->new_set);
1983
1984 #ifdef HAVE_conditional_execution
1985 splay_tree_delete (pbi->reg_cond_dead);
1986 BITMAP_XFREE (pbi->reg_cond_reg);
1987 #endif
1988
1989 if (pbi->reg_next_use)
1990 free (pbi->reg_next_use);
1991
1992 free (pbi);
1993 }
1994
1995 /* Compute the registers live at the beginning of a basic block BB from
1996 those live at the end.
1997
1998 When called, REG_LIVE contains those live at the end. On return, it
1999 contains those live at the beginning.
2000
2001 LOCAL_SET, if non-null, will be set with all registers killed
2002 unconditionally by this basic block.
2003 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2004 killed conditionally by this basic block. If there is any unconditional
2005 set of a register, then the corresponding bit will be set in LOCAL_SET
2006 and cleared in COND_LOCAL_SET.
2007 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2008 case, the resulting set will be equal to the union of the two sets that
2009 would otherwise be computed.
2010
2011 Return non-zero if an INSN is deleted (i.e. by dead code removal). */
2012
2013 int
2014 propagate_block (bb, live, local_set, cond_local_set, flags)
2015 basic_block bb;
2016 regset live;
2017 regset local_set;
2018 regset cond_local_set;
2019 int flags;
2020 {
2021 struct propagate_block_info *pbi;
2022 rtx insn, prev;
2023 int changed;
2024
2025 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2026
2027 if (flags & PROP_REG_INFO)
2028 {
2029 int i;
2030
2031 /* Process the regs live at the end of the block.
2032 Mark them as not local to any one basic block. */
2033 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2034 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2035 }
2036
2037 /* Scan the block an insn at a time from end to beginning. */
2038
2039 changed = 0;
2040 for (insn = bb->end;; insn = prev)
2041 {
2042 /* If this is a call to `setjmp' et al, warn if any
2043 non-volatile datum is live. */
2044 if ((flags & PROP_REG_INFO)
2045 && GET_CODE (insn) == CALL_INSN
2046 && find_reg_note (insn, REG_SETJMP, NULL))
2047 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2048
2049 prev = propagate_one_insn (pbi, insn);
2050 changed |= NEXT_INSN (prev) != insn;
2051
2052 if (insn == bb->head)
2053 break;
2054 }
2055
2056 free_propagate_block_info (pbi);
2057
2058 return changed;
2059 }
2060 \f
2061 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2062 (SET expressions whose destinations are registers dead after the insn).
2063 NEEDED is the regset that says which regs are alive after the insn.
2064
2065 Unless CALL_OK is non-zero, an insn is needed if it contains a CALL.
2066
2067 If X is the entire body of an insn, NOTES contains the reg notes
2068 pertaining to the insn. */
2069
2070 static int
2071 insn_dead_p (pbi, x, call_ok, notes)
2072 struct propagate_block_info *pbi;
2073 rtx x;
2074 int call_ok;
2075 rtx notes ATTRIBUTE_UNUSED;
2076 {
2077 enum rtx_code code = GET_CODE (x);
2078
2079 #ifdef AUTO_INC_DEC
2080 /* As flow is invoked after combine, we must take existing AUTO_INC
2081 expressions into account. */
2082 for (; notes; notes = XEXP (notes, 1))
2083 {
2084 if (REG_NOTE_KIND (notes) == REG_INC)
2085 {
2086 int regno = REGNO (XEXP (notes, 0));
2087
2088 /* Don't delete insns to set global regs. */
2089 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2090 || REGNO_REG_SET_P (pbi->reg_live, regno))
2091 return 0;
2092 }
2093 }
2094 #endif
2095
2096 /* If setting something that's a reg or part of one,
2097 see if that register's altered value will be live. */
2098
2099 if (code == SET)
2100 {
2101 rtx r = SET_DEST (x);
2102
2103 #ifdef HAVE_cc0
2104 if (GET_CODE (r) == CC0)
2105 return ! pbi->cc0_live;
2106 #endif
2107
2108 /* A SET that is a subroutine call cannot be dead. */
2109 if (GET_CODE (SET_SRC (x)) == CALL)
2110 {
2111 if (! call_ok)
2112 return 0;
2113 }
2114
2115 /* Don't eliminate loads from volatile memory or volatile asms. */
2116 else if (volatile_refs_p (SET_SRC (x)))
2117 return 0;
2118
2119 if (GET_CODE (r) == MEM)
2120 {
2121 rtx temp, canon_r;
2122
2123 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2124 return 0;
2125
2126 canon_r = canon_rtx (r);
2127
2128 /* Walk the set of memory locations we are currently tracking
2129 and see if one is an identical match to this memory location.
2130 If so, this memory write is dead (remember, we're walking
2131 backwards from the end of the block to the start). Since
2132 rtx_equal_p does not check the alias set or flags, we also
2133 must have the potential for them to conflict (anti_dependence). */
2134 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2135 if (anti_dependence (r, XEXP (temp, 0)))
2136 {
2137 rtx mem = XEXP (temp, 0);
2138
2139 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2140 && (GET_MODE_SIZE (GET_MODE (canon_r))
2141 <= GET_MODE_SIZE (GET_MODE (mem))))
2142 return 1;
2143
2144 #ifdef AUTO_INC_DEC
2145 /* Check if memory reference matches an auto increment. Only
2146 post increment/decrement or modify are valid. */
2147 if (GET_MODE (mem) == GET_MODE (r)
2148 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2149 || GET_CODE (XEXP (mem, 0)) == POST_INC
2150 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2151 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2152 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2153 return 1;
2154 #endif
2155 }
2156 }
2157 else
2158 {
2159 while (GET_CODE (r) == SUBREG
2160 || GET_CODE (r) == STRICT_LOW_PART
2161 || GET_CODE (r) == ZERO_EXTRACT)
2162 r = XEXP (r, 0);
2163
2164 if (GET_CODE (r) == REG)
2165 {
2166 int regno = REGNO (r);
2167
2168 /* Obvious. */
2169 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2170 return 0;
2171
2172 /* If this is a hard register, verify that subsequent
2173 words are not needed. */
2174 if (regno < FIRST_PSEUDO_REGISTER)
2175 {
2176 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2177
2178 while (--n > 0)
2179 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2180 return 0;
2181 }
2182
2183 /* Don't delete insns to set global regs. */
2184 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2185 return 0;
2186
2187 /* Make sure insns to set the stack pointer aren't deleted. */
2188 if (regno == STACK_POINTER_REGNUM)
2189 return 0;
2190
2191 /* ??? These bits might be redundant with the force live bits
2192 in calculate_global_regs_live. We would delete from
2193 sequential sets; whether this actually affects real code
2194 for anything but the stack pointer I don't know. */
2195 /* Make sure insns to set the frame pointer aren't deleted. */
2196 if (regno == FRAME_POINTER_REGNUM
2197 && (! reload_completed || frame_pointer_needed))
2198 return 0;
2199 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2200 if (regno == HARD_FRAME_POINTER_REGNUM
2201 && (! reload_completed || frame_pointer_needed))
2202 return 0;
2203 #endif
2204
2205 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2206 /* Make sure insns to set arg pointer are never deleted
2207 (if the arg pointer isn't fixed, there will be a USE
2208 for it, so we can treat it normally). */
2209 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2210 return 0;
2211 #endif
2212
2213 /* Otherwise, the set is dead. */
2214 return 1;
2215 }
2216 }
2217 }
2218
2219 /* If performing several activities, insn is dead if each activity
2220 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2221 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2222 worth keeping. */
2223 else if (code == PARALLEL)
2224 {
2225 int i = XVECLEN (x, 0);
2226
2227 for (i--; i >= 0; i--)
2228 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2229 && GET_CODE (XVECEXP (x, 0, i)) != USE
2230 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2231 return 0;
2232
2233 return 1;
2234 }
2235
2236 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2237 is not necessarily true for hard registers. */
2238 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2239 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2240 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2241 return 1;
2242
2243 /* We do not check other CLOBBER or USE here. An insn consisting of just
2244 a CLOBBER or just a USE should not be deleted. */
2245 return 0;
2246 }
2247
2248 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2249 return 1 if the entire library call is dead.
2250 This is true if INSN copies a register (hard or pseudo)
2251 and if the hard return reg of the call insn is dead.
2252 (The caller should have tested the destination of the SET inside
2253 INSN already for death.)
2254
2255 If this insn doesn't just copy a register, then we don't
2256 have an ordinary libcall. In that case, cse could not have
2257 managed to substitute the source for the dest later on,
2258 so we can assume the libcall is dead.
2259
2260 PBI is the block info giving pseudoregs live before this insn.
2261 NOTE is the REG_RETVAL note of the insn. */
2262
2263 static int
2264 libcall_dead_p (pbi, note, insn)
2265 struct propagate_block_info *pbi;
2266 rtx note;
2267 rtx insn;
2268 {
2269 rtx x = single_set (insn);
2270
2271 if (x)
2272 {
2273 rtx r = SET_SRC (x);
2274
2275 if (GET_CODE (r) == REG)
2276 {
2277 rtx call = XEXP (note, 0);
2278 rtx call_pat;
2279 int i;
2280
2281 /* Find the call insn. */
2282 while (call != insn && GET_CODE (call) != CALL_INSN)
2283 call = NEXT_INSN (call);
2284
2285 /* If there is none, do nothing special,
2286 since ordinary death handling can understand these insns. */
2287 if (call == insn)
2288 return 0;
2289
2290 /* See if the hard reg holding the value is dead.
2291 If this is a PARALLEL, find the call within it. */
2292 call_pat = PATTERN (call);
2293 if (GET_CODE (call_pat) == PARALLEL)
2294 {
2295 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2296 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2297 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2298 break;
2299
2300 /* This may be a library call that is returning a value
2301 via invisible pointer. Do nothing special, since
2302 ordinary death handling can understand these insns. */
2303 if (i < 0)
2304 return 0;
2305
2306 call_pat = XVECEXP (call_pat, 0, i);
2307 }
2308
2309 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2310 }
2311 }
2312 return 1;
2313 }
2314
2315 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2316 live at function entry. Don't count global register variables, variables
2317 in registers that can be used for function arg passing, or variables in
2318 fixed hard registers. */
2319
2320 int
2321 regno_uninitialized (regno)
2322 unsigned int regno;
2323 {
2324 if (n_basic_blocks == 0
2325 || (regno < FIRST_PSEUDO_REGISTER
2326 && (global_regs[regno]
2327 || fixed_regs[regno]
2328 || FUNCTION_ARG_REGNO_P (regno))))
2329 return 0;
2330
2331 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno);
2332 }
2333
2334 /* 1 if register REGNO was alive at a place where `setjmp' was called
2335 and was set more than once or is an argument.
2336 Such regs may be clobbered by `longjmp'. */
2337
2338 int
2339 regno_clobbered_at_setjmp (regno)
2340 int regno;
2341 {
2342 if (n_basic_blocks == 0)
2343 return 0;
2344
2345 return ((REG_N_SETS (regno) > 1
2346 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->next_bb->global_live_at_start, regno))
2347 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2348 }
2349 \f
2350 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2351 maximal list size; look for overlaps in mode and select the largest. */
2352 static void
2353 add_to_mem_set_list (pbi, mem)
2354 struct propagate_block_info *pbi;
2355 rtx mem;
2356 {
2357 rtx i;
2358
2359 /* We don't know how large a BLKmode store is, so we must not
2360 take them into consideration. */
2361 if (GET_MODE (mem) == BLKmode)
2362 return;
2363
2364 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2365 {
2366 rtx e = XEXP (i, 0);
2367 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2368 {
2369 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2370 {
2371 #ifdef AUTO_INC_DEC
2372 /* If we must store a copy of the mem, we can just modify
2373 the mode of the stored copy. */
2374 if (pbi->flags & PROP_AUTOINC)
2375 PUT_MODE (e, GET_MODE (mem));
2376 else
2377 #endif
2378 XEXP (i, 0) = mem;
2379 }
2380 return;
2381 }
2382 }
2383
2384 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2385 {
2386 #ifdef AUTO_INC_DEC
2387 /* Store a copy of mem, otherwise the address may be
2388 scrogged by find_auto_inc. */
2389 if (pbi->flags & PROP_AUTOINC)
2390 mem = shallow_copy_rtx (mem);
2391 #endif
2392 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2393 pbi->mem_set_list_len++;
2394 }
2395 }
2396
2397 /* INSN references memory, possibly using autoincrement addressing modes.
2398 Find any entries on the mem_set_list that need to be invalidated due
2399 to an address change. */
2400
2401 static int
2402 invalidate_mems_from_autoinc (px, data)
2403 rtx *px;
2404 void *data;
2405 {
2406 rtx x = *px;
2407 struct propagate_block_info *pbi = data;
2408
2409 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2410 {
2411 invalidate_mems_from_set (pbi, XEXP (x, 0));
2412 return -1;
2413 }
2414
2415 return 0;
2416 }
2417
2418 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2419
2420 static void
2421 invalidate_mems_from_set (pbi, exp)
2422 struct propagate_block_info *pbi;
2423 rtx exp;
2424 {
2425 rtx temp = pbi->mem_set_list;
2426 rtx prev = NULL_RTX;
2427 rtx next;
2428
2429 while (temp)
2430 {
2431 next = XEXP (temp, 1);
2432 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2433 {
2434 /* Splice this entry out of the list. */
2435 if (prev)
2436 XEXP (prev, 1) = next;
2437 else
2438 pbi->mem_set_list = next;
2439 free_EXPR_LIST_node (temp);
2440 pbi->mem_set_list_len--;
2441 }
2442 else
2443 prev = temp;
2444 temp = next;
2445 }
2446 }
2447
2448 /* Process the registers that are set within X. Their bits are set to
2449 1 in the regset DEAD, because they are dead prior to this insn.
2450
2451 If INSN is nonzero, it is the insn being processed.
2452
2453 FLAGS is the set of operations to perform. */
2454
2455 static void
2456 mark_set_regs (pbi, x, insn)
2457 struct propagate_block_info *pbi;
2458 rtx x, insn;
2459 {
2460 rtx cond = NULL_RTX;
2461 rtx link;
2462 enum rtx_code code;
2463
2464 if (insn)
2465 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2466 {
2467 if (REG_NOTE_KIND (link) == REG_INC)
2468 mark_set_1 (pbi, SET, XEXP (link, 0),
2469 (GET_CODE (x) == COND_EXEC
2470 ? COND_EXEC_TEST (x) : NULL_RTX),
2471 insn, pbi->flags);
2472 }
2473 retry:
2474 switch (code = GET_CODE (x))
2475 {
2476 case SET:
2477 case CLOBBER:
2478 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2479 return;
2480
2481 case COND_EXEC:
2482 cond = COND_EXEC_TEST (x);
2483 x = COND_EXEC_CODE (x);
2484 goto retry;
2485
2486 case PARALLEL:
2487 {
2488 int i;
2489
2490 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2491 {
2492 rtx sub = XVECEXP (x, 0, i);
2493 switch (code = GET_CODE (sub))
2494 {
2495 case COND_EXEC:
2496 if (cond != NULL_RTX)
2497 abort ();
2498
2499 cond = COND_EXEC_TEST (sub);
2500 sub = COND_EXEC_CODE (sub);
2501 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2502 break;
2503 /* Fall through. */
2504
2505 case SET:
2506 case CLOBBER:
2507 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2508 break;
2509
2510 default:
2511 break;
2512 }
2513 }
2514 break;
2515 }
2516
2517 default:
2518 break;
2519 }
2520 }
2521
2522 /* Process a single set, which appears in INSN. REG (which may not
2523 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2524 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2525 If the set is conditional (because it appear in a COND_EXEC), COND
2526 will be the condition. */
2527
2528 static void
2529 mark_set_1 (pbi, code, reg, cond, insn, flags)
2530 struct propagate_block_info *pbi;
2531 enum rtx_code code;
2532 rtx reg, cond, insn;
2533 int flags;
2534 {
2535 int regno_first = -1, regno_last = -1;
2536 unsigned long not_dead = 0;
2537 int i;
2538
2539 /* Modifying just one hardware register of a multi-reg value or just a
2540 byte field of a register does not mean the value from before this insn
2541 is now dead. Of course, if it was dead after it's unused now. */
2542
2543 switch (GET_CODE (reg))
2544 {
2545 case PARALLEL:
2546 /* Some targets place small structures in registers for return values of
2547 functions. We have to detect this case specially here to get correct
2548 flow information. */
2549 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2550 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2551 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2552 flags);
2553 return;
2554
2555 case ZERO_EXTRACT:
2556 case SIGN_EXTRACT:
2557 case STRICT_LOW_PART:
2558 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2559 do
2560 reg = XEXP (reg, 0);
2561 while (GET_CODE (reg) == SUBREG
2562 || GET_CODE (reg) == ZERO_EXTRACT
2563 || GET_CODE (reg) == SIGN_EXTRACT
2564 || GET_CODE (reg) == STRICT_LOW_PART);
2565 if (GET_CODE (reg) == MEM)
2566 break;
2567 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2568 /* Fall through. */
2569
2570 case REG:
2571 regno_last = regno_first = REGNO (reg);
2572 if (regno_first < FIRST_PSEUDO_REGISTER)
2573 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2574 break;
2575
2576 case SUBREG:
2577 if (GET_CODE (SUBREG_REG (reg)) == REG)
2578 {
2579 enum machine_mode outer_mode = GET_MODE (reg);
2580 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2581
2582 /* Identify the range of registers affected. This is moderately
2583 tricky for hard registers. See alter_subreg. */
2584
2585 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2586 if (regno_first < FIRST_PSEUDO_REGISTER)
2587 {
2588 regno_first += subreg_regno_offset (regno_first, inner_mode,
2589 SUBREG_BYTE (reg),
2590 outer_mode);
2591 regno_last = (regno_first
2592 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2593
2594 /* Since we've just adjusted the register number ranges, make
2595 sure REG matches. Otherwise some_was_live will be clear
2596 when it shouldn't have been, and we'll create incorrect
2597 REG_UNUSED notes. */
2598 reg = gen_rtx_REG (outer_mode, regno_first);
2599 }
2600 else
2601 {
2602 /* If the number of words in the subreg is less than the number
2603 of words in the full register, we have a well-defined partial
2604 set. Otherwise the high bits are undefined.
2605
2606 This is only really applicable to pseudos, since we just took
2607 care of multi-word hard registers. */
2608 if (((GET_MODE_SIZE (outer_mode)
2609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2610 < ((GET_MODE_SIZE (inner_mode)
2611 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2612 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2613 regno_first);
2614
2615 reg = SUBREG_REG (reg);
2616 }
2617 }
2618 else
2619 reg = SUBREG_REG (reg);
2620 break;
2621
2622 default:
2623 break;
2624 }
2625
2626 /* If this set is a MEM, then it kills any aliased writes.
2627 If this set is a REG, then it kills any MEMs which use the reg. */
2628 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2629 {
2630 if (GET_CODE (reg) == REG)
2631 invalidate_mems_from_set (pbi, reg);
2632
2633 /* If the memory reference had embedded side effects (autoincrement
2634 address modes. Then we may need to kill some entries on the
2635 memory set list. */
2636 if (insn && GET_CODE (reg) == MEM)
2637 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2638
2639 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2640 /* ??? With more effort we could track conditional memory life. */
2641 && ! cond)
2642 add_to_mem_set_list (pbi, canon_rtx (reg));
2643 }
2644
2645 if (GET_CODE (reg) == REG
2646 && ! (regno_first == FRAME_POINTER_REGNUM
2647 && (! reload_completed || frame_pointer_needed))
2648 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2649 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2650 && (! reload_completed || frame_pointer_needed))
2651 #endif
2652 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2653 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2654 #endif
2655 )
2656 {
2657 int some_was_live = 0, some_was_dead = 0;
2658
2659 for (i = regno_first; i <= regno_last; ++i)
2660 {
2661 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2662 if (pbi->local_set)
2663 {
2664 /* Order of the set operation matters here since both
2665 sets may be the same. */
2666 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2667 if (cond != NULL_RTX
2668 && ! REGNO_REG_SET_P (pbi->local_set, i))
2669 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2670 else
2671 SET_REGNO_REG_SET (pbi->local_set, i);
2672 }
2673 if (code != CLOBBER)
2674 SET_REGNO_REG_SET (pbi->new_set, i);
2675
2676 some_was_live |= needed_regno;
2677 some_was_dead |= ! needed_regno;
2678 }
2679
2680 #ifdef HAVE_conditional_execution
2681 /* Consider conditional death in deciding that the register needs
2682 a death note. */
2683 if (some_was_live && ! not_dead
2684 /* The stack pointer is never dead. Well, not strictly true,
2685 but it's very difficult to tell from here. Hopefully
2686 combine_stack_adjustments will fix up the most egregious
2687 errors. */
2688 && regno_first != STACK_POINTER_REGNUM)
2689 {
2690 for (i = regno_first; i <= regno_last; ++i)
2691 if (! mark_regno_cond_dead (pbi, i, cond))
2692 not_dead |= ((unsigned long) 1) << (i - regno_first);
2693 }
2694 #endif
2695
2696 /* Additional data to record if this is the final pass. */
2697 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2698 | PROP_DEATH_NOTES | PROP_AUTOINC))
2699 {
2700 rtx y;
2701 int blocknum = pbi->bb->index;
2702
2703 y = NULL_RTX;
2704 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2705 {
2706 y = pbi->reg_next_use[regno_first];
2707
2708 /* The next use is no longer next, since a store intervenes. */
2709 for (i = regno_first; i <= regno_last; ++i)
2710 pbi->reg_next_use[i] = 0;
2711 }
2712
2713 if (flags & PROP_REG_INFO)
2714 {
2715 for (i = regno_first; i <= regno_last; ++i)
2716 {
2717 /* Count (weighted) references, stores, etc. This counts a
2718 register twice if it is modified, but that is correct. */
2719 REG_N_SETS (i) += 1;
2720 REG_N_REFS (i) += 1;
2721 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2722
2723 /* The insns where a reg is live are normally counted
2724 elsewhere, but we want the count to include the insn
2725 where the reg is set, and the normal counting mechanism
2726 would not count it. */
2727 REG_LIVE_LENGTH (i) += 1;
2728 }
2729
2730 /* If this is a hard reg, record this function uses the reg. */
2731 if (regno_first < FIRST_PSEUDO_REGISTER)
2732 {
2733 for (i = regno_first; i <= regno_last; i++)
2734 regs_ever_live[i] = 1;
2735 }
2736 else
2737 {
2738 /* Keep track of which basic blocks each reg appears in. */
2739 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2740 REG_BASIC_BLOCK (regno_first) = blocknum;
2741 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2742 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2743 }
2744 }
2745
2746 if (! some_was_dead)
2747 {
2748 if (flags & PROP_LOG_LINKS)
2749 {
2750 /* Make a logical link from the next following insn
2751 that uses this register, back to this insn.
2752 The following insns have already been processed.
2753
2754 We don't build a LOG_LINK for hard registers containing
2755 in ASM_OPERANDs. If these registers get replaced,
2756 we might wind up changing the semantics of the insn,
2757 even if reload can make what appear to be valid
2758 assignments later. */
2759 if (y && (BLOCK_NUM (y) == blocknum)
2760 && (regno_first >= FIRST_PSEUDO_REGISTER
2761 || asm_noperands (PATTERN (y)) < 0))
2762 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2763 }
2764 }
2765 else if (not_dead)
2766 ;
2767 else if (! some_was_live)
2768 {
2769 if (flags & PROP_REG_INFO)
2770 REG_N_DEATHS (regno_first) += 1;
2771
2772 if (flags & PROP_DEATH_NOTES)
2773 {
2774 /* Note that dead stores have already been deleted
2775 when possible. If we get here, we have found a
2776 dead store that cannot be eliminated (because the
2777 same insn does something useful). Indicate this
2778 by marking the reg being set as dying here. */
2779 REG_NOTES (insn)
2780 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2781 }
2782 }
2783 else
2784 {
2785 if (flags & PROP_DEATH_NOTES)
2786 {
2787 /* This is a case where we have a multi-word hard register
2788 and some, but not all, of the words of the register are
2789 needed in subsequent insns. Write REG_UNUSED notes
2790 for those parts that were not needed. This case should
2791 be rare. */
2792
2793 for (i = regno_first; i <= regno_last; ++i)
2794 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2795 REG_NOTES (insn)
2796 = alloc_EXPR_LIST (REG_UNUSED,
2797 gen_rtx_REG (reg_raw_mode[i], i),
2798 REG_NOTES (insn));
2799 }
2800 }
2801 }
2802
2803 /* Mark the register as being dead. */
2804 if (some_was_live
2805 /* The stack pointer is never dead. Well, not strictly true,
2806 but it's very difficult to tell from here. Hopefully
2807 combine_stack_adjustments will fix up the most egregious
2808 errors. */
2809 && regno_first != STACK_POINTER_REGNUM)
2810 {
2811 for (i = regno_first; i <= regno_last; ++i)
2812 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2813 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2814 }
2815 }
2816 else if (GET_CODE (reg) == REG)
2817 {
2818 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2819 pbi->reg_next_use[regno_first] = 0;
2820 }
2821
2822 /* If this is the last pass and this is a SCRATCH, show it will be dying
2823 here and count it. */
2824 else if (GET_CODE (reg) == SCRATCH)
2825 {
2826 if (flags & PROP_DEATH_NOTES)
2827 REG_NOTES (insn)
2828 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2829 }
2830 }
2831 \f
2832 #ifdef HAVE_conditional_execution
2833 /* Mark REGNO conditionally dead.
2834 Return true if the register is now unconditionally dead. */
2835
2836 static int
2837 mark_regno_cond_dead (pbi, regno, cond)
2838 struct propagate_block_info *pbi;
2839 int regno;
2840 rtx cond;
2841 {
2842 /* If this is a store to a predicate register, the value of the
2843 predicate is changing, we don't know that the predicate as seen
2844 before is the same as that seen after. Flush all dependent
2845 conditions from reg_cond_dead. This will make all such
2846 conditionally live registers unconditionally live. */
2847 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2848 flush_reg_cond_reg (pbi, regno);
2849
2850 /* If this is an unconditional store, remove any conditional
2851 life that may have existed. */
2852 if (cond == NULL_RTX)
2853 splay_tree_remove (pbi->reg_cond_dead, regno);
2854 else
2855 {
2856 splay_tree_node node;
2857 struct reg_cond_life_info *rcli;
2858 rtx ncond;
2859
2860 /* Otherwise this is a conditional set. Record that fact.
2861 It may have been conditionally used, or there may be a
2862 subsequent set with a complimentary condition. */
2863
2864 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2865 if (node == NULL)
2866 {
2867 /* The register was unconditionally live previously.
2868 Record the current condition as the condition under
2869 which it is dead. */
2870 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2871 rcli->condition = cond;
2872 rcli->stores = cond;
2873 rcli->orig_condition = const0_rtx;
2874 splay_tree_insert (pbi->reg_cond_dead, regno,
2875 (splay_tree_value) rcli);
2876
2877 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2878
2879 /* Not unconditionally dead. */
2880 return 0;
2881 }
2882 else
2883 {
2884 /* The register was conditionally live previously.
2885 Add the new condition to the old. */
2886 rcli = (struct reg_cond_life_info *) node->value;
2887 ncond = rcli->condition;
2888 ncond = ior_reg_cond (ncond, cond, 1);
2889 if (rcli->stores == const0_rtx)
2890 rcli->stores = cond;
2891 else if (rcli->stores != const1_rtx)
2892 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2893
2894 /* If the register is now unconditionally dead, remove the entry
2895 in the splay_tree. A register is unconditionally dead if the
2896 dead condition ncond is true. A register is also unconditionally
2897 dead if the sum of all conditional stores is an unconditional
2898 store (stores is true), and the dead condition is identically the
2899 same as the original dead condition initialized at the end of
2900 the block. This is a pointer compare, not an rtx_equal_p
2901 compare. */
2902 if (ncond == const1_rtx
2903 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2904 splay_tree_remove (pbi->reg_cond_dead, regno);
2905 else
2906 {
2907 rcli->condition = ncond;
2908
2909 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2910
2911 /* Not unconditionally dead. */
2912 return 0;
2913 }
2914 }
2915 }
2916
2917 return 1;
2918 }
2919
2920 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2921
2922 static void
2923 free_reg_cond_life_info (value)
2924 splay_tree_value value;
2925 {
2926 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2927 free (rcli);
2928 }
2929
2930 /* Helper function for flush_reg_cond_reg. */
2931
2932 static int
2933 flush_reg_cond_reg_1 (node, data)
2934 splay_tree_node node;
2935 void *data;
2936 {
2937 struct reg_cond_life_info *rcli;
2938 int *xdata = (int *) data;
2939 unsigned int regno = xdata[0];
2940
2941 /* Don't need to search if last flushed value was farther on in
2942 the in-order traversal. */
2943 if (xdata[1] >= (int) node->key)
2944 return 0;
2945
2946 /* Splice out portions of the expression that refer to regno. */
2947 rcli = (struct reg_cond_life_info *) node->value;
2948 rcli->condition = elim_reg_cond (rcli->condition, regno);
2949 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
2950 rcli->stores = elim_reg_cond (rcli->stores, regno);
2951
2952 /* If the entire condition is now false, signal the node to be removed. */
2953 if (rcli->condition == const0_rtx)
2954 {
2955 xdata[1] = node->key;
2956 return -1;
2957 }
2958 else if (rcli->condition == const1_rtx)
2959 abort ();
2960
2961 return 0;
2962 }
2963
2964 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
2965
2966 static void
2967 flush_reg_cond_reg (pbi, regno)
2968 struct propagate_block_info *pbi;
2969 int regno;
2970 {
2971 int pair[2];
2972
2973 pair[0] = regno;
2974 pair[1] = -1;
2975 while (splay_tree_foreach (pbi->reg_cond_dead,
2976 flush_reg_cond_reg_1, pair) == -1)
2977 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
2978
2979 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
2980 }
2981
2982 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
2983 For ior/and, the ADD flag determines whether we want to add the new
2984 condition X to the old one unconditionally. If it is zero, we will
2985 only return a new expression if X allows us to simplify part of
2986 OLD, otherwise we return NULL to the caller.
2987 If ADD is nonzero, we will return a new condition in all cases. The
2988 toplevel caller of one of these functions should always pass 1 for
2989 ADD. */
2990
2991 static rtx
2992 ior_reg_cond (old, x, add)
2993 rtx old, x;
2994 int add;
2995 {
2996 rtx op0, op1;
2997
2998 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
2999 {
3000 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3001 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3002 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3003 return const1_rtx;
3004 if (GET_CODE (x) == GET_CODE (old)
3005 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3006 return old;
3007 if (! add)
3008 return NULL;
3009 return gen_rtx_IOR (0, old, x);
3010 }
3011
3012 switch (GET_CODE (old))
3013 {
3014 case IOR:
3015 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3016 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3017 if (op0 != NULL || op1 != NULL)
3018 {
3019 if (op0 == const0_rtx)
3020 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3021 if (op1 == const0_rtx)
3022 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3023 if (op0 == const1_rtx || op1 == const1_rtx)
3024 return const1_rtx;
3025 if (op0 == NULL)
3026 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3027 else if (rtx_equal_p (x, op0))
3028 /* (x | A) | x ~ (x | A). */
3029 return old;
3030 if (op1 == NULL)
3031 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3032 else if (rtx_equal_p (x, op1))
3033 /* (A | x) | x ~ (A | x). */
3034 return old;
3035 return gen_rtx_IOR (0, op0, op1);
3036 }
3037 if (! add)
3038 return NULL;
3039 return gen_rtx_IOR (0, old, x);
3040
3041 case AND:
3042 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3043 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3044 if (op0 != NULL || op1 != NULL)
3045 {
3046 if (op0 == const1_rtx)
3047 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3048 if (op1 == const1_rtx)
3049 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3050 if (op0 == const0_rtx || op1 == const0_rtx)
3051 return const0_rtx;
3052 if (op0 == NULL)
3053 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3054 else if (rtx_equal_p (x, op0))
3055 /* (x & A) | x ~ x. */
3056 return op0;
3057 if (op1 == NULL)
3058 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3059 else if (rtx_equal_p (x, op1))
3060 /* (A & x) | x ~ x. */
3061 return op1;
3062 return gen_rtx_AND (0, op0, op1);
3063 }
3064 if (! add)
3065 return NULL;
3066 return gen_rtx_IOR (0, old, x);
3067
3068 case NOT:
3069 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3070 if (op0 != NULL)
3071 return not_reg_cond (op0);
3072 if (! add)
3073 return NULL;
3074 return gen_rtx_IOR (0, old, x);
3075
3076 default:
3077 abort ();
3078 }
3079 }
3080
3081 static rtx
3082 not_reg_cond (x)
3083 rtx x;
3084 {
3085 enum rtx_code x_code;
3086
3087 if (x == const0_rtx)
3088 return const1_rtx;
3089 else if (x == const1_rtx)
3090 return const0_rtx;
3091 x_code = GET_CODE (x);
3092 if (x_code == NOT)
3093 return XEXP (x, 0);
3094 if (GET_RTX_CLASS (x_code) == '<'
3095 && GET_CODE (XEXP (x, 0)) == REG)
3096 {
3097 if (XEXP (x, 1) != const0_rtx)
3098 abort ();
3099
3100 return gen_rtx_fmt_ee (reverse_condition (x_code),
3101 VOIDmode, XEXP (x, 0), const0_rtx);
3102 }
3103 return gen_rtx_NOT (0, x);
3104 }
3105
3106 static rtx
3107 and_reg_cond (old, x, add)
3108 rtx old, x;
3109 int add;
3110 {
3111 rtx op0, op1;
3112
3113 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3114 {
3115 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3116 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3117 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3118 return const0_rtx;
3119 if (GET_CODE (x) == GET_CODE (old)
3120 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3121 return old;
3122 if (! add)
3123 return NULL;
3124 return gen_rtx_AND (0, old, x);
3125 }
3126
3127 switch (GET_CODE (old))
3128 {
3129 case IOR:
3130 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3131 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3132 if (op0 != NULL || op1 != NULL)
3133 {
3134 if (op0 == const0_rtx)
3135 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3136 if (op1 == const0_rtx)
3137 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3138 if (op0 == const1_rtx || op1 == const1_rtx)
3139 return const1_rtx;
3140 if (op0 == NULL)
3141 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3142 else if (rtx_equal_p (x, op0))
3143 /* (x | A) & x ~ x. */
3144 return op0;
3145 if (op1 == NULL)
3146 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3147 else if (rtx_equal_p (x, op1))
3148 /* (A | x) & x ~ x. */
3149 return op1;
3150 return gen_rtx_IOR (0, op0, op1);
3151 }
3152 if (! add)
3153 return NULL;
3154 return gen_rtx_AND (0, old, x);
3155
3156 case AND:
3157 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3158 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3159 if (op0 != NULL || op1 != NULL)
3160 {
3161 if (op0 == const1_rtx)
3162 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3163 if (op1 == const1_rtx)
3164 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3165 if (op0 == const0_rtx || op1 == const0_rtx)
3166 return const0_rtx;
3167 if (op0 == NULL)
3168 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3169 else if (rtx_equal_p (x, op0))
3170 /* (x & A) & x ~ (x & A). */
3171 return old;
3172 if (op1 == NULL)
3173 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3174 else if (rtx_equal_p (x, op1))
3175 /* (A & x) & x ~ (A & x). */
3176 return old;
3177 return gen_rtx_AND (0, op0, op1);
3178 }
3179 if (! add)
3180 return NULL;
3181 return gen_rtx_AND (0, old, x);
3182
3183 case NOT:
3184 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3185 if (op0 != NULL)
3186 return not_reg_cond (op0);
3187 if (! add)
3188 return NULL;
3189 return gen_rtx_AND (0, old, x);
3190
3191 default:
3192 abort ();
3193 }
3194 }
3195
3196 /* Given a condition X, remove references to reg REGNO and return the
3197 new condition. The removal will be done so that all conditions
3198 involving REGNO are considered to evaluate to false. This function
3199 is used when the value of REGNO changes. */
3200
3201 static rtx
3202 elim_reg_cond (x, regno)
3203 rtx x;
3204 unsigned int regno;
3205 {
3206 rtx op0, op1;
3207
3208 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3209 {
3210 if (REGNO (XEXP (x, 0)) == regno)
3211 return const0_rtx;
3212 return x;
3213 }
3214
3215 switch (GET_CODE (x))
3216 {
3217 case AND:
3218 op0 = elim_reg_cond (XEXP (x, 0), regno);
3219 op1 = elim_reg_cond (XEXP (x, 1), regno);
3220 if (op0 == const0_rtx || op1 == const0_rtx)
3221 return const0_rtx;
3222 if (op0 == const1_rtx)
3223 return op1;
3224 if (op1 == const1_rtx)
3225 return op0;
3226 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3227 return x;
3228 return gen_rtx_AND (0, op0, op1);
3229
3230 case IOR:
3231 op0 = elim_reg_cond (XEXP (x, 0), regno);
3232 op1 = elim_reg_cond (XEXP (x, 1), regno);
3233 if (op0 == const1_rtx || op1 == const1_rtx)
3234 return const1_rtx;
3235 if (op0 == const0_rtx)
3236 return op1;
3237 if (op1 == const0_rtx)
3238 return op0;
3239 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3240 return x;
3241 return gen_rtx_IOR (0, op0, op1);
3242
3243 case NOT:
3244 op0 = elim_reg_cond (XEXP (x, 0), regno);
3245 if (op0 == const0_rtx)
3246 return const1_rtx;
3247 if (op0 == const1_rtx)
3248 return const0_rtx;
3249 if (op0 != XEXP (x, 0))
3250 return not_reg_cond (op0);
3251 return x;
3252
3253 default:
3254 abort ();
3255 }
3256 }
3257 #endif /* HAVE_conditional_execution */
3258 \f
3259 #ifdef AUTO_INC_DEC
3260
3261 /* Try to substitute the auto-inc expression INC as the address inside
3262 MEM which occurs in INSN. Currently, the address of MEM is an expression
3263 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3264 that has a single set whose source is a PLUS of INCR_REG and something
3265 else. */
3266
3267 static void
3268 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3269 struct propagate_block_info *pbi;
3270 rtx inc, insn, mem, incr, incr_reg;
3271 {
3272 int regno = REGNO (incr_reg);
3273 rtx set = single_set (incr);
3274 rtx q = SET_DEST (set);
3275 rtx y = SET_SRC (set);
3276 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3277
3278 /* Make sure this reg appears only once in this insn. */
3279 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3280 return;
3281
3282 if (dead_or_set_p (incr, incr_reg)
3283 /* Mustn't autoinc an eliminable register. */
3284 && (regno >= FIRST_PSEUDO_REGISTER
3285 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3286 {
3287 /* This is the simple case. Try to make the auto-inc. If
3288 we can't, we are done. Otherwise, we will do any
3289 needed updates below. */
3290 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3291 return;
3292 }
3293 else if (GET_CODE (q) == REG
3294 /* PREV_INSN used here to check the semi-open interval
3295 [insn,incr). */
3296 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3297 /* We must also check for sets of q as q may be
3298 a call clobbered hard register and there may
3299 be a call between PREV_INSN (insn) and incr. */
3300 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3301 {
3302 /* We have *p followed sometime later by q = p+size.
3303 Both p and q must be live afterward,
3304 and q is not used between INSN and its assignment.
3305 Change it to q = p, ...*q..., q = q+size.
3306 Then fall into the usual case. */
3307 rtx insns, temp;
3308
3309 start_sequence ();
3310 emit_move_insn (q, incr_reg);
3311 insns = get_insns ();
3312 end_sequence ();
3313
3314 /* If we can't make the auto-inc, or can't make the
3315 replacement into Y, exit. There's no point in making
3316 the change below if we can't do the auto-inc and doing
3317 so is not correct in the pre-inc case. */
3318
3319 XEXP (inc, 0) = q;
3320 validate_change (insn, &XEXP (mem, 0), inc, 1);
3321 validate_change (incr, &XEXP (y, opnum), q, 1);
3322 if (! apply_change_group ())
3323 return;
3324
3325 /* We now know we'll be doing this change, so emit the
3326 new insn(s) and do the updates. */
3327 emit_insns_before (insns, insn);
3328
3329 if (pbi->bb->head == insn)
3330 pbi->bb->head = insns;
3331
3332 /* INCR will become a NOTE and INSN won't contain a
3333 use of INCR_REG. If a use of INCR_REG was just placed in
3334 the insn before INSN, make that the next use.
3335 Otherwise, invalidate it. */
3336 if (GET_CODE (PREV_INSN (insn)) == INSN
3337 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3338 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3339 pbi->reg_next_use[regno] = PREV_INSN (insn);
3340 else
3341 pbi->reg_next_use[regno] = 0;
3342
3343 incr_reg = q;
3344 regno = REGNO (q);
3345
3346 /* REGNO is now used in INCR which is below INSN, but
3347 it previously wasn't live here. If we don't mark
3348 it as live, we'll put a REG_DEAD note for it
3349 on this insn, which is incorrect. */
3350 SET_REGNO_REG_SET (pbi->reg_live, regno);
3351
3352 /* If there are any calls between INSN and INCR, show
3353 that REGNO now crosses them. */
3354 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3355 if (GET_CODE (temp) == CALL_INSN)
3356 REG_N_CALLS_CROSSED (regno)++;
3357
3358 /* Invalidate alias info for Q since we just changed its value. */
3359 clear_reg_alias_info (q);
3360 }
3361 else
3362 return;
3363
3364 /* If we haven't returned, it means we were able to make the
3365 auto-inc, so update the status. First, record that this insn
3366 has an implicit side effect. */
3367
3368 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3369
3370 /* Modify the old increment-insn to simply copy
3371 the already-incremented value of our register. */
3372 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3373 abort ();
3374
3375 /* If that makes it a no-op (copying the register into itself) delete
3376 it so it won't appear to be a "use" and a "set" of this
3377 register. */
3378 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3379 {
3380 /* If the original source was dead, it's dead now. */
3381 rtx note;
3382
3383 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3384 {
3385 remove_note (incr, note);
3386 if (XEXP (note, 0) != incr_reg)
3387 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3388 }
3389
3390 PUT_CODE (incr, NOTE);
3391 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3392 NOTE_SOURCE_FILE (incr) = 0;
3393 }
3394
3395 if (regno >= FIRST_PSEUDO_REGISTER)
3396 {
3397 /* Count an extra reference to the reg. When a reg is
3398 incremented, spilling it is worse, so we want to make
3399 that less likely. */
3400 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3401
3402 /* Count the increment as a setting of the register,
3403 even though it isn't a SET in rtl. */
3404 REG_N_SETS (regno)++;
3405 }
3406 }
3407
3408 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3409 reference. */
3410
3411 static void
3412 find_auto_inc (pbi, x, insn)
3413 struct propagate_block_info *pbi;
3414 rtx x;
3415 rtx insn;
3416 {
3417 rtx addr = XEXP (x, 0);
3418 HOST_WIDE_INT offset = 0;
3419 rtx set, y, incr, inc_val;
3420 int regno;
3421 int size = GET_MODE_SIZE (GET_MODE (x));
3422
3423 if (GET_CODE (insn) == JUMP_INSN)
3424 return;
3425
3426 /* Here we detect use of an index register which might be good for
3427 postincrement, postdecrement, preincrement, or predecrement. */
3428
3429 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3430 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3431
3432 if (GET_CODE (addr) != REG)
3433 return;
3434
3435 regno = REGNO (addr);
3436
3437 /* Is the next use an increment that might make auto-increment? */
3438 incr = pbi->reg_next_use[regno];
3439 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3440 return;
3441 set = single_set (incr);
3442 if (set == 0 || GET_CODE (set) != SET)
3443 return;
3444 y = SET_SRC (set);
3445
3446 if (GET_CODE (y) != PLUS)
3447 return;
3448
3449 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3450 inc_val = XEXP (y, 1);
3451 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3452 inc_val = XEXP (y, 0);
3453 else
3454 return;
3455
3456 if (GET_CODE (inc_val) == CONST_INT)
3457 {
3458 if (HAVE_POST_INCREMENT
3459 && (INTVAL (inc_val) == size && offset == 0))
3460 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3461 incr, addr);
3462 else if (HAVE_POST_DECREMENT
3463 && (INTVAL (inc_val) == -size && offset == 0))
3464 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3465 incr, addr);
3466 else if (HAVE_PRE_INCREMENT
3467 && (INTVAL (inc_val) == size && offset == size))
3468 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3469 incr, addr);
3470 else if (HAVE_PRE_DECREMENT
3471 && (INTVAL (inc_val) == -size && offset == -size))
3472 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3473 incr, addr);
3474 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3475 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3476 gen_rtx_PLUS (Pmode,
3477 addr,
3478 inc_val)),
3479 insn, x, incr, addr);
3480 }
3481 else if (GET_CODE (inc_val) == REG
3482 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3483 NEXT_INSN (incr)))
3484
3485 {
3486 if (HAVE_POST_MODIFY_REG && offset == 0)
3487 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3488 gen_rtx_PLUS (Pmode,
3489 addr,
3490 inc_val)),
3491 insn, x, incr, addr);
3492 }
3493 }
3494
3495 #endif /* AUTO_INC_DEC */
3496 \f
3497 static void
3498 mark_used_reg (pbi, reg, cond, insn)
3499 struct propagate_block_info *pbi;
3500 rtx reg;
3501 rtx cond ATTRIBUTE_UNUSED;
3502 rtx insn;
3503 {
3504 unsigned int regno_first, regno_last, i;
3505 int some_was_live, some_was_dead, some_not_set;
3506
3507 regno_last = regno_first = REGNO (reg);
3508 if (regno_first < FIRST_PSEUDO_REGISTER)
3509 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3510
3511 /* Find out if any of this register is live after this instruction. */
3512 some_was_live = some_was_dead = 0;
3513 for (i = regno_first; i <= regno_last; ++i)
3514 {
3515 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3516 some_was_live |= needed_regno;
3517 some_was_dead |= ! needed_regno;
3518 }
3519
3520 /* Find out if any of the register was set this insn. */
3521 some_not_set = 0;
3522 for (i = regno_first; i <= regno_last; ++i)
3523 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3524
3525 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3526 {
3527 /* Record where each reg is used, so when the reg is set we know
3528 the next insn that uses it. */
3529 pbi->reg_next_use[regno_first] = insn;
3530 }
3531
3532 if (pbi->flags & PROP_REG_INFO)
3533 {
3534 if (regno_first < FIRST_PSEUDO_REGISTER)
3535 {
3536 /* If this is a register we are going to try to eliminate,
3537 don't mark it live here. If we are successful in
3538 eliminating it, it need not be live unless it is used for
3539 pseudos, in which case it will have been set live when it
3540 was allocated to the pseudos. If the register will not
3541 be eliminated, reload will set it live at that point.
3542
3543 Otherwise, record that this function uses this register. */
3544 /* ??? The PPC backend tries to "eliminate" on the pic
3545 register to itself. This should be fixed. In the mean
3546 time, hack around it. */
3547
3548 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3549 && (regno_first == FRAME_POINTER_REGNUM
3550 || regno_first == ARG_POINTER_REGNUM)))
3551 for (i = regno_first; i <= regno_last; ++i)
3552 regs_ever_live[i] = 1;
3553 }
3554 else
3555 {
3556 /* Keep track of which basic block each reg appears in. */
3557
3558 int blocknum = pbi->bb->index;
3559 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3560 REG_BASIC_BLOCK (regno_first) = blocknum;
3561 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3562 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3563
3564 /* Count (weighted) number of uses of each reg. */
3565 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3566 REG_N_REFS (regno_first)++;
3567 }
3568 }
3569
3570 /* Record and count the insns in which a reg dies. If it is used in
3571 this insn and was dead below the insn then it dies in this insn.
3572 If it was set in this insn, we do not make a REG_DEAD note;
3573 likewise if we already made such a note. */
3574 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3575 && some_was_dead
3576 && some_not_set)
3577 {
3578 /* Check for the case where the register dying partially
3579 overlaps the register set by this insn. */
3580 if (regno_first != regno_last)
3581 for (i = regno_first; i <= regno_last; ++i)
3582 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3583
3584 /* If none of the words in X is needed, make a REG_DEAD note.
3585 Otherwise, we must make partial REG_DEAD notes. */
3586 if (! some_was_live)
3587 {
3588 if ((pbi->flags & PROP_DEATH_NOTES)
3589 && ! find_regno_note (insn, REG_DEAD, regno_first))
3590 REG_NOTES (insn)
3591 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3592
3593 if (pbi->flags & PROP_REG_INFO)
3594 REG_N_DEATHS (regno_first)++;
3595 }
3596 else
3597 {
3598 /* Don't make a REG_DEAD note for a part of a register
3599 that is set in the insn. */
3600 for (i = regno_first; i <= regno_last; ++i)
3601 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3602 && ! dead_or_set_regno_p (insn, i))
3603 REG_NOTES (insn)
3604 = alloc_EXPR_LIST (REG_DEAD,
3605 gen_rtx_REG (reg_raw_mode[i], i),
3606 REG_NOTES (insn));
3607 }
3608 }
3609
3610 /* Mark the register as being live. */
3611 for (i = regno_first; i <= regno_last; ++i)
3612 {
3613 #ifdef HAVE_conditional_execution
3614 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3615 #endif
3616
3617 SET_REGNO_REG_SET (pbi->reg_live, i);
3618
3619 #ifdef HAVE_conditional_execution
3620 /* If this is a conditional use, record that fact. If it is later
3621 conditionally set, we'll know to kill the register. */
3622 if (cond != NULL_RTX)
3623 {
3624 splay_tree_node node;
3625 struct reg_cond_life_info *rcli;
3626 rtx ncond;
3627
3628 if (this_was_live)
3629 {
3630 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3631 if (node == NULL)
3632 {
3633 /* The register was unconditionally live previously.
3634 No need to do anything. */
3635 }
3636 else
3637 {
3638 /* The register was conditionally live previously.
3639 Subtract the new life cond from the old death cond. */
3640 rcli = (struct reg_cond_life_info *) node->value;
3641 ncond = rcli->condition;
3642 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3643
3644 /* If the register is now unconditionally live,
3645 remove the entry in the splay_tree. */
3646 if (ncond == const0_rtx)
3647 splay_tree_remove (pbi->reg_cond_dead, i);
3648 else
3649 {
3650 rcli->condition = ncond;
3651 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3652 REGNO (XEXP (cond, 0)));
3653 }
3654 }
3655 }
3656 else
3657 {
3658 /* The register was not previously live at all. Record
3659 the condition under which it is still dead. */
3660 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3661 rcli->condition = not_reg_cond (cond);
3662 rcli->stores = const0_rtx;
3663 rcli->orig_condition = const0_rtx;
3664 splay_tree_insert (pbi->reg_cond_dead, i,
3665 (splay_tree_value) rcli);
3666
3667 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3668 }
3669 }
3670 else if (this_was_live)
3671 {
3672 /* The register may have been conditionally live previously, but
3673 is now unconditionally live. Remove it from the conditionally
3674 dead list, so that a conditional set won't cause us to think
3675 it dead. */
3676 splay_tree_remove (pbi->reg_cond_dead, i);
3677 }
3678 #endif
3679 }
3680 }
3681
3682 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3683 This is done assuming the registers needed from X are those that
3684 have 1-bits in PBI->REG_LIVE.
3685
3686 INSN is the containing instruction. If INSN is dead, this function
3687 is not called. */
3688
3689 static void
3690 mark_used_regs (pbi, x, cond, insn)
3691 struct propagate_block_info *pbi;
3692 rtx x, cond, insn;
3693 {
3694 RTX_CODE code;
3695 int regno;
3696 int flags = pbi->flags;
3697
3698 retry:
3699 if (!x)
3700 return;
3701 code = GET_CODE (x);
3702 switch (code)
3703 {
3704 case LABEL_REF:
3705 case SYMBOL_REF:
3706 case CONST_INT:
3707 case CONST:
3708 case CONST_DOUBLE:
3709 case CONST_VECTOR:
3710 case PC:
3711 case ADDR_VEC:
3712 case ADDR_DIFF_VEC:
3713 return;
3714
3715 #ifdef HAVE_cc0
3716 case CC0:
3717 pbi->cc0_live = 1;
3718 return;
3719 #endif
3720
3721 case CLOBBER:
3722 /* If we are clobbering a MEM, mark any registers inside the address
3723 as being used. */
3724 if (GET_CODE (XEXP (x, 0)) == MEM)
3725 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3726 return;
3727
3728 case MEM:
3729 /* Don't bother watching stores to mems if this is not the
3730 final pass. We'll not be deleting dead stores this round. */
3731 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3732 {
3733 /* Invalidate the data for the last MEM stored, but only if MEM is
3734 something that can be stored into. */
3735 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3736 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3737 /* Needn't clear the memory set list. */
3738 ;
3739 else
3740 {
3741 rtx temp = pbi->mem_set_list;
3742 rtx prev = NULL_RTX;
3743 rtx next;
3744
3745 while (temp)
3746 {
3747 next = XEXP (temp, 1);
3748 if (anti_dependence (XEXP (temp, 0), x))
3749 {
3750 /* Splice temp out of the list. */
3751 if (prev)
3752 XEXP (prev, 1) = next;
3753 else
3754 pbi->mem_set_list = next;
3755 free_EXPR_LIST_node (temp);
3756 pbi->mem_set_list_len--;
3757 }
3758 else
3759 prev = temp;
3760 temp = next;
3761 }
3762 }
3763
3764 /* If the memory reference had embedded side effects (autoincrement
3765 address modes. Then we may need to kill some entries on the
3766 memory set list. */
3767 if (insn)
3768 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3769 }
3770
3771 #ifdef AUTO_INC_DEC
3772 if (flags & PROP_AUTOINC)
3773 find_auto_inc (pbi, x, insn);
3774 #endif
3775 break;
3776
3777 case SUBREG:
3778 #ifdef CLASS_CANNOT_CHANGE_MODE
3779 if (GET_CODE (SUBREG_REG (x)) == REG
3780 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER
3781 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (x),
3782 GET_MODE (SUBREG_REG (x))))
3783 REG_CHANGES_MODE (REGNO (SUBREG_REG (x))) = 1;
3784 #endif
3785
3786 /* While we're here, optimize this case. */
3787 x = SUBREG_REG (x);
3788 if (GET_CODE (x) != REG)
3789 goto retry;
3790 /* Fall through. */
3791
3792 case REG:
3793 /* See a register other than being set => mark it as needed. */
3794 mark_used_reg (pbi, x, cond, insn);
3795 return;
3796
3797 case SET:
3798 {
3799 rtx testreg = SET_DEST (x);
3800 int mark_dest = 0;
3801
3802 /* If storing into MEM, don't show it as being used. But do
3803 show the address as being used. */
3804 if (GET_CODE (testreg) == MEM)
3805 {
3806 #ifdef AUTO_INC_DEC
3807 if (flags & PROP_AUTOINC)
3808 find_auto_inc (pbi, testreg, insn);
3809 #endif
3810 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3811 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3812 return;
3813 }
3814
3815 /* Storing in STRICT_LOW_PART is like storing in a reg
3816 in that this SET might be dead, so ignore it in TESTREG.
3817 but in some other ways it is like using the reg.
3818
3819 Storing in a SUBREG or a bit field is like storing the entire
3820 register in that if the register's value is not used
3821 then this SET is not needed. */
3822 while (GET_CODE (testreg) == STRICT_LOW_PART
3823 || GET_CODE (testreg) == ZERO_EXTRACT
3824 || GET_CODE (testreg) == SIGN_EXTRACT
3825 || GET_CODE (testreg) == SUBREG)
3826 {
3827 #ifdef CLASS_CANNOT_CHANGE_MODE
3828 if (GET_CODE (testreg) == SUBREG
3829 && GET_CODE (SUBREG_REG (testreg)) == REG
3830 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER
3831 && CLASS_CANNOT_CHANGE_MODE_P (GET_MODE (SUBREG_REG (testreg)),
3832 GET_MODE (testreg)))
3833 REG_CHANGES_MODE (REGNO (SUBREG_REG (testreg))) = 1;
3834 #endif
3835
3836 /* Modifying a single register in an alternate mode
3837 does not use any of the old value. But these other
3838 ways of storing in a register do use the old value. */
3839 if (GET_CODE (testreg) == SUBREG
3840 && !((REG_BYTES (SUBREG_REG (testreg))
3841 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3842 > (REG_BYTES (testreg)
3843 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3844 ;
3845 else
3846 mark_dest = 1;
3847
3848 testreg = XEXP (testreg, 0);
3849 }
3850
3851 /* If this is a store into a register or group of registers,
3852 recursively scan the value being stored. */
3853
3854 if ((GET_CODE (testreg) == PARALLEL
3855 && GET_MODE (testreg) == BLKmode)
3856 || (GET_CODE (testreg) == REG
3857 && (regno = REGNO (testreg),
3858 ! (regno == FRAME_POINTER_REGNUM
3859 && (! reload_completed || frame_pointer_needed)))
3860 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3861 && ! (regno == HARD_FRAME_POINTER_REGNUM
3862 && (! reload_completed || frame_pointer_needed))
3863 #endif
3864 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3865 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3866 #endif
3867 ))
3868 {
3869 if (mark_dest)
3870 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3871 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3872 return;
3873 }
3874 }
3875 break;
3876
3877 case ASM_OPERANDS:
3878 case UNSPEC_VOLATILE:
3879 case TRAP_IF:
3880 case ASM_INPUT:
3881 {
3882 /* Traditional and volatile asm instructions must be considered to use
3883 and clobber all hard registers, all pseudo-registers and all of
3884 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3885
3886 Consider for instance a volatile asm that changes the fpu rounding
3887 mode. An insn should not be moved across this even if it only uses
3888 pseudo-regs because it might give an incorrectly rounded result.
3889
3890 ?!? Unfortunately, marking all hard registers as live causes massive
3891 problems for the register allocator and marking all pseudos as live
3892 creates mountains of uninitialized variable warnings.
3893
3894 So for now, just clear the memory set list and mark any regs
3895 we can find in ASM_OPERANDS as used. */
3896 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3897 {
3898 free_EXPR_LIST_list (&pbi->mem_set_list);
3899 pbi->mem_set_list_len = 0;
3900 }
3901
3902 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3903 We can not just fall through here since then we would be confused
3904 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3905 traditional asms unlike their normal usage. */
3906 if (code == ASM_OPERANDS)
3907 {
3908 int j;
3909
3910 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3911 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3912 }
3913 break;
3914 }
3915
3916 case COND_EXEC:
3917 if (cond != NULL_RTX)
3918 abort ();
3919
3920 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3921
3922 cond = COND_EXEC_TEST (x);
3923 x = COND_EXEC_CODE (x);
3924 goto retry;
3925
3926 case PHI:
3927 /* We _do_not_ want to scan operands of phi nodes. Operands of
3928 a phi function are evaluated only when control reaches this
3929 block along a particular edge. Therefore, regs that appear
3930 as arguments to phi should not be added to the global live at
3931 start. */
3932 return;
3933
3934 default:
3935 break;
3936 }
3937
3938 /* Recursively scan the operands of this expression. */
3939
3940 {
3941 const char * const fmt = GET_RTX_FORMAT (code);
3942 int i;
3943
3944 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3945 {
3946 if (fmt[i] == 'e')
3947 {
3948 /* Tail recursive case: save a function call level. */
3949 if (i == 0)
3950 {
3951 x = XEXP (x, 0);
3952 goto retry;
3953 }
3954 mark_used_regs (pbi, XEXP (x, i), cond, insn);
3955 }
3956 else if (fmt[i] == 'E')
3957 {
3958 int j;
3959 for (j = 0; j < XVECLEN (x, i); j++)
3960 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
3961 }
3962 }
3963 }
3964 }
3965 \f
3966 #ifdef AUTO_INC_DEC
3967
3968 static int
3969 try_pre_increment_1 (pbi, insn)
3970 struct propagate_block_info *pbi;
3971 rtx insn;
3972 {
3973 /* Find the next use of this reg. If in same basic block,
3974 make it do pre-increment or pre-decrement if appropriate. */
3975 rtx x = single_set (insn);
3976 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
3977 * INTVAL (XEXP (SET_SRC (x), 1)));
3978 int regno = REGNO (SET_DEST (x));
3979 rtx y = pbi->reg_next_use[regno];
3980 if (y != 0
3981 && SET_DEST (x) != stack_pointer_rtx
3982 && BLOCK_NUM (y) == BLOCK_NUM (insn)
3983 /* Don't do this if the reg dies, or gets set in y; a standard addressing
3984 mode would be better. */
3985 && ! dead_or_set_p (y, SET_DEST (x))
3986 && try_pre_increment (y, SET_DEST (x), amount))
3987 {
3988 /* We have found a suitable auto-increment and already changed
3989 insn Y to do it. So flush this increment instruction. */
3990 propagate_block_delete_insn (insn);
3991
3992 /* Count a reference to this reg for the increment insn we are
3993 deleting. When a reg is incremented, spilling it is worse,
3994 so we want to make that less likely. */
3995 if (regno >= FIRST_PSEUDO_REGISTER)
3996 {
3997 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3998 REG_N_SETS (regno)++;
3999 }
4000
4001 /* Flush any remembered memories depending on the value of
4002 the incremented register. */
4003 invalidate_mems_from_set (pbi, SET_DEST (x));
4004
4005 return 1;
4006 }
4007 return 0;
4008 }
4009
4010 /* Try to change INSN so that it does pre-increment or pre-decrement
4011 addressing on register REG in order to add AMOUNT to REG.
4012 AMOUNT is negative for pre-decrement.
4013 Returns 1 if the change could be made.
4014 This checks all about the validity of the result of modifying INSN. */
4015
4016 static int
4017 try_pre_increment (insn, reg, amount)
4018 rtx insn, reg;
4019 HOST_WIDE_INT amount;
4020 {
4021 rtx use;
4022
4023 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4024 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4025 int pre_ok = 0;
4026 /* Nonzero if we can try to make a post-increment or post-decrement.
4027 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4028 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4029 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4030 int post_ok = 0;
4031
4032 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4033 int do_post = 0;
4034
4035 /* From the sign of increment, see which possibilities are conceivable
4036 on this target machine. */
4037 if (HAVE_PRE_INCREMENT && amount > 0)
4038 pre_ok = 1;
4039 if (HAVE_POST_INCREMENT && amount > 0)
4040 post_ok = 1;
4041
4042 if (HAVE_PRE_DECREMENT && amount < 0)
4043 pre_ok = 1;
4044 if (HAVE_POST_DECREMENT && amount < 0)
4045 post_ok = 1;
4046
4047 if (! (pre_ok || post_ok))
4048 return 0;
4049
4050 /* It is not safe to add a side effect to a jump insn
4051 because if the incremented register is spilled and must be reloaded
4052 there would be no way to store the incremented value back in memory. */
4053
4054 if (GET_CODE (insn) == JUMP_INSN)
4055 return 0;
4056
4057 use = 0;
4058 if (pre_ok)
4059 use = find_use_as_address (PATTERN (insn), reg, 0);
4060 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4061 {
4062 use = find_use_as_address (PATTERN (insn), reg, -amount);
4063 do_post = 1;
4064 }
4065
4066 if (use == 0 || use == (rtx) (size_t) 1)
4067 return 0;
4068
4069 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4070 return 0;
4071
4072 /* See if this combination of instruction and addressing mode exists. */
4073 if (! validate_change (insn, &XEXP (use, 0),
4074 gen_rtx_fmt_e (amount > 0
4075 ? (do_post ? POST_INC : PRE_INC)
4076 : (do_post ? POST_DEC : PRE_DEC),
4077 Pmode, reg), 0))
4078 return 0;
4079
4080 /* Record that this insn now has an implicit side effect on X. */
4081 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4082 return 1;
4083 }
4084
4085 #endif /* AUTO_INC_DEC */
4086 \f
4087 /* Find the place in the rtx X where REG is used as a memory address.
4088 Return the MEM rtx that so uses it.
4089 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4090 (plus REG (const_int PLUSCONST)).
4091
4092 If such an address does not appear, return 0.
4093 If REG appears more than once, or is used other than in such an address,
4094 return (rtx) 1. */
4095
4096 rtx
4097 find_use_as_address (x, reg, plusconst)
4098 rtx x;
4099 rtx reg;
4100 HOST_WIDE_INT plusconst;
4101 {
4102 enum rtx_code code = GET_CODE (x);
4103 const char * const fmt = GET_RTX_FORMAT (code);
4104 int i;
4105 rtx value = 0;
4106 rtx tem;
4107
4108 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4109 return x;
4110
4111 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4112 && XEXP (XEXP (x, 0), 0) == reg
4113 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4114 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4115 return x;
4116
4117 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4118 {
4119 /* If REG occurs inside a MEM used in a bit-field reference,
4120 that is unacceptable. */
4121 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4122 return (rtx) (size_t) 1;
4123 }
4124
4125 if (x == reg)
4126 return (rtx) (size_t) 1;
4127
4128 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4129 {
4130 if (fmt[i] == 'e')
4131 {
4132 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4133 if (value == 0)
4134 value = tem;
4135 else if (tem != 0)
4136 return (rtx) (size_t) 1;
4137 }
4138 else if (fmt[i] == 'E')
4139 {
4140 int j;
4141 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4142 {
4143 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4144 if (value == 0)
4145 value = tem;
4146 else if (tem != 0)
4147 return (rtx) (size_t) 1;
4148 }
4149 }
4150 }
4151
4152 return value;
4153 }
4154 \f
4155 /* Write information about registers and basic blocks into FILE.
4156 This is part of making a debugging dump. */
4157
4158 void
4159 dump_regset (r, outf)
4160 regset r;
4161 FILE *outf;
4162 {
4163 int i;
4164 if (r == NULL)
4165 {
4166 fputs (" (nil)", outf);
4167 return;
4168 }
4169
4170 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4171 {
4172 fprintf (outf, " %d", i);
4173 if (i < FIRST_PSEUDO_REGISTER)
4174 fprintf (outf, " [%s]",
4175 reg_names[i]);
4176 });
4177 }
4178
4179 /* Print a human-reaable representation of R on the standard error
4180 stream. This function is designed to be used from within the
4181 debugger. */
4182
4183 void
4184 debug_regset (r)
4185 regset r;
4186 {
4187 dump_regset (r, stderr);
4188 putc ('\n', stderr);
4189 }
4190
4191 /* Recompute register set/reference counts immediately prior to register
4192 allocation.
4193
4194 This avoids problems with set/reference counts changing to/from values
4195 which have special meanings to the register allocators.
4196
4197 Additionally, the reference counts are the primary component used by the
4198 register allocators to prioritize pseudos for allocation to hard regs.
4199 More accurate reference counts generally lead to better register allocation.
4200
4201 F is the first insn to be scanned.
4202
4203 LOOP_STEP denotes how much loop_depth should be incremented per
4204 loop nesting level in order to increase the ref count more for
4205 references in a loop.
4206
4207 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4208 possibly other information which is used by the register allocators. */
4209
4210 void
4211 recompute_reg_usage (f, loop_step)
4212 rtx f ATTRIBUTE_UNUSED;
4213 int loop_step ATTRIBUTE_UNUSED;
4214 {
4215 allocate_reg_life_data ();
4216 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4217 }
4218
4219 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4220 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4221 of the number of registers that died. */
4222
4223 int
4224 count_or_remove_death_notes (blocks, kill)
4225 sbitmap blocks;
4226 int kill;
4227 {
4228 int count = 0;
4229 basic_block bb;
4230
4231 FOR_EACH_BB_REVERSE (bb)
4232 {
4233 rtx insn;
4234
4235 if (blocks && ! TEST_BIT (blocks, bb->index))
4236 continue;
4237
4238 for (insn = bb->head;; insn = NEXT_INSN (insn))
4239 {
4240 if (INSN_P (insn))
4241 {
4242 rtx *pprev = &REG_NOTES (insn);
4243 rtx link = *pprev;
4244
4245 while (link)
4246 {
4247 switch (REG_NOTE_KIND (link))
4248 {
4249 case REG_DEAD:
4250 if (GET_CODE (XEXP (link, 0)) == REG)
4251 {
4252 rtx reg = XEXP (link, 0);
4253 int n;
4254
4255 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4256 n = 1;
4257 else
4258 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4259 count += n;
4260 }
4261 /* Fall through. */
4262
4263 case REG_UNUSED:
4264 if (kill)
4265 {
4266 rtx next = XEXP (link, 1);
4267 free_EXPR_LIST_node (link);
4268 *pprev = link = next;
4269 break;
4270 }
4271 /* Fall through. */
4272
4273 default:
4274 pprev = &XEXP (link, 1);
4275 link = *pprev;
4276 break;
4277 }
4278 }
4279 }
4280
4281 if (insn == bb->end)
4282 break;
4283 }
4284 }
4285
4286 return count;
4287 }
4288 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4289 if blocks is NULL. */
4290
4291 static void
4292 clear_log_links (blocks)
4293 sbitmap blocks;
4294 {
4295 rtx insn;
4296 int i;
4297
4298 if (!blocks)
4299 {
4300 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4301 if (INSN_P (insn))
4302 free_INSN_LIST_list (&LOG_LINKS (insn));
4303 }
4304 else
4305 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4306 {
4307 basic_block bb = BASIC_BLOCK (i);
4308
4309 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4310 insn = NEXT_INSN (insn))
4311 if (INSN_P (insn))
4312 free_INSN_LIST_list (&LOG_LINKS (insn));
4313 });
4314 }
4315
4316 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4317 correspond to the hard registers, if any, set in that map. This
4318 could be done far more efficiently by having all sorts of special-cases
4319 with moving single words, but probably isn't worth the trouble. */
4320
4321 void
4322 reg_set_to_hard_reg_set (to, from)
4323 HARD_REG_SET *to;
4324 bitmap from;
4325 {
4326 int i;
4327
4328 EXECUTE_IF_SET_IN_BITMAP
4329 (from, 0, i,
4330 {
4331 if (i >= FIRST_PSEUDO_REGISTER)
4332 return;
4333 SET_HARD_REG_BIT (*to, i);
4334 });
4335 }