emit-rtl.c (last_call_insn, [...]): New functions.
[gcc.git] / gcc / flow.c
1 /* Data flow analysis for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the data flow analysis pass of the compiler. It
23 computes data flow information which tells combine_instructions
24 which insns to consider combining and controls register allocation.
25
26 Additional data flow information that is too bulky to record is
27 generated during the analysis, and is used at that time to create
28 autoincrement and autodecrement addressing.
29
30 The first step is dividing the function into basic blocks.
31 find_basic_blocks does this. Then life_analysis determines
32 where each register is live and where it is dead.
33
34 ** find_basic_blocks **
35
36 find_basic_blocks divides the current function's rtl into basic
37 blocks and constructs the CFG. The blocks are recorded in the
38 basic_block_info array; the CFG exists in the edge structures
39 referenced by the blocks.
40
41 find_basic_blocks also finds any unreachable loops and deletes them.
42
43 ** life_analysis **
44
45 life_analysis is called immediately after find_basic_blocks.
46 It uses the basic block information to determine where each
47 hard or pseudo register is live.
48
49 ** live-register info **
50
51 The information about where each register is live is in two parts:
52 the REG_NOTES of insns, and the vector basic_block->global_live_at_start.
53
54 basic_block->global_live_at_start has an element for each basic
55 block, and the element is a bit-vector with a bit for each hard or
56 pseudo register. The bit is 1 if the register is live at the
57 beginning of the basic block.
58
59 Two types of elements can be added to an insn's REG_NOTES.
60 A REG_DEAD note is added to an insn's REG_NOTES for any register
61 that meets both of two conditions: The value in the register is not
62 needed in subsequent insns and the insn does not replace the value in
63 the register (in the case of multi-word hard registers, the value in
64 each register must be replaced by the insn to avoid a REG_DEAD note).
65
66 In the vast majority of cases, an object in a REG_DEAD note will be
67 used somewhere in the insn. The (rare) exception to this is if an
68 insn uses a multi-word hard register and only some of the registers are
69 needed in subsequent insns. In that case, REG_DEAD notes will be
70 provided for those hard registers that are not subsequently needed.
71 Partial REG_DEAD notes of this type do not occur when an insn sets
72 only some of the hard registers used in such a multi-word operand;
73 omitting REG_DEAD notes for objects stored in an insn is optional and
74 the desire to do so does not justify the complexity of the partial
75 REG_DEAD notes.
76
77 REG_UNUSED notes are added for each register that is set by the insn
78 but is unused subsequently (if every register set by the insn is unused
79 and the insn does not reference memory or have some other side-effect,
80 the insn is deleted instead). If only part of a multi-word hard
81 register is used in a subsequent insn, REG_UNUSED notes are made for
82 the parts that will not be used.
83
84 To determine which registers are live after any insn, one can
85 start from the beginning of the basic block and scan insns, noting
86 which registers are set by each insn and which die there.
87
88 ** Other actions of life_analysis **
89
90 life_analysis sets up the LOG_LINKS fields of insns because the
91 information needed to do so is readily available.
92
93 life_analysis deletes insns whose only effect is to store a value
94 that is never used.
95
96 life_analysis notices cases where a reference to a register as
97 a memory address can be combined with a preceding or following
98 incrementation or decrementation of the register. The separate
99 instruction to increment or decrement is deleted and the address
100 is changed to a POST_INC or similar rtx.
101
102 Each time an incrementing or decrementing address is created,
103 a REG_INC element is added to the insn's REG_NOTES list.
104
105 life_analysis fills in certain vectors containing information about
106 register usage: REG_N_REFS, REG_N_DEATHS, REG_N_SETS, REG_LIVE_LENGTH,
107 REG_N_CALLS_CROSSED and REG_BASIC_BLOCK.
108
109 life_analysis sets current_function_sp_is_unchanging if the function
110 doesn't modify the stack pointer. */
111
112 /* TODO:
113
114 Split out from life_analysis:
115 - local property discovery (bb->local_live, bb->local_set)
116 - global property computation
117 - log links creation
118 - pre/post modify transformation
119 */
120 \f
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "tm.h"
125 #include "tree.h"
126 #include "rtl.h"
127 #include "tm_p.h"
128 #include "hard-reg-set.h"
129 #include "basic-block.h"
130 #include "insn-config.h"
131 #include "regs.h"
132 #include "flags.h"
133 #include "output.h"
134 #include "function.h"
135 #include "except.h"
136 #include "toplev.h"
137 #include "recog.h"
138 #include "expr.h"
139 #include "ssa.h"
140 #include "timevar.h"
141
142 #include "obstack.h"
143 #include "splay-tree.h"
144
145 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
146 the stack pointer does not matter. The value is tested only in
147 functions that have frame pointers.
148 No definition is equivalent to always zero. */
149 #ifndef EXIT_IGNORE_STACK
150 #define EXIT_IGNORE_STACK 0
151 #endif
152
153 #ifndef HAVE_epilogue
154 #define HAVE_epilogue 0
155 #endif
156 #ifndef HAVE_prologue
157 #define HAVE_prologue 0
158 #endif
159 #ifndef HAVE_sibcall_epilogue
160 #define HAVE_sibcall_epilogue 0
161 #endif
162
163 #ifndef LOCAL_REGNO
164 #define LOCAL_REGNO(REGNO) 0
165 #endif
166 #ifndef EPILOGUE_USES
167 #define EPILOGUE_USES(REGNO) 0
168 #endif
169 #ifndef EH_USES
170 #define EH_USES(REGNO) 0
171 #endif
172
173 #ifdef HAVE_conditional_execution
174 #ifndef REVERSE_CONDEXEC_PREDICATES_P
175 #define REVERSE_CONDEXEC_PREDICATES_P(x, y) ((x) == reverse_condition (y))
176 #endif
177 #endif
178
179 /* Nonzero if the second flow pass has completed. */
180 int flow2_completed;
181
182 /* Maximum register number used in this function, plus one. */
183
184 int max_regno;
185
186 /* Indexed by n, giving various register information */
187
188 varray_type reg_n_info;
189
190 /* Size of a regset for the current function,
191 in (1) bytes and (2) elements. */
192
193 int regset_bytes;
194 int regset_size;
195
196 /* Regset of regs live when calls to `setjmp'-like functions happen. */
197 /* ??? Does this exist only for the setjmp-clobbered warning message? */
198
199 regset regs_live_at_setjmp;
200
201 /* List made of EXPR_LIST rtx's which gives pairs of pseudo registers
202 that have to go in the same hard reg.
203 The first two regs in the list are a pair, and the next two
204 are another pair, etc. */
205 rtx regs_may_share;
206
207 /* Callback that determines if it's ok for a function to have no
208 noreturn attribute. */
209 int (*lang_missing_noreturn_ok_p) PARAMS ((tree));
210
211 /* Set of registers that may be eliminable. These are handled specially
212 in updating regs_ever_live. */
213
214 static HARD_REG_SET elim_reg_set;
215
216 /* Holds information for tracking conditional register life information. */
217 struct reg_cond_life_info
218 {
219 /* A boolean expression of conditions under which a register is dead. */
220 rtx condition;
221 /* Conditions under which a register is dead at the basic block end. */
222 rtx orig_condition;
223
224 /* A boolean expression of conditions under which a register has been
225 stored into. */
226 rtx stores;
227
228 /* ??? Could store mask of bytes that are dead, so that we could finally
229 track lifetimes of multi-word registers accessed via subregs. */
230 };
231
232 /* For use in communicating between propagate_block and its subroutines.
233 Holds all information needed to compute life and def-use information. */
234
235 struct propagate_block_info
236 {
237 /* The basic block we're considering. */
238 basic_block bb;
239
240 /* Bit N is set if register N is conditionally or unconditionally live. */
241 regset reg_live;
242
243 /* Bit N is set if register N is set this insn. */
244 regset new_set;
245
246 /* Element N is the next insn that uses (hard or pseudo) register N
247 within the current basic block; or zero, if there is no such insn. */
248 rtx *reg_next_use;
249
250 /* Contains a list of all the MEMs we are tracking for dead store
251 elimination. */
252 rtx mem_set_list;
253
254 /* If non-null, record the set of registers set unconditionally in the
255 basic block. */
256 regset local_set;
257
258 /* If non-null, record the set of registers set conditionally in the
259 basic block. */
260 regset cond_local_set;
261
262 #ifdef HAVE_conditional_execution
263 /* Indexed by register number, holds a reg_cond_life_info for each
264 register that is not unconditionally live or dead. */
265 splay_tree reg_cond_dead;
266
267 /* Bit N is set if register N is in an expression in reg_cond_dead. */
268 regset reg_cond_reg;
269 #endif
270
271 /* The length of mem_set_list. */
272 int mem_set_list_len;
273
274 /* Nonzero if the value of CC0 is live. */
275 int cc0_live;
276
277 /* Flags controlling the set of information propagate_block collects. */
278 int flags;
279 };
280
281 /* Number of dead insns removed. */
282 static int ndead;
283
284 /* Maximum length of pbi->mem_set_list before we start dropping
285 new elements on the floor. */
286 #define MAX_MEM_SET_LIST_LEN 100
287
288 /* Forward declarations */
289 static int verify_wide_reg_1 PARAMS ((rtx *, void *));
290 static void verify_wide_reg PARAMS ((int, basic_block));
291 static void verify_local_live_at_start PARAMS ((regset, basic_block));
292 static void notice_stack_pointer_modification_1 PARAMS ((rtx, rtx, void *));
293 static void notice_stack_pointer_modification PARAMS ((rtx));
294 static void mark_reg PARAMS ((rtx, void *));
295 static void mark_regs_live_at_end PARAMS ((regset));
296 static int set_phi_alternative_reg PARAMS ((rtx, int, int, void *));
297 static void calculate_global_regs_live PARAMS ((sbitmap, sbitmap, int));
298 static void propagate_block_delete_insn PARAMS ((rtx));
299 static rtx propagate_block_delete_libcall PARAMS ((rtx, rtx));
300 static int insn_dead_p PARAMS ((struct propagate_block_info *,
301 rtx, int, rtx));
302 static int libcall_dead_p PARAMS ((struct propagate_block_info *,
303 rtx, rtx));
304 static void mark_set_regs PARAMS ((struct propagate_block_info *,
305 rtx, rtx));
306 static void mark_set_1 PARAMS ((struct propagate_block_info *,
307 enum rtx_code, rtx, rtx,
308 rtx, int));
309 static int find_regno_partial PARAMS ((rtx *, void *));
310
311 #ifdef HAVE_conditional_execution
312 static int mark_regno_cond_dead PARAMS ((struct propagate_block_info *,
313 int, rtx));
314 static void free_reg_cond_life_info PARAMS ((splay_tree_value));
315 static int flush_reg_cond_reg_1 PARAMS ((splay_tree_node, void *));
316 static void flush_reg_cond_reg PARAMS ((struct propagate_block_info *,
317 int));
318 static rtx elim_reg_cond PARAMS ((rtx, unsigned int));
319 static rtx ior_reg_cond PARAMS ((rtx, rtx, int));
320 static rtx not_reg_cond PARAMS ((rtx));
321 static rtx and_reg_cond PARAMS ((rtx, rtx, int));
322 #endif
323 #ifdef AUTO_INC_DEC
324 static void attempt_auto_inc PARAMS ((struct propagate_block_info *,
325 rtx, rtx, rtx, rtx, rtx));
326 static void find_auto_inc PARAMS ((struct propagate_block_info *,
327 rtx, rtx));
328 static int try_pre_increment_1 PARAMS ((struct propagate_block_info *,
329 rtx));
330 static int try_pre_increment PARAMS ((rtx, rtx, HOST_WIDE_INT));
331 #endif
332 static void mark_used_reg PARAMS ((struct propagate_block_info *,
333 rtx, rtx, rtx));
334 static void mark_used_regs PARAMS ((struct propagate_block_info *,
335 rtx, rtx, rtx));
336 void dump_flow_info PARAMS ((FILE *));
337 void debug_flow_info PARAMS ((void));
338 static void add_to_mem_set_list PARAMS ((struct propagate_block_info *,
339 rtx));
340 static int invalidate_mems_from_autoinc PARAMS ((rtx *, void *));
341 static void invalidate_mems_from_set PARAMS ((struct propagate_block_info *,
342 rtx));
343 static void clear_log_links PARAMS ((sbitmap));
344 \f
345
346 void
347 check_function_return_warnings ()
348 {
349 if (warn_missing_noreturn
350 && !TREE_THIS_VOLATILE (cfun->decl)
351 && EXIT_BLOCK_PTR->pred == NULL
352 && (lang_missing_noreturn_ok_p
353 && !lang_missing_noreturn_ok_p (cfun->decl)))
354 warning ("function might be possible candidate for attribute `noreturn'");
355
356 /* If we have a path to EXIT, then we do return. */
357 if (TREE_THIS_VOLATILE (cfun->decl)
358 && EXIT_BLOCK_PTR->pred != NULL)
359 warning ("`noreturn' function does return");
360
361 /* If the clobber_return_insn appears in some basic block, then we
362 do reach the end without returning a value. */
363 else if (warn_return_type
364 && cfun->x_clobber_return_insn != NULL
365 && EXIT_BLOCK_PTR->pred != NULL)
366 {
367 int max_uid = get_max_uid ();
368
369 /* If clobber_return_insn was excised by jump1, then renumber_insns
370 can make max_uid smaller than the number still recorded in our rtx.
371 That's fine, since this is a quick way of verifying that the insn
372 is no longer in the chain. */
373 if (INSN_UID (cfun->x_clobber_return_insn) < max_uid)
374 {
375 rtx insn;
376
377 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
378 if (insn == cfun->x_clobber_return_insn)
379 {
380 warning ("control reaches end of non-void function");
381 break;
382 }
383 }
384 }
385 }
386 \f
387 /* Return the INSN immediately following the NOTE_INSN_BASIC_BLOCK
388 note associated with the BLOCK. */
389
390 rtx
391 first_insn_after_basic_block_note (block)
392 basic_block block;
393 {
394 rtx insn;
395
396 /* Get the first instruction in the block. */
397 insn = block->head;
398
399 if (insn == NULL_RTX)
400 return NULL_RTX;
401 if (GET_CODE (insn) == CODE_LABEL)
402 insn = NEXT_INSN (insn);
403 if (!NOTE_INSN_BASIC_BLOCK_P (insn))
404 abort ();
405
406 return NEXT_INSN (insn);
407 }
408 \f
409 /* Perform data flow analysis.
410 F is the first insn of the function; FLAGS is a set of PROP_* flags
411 to be used in accumulating flow info. */
412
413 void
414 life_analysis (f, file, flags)
415 rtx f;
416 FILE *file;
417 int flags;
418 {
419 #ifdef ELIMINABLE_REGS
420 int i;
421 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
422 #endif
423
424 /* Record which registers will be eliminated. We use this in
425 mark_used_regs. */
426
427 CLEAR_HARD_REG_SET (elim_reg_set);
428
429 #ifdef ELIMINABLE_REGS
430 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
431 SET_HARD_REG_BIT (elim_reg_set, eliminables[i].from);
432 #else
433 SET_HARD_REG_BIT (elim_reg_set, FRAME_POINTER_REGNUM);
434 #endif
435
436
437 #ifdef CANNOT_CHANGE_MODE_CLASS
438 if (flags & PROP_REG_INFO)
439 bitmap_initialize (&subregs_of_mode, 1);
440 #endif
441
442 if (! optimize)
443 flags &= ~(PROP_LOG_LINKS | PROP_AUTOINC | PROP_ALLOW_CFG_CHANGES);
444
445 /* The post-reload life analysis have (on a global basis) the same
446 registers live as was computed by reload itself. elimination
447 Otherwise offsets and such may be incorrect.
448
449 Reload will make some registers as live even though they do not
450 appear in the rtl.
451
452 We don't want to create new auto-incs after reload, since they
453 are unlikely to be useful and can cause problems with shared
454 stack slots. */
455 if (reload_completed)
456 flags &= ~(PROP_REG_INFO | PROP_AUTOINC);
457
458 /* We want alias analysis information for local dead store elimination. */
459 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
460 init_alias_analysis ();
461
462 /* Always remove no-op moves. Do this before other processing so
463 that we don't have to keep re-scanning them. */
464 delete_noop_moves (f);
465
466 /* Some targets can emit simpler epilogues if they know that sp was
467 not ever modified during the function. After reload, of course,
468 we've already emitted the epilogue so there's no sense searching. */
469 if (! reload_completed)
470 notice_stack_pointer_modification (f);
471
472 /* Allocate and zero out data structures that will record the
473 data from lifetime analysis. */
474 allocate_reg_life_data ();
475 allocate_bb_life_data ();
476
477 /* Find the set of registers live on function exit. */
478 mark_regs_live_at_end (EXIT_BLOCK_PTR->global_live_at_start);
479
480 /* "Update" life info from zero. It'd be nice to begin the
481 relaxation with just the exit and noreturn blocks, but that set
482 is not immediately handy. */
483
484 if (flags & PROP_REG_INFO)
485 memset (regs_ever_live, 0, sizeof (regs_ever_live));
486 update_life_info (NULL, UPDATE_LIFE_GLOBAL, flags);
487
488 /* Clean up. */
489 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
490 end_alias_analysis ();
491
492 if (file)
493 dump_flow_info (file);
494
495 free_basic_block_vars (1);
496
497 /* Removing dead insns should've made jumptables really dead. */
498 delete_dead_jumptables ();
499 }
500
501 /* A subroutine of verify_wide_reg, called through for_each_rtx.
502 Search for REGNO. If found, return 2 if it is not wider than
503 word_mode. */
504
505 static int
506 verify_wide_reg_1 (px, pregno)
507 rtx *px;
508 void *pregno;
509 {
510 rtx x = *px;
511 unsigned int regno = *(int *) pregno;
512
513 if (GET_CODE (x) == REG && REGNO (x) == regno)
514 {
515 if (GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD)
516 return 2;
517 return 1;
518 }
519 return 0;
520 }
521
522 /* A subroutine of verify_local_live_at_start. Search through insns
523 of BB looking for register REGNO. */
524
525 static void
526 verify_wide_reg (regno, bb)
527 int regno;
528 basic_block bb;
529 {
530 rtx head = bb->head, end = bb->end;
531
532 while (1)
533 {
534 if (INSN_P (head))
535 {
536 int r = for_each_rtx (&PATTERN (head), verify_wide_reg_1, &regno);
537 if (r == 1)
538 return;
539 if (r == 2)
540 break;
541 }
542 if (head == end)
543 break;
544 head = NEXT_INSN (head);
545 }
546
547 if (rtl_dump_file)
548 {
549 fprintf (rtl_dump_file, "Register %d died unexpectedly.\n", regno);
550 dump_bb (bb, rtl_dump_file);
551 }
552 abort ();
553 }
554
555 /* A subroutine of update_life_info. Verify that there are no untoward
556 changes in live_at_start during a local update. */
557
558 static void
559 verify_local_live_at_start (new_live_at_start, bb)
560 regset new_live_at_start;
561 basic_block bb;
562 {
563 if (reload_completed)
564 {
565 /* After reload, there are no pseudos, nor subregs of multi-word
566 registers. The regsets should exactly match. */
567 if (! REG_SET_EQUAL_P (new_live_at_start, bb->global_live_at_start))
568 {
569 if (rtl_dump_file)
570 {
571 fprintf (rtl_dump_file,
572 "live_at_start mismatch in bb %d, aborting\nNew:\n",
573 bb->index);
574 debug_bitmap_file (rtl_dump_file, new_live_at_start);
575 fputs ("Old:\n", rtl_dump_file);
576 dump_bb (bb, rtl_dump_file);
577 }
578 abort ();
579 }
580 }
581 else
582 {
583 int i;
584
585 /* Find the set of changed registers. */
586 XOR_REG_SET (new_live_at_start, bb->global_live_at_start);
587
588 EXECUTE_IF_SET_IN_REG_SET (new_live_at_start, 0, i,
589 {
590 /* No registers should die. */
591 if (REGNO_REG_SET_P (bb->global_live_at_start, i))
592 {
593 if (rtl_dump_file)
594 {
595 fprintf (rtl_dump_file,
596 "Register %d died unexpectedly.\n", i);
597 dump_bb (bb, rtl_dump_file);
598 }
599 abort ();
600 }
601
602 /* Verify that the now-live register is wider than word_mode. */
603 verify_wide_reg (i, bb);
604 });
605 }
606 }
607
608 /* Updates life information starting with the basic blocks set in BLOCKS.
609 If BLOCKS is null, consider it to be the universal set.
610
611 If EXTENT is UPDATE_LIFE_LOCAL, such as after splitting or peepholeing,
612 we are only expecting local modifications to basic blocks. If we find
613 extra registers live at the beginning of a block, then we either killed
614 useful data, or we have a broken split that wants data not provided.
615 If we find registers removed from live_at_start, that means we have
616 a broken peephole that is killing a register it shouldn't.
617
618 ??? This is not true in one situation -- when a pre-reload splitter
619 generates subregs of a multi-word pseudo, current life analysis will
620 lose the kill. So we _can_ have a pseudo go live. How irritating.
621
622 Including PROP_REG_INFO does not properly refresh regs_ever_live
623 unless the caller resets it to zero. */
624
625 int
626 update_life_info (blocks, extent, prop_flags)
627 sbitmap blocks;
628 enum update_life_extent extent;
629 int prop_flags;
630 {
631 regset tmp;
632 regset_head tmp_head;
633 int i;
634 int stabilized_prop_flags = prop_flags;
635 basic_block bb;
636
637 tmp = INITIALIZE_REG_SET (tmp_head);
638 ndead = 0;
639
640 timevar_push ((extent == UPDATE_LIFE_LOCAL || blocks)
641 ? TV_LIFE_UPDATE : TV_LIFE);
642
643 /* Changes to the CFG are only allowed when
644 doing a global update for the entire CFG. */
645 if ((prop_flags & PROP_ALLOW_CFG_CHANGES)
646 && (extent == UPDATE_LIFE_LOCAL || blocks))
647 abort ();
648
649 /* For a global update, we go through the relaxation process again. */
650 if (extent != UPDATE_LIFE_LOCAL)
651 {
652 for ( ; ; )
653 {
654 int changed = 0;
655
656 calculate_global_regs_live (blocks, blocks,
657 prop_flags & (PROP_SCAN_DEAD_CODE
658 | PROP_SCAN_DEAD_STORES
659 | PROP_ALLOW_CFG_CHANGES));
660
661 if ((prop_flags & (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
662 != (PROP_KILL_DEAD_CODE | PROP_ALLOW_CFG_CHANGES))
663 break;
664
665 /* Removing dead code may allow the CFG to be simplified which
666 in turn may allow for further dead code detection / removal. */
667 FOR_EACH_BB_REVERSE (bb)
668 {
669 COPY_REG_SET (tmp, bb->global_live_at_end);
670 changed |= propagate_block (bb, tmp, NULL, NULL,
671 prop_flags & (PROP_SCAN_DEAD_CODE
672 | PROP_SCAN_DEAD_STORES
673 | PROP_KILL_DEAD_CODE));
674 }
675
676 /* Don't pass PROP_SCAN_DEAD_CODE or PROP_KILL_DEAD_CODE to
677 subsequent propagate_block calls, since removing or acting as
678 removing dead code can affect global register liveness, which
679 is supposed to be finalized for this call after this loop. */
680 stabilized_prop_flags
681 &= ~(PROP_SCAN_DEAD_CODE | PROP_SCAN_DEAD_STORES
682 | PROP_KILL_DEAD_CODE);
683
684 if (! changed)
685 break;
686
687 /* We repeat regardless of what cleanup_cfg says. If there were
688 instructions deleted above, that might have been only a
689 partial improvement (see MAX_MEM_SET_LIST_LEN usage).
690 Further improvement may be possible. */
691 cleanup_cfg (CLEANUP_EXPENSIVE);
692
693 /* Zap the life information from the last round. If we don't
694 do this, we can wind up with registers that no longer appear
695 in the code being marked live at entry, which twiggs bogus
696 warnings from regno_uninitialized. */
697 FOR_EACH_BB (bb)
698 {
699 CLEAR_REG_SET (bb->global_live_at_start);
700 CLEAR_REG_SET (bb->global_live_at_end);
701 }
702 }
703
704 /* If asked, remove notes from the blocks we'll update. */
705 if (extent == UPDATE_LIFE_GLOBAL_RM_NOTES)
706 count_or_remove_death_notes (blocks, 1);
707 }
708
709 /* Clear log links in case we are asked to (re)compute them. */
710 if (prop_flags & PROP_LOG_LINKS)
711 clear_log_links (blocks);
712
713 if (blocks)
714 {
715 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
716 {
717 bb = BASIC_BLOCK (i);
718
719 COPY_REG_SET (tmp, bb->global_live_at_end);
720 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
721
722 if (extent == UPDATE_LIFE_LOCAL)
723 verify_local_live_at_start (tmp, bb);
724 });
725 }
726 else
727 {
728 FOR_EACH_BB_REVERSE (bb)
729 {
730 COPY_REG_SET (tmp, bb->global_live_at_end);
731
732 propagate_block (bb, tmp, NULL, NULL, stabilized_prop_flags);
733
734 if (extent == UPDATE_LIFE_LOCAL)
735 verify_local_live_at_start (tmp, bb);
736 }
737 }
738
739 FREE_REG_SET (tmp);
740
741 if (prop_flags & PROP_REG_INFO)
742 {
743 /* The only pseudos that are live at the beginning of the function
744 are those that were not set anywhere in the function. local-alloc
745 doesn't know how to handle these correctly, so mark them as not
746 local to any one basic block. */
747 EXECUTE_IF_SET_IN_REG_SET (ENTRY_BLOCK_PTR->global_live_at_end,
748 FIRST_PSEUDO_REGISTER, i,
749 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
750
751 /* We have a problem with any pseudoreg that lives across the setjmp.
752 ANSI says that if a user variable does not change in value between
753 the setjmp and the longjmp, then the longjmp preserves it. This
754 includes longjmp from a place where the pseudo appears dead.
755 (In principle, the value still exists if it is in scope.)
756 If the pseudo goes in a hard reg, some other value may occupy
757 that hard reg where this pseudo is dead, thus clobbering the pseudo.
758 Conclusion: such a pseudo must not go in a hard reg. */
759 EXECUTE_IF_SET_IN_REG_SET (regs_live_at_setjmp,
760 FIRST_PSEUDO_REGISTER, i,
761 {
762 if (regno_reg_rtx[i] != 0)
763 {
764 REG_LIVE_LENGTH (i) = -1;
765 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
766 }
767 });
768 }
769 timevar_pop ((extent == UPDATE_LIFE_LOCAL || blocks)
770 ? TV_LIFE_UPDATE : TV_LIFE);
771 if (ndead && rtl_dump_file)
772 fprintf (rtl_dump_file, "deleted %i dead insns\n", ndead);
773 return ndead;
774 }
775
776 /* Update life information in all blocks where BB_DIRTY is set. */
777
778 int
779 update_life_info_in_dirty_blocks (extent, prop_flags)
780 enum update_life_extent extent;
781 int prop_flags;
782 {
783 sbitmap update_life_blocks = sbitmap_alloc (last_basic_block);
784 int n = 0;
785 basic_block bb;
786 int retval = 0;
787
788 sbitmap_zero (update_life_blocks);
789 FOR_EACH_BB (bb)
790 {
791 if (extent == UPDATE_LIFE_LOCAL)
792 {
793 if (bb->flags & BB_DIRTY)
794 {
795 SET_BIT (update_life_blocks, bb->index);
796 n++;
797 }
798 }
799 else
800 {
801 /* ??? Bootstrap with -march=pentium4 fails to terminate
802 with only a partial life update. */
803 SET_BIT (update_life_blocks, bb->index);
804 if (bb->flags & BB_DIRTY)
805 n++;
806 }
807 }
808
809 if (n)
810 retval = update_life_info (update_life_blocks, extent, prop_flags);
811
812 sbitmap_free (update_life_blocks);
813 return retval;
814 }
815
816 /* Free the variables allocated by find_basic_blocks.
817
818 KEEP_HEAD_END_P is nonzero if basic_block_info is not to be freed. */
819
820 void
821 free_basic_block_vars (keep_head_end_p)
822 int keep_head_end_p;
823 {
824 if (! keep_head_end_p)
825 {
826 if (basic_block_info)
827 {
828 clear_edges ();
829 VARRAY_FREE (basic_block_info);
830 }
831 n_basic_blocks = 0;
832 last_basic_block = 0;
833
834 ENTRY_BLOCK_PTR->aux = NULL;
835 ENTRY_BLOCK_PTR->global_live_at_end = NULL;
836 EXIT_BLOCK_PTR->aux = NULL;
837 EXIT_BLOCK_PTR->global_live_at_start = NULL;
838 }
839 }
840
841 /* Delete any insns that copy a register to itself. */
842
843 int
844 delete_noop_moves (f)
845 rtx f ATTRIBUTE_UNUSED;
846 {
847 rtx insn, next;
848 basic_block bb;
849 int nnoops = 0;
850
851 FOR_EACH_BB (bb)
852 {
853 for (insn = bb->head; insn != NEXT_INSN (bb->end); insn = next)
854 {
855 next = NEXT_INSN (insn);
856 if (INSN_P (insn) && noop_move_p (insn))
857 {
858 rtx note;
859
860 /* If we're about to remove the first insn of a libcall
861 then move the libcall note to the next real insn and
862 update the retval note. */
863 if ((note = find_reg_note (insn, REG_LIBCALL, NULL_RTX))
864 && XEXP (note, 0) != insn)
865 {
866 rtx new_libcall_insn = next_real_insn (insn);
867 rtx retval_note = find_reg_note (XEXP (note, 0),
868 REG_RETVAL, NULL_RTX);
869 REG_NOTES (new_libcall_insn)
870 = gen_rtx_INSN_LIST (REG_LIBCALL, XEXP (note, 0),
871 REG_NOTES (new_libcall_insn));
872 XEXP (retval_note, 0) = new_libcall_insn;
873 }
874
875 delete_insn_and_edges (insn);
876 nnoops++;
877 }
878 }
879 }
880 if (nnoops && rtl_dump_file)
881 fprintf (rtl_dump_file, "deleted %i noop moves", nnoops);
882 return nnoops;
883 }
884
885 /* Delete any jump tables never referenced. We can't delete them at the
886 time of removing tablejump insn as they are referenced by the preceding
887 insns computing the destination, so we delay deleting and garbagecollect
888 them once life information is computed. */
889 void
890 delete_dead_jumptables ()
891 {
892 rtx insn, next;
893 for (insn = get_insns (); insn; insn = next)
894 {
895 next = NEXT_INSN (insn);
896 if (GET_CODE (insn) == CODE_LABEL
897 && LABEL_NUSES (insn) == LABEL_PRESERVE_P (insn)
898 && GET_CODE (next) == JUMP_INSN
899 && (GET_CODE (PATTERN (next)) == ADDR_VEC
900 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
901 {
902 if (rtl_dump_file)
903 fprintf (rtl_dump_file, "Dead jumptable %i removed\n", INSN_UID (insn));
904 delete_insn (NEXT_INSN (insn));
905 delete_insn (insn);
906 next = NEXT_INSN (next);
907 }
908 }
909 }
910
911 /* Determine if the stack pointer is constant over the life of the function.
912 Only useful before prologues have been emitted. */
913
914 static void
915 notice_stack_pointer_modification_1 (x, pat, data)
916 rtx x;
917 rtx pat ATTRIBUTE_UNUSED;
918 void *data ATTRIBUTE_UNUSED;
919 {
920 if (x == stack_pointer_rtx
921 /* The stack pointer is only modified indirectly as the result
922 of a push until later in flow. See the comments in rtl.texi
923 regarding Embedded Side-Effects on Addresses. */
924 || (GET_CODE (x) == MEM
925 && GET_RTX_CLASS (GET_CODE (XEXP (x, 0))) == 'a'
926 && XEXP (XEXP (x, 0), 0) == stack_pointer_rtx))
927 current_function_sp_is_unchanging = 0;
928 }
929
930 static void
931 notice_stack_pointer_modification (f)
932 rtx f;
933 {
934 rtx insn;
935
936 /* Assume that the stack pointer is unchanging if alloca hasn't
937 been used. */
938 current_function_sp_is_unchanging = !current_function_calls_alloca;
939 if (! current_function_sp_is_unchanging)
940 return;
941
942 for (insn = f; insn; insn = NEXT_INSN (insn))
943 {
944 if (INSN_P (insn))
945 {
946 /* Check if insn modifies the stack pointer. */
947 note_stores (PATTERN (insn), notice_stack_pointer_modification_1,
948 NULL);
949 if (! current_function_sp_is_unchanging)
950 return;
951 }
952 }
953 }
954
955 /* Mark a register in SET. Hard registers in large modes get all
956 of their component registers set as well. */
957
958 static void
959 mark_reg (reg, xset)
960 rtx reg;
961 void *xset;
962 {
963 regset set = (regset) xset;
964 int regno = REGNO (reg);
965
966 if (GET_MODE (reg) == BLKmode)
967 abort ();
968
969 SET_REGNO_REG_SET (set, regno);
970 if (regno < FIRST_PSEUDO_REGISTER)
971 {
972 int n = HARD_REGNO_NREGS (regno, GET_MODE (reg));
973 while (--n > 0)
974 SET_REGNO_REG_SET (set, regno + n);
975 }
976 }
977
978 /* Mark those regs which are needed at the end of the function as live
979 at the end of the last basic block. */
980
981 static void
982 mark_regs_live_at_end (set)
983 regset set;
984 {
985 unsigned int i;
986
987 /* If exiting needs the right stack value, consider the stack pointer
988 live at the end of the function. */
989 if ((HAVE_epilogue && reload_completed)
990 || ! EXIT_IGNORE_STACK
991 || (! FRAME_POINTER_REQUIRED
992 && ! current_function_calls_alloca
993 && flag_omit_frame_pointer)
994 || current_function_sp_is_unchanging)
995 {
996 SET_REGNO_REG_SET (set, STACK_POINTER_REGNUM);
997 }
998
999 /* Mark the frame pointer if needed at the end of the function. If
1000 we end up eliminating it, it will be removed from the live list
1001 of each basic block by reload. */
1002
1003 if (! reload_completed || frame_pointer_needed)
1004 {
1005 SET_REGNO_REG_SET (set, FRAME_POINTER_REGNUM);
1006 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1007 /* If they are different, also mark the hard frame pointer as live. */
1008 if (! LOCAL_REGNO (HARD_FRAME_POINTER_REGNUM))
1009 SET_REGNO_REG_SET (set, HARD_FRAME_POINTER_REGNUM);
1010 #endif
1011 }
1012
1013 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
1014 /* Many architectures have a GP register even without flag_pic.
1015 Assume the pic register is not in use, or will be handled by
1016 other means, if it is not fixed. */
1017 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1018 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1019 SET_REGNO_REG_SET (set, PIC_OFFSET_TABLE_REGNUM);
1020 #endif
1021
1022 /* Mark all global registers, and all registers used by the epilogue
1023 as being live at the end of the function since they may be
1024 referenced by our caller. */
1025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1026 if (global_regs[i] || EPILOGUE_USES (i))
1027 SET_REGNO_REG_SET (set, i);
1028
1029 if (HAVE_epilogue && reload_completed)
1030 {
1031 /* Mark all call-saved registers that we actually used. */
1032 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1033 if (regs_ever_live[i] && ! LOCAL_REGNO (i)
1034 && ! TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1035 SET_REGNO_REG_SET (set, i);
1036 }
1037
1038 #ifdef EH_RETURN_DATA_REGNO
1039 /* Mark the registers that will contain data for the handler. */
1040 if (reload_completed && current_function_calls_eh_return)
1041 for (i = 0; ; ++i)
1042 {
1043 unsigned regno = EH_RETURN_DATA_REGNO(i);
1044 if (regno == INVALID_REGNUM)
1045 break;
1046 SET_REGNO_REG_SET (set, regno);
1047 }
1048 #endif
1049 #ifdef EH_RETURN_STACKADJ_RTX
1050 if ((! HAVE_epilogue || ! reload_completed)
1051 && current_function_calls_eh_return)
1052 {
1053 rtx tmp = EH_RETURN_STACKADJ_RTX;
1054 if (tmp && REG_P (tmp))
1055 mark_reg (tmp, set);
1056 }
1057 #endif
1058 #ifdef EH_RETURN_HANDLER_RTX
1059 if ((! HAVE_epilogue || ! reload_completed)
1060 && current_function_calls_eh_return)
1061 {
1062 rtx tmp = EH_RETURN_HANDLER_RTX;
1063 if (tmp && REG_P (tmp))
1064 mark_reg (tmp, set);
1065 }
1066 #endif
1067
1068 /* Mark function return value. */
1069 diddle_return_value (mark_reg, set);
1070 }
1071
1072 /* Callback function for for_each_successor_phi. DATA is a regset.
1073 Sets the SRC_REGNO, the regno of the phi alternative for phi node
1074 INSN, in the regset. */
1075
1076 static int
1077 set_phi_alternative_reg (insn, dest_regno, src_regno, data)
1078 rtx insn ATTRIBUTE_UNUSED;
1079 int dest_regno ATTRIBUTE_UNUSED;
1080 int src_regno;
1081 void *data;
1082 {
1083 regset live = (regset) data;
1084 SET_REGNO_REG_SET (live, src_regno);
1085 return 0;
1086 }
1087
1088 /* Propagate global life info around the graph of basic blocks. Begin
1089 considering blocks with their corresponding bit set in BLOCKS_IN.
1090 If BLOCKS_IN is null, consider it the universal set.
1091
1092 BLOCKS_OUT is set for every block that was changed. */
1093
1094 static void
1095 calculate_global_regs_live (blocks_in, blocks_out, flags)
1096 sbitmap blocks_in, blocks_out;
1097 int flags;
1098 {
1099 basic_block *queue, *qhead, *qtail, *qend, bb;
1100 regset tmp, new_live_at_end, invalidated_by_call;
1101 regset_head tmp_head, invalidated_by_call_head;
1102 regset_head new_live_at_end_head;
1103 int i;
1104
1105 /* Some passes used to forget clear aux field of basic block causing
1106 sick behavior here. */
1107 #ifdef ENABLE_CHECKING
1108 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1109 if (bb->aux)
1110 abort ();
1111 #endif
1112
1113 tmp = INITIALIZE_REG_SET (tmp_head);
1114 new_live_at_end = INITIALIZE_REG_SET (new_live_at_end_head);
1115 invalidated_by_call = INITIALIZE_REG_SET (invalidated_by_call_head);
1116
1117 /* Inconveniently, this is only readily available in hard reg set form. */
1118 for (i = 0; i < FIRST_PSEUDO_REGISTER; ++i)
1119 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1120 SET_REGNO_REG_SET (invalidated_by_call, i);
1121
1122 /* Create a worklist. Allocate an extra slot for ENTRY_BLOCK, and one
1123 because the `head == tail' style test for an empty queue doesn't
1124 work with a full queue. */
1125 queue = (basic_block *) xmalloc ((n_basic_blocks + 2) * sizeof (*queue));
1126 qtail = queue;
1127 qhead = qend = queue + n_basic_blocks + 2;
1128
1129 /* Queue the blocks set in the initial mask. Do this in reverse block
1130 number order so that we are more likely for the first round to do
1131 useful work. We use AUX non-null to flag that the block is queued. */
1132 if (blocks_in)
1133 {
1134 FOR_EACH_BB (bb)
1135 if (TEST_BIT (blocks_in, bb->index))
1136 {
1137 *--qhead = bb;
1138 bb->aux = bb;
1139 }
1140 }
1141 else
1142 {
1143 FOR_EACH_BB (bb)
1144 {
1145 *--qhead = bb;
1146 bb->aux = bb;
1147 }
1148 }
1149
1150 /* We clean aux when we remove the initially-enqueued bbs, but we
1151 don't enqueue ENTRY and EXIT initially, so clean them upfront and
1152 unconditionally. */
1153 ENTRY_BLOCK_PTR->aux = EXIT_BLOCK_PTR->aux = NULL;
1154
1155 if (blocks_out)
1156 sbitmap_zero (blocks_out);
1157
1158 /* We work through the queue until there are no more blocks. What
1159 is live at the end of this block is precisely the union of what
1160 is live at the beginning of all its successors. So, we set its
1161 GLOBAL_LIVE_AT_END field based on the GLOBAL_LIVE_AT_START field
1162 for its successors. Then, we compute GLOBAL_LIVE_AT_START for
1163 this block by walking through the instructions in this block in
1164 reverse order and updating as we go. If that changed
1165 GLOBAL_LIVE_AT_START, we add the predecessors of the block to the
1166 queue; they will now need to recalculate GLOBAL_LIVE_AT_END.
1167
1168 We are guaranteed to terminate, because GLOBAL_LIVE_AT_START
1169 never shrinks. If a register appears in GLOBAL_LIVE_AT_START, it
1170 must either be live at the end of the block, or used within the
1171 block. In the latter case, it will certainly never disappear
1172 from GLOBAL_LIVE_AT_START. In the former case, the register
1173 could go away only if it disappeared from GLOBAL_LIVE_AT_START
1174 for one of the successor blocks. By induction, that cannot
1175 occur. */
1176 while (qhead != qtail)
1177 {
1178 int rescan, changed;
1179 basic_block bb;
1180 edge e;
1181
1182 bb = *qhead++;
1183 if (qhead == qend)
1184 qhead = queue;
1185 bb->aux = NULL;
1186
1187 /* Begin by propagating live_at_start from the successor blocks. */
1188 CLEAR_REG_SET (new_live_at_end);
1189
1190 if (bb->succ)
1191 for (e = bb->succ; e; e = e->succ_next)
1192 {
1193 basic_block sb = e->dest;
1194
1195 /* Call-clobbered registers die across exception and
1196 call edges. */
1197 /* ??? Abnormal call edges ignored for the moment, as this gets
1198 confused by sibling call edges, which crashes reg-stack. */
1199 if (e->flags & EDGE_EH)
1200 {
1201 bitmap_operation (tmp, sb->global_live_at_start,
1202 invalidated_by_call, BITMAP_AND_COMPL);
1203 IOR_REG_SET (new_live_at_end, tmp);
1204 }
1205 else
1206 IOR_REG_SET (new_live_at_end, sb->global_live_at_start);
1207
1208 /* If a target saves one register in another (instead of on
1209 the stack) the save register will need to be live for EH. */
1210 if (e->flags & EDGE_EH)
1211 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1212 if (EH_USES (i))
1213 SET_REGNO_REG_SET (new_live_at_end, i);
1214 }
1215 else
1216 {
1217 /* This might be a noreturn function that throws. And
1218 even if it isn't, getting the unwind info right helps
1219 debugging. */
1220 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1221 if (EH_USES (i))
1222 SET_REGNO_REG_SET (new_live_at_end, i);
1223 }
1224
1225 /* The all-important stack pointer must always be live. */
1226 SET_REGNO_REG_SET (new_live_at_end, STACK_POINTER_REGNUM);
1227
1228 /* Before reload, there are a few registers that must be forced
1229 live everywhere -- which might not already be the case for
1230 blocks within infinite loops. */
1231 if (! reload_completed)
1232 {
1233 /* Any reference to any pseudo before reload is a potential
1234 reference of the frame pointer. */
1235 SET_REGNO_REG_SET (new_live_at_end, FRAME_POINTER_REGNUM);
1236
1237 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1238 /* Pseudos with argument area equivalences may require
1239 reloading via the argument pointer. */
1240 if (fixed_regs[ARG_POINTER_REGNUM])
1241 SET_REGNO_REG_SET (new_live_at_end, ARG_POINTER_REGNUM);
1242 #endif
1243
1244 /* Any constant, or pseudo with constant equivalences, may
1245 require reloading from memory using the pic register. */
1246 if ((unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM
1247 && fixed_regs[PIC_OFFSET_TABLE_REGNUM])
1248 SET_REGNO_REG_SET (new_live_at_end, PIC_OFFSET_TABLE_REGNUM);
1249 }
1250
1251 /* Regs used in phi nodes are not included in
1252 global_live_at_start, since they are live only along a
1253 particular edge. Set those regs that are live because of a
1254 phi node alternative corresponding to this particular block. */
1255 if (in_ssa_form)
1256 for_each_successor_phi (bb, &set_phi_alternative_reg,
1257 new_live_at_end);
1258
1259 if (bb == ENTRY_BLOCK_PTR)
1260 {
1261 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1262 continue;
1263 }
1264
1265 /* On our first pass through this block, we'll go ahead and continue.
1266 Recognize first pass by local_set NULL. On subsequent passes, we
1267 get to skip out early if live_at_end wouldn't have changed. */
1268
1269 if (bb->local_set == NULL)
1270 {
1271 bb->local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1272 bb->cond_local_set = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1273 rescan = 1;
1274 }
1275 else
1276 {
1277 /* If any bits were removed from live_at_end, we'll have to
1278 rescan the block. This wouldn't be necessary if we had
1279 precalculated local_live, however with PROP_SCAN_DEAD_CODE
1280 local_live is really dependent on live_at_end. */
1281 CLEAR_REG_SET (tmp);
1282 rescan = bitmap_operation (tmp, bb->global_live_at_end,
1283 new_live_at_end, BITMAP_AND_COMPL);
1284
1285 if (! rescan)
1286 {
1287 /* If any of the registers in the new live_at_end set are
1288 conditionally set in this basic block, we must rescan.
1289 This is because conditional lifetimes at the end of the
1290 block do not just take the live_at_end set into account,
1291 but also the liveness at the start of each successor
1292 block. We can miss changes in those sets if we only
1293 compare the new live_at_end against the previous one. */
1294 CLEAR_REG_SET (tmp);
1295 rescan = bitmap_operation (tmp, new_live_at_end,
1296 bb->cond_local_set, BITMAP_AND);
1297 }
1298
1299 if (! rescan)
1300 {
1301 /* Find the set of changed bits. Take this opportunity
1302 to notice that this set is empty and early out. */
1303 CLEAR_REG_SET (tmp);
1304 changed = bitmap_operation (tmp, bb->global_live_at_end,
1305 new_live_at_end, BITMAP_XOR);
1306 if (! changed)
1307 continue;
1308
1309 /* If any of the changed bits overlap with local_set,
1310 we'll have to rescan the block. Detect overlap by
1311 the AND with ~local_set turning off bits. */
1312 rescan = bitmap_operation (tmp, tmp, bb->local_set,
1313 BITMAP_AND_COMPL);
1314 }
1315 }
1316
1317 /* Let our caller know that BB changed enough to require its
1318 death notes updated. */
1319 if (blocks_out)
1320 SET_BIT (blocks_out, bb->index);
1321
1322 if (! rescan)
1323 {
1324 /* Add to live_at_start the set of all registers in
1325 new_live_at_end that aren't in the old live_at_end. */
1326
1327 bitmap_operation (tmp, new_live_at_end, bb->global_live_at_end,
1328 BITMAP_AND_COMPL);
1329 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1330
1331 changed = bitmap_operation (bb->global_live_at_start,
1332 bb->global_live_at_start,
1333 tmp, BITMAP_IOR);
1334 if (! changed)
1335 continue;
1336 }
1337 else
1338 {
1339 COPY_REG_SET (bb->global_live_at_end, new_live_at_end);
1340
1341 /* Rescan the block insn by insn to turn (a copy of) live_at_end
1342 into live_at_start. */
1343 propagate_block (bb, new_live_at_end, bb->local_set,
1344 bb->cond_local_set, flags);
1345
1346 /* If live_at start didn't change, no need to go farther. */
1347 if (REG_SET_EQUAL_P (bb->global_live_at_start, new_live_at_end))
1348 continue;
1349
1350 COPY_REG_SET (bb->global_live_at_start, new_live_at_end);
1351 }
1352
1353 /* Queue all predecessors of BB so that we may re-examine
1354 their live_at_end. */
1355 for (e = bb->pred; e; e = e->pred_next)
1356 {
1357 basic_block pb = e->src;
1358 if (pb->aux == NULL)
1359 {
1360 *qtail++ = pb;
1361 if (qtail == qend)
1362 qtail = queue;
1363 pb->aux = pb;
1364 }
1365 }
1366 }
1367
1368 FREE_REG_SET (tmp);
1369 FREE_REG_SET (new_live_at_end);
1370 FREE_REG_SET (invalidated_by_call);
1371
1372 if (blocks_out)
1373 {
1374 EXECUTE_IF_SET_IN_SBITMAP (blocks_out, 0, i,
1375 {
1376 basic_block bb = BASIC_BLOCK (i);
1377 FREE_REG_SET (bb->local_set);
1378 FREE_REG_SET (bb->cond_local_set);
1379 });
1380 }
1381 else
1382 {
1383 FOR_EACH_BB (bb)
1384 {
1385 FREE_REG_SET (bb->local_set);
1386 FREE_REG_SET (bb->cond_local_set);
1387 }
1388 }
1389
1390 free (queue);
1391 }
1392
1393 \f
1394 /* This structure is used to pass parameters to and from the
1395 the function find_regno_partial(). It is used to pass in the
1396 register number we are looking, as well as to return any rtx
1397 we find. */
1398
1399 typedef struct {
1400 unsigned regno_to_find;
1401 rtx retval;
1402 } find_regno_partial_param;
1403
1404
1405 /* Find the rtx for the reg numbers specified in 'data' if it is
1406 part of an expression which only uses part of the register. Return
1407 it in the structure passed in. */
1408 static int
1409 find_regno_partial (ptr, data)
1410 rtx *ptr;
1411 void *data;
1412 {
1413 find_regno_partial_param *param = (find_regno_partial_param *)data;
1414 unsigned reg = param->regno_to_find;
1415 param->retval = NULL_RTX;
1416
1417 if (*ptr == NULL_RTX)
1418 return 0;
1419
1420 switch (GET_CODE (*ptr))
1421 {
1422 case ZERO_EXTRACT:
1423 case SIGN_EXTRACT:
1424 case STRICT_LOW_PART:
1425 if (GET_CODE (XEXP (*ptr, 0)) == REG && REGNO (XEXP (*ptr, 0)) == reg)
1426 {
1427 param->retval = XEXP (*ptr, 0);
1428 return 1;
1429 }
1430 break;
1431
1432 case SUBREG:
1433 if (GET_CODE (SUBREG_REG (*ptr)) == REG
1434 && REGNO (SUBREG_REG (*ptr)) == reg)
1435 {
1436 param->retval = SUBREG_REG (*ptr);
1437 return 1;
1438 }
1439 break;
1440
1441 default:
1442 break;
1443 }
1444
1445 return 0;
1446 }
1447
1448 /* Process all immediate successors of the entry block looking for pseudo
1449 registers which are live on entry. Find all of those whose first
1450 instance is a partial register reference of some kind, and initialize
1451 them to 0 after the entry block. This will prevent bit sets within
1452 registers whose value is unknown, and may contain some kind of sticky
1453 bits we don't want. */
1454
1455 int
1456 initialize_uninitialized_subregs ()
1457 {
1458 rtx insn;
1459 edge e;
1460 int reg, did_something = 0;
1461 find_regno_partial_param param;
1462
1463 for (e = ENTRY_BLOCK_PTR->succ; e; e = e->succ_next)
1464 {
1465 basic_block bb = e->dest;
1466 regset map = bb->global_live_at_start;
1467 EXECUTE_IF_SET_IN_REG_SET (map,
1468 FIRST_PSEUDO_REGISTER, reg,
1469 {
1470 int uid = REGNO_FIRST_UID (reg);
1471 rtx i;
1472
1473 /* Find an insn which mentions the register we are looking for.
1474 Its preferable to have an instance of the register's rtl since
1475 there may be various flags set which we need to duplicate.
1476 If we can't find it, its probably an automatic whose initial
1477 value doesn't matter, or hopefully something we don't care about. */
1478 for (i = get_insns (); i && INSN_UID (i) != uid; i = NEXT_INSN (i))
1479 ;
1480 if (i != NULL_RTX)
1481 {
1482 /* Found the insn, now get the REG rtx, if we can. */
1483 param.regno_to_find = reg;
1484 for_each_rtx (&i, find_regno_partial, &param);
1485 if (param.retval != NULL_RTX)
1486 {
1487 insn = gen_move_insn (param.retval,
1488 CONST0_RTX (GET_MODE (param.retval)));
1489 insert_insn_on_edge (insn, e);
1490 did_something = 1;
1491 }
1492 }
1493 });
1494 }
1495
1496 if (did_something)
1497 commit_edge_insertions ();
1498 return did_something;
1499 }
1500
1501 \f
1502 /* Subroutines of life analysis. */
1503
1504 /* Allocate the permanent data structures that represent the results
1505 of life analysis. Not static since used also for stupid life analysis. */
1506
1507 void
1508 allocate_bb_life_data ()
1509 {
1510 basic_block bb;
1511
1512 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
1513 {
1514 bb->global_live_at_start = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1515 bb->global_live_at_end = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1516 }
1517
1518 regs_live_at_setjmp = OBSTACK_ALLOC_REG_SET (&flow_obstack);
1519 }
1520
1521 void
1522 allocate_reg_life_data ()
1523 {
1524 int i;
1525
1526 max_regno = max_reg_num ();
1527
1528 /* Recalculate the register space, in case it has grown. Old style
1529 vector oriented regsets would set regset_{size,bytes} here also. */
1530 allocate_reg_info (max_regno, FALSE, FALSE);
1531
1532 /* Reset all the data we'll collect in propagate_block and its
1533 subroutines. */
1534 for (i = 0; i < max_regno; i++)
1535 {
1536 REG_N_SETS (i) = 0;
1537 REG_N_REFS (i) = 0;
1538 REG_N_DEATHS (i) = 0;
1539 REG_N_CALLS_CROSSED (i) = 0;
1540 REG_LIVE_LENGTH (i) = 0;
1541 REG_FREQ (i) = 0;
1542 REG_BASIC_BLOCK (i) = REG_BLOCK_UNKNOWN;
1543 }
1544 }
1545
1546 /* Delete dead instructions for propagate_block. */
1547
1548 static void
1549 propagate_block_delete_insn (insn)
1550 rtx insn;
1551 {
1552 rtx inote = find_reg_note (insn, REG_LABEL, NULL_RTX);
1553
1554 /* If the insn referred to a label, and that label was attached to
1555 an ADDR_VEC, it's safe to delete the ADDR_VEC. In fact, it's
1556 pretty much mandatory to delete it, because the ADDR_VEC may be
1557 referencing labels that no longer exist.
1558
1559 INSN may reference a deleted label, particularly when a jump
1560 table has been optimized into a direct jump. There's no
1561 real good way to fix up the reference to the deleted label
1562 when the label is deleted, so we just allow it here. */
1563
1564 if (inote && GET_CODE (inote) == CODE_LABEL)
1565 {
1566 rtx label = XEXP (inote, 0);
1567 rtx next;
1568
1569 /* The label may be forced if it has been put in the constant
1570 pool. If that is the only use we must discard the table
1571 jump following it, but not the label itself. */
1572 if (LABEL_NUSES (label) == 1 + LABEL_PRESERVE_P (label)
1573 && (next = next_nonnote_insn (label)) != NULL
1574 && GET_CODE (next) == JUMP_INSN
1575 && (GET_CODE (PATTERN (next)) == ADDR_VEC
1576 || GET_CODE (PATTERN (next)) == ADDR_DIFF_VEC))
1577 {
1578 rtx pat = PATTERN (next);
1579 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1580 int len = XVECLEN (pat, diff_vec_p);
1581 int i;
1582
1583 for (i = 0; i < len; i++)
1584 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))--;
1585
1586 delete_insn_and_edges (next);
1587 ndead++;
1588 }
1589 }
1590
1591 delete_insn_and_edges (insn);
1592 ndead++;
1593 }
1594
1595 /* Delete dead libcalls for propagate_block. Return the insn
1596 before the libcall. */
1597
1598 static rtx
1599 propagate_block_delete_libcall ( insn, note)
1600 rtx insn, note;
1601 {
1602 rtx first = XEXP (note, 0);
1603 rtx before = PREV_INSN (first);
1604
1605 delete_insn_chain_and_edges (first, insn);
1606 ndead++;
1607 return before;
1608 }
1609
1610 /* Update the life-status of regs for one insn. Return the previous insn. */
1611
1612 rtx
1613 propagate_one_insn (pbi, insn)
1614 struct propagate_block_info *pbi;
1615 rtx insn;
1616 {
1617 rtx prev = PREV_INSN (insn);
1618 int flags = pbi->flags;
1619 int insn_is_dead = 0;
1620 int libcall_is_dead = 0;
1621 rtx note;
1622 int i;
1623
1624 if (! INSN_P (insn))
1625 return prev;
1626
1627 note = find_reg_note (insn, REG_RETVAL, NULL_RTX);
1628 if (flags & PROP_SCAN_DEAD_CODE)
1629 {
1630 insn_is_dead = insn_dead_p (pbi, PATTERN (insn), 0, REG_NOTES (insn));
1631 libcall_is_dead = (insn_is_dead && note != 0
1632 && libcall_dead_p (pbi, note, insn));
1633 }
1634
1635 /* If an instruction consists of just dead store(s) on final pass,
1636 delete it. */
1637 if ((flags & PROP_KILL_DEAD_CODE) && insn_is_dead)
1638 {
1639 /* If we're trying to delete a prologue or epilogue instruction
1640 that isn't flagged as possibly being dead, something is wrong.
1641 But if we are keeping the stack pointer depressed, we might well
1642 be deleting insns that are used to compute the amount to update
1643 it by, so they are fine. */
1644 if (reload_completed
1645 && !(TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1646 && (TYPE_RETURNS_STACK_DEPRESSED
1647 (TREE_TYPE (current_function_decl))))
1648 && (((HAVE_epilogue || HAVE_prologue)
1649 && prologue_epilogue_contains (insn))
1650 || (HAVE_sibcall_epilogue
1651 && sibcall_epilogue_contains (insn)))
1652 && find_reg_note (insn, REG_MAYBE_DEAD, NULL_RTX) == 0)
1653 fatal_insn ("Attempt to delete prologue/epilogue insn:", insn);
1654
1655 /* Record sets. Do this even for dead instructions, since they
1656 would have killed the values if they hadn't been deleted. */
1657 mark_set_regs (pbi, PATTERN (insn), insn);
1658
1659 /* CC0 is now known to be dead. Either this insn used it,
1660 in which case it doesn't anymore, or clobbered it,
1661 so the next insn can't use it. */
1662 pbi->cc0_live = 0;
1663
1664 if (libcall_is_dead)
1665 prev = propagate_block_delete_libcall ( insn, note);
1666 else
1667 {
1668
1669 /* If INSN contains a RETVAL note and is dead, but the libcall
1670 as a whole is not dead, then we want to remove INSN, but
1671 not the whole libcall sequence.
1672
1673 However, we need to also remove the dangling REG_LIBCALL
1674 note so that we do not have mis-matched LIBCALL/RETVAL
1675 notes. In theory we could find a new location for the
1676 REG_RETVAL note, but it hardly seems worth the effort.
1677
1678 NOTE at this point will be the RETVAL note if it exists. */
1679 if (note)
1680 {
1681 rtx libcall_note;
1682
1683 libcall_note
1684 = find_reg_note (XEXP (note, 0), REG_LIBCALL, NULL_RTX);
1685 remove_note (XEXP (note, 0), libcall_note);
1686 }
1687
1688 /* Similarly if INSN contains a LIBCALL note, remove the
1689 dangling REG_RETVAL note. */
1690 note = find_reg_note (insn, REG_LIBCALL, NULL_RTX);
1691 if (note)
1692 {
1693 rtx retval_note;
1694
1695 retval_note
1696 = find_reg_note (XEXP (note, 0), REG_RETVAL, NULL_RTX);
1697 remove_note (XEXP (note, 0), retval_note);
1698 }
1699
1700 /* Now delete INSN. */
1701 propagate_block_delete_insn (insn);
1702 }
1703
1704 return prev;
1705 }
1706
1707 /* See if this is an increment or decrement that can be merged into
1708 a following memory address. */
1709 #ifdef AUTO_INC_DEC
1710 {
1711 rtx x = single_set (insn);
1712
1713 /* Does this instruction increment or decrement a register? */
1714 if ((flags & PROP_AUTOINC)
1715 && x != 0
1716 && GET_CODE (SET_DEST (x)) == REG
1717 && (GET_CODE (SET_SRC (x)) == PLUS
1718 || GET_CODE (SET_SRC (x)) == MINUS)
1719 && XEXP (SET_SRC (x), 0) == SET_DEST (x)
1720 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
1721 /* Ok, look for a following memory ref we can combine with.
1722 If one is found, change the memory ref to a PRE_INC
1723 or PRE_DEC, cancel this insn, and return 1.
1724 Return 0 if nothing has been done. */
1725 && try_pre_increment_1 (pbi, insn))
1726 return prev;
1727 }
1728 #endif /* AUTO_INC_DEC */
1729
1730 CLEAR_REG_SET (pbi->new_set);
1731
1732 /* If this is not the final pass, and this insn is copying the value of
1733 a library call and it's dead, don't scan the insns that perform the
1734 library call, so that the call's arguments are not marked live. */
1735 if (libcall_is_dead)
1736 {
1737 /* Record the death of the dest reg. */
1738 mark_set_regs (pbi, PATTERN (insn), insn);
1739
1740 insn = XEXP (note, 0);
1741 return PREV_INSN (insn);
1742 }
1743 else if (GET_CODE (PATTERN (insn)) == SET
1744 && SET_DEST (PATTERN (insn)) == stack_pointer_rtx
1745 && GET_CODE (SET_SRC (PATTERN (insn))) == PLUS
1746 && XEXP (SET_SRC (PATTERN (insn)), 0) == stack_pointer_rtx
1747 && GET_CODE (XEXP (SET_SRC (PATTERN (insn)), 1)) == CONST_INT)
1748 /* We have an insn to pop a constant amount off the stack.
1749 (Such insns use PLUS regardless of the direction of the stack,
1750 and any insn to adjust the stack by a constant is always a pop.)
1751 These insns, if not dead stores, have no effect on life, though
1752 they do have an effect on the memory stores we are tracking. */
1753 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1754 else
1755 {
1756 rtx note;
1757 /* Any regs live at the time of a call instruction must not go
1758 in a register clobbered by calls. Find all regs now live and
1759 record this for them. */
1760
1761 if (GET_CODE (insn) == CALL_INSN && (flags & PROP_REG_INFO))
1762 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1763 { REG_N_CALLS_CROSSED (i)++; });
1764
1765 /* Record sets. Do this even for dead instructions, since they
1766 would have killed the values if they hadn't been deleted. */
1767 mark_set_regs (pbi, PATTERN (insn), insn);
1768
1769 if (GET_CODE (insn) == CALL_INSN)
1770 {
1771 int i;
1772 rtx note, cond;
1773
1774 cond = NULL_RTX;
1775 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1776 cond = COND_EXEC_TEST (PATTERN (insn));
1777
1778 /* Non-constant calls clobber memory, constant calls do not
1779 clobber memory, though they may clobber outgoing arguments
1780 on the stack. */
1781 if (! CONST_OR_PURE_CALL_P (insn))
1782 {
1783 free_EXPR_LIST_list (&pbi->mem_set_list);
1784 pbi->mem_set_list_len = 0;
1785 }
1786 else
1787 invalidate_mems_from_set (pbi, stack_pointer_rtx);
1788
1789 /* There may be extra registers to be clobbered. */
1790 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1791 note;
1792 note = XEXP (note, 1))
1793 if (GET_CODE (XEXP (note, 0)) == CLOBBER)
1794 mark_set_1 (pbi, CLOBBER, XEXP (XEXP (note, 0), 0),
1795 cond, insn, pbi->flags);
1796
1797 /* Calls change all call-used and global registers. */
1798 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1799 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1800 {
1801 /* We do not want REG_UNUSED notes for these registers. */
1802 mark_set_1 (pbi, CLOBBER, regno_reg_rtx[i], cond, insn,
1803 pbi->flags & ~(PROP_DEATH_NOTES | PROP_REG_INFO));
1804 }
1805 }
1806
1807 /* If an insn doesn't use CC0, it becomes dead since we assume
1808 that every insn clobbers it. So show it dead here;
1809 mark_used_regs will set it live if it is referenced. */
1810 pbi->cc0_live = 0;
1811
1812 /* Record uses. */
1813 if (! insn_is_dead)
1814 mark_used_regs (pbi, PATTERN (insn), NULL_RTX, insn);
1815 if ((flags & PROP_EQUAL_NOTES)
1816 && ((note = find_reg_note (insn, REG_EQUAL, NULL_RTX))
1817 || (note = find_reg_note (insn, REG_EQUIV, NULL_RTX))))
1818 mark_used_regs (pbi, XEXP (note, 0), NULL_RTX, insn);
1819
1820 /* Sometimes we may have inserted something before INSN (such as a move)
1821 when we make an auto-inc. So ensure we will scan those insns. */
1822 #ifdef AUTO_INC_DEC
1823 prev = PREV_INSN (insn);
1824 #endif
1825
1826 if (! insn_is_dead && GET_CODE (insn) == CALL_INSN)
1827 {
1828 int i;
1829 rtx note, cond;
1830
1831 cond = NULL_RTX;
1832 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
1833 cond = COND_EXEC_TEST (PATTERN (insn));
1834
1835 /* Calls use their arguments, and may clobber memory which
1836 address involves some register. */
1837 for (note = CALL_INSN_FUNCTION_USAGE (insn);
1838 note;
1839 note = XEXP (note, 1))
1840 /* We find USE or CLOBBER entities in a FUNCTION_USAGE list: both
1841 of which mark_used_regs knows how to handle. */
1842 mark_used_regs (pbi, XEXP (XEXP (note, 0), 0), cond, insn);
1843
1844 /* The stack ptr is used (honorarily) by a CALL insn. */
1845 SET_REGNO_REG_SET (pbi->reg_live, STACK_POINTER_REGNUM);
1846
1847 /* Calls may also reference any of the global registers,
1848 so they are made live. */
1849 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1850 if (global_regs[i])
1851 mark_used_reg (pbi, regno_reg_rtx[i], cond, insn);
1852 }
1853 }
1854
1855 /* On final pass, update counts of how many insns in which each reg
1856 is live. */
1857 if (flags & PROP_REG_INFO)
1858 EXECUTE_IF_SET_IN_REG_SET (pbi->reg_live, 0, i,
1859 { REG_LIVE_LENGTH (i)++; });
1860
1861 return prev;
1862 }
1863
1864 /* Initialize a propagate_block_info struct for public consumption.
1865 Note that the structure itself is opaque to this file, but that
1866 the user can use the regsets provided here. */
1867
1868 struct propagate_block_info *
1869 init_propagate_block_info (bb, live, local_set, cond_local_set, flags)
1870 basic_block bb;
1871 regset live, local_set, cond_local_set;
1872 int flags;
1873 {
1874 struct propagate_block_info *pbi = xmalloc (sizeof (*pbi));
1875
1876 pbi->bb = bb;
1877 pbi->reg_live = live;
1878 pbi->mem_set_list = NULL_RTX;
1879 pbi->mem_set_list_len = 0;
1880 pbi->local_set = local_set;
1881 pbi->cond_local_set = cond_local_set;
1882 pbi->cc0_live = 0;
1883 pbi->flags = flags;
1884
1885 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
1886 pbi->reg_next_use = (rtx *) xcalloc (max_reg_num (), sizeof (rtx));
1887 else
1888 pbi->reg_next_use = NULL;
1889
1890 pbi->new_set = BITMAP_XMALLOC ();
1891
1892 #ifdef HAVE_conditional_execution
1893 pbi->reg_cond_dead = splay_tree_new (splay_tree_compare_ints, NULL,
1894 free_reg_cond_life_info);
1895 pbi->reg_cond_reg = BITMAP_XMALLOC ();
1896
1897 /* If this block ends in a conditional branch, for each register live
1898 from one side of the branch and not the other, record the register
1899 as conditionally dead. */
1900 if (GET_CODE (bb->end) == JUMP_INSN
1901 && any_condjump_p (bb->end))
1902 {
1903 regset_head diff_head;
1904 regset diff = INITIALIZE_REG_SET (diff_head);
1905 basic_block bb_true, bb_false;
1906 rtx cond_true, cond_false, set_src;
1907 int i;
1908
1909 /* Identify the successor blocks. */
1910 bb_true = bb->succ->dest;
1911 if (bb->succ->succ_next != NULL)
1912 {
1913 bb_false = bb->succ->succ_next->dest;
1914
1915 if (bb->succ->flags & EDGE_FALLTHRU)
1916 {
1917 basic_block t = bb_false;
1918 bb_false = bb_true;
1919 bb_true = t;
1920 }
1921 else if (! (bb->succ->succ_next->flags & EDGE_FALLTHRU))
1922 abort ();
1923 }
1924 else
1925 {
1926 /* This can happen with a conditional jump to the next insn. */
1927 if (JUMP_LABEL (bb->end) != bb_true->head)
1928 abort ();
1929
1930 /* Simplest way to do nothing. */
1931 bb_false = bb_true;
1932 }
1933
1934 /* Extract the condition from the branch. */
1935 set_src = SET_SRC (pc_set (bb->end));
1936 cond_true = XEXP (set_src, 0);
1937 cond_false = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond_true)),
1938 GET_MODE (cond_true), XEXP (cond_true, 0),
1939 XEXP (cond_true, 1));
1940 if (GET_CODE (XEXP (set_src, 1)) == PC)
1941 {
1942 rtx t = cond_false;
1943 cond_false = cond_true;
1944 cond_true = t;
1945 }
1946
1947 /* Compute which register lead different lives in the successors. */
1948 if (bitmap_operation (diff, bb_true->global_live_at_start,
1949 bb_false->global_live_at_start, BITMAP_XOR))
1950 {
1951 rtx reg = XEXP (cond_true, 0);
1952
1953 if (GET_CODE (reg) == SUBREG)
1954 reg = SUBREG_REG (reg);
1955
1956 if (GET_CODE (reg) != REG)
1957 abort ();
1958
1959 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (reg));
1960
1961 /* For each such register, mark it conditionally dead. */
1962 EXECUTE_IF_SET_IN_REG_SET
1963 (diff, 0, i,
1964 {
1965 struct reg_cond_life_info *rcli;
1966 rtx cond;
1967
1968 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
1969
1970 if (REGNO_REG_SET_P (bb_true->global_live_at_start, i))
1971 cond = cond_false;
1972 else
1973 cond = cond_true;
1974 rcli->condition = cond;
1975 rcli->stores = const0_rtx;
1976 rcli->orig_condition = cond;
1977
1978 splay_tree_insert (pbi->reg_cond_dead, i,
1979 (splay_tree_value) rcli);
1980 });
1981 }
1982
1983 FREE_REG_SET (diff);
1984 }
1985 #endif
1986
1987 /* If this block has no successors, any stores to the frame that aren't
1988 used later in the block are dead. So make a pass over the block
1989 recording any such that are made and show them dead at the end. We do
1990 a very conservative and simple job here. */
1991 if (optimize
1992 && ! (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
1993 && (TYPE_RETURNS_STACK_DEPRESSED
1994 (TREE_TYPE (current_function_decl))))
1995 && (flags & PROP_SCAN_DEAD_STORES)
1996 && (bb->succ == NULL
1997 || (bb->succ->succ_next == NULL
1998 && bb->succ->dest == EXIT_BLOCK_PTR
1999 && ! current_function_calls_eh_return)))
2000 {
2001 rtx insn, set;
2002 for (insn = bb->end; insn != bb->head; insn = PREV_INSN (insn))
2003 if (GET_CODE (insn) == INSN
2004 && (set = single_set (insn))
2005 && GET_CODE (SET_DEST (set)) == MEM)
2006 {
2007 rtx mem = SET_DEST (set);
2008 rtx canon_mem = canon_rtx (mem);
2009
2010 /* This optimization is performed by faking a store to the
2011 memory at the end of the block. This doesn't work for
2012 unchanging memories because multiple stores to unchanging
2013 memory is illegal and alias analysis doesn't consider it. */
2014 if (RTX_UNCHANGING_P (canon_mem))
2015 continue;
2016
2017 if (XEXP (canon_mem, 0) == frame_pointer_rtx
2018 || (GET_CODE (XEXP (canon_mem, 0)) == PLUS
2019 && XEXP (XEXP (canon_mem, 0), 0) == frame_pointer_rtx
2020 && GET_CODE (XEXP (XEXP (canon_mem, 0), 1)) == CONST_INT))
2021 add_to_mem_set_list (pbi, canon_mem);
2022 }
2023 }
2024
2025 return pbi;
2026 }
2027
2028 /* Release a propagate_block_info struct. */
2029
2030 void
2031 free_propagate_block_info (pbi)
2032 struct propagate_block_info *pbi;
2033 {
2034 free_EXPR_LIST_list (&pbi->mem_set_list);
2035
2036 BITMAP_XFREE (pbi->new_set);
2037
2038 #ifdef HAVE_conditional_execution
2039 splay_tree_delete (pbi->reg_cond_dead);
2040 BITMAP_XFREE (pbi->reg_cond_reg);
2041 #endif
2042
2043 if (pbi->reg_next_use)
2044 free (pbi->reg_next_use);
2045
2046 free (pbi);
2047 }
2048
2049 /* Compute the registers live at the beginning of a basic block BB from
2050 those live at the end.
2051
2052 When called, REG_LIVE contains those live at the end. On return, it
2053 contains those live at the beginning.
2054
2055 LOCAL_SET, if non-null, will be set with all registers killed
2056 unconditionally by this basic block.
2057 Likewise, COND_LOCAL_SET, if non-null, will be set with all registers
2058 killed conditionally by this basic block. If there is any unconditional
2059 set of a register, then the corresponding bit will be set in LOCAL_SET
2060 and cleared in COND_LOCAL_SET.
2061 It is valid for LOCAL_SET and COND_LOCAL_SET to be the same set. In this
2062 case, the resulting set will be equal to the union of the two sets that
2063 would otherwise be computed.
2064
2065 Return nonzero if an INSN is deleted (i.e. by dead code removal). */
2066
2067 int
2068 propagate_block (bb, live, local_set, cond_local_set, flags)
2069 basic_block bb;
2070 regset live;
2071 regset local_set;
2072 regset cond_local_set;
2073 int flags;
2074 {
2075 struct propagate_block_info *pbi;
2076 rtx insn, prev;
2077 int changed;
2078
2079 pbi = init_propagate_block_info (bb, live, local_set, cond_local_set, flags);
2080
2081 if (flags & PROP_REG_INFO)
2082 {
2083 int i;
2084
2085 /* Process the regs live at the end of the block.
2086 Mark them as not local to any one basic block. */
2087 EXECUTE_IF_SET_IN_REG_SET (live, 0, i,
2088 { REG_BASIC_BLOCK (i) = REG_BLOCK_GLOBAL; });
2089 }
2090
2091 /* Scan the block an insn at a time from end to beginning. */
2092
2093 changed = 0;
2094 for (insn = bb->end;; insn = prev)
2095 {
2096 /* If this is a call to `setjmp' et al, warn if any
2097 non-volatile datum is live. */
2098 if ((flags & PROP_REG_INFO)
2099 && GET_CODE (insn) == CALL_INSN
2100 && find_reg_note (insn, REG_SETJMP, NULL))
2101 IOR_REG_SET (regs_live_at_setjmp, pbi->reg_live);
2102
2103 prev = propagate_one_insn (pbi, insn);
2104 changed |= NEXT_INSN (prev) != insn;
2105
2106 if (insn == bb->head)
2107 break;
2108 }
2109
2110 free_propagate_block_info (pbi);
2111
2112 return changed;
2113 }
2114 \f
2115 /* Return 1 if X (the body of an insn, or part of it) is just dead stores
2116 (SET expressions whose destinations are registers dead after the insn).
2117 NEEDED is the regset that says which regs are alive after the insn.
2118
2119 Unless CALL_OK is nonzero, an insn is needed if it contains a CALL.
2120
2121 If X is the entire body of an insn, NOTES contains the reg notes
2122 pertaining to the insn. */
2123
2124 static int
2125 insn_dead_p (pbi, x, call_ok, notes)
2126 struct propagate_block_info *pbi;
2127 rtx x;
2128 int call_ok;
2129 rtx notes ATTRIBUTE_UNUSED;
2130 {
2131 enum rtx_code code = GET_CODE (x);
2132
2133 /* Don't eliminate insns that may trap. */
2134 if (flag_non_call_exceptions && may_trap_p (x))
2135 return 0;
2136
2137 #ifdef AUTO_INC_DEC
2138 /* As flow is invoked after combine, we must take existing AUTO_INC
2139 expressions into account. */
2140 for (; notes; notes = XEXP (notes, 1))
2141 {
2142 if (REG_NOTE_KIND (notes) == REG_INC)
2143 {
2144 int regno = REGNO (XEXP (notes, 0));
2145
2146 /* Don't delete insns to set global regs. */
2147 if ((regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2148 || REGNO_REG_SET_P (pbi->reg_live, regno))
2149 return 0;
2150 }
2151 }
2152 #endif
2153
2154 /* If setting something that's a reg or part of one,
2155 see if that register's altered value will be live. */
2156
2157 if (code == SET)
2158 {
2159 rtx r = SET_DEST (x);
2160
2161 #ifdef HAVE_cc0
2162 if (GET_CODE (r) == CC0)
2163 return ! pbi->cc0_live;
2164 #endif
2165
2166 /* A SET that is a subroutine call cannot be dead. */
2167 if (GET_CODE (SET_SRC (x)) == CALL)
2168 {
2169 if (! call_ok)
2170 return 0;
2171 }
2172
2173 /* Don't eliminate loads from volatile memory or volatile asms. */
2174 else if (volatile_refs_p (SET_SRC (x)))
2175 return 0;
2176
2177 if (GET_CODE (r) == MEM)
2178 {
2179 rtx temp, canon_r;
2180
2181 if (MEM_VOLATILE_P (r) || GET_MODE (r) == BLKmode)
2182 return 0;
2183
2184 canon_r = canon_rtx (r);
2185
2186 /* Walk the set of memory locations we are currently tracking
2187 and see if one is an identical match to this memory location.
2188 If so, this memory write is dead (remember, we're walking
2189 backwards from the end of the block to the start). Since
2190 rtx_equal_p does not check the alias set or flags, we also
2191 must have the potential for them to conflict (anti_dependence). */
2192 for (temp = pbi->mem_set_list; temp != 0; temp = XEXP (temp, 1))
2193 if (anti_dependence (r, XEXP (temp, 0)))
2194 {
2195 rtx mem = XEXP (temp, 0);
2196
2197 if (rtx_equal_p (XEXP (canon_r, 0), XEXP (mem, 0))
2198 && (GET_MODE_SIZE (GET_MODE (canon_r))
2199 <= GET_MODE_SIZE (GET_MODE (mem))))
2200 return 1;
2201
2202 #ifdef AUTO_INC_DEC
2203 /* Check if memory reference matches an auto increment. Only
2204 post increment/decrement or modify are valid. */
2205 if (GET_MODE (mem) == GET_MODE (r)
2206 && (GET_CODE (XEXP (mem, 0)) == POST_DEC
2207 || GET_CODE (XEXP (mem, 0)) == POST_INC
2208 || GET_CODE (XEXP (mem, 0)) == POST_MODIFY)
2209 && GET_MODE (XEXP (mem, 0)) == GET_MODE (r)
2210 && rtx_equal_p (XEXP (XEXP (mem, 0), 0), XEXP (r, 0)))
2211 return 1;
2212 #endif
2213 }
2214 }
2215 else
2216 {
2217 while (GET_CODE (r) == SUBREG
2218 || GET_CODE (r) == STRICT_LOW_PART
2219 || GET_CODE (r) == ZERO_EXTRACT)
2220 r = XEXP (r, 0);
2221
2222 if (GET_CODE (r) == REG)
2223 {
2224 int regno = REGNO (r);
2225
2226 /* Obvious. */
2227 if (REGNO_REG_SET_P (pbi->reg_live, regno))
2228 return 0;
2229
2230 /* If this is a hard register, verify that subsequent
2231 words are not needed. */
2232 if (regno < FIRST_PSEUDO_REGISTER)
2233 {
2234 int n = HARD_REGNO_NREGS (regno, GET_MODE (r));
2235
2236 while (--n > 0)
2237 if (REGNO_REG_SET_P (pbi->reg_live, regno+n))
2238 return 0;
2239 }
2240
2241 /* Don't delete insns to set global regs. */
2242 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
2243 return 0;
2244
2245 /* Make sure insns to set the stack pointer aren't deleted. */
2246 if (regno == STACK_POINTER_REGNUM)
2247 return 0;
2248
2249 /* ??? These bits might be redundant with the force live bits
2250 in calculate_global_regs_live. We would delete from
2251 sequential sets; whether this actually affects real code
2252 for anything but the stack pointer I don't know. */
2253 /* Make sure insns to set the frame pointer aren't deleted. */
2254 if (regno == FRAME_POINTER_REGNUM
2255 && (! reload_completed || frame_pointer_needed))
2256 return 0;
2257 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2258 if (regno == HARD_FRAME_POINTER_REGNUM
2259 && (! reload_completed || frame_pointer_needed))
2260 return 0;
2261 #endif
2262
2263 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2264 /* Make sure insns to set arg pointer are never deleted
2265 (if the arg pointer isn't fixed, there will be a USE
2266 for it, so we can treat it normally). */
2267 if (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
2268 return 0;
2269 #endif
2270
2271 /* Otherwise, the set is dead. */
2272 return 1;
2273 }
2274 }
2275 }
2276
2277 /* If performing several activities, insn is dead if each activity
2278 is individually dead. Also, CLOBBERs and USEs can be ignored; a
2279 CLOBBER or USE that's inside a PARALLEL doesn't make the insn
2280 worth keeping. */
2281 else if (code == PARALLEL)
2282 {
2283 int i = XVECLEN (x, 0);
2284
2285 for (i--; i >= 0; i--)
2286 if (GET_CODE (XVECEXP (x, 0, i)) != CLOBBER
2287 && GET_CODE (XVECEXP (x, 0, i)) != USE
2288 && ! insn_dead_p (pbi, XVECEXP (x, 0, i), call_ok, NULL_RTX))
2289 return 0;
2290
2291 return 1;
2292 }
2293
2294 /* A CLOBBER of a pseudo-register that is dead serves no purpose. That
2295 is not necessarily true for hard registers. */
2296 else if (code == CLOBBER && GET_CODE (XEXP (x, 0)) == REG
2297 && REGNO (XEXP (x, 0)) >= FIRST_PSEUDO_REGISTER
2298 && ! REGNO_REG_SET_P (pbi->reg_live, REGNO (XEXP (x, 0))))
2299 return 1;
2300
2301 /* We do not check other CLOBBER or USE here. An insn consisting of just
2302 a CLOBBER or just a USE should not be deleted. */
2303 return 0;
2304 }
2305
2306 /* If INSN is the last insn in a libcall, and assuming INSN is dead,
2307 return 1 if the entire library call is dead.
2308 This is true if INSN copies a register (hard or pseudo)
2309 and if the hard return reg of the call insn is dead.
2310 (The caller should have tested the destination of the SET inside
2311 INSN already for death.)
2312
2313 If this insn doesn't just copy a register, then we don't
2314 have an ordinary libcall. In that case, cse could not have
2315 managed to substitute the source for the dest later on,
2316 so we can assume the libcall is dead.
2317
2318 PBI is the block info giving pseudoregs live before this insn.
2319 NOTE is the REG_RETVAL note of the insn. */
2320
2321 static int
2322 libcall_dead_p (pbi, note, insn)
2323 struct propagate_block_info *pbi;
2324 rtx note;
2325 rtx insn;
2326 {
2327 rtx x = single_set (insn);
2328
2329 if (x)
2330 {
2331 rtx r = SET_SRC (x);
2332
2333 if (GET_CODE (r) == REG)
2334 {
2335 rtx call = XEXP (note, 0);
2336 rtx call_pat;
2337 int i;
2338
2339 /* Find the call insn. */
2340 while (call != insn && GET_CODE (call) != CALL_INSN)
2341 call = NEXT_INSN (call);
2342
2343 /* If there is none, do nothing special,
2344 since ordinary death handling can understand these insns. */
2345 if (call == insn)
2346 return 0;
2347
2348 /* See if the hard reg holding the value is dead.
2349 If this is a PARALLEL, find the call within it. */
2350 call_pat = PATTERN (call);
2351 if (GET_CODE (call_pat) == PARALLEL)
2352 {
2353 for (i = XVECLEN (call_pat, 0) - 1; i >= 0; i--)
2354 if (GET_CODE (XVECEXP (call_pat, 0, i)) == SET
2355 && GET_CODE (SET_SRC (XVECEXP (call_pat, 0, i))) == CALL)
2356 break;
2357
2358 /* This may be a library call that is returning a value
2359 via invisible pointer. Do nothing special, since
2360 ordinary death handling can understand these insns. */
2361 if (i < 0)
2362 return 0;
2363
2364 call_pat = XVECEXP (call_pat, 0, i);
2365 }
2366
2367 return insn_dead_p (pbi, call_pat, 1, REG_NOTES (call));
2368 }
2369 }
2370 return 1;
2371 }
2372
2373 /* Return 1 if register REGNO was used before it was set, i.e. if it is
2374 live at function entry. Don't count global register variables, variables
2375 in registers that can be used for function arg passing, or variables in
2376 fixed hard registers. */
2377
2378 int
2379 regno_uninitialized (regno)
2380 unsigned int regno;
2381 {
2382 if (n_basic_blocks == 0
2383 || (regno < FIRST_PSEUDO_REGISTER
2384 && (global_regs[regno]
2385 || fixed_regs[regno]
2386 || FUNCTION_ARG_REGNO_P (regno))))
2387 return 0;
2388
2389 return REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno);
2390 }
2391
2392 /* 1 if register REGNO was alive at a place where `setjmp' was called
2393 and was set more than once or is an argument.
2394 Such regs may be clobbered by `longjmp'. */
2395
2396 int
2397 regno_clobbered_at_setjmp (regno)
2398 int regno;
2399 {
2400 if (n_basic_blocks == 0)
2401 return 0;
2402
2403 return ((REG_N_SETS (regno) > 1
2404 || REGNO_REG_SET_P (ENTRY_BLOCK_PTR->global_live_at_end, regno))
2405 && REGNO_REG_SET_P (regs_live_at_setjmp, regno));
2406 }
2407 \f
2408 /* Add MEM to PBI->MEM_SET_LIST. MEM should be canonical. Respect the
2409 maximal list size; look for overlaps in mode and select the largest. */
2410 static void
2411 add_to_mem_set_list (pbi, mem)
2412 struct propagate_block_info *pbi;
2413 rtx mem;
2414 {
2415 rtx i;
2416
2417 /* We don't know how large a BLKmode store is, so we must not
2418 take them into consideration. */
2419 if (GET_MODE (mem) == BLKmode)
2420 return;
2421
2422 for (i = pbi->mem_set_list; i ; i = XEXP (i, 1))
2423 {
2424 rtx e = XEXP (i, 0);
2425 if (rtx_equal_p (XEXP (mem, 0), XEXP (e, 0)))
2426 {
2427 if (GET_MODE_SIZE (GET_MODE (mem)) > GET_MODE_SIZE (GET_MODE (e)))
2428 {
2429 #ifdef AUTO_INC_DEC
2430 /* If we must store a copy of the mem, we can just modify
2431 the mode of the stored copy. */
2432 if (pbi->flags & PROP_AUTOINC)
2433 PUT_MODE (e, GET_MODE (mem));
2434 else
2435 #endif
2436 XEXP (i, 0) = mem;
2437 }
2438 return;
2439 }
2440 }
2441
2442 if (pbi->mem_set_list_len < MAX_MEM_SET_LIST_LEN)
2443 {
2444 #ifdef AUTO_INC_DEC
2445 /* Store a copy of mem, otherwise the address may be
2446 scrogged by find_auto_inc. */
2447 if (pbi->flags & PROP_AUTOINC)
2448 mem = shallow_copy_rtx (mem);
2449 #endif
2450 pbi->mem_set_list = alloc_EXPR_LIST (0, mem, pbi->mem_set_list);
2451 pbi->mem_set_list_len++;
2452 }
2453 }
2454
2455 /* INSN references memory, possibly using autoincrement addressing modes.
2456 Find any entries on the mem_set_list that need to be invalidated due
2457 to an address change. */
2458
2459 static int
2460 invalidate_mems_from_autoinc (px, data)
2461 rtx *px;
2462 void *data;
2463 {
2464 rtx x = *px;
2465 struct propagate_block_info *pbi = data;
2466
2467 if (GET_RTX_CLASS (GET_CODE (x)) == 'a')
2468 {
2469 invalidate_mems_from_set (pbi, XEXP (x, 0));
2470 return -1;
2471 }
2472
2473 return 0;
2474 }
2475
2476 /* EXP is a REG. Remove any dependent entries from pbi->mem_set_list. */
2477
2478 static void
2479 invalidate_mems_from_set (pbi, exp)
2480 struct propagate_block_info *pbi;
2481 rtx exp;
2482 {
2483 rtx temp = pbi->mem_set_list;
2484 rtx prev = NULL_RTX;
2485 rtx next;
2486
2487 while (temp)
2488 {
2489 next = XEXP (temp, 1);
2490 if (reg_overlap_mentioned_p (exp, XEXP (temp, 0)))
2491 {
2492 /* Splice this entry out of the list. */
2493 if (prev)
2494 XEXP (prev, 1) = next;
2495 else
2496 pbi->mem_set_list = next;
2497 free_EXPR_LIST_node (temp);
2498 pbi->mem_set_list_len--;
2499 }
2500 else
2501 prev = temp;
2502 temp = next;
2503 }
2504 }
2505
2506 /* Process the registers that are set within X. Their bits are set to
2507 1 in the regset DEAD, because they are dead prior to this insn.
2508
2509 If INSN is nonzero, it is the insn being processed.
2510
2511 FLAGS is the set of operations to perform. */
2512
2513 static void
2514 mark_set_regs (pbi, x, insn)
2515 struct propagate_block_info *pbi;
2516 rtx x, insn;
2517 {
2518 rtx cond = NULL_RTX;
2519 rtx link;
2520 enum rtx_code code;
2521
2522 if (insn)
2523 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2524 {
2525 if (REG_NOTE_KIND (link) == REG_INC)
2526 mark_set_1 (pbi, SET, XEXP (link, 0),
2527 (GET_CODE (x) == COND_EXEC
2528 ? COND_EXEC_TEST (x) : NULL_RTX),
2529 insn, pbi->flags);
2530 }
2531 retry:
2532 switch (code = GET_CODE (x))
2533 {
2534 case SET:
2535 case CLOBBER:
2536 mark_set_1 (pbi, code, SET_DEST (x), cond, insn, pbi->flags);
2537 return;
2538
2539 case COND_EXEC:
2540 cond = COND_EXEC_TEST (x);
2541 x = COND_EXEC_CODE (x);
2542 goto retry;
2543
2544 case PARALLEL:
2545 {
2546 int i;
2547
2548 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
2549 {
2550 rtx sub = XVECEXP (x, 0, i);
2551 switch (code = GET_CODE (sub))
2552 {
2553 case COND_EXEC:
2554 if (cond != NULL_RTX)
2555 abort ();
2556
2557 cond = COND_EXEC_TEST (sub);
2558 sub = COND_EXEC_CODE (sub);
2559 if (GET_CODE (sub) != SET && GET_CODE (sub) != CLOBBER)
2560 break;
2561 /* Fall through. */
2562
2563 case SET:
2564 case CLOBBER:
2565 mark_set_1 (pbi, code, SET_DEST (sub), cond, insn, pbi->flags);
2566 break;
2567
2568 default:
2569 break;
2570 }
2571 }
2572 break;
2573 }
2574
2575 default:
2576 break;
2577 }
2578 }
2579
2580 /* Process a single set, which appears in INSN. REG (which may not
2581 actually be a REG, it may also be a SUBREG, PARALLEL, etc.) is
2582 being set using the CODE (which may be SET, CLOBBER, or COND_EXEC).
2583 If the set is conditional (because it appear in a COND_EXEC), COND
2584 will be the condition. */
2585
2586 static void
2587 mark_set_1 (pbi, code, reg, cond, insn, flags)
2588 struct propagate_block_info *pbi;
2589 enum rtx_code code;
2590 rtx reg, cond, insn;
2591 int flags;
2592 {
2593 int regno_first = -1, regno_last = -1;
2594 unsigned long not_dead = 0;
2595 int i;
2596
2597 /* Modifying just one hardware register of a multi-reg value or just a
2598 byte field of a register does not mean the value from before this insn
2599 is now dead. Of course, if it was dead after it's unused now. */
2600
2601 switch (GET_CODE (reg))
2602 {
2603 case PARALLEL:
2604 /* Some targets place small structures in registers for return values of
2605 functions. We have to detect this case specially here to get correct
2606 flow information. */
2607 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
2608 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
2609 mark_set_1 (pbi, code, XEXP (XVECEXP (reg, 0, i), 0), cond, insn,
2610 flags);
2611 return;
2612
2613 case ZERO_EXTRACT:
2614 case SIGN_EXTRACT:
2615 case STRICT_LOW_PART:
2616 /* ??? Assumes STRICT_LOW_PART not used on multi-word registers. */
2617 do
2618 reg = XEXP (reg, 0);
2619 while (GET_CODE (reg) == SUBREG
2620 || GET_CODE (reg) == ZERO_EXTRACT
2621 || GET_CODE (reg) == SIGN_EXTRACT
2622 || GET_CODE (reg) == STRICT_LOW_PART);
2623 if (GET_CODE (reg) == MEM)
2624 break;
2625 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live, REGNO (reg));
2626 /* Fall through. */
2627
2628 case REG:
2629 regno_last = regno_first = REGNO (reg);
2630 if (regno_first < FIRST_PSEUDO_REGISTER)
2631 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
2632 break;
2633
2634 case SUBREG:
2635 if (GET_CODE (SUBREG_REG (reg)) == REG)
2636 {
2637 enum machine_mode outer_mode = GET_MODE (reg);
2638 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (reg));
2639
2640 /* Identify the range of registers affected. This is moderately
2641 tricky for hard registers. See alter_subreg. */
2642
2643 regno_last = regno_first = REGNO (SUBREG_REG (reg));
2644 if (regno_first < FIRST_PSEUDO_REGISTER)
2645 {
2646 regno_first += subreg_regno_offset (regno_first, inner_mode,
2647 SUBREG_BYTE (reg),
2648 outer_mode);
2649 regno_last = (regno_first
2650 + HARD_REGNO_NREGS (regno_first, outer_mode) - 1);
2651
2652 /* Since we've just adjusted the register number ranges, make
2653 sure REG matches. Otherwise some_was_live will be clear
2654 when it shouldn't have been, and we'll create incorrect
2655 REG_UNUSED notes. */
2656 reg = gen_rtx_REG (outer_mode, regno_first);
2657 }
2658 else
2659 {
2660 /* If the number of words in the subreg is less than the number
2661 of words in the full register, we have a well-defined partial
2662 set. Otherwise the high bits are undefined.
2663
2664 This is only really applicable to pseudos, since we just took
2665 care of multi-word hard registers. */
2666 if (((GET_MODE_SIZE (outer_mode)
2667 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2668 < ((GET_MODE_SIZE (inner_mode)
2669 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
2670 not_dead = (unsigned long) REGNO_REG_SET_P (pbi->reg_live,
2671 regno_first);
2672
2673 reg = SUBREG_REG (reg);
2674 }
2675 }
2676 else
2677 reg = SUBREG_REG (reg);
2678 break;
2679
2680 default:
2681 break;
2682 }
2683
2684 /* If this set is a MEM, then it kills any aliased writes.
2685 If this set is a REG, then it kills any MEMs which use the reg. */
2686 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
2687 {
2688 if (GET_CODE (reg) == REG)
2689 invalidate_mems_from_set (pbi, reg);
2690
2691 /* If the memory reference had embedded side effects (autoincrement
2692 address modes. Then we may need to kill some entries on the
2693 memory set list. */
2694 if (insn && GET_CODE (reg) == MEM)
2695 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
2696
2697 if (GET_CODE (reg) == MEM && ! side_effects_p (reg)
2698 /* ??? With more effort we could track conditional memory life. */
2699 && ! cond)
2700 add_to_mem_set_list (pbi, canon_rtx (reg));
2701 }
2702
2703 if (GET_CODE (reg) == REG
2704 && ! (regno_first == FRAME_POINTER_REGNUM
2705 && (! reload_completed || frame_pointer_needed))
2706 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
2707 && ! (regno_first == HARD_FRAME_POINTER_REGNUM
2708 && (! reload_completed || frame_pointer_needed))
2709 #endif
2710 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
2711 && ! (regno_first == ARG_POINTER_REGNUM && fixed_regs[regno_first])
2712 #endif
2713 )
2714 {
2715 int some_was_live = 0, some_was_dead = 0;
2716
2717 for (i = regno_first; i <= regno_last; ++i)
2718 {
2719 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
2720 if (pbi->local_set)
2721 {
2722 /* Order of the set operation matters here since both
2723 sets may be the same. */
2724 CLEAR_REGNO_REG_SET (pbi->cond_local_set, i);
2725 if (cond != NULL_RTX
2726 && ! REGNO_REG_SET_P (pbi->local_set, i))
2727 SET_REGNO_REG_SET (pbi->cond_local_set, i);
2728 else
2729 SET_REGNO_REG_SET (pbi->local_set, i);
2730 }
2731 if (code != CLOBBER)
2732 SET_REGNO_REG_SET (pbi->new_set, i);
2733
2734 some_was_live |= needed_regno;
2735 some_was_dead |= ! needed_regno;
2736 }
2737
2738 #ifdef HAVE_conditional_execution
2739 /* Consider conditional death in deciding that the register needs
2740 a death note. */
2741 if (some_was_live && ! not_dead
2742 /* The stack pointer is never dead. Well, not strictly true,
2743 but it's very difficult to tell from here. Hopefully
2744 combine_stack_adjustments will fix up the most egregious
2745 errors. */
2746 && regno_first != STACK_POINTER_REGNUM)
2747 {
2748 for (i = regno_first; i <= regno_last; ++i)
2749 if (! mark_regno_cond_dead (pbi, i, cond))
2750 not_dead |= ((unsigned long) 1) << (i - regno_first);
2751 }
2752 #endif
2753
2754 /* Additional data to record if this is the final pass. */
2755 if (flags & (PROP_LOG_LINKS | PROP_REG_INFO
2756 | PROP_DEATH_NOTES | PROP_AUTOINC))
2757 {
2758 rtx y;
2759 int blocknum = pbi->bb->index;
2760
2761 y = NULL_RTX;
2762 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2763 {
2764 y = pbi->reg_next_use[regno_first];
2765
2766 /* The next use is no longer next, since a store intervenes. */
2767 for (i = regno_first; i <= regno_last; ++i)
2768 pbi->reg_next_use[i] = 0;
2769 }
2770
2771 if (flags & PROP_REG_INFO)
2772 {
2773 for (i = regno_first; i <= regno_last; ++i)
2774 {
2775 /* Count (weighted) references, stores, etc. This counts a
2776 register twice if it is modified, but that is correct. */
2777 REG_N_SETS (i) += 1;
2778 REG_N_REFS (i) += 1;
2779 REG_FREQ (i) += REG_FREQ_FROM_BB (pbi->bb);
2780
2781 /* The insns where a reg is live are normally counted
2782 elsewhere, but we want the count to include the insn
2783 where the reg is set, and the normal counting mechanism
2784 would not count it. */
2785 REG_LIVE_LENGTH (i) += 1;
2786 }
2787
2788 /* If this is a hard reg, record this function uses the reg. */
2789 if (regno_first < FIRST_PSEUDO_REGISTER)
2790 {
2791 for (i = regno_first; i <= regno_last; i++)
2792 regs_ever_live[i] = 1;
2793 }
2794 else
2795 {
2796 /* Keep track of which basic blocks each reg appears in. */
2797 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
2798 REG_BASIC_BLOCK (regno_first) = blocknum;
2799 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
2800 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
2801 }
2802 }
2803
2804 if (! some_was_dead)
2805 {
2806 if (flags & PROP_LOG_LINKS)
2807 {
2808 /* Make a logical link from the next following insn
2809 that uses this register, back to this insn.
2810 The following insns have already been processed.
2811
2812 We don't build a LOG_LINK for hard registers containing
2813 in ASM_OPERANDs. If these registers get replaced,
2814 we might wind up changing the semantics of the insn,
2815 even if reload can make what appear to be valid
2816 assignments later. */
2817 if (y && (BLOCK_NUM (y) == blocknum)
2818 && (regno_first >= FIRST_PSEUDO_REGISTER
2819 || asm_noperands (PATTERN (y)) < 0))
2820 LOG_LINKS (y) = alloc_INSN_LIST (insn, LOG_LINKS (y));
2821 }
2822 }
2823 else if (not_dead)
2824 ;
2825 else if (! some_was_live)
2826 {
2827 if (flags & PROP_REG_INFO)
2828 REG_N_DEATHS (regno_first) += 1;
2829
2830 if (flags & PROP_DEATH_NOTES)
2831 {
2832 /* Note that dead stores have already been deleted
2833 when possible. If we get here, we have found a
2834 dead store that cannot be eliminated (because the
2835 same insn does something useful). Indicate this
2836 by marking the reg being set as dying here. */
2837 REG_NOTES (insn)
2838 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2839 }
2840 }
2841 else
2842 {
2843 if (flags & PROP_DEATH_NOTES)
2844 {
2845 /* This is a case where we have a multi-word hard register
2846 and some, but not all, of the words of the register are
2847 needed in subsequent insns. Write REG_UNUSED notes
2848 for those parts that were not needed. This case should
2849 be rare. */
2850
2851 for (i = regno_first; i <= regno_last; ++i)
2852 if (! REGNO_REG_SET_P (pbi->reg_live, i))
2853 REG_NOTES (insn)
2854 = alloc_EXPR_LIST (REG_UNUSED,
2855 regno_reg_rtx[i],
2856 REG_NOTES (insn));
2857 }
2858 }
2859 }
2860
2861 /* Mark the register as being dead. */
2862 if (some_was_live
2863 /* The stack pointer is never dead. Well, not strictly true,
2864 but it's very difficult to tell from here. Hopefully
2865 combine_stack_adjustments will fix up the most egregious
2866 errors. */
2867 && regno_first != STACK_POINTER_REGNUM)
2868 {
2869 for (i = regno_first; i <= regno_last; ++i)
2870 if (!(not_dead & (((unsigned long) 1) << (i - regno_first))))
2871 CLEAR_REGNO_REG_SET (pbi->reg_live, i);
2872 }
2873 }
2874 else if (GET_CODE (reg) == REG)
2875 {
2876 if (flags & (PROP_LOG_LINKS | PROP_AUTOINC))
2877 pbi->reg_next_use[regno_first] = 0;
2878 }
2879
2880 /* If this is the last pass and this is a SCRATCH, show it will be dying
2881 here and count it. */
2882 else if (GET_CODE (reg) == SCRATCH)
2883 {
2884 if (flags & PROP_DEATH_NOTES)
2885 REG_NOTES (insn)
2886 = alloc_EXPR_LIST (REG_UNUSED, reg, REG_NOTES (insn));
2887 }
2888 }
2889 \f
2890 #ifdef HAVE_conditional_execution
2891 /* Mark REGNO conditionally dead.
2892 Return true if the register is now unconditionally dead. */
2893
2894 static int
2895 mark_regno_cond_dead (pbi, regno, cond)
2896 struct propagate_block_info *pbi;
2897 int regno;
2898 rtx cond;
2899 {
2900 /* If this is a store to a predicate register, the value of the
2901 predicate is changing, we don't know that the predicate as seen
2902 before is the same as that seen after. Flush all dependent
2903 conditions from reg_cond_dead. This will make all such
2904 conditionally live registers unconditionally live. */
2905 if (REGNO_REG_SET_P (pbi->reg_cond_reg, regno))
2906 flush_reg_cond_reg (pbi, regno);
2907
2908 /* If this is an unconditional store, remove any conditional
2909 life that may have existed. */
2910 if (cond == NULL_RTX)
2911 splay_tree_remove (pbi->reg_cond_dead, regno);
2912 else
2913 {
2914 splay_tree_node node;
2915 struct reg_cond_life_info *rcli;
2916 rtx ncond;
2917
2918 /* Otherwise this is a conditional set. Record that fact.
2919 It may have been conditionally used, or there may be a
2920 subsequent set with a complimentary condition. */
2921
2922 node = splay_tree_lookup (pbi->reg_cond_dead, regno);
2923 if (node == NULL)
2924 {
2925 /* The register was unconditionally live previously.
2926 Record the current condition as the condition under
2927 which it is dead. */
2928 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
2929 rcli->condition = cond;
2930 rcli->stores = cond;
2931 rcli->orig_condition = const0_rtx;
2932 splay_tree_insert (pbi->reg_cond_dead, regno,
2933 (splay_tree_value) rcli);
2934
2935 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2936
2937 /* Not unconditionally dead. */
2938 return 0;
2939 }
2940 else
2941 {
2942 /* The register was conditionally live previously.
2943 Add the new condition to the old. */
2944 rcli = (struct reg_cond_life_info *) node->value;
2945 ncond = rcli->condition;
2946 ncond = ior_reg_cond (ncond, cond, 1);
2947 if (rcli->stores == const0_rtx)
2948 rcli->stores = cond;
2949 else if (rcli->stores != const1_rtx)
2950 rcli->stores = ior_reg_cond (rcli->stores, cond, 1);
2951
2952 /* If the register is now unconditionally dead, remove the entry
2953 in the splay_tree. A register is unconditionally dead if the
2954 dead condition ncond is true. A register is also unconditionally
2955 dead if the sum of all conditional stores is an unconditional
2956 store (stores is true), and the dead condition is identically the
2957 same as the original dead condition initialized at the end of
2958 the block. This is a pointer compare, not an rtx_equal_p
2959 compare. */
2960 if (ncond == const1_rtx
2961 || (ncond == rcli->orig_condition && rcli->stores == const1_rtx))
2962 splay_tree_remove (pbi->reg_cond_dead, regno);
2963 else
2964 {
2965 rcli->condition = ncond;
2966
2967 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
2968
2969 /* Not unconditionally dead. */
2970 return 0;
2971 }
2972 }
2973 }
2974
2975 return 1;
2976 }
2977
2978 /* Called from splay_tree_delete for pbi->reg_cond_life. */
2979
2980 static void
2981 free_reg_cond_life_info (value)
2982 splay_tree_value value;
2983 {
2984 struct reg_cond_life_info *rcli = (struct reg_cond_life_info *) value;
2985 free (rcli);
2986 }
2987
2988 /* Helper function for flush_reg_cond_reg. */
2989
2990 static int
2991 flush_reg_cond_reg_1 (node, data)
2992 splay_tree_node node;
2993 void *data;
2994 {
2995 struct reg_cond_life_info *rcli;
2996 int *xdata = (int *) data;
2997 unsigned int regno = xdata[0];
2998
2999 /* Don't need to search if last flushed value was farther on in
3000 the in-order traversal. */
3001 if (xdata[1] >= (int) node->key)
3002 return 0;
3003
3004 /* Splice out portions of the expression that refer to regno. */
3005 rcli = (struct reg_cond_life_info *) node->value;
3006 rcli->condition = elim_reg_cond (rcli->condition, regno);
3007 if (rcli->stores != const0_rtx && rcli->stores != const1_rtx)
3008 rcli->stores = elim_reg_cond (rcli->stores, regno);
3009
3010 /* If the entire condition is now false, signal the node to be removed. */
3011 if (rcli->condition == const0_rtx)
3012 {
3013 xdata[1] = node->key;
3014 return -1;
3015 }
3016 else if (rcli->condition == const1_rtx)
3017 abort ();
3018
3019 return 0;
3020 }
3021
3022 /* Flush all (sub) expressions referring to REGNO from REG_COND_LIVE. */
3023
3024 static void
3025 flush_reg_cond_reg (pbi, regno)
3026 struct propagate_block_info *pbi;
3027 int regno;
3028 {
3029 int pair[2];
3030
3031 pair[0] = regno;
3032 pair[1] = -1;
3033 while (splay_tree_foreach (pbi->reg_cond_dead,
3034 flush_reg_cond_reg_1, pair) == -1)
3035 splay_tree_remove (pbi->reg_cond_dead, pair[1]);
3036
3037 CLEAR_REGNO_REG_SET (pbi->reg_cond_reg, regno);
3038 }
3039
3040 /* Logical arithmetic on predicate conditions. IOR, NOT and AND.
3041 For ior/and, the ADD flag determines whether we want to add the new
3042 condition X to the old one unconditionally. If it is zero, we will
3043 only return a new expression if X allows us to simplify part of
3044 OLD, otherwise we return NULL to the caller.
3045 If ADD is nonzero, we will return a new condition in all cases. The
3046 toplevel caller of one of these functions should always pass 1 for
3047 ADD. */
3048
3049 static rtx
3050 ior_reg_cond (old, x, add)
3051 rtx old, x;
3052 int add;
3053 {
3054 rtx op0, op1;
3055
3056 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3057 {
3058 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3059 && REVERSE_CONDEXEC_PREDICATES_P (GET_CODE (x), GET_CODE (old))
3060 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3061 return const1_rtx;
3062 if (GET_CODE (x) == GET_CODE (old)
3063 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3064 return old;
3065 if (! add)
3066 return NULL;
3067 return gen_rtx_IOR (0, old, x);
3068 }
3069
3070 switch (GET_CODE (old))
3071 {
3072 case IOR:
3073 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3074 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3075 if (op0 != NULL || op1 != NULL)
3076 {
3077 if (op0 == const0_rtx)
3078 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3079 if (op1 == const0_rtx)
3080 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3081 if (op0 == const1_rtx || op1 == const1_rtx)
3082 return const1_rtx;
3083 if (op0 == NULL)
3084 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3085 else if (rtx_equal_p (x, op0))
3086 /* (x | A) | x ~ (x | A). */
3087 return old;
3088 if (op1 == NULL)
3089 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3090 else if (rtx_equal_p (x, op1))
3091 /* (A | x) | x ~ (A | x). */
3092 return old;
3093 return gen_rtx_IOR (0, op0, op1);
3094 }
3095 if (! add)
3096 return NULL;
3097 return gen_rtx_IOR (0, old, x);
3098
3099 case AND:
3100 op0 = ior_reg_cond (XEXP (old, 0), x, 0);
3101 op1 = ior_reg_cond (XEXP (old, 1), x, 0);
3102 if (op0 != NULL || op1 != NULL)
3103 {
3104 if (op0 == const1_rtx)
3105 return op1 ? op1 : gen_rtx_IOR (0, XEXP (old, 1), x);
3106 if (op1 == const1_rtx)
3107 return op0 ? op0 : gen_rtx_IOR (0, XEXP (old, 0), x);
3108 if (op0 == const0_rtx || op1 == const0_rtx)
3109 return const0_rtx;
3110 if (op0 == NULL)
3111 op0 = gen_rtx_IOR (0, XEXP (old, 0), x);
3112 else if (rtx_equal_p (x, op0))
3113 /* (x & A) | x ~ x. */
3114 return op0;
3115 if (op1 == NULL)
3116 op1 = gen_rtx_IOR (0, XEXP (old, 1), x);
3117 else if (rtx_equal_p (x, op1))
3118 /* (A & x) | x ~ x. */
3119 return op1;
3120 return gen_rtx_AND (0, op0, op1);
3121 }
3122 if (! add)
3123 return NULL;
3124 return gen_rtx_IOR (0, old, x);
3125
3126 case NOT:
3127 op0 = and_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3128 if (op0 != NULL)
3129 return not_reg_cond (op0);
3130 if (! add)
3131 return NULL;
3132 return gen_rtx_IOR (0, old, x);
3133
3134 default:
3135 abort ();
3136 }
3137 }
3138
3139 static rtx
3140 not_reg_cond (x)
3141 rtx x;
3142 {
3143 enum rtx_code x_code;
3144
3145 if (x == const0_rtx)
3146 return const1_rtx;
3147 else if (x == const1_rtx)
3148 return const0_rtx;
3149 x_code = GET_CODE (x);
3150 if (x_code == NOT)
3151 return XEXP (x, 0);
3152 if (GET_RTX_CLASS (x_code) == '<'
3153 && GET_CODE (XEXP (x, 0)) == REG)
3154 {
3155 if (XEXP (x, 1) != const0_rtx)
3156 abort ();
3157
3158 return gen_rtx_fmt_ee (reverse_condition (x_code),
3159 VOIDmode, XEXP (x, 0), const0_rtx);
3160 }
3161 return gen_rtx_NOT (0, x);
3162 }
3163
3164 static rtx
3165 and_reg_cond (old, x, add)
3166 rtx old, x;
3167 int add;
3168 {
3169 rtx op0, op1;
3170
3171 if (GET_RTX_CLASS (GET_CODE (old)) == '<')
3172 {
3173 if (GET_RTX_CLASS (GET_CODE (x)) == '<'
3174 && GET_CODE (x) == reverse_condition (GET_CODE (old))
3175 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3176 return const0_rtx;
3177 if (GET_CODE (x) == GET_CODE (old)
3178 && REGNO (XEXP (x, 0)) == REGNO (XEXP (old, 0)))
3179 return old;
3180 if (! add)
3181 return NULL;
3182 return gen_rtx_AND (0, old, x);
3183 }
3184
3185 switch (GET_CODE (old))
3186 {
3187 case IOR:
3188 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3189 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3190 if (op0 != NULL || op1 != NULL)
3191 {
3192 if (op0 == const0_rtx)
3193 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3194 if (op1 == const0_rtx)
3195 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3196 if (op0 == const1_rtx || op1 == const1_rtx)
3197 return const1_rtx;
3198 if (op0 == NULL)
3199 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3200 else if (rtx_equal_p (x, op0))
3201 /* (x | A) & x ~ x. */
3202 return op0;
3203 if (op1 == NULL)
3204 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3205 else if (rtx_equal_p (x, op1))
3206 /* (A | x) & x ~ x. */
3207 return op1;
3208 return gen_rtx_IOR (0, op0, op1);
3209 }
3210 if (! add)
3211 return NULL;
3212 return gen_rtx_AND (0, old, x);
3213
3214 case AND:
3215 op0 = and_reg_cond (XEXP (old, 0), x, 0);
3216 op1 = and_reg_cond (XEXP (old, 1), x, 0);
3217 if (op0 != NULL || op1 != NULL)
3218 {
3219 if (op0 == const1_rtx)
3220 return op1 ? op1 : gen_rtx_AND (0, XEXP (old, 1), x);
3221 if (op1 == const1_rtx)
3222 return op0 ? op0 : gen_rtx_AND (0, XEXP (old, 0), x);
3223 if (op0 == const0_rtx || op1 == const0_rtx)
3224 return const0_rtx;
3225 if (op0 == NULL)
3226 op0 = gen_rtx_AND (0, XEXP (old, 0), x);
3227 else if (rtx_equal_p (x, op0))
3228 /* (x & A) & x ~ (x & A). */
3229 return old;
3230 if (op1 == NULL)
3231 op1 = gen_rtx_AND (0, XEXP (old, 1), x);
3232 else if (rtx_equal_p (x, op1))
3233 /* (A & x) & x ~ (A & x). */
3234 return old;
3235 return gen_rtx_AND (0, op0, op1);
3236 }
3237 if (! add)
3238 return NULL;
3239 return gen_rtx_AND (0, old, x);
3240
3241 case NOT:
3242 op0 = ior_reg_cond (XEXP (old, 0), not_reg_cond (x), 0);
3243 if (op0 != NULL)
3244 return not_reg_cond (op0);
3245 if (! add)
3246 return NULL;
3247 return gen_rtx_AND (0, old, x);
3248
3249 default:
3250 abort ();
3251 }
3252 }
3253
3254 /* Given a condition X, remove references to reg REGNO and return the
3255 new condition. The removal will be done so that all conditions
3256 involving REGNO are considered to evaluate to false. This function
3257 is used when the value of REGNO changes. */
3258
3259 static rtx
3260 elim_reg_cond (x, regno)
3261 rtx x;
3262 unsigned int regno;
3263 {
3264 rtx op0, op1;
3265
3266 if (GET_RTX_CLASS (GET_CODE (x)) == '<')
3267 {
3268 if (REGNO (XEXP (x, 0)) == regno)
3269 return const0_rtx;
3270 return x;
3271 }
3272
3273 switch (GET_CODE (x))
3274 {
3275 case AND:
3276 op0 = elim_reg_cond (XEXP (x, 0), regno);
3277 op1 = elim_reg_cond (XEXP (x, 1), regno);
3278 if (op0 == const0_rtx || op1 == const0_rtx)
3279 return const0_rtx;
3280 if (op0 == const1_rtx)
3281 return op1;
3282 if (op1 == const1_rtx)
3283 return op0;
3284 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3285 return x;
3286 return gen_rtx_AND (0, op0, op1);
3287
3288 case IOR:
3289 op0 = elim_reg_cond (XEXP (x, 0), regno);
3290 op1 = elim_reg_cond (XEXP (x, 1), regno);
3291 if (op0 == const1_rtx || op1 == const1_rtx)
3292 return const1_rtx;
3293 if (op0 == const0_rtx)
3294 return op1;
3295 if (op1 == const0_rtx)
3296 return op0;
3297 if (op0 == XEXP (x, 0) && op1 == XEXP (x, 1))
3298 return x;
3299 return gen_rtx_IOR (0, op0, op1);
3300
3301 case NOT:
3302 op0 = elim_reg_cond (XEXP (x, 0), regno);
3303 if (op0 == const0_rtx)
3304 return const1_rtx;
3305 if (op0 == const1_rtx)
3306 return const0_rtx;
3307 if (op0 != XEXP (x, 0))
3308 return not_reg_cond (op0);
3309 return x;
3310
3311 default:
3312 abort ();
3313 }
3314 }
3315 #endif /* HAVE_conditional_execution */
3316 \f
3317 #ifdef AUTO_INC_DEC
3318
3319 /* Try to substitute the auto-inc expression INC as the address inside
3320 MEM which occurs in INSN. Currently, the address of MEM is an expression
3321 involving INCR_REG, and INCR is the next use of INCR_REG; it is an insn
3322 that has a single set whose source is a PLUS of INCR_REG and something
3323 else. */
3324
3325 static void
3326 attempt_auto_inc (pbi, inc, insn, mem, incr, incr_reg)
3327 struct propagate_block_info *pbi;
3328 rtx inc, insn, mem, incr, incr_reg;
3329 {
3330 int regno = REGNO (incr_reg);
3331 rtx set = single_set (incr);
3332 rtx q = SET_DEST (set);
3333 rtx y = SET_SRC (set);
3334 int opnum = XEXP (y, 0) == incr_reg ? 0 : 1;
3335
3336 /* Make sure this reg appears only once in this insn. */
3337 if (count_occurrences (PATTERN (insn), incr_reg, 1) != 1)
3338 return;
3339
3340 if (dead_or_set_p (incr, incr_reg)
3341 /* Mustn't autoinc an eliminable register. */
3342 && (regno >= FIRST_PSEUDO_REGISTER
3343 || ! TEST_HARD_REG_BIT (elim_reg_set, regno)))
3344 {
3345 /* This is the simple case. Try to make the auto-inc. If
3346 we can't, we are done. Otherwise, we will do any
3347 needed updates below. */
3348 if (! validate_change (insn, &XEXP (mem, 0), inc, 0))
3349 return;
3350 }
3351 else if (GET_CODE (q) == REG
3352 /* PREV_INSN used here to check the semi-open interval
3353 [insn,incr). */
3354 && ! reg_used_between_p (q, PREV_INSN (insn), incr)
3355 /* We must also check for sets of q as q may be
3356 a call clobbered hard register and there may
3357 be a call between PREV_INSN (insn) and incr. */
3358 && ! reg_set_between_p (q, PREV_INSN (insn), incr))
3359 {
3360 /* We have *p followed sometime later by q = p+size.
3361 Both p and q must be live afterward,
3362 and q is not used between INSN and its assignment.
3363 Change it to q = p, ...*q..., q = q+size.
3364 Then fall into the usual case. */
3365 rtx insns, temp;
3366
3367 start_sequence ();
3368 emit_move_insn (q, incr_reg);
3369 insns = get_insns ();
3370 end_sequence ();
3371
3372 /* If we can't make the auto-inc, or can't make the
3373 replacement into Y, exit. There's no point in making
3374 the change below if we can't do the auto-inc and doing
3375 so is not correct in the pre-inc case. */
3376
3377 XEXP (inc, 0) = q;
3378 validate_change (insn, &XEXP (mem, 0), inc, 1);
3379 validate_change (incr, &XEXP (y, opnum), q, 1);
3380 if (! apply_change_group ())
3381 return;
3382
3383 /* We now know we'll be doing this change, so emit the
3384 new insn(s) and do the updates. */
3385 emit_insn_before (insns, insn);
3386
3387 if (pbi->bb->head == insn)
3388 pbi->bb->head = insns;
3389
3390 /* INCR will become a NOTE and INSN won't contain a
3391 use of INCR_REG. If a use of INCR_REG was just placed in
3392 the insn before INSN, make that the next use.
3393 Otherwise, invalidate it. */
3394 if (GET_CODE (PREV_INSN (insn)) == INSN
3395 && GET_CODE (PATTERN (PREV_INSN (insn))) == SET
3396 && SET_SRC (PATTERN (PREV_INSN (insn))) == incr_reg)
3397 pbi->reg_next_use[regno] = PREV_INSN (insn);
3398 else
3399 pbi->reg_next_use[regno] = 0;
3400
3401 incr_reg = q;
3402 regno = REGNO (q);
3403
3404 /* REGNO is now used in INCR which is below INSN, but
3405 it previously wasn't live here. If we don't mark
3406 it as live, we'll put a REG_DEAD note for it
3407 on this insn, which is incorrect. */
3408 SET_REGNO_REG_SET (pbi->reg_live, regno);
3409
3410 /* If there are any calls between INSN and INCR, show
3411 that REGNO now crosses them. */
3412 for (temp = insn; temp != incr; temp = NEXT_INSN (temp))
3413 if (GET_CODE (temp) == CALL_INSN)
3414 REG_N_CALLS_CROSSED (regno)++;
3415
3416 /* Invalidate alias info for Q since we just changed its value. */
3417 clear_reg_alias_info (q);
3418 }
3419 else
3420 return;
3421
3422 /* If we haven't returned, it means we were able to make the
3423 auto-inc, so update the status. First, record that this insn
3424 has an implicit side effect. */
3425
3426 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, incr_reg, REG_NOTES (insn));
3427
3428 /* Modify the old increment-insn to simply copy
3429 the already-incremented value of our register. */
3430 if (! validate_change (incr, &SET_SRC (set), incr_reg, 0))
3431 abort ();
3432
3433 /* If that makes it a no-op (copying the register into itself) delete
3434 it so it won't appear to be a "use" and a "set" of this
3435 register. */
3436 if (REGNO (SET_DEST (set)) == REGNO (incr_reg))
3437 {
3438 /* If the original source was dead, it's dead now. */
3439 rtx note;
3440
3441 while ((note = find_reg_note (incr, REG_DEAD, NULL_RTX)) != NULL_RTX)
3442 {
3443 remove_note (incr, note);
3444 if (XEXP (note, 0) != incr_reg)
3445 CLEAR_REGNO_REG_SET (pbi->reg_live, REGNO (XEXP (note, 0)));
3446 }
3447
3448 PUT_CODE (incr, NOTE);
3449 NOTE_LINE_NUMBER (incr) = NOTE_INSN_DELETED;
3450 NOTE_SOURCE_FILE (incr) = 0;
3451 }
3452
3453 if (regno >= FIRST_PSEUDO_REGISTER)
3454 {
3455 /* Count an extra reference to the reg. When a reg is
3456 incremented, spilling it is worse, so we want to make
3457 that less likely. */
3458 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
3459
3460 /* Count the increment as a setting of the register,
3461 even though it isn't a SET in rtl. */
3462 REG_N_SETS (regno)++;
3463 }
3464 }
3465
3466 /* X is a MEM found in INSN. See if we can convert it into an auto-increment
3467 reference. */
3468
3469 static void
3470 find_auto_inc (pbi, x, insn)
3471 struct propagate_block_info *pbi;
3472 rtx x;
3473 rtx insn;
3474 {
3475 rtx addr = XEXP (x, 0);
3476 HOST_WIDE_INT offset = 0;
3477 rtx set, y, incr, inc_val;
3478 int regno;
3479 int size = GET_MODE_SIZE (GET_MODE (x));
3480
3481 if (GET_CODE (insn) == JUMP_INSN)
3482 return;
3483
3484 /* Here we detect use of an index register which might be good for
3485 postincrement, postdecrement, preincrement, or predecrement. */
3486
3487 if (GET_CODE (addr) == PLUS && GET_CODE (XEXP (addr, 1)) == CONST_INT)
3488 offset = INTVAL (XEXP (addr, 1)), addr = XEXP (addr, 0);
3489
3490 if (GET_CODE (addr) != REG)
3491 return;
3492
3493 regno = REGNO (addr);
3494
3495 /* Is the next use an increment that might make auto-increment? */
3496 incr = pbi->reg_next_use[regno];
3497 if (incr == 0 || BLOCK_NUM (incr) != BLOCK_NUM (insn))
3498 return;
3499 set = single_set (incr);
3500 if (set == 0 || GET_CODE (set) != SET)
3501 return;
3502 y = SET_SRC (set);
3503
3504 if (GET_CODE (y) != PLUS)
3505 return;
3506
3507 if (REG_P (XEXP (y, 0)) && REGNO (XEXP (y, 0)) == REGNO (addr))
3508 inc_val = XEXP (y, 1);
3509 else if (REG_P (XEXP (y, 1)) && REGNO (XEXP (y, 1)) == REGNO (addr))
3510 inc_val = XEXP (y, 0);
3511 else
3512 return;
3513
3514 if (GET_CODE (inc_val) == CONST_INT)
3515 {
3516 if (HAVE_POST_INCREMENT
3517 && (INTVAL (inc_val) == size && offset == 0))
3518 attempt_auto_inc (pbi, gen_rtx_POST_INC (Pmode, addr), insn, x,
3519 incr, addr);
3520 else if (HAVE_POST_DECREMENT
3521 && (INTVAL (inc_val) == -size && offset == 0))
3522 attempt_auto_inc (pbi, gen_rtx_POST_DEC (Pmode, addr), insn, x,
3523 incr, addr);
3524 else if (HAVE_PRE_INCREMENT
3525 && (INTVAL (inc_val) == size && offset == size))
3526 attempt_auto_inc (pbi, gen_rtx_PRE_INC (Pmode, addr), insn, x,
3527 incr, addr);
3528 else if (HAVE_PRE_DECREMENT
3529 && (INTVAL (inc_val) == -size && offset == -size))
3530 attempt_auto_inc (pbi, gen_rtx_PRE_DEC (Pmode, addr), insn, x,
3531 incr, addr);
3532 else if (HAVE_POST_MODIFY_DISP && offset == 0)
3533 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3534 gen_rtx_PLUS (Pmode,
3535 addr,
3536 inc_val)),
3537 insn, x, incr, addr);
3538 else if (HAVE_PRE_MODIFY_DISP && offset == INTVAL (inc_val))
3539 attempt_auto_inc (pbi, gen_rtx_PRE_MODIFY (Pmode, addr,
3540 gen_rtx_PLUS (Pmode,
3541 addr,
3542 inc_val)),
3543 insn, x, incr, addr);
3544 }
3545 else if (GET_CODE (inc_val) == REG
3546 && ! reg_set_between_p (inc_val, PREV_INSN (insn),
3547 NEXT_INSN (incr)))
3548
3549 {
3550 if (HAVE_POST_MODIFY_REG && offset == 0)
3551 attempt_auto_inc (pbi, gen_rtx_POST_MODIFY (Pmode, addr,
3552 gen_rtx_PLUS (Pmode,
3553 addr,
3554 inc_val)),
3555 insn, x, incr, addr);
3556 }
3557 }
3558
3559 #endif /* AUTO_INC_DEC */
3560 \f
3561 static void
3562 mark_used_reg (pbi, reg, cond, insn)
3563 struct propagate_block_info *pbi;
3564 rtx reg;
3565 rtx cond ATTRIBUTE_UNUSED;
3566 rtx insn;
3567 {
3568 unsigned int regno_first, regno_last, i;
3569 int some_was_live, some_was_dead, some_not_set;
3570
3571 regno_last = regno_first = REGNO (reg);
3572 if (regno_first < FIRST_PSEUDO_REGISTER)
3573 regno_last += HARD_REGNO_NREGS (regno_first, GET_MODE (reg)) - 1;
3574
3575 /* Find out if any of this register is live after this instruction. */
3576 some_was_live = some_was_dead = 0;
3577 for (i = regno_first; i <= regno_last; ++i)
3578 {
3579 int needed_regno = REGNO_REG_SET_P (pbi->reg_live, i);
3580 some_was_live |= needed_regno;
3581 some_was_dead |= ! needed_regno;
3582 }
3583
3584 /* Find out if any of the register was set this insn. */
3585 some_not_set = 0;
3586 for (i = regno_first; i <= regno_last; ++i)
3587 some_not_set |= ! REGNO_REG_SET_P (pbi->new_set, i);
3588
3589 if (pbi->flags & (PROP_LOG_LINKS | PROP_AUTOINC))
3590 {
3591 /* Record where each reg is used, so when the reg is set we know
3592 the next insn that uses it. */
3593 pbi->reg_next_use[regno_first] = insn;
3594 }
3595
3596 if (pbi->flags & PROP_REG_INFO)
3597 {
3598 if (regno_first < FIRST_PSEUDO_REGISTER)
3599 {
3600 /* If this is a register we are going to try to eliminate,
3601 don't mark it live here. If we are successful in
3602 eliminating it, it need not be live unless it is used for
3603 pseudos, in which case it will have been set live when it
3604 was allocated to the pseudos. If the register will not
3605 be eliminated, reload will set it live at that point.
3606
3607 Otherwise, record that this function uses this register. */
3608 /* ??? The PPC backend tries to "eliminate" on the pic
3609 register to itself. This should be fixed. In the mean
3610 time, hack around it. */
3611
3612 if (! (TEST_HARD_REG_BIT (elim_reg_set, regno_first)
3613 && (regno_first == FRAME_POINTER_REGNUM
3614 || regno_first == ARG_POINTER_REGNUM)))
3615 for (i = regno_first; i <= regno_last; ++i)
3616 regs_ever_live[i] = 1;
3617 }
3618 else
3619 {
3620 /* Keep track of which basic block each reg appears in. */
3621
3622 int blocknum = pbi->bb->index;
3623 if (REG_BASIC_BLOCK (regno_first) == REG_BLOCK_UNKNOWN)
3624 REG_BASIC_BLOCK (regno_first) = blocknum;
3625 else if (REG_BASIC_BLOCK (regno_first) != blocknum)
3626 REG_BASIC_BLOCK (regno_first) = REG_BLOCK_GLOBAL;
3627
3628 /* Count (weighted) number of uses of each reg. */
3629 REG_FREQ (regno_first) += REG_FREQ_FROM_BB (pbi->bb);
3630 REG_N_REFS (regno_first)++;
3631 }
3632 }
3633
3634 /* Record and count the insns in which a reg dies. If it is used in
3635 this insn and was dead below the insn then it dies in this insn.
3636 If it was set in this insn, we do not make a REG_DEAD note;
3637 likewise if we already made such a note. */
3638 if ((pbi->flags & (PROP_DEATH_NOTES | PROP_REG_INFO))
3639 && some_was_dead
3640 && some_not_set)
3641 {
3642 /* Check for the case where the register dying partially
3643 overlaps the register set by this insn. */
3644 if (regno_first != regno_last)
3645 for (i = regno_first; i <= regno_last; ++i)
3646 some_was_live |= REGNO_REG_SET_P (pbi->new_set, i);
3647
3648 /* If none of the words in X is needed, make a REG_DEAD note.
3649 Otherwise, we must make partial REG_DEAD notes. */
3650 if (! some_was_live)
3651 {
3652 if ((pbi->flags & PROP_DEATH_NOTES)
3653 && ! find_regno_note (insn, REG_DEAD, regno_first))
3654 REG_NOTES (insn)
3655 = alloc_EXPR_LIST (REG_DEAD, reg, REG_NOTES (insn));
3656
3657 if (pbi->flags & PROP_REG_INFO)
3658 REG_N_DEATHS (regno_first)++;
3659 }
3660 else
3661 {
3662 /* Don't make a REG_DEAD note for a part of a register
3663 that is set in the insn. */
3664 for (i = regno_first; i <= regno_last; ++i)
3665 if (! REGNO_REG_SET_P (pbi->reg_live, i)
3666 && ! dead_or_set_regno_p (insn, i))
3667 REG_NOTES (insn)
3668 = alloc_EXPR_LIST (REG_DEAD,
3669 regno_reg_rtx[i],
3670 REG_NOTES (insn));
3671 }
3672 }
3673
3674 /* Mark the register as being live. */
3675 for (i = regno_first; i <= regno_last; ++i)
3676 {
3677 #ifdef HAVE_conditional_execution
3678 int this_was_live = REGNO_REG_SET_P (pbi->reg_live, i);
3679 #endif
3680
3681 SET_REGNO_REG_SET (pbi->reg_live, i);
3682
3683 #ifdef HAVE_conditional_execution
3684 /* If this is a conditional use, record that fact. If it is later
3685 conditionally set, we'll know to kill the register. */
3686 if (cond != NULL_RTX)
3687 {
3688 splay_tree_node node;
3689 struct reg_cond_life_info *rcli;
3690 rtx ncond;
3691
3692 if (this_was_live)
3693 {
3694 node = splay_tree_lookup (pbi->reg_cond_dead, i);
3695 if (node == NULL)
3696 {
3697 /* The register was unconditionally live previously.
3698 No need to do anything. */
3699 }
3700 else
3701 {
3702 /* The register was conditionally live previously.
3703 Subtract the new life cond from the old death cond. */
3704 rcli = (struct reg_cond_life_info *) node->value;
3705 ncond = rcli->condition;
3706 ncond = and_reg_cond (ncond, not_reg_cond (cond), 1);
3707
3708 /* If the register is now unconditionally live,
3709 remove the entry in the splay_tree. */
3710 if (ncond == const0_rtx)
3711 splay_tree_remove (pbi->reg_cond_dead, i);
3712 else
3713 {
3714 rcli->condition = ncond;
3715 SET_REGNO_REG_SET (pbi->reg_cond_reg,
3716 REGNO (XEXP (cond, 0)));
3717 }
3718 }
3719 }
3720 else
3721 {
3722 /* The register was not previously live at all. Record
3723 the condition under which it is still dead. */
3724 rcli = (struct reg_cond_life_info *) xmalloc (sizeof (*rcli));
3725 rcli->condition = not_reg_cond (cond);
3726 rcli->stores = const0_rtx;
3727 rcli->orig_condition = const0_rtx;
3728 splay_tree_insert (pbi->reg_cond_dead, i,
3729 (splay_tree_value) rcli);
3730
3731 SET_REGNO_REG_SET (pbi->reg_cond_reg, REGNO (XEXP (cond, 0)));
3732 }
3733 }
3734 else if (this_was_live)
3735 {
3736 /* The register may have been conditionally live previously, but
3737 is now unconditionally live. Remove it from the conditionally
3738 dead list, so that a conditional set won't cause us to think
3739 it dead. */
3740 splay_tree_remove (pbi->reg_cond_dead, i);
3741 }
3742 #endif
3743 }
3744 }
3745
3746 /* Scan expression X and store a 1-bit in NEW_LIVE for each reg it uses.
3747 This is done assuming the registers needed from X are those that
3748 have 1-bits in PBI->REG_LIVE.
3749
3750 INSN is the containing instruction. If INSN is dead, this function
3751 is not called. */
3752
3753 static void
3754 mark_used_regs (pbi, x, cond, insn)
3755 struct propagate_block_info *pbi;
3756 rtx x, cond, insn;
3757 {
3758 RTX_CODE code;
3759 int regno;
3760 int flags = pbi->flags;
3761
3762 retry:
3763 if (!x)
3764 return;
3765 code = GET_CODE (x);
3766 switch (code)
3767 {
3768 case LABEL_REF:
3769 case SYMBOL_REF:
3770 case CONST_INT:
3771 case CONST:
3772 case CONST_DOUBLE:
3773 case CONST_VECTOR:
3774 case PC:
3775 case ADDR_VEC:
3776 case ADDR_DIFF_VEC:
3777 return;
3778
3779 #ifdef HAVE_cc0
3780 case CC0:
3781 pbi->cc0_live = 1;
3782 return;
3783 #endif
3784
3785 case CLOBBER:
3786 /* If we are clobbering a MEM, mark any registers inside the address
3787 as being used. */
3788 if (GET_CODE (XEXP (x, 0)) == MEM)
3789 mark_used_regs (pbi, XEXP (XEXP (x, 0), 0), cond, insn);
3790 return;
3791
3792 case MEM:
3793 /* Don't bother watching stores to mems if this is not the
3794 final pass. We'll not be deleting dead stores this round. */
3795 if (optimize && (flags & PROP_SCAN_DEAD_STORES))
3796 {
3797 /* Invalidate the data for the last MEM stored, but only if MEM is
3798 something that can be stored into. */
3799 if (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3800 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)))
3801 /* Needn't clear the memory set list. */
3802 ;
3803 else
3804 {
3805 rtx temp = pbi->mem_set_list;
3806 rtx prev = NULL_RTX;
3807 rtx next;
3808
3809 while (temp)
3810 {
3811 next = XEXP (temp, 1);
3812 if (anti_dependence (XEXP (temp, 0), x))
3813 {
3814 /* Splice temp out of the list. */
3815 if (prev)
3816 XEXP (prev, 1) = next;
3817 else
3818 pbi->mem_set_list = next;
3819 free_EXPR_LIST_node (temp);
3820 pbi->mem_set_list_len--;
3821 }
3822 else
3823 prev = temp;
3824 temp = next;
3825 }
3826 }
3827
3828 /* If the memory reference had embedded side effects (autoincrement
3829 address modes. Then we may need to kill some entries on the
3830 memory set list. */
3831 if (insn)
3832 for_each_rtx (&PATTERN (insn), invalidate_mems_from_autoinc, pbi);
3833 }
3834
3835 #ifdef AUTO_INC_DEC
3836 if (flags & PROP_AUTOINC)
3837 find_auto_inc (pbi, x, insn);
3838 #endif
3839 break;
3840
3841 case SUBREG:
3842 #ifdef CANNOT_CHANGE_MODE_CLASS
3843 if (GET_CODE (SUBREG_REG (x)) == REG
3844 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
3845 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (x))
3846 * MAX_MACHINE_MODE
3847 + GET_MODE (x));
3848 #endif
3849
3850 /* While we're here, optimize this case. */
3851 x = SUBREG_REG (x);
3852 if (GET_CODE (x) != REG)
3853 goto retry;
3854 /* Fall through. */
3855
3856 case REG:
3857 /* See a register other than being set => mark it as needed. */
3858 mark_used_reg (pbi, x, cond, insn);
3859 return;
3860
3861 case SET:
3862 {
3863 rtx testreg = SET_DEST (x);
3864 int mark_dest = 0;
3865
3866 /* If storing into MEM, don't show it as being used. But do
3867 show the address as being used. */
3868 if (GET_CODE (testreg) == MEM)
3869 {
3870 #ifdef AUTO_INC_DEC
3871 if (flags & PROP_AUTOINC)
3872 find_auto_inc (pbi, testreg, insn);
3873 #endif
3874 mark_used_regs (pbi, XEXP (testreg, 0), cond, insn);
3875 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3876 return;
3877 }
3878
3879 /* Storing in STRICT_LOW_PART is like storing in a reg
3880 in that this SET might be dead, so ignore it in TESTREG.
3881 but in some other ways it is like using the reg.
3882
3883 Storing in a SUBREG or a bit field is like storing the entire
3884 register in that if the register's value is not used
3885 then this SET is not needed. */
3886 while (GET_CODE (testreg) == STRICT_LOW_PART
3887 || GET_CODE (testreg) == ZERO_EXTRACT
3888 || GET_CODE (testreg) == SIGN_EXTRACT
3889 || GET_CODE (testreg) == SUBREG)
3890 {
3891 #ifdef CANNOT_CHANGE_MODE_CLASS
3892 if (GET_CODE (testreg) == SUBREG
3893 && GET_CODE (SUBREG_REG (testreg)) == REG
3894 && REGNO (SUBREG_REG (testreg)) >= FIRST_PSEUDO_REGISTER)
3895 bitmap_set_bit (&subregs_of_mode, REGNO (SUBREG_REG (testreg))
3896 * MAX_MACHINE_MODE
3897 + GET_MODE (testreg));
3898 #endif
3899
3900 /* Modifying a single register in an alternate mode
3901 does not use any of the old value. But these other
3902 ways of storing in a register do use the old value. */
3903 if (GET_CODE (testreg) == SUBREG
3904 && !((REG_BYTES (SUBREG_REG (testreg))
3905 + UNITS_PER_WORD - 1) / UNITS_PER_WORD
3906 > (REG_BYTES (testreg)
3907 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
3908 ;
3909 else
3910 mark_dest = 1;
3911
3912 testreg = XEXP (testreg, 0);
3913 }
3914
3915 /* If this is a store into a register or group of registers,
3916 recursively scan the value being stored. */
3917
3918 if ((GET_CODE (testreg) == PARALLEL
3919 && GET_MODE (testreg) == BLKmode)
3920 || (GET_CODE (testreg) == REG
3921 && (regno = REGNO (testreg),
3922 ! (regno == FRAME_POINTER_REGNUM
3923 && (! reload_completed || frame_pointer_needed)))
3924 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
3925 && ! (regno == HARD_FRAME_POINTER_REGNUM
3926 && (! reload_completed || frame_pointer_needed))
3927 #endif
3928 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3929 && ! (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
3930 #endif
3931 ))
3932 {
3933 if (mark_dest)
3934 mark_used_regs (pbi, SET_DEST (x), cond, insn);
3935 mark_used_regs (pbi, SET_SRC (x), cond, insn);
3936 return;
3937 }
3938 }
3939 break;
3940
3941 case ASM_OPERANDS:
3942 case UNSPEC_VOLATILE:
3943 case TRAP_IF:
3944 case ASM_INPUT:
3945 {
3946 /* Traditional and volatile asm instructions must be considered to use
3947 and clobber all hard registers, all pseudo-registers and all of
3948 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
3949
3950 Consider for instance a volatile asm that changes the fpu rounding
3951 mode. An insn should not be moved across this even if it only uses
3952 pseudo-regs because it might give an incorrectly rounded result.
3953
3954 ?!? Unfortunately, marking all hard registers as live causes massive
3955 problems for the register allocator and marking all pseudos as live
3956 creates mountains of uninitialized variable warnings.
3957
3958 So for now, just clear the memory set list and mark any regs
3959 we can find in ASM_OPERANDS as used. */
3960 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
3961 {
3962 free_EXPR_LIST_list (&pbi->mem_set_list);
3963 pbi->mem_set_list_len = 0;
3964 }
3965
3966 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
3967 We can not just fall through here since then we would be confused
3968 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
3969 traditional asms unlike their normal usage. */
3970 if (code == ASM_OPERANDS)
3971 {
3972 int j;
3973
3974 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
3975 mark_used_regs (pbi, ASM_OPERANDS_INPUT (x, j), cond, insn);
3976 }
3977 break;
3978 }
3979
3980 case COND_EXEC:
3981 if (cond != NULL_RTX)
3982 abort ();
3983
3984 mark_used_regs (pbi, COND_EXEC_TEST (x), NULL_RTX, insn);
3985
3986 cond = COND_EXEC_TEST (x);
3987 x = COND_EXEC_CODE (x);
3988 goto retry;
3989
3990 case PHI:
3991 /* We _do_not_ want to scan operands of phi nodes. Operands of
3992 a phi function are evaluated only when control reaches this
3993 block along a particular edge. Therefore, regs that appear
3994 as arguments to phi should not be added to the global live at
3995 start. */
3996 return;
3997
3998 default:
3999 break;
4000 }
4001
4002 /* Recursively scan the operands of this expression. */
4003
4004 {
4005 const char * const fmt = GET_RTX_FORMAT (code);
4006 int i;
4007
4008 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4009 {
4010 if (fmt[i] == 'e')
4011 {
4012 /* Tail recursive case: save a function call level. */
4013 if (i == 0)
4014 {
4015 x = XEXP (x, 0);
4016 goto retry;
4017 }
4018 mark_used_regs (pbi, XEXP (x, i), cond, insn);
4019 }
4020 else if (fmt[i] == 'E')
4021 {
4022 int j;
4023 for (j = 0; j < XVECLEN (x, i); j++)
4024 mark_used_regs (pbi, XVECEXP (x, i, j), cond, insn);
4025 }
4026 }
4027 }
4028 }
4029 \f
4030 #ifdef AUTO_INC_DEC
4031
4032 static int
4033 try_pre_increment_1 (pbi, insn)
4034 struct propagate_block_info *pbi;
4035 rtx insn;
4036 {
4037 /* Find the next use of this reg. If in same basic block,
4038 make it do pre-increment or pre-decrement if appropriate. */
4039 rtx x = single_set (insn);
4040 HOST_WIDE_INT amount = ((GET_CODE (SET_SRC (x)) == PLUS ? 1 : -1)
4041 * INTVAL (XEXP (SET_SRC (x), 1)));
4042 int regno = REGNO (SET_DEST (x));
4043 rtx y = pbi->reg_next_use[regno];
4044 if (y != 0
4045 && SET_DEST (x) != stack_pointer_rtx
4046 && BLOCK_NUM (y) == BLOCK_NUM (insn)
4047 /* Don't do this if the reg dies, or gets set in y; a standard addressing
4048 mode would be better. */
4049 && ! dead_or_set_p (y, SET_DEST (x))
4050 && try_pre_increment (y, SET_DEST (x), amount))
4051 {
4052 /* We have found a suitable auto-increment and already changed
4053 insn Y to do it. So flush this increment instruction. */
4054 propagate_block_delete_insn (insn);
4055
4056 /* Count a reference to this reg for the increment insn we are
4057 deleting. When a reg is incremented, spilling it is worse,
4058 so we want to make that less likely. */
4059 if (regno >= FIRST_PSEUDO_REGISTER)
4060 {
4061 REG_FREQ (regno) += REG_FREQ_FROM_BB (pbi->bb);
4062 REG_N_SETS (regno)++;
4063 }
4064
4065 /* Flush any remembered memories depending on the value of
4066 the incremented register. */
4067 invalidate_mems_from_set (pbi, SET_DEST (x));
4068
4069 return 1;
4070 }
4071 return 0;
4072 }
4073
4074 /* Try to change INSN so that it does pre-increment or pre-decrement
4075 addressing on register REG in order to add AMOUNT to REG.
4076 AMOUNT is negative for pre-decrement.
4077 Returns 1 if the change could be made.
4078 This checks all about the validity of the result of modifying INSN. */
4079
4080 static int
4081 try_pre_increment (insn, reg, amount)
4082 rtx insn, reg;
4083 HOST_WIDE_INT amount;
4084 {
4085 rtx use;
4086
4087 /* Nonzero if we can try to make a pre-increment or pre-decrement.
4088 For example, addl $4,r1; movl (r1),... can become movl +(r1),... */
4089 int pre_ok = 0;
4090 /* Nonzero if we can try to make a post-increment or post-decrement.
4091 For example, addl $4,r1; movl -4(r1),... can become movl (r1)+,...
4092 It is possible for both PRE_OK and POST_OK to be nonzero if the machine
4093 supports both pre-inc and post-inc, or both pre-dec and post-dec. */
4094 int post_ok = 0;
4095
4096 /* Nonzero if the opportunity actually requires post-inc or post-dec. */
4097 int do_post = 0;
4098
4099 /* From the sign of increment, see which possibilities are conceivable
4100 on this target machine. */
4101 if (HAVE_PRE_INCREMENT && amount > 0)
4102 pre_ok = 1;
4103 if (HAVE_POST_INCREMENT && amount > 0)
4104 post_ok = 1;
4105
4106 if (HAVE_PRE_DECREMENT && amount < 0)
4107 pre_ok = 1;
4108 if (HAVE_POST_DECREMENT && amount < 0)
4109 post_ok = 1;
4110
4111 if (! (pre_ok || post_ok))
4112 return 0;
4113
4114 /* It is not safe to add a side effect to a jump insn
4115 because if the incremented register is spilled and must be reloaded
4116 there would be no way to store the incremented value back in memory. */
4117
4118 if (GET_CODE (insn) == JUMP_INSN)
4119 return 0;
4120
4121 use = 0;
4122 if (pre_ok)
4123 use = find_use_as_address (PATTERN (insn), reg, 0);
4124 if (post_ok && (use == 0 || use == (rtx) (size_t) 1))
4125 {
4126 use = find_use_as_address (PATTERN (insn), reg, -amount);
4127 do_post = 1;
4128 }
4129
4130 if (use == 0 || use == (rtx) (size_t) 1)
4131 return 0;
4132
4133 if (GET_MODE_SIZE (GET_MODE (use)) != (amount > 0 ? amount : - amount))
4134 return 0;
4135
4136 /* See if this combination of instruction and addressing mode exists. */
4137 if (! validate_change (insn, &XEXP (use, 0),
4138 gen_rtx_fmt_e (amount > 0
4139 ? (do_post ? POST_INC : PRE_INC)
4140 : (do_post ? POST_DEC : PRE_DEC),
4141 Pmode, reg), 0))
4142 return 0;
4143
4144 /* Record that this insn now has an implicit side effect on X. */
4145 REG_NOTES (insn) = alloc_EXPR_LIST (REG_INC, reg, REG_NOTES (insn));
4146 return 1;
4147 }
4148
4149 #endif /* AUTO_INC_DEC */
4150 \f
4151 /* Find the place in the rtx X where REG is used as a memory address.
4152 Return the MEM rtx that so uses it.
4153 If PLUSCONST is nonzero, search instead for a memory address equivalent to
4154 (plus REG (const_int PLUSCONST)).
4155
4156 If such an address does not appear, return 0.
4157 If REG appears more than once, or is used other than in such an address,
4158 return (rtx) 1. */
4159
4160 rtx
4161 find_use_as_address (x, reg, plusconst)
4162 rtx x;
4163 rtx reg;
4164 HOST_WIDE_INT plusconst;
4165 {
4166 enum rtx_code code = GET_CODE (x);
4167 const char * const fmt = GET_RTX_FORMAT (code);
4168 int i;
4169 rtx value = 0;
4170 rtx tem;
4171
4172 if (code == MEM && XEXP (x, 0) == reg && plusconst == 0)
4173 return x;
4174
4175 if (code == MEM && GET_CODE (XEXP (x, 0)) == PLUS
4176 && XEXP (XEXP (x, 0), 0) == reg
4177 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4178 && INTVAL (XEXP (XEXP (x, 0), 1)) == plusconst)
4179 return x;
4180
4181 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4182 {
4183 /* If REG occurs inside a MEM used in a bit-field reference,
4184 that is unacceptable. */
4185 if (find_use_as_address (XEXP (x, 0), reg, 0) != 0)
4186 return (rtx) (size_t) 1;
4187 }
4188
4189 if (x == reg)
4190 return (rtx) (size_t) 1;
4191
4192 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4193 {
4194 if (fmt[i] == 'e')
4195 {
4196 tem = find_use_as_address (XEXP (x, i), reg, plusconst);
4197 if (value == 0)
4198 value = tem;
4199 else if (tem != 0)
4200 return (rtx) (size_t) 1;
4201 }
4202 else if (fmt[i] == 'E')
4203 {
4204 int j;
4205 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4206 {
4207 tem = find_use_as_address (XVECEXP (x, i, j), reg, plusconst);
4208 if (value == 0)
4209 value = tem;
4210 else if (tem != 0)
4211 return (rtx) (size_t) 1;
4212 }
4213 }
4214 }
4215
4216 return value;
4217 }
4218 \f
4219 /* Write information about registers and basic blocks into FILE.
4220 This is part of making a debugging dump. */
4221
4222 void
4223 dump_regset (r, outf)
4224 regset r;
4225 FILE *outf;
4226 {
4227 int i;
4228 if (r == NULL)
4229 {
4230 fputs (" (nil)", outf);
4231 return;
4232 }
4233
4234 EXECUTE_IF_SET_IN_REG_SET (r, 0, i,
4235 {
4236 fprintf (outf, " %d", i);
4237 if (i < FIRST_PSEUDO_REGISTER)
4238 fprintf (outf, " [%s]",
4239 reg_names[i]);
4240 });
4241 }
4242
4243 /* Print a human-readable representation of R on the standard error
4244 stream. This function is designed to be used from within the
4245 debugger. */
4246
4247 void
4248 debug_regset (r)
4249 regset r;
4250 {
4251 dump_regset (r, stderr);
4252 putc ('\n', stderr);
4253 }
4254
4255 /* Recompute register set/reference counts immediately prior to register
4256 allocation.
4257
4258 This avoids problems with set/reference counts changing to/from values
4259 which have special meanings to the register allocators.
4260
4261 Additionally, the reference counts are the primary component used by the
4262 register allocators to prioritize pseudos for allocation to hard regs.
4263 More accurate reference counts generally lead to better register allocation.
4264
4265 F is the first insn to be scanned.
4266
4267 LOOP_STEP denotes how much loop_depth should be incremented per
4268 loop nesting level in order to increase the ref count more for
4269 references in a loop.
4270
4271 It might be worthwhile to update REG_LIVE_LENGTH, REG_BASIC_BLOCK and
4272 possibly other information which is used by the register allocators. */
4273
4274 void
4275 recompute_reg_usage (f, loop_step)
4276 rtx f ATTRIBUTE_UNUSED;
4277 int loop_step ATTRIBUTE_UNUSED;
4278 {
4279 allocate_reg_life_data ();
4280 update_life_info (NULL, UPDATE_LIFE_LOCAL, PROP_REG_INFO);
4281 }
4282
4283 /* Optionally removes all the REG_DEAD and REG_UNUSED notes from a set of
4284 blocks. If BLOCKS is NULL, assume the universal set. Returns a count
4285 of the number of registers that died. */
4286
4287 int
4288 count_or_remove_death_notes (blocks, kill)
4289 sbitmap blocks;
4290 int kill;
4291 {
4292 int count = 0;
4293 basic_block bb;
4294
4295 FOR_EACH_BB_REVERSE (bb)
4296 {
4297 rtx insn;
4298
4299 if (blocks && ! TEST_BIT (blocks, bb->index))
4300 continue;
4301
4302 for (insn = bb->head;; insn = NEXT_INSN (insn))
4303 {
4304 if (INSN_P (insn))
4305 {
4306 rtx *pprev = &REG_NOTES (insn);
4307 rtx link = *pprev;
4308
4309 while (link)
4310 {
4311 switch (REG_NOTE_KIND (link))
4312 {
4313 case REG_DEAD:
4314 if (GET_CODE (XEXP (link, 0)) == REG)
4315 {
4316 rtx reg = XEXP (link, 0);
4317 int n;
4318
4319 if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
4320 n = 1;
4321 else
4322 n = HARD_REGNO_NREGS (REGNO (reg), GET_MODE (reg));
4323 count += n;
4324 }
4325 /* Fall through. */
4326
4327 case REG_UNUSED:
4328 if (kill)
4329 {
4330 rtx next = XEXP (link, 1);
4331 free_EXPR_LIST_node (link);
4332 *pprev = link = next;
4333 break;
4334 }
4335 /* Fall through. */
4336
4337 default:
4338 pprev = &XEXP (link, 1);
4339 link = *pprev;
4340 break;
4341 }
4342 }
4343 }
4344
4345 if (insn == bb->end)
4346 break;
4347 }
4348 }
4349
4350 return count;
4351 }
4352 /* Clear LOG_LINKS fields of insns in a selected blocks or whole chain
4353 if blocks is NULL. */
4354
4355 static void
4356 clear_log_links (blocks)
4357 sbitmap blocks;
4358 {
4359 rtx insn;
4360 int i;
4361
4362 if (!blocks)
4363 {
4364 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4365 if (INSN_P (insn))
4366 free_INSN_LIST_list (&LOG_LINKS (insn));
4367 }
4368 else
4369 EXECUTE_IF_SET_IN_SBITMAP (blocks, 0, i,
4370 {
4371 basic_block bb = BASIC_BLOCK (i);
4372
4373 for (insn = bb->head; insn != NEXT_INSN (bb->end);
4374 insn = NEXT_INSN (insn))
4375 if (INSN_P (insn))
4376 free_INSN_LIST_list (&LOG_LINKS (insn));
4377 });
4378 }
4379
4380 /* Given a register bitmap, turn on the bits in a HARD_REG_SET that
4381 correspond to the hard registers, if any, set in that map. This
4382 could be done far more efficiently by having all sorts of special-cases
4383 with moving single words, but probably isn't worth the trouble. */
4384
4385 void
4386 reg_set_to_hard_reg_set (to, from)
4387 HARD_REG_SET *to;
4388 bitmap from;
4389 {
4390 int i;
4391
4392 EXECUTE_IF_SET_IN_BITMAP
4393 (from, 0, i,
4394 {
4395 if (i >= FIRST_PSEUDO_REGISTER)
4396 return;
4397 SET_HARD_REG_BIT (*to, i);
4398 });
4399 }