32863e6b4e80da8b02facd625c1e3f8af1ee641c
[gcc.git] / gcc / fold-const.c
1 /* Fold a constant sub-tree into a single node for C-compiler
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /*@@ This file should be rewritten to use an arbitrary precision
23 @@ representation for "struct tree_int_cst" and "struct tree_real_cst".
24 @@ Perhaps the routines could also be used for bc/dc, and made a lib.
25 @@ The routines that translate from the ap rep should
26 @@ warn if precision et. al. is lost.
27 @@ This would also make life easier when this technology is used
28 @@ for cross-compilers. */
29
30 /* The entry points in this file are fold, size_int_wide, size_binop
31 and force_fit_type_double.
32
33 fold takes a tree as argument and returns a simplified tree.
34
35 size_binop takes a tree code for an arithmetic operation
36 and two operands that are trees, and produces a tree for the
37 result, assuming the type comes from `sizetype'.
38
39 size_int takes an integer value, and creates a tree constant
40 with type from `sizetype'.
41
42 force_fit_type_double takes a constant, an overflowable flag and a
43 prior overflow indicator. It forces the value to fit the type and
44 sets TREE_OVERFLOW.
45
46 Note: Since the folders get called on non-gimple code as well as
47 gimple code, we need to handle GIMPLE tuples as well as their
48 corresponding tree equivalents. */
49
50 #include "config.h"
51 #include "system.h"
52 #include "coretypes.h"
53 #include "tm.h"
54 #include "flags.h"
55 #include "tree.h"
56 #include "real.h"
57 #include "fixed-value.h"
58 #include "rtl.h"
59 #include "expr.h"
60 #include "tm_p.h"
61 #include "target.h"
62 #include "toplev.h"
63 #include "intl.h"
64 #include "ggc.h"
65 #include "hashtab.h"
66 #include "langhooks.h"
67 #include "md5.h"
68 #include "gimple.h"
69
70 /* Nonzero if we are folding constants inside an initializer; zero
71 otherwise. */
72 int folding_initializer = 0;
73
74 /* The following constants represent a bit based encoding of GCC's
75 comparison operators. This encoding simplifies transformations
76 on relational comparison operators, such as AND and OR. */
77 enum comparison_code {
78 COMPCODE_FALSE = 0,
79 COMPCODE_LT = 1,
80 COMPCODE_EQ = 2,
81 COMPCODE_LE = 3,
82 COMPCODE_GT = 4,
83 COMPCODE_LTGT = 5,
84 COMPCODE_GE = 6,
85 COMPCODE_ORD = 7,
86 COMPCODE_UNORD = 8,
87 COMPCODE_UNLT = 9,
88 COMPCODE_UNEQ = 10,
89 COMPCODE_UNLE = 11,
90 COMPCODE_UNGT = 12,
91 COMPCODE_NE = 13,
92 COMPCODE_UNGE = 14,
93 COMPCODE_TRUE = 15
94 };
95
96 static void encode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT, HOST_WIDE_INT);
97 static void decode (HOST_WIDE_INT *, unsigned HOST_WIDE_INT *, HOST_WIDE_INT *);
98 static bool negate_mathfn_p (enum built_in_function);
99 static bool negate_expr_p (tree);
100 static tree negate_expr (tree);
101 static tree split_tree (tree, enum tree_code, tree *, tree *, tree *, int);
102 static tree associate_trees (tree, tree, enum tree_code, tree);
103 static tree const_binop (enum tree_code, tree, tree, int);
104 static enum comparison_code comparison_to_compcode (enum tree_code);
105 static enum tree_code compcode_to_comparison (enum comparison_code);
106 static tree combine_comparisons (enum tree_code, enum tree_code,
107 enum tree_code, tree, tree, tree);
108 static int operand_equal_for_comparison_p (tree, tree, tree);
109 static int twoval_comparison_p (tree, tree *, tree *, int *);
110 static tree eval_subst (tree, tree, tree, tree, tree);
111 static tree pedantic_omit_one_operand (tree, tree, tree);
112 static tree distribute_bit_expr (enum tree_code, tree, tree, tree);
113 static tree make_bit_field_ref (tree, tree, HOST_WIDE_INT, HOST_WIDE_INT, int);
114 static tree optimize_bit_field_compare (enum tree_code, tree, tree, tree);
115 static tree decode_field_reference (tree, HOST_WIDE_INT *, HOST_WIDE_INT *,
116 enum machine_mode *, int *, int *,
117 tree *, tree *);
118 static int all_ones_mask_p (const_tree, int);
119 static tree sign_bit_p (tree, const_tree);
120 static int simple_operand_p (const_tree);
121 static tree range_binop (enum tree_code, tree, tree, int, tree, int);
122 static tree range_predecessor (tree);
123 static tree range_successor (tree);
124 static tree make_range (tree, int *, tree *, tree *, bool *);
125 static tree build_range_check (tree, tree, int, tree, tree);
126 static int merge_ranges (int *, tree *, tree *, int, tree, tree, int, tree,
127 tree);
128 static tree fold_range_test (enum tree_code, tree, tree, tree);
129 static tree fold_cond_expr_with_comparison (tree, tree, tree, tree);
130 static tree unextend (tree, int, int, tree);
131 static tree fold_truthop (enum tree_code, tree, tree, tree);
132 static tree optimize_minmax_comparison (enum tree_code, tree, tree, tree);
133 static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *);
134 static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *);
135 static tree fold_binary_op_with_conditional_arg (enum tree_code, tree,
136 tree, tree,
137 tree, tree, int);
138 static tree fold_mathfn_compare (enum built_in_function, enum tree_code,
139 tree, tree, tree);
140 static tree fold_inf_compare (enum tree_code, tree, tree, tree);
141 static tree fold_div_compare (enum tree_code, tree, tree, tree);
142 static bool reorder_operands_p (const_tree, const_tree);
143 static tree fold_negate_const (tree, tree);
144 static tree fold_not_const (tree, tree);
145 static tree fold_relational_const (enum tree_code, tree, tree, tree);
146
147
148 /* We know that A1 + B1 = SUM1, using 2's complement arithmetic and ignoring
149 overflow. Suppose A, B and SUM have the same respective signs as A1, B1,
150 and SUM1. Then this yields nonzero if overflow occurred during the
151 addition.
152
153 Overflow occurs if A and B have the same sign, but A and SUM differ in
154 sign. Use `^' to test whether signs differ, and `< 0' to isolate the
155 sign. */
156 #define OVERFLOW_SUM_SIGN(a, b, sum) ((~((a) ^ (b)) & ((a) ^ (sum))) < 0)
157 \f
158 /* To do constant folding on INTEGER_CST nodes requires two-word arithmetic.
159 We do that by representing the two-word integer in 4 words, with only
160 HOST_BITS_PER_WIDE_INT / 2 bits stored in each word, as a positive
161 number. The value of the word is LOWPART + HIGHPART * BASE. */
162
163 #define LOWPART(x) \
164 ((x) & (((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)) - 1))
165 #define HIGHPART(x) \
166 ((unsigned HOST_WIDE_INT) (x) >> HOST_BITS_PER_WIDE_INT / 2)
167 #define BASE ((unsigned HOST_WIDE_INT) 1 << HOST_BITS_PER_WIDE_INT / 2)
168
169 /* Unpack a two-word integer into 4 words.
170 LOW and HI are the integer, as two `HOST_WIDE_INT' pieces.
171 WORDS points to the array of HOST_WIDE_INTs. */
172
173 static void
174 encode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
175 {
176 words[0] = LOWPART (low);
177 words[1] = HIGHPART (low);
178 words[2] = LOWPART (hi);
179 words[3] = HIGHPART (hi);
180 }
181
182 /* Pack an array of 4 words into a two-word integer.
183 WORDS points to the array of words.
184 The integer is stored into *LOW and *HI as two `HOST_WIDE_INT' pieces. */
185
186 static void
187 decode (HOST_WIDE_INT *words, unsigned HOST_WIDE_INT *low,
188 HOST_WIDE_INT *hi)
189 {
190 *low = words[0] + words[1] * BASE;
191 *hi = words[2] + words[3] * BASE;
192 }
193 \f
194 /* Force the double-word integer L1, H1 to be within the range of the
195 integer type TYPE. Stores the properly truncated and sign-extended
196 double-word integer in *LV, *HV. Returns true if the operation
197 overflows, that is, argument and result are different. */
198
199 int
200 fit_double_type (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
201 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, const_tree type)
202 {
203 unsigned HOST_WIDE_INT low0 = l1;
204 HOST_WIDE_INT high0 = h1;
205 unsigned int prec;
206 int sign_extended_type;
207
208 if (POINTER_TYPE_P (type)
209 || TREE_CODE (type) == OFFSET_TYPE)
210 prec = POINTER_SIZE;
211 else
212 prec = TYPE_PRECISION (type);
213
214 /* Size types *are* sign extended. */
215 sign_extended_type = (!TYPE_UNSIGNED (type)
216 || (TREE_CODE (type) == INTEGER_TYPE
217 && TYPE_IS_SIZETYPE (type)));
218
219 /* First clear all bits that are beyond the type's precision. */
220 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
221 ;
222 else if (prec > HOST_BITS_PER_WIDE_INT)
223 h1 &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
224 else
225 {
226 h1 = 0;
227 if (prec < HOST_BITS_PER_WIDE_INT)
228 l1 &= ~((HOST_WIDE_INT) (-1) << prec);
229 }
230
231 /* Then do sign extension if necessary. */
232 if (!sign_extended_type)
233 /* No sign extension */;
234 else if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
235 /* Correct width already. */;
236 else if (prec > HOST_BITS_PER_WIDE_INT)
237 {
238 /* Sign extend top half? */
239 if (h1 & ((unsigned HOST_WIDE_INT)1
240 << (prec - HOST_BITS_PER_WIDE_INT - 1)))
241 h1 |= (HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT);
242 }
243 else if (prec == HOST_BITS_PER_WIDE_INT)
244 {
245 if ((HOST_WIDE_INT)l1 < 0)
246 h1 = -1;
247 }
248 else
249 {
250 /* Sign extend bottom half? */
251 if (l1 & ((unsigned HOST_WIDE_INT)1 << (prec - 1)))
252 {
253 h1 = -1;
254 l1 |= (HOST_WIDE_INT)(-1) << prec;
255 }
256 }
257
258 *lv = l1;
259 *hv = h1;
260
261 /* If the value didn't fit, signal overflow. */
262 return l1 != low0 || h1 != high0;
263 }
264
265 /* We force the double-int HIGH:LOW to the range of the type TYPE by
266 sign or zero extending it.
267 OVERFLOWABLE indicates if we are interested
268 in overflow of the value, when >0 we are only interested in signed
269 overflow, for <0 we are interested in any overflow. OVERFLOWED
270 indicates whether overflow has already occurred. CONST_OVERFLOWED
271 indicates whether constant overflow has already occurred. We force
272 T's value to be within range of T's type (by setting to 0 or 1 all
273 the bits outside the type's range). We set TREE_OVERFLOWED if,
274 OVERFLOWED is nonzero,
275 or OVERFLOWABLE is >0 and signed overflow occurs
276 or OVERFLOWABLE is <0 and any overflow occurs
277 We return a new tree node for the extended double-int. The node
278 is shared if no overflow flags are set. */
279
280 tree
281 force_fit_type_double (tree type, unsigned HOST_WIDE_INT low,
282 HOST_WIDE_INT high, int overflowable,
283 bool overflowed)
284 {
285 int sign_extended_type;
286 bool overflow;
287
288 /* Size types *are* sign extended. */
289 sign_extended_type = (!TYPE_UNSIGNED (type)
290 || (TREE_CODE (type) == INTEGER_TYPE
291 && TYPE_IS_SIZETYPE (type)));
292
293 overflow = fit_double_type (low, high, &low, &high, type);
294
295 /* If we need to set overflow flags, return a new unshared node. */
296 if (overflowed || overflow)
297 {
298 if (overflowed
299 || overflowable < 0
300 || (overflowable > 0 && sign_extended_type))
301 {
302 tree t = make_node (INTEGER_CST);
303 TREE_INT_CST_LOW (t) = low;
304 TREE_INT_CST_HIGH (t) = high;
305 TREE_TYPE (t) = type;
306 TREE_OVERFLOW (t) = 1;
307 return t;
308 }
309 }
310
311 /* Else build a shared node. */
312 return build_int_cst_wide (type, low, high);
313 }
314 \f
315 /* Add two doubleword integers with doubleword result.
316 Return nonzero if the operation overflows according to UNSIGNED_P.
317 Each argument is given as two `HOST_WIDE_INT' pieces.
318 One argument is L1 and H1; the other, L2 and H2.
319 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
320
321 int
322 add_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
323 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
324 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
325 bool unsigned_p)
326 {
327 unsigned HOST_WIDE_INT l;
328 HOST_WIDE_INT h;
329
330 l = l1 + l2;
331 h = h1 + h2 + (l < l1);
332
333 *lv = l;
334 *hv = h;
335
336 if (unsigned_p)
337 return (unsigned HOST_WIDE_INT) h < (unsigned HOST_WIDE_INT) h1;
338 else
339 return OVERFLOW_SUM_SIGN (h1, h2, h);
340 }
341
342 /* Negate a doubleword integer with doubleword result.
343 Return nonzero if the operation overflows, assuming it's signed.
344 The argument is given as two `HOST_WIDE_INT' pieces in L1 and H1.
345 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
346
347 int
348 neg_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
349 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
350 {
351 if (l1 == 0)
352 {
353 *lv = 0;
354 *hv = - h1;
355 return (*hv & h1) < 0;
356 }
357 else
358 {
359 *lv = -l1;
360 *hv = ~h1;
361 return 0;
362 }
363 }
364 \f
365 /* Multiply two doubleword integers with doubleword result.
366 Return nonzero if the operation overflows according to UNSIGNED_P.
367 Each argument is given as two `HOST_WIDE_INT' pieces.
368 One argument is L1 and H1; the other, L2 and H2.
369 The value is stored as two `HOST_WIDE_INT' pieces in *LV and *HV. */
370
371 int
372 mul_double_with_sign (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
373 unsigned HOST_WIDE_INT l2, HOST_WIDE_INT h2,
374 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
375 bool unsigned_p)
376 {
377 HOST_WIDE_INT arg1[4];
378 HOST_WIDE_INT arg2[4];
379 HOST_WIDE_INT prod[4 * 2];
380 unsigned HOST_WIDE_INT carry;
381 int i, j, k;
382 unsigned HOST_WIDE_INT toplow, neglow;
383 HOST_WIDE_INT tophigh, neghigh;
384
385 encode (arg1, l1, h1);
386 encode (arg2, l2, h2);
387
388 memset (prod, 0, sizeof prod);
389
390 for (i = 0; i < 4; i++)
391 {
392 carry = 0;
393 for (j = 0; j < 4; j++)
394 {
395 k = i + j;
396 /* This product is <= 0xFFFE0001, the sum <= 0xFFFF0000. */
397 carry += arg1[i] * arg2[j];
398 /* Since prod[p] < 0xFFFF, this sum <= 0xFFFFFFFF. */
399 carry += prod[k];
400 prod[k] = LOWPART (carry);
401 carry = HIGHPART (carry);
402 }
403 prod[i + 4] = carry;
404 }
405
406 decode (prod, lv, hv);
407 decode (prod + 4, &toplow, &tophigh);
408
409 /* Unsigned overflow is immediate. */
410 if (unsigned_p)
411 return (toplow | tophigh) != 0;
412
413 /* Check for signed overflow by calculating the signed representation of the
414 top half of the result; it should agree with the low half's sign bit. */
415 if (h1 < 0)
416 {
417 neg_double (l2, h2, &neglow, &neghigh);
418 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
419 }
420 if (h2 < 0)
421 {
422 neg_double (l1, h1, &neglow, &neghigh);
423 add_double (neglow, neghigh, toplow, tophigh, &toplow, &tophigh);
424 }
425 return (*hv < 0 ? ~(toplow & tophigh) : toplow | tophigh) != 0;
426 }
427 \f
428 /* Shift the doubleword integer in L1, H1 left by COUNT places
429 keeping only PREC bits of result.
430 Shift right if COUNT is negative.
431 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
432 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
433
434 void
435 lshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
436 HOST_WIDE_INT count, unsigned int prec,
437 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv, int arith)
438 {
439 unsigned HOST_WIDE_INT signmask;
440
441 if (count < 0)
442 {
443 rshift_double (l1, h1, -count, prec, lv, hv, arith);
444 return;
445 }
446
447 if (SHIFT_COUNT_TRUNCATED)
448 count %= prec;
449
450 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
451 {
452 /* Shifting by the host word size is undefined according to the
453 ANSI standard, so we must handle this as a special case. */
454 *hv = 0;
455 *lv = 0;
456 }
457 else if (count >= HOST_BITS_PER_WIDE_INT)
458 {
459 *hv = l1 << (count - HOST_BITS_PER_WIDE_INT);
460 *lv = 0;
461 }
462 else
463 {
464 *hv = (((unsigned HOST_WIDE_INT) h1 << count)
465 | (l1 >> (HOST_BITS_PER_WIDE_INT - count - 1) >> 1));
466 *lv = l1 << count;
467 }
468
469 /* Sign extend all bits that are beyond the precision. */
470
471 signmask = -((prec > HOST_BITS_PER_WIDE_INT
472 ? ((unsigned HOST_WIDE_INT) *hv
473 >> (prec - HOST_BITS_PER_WIDE_INT - 1))
474 : (*lv >> (prec - 1))) & 1);
475
476 if (prec >= 2 * HOST_BITS_PER_WIDE_INT)
477 ;
478 else if (prec >= HOST_BITS_PER_WIDE_INT)
479 {
480 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
481 *hv |= signmask << (prec - HOST_BITS_PER_WIDE_INT);
482 }
483 else
484 {
485 *hv = signmask;
486 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << prec);
487 *lv |= signmask << prec;
488 }
489 }
490
491 /* Shift the doubleword integer in L1, H1 right by COUNT places
492 keeping only PREC bits of result. COUNT must be positive.
493 ARITH nonzero specifies arithmetic shifting; otherwise use logical shift.
494 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
495
496 void
497 rshift_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
498 HOST_WIDE_INT count, unsigned int prec,
499 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv,
500 int arith)
501 {
502 unsigned HOST_WIDE_INT signmask;
503
504 signmask = (arith
505 ? -((unsigned HOST_WIDE_INT) h1 >> (HOST_BITS_PER_WIDE_INT - 1))
506 : 0);
507
508 if (SHIFT_COUNT_TRUNCATED)
509 count %= prec;
510
511 if (count >= 2 * HOST_BITS_PER_WIDE_INT)
512 {
513 /* Shifting by the host word size is undefined according to the
514 ANSI standard, so we must handle this as a special case. */
515 *hv = 0;
516 *lv = 0;
517 }
518 else if (count >= HOST_BITS_PER_WIDE_INT)
519 {
520 *hv = 0;
521 *lv = (unsigned HOST_WIDE_INT) h1 >> (count - HOST_BITS_PER_WIDE_INT);
522 }
523 else
524 {
525 *hv = (unsigned HOST_WIDE_INT) h1 >> count;
526 *lv = ((l1 >> count)
527 | ((unsigned HOST_WIDE_INT) h1 << (HOST_BITS_PER_WIDE_INT - count - 1) << 1));
528 }
529
530 /* Zero / sign extend all bits that are beyond the precision. */
531
532 if (count >= (HOST_WIDE_INT)prec)
533 {
534 *hv = signmask;
535 *lv = signmask;
536 }
537 else if ((prec - count) >= 2 * HOST_BITS_PER_WIDE_INT)
538 ;
539 else if ((prec - count) >= HOST_BITS_PER_WIDE_INT)
540 {
541 *hv &= ~((HOST_WIDE_INT) (-1) << (prec - count - HOST_BITS_PER_WIDE_INT));
542 *hv |= signmask << (prec - count - HOST_BITS_PER_WIDE_INT);
543 }
544 else
545 {
546 *hv = signmask;
547 *lv &= ~((unsigned HOST_WIDE_INT) (-1) << (prec - count));
548 *lv |= signmask << (prec - count);
549 }
550 }
551 \f
552 /* Rotate the doubleword integer in L1, H1 left by COUNT places
553 keeping only PREC bits of result.
554 Rotate right if COUNT is negative.
555 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
556
557 void
558 lrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
559 HOST_WIDE_INT count, unsigned int prec,
560 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
561 {
562 unsigned HOST_WIDE_INT s1l, s2l;
563 HOST_WIDE_INT s1h, s2h;
564
565 count %= prec;
566 if (count < 0)
567 count += prec;
568
569 lshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
570 rshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
571 *lv = s1l | s2l;
572 *hv = s1h | s2h;
573 }
574
575 /* Rotate the doubleword integer in L1, H1 left by COUNT places
576 keeping only PREC bits of result. COUNT must be positive.
577 Store the value as two `HOST_WIDE_INT' pieces in *LV and *HV. */
578
579 void
580 rrotate_double (unsigned HOST_WIDE_INT l1, HOST_WIDE_INT h1,
581 HOST_WIDE_INT count, unsigned int prec,
582 unsigned HOST_WIDE_INT *lv, HOST_WIDE_INT *hv)
583 {
584 unsigned HOST_WIDE_INT s1l, s2l;
585 HOST_WIDE_INT s1h, s2h;
586
587 count %= prec;
588 if (count < 0)
589 count += prec;
590
591 rshift_double (l1, h1, count, prec, &s1l, &s1h, 0);
592 lshift_double (l1, h1, prec - count, prec, &s2l, &s2h, 0);
593 *lv = s1l | s2l;
594 *hv = s1h | s2h;
595 }
596 \f
597 /* Divide doubleword integer LNUM, HNUM by doubleword integer LDEN, HDEN
598 for a quotient (stored in *LQUO, *HQUO) and remainder (in *LREM, *HREM).
599 CODE is a tree code for a kind of division, one of
600 TRUNC_DIV_EXPR, FLOOR_DIV_EXPR, CEIL_DIV_EXPR, ROUND_DIV_EXPR
601 or EXACT_DIV_EXPR
602 It controls how the quotient is rounded to an integer.
603 Return nonzero if the operation overflows.
604 UNS nonzero says do unsigned division. */
605
606 int
607 div_and_round_double (enum tree_code code, int uns,
608 unsigned HOST_WIDE_INT lnum_orig, /* num == numerator == dividend */
609 HOST_WIDE_INT hnum_orig,
610 unsigned HOST_WIDE_INT lden_orig, /* den == denominator == divisor */
611 HOST_WIDE_INT hden_orig,
612 unsigned HOST_WIDE_INT *lquo,
613 HOST_WIDE_INT *hquo, unsigned HOST_WIDE_INT *lrem,
614 HOST_WIDE_INT *hrem)
615 {
616 int quo_neg = 0;
617 HOST_WIDE_INT num[4 + 1]; /* extra element for scaling. */
618 HOST_WIDE_INT den[4], quo[4];
619 int i, j;
620 unsigned HOST_WIDE_INT work;
621 unsigned HOST_WIDE_INT carry = 0;
622 unsigned HOST_WIDE_INT lnum = lnum_orig;
623 HOST_WIDE_INT hnum = hnum_orig;
624 unsigned HOST_WIDE_INT lden = lden_orig;
625 HOST_WIDE_INT hden = hden_orig;
626 int overflow = 0;
627
628 if (hden == 0 && lden == 0)
629 overflow = 1, lden = 1;
630
631 /* Calculate quotient sign and convert operands to unsigned. */
632 if (!uns)
633 {
634 if (hnum < 0)
635 {
636 quo_neg = ~ quo_neg;
637 /* (minimum integer) / (-1) is the only overflow case. */
638 if (neg_double (lnum, hnum, &lnum, &hnum)
639 && ((HOST_WIDE_INT) lden & hden) == -1)
640 overflow = 1;
641 }
642 if (hden < 0)
643 {
644 quo_neg = ~ quo_neg;
645 neg_double (lden, hden, &lden, &hden);
646 }
647 }
648
649 if (hnum == 0 && hden == 0)
650 { /* single precision */
651 *hquo = *hrem = 0;
652 /* This unsigned division rounds toward zero. */
653 *lquo = lnum / lden;
654 goto finish_up;
655 }
656
657 if (hnum == 0)
658 { /* trivial case: dividend < divisor */
659 /* hden != 0 already checked. */
660 *hquo = *lquo = 0;
661 *hrem = hnum;
662 *lrem = lnum;
663 goto finish_up;
664 }
665
666 memset (quo, 0, sizeof quo);
667
668 memset (num, 0, sizeof num); /* to zero 9th element */
669 memset (den, 0, sizeof den);
670
671 encode (num, lnum, hnum);
672 encode (den, lden, hden);
673
674 /* Special code for when the divisor < BASE. */
675 if (hden == 0 && lden < (unsigned HOST_WIDE_INT) BASE)
676 {
677 /* hnum != 0 already checked. */
678 for (i = 4 - 1; i >= 0; i--)
679 {
680 work = num[i] + carry * BASE;
681 quo[i] = work / lden;
682 carry = work % lden;
683 }
684 }
685 else
686 {
687 /* Full double precision division,
688 with thanks to Don Knuth's "Seminumerical Algorithms". */
689 int num_hi_sig, den_hi_sig;
690 unsigned HOST_WIDE_INT quo_est, scale;
691
692 /* Find the highest nonzero divisor digit. */
693 for (i = 4 - 1;; i--)
694 if (den[i] != 0)
695 {
696 den_hi_sig = i;
697 break;
698 }
699
700 /* Insure that the first digit of the divisor is at least BASE/2.
701 This is required by the quotient digit estimation algorithm. */
702
703 scale = BASE / (den[den_hi_sig] + 1);
704 if (scale > 1)
705 { /* scale divisor and dividend */
706 carry = 0;
707 for (i = 0; i <= 4 - 1; i++)
708 {
709 work = (num[i] * scale) + carry;
710 num[i] = LOWPART (work);
711 carry = HIGHPART (work);
712 }
713
714 num[4] = carry;
715 carry = 0;
716 for (i = 0; i <= 4 - 1; i++)
717 {
718 work = (den[i] * scale) + carry;
719 den[i] = LOWPART (work);
720 carry = HIGHPART (work);
721 if (den[i] != 0) den_hi_sig = i;
722 }
723 }
724
725 num_hi_sig = 4;
726
727 /* Main loop */
728 for (i = num_hi_sig - den_hi_sig - 1; i >= 0; i--)
729 {
730 /* Guess the next quotient digit, quo_est, by dividing the first
731 two remaining dividend digits by the high order quotient digit.
732 quo_est is never low and is at most 2 high. */
733 unsigned HOST_WIDE_INT tmp;
734
735 num_hi_sig = i + den_hi_sig + 1;
736 work = num[num_hi_sig] * BASE + num[num_hi_sig - 1];
737 if (num[num_hi_sig] != den[den_hi_sig])
738 quo_est = work / den[den_hi_sig];
739 else
740 quo_est = BASE - 1;
741
742 /* Refine quo_est so it's usually correct, and at most one high. */
743 tmp = work - quo_est * den[den_hi_sig];
744 if (tmp < BASE
745 && (den[den_hi_sig - 1] * quo_est
746 > (tmp * BASE + num[num_hi_sig - 2])))
747 quo_est--;
748
749 /* Try QUO_EST as the quotient digit, by multiplying the
750 divisor by QUO_EST and subtracting from the remaining dividend.
751 Keep in mind that QUO_EST is the I - 1st digit. */
752
753 carry = 0;
754 for (j = 0; j <= den_hi_sig; j++)
755 {
756 work = quo_est * den[j] + carry;
757 carry = HIGHPART (work);
758 work = num[i + j] - LOWPART (work);
759 num[i + j] = LOWPART (work);
760 carry += HIGHPART (work) != 0;
761 }
762
763 /* If quo_est was high by one, then num[i] went negative and
764 we need to correct things. */
765 if (num[num_hi_sig] < (HOST_WIDE_INT) carry)
766 {
767 quo_est--;
768 carry = 0; /* add divisor back in */
769 for (j = 0; j <= den_hi_sig; j++)
770 {
771 work = num[i + j] + den[j] + carry;
772 carry = HIGHPART (work);
773 num[i + j] = LOWPART (work);
774 }
775
776 num [num_hi_sig] += carry;
777 }
778
779 /* Store the quotient digit. */
780 quo[i] = quo_est;
781 }
782 }
783
784 decode (quo, lquo, hquo);
785
786 finish_up:
787 /* If result is negative, make it so. */
788 if (quo_neg)
789 neg_double (*lquo, *hquo, lquo, hquo);
790
791 /* Compute trial remainder: rem = num - (quo * den) */
792 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
793 neg_double (*lrem, *hrem, lrem, hrem);
794 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
795
796 switch (code)
797 {
798 case TRUNC_DIV_EXPR:
799 case TRUNC_MOD_EXPR: /* round toward zero */
800 case EXACT_DIV_EXPR: /* for this one, it shouldn't matter */
801 return overflow;
802
803 case FLOOR_DIV_EXPR:
804 case FLOOR_MOD_EXPR: /* round toward negative infinity */
805 if (quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio < 0 && rem != 0 */
806 {
807 /* quo = quo - 1; */
808 add_double (*lquo, *hquo, (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1,
809 lquo, hquo);
810 }
811 else
812 return overflow;
813 break;
814
815 case CEIL_DIV_EXPR:
816 case CEIL_MOD_EXPR: /* round toward positive infinity */
817 if (!quo_neg && (*lrem != 0 || *hrem != 0)) /* ratio > 0 && rem != 0 */
818 {
819 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
820 lquo, hquo);
821 }
822 else
823 return overflow;
824 break;
825
826 case ROUND_DIV_EXPR:
827 case ROUND_MOD_EXPR: /* round to closest integer */
828 {
829 unsigned HOST_WIDE_INT labs_rem = *lrem;
830 HOST_WIDE_INT habs_rem = *hrem;
831 unsigned HOST_WIDE_INT labs_den = lden, ltwice;
832 HOST_WIDE_INT habs_den = hden, htwice;
833
834 /* Get absolute values. */
835 if (*hrem < 0)
836 neg_double (*lrem, *hrem, &labs_rem, &habs_rem);
837 if (hden < 0)
838 neg_double (lden, hden, &labs_den, &habs_den);
839
840 /* If (2 * abs (lrem) >= abs (lden)), adjust the quotient. */
841 mul_double ((HOST_WIDE_INT) 2, (HOST_WIDE_INT) 0,
842 labs_rem, habs_rem, &ltwice, &htwice);
843
844 if (((unsigned HOST_WIDE_INT) habs_den
845 < (unsigned HOST_WIDE_INT) htwice)
846 || (((unsigned HOST_WIDE_INT) habs_den
847 == (unsigned HOST_WIDE_INT) htwice)
848 && (labs_den <= ltwice)))
849 {
850 if (*hquo < 0)
851 /* quo = quo - 1; */
852 add_double (*lquo, *hquo,
853 (HOST_WIDE_INT) -1, (HOST_WIDE_INT) -1, lquo, hquo);
854 else
855 /* quo = quo + 1; */
856 add_double (*lquo, *hquo, (HOST_WIDE_INT) 1, (HOST_WIDE_INT) 0,
857 lquo, hquo);
858 }
859 else
860 return overflow;
861 }
862 break;
863
864 default:
865 gcc_unreachable ();
866 }
867
868 /* Compute true remainder: rem = num - (quo * den) */
869 mul_double (*lquo, *hquo, lden_orig, hden_orig, lrem, hrem);
870 neg_double (*lrem, *hrem, lrem, hrem);
871 add_double (lnum_orig, hnum_orig, *lrem, *hrem, lrem, hrem);
872 return overflow;
873 }
874
875 /* If ARG2 divides ARG1 with zero remainder, carries out the division
876 of type CODE and returns the quotient.
877 Otherwise returns NULL_TREE. */
878
879 static tree
880 div_if_zero_remainder (enum tree_code code, const_tree arg1, const_tree arg2)
881 {
882 unsigned HOST_WIDE_INT int1l, int2l;
883 HOST_WIDE_INT int1h, int2h;
884 unsigned HOST_WIDE_INT quol, reml;
885 HOST_WIDE_INT quoh, remh;
886 tree type = TREE_TYPE (arg1);
887 int uns = TYPE_UNSIGNED (type);
888
889 int1l = TREE_INT_CST_LOW (arg1);
890 int1h = TREE_INT_CST_HIGH (arg1);
891 /* &obj[0] + -128 really should be compiled as &obj[-8] rather than
892 &obj[some_exotic_number]. */
893 if (POINTER_TYPE_P (type))
894 {
895 uns = false;
896 type = signed_type_for (type);
897 fit_double_type (int1l, int1h, &int1l, &int1h,
898 type);
899 }
900 else
901 fit_double_type (int1l, int1h, &int1l, &int1h, type);
902 int2l = TREE_INT_CST_LOW (arg2);
903 int2h = TREE_INT_CST_HIGH (arg2);
904
905 div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
906 &quol, &quoh, &reml, &remh);
907 if (remh != 0 || reml != 0)
908 return NULL_TREE;
909
910 return build_int_cst_wide (type, quol, quoh);
911 }
912 \f
913 /* This is nonzero if we should defer warnings about undefined
914 overflow. This facility exists because these warnings are a
915 special case. The code to estimate loop iterations does not want
916 to issue any warnings, since it works with expressions which do not
917 occur in user code. Various bits of cleanup code call fold(), but
918 only use the result if it has certain characteristics (e.g., is a
919 constant); that code only wants to issue a warning if the result is
920 used. */
921
922 static int fold_deferring_overflow_warnings;
923
924 /* If a warning about undefined overflow is deferred, this is the
925 warning. Note that this may cause us to turn two warnings into
926 one, but that is fine since it is sufficient to only give one
927 warning per expression. */
928
929 static const char* fold_deferred_overflow_warning;
930
931 /* If a warning about undefined overflow is deferred, this is the
932 level at which the warning should be emitted. */
933
934 static enum warn_strict_overflow_code fold_deferred_overflow_code;
935
936 /* Start deferring overflow warnings. We could use a stack here to
937 permit nested calls, but at present it is not necessary. */
938
939 void
940 fold_defer_overflow_warnings (void)
941 {
942 ++fold_deferring_overflow_warnings;
943 }
944
945 /* Stop deferring overflow warnings. If there is a pending warning,
946 and ISSUE is true, then issue the warning if appropriate. STMT is
947 the statement with which the warning should be associated (used for
948 location information); STMT may be NULL. CODE is the level of the
949 warning--a warn_strict_overflow_code value. This function will use
950 the smaller of CODE and the deferred code when deciding whether to
951 issue the warning. CODE may be zero to mean to always use the
952 deferred code. */
953
954 void
955 fold_undefer_overflow_warnings (bool issue, const_gimple stmt, int code)
956 {
957 const char *warnmsg;
958 location_t locus;
959
960 gcc_assert (fold_deferring_overflow_warnings > 0);
961 --fold_deferring_overflow_warnings;
962 if (fold_deferring_overflow_warnings > 0)
963 {
964 if (fold_deferred_overflow_warning != NULL
965 && code != 0
966 && code < (int) fold_deferred_overflow_code)
967 fold_deferred_overflow_code = code;
968 return;
969 }
970
971 warnmsg = fold_deferred_overflow_warning;
972 fold_deferred_overflow_warning = NULL;
973
974 if (!issue || warnmsg == NULL)
975 return;
976
977 if (gimple_no_warning_p (stmt))
978 return;
979
980 /* Use the smallest code level when deciding to issue the
981 warning. */
982 if (code == 0 || code > (int) fold_deferred_overflow_code)
983 code = fold_deferred_overflow_code;
984
985 if (!issue_strict_overflow_warning (code))
986 return;
987
988 if (stmt == NULL)
989 locus = input_location;
990 else
991 locus = gimple_location (stmt);
992 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
993 }
994
995 /* Stop deferring overflow warnings, ignoring any deferred
996 warnings. */
997
998 void
999 fold_undefer_and_ignore_overflow_warnings (void)
1000 {
1001 fold_undefer_overflow_warnings (false, NULL, 0);
1002 }
1003
1004 /* Whether we are deferring overflow warnings. */
1005
1006 bool
1007 fold_deferring_overflow_warnings_p (void)
1008 {
1009 return fold_deferring_overflow_warnings > 0;
1010 }
1011
1012 /* This is called when we fold something based on the fact that signed
1013 overflow is undefined. */
1014
1015 static void
1016 fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc)
1017 {
1018 if (fold_deferring_overflow_warnings > 0)
1019 {
1020 if (fold_deferred_overflow_warning == NULL
1021 || wc < fold_deferred_overflow_code)
1022 {
1023 fold_deferred_overflow_warning = gmsgid;
1024 fold_deferred_overflow_code = wc;
1025 }
1026 }
1027 else if (issue_strict_overflow_warning (wc))
1028 warning (OPT_Wstrict_overflow, gmsgid);
1029 }
1030 \f
1031 /* Return true if the built-in mathematical function specified by CODE
1032 is odd, i.e. -f(x) == f(-x). */
1033
1034 static bool
1035 negate_mathfn_p (enum built_in_function code)
1036 {
1037 switch (code)
1038 {
1039 CASE_FLT_FN (BUILT_IN_ASIN):
1040 CASE_FLT_FN (BUILT_IN_ASINH):
1041 CASE_FLT_FN (BUILT_IN_ATAN):
1042 CASE_FLT_FN (BUILT_IN_ATANH):
1043 CASE_FLT_FN (BUILT_IN_CASIN):
1044 CASE_FLT_FN (BUILT_IN_CASINH):
1045 CASE_FLT_FN (BUILT_IN_CATAN):
1046 CASE_FLT_FN (BUILT_IN_CATANH):
1047 CASE_FLT_FN (BUILT_IN_CBRT):
1048 CASE_FLT_FN (BUILT_IN_CPROJ):
1049 CASE_FLT_FN (BUILT_IN_CSIN):
1050 CASE_FLT_FN (BUILT_IN_CSINH):
1051 CASE_FLT_FN (BUILT_IN_CTAN):
1052 CASE_FLT_FN (BUILT_IN_CTANH):
1053 CASE_FLT_FN (BUILT_IN_ERF):
1054 CASE_FLT_FN (BUILT_IN_LLROUND):
1055 CASE_FLT_FN (BUILT_IN_LROUND):
1056 CASE_FLT_FN (BUILT_IN_ROUND):
1057 CASE_FLT_FN (BUILT_IN_SIN):
1058 CASE_FLT_FN (BUILT_IN_SINH):
1059 CASE_FLT_FN (BUILT_IN_TAN):
1060 CASE_FLT_FN (BUILT_IN_TANH):
1061 CASE_FLT_FN (BUILT_IN_TRUNC):
1062 return true;
1063
1064 CASE_FLT_FN (BUILT_IN_LLRINT):
1065 CASE_FLT_FN (BUILT_IN_LRINT):
1066 CASE_FLT_FN (BUILT_IN_NEARBYINT):
1067 CASE_FLT_FN (BUILT_IN_RINT):
1068 return !flag_rounding_math;
1069
1070 default:
1071 break;
1072 }
1073 return false;
1074 }
1075
1076 /* Check whether we may negate an integer constant T without causing
1077 overflow. */
1078
1079 bool
1080 may_negate_without_overflow_p (const_tree t)
1081 {
1082 unsigned HOST_WIDE_INT val;
1083 unsigned int prec;
1084 tree type;
1085
1086 gcc_assert (TREE_CODE (t) == INTEGER_CST);
1087
1088 type = TREE_TYPE (t);
1089 if (TYPE_UNSIGNED (type))
1090 return false;
1091
1092 prec = TYPE_PRECISION (type);
1093 if (prec > HOST_BITS_PER_WIDE_INT)
1094 {
1095 if (TREE_INT_CST_LOW (t) != 0)
1096 return true;
1097 prec -= HOST_BITS_PER_WIDE_INT;
1098 val = TREE_INT_CST_HIGH (t);
1099 }
1100 else
1101 val = TREE_INT_CST_LOW (t);
1102 if (prec < HOST_BITS_PER_WIDE_INT)
1103 val &= ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1104 return val != ((unsigned HOST_WIDE_INT) 1 << (prec - 1));
1105 }
1106
1107 /* Determine whether an expression T can be cheaply negated using
1108 the function negate_expr without introducing undefined overflow. */
1109
1110 static bool
1111 negate_expr_p (tree t)
1112 {
1113 tree type;
1114
1115 if (t == 0)
1116 return false;
1117
1118 type = TREE_TYPE (t);
1119
1120 STRIP_SIGN_NOPS (t);
1121 switch (TREE_CODE (t))
1122 {
1123 case INTEGER_CST:
1124 if (TYPE_OVERFLOW_WRAPS (type))
1125 return true;
1126
1127 /* Check that -CST will not overflow type. */
1128 return may_negate_without_overflow_p (t);
1129 case BIT_NOT_EXPR:
1130 return (INTEGRAL_TYPE_P (type)
1131 && TYPE_OVERFLOW_WRAPS (type));
1132
1133 case FIXED_CST:
1134 case REAL_CST:
1135 case NEGATE_EXPR:
1136 return true;
1137
1138 case COMPLEX_CST:
1139 return negate_expr_p (TREE_REALPART (t))
1140 && negate_expr_p (TREE_IMAGPART (t));
1141
1142 case COMPLEX_EXPR:
1143 return negate_expr_p (TREE_OPERAND (t, 0))
1144 && negate_expr_p (TREE_OPERAND (t, 1));
1145
1146 case CONJ_EXPR:
1147 return negate_expr_p (TREE_OPERAND (t, 0));
1148
1149 case PLUS_EXPR:
1150 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1151 || HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1152 return false;
1153 /* -(A + B) -> (-B) - A. */
1154 if (negate_expr_p (TREE_OPERAND (t, 1))
1155 && reorder_operands_p (TREE_OPERAND (t, 0),
1156 TREE_OPERAND (t, 1)))
1157 return true;
1158 /* -(A + B) -> (-A) - B. */
1159 return negate_expr_p (TREE_OPERAND (t, 0));
1160
1161 case MINUS_EXPR:
1162 /* We can't turn -(A-B) into B-A when we honor signed zeros. */
1163 return !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1164 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1165 && reorder_operands_p (TREE_OPERAND (t, 0),
1166 TREE_OPERAND (t, 1));
1167
1168 case MULT_EXPR:
1169 if (TYPE_UNSIGNED (TREE_TYPE (t)))
1170 break;
1171
1172 /* Fall through. */
1173
1174 case RDIV_EXPR:
1175 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (t))))
1176 return negate_expr_p (TREE_OPERAND (t, 1))
1177 || negate_expr_p (TREE_OPERAND (t, 0));
1178 break;
1179
1180 case TRUNC_DIV_EXPR:
1181 case ROUND_DIV_EXPR:
1182 case FLOOR_DIV_EXPR:
1183 case CEIL_DIV_EXPR:
1184 case EXACT_DIV_EXPR:
1185 /* In general we can't negate A / B, because if A is INT_MIN and
1186 B is 1, we may turn this into INT_MIN / -1 which is undefined
1187 and actually traps on some architectures. But if overflow is
1188 undefined, we can negate, because - (INT_MIN / 1) is an
1189 overflow. */
1190 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
1191 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)))
1192 break;
1193 return negate_expr_p (TREE_OPERAND (t, 1))
1194 || negate_expr_p (TREE_OPERAND (t, 0));
1195
1196 case NOP_EXPR:
1197 /* Negate -((double)float) as (double)(-float). */
1198 if (TREE_CODE (type) == REAL_TYPE)
1199 {
1200 tree tem = strip_float_extensions (t);
1201 if (tem != t)
1202 return negate_expr_p (tem);
1203 }
1204 break;
1205
1206 case CALL_EXPR:
1207 /* Negate -f(x) as f(-x). */
1208 if (negate_mathfn_p (builtin_mathfn_code (t)))
1209 return negate_expr_p (CALL_EXPR_ARG (t, 0));
1210 break;
1211
1212 case RSHIFT_EXPR:
1213 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1214 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1215 {
1216 tree op1 = TREE_OPERAND (t, 1);
1217 if (TREE_INT_CST_HIGH (op1) == 0
1218 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1219 == TREE_INT_CST_LOW (op1))
1220 return true;
1221 }
1222 break;
1223
1224 default:
1225 break;
1226 }
1227 return false;
1228 }
1229
1230 /* Given T, an expression, return a folded tree for -T or NULL_TREE, if no
1231 simplification is possible.
1232 If negate_expr_p would return true for T, NULL_TREE will never be
1233 returned. */
1234
1235 static tree
1236 fold_negate_expr (tree t)
1237 {
1238 tree type = TREE_TYPE (t);
1239 tree tem;
1240
1241 switch (TREE_CODE (t))
1242 {
1243 /* Convert - (~A) to A + 1. */
1244 case BIT_NOT_EXPR:
1245 if (INTEGRAL_TYPE_P (type))
1246 return fold_build2 (PLUS_EXPR, type, TREE_OPERAND (t, 0),
1247 build_int_cst (type, 1));
1248 break;
1249
1250 case INTEGER_CST:
1251 tem = fold_negate_const (t, type);
1252 if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t)
1253 || !TYPE_OVERFLOW_TRAPS (type))
1254 return tem;
1255 break;
1256
1257 case REAL_CST:
1258 tem = fold_negate_const (t, type);
1259 /* Two's complement FP formats, such as c4x, may overflow. */
1260 if (!TREE_OVERFLOW (tem) || !flag_trapping_math)
1261 return tem;
1262 break;
1263
1264 case FIXED_CST:
1265 tem = fold_negate_const (t, type);
1266 return tem;
1267
1268 case COMPLEX_CST:
1269 {
1270 tree rpart = negate_expr (TREE_REALPART (t));
1271 tree ipart = negate_expr (TREE_IMAGPART (t));
1272
1273 if ((TREE_CODE (rpart) == REAL_CST
1274 && TREE_CODE (ipart) == REAL_CST)
1275 || (TREE_CODE (rpart) == INTEGER_CST
1276 && TREE_CODE (ipart) == INTEGER_CST))
1277 return build_complex (type, rpart, ipart);
1278 }
1279 break;
1280
1281 case COMPLEX_EXPR:
1282 if (negate_expr_p (t))
1283 return fold_build2 (COMPLEX_EXPR, type,
1284 fold_negate_expr (TREE_OPERAND (t, 0)),
1285 fold_negate_expr (TREE_OPERAND (t, 1)));
1286 break;
1287
1288 case CONJ_EXPR:
1289 if (negate_expr_p (t))
1290 return fold_build1 (CONJ_EXPR, type,
1291 fold_negate_expr (TREE_OPERAND (t, 0)));
1292 break;
1293
1294 case NEGATE_EXPR:
1295 return TREE_OPERAND (t, 0);
1296
1297 case PLUS_EXPR:
1298 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1299 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
1300 {
1301 /* -(A + B) -> (-B) - A. */
1302 if (negate_expr_p (TREE_OPERAND (t, 1))
1303 && reorder_operands_p (TREE_OPERAND (t, 0),
1304 TREE_OPERAND (t, 1)))
1305 {
1306 tem = negate_expr (TREE_OPERAND (t, 1));
1307 return fold_build2 (MINUS_EXPR, type,
1308 tem, TREE_OPERAND (t, 0));
1309 }
1310
1311 /* -(A + B) -> (-A) - B. */
1312 if (negate_expr_p (TREE_OPERAND (t, 0)))
1313 {
1314 tem = negate_expr (TREE_OPERAND (t, 0));
1315 return fold_build2 (MINUS_EXPR, type,
1316 tem, TREE_OPERAND (t, 1));
1317 }
1318 }
1319 break;
1320
1321 case MINUS_EXPR:
1322 /* - (A - B) -> B - A */
1323 if (!HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type))
1324 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
1325 && reorder_operands_p (TREE_OPERAND (t, 0), TREE_OPERAND (t, 1)))
1326 return fold_build2 (MINUS_EXPR, type,
1327 TREE_OPERAND (t, 1), TREE_OPERAND (t, 0));
1328 break;
1329
1330 case MULT_EXPR:
1331 if (TYPE_UNSIGNED (type))
1332 break;
1333
1334 /* Fall through. */
1335
1336 case RDIV_EXPR:
1337 if (! HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type)))
1338 {
1339 tem = TREE_OPERAND (t, 1);
1340 if (negate_expr_p (tem))
1341 return fold_build2 (TREE_CODE (t), type,
1342 TREE_OPERAND (t, 0), negate_expr (tem));
1343 tem = TREE_OPERAND (t, 0);
1344 if (negate_expr_p (tem))
1345 return fold_build2 (TREE_CODE (t), type,
1346 negate_expr (tem), TREE_OPERAND (t, 1));
1347 }
1348 break;
1349
1350 case TRUNC_DIV_EXPR:
1351 case ROUND_DIV_EXPR:
1352 case FLOOR_DIV_EXPR:
1353 case CEIL_DIV_EXPR:
1354 case EXACT_DIV_EXPR:
1355 /* In general we can't negate A / B, because if A is INT_MIN and
1356 B is 1, we may turn this into INT_MIN / -1 which is undefined
1357 and actually traps on some architectures. But if overflow is
1358 undefined, we can negate, because - (INT_MIN / 1) is an
1359 overflow. */
1360 if (!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
1361 {
1362 const char * const warnmsg = G_("assuming signed overflow does not "
1363 "occur when negating a division");
1364 tem = TREE_OPERAND (t, 1);
1365 if (negate_expr_p (tem))
1366 {
1367 if (INTEGRAL_TYPE_P (type)
1368 && (TREE_CODE (tem) != INTEGER_CST
1369 || integer_onep (tem)))
1370 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1371 return fold_build2 (TREE_CODE (t), type,
1372 TREE_OPERAND (t, 0), negate_expr (tem));
1373 }
1374 tem = TREE_OPERAND (t, 0);
1375 if (negate_expr_p (tem))
1376 {
1377 if (INTEGRAL_TYPE_P (type)
1378 && (TREE_CODE (tem) != INTEGER_CST
1379 || tree_int_cst_equal (tem, TYPE_MIN_VALUE (type))))
1380 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MISC);
1381 return fold_build2 (TREE_CODE (t), type,
1382 negate_expr (tem), TREE_OPERAND (t, 1));
1383 }
1384 }
1385 break;
1386
1387 case NOP_EXPR:
1388 /* Convert -((double)float) into (double)(-float). */
1389 if (TREE_CODE (type) == REAL_TYPE)
1390 {
1391 tem = strip_float_extensions (t);
1392 if (tem != t && negate_expr_p (tem))
1393 return fold_convert (type, negate_expr (tem));
1394 }
1395 break;
1396
1397 case CALL_EXPR:
1398 /* Negate -f(x) as f(-x). */
1399 if (negate_mathfn_p (builtin_mathfn_code (t))
1400 && negate_expr_p (CALL_EXPR_ARG (t, 0)))
1401 {
1402 tree fndecl, arg;
1403
1404 fndecl = get_callee_fndecl (t);
1405 arg = negate_expr (CALL_EXPR_ARG (t, 0));
1406 return build_call_expr (fndecl, 1, arg);
1407 }
1408 break;
1409
1410 case RSHIFT_EXPR:
1411 /* Optimize -((int)x >> 31) into (unsigned)x >> 31. */
1412 if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST)
1413 {
1414 tree op1 = TREE_OPERAND (t, 1);
1415 if (TREE_INT_CST_HIGH (op1) == 0
1416 && (unsigned HOST_WIDE_INT) (TYPE_PRECISION (type) - 1)
1417 == TREE_INT_CST_LOW (op1))
1418 {
1419 tree ntype = TYPE_UNSIGNED (type)
1420 ? signed_type_for (type)
1421 : unsigned_type_for (type);
1422 tree temp = fold_convert (ntype, TREE_OPERAND (t, 0));
1423 temp = fold_build2 (RSHIFT_EXPR, ntype, temp, op1);
1424 return fold_convert (type, temp);
1425 }
1426 }
1427 break;
1428
1429 default:
1430 break;
1431 }
1432
1433 return NULL_TREE;
1434 }
1435
1436 /* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T can not be
1437 negated in a simpler way. Also allow for T to be NULL_TREE, in which case
1438 return NULL_TREE. */
1439
1440 static tree
1441 negate_expr (tree t)
1442 {
1443 tree type, tem;
1444
1445 if (t == NULL_TREE)
1446 return NULL_TREE;
1447
1448 type = TREE_TYPE (t);
1449 STRIP_SIGN_NOPS (t);
1450
1451 tem = fold_negate_expr (t);
1452 if (!tem)
1453 tem = build1 (NEGATE_EXPR, TREE_TYPE (t), t);
1454 return fold_convert (type, tem);
1455 }
1456 \f
1457 /* Split a tree IN into a constant, literal and variable parts that could be
1458 combined with CODE to make IN. "constant" means an expression with
1459 TREE_CONSTANT but that isn't an actual constant. CODE must be a
1460 commutative arithmetic operation. Store the constant part into *CONP,
1461 the literal in *LITP and return the variable part. If a part isn't
1462 present, set it to null. If the tree does not decompose in this way,
1463 return the entire tree as the variable part and the other parts as null.
1464
1465 If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that
1466 case, we negate an operand that was subtracted. Except if it is a
1467 literal for which we use *MINUS_LITP instead.
1468
1469 If NEGATE_P is true, we are negating all of IN, again except a literal
1470 for which we use *MINUS_LITP instead.
1471
1472 If IN is itself a literal or constant, return it as appropriate.
1473
1474 Note that we do not guarantee that any of the three values will be the
1475 same type as IN, but they will have the same signedness and mode. */
1476
1477 static tree
1478 split_tree (tree in, enum tree_code code, tree *conp, tree *litp,
1479 tree *minus_litp, int negate_p)
1480 {
1481 tree var = 0;
1482
1483 *conp = 0;
1484 *litp = 0;
1485 *minus_litp = 0;
1486
1487 /* Strip any conversions that don't change the machine mode or signedness. */
1488 STRIP_SIGN_NOPS (in);
1489
1490 if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST
1491 || TREE_CODE (in) == FIXED_CST)
1492 *litp = in;
1493 else if (TREE_CODE (in) == code
1494 || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math)
1495 && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in))
1496 /* We can associate addition and subtraction together (even
1497 though the C standard doesn't say so) for integers because
1498 the value is not affected. For reals, the value might be
1499 affected, so we can't. */
1500 && ((code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR)
1501 || (code == MINUS_EXPR && TREE_CODE (in) == PLUS_EXPR))))
1502 {
1503 tree op0 = TREE_OPERAND (in, 0);
1504 tree op1 = TREE_OPERAND (in, 1);
1505 int neg1_p = TREE_CODE (in) == MINUS_EXPR;
1506 int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0;
1507
1508 /* First see if either of the operands is a literal, then a constant. */
1509 if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST
1510 || TREE_CODE (op0) == FIXED_CST)
1511 *litp = op0, op0 = 0;
1512 else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST
1513 || TREE_CODE (op1) == FIXED_CST)
1514 *litp = op1, neg_litp_p = neg1_p, op1 = 0;
1515
1516 if (op0 != 0 && TREE_CONSTANT (op0))
1517 *conp = op0, op0 = 0;
1518 else if (op1 != 0 && TREE_CONSTANT (op1))
1519 *conp = op1, neg_conp_p = neg1_p, op1 = 0;
1520
1521 /* If we haven't dealt with either operand, this is not a case we can
1522 decompose. Otherwise, VAR is either of the ones remaining, if any. */
1523 if (op0 != 0 && op1 != 0)
1524 var = in;
1525 else if (op0 != 0)
1526 var = op0;
1527 else
1528 var = op1, neg_var_p = neg1_p;
1529
1530 /* Now do any needed negations. */
1531 if (neg_litp_p)
1532 *minus_litp = *litp, *litp = 0;
1533 if (neg_conp_p)
1534 *conp = negate_expr (*conp);
1535 if (neg_var_p)
1536 var = negate_expr (var);
1537 }
1538 else if (TREE_CONSTANT (in))
1539 *conp = in;
1540 else
1541 var = in;
1542
1543 if (negate_p)
1544 {
1545 if (*litp)
1546 *minus_litp = *litp, *litp = 0;
1547 else if (*minus_litp)
1548 *litp = *minus_litp, *minus_litp = 0;
1549 *conp = negate_expr (*conp);
1550 var = negate_expr (var);
1551 }
1552
1553 return var;
1554 }
1555
1556 /* Re-associate trees split by the above function. T1 and T2 are either
1557 expressions to associate or null. Return the new expression, if any. If
1558 we build an operation, do it in TYPE and with CODE. */
1559
1560 static tree
1561 associate_trees (tree t1, tree t2, enum tree_code code, tree type)
1562 {
1563 if (t1 == 0)
1564 return t2;
1565 else if (t2 == 0)
1566 return t1;
1567
1568 /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't
1569 try to fold this since we will have infinite recursion. But do
1570 deal with any NEGATE_EXPRs. */
1571 if (TREE_CODE (t1) == code || TREE_CODE (t2) == code
1572 || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR)
1573 {
1574 if (code == PLUS_EXPR)
1575 {
1576 if (TREE_CODE (t1) == NEGATE_EXPR)
1577 return build2 (MINUS_EXPR, type, fold_convert (type, t2),
1578 fold_convert (type, TREE_OPERAND (t1, 0)));
1579 else if (TREE_CODE (t2) == NEGATE_EXPR)
1580 return build2 (MINUS_EXPR, type, fold_convert (type, t1),
1581 fold_convert (type, TREE_OPERAND (t2, 0)));
1582 else if (integer_zerop (t2))
1583 return fold_convert (type, t1);
1584 }
1585 else if (code == MINUS_EXPR)
1586 {
1587 if (integer_zerop (t2))
1588 return fold_convert (type, t1);
1589 }
1590
1591 return build2 (code, type, fold_convert (type, t1),
1592 fold_convert (type, t2));
1593 }
1594
1595 return fold_build2 (code, type, fold_convert (type, t1),
1596 fold_convert (type, t2));
1597 }
1598 \f
1599 /* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable
1600 for use in int_const_binop, size_binop and size_diffop. */
1601
1602 static bool
1603 int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2)
1604 {
1605 if (TREE_CODE (type1) != INTEGER_TYPE && !POINTER_TYPE_P (type1))
1606 return false;
1607 if (TREE_CODE (type2) != INTEGER_TYPE && !POINTER_TYPE_P (type2))
1608 return false;
1609
1610 switch (code)
1611 {
1612 case LSHIFT_EXPR:
1613 case RSHIFT_EXPR:
1614 case LROTATE_EXPR:
1615 case RROTATE_EXPR:
1616 return true;
1617
1618 default:
1619 break;
1620 }
1621
1622 return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1623 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2)
1624 && TYPE_MODE (type1) == TYPE_MODE (type2);
1625 }
1626
1627
1628 /* Combine two integer constants ARG1 and ARG2 under operation CODE
1629 to produce a new constant. Return NULL_TREE if we don't know how
1630 to evaluate CODE at compile-time.
1631
1632 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1633
1634 tree
1635 int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2, int notrunc)
1636 {
1637 unsigned HOST_WIDE_INT int1l, int2l;
1638 HOST_WIDE_INT int1h, int2h;
1639 unsigned HOST_WIDE_INT low;
1640 HOST_WIDE_INT hi;
1641 unsigned HOST_WIDE_INT garbagel;
1642 HOST_WIDE_INT garbageh;
1643 tree t;
1644 tree type = TREE_TYPE (arg1);
1645 int uns = TYPE_UNSIGNED (type);
1646 int is_sizetype
1647 = (TREE_CODE (type) == INTEGER_TYPE && TYPE_IS_SIZETYPE (type));
1648 int overflow = 0;
1649
1650 int1l = TREE_INT_CST_LOW (arg1);
1651 int1h = TREE_INT_CST_HIGH (arg1);
1652 int2l = TREE_INT_CST_LOW (arg2);
1653 int2h = TREE_INT_CST_HIGH (arg2);
1654
1655 switch (code)
1656 {
1657 case BIT_IOR_EXPR:
1658 low = int1l | int2l, hi = int1h | int2h;
1659 break;
1660
1661 case BIT_XOR_EXPR:
1662 low = int1l ^ int2l, hi = int1h ^ int2h;
1663 break;
1664
1665 case BIT_AND_EXPR:
1666 low = int1l & int2l, hi = int1h & int2h;
1667 break;
1668
1669 case RSHIFT_EXPR:
1670 int2l = -int2l;
1671 case LSHIFT_EXPR:
1672 /* It's unclear from the C standard whether shifts can overflow.
1673 The following code ignores overflow; perhaps a C standard
1674 interpretation ruling is needed. */
1675 lshift_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1676 &low, &hi, !uns);
1677 break;
1678
1679 case RROTATE_EXPR:
1680 int2l = - int2l;
1681 case LROTATE_EXPR:
1682 lrotate_double (int1l, int1h, int2l, TYPE_PRECISION (type),
1683 &low, &hi);
1684 break;
1685
1686 case PLUS_EXPR:
1687 overflow = add_double (int1l, int1h, int2l, int2h, &low, &hi);
1688 break;
1689
1690 case MINUS_EXPR:
1691 neg_double (int2l, int2h, &low, &hi);
1692 add_double (int1l, int1h, low, hi, &low, &hi);
1693 overflow = OVERFLOW_SUM_SIGN (hi, int2h, int1h);
1694 break;
1695
1696 case MULT_EXPR:
1697 overflow = mul_double (int1l, int1h, int2l, int2h, &low, &hi);
1698 break;
1699
1700 case TRUNC_DIV_EXPR:
1701 case FLOOR_DIV_EXPR: case CEIL_DIV_EXPR:
1702 case EXACT_DIV_EXPR:
1703 /* This is a shortcut for a common special case. */
1704 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1705 && !TREE_OVERFLOW (arg1)
1706 && !TREE_OVERFLOW (arg2)
1707 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1708 {
1709 if (code == CEIL_DIV_EXPR)
1710 int1l += int2l - 1;
1711
1712 low = int1l / int2l, hi = 0;
1713 break;
1714 }
1715
1716 /* ... fall through ... */
1717
1718 case ROUND_DIV_EXPR:
1719 if (int2h == 0 && int2l == 0)
1720 return NULL_TREE;
1721 if (int2h == 0 && int2l == 1)
1722 {
1723 low = int1l, hi = int1h;
1724 break;
1725 }
1726 if (int1l == int2l && int1h == int2h
1727 && ! (int1l == 0 && int1h == 0))
1728 {
1729 low = 1, hi = 0;
1730 break;
1731 }
1732 overflow = div_and_round_double (code, uns, int1l, int1h, int2l, int2h,
1733 &low, &hi, &garbagel, &garbageh);
1734 break;
1735
1736 case TRUNC_MOD_EXPR:
1737 case FLOOR_MOD_EXPR: case CEIL_MOD_EXPR:
1738 /* This is a shortcut for a common special case. */
1739 if (int2h == 0 && (HOST_WIDE_INT) int2l > 0
1740 && !TREE_OVERFLOW (arg1)
1741 && !TREE_OVERFLOW (arg2)
1742 && int1h == 0 && (HOST_WIDE_INT) int1l >= 0)
1743 {
1744 if (code == CEIL_MOD_EXPR)
1745 int1l += int2l - 1;
1746 low = int1l % int2l, hi = 0;
1747 break;
1748 }
1749
1750 /* ... fall through ... */
1751
1752 case ROUND_MOD_EXPR:
1753 if (int2h == 0 && int2l == 0)
1754 return NULL_TREE;
1755 overflow = div_and_round_double (code, uns,
1756 int1l, int1h, int2l, int2h,
1757 &garbagel, &garbageh, &low, &hi);
1758 break;
1759
1760 case MIN_EXPR:
1761 case MAX_EXPR:
1762 if (uns)
1763 low = (((unsigned HOST_WIDE_INT) int1h
1764 < (unsigned HOST_WIDE_INT) int2h)
1765 || (((unsigned HOST_WIDE_INT) int1h
1766 == (unsigned HOST_WIDE_INT) int2h)
1767 && int1l < int2l));
1768 else
1769 low = (int1h < int2h
1770 || (int1h == int2h && int1l < int2l));
1771
1772 if (low == (code == MIN_EXPR))
1773 low = int1l, hi = int1h;
1774 else
1775 low = int2l, hi = int2h;
1776 break;
1777
1778 default:
1779 return NULL_TREE;
1780 }
1781
1782 if (notrunc)
1783 {
1784 t = build_int_cst_wide (TREE_TYPE (arg1), low, hi);
1785
1786 /* Propagate overflow flags ourselves. */
1787 if (((!uns || is_sizetype) && overflow)
1788 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1789 {
1790 t = copy_node (t);
1791 TREE_OVERFLOW (t) = 1;
1792 }
1793 }
1794 else
1795 t = force_fit_type_double (TREE_TYPE (arg1), low, hi, 1,
1796 ((!uns || is_sizetype) && overflow)
1797 | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2));
1798
1799 return t;
1800 }
1801
1802 /* Combine two constants ARG1 and ARG2 under operation CODE to produce a new
1803 constant. We assume ARG1 and ARG2 have the same data type, or at least
1804 are the same kind of constant and the same machine mode. Return zero if
1805 combining the constants is not allowed in the current operating mode.
1806
1807 If NOTRUNC is nonzero, do not truncate the result to fit the data type. */
1808
1809 static tree
1810 const_binop (enum tree_code code, tree arg1, tree arg2, int notrunc)
1811 {
1812 /* Sanity check for the recursive cases. */
1813 if (!arg1 || !arg2)
1814 return NULL_TREE;
1815
1816 STRIP_NOPS (arg1);
1817 STRIP_NOPS (arg2);
1818
1819 if (TREE_CODE (arg1) == INTEGER_CST)
1820 return int_const_binop (code, arg1, arg2, notrunc);
1821
1822 if (TREE_CODE (arg1) == REAL_CST)
1823 {
1824 enum machine_mode mode;
1825 REAL_VALUE_TYPE d1;
1826 REAL_VALUE_TYPE d2;
1827 REAL_VALUE_TYPE value;
1828 REAL_VALUE_TYPE result;
1829 bool inexact;
1830 tree t, type;
1831
1832 /* The following codes are handled by real_arithmetic. */
1833 switch (code)
1834 {
1835 case PLUS_EXPR:
1836 case MINUS_EXPR:
1837 case MULT_EXPR:
1838 case RDIV_EXPR:
1839 case MIN_EXPR:
1840 case MAX_EXPR:
1841 break;
1842
1843 default:
1844 return NULL_TREE;
1845 }
1846
1847 d1 = TREE_REAL_CST (arg1);
1848 d2 = TREE_REAL_CST (arg2);
1849
1850 type = TREE_TYPE (arg1);
1851 mode = TYPE_MODE (type);
1852
1853 /* Don't perform operation if we honor signaling NaNs and
1854 either operand is a NaN. */
1855 if (HONOR_SNANS (mode)
1856 && (REAL_VALUE_ISNAN (d1) || REAL_VALUE_ISNAN (d2)))
1857 return NULL_TREE;
1858
1859 /* Don't perform operation if it would raise a division
1860 by zero exception. */
1861 if (code == RDIV_EXPR
1862 && REAL_VALUES_EQUAL (d2, dconst0)
1863 && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode)))
1864 return NULL_TREE;
1865
1866 /* If either operand is a NaN, just return it. Otherwise, set up
1867 for floating-point trap; we return an overflow. */
1868 if (REAL_VALUE_ISNAN (d1))
1869 return arg1;
1870 else if (REAL_VALUE_ISNAN (d2))
1871 return arg2;
1872
1873 inexact = real_arithmetic (&value, code, &d1, &d2);
1874 real_convert (&result, mode, &value);
1875
1876 /* Don't constant fold this floating point operation if
1877 the result has overflowed and flag_trapping_math. */
1878 if (flag_trapping_math
1879 && MODE_HAS_INFINITIES (mode)
1880 && REAL_VALUE_ISINF (result)
1881 && !REAL_VALUE_ISINF (d1)
1882 && !REAL_VALUE_ISINF (d2))
1883 return NULL_TREE;
1884
1885 /* Don't constant fold this floating point operation if the
1886 result may dependent upon the run-time rounding mode and
1887 flag_rounding_math is set, or if GCC's software emulation
1888 is unable to accurately represent the result. */
1889 if ((flag_rounding_math
1890 || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations))
1891 && (inexact || !real_identical (&result, &value)))
1892 return NULL_TREE;
1893
1894 t = build_real (type, result);
1895
1896 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2);
1897 return t;
1898 }
1899
1900 if (TREE_CODE (arg1) == FIXED_CST)
1901 {
1902 FIXED_VALUE_TYPE f1;
1903 FIXED_VALUE_TYPE f2;
1904 FIXED_VALUE_TYPE result;
1905 tree t, type;
1906 int sat_p;
1907 bool overflow_p;
1908
1909 /* The following codes are handled by fixed_arithmetic. */
1910 switch (code)
1911 {
1912 case PLUS_EXPR:
1913 case MINUS_EXPR:
1914 case MULT_EXPR:
1915 case TRUNC_DIV_EXPR:
1916 f2 = TREE_FIXED_CST (arg2);
1917 break;
1918
1919 case LSHIFT_EXPR:
1920 case RSHIFT_EXPR:
1921 f2.data.high = TREE_INT_CST_HIGH (arg2);
1922 f2.data.low = TREE_INT_CST_LOW (arg2);
1923 f2.mode = SImode;
1924 break;
1925
1926 default:
1927 return NULL_TREE;
1928 }
1929
1930 f1 = TREE_FIXED_CST (arg1);
1931 type = TREE_TYPE (arg1);
1932 sat_p = TYPE_SATURATING (type);
1933 overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p);
1934 t = build_fixed (type, result);
1935 /* Propagate overflow flags. */
1936 if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))
1937 {
1938 TREE_OVERFLOW (t) = 1;
1939 TREE_CONSTANT_OVERFLOW (t) = 1;
1940 }
1941 else if (TREE_CONSTANT_OVERFLOW (arg1) | TREE_CONSTANT_OVERFLOW (arg2))
1942 TREE_CONSTANT_OVERFLOW (t) = 1;
1943 return t;
1944 }
1945
1946 if (TREE_CODE (arg1) == COMPLEX_CST)
1947 {
1948 tree type = TREE_TYPE (arg1);
1949 tree r1 = TREE_REALPART (arg1);
1950 tree i1 = TREE_IMAGPART (arg1);
1951 tree r2 = TREE_REALPART (arg2);
1952 tree i2 = TREE_IMAGPART (arg2);
1953 tree real, imag;
1954
1955 switch (code)
1956 {
1957 case PLUS_EXPR:
1958 case MINUS_EXPR:
1959 real = const_binop (code, r1, r2, notrunc);
1960 imag = const_binop (code, i1, i2, notrunc);
1961 break;
1962
1963 case MULT_EXPR:
1964 real = const_binop (MINUS_EXPR,
1965 const_binop (MULT_EXPR, r1, r2, notrunc),
1966 const_binop (MULT_EXPR, i1, i2, notrunc),
1967 notrunc);
1968 imag = const_binop (PLUS_EXPR,
1969 const_binop (MULT_EXPR, r1, i2, notrunc),
1970 const_binop (MULT_EXPR, i1, r2, notrunc),
1971 notrunc);
1972 break;
1973
1974 case RDIV_EXPR:
1975 {
1976 tree magsquared
1977 = const_binop (PLUS_EXPR,
1978 const_binop (MULT_EXPR, r2, r2, notrunc),
1979 const_binop (MULT_EXPR, i2, i2, notrunc),
1980 notrunc);
1981 tree t1
1982 = const_binop (PLUS_EXPR,
1983 const_binop (MULT_EXPR, r1, r2, notrunc),
1984 const_binop (MULT_EXPR, i1, i2, notrunc),
1985 notrunc);
1986 tree t2
1987 = const_binop (MINUS_EXPR,
1988 const_binop (MULT_EXPR, i1, r2, notrunc),
1989 const_binop (MULT_EXPR, r1, i2, notrunc),
1990 notrunc);
1991
1992 if (INTEGRAL_TYPE_P (TREE_TYPE (r1)))
1993 code = TRUNC_DIV_EXPR;
1994
1995 real = const_binop (code, t1, magsquared, notrunc);
1996 imag = const_binop (code, t2, magsquared, notrunc);
1997 }
1998 break;
1999
2000 default:
2001 return NULL_TREE;
2002 }
2003
2004 if (real && imag)
2005 return build_complex (type, real, imag);
2006 }
2007
2008 return NULL_TREE;
2009 }
2010
2011 /* Create a size type INT_CST node with NUMBER sign extended. KIND
2012 indicates which particular sizetype to create. */
2013
2014 tree
2015 size_int_kind (HOST_WIDE_INT number, enum size_type_kind kind)
2016 {
2017 return build_int_cst (sizetype_tab[(int) kind], number);
2018 }
2019 \f
2020 /* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE
2021 is a tree code. The type of the result is taken from the operands.
2022 Both must be equivalent integer types, ala int_binop_types_match_p.
2023 If the operands are constant, so is the result. */
2024
2025 tree
2026 size_binop (enum tree_code code, tree arg0, tree arg1)
2027 {
2028 tree type = TREE_TYPE (arg0);
2029
2030 if (arg0 == error_mark_node || arg1 == error_mark_node)
2031 return error_mark_node;
2032
2033 gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0),
2034 TREE_TYPE (arg1)));
2035
2036 /* Handle the special case of two integer constants faster. */
2037 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
2038 {
2039 /* And some specific cases even faster than that. */
2040 if (code == PLUS_EXPR)
2041 {
2042 if (integer_zerop (arg0) && !TREE_OVERFLOW (arg0))
2043 return arg1;
2044 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2045 return arg0;
2046 }
2047 else if (code == MINUS_EXPR)
2048 {
2049 if (integer_zerop (arg1) && !TREE_OVERFLOW (arg1))
2050 return arg0;
2051 }
2052 else if (code == MULT_EXPR)
2053 {
2054 if (integer_onep (arg0) && !TREE_OVERFLOW (arg0))
2055 return arg1;
2056 }
2057
2058 /* Handle general case of two integer constants. */
2059 return int_const_binop (code, arg0, arg1, 0);
2060 }
2061
2062 return fold_build2 (code, type, arg0, arg1);
2063 }
2064
2065 /* Given two values, either both of sizetype or both of bitsizetype,
2066 compute the difference between the two values. Return the value
2067 in signed type corresponding to the type of the operands. */
2068
2069 tree
2070 size_diffop (tree arg0, tree arg1)
2071 {
2072 tree type = TREE_TYPE (arg0);
2073 tree ctype;
2074
2075 gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0),
2076 TREE_TYPE (arg1)));
2077
2078 /* If the type is already signed, just do the simple thing. */
2079 if (!TYPE_UNSIGNED (type))
2080 return size_binop (MINUS_EXPR, arg0, arg1);
2081
2082 if (type == sizetype)
2083 ctype = ssizetype;
2084 else if (type == bitsizetype)
2085 ctype = sbitsizetype;
2086 else
2087 ctype = signed_type_for (type);
2088
2089 /* If either operand is not a constant, do the conversions to the signed
2090 type and subtract. The hardware will do the right thing with any
2091 overflow in the subtraction. */
2092 if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST)
2093 return size_binop (MINUS_EXPR, fold_convert (ctype, arg0),
2094 fold_convert (ctype, arg1));
2095
2096 /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE.
2097 Otherwise, subtract the other way, convert to CTYPE (we know that can't
2098 overflow) and negate (which can't either). Special-case a result
2099 of zero while we're here. */
2100 if (tree_int_cst_equal (arg0, arg1))
2101 return build_int_cst (ctype, 0);
2102 else if (tree_int_cst_lt (arg1, arg0))
2103 return fold_convert (ctype, size_binop (MINUS_EXPR, arg0, arg1));
2104 else
2105 return size_binop (MINUS_EXPR, build_int_cst (ctype, 0),
2106 fold_convert (ctype, size_binop (MINUS_EXPR,
2107 arg1, arg0)));
2108 }
2109 \f
2110 /* A subroutine of fold_convert_const handling conversions of an
2111 INTEGER_CST to another integer type. */
2112
2113 static tree
2114 fold_convert_const_int_from_int (tree type, const_tree arg1)
2115 {
2116 tree t;
2117
2118 /* Given an integer constant, make new constant with new type,
2119 appropriately sign-extended or truncated. */
2120 t = force_fit_type_double (type, TREE_INT_CST_LOW (arg1),
2121 TREE_INT_CST_HIGH (arg1),
2122 /* Don't set the overflow when
2123 converting from a pointer, */
2124 !POINTER_TYPE_P (TREE_TYPE (arg1))
2125 /* or to a sizetype with same signedness
2126 and the precision is unchanged.
2127 ??? sizetype is always sign-extended,
2128 but its signedness depends on the
2129 frontend. Thus we see spurious overflows
2130 here if we do not check this. */
2131 && !((TYPE_PRECISION (TREE_TYPE (arg1))
2132 == TYPE_PRECISION (type))
2133 && (TYPE_UNSIGNED (TREE_TYPE (arg1))
2134 == TYPE_UNSIGNED (type))
2135 && ((TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE
2136 && TYPE_IS_SIZETYPE (TREE_TYPE (arg1)))
2137 || (TREE_CODE (type) == INTEGER_TYPE
2138 && TYPE_IS_SIZETYPE (type)))),
2139 (TREE_INT_CST_HIGH (arg1) < 0
2140 && (TYPE_UNSIGNED (type)
2141 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2142 | TREE_OVERFLOW (arg1));
2143
2144 return t;
2145 }
2146
2147 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2148 to an integer type. */
2149
2150 static tree
2151 fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1)
2152 {
2153 int overflow = 0;
2154 tree t;
2155
2156 /* The following code implements the floating point to integer
2157 conversion rules required by the Java Language Specification,
2158 that IEEE NaNs are mapped to zero and values that overflow
2159 the target precision saturate, i.e. values greater than
2160 INT_MAX are mapped to INT_MAX, and values less than INT_MIN
2161 are mapped to INT_MIN. These semantics are allowed by the
2162 C and C++ standards that simply state that the behavior of
2163 FP-to-integer conversion is unspecified upon overflow. */
2164
2165 HOST_WIDE_INT high, low;
2166 REAL_VALUE_TYPE r;
2167 REAL_VALUE_TYPE x = TREE_REAL_CST (arg1);
2168
2169 switch (code)
2170 {
2171 case FIX_TRUNC_EXPR:
2172 real_trunc (&r, VOIDmode, &x);
2173 break;
2174
2175 default:
2176 gcc_unreachable ();
2177 }
2178
2179 /* If R is NaN, return zero and show we have an overflow. */
2180 if (REAL_VALUE_ISNAN (r))
2181 {
2182 overflow = 1;
2183 high = 0;
2184 low = 0;
2185 }
2186
2187 /* See if R is less than the lower bound or greater than the
2188 upper bound. */
2189
2190 if (! overflow)
2191 {
2192 tree lt = TYPE_MIN_VALUE (type);
2193 REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt);
2194 if (REAL_VALUES_LESS (r, l))
2195 {
2196 overflow = 1;
2197 high = TREE_INT_CST_HIGH (lt);
2198 low = TREE_INT_CST_LOW (lt);
2199 }
2200 }
2201
2202 if (! overflow)
2203 {
2204 tree ut = TYPE_MAX_VALUE (type);
2205 if (ut)
2206 {
2207 REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut);
2208 if (REAL_VALUES_LESS (u, r))
2209 {
2210 overflow = 1;
2211 high = TREE_INT_CST_HIGH (ut);
2212 low = TREE_INT_CST_LOW (ut);
2213 }
2214 }
2215 }
2216
2217 if (! overflow)
2218 REAL_VALUE_TO_INT (&low, &high, r);
2219
2220 t = force_fit_type_double (type, low, high, -1,
2221 overflow | TREE_OVERFLOW (arg1));
2222 return t;
2223 }
2224
2225 /* A subroutine of fold_convert_const handling conversions of a
2226 FIXED_CST to an integer type. */
2227
2228 static tree
2229 fold_convert_const_int_from_fixed (tree type, const_tree arg1)
2230 {
2231 tree t;
2232 double_int temp, temp_trunc;
2233 unsigned int mode;
2234
2235 /* Right shift FIXED_CST to temp by fbit. */
2236 temp = TREE_FIXED_CST (arg1).data;
2237 mode = TREE_FIXED_CST (arg1).mode;
2238 if (GET_MODE_FBIT (mode) < 2 * HOST_BITS_PER_WIDE_INT)
2239 {
2240 lshift_double (temp.low, temp.high,
2241 - GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2242 &temp.low, &temp.high, SIGNED_FIXED_POINT_MODE_P (mode));
2243
2244 /* Left shift temp to temp_trunc by fbit. */
2245 lshift_double (temp.low, temp.high,
2246 GET_MODE_FBIT (mode), 2 * HOST_BITS_PER_WIDE_INT,
2247 &temp_trunc.low, &temp_trunc.high,
2248 SIGNED_FIXED_POINT_MODE_P (mode));
2249 }
2250 else
2251 {
2252 temp.low = 0;
2253 temp.high = 0;
2254 temp_trunc.low = 0;
2255 temp_trunc.high = 0;
2256 }
2257
2258 /* If FIXED_CST is negative, we need to round the value toward 0.
2259 By checking if the fractional bits are not zero to add 1 to temp. */
2260 if (SIGNED_FIXED_POINT_MODE_P (mode) && temp_trunc.high < 0
2261 && !double_int_equal_p (TREE_FIXED_CST (arg1).data, temp_trunc))
2262 {
2263 double_int one;
2264 one.low = 1;
2265 one.high = 0;
2266 temp = double_int_add (temp, one);
2267 }
2268
2269 /* Given a fixed-point constant, make new constant with new type,
2270 appropriately sign-extended or truncated. */
2271 t = force_fit_type_double (type, temp.low, temp.high, -1,
2272 (temp.high < 0
2273 && (TYPE_UNSIGNED (type)
2274 < TYPE_UNSIGNED (TREE_TYPE (arg1))))
2275 | TREE_OVERFLOW (arg1));
2276
2277 return t;
2278 }
2279
2280 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2281 to another floating point type. */
2282
2283 static tree
2284 fold_convert_const_real_from_real (tree type, const_tree arg1)
2285 {
2286 REAL_VALUE_TYPE value;
2287 tree t;
2288
2289 real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1));
2290 t = build_real (type, value);
2291
2292 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2293 return t;
2294 }
2295
2296 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2297 to a floating point type. */
2298
2299 static tree
2300 fold_convert_const_real_from_fixed (tree type, const_tree arg1)
2301 {
2302 REAL_VALUE_TYPE value;
2303 tree t;
2304
2305 real_convert_from_fixed (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1));
2306 t = build_real (type, value);
2307
2308 TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1);
2309 TREE_CONSTANT_OVERFLOW (t)
2310 = TREE_OVERFLOW (t) | TREE_CONSTANT_OVERFLOW (arg1);
2311 return t;
2312 }
2313
2314 /* A subroutine of fold_convert_const handling conversions a FIXED_CST
2315 to another fixed-point type. */
2316
2317 static tree
2318 fold_convert_const_fixed_from_fixed (tree type, const_tree arg1)
2319 {
2320 FIXED_VALUE_TYPE value;
2321 tree t;
2322 bool overflow_p;
2323
2324 overflow_p = fixed_convert (&value, TYPE_MODE (type), &TREE_FIXED_CST (arg1),
2325 TYPE_SATURATING (type));
2326 t = build_fixed (type, value);
2327
2328 /* Propagate overflow flags. */
2329 if (overflow_p | TREE_OVERFLOW (arg1))
2330 {
2331 TREE_OVERFLOW (t) = 1;
2332 TREE_CONSTANT_OVERFLOW (t) = 1;
2333 }
2334 else if (TREE_CONSTANT_OVERFLOW (arg1))
2335 TREE_CONSTANT_OVERFLOW (t) = 1;
2336 return t;
2337 }
2338
2339 /* A subroutine of fold_convert_const handling conversions an INTEGER_CST
2340 to a fixed-point type. */
2341
2342 static tree
2343 fold_convert_const_fixed_from_int (tree type, const_tree arg1)
2344 {
2345 FIXED_VALUE_TYPE value;
2346 tree t;
2347 bool overflow_p;
2348
2349 overflow_p = fixed_convert_from_int (&value, TYPE_MODE (type),
2350 TREE_INT_CST (arg1),
2351 TYPE_UNSIGNED (TREE_TYPE (arg1)),
2352 TYPE_SATURATING (type));
2353 t = build_fixed (type, value);
2354
2355 /* Propagate overflow flags. */
2356 if (overflow_p | TREE_OVERFLOW (arg1))
2357 {
2358 TREE_OVERFLOW (t) = 1;
2359 TREE_CONSTANT_OVERFLOW (t) = 1;
2360 }
2361 else if (TREE_CONSTANT_OVERFLOW (arg1))
2362 TREE_CONSTANT_OVERFLOW (t) = 1;
2363 return t;
2364 }
2365
2366 /* A subroutine of fold_convert_const handling conversions a REAL_CST
2367 to a fixed-point type. */
2368
2369 static tree
2370 fold_convert_const_fixed_from_real (tree type, const_tree arg1)
2371 {
2372 FIXED_VALUE_TYPE value;
2373 tree t;
2374 bool overflow_p;
2375
2376 overflow_p = fixed_convert_from_real (&value, TYPE_MODE (type),
2377 &TREE_REAL_CST (arg1),
2378 TYPE_SATURATING (type));
2379 t = build_fixed (type, value);
2380
2381 /* Propagate overflow flags. */
2382 if (overflow_p | TREE_OVERFLOW (arg1))
2383 {
2384 TREE_OVERFLOW (t) = 1;
2385 TREE_CONSTANT_OVERFLOW (t) = 1;
2386 }
2387 else if (TREE_CONSTANT_OVERFLOW (arg1))
2388 TREE_CONSTANT_OVERFLOW (t) = 1;
2389 return t;
2390 }
2391
2392 /* Attempt to fold type conversion operation CODE of expression ARG1 to
2393 type TYPE. If no simplification can be done return NULL_TREE. */
2394
2395 static tree
2396 fold_convert_const (enum tree_code code, tree type, tree arg1)
2397 {
2398 if (TREE_TYPE (arg1) == type)
2399 return arg1;
2400
2401 if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)
2402 || TREE_CODE (type) == OFFSET_TYPE)
2403 {
2404 if (TREE_CODE (arg1) == INTEGER_CST)
2405 return fold_convert_const_int_from_int (type, arg1);
2406 else if (TREE_CODE (arg1) == REAL_CST)
2407 return fold_convert_const_int_from_real (code, type, arg1);
2408 else if (TREE_CODE (arg1) == FIXED_CST)
2409 return fold_convert_const_int_from_fixed (type, arg1);
2410 }
2411 else if (TREE_CODE (type) == REAL_TYPE)
2412 {
2413 if (TREE_CODE (arg1) == INTEGER_CST)
2414 return build_real_from_int_cst (type, arg1);
2415 else if (TREE_CODE (arg1) == REAL_CST)
2416 return fold_convert_const_real_from_real (type, arg1);
2417 else if (TREE_CODE (arg1) == FIXED_CST)
2418 return fold_convert_const_real_from_fixed (type, arg1);
2419 }
2420 else if (TREE_CODE (type) == FIXED_POINT_TYPE)
2421 {
2422 if (TREE_CODE (arg1) == FIXED_CST)
2423 return fold_convert_const_fixed_from_fixed (type, arg1);
2424 else if (TREE_CODE (arg1) == INTEGER_CST)
2425 return fold_convert_const_fixed_from_int (type, arg1);
2426 else if (TREE_CODE (arg1) == REAL_CST)
2427 return fold_convert_const_fixed_from_real (type, arg1);
2428 }
2429 return NULL_TREE;
2430 }
2431
2432 /* Construct a vector of zero elements of vector type TYPE. */
2433
2434 static tree
2435 build_zero_vector (tree type)
2436 {
2437 tree elem, list;
2438 int i, units;
2439
2440 elem = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node);
2441 units = TYPE_VECTOR_SUBPARTS (type);
2442
2443 list = NULL_TREE;
2444 for (i = 0; i < units; i++)
2445 list = tree_cons (NULL_TREE, elem, list);
2446 return build_vector (type, list);
2447 }
2448
2449 /* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */
2450
2451 bool
2452 fold_convertible_p (const_tree type, const_tree arg)
2453 {
2454 tree orig = TREE_TYPE (arg);
2455
2456 if (type == orig)
2457 return true;
2458
2459 if (TREE_CODE (arg) == ERROR_MARK
2460 || TREE_CODE (type) == ERROR_MARK
2461 || TREE_CODE (orig) == ERROR_MARK)
2462 return false;
2463
2464 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2465 return true;
2466
2467 switch (TREE_CODE (type))
2468 {
2469 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2470 case POINTER_TYPE: case REFERENCE_TYPE:
2471 case OFFSET_TYPE:
2472 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2473 || TREE_CODE (orig) == OFFSET_TYPE)
2474 return true;
2475 return (TREE_CODE (orig) == VECTOR_TYPE
2476 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2477
2478 case REAL_TYPE:
2479 case FIXED_POINT_TYPE:
2480 case COMPLEX_TYPE:
2481 case VECTOR_TYPE:
2482 case VOID_TYPE:
2483 return TREE_CODE (type) == TREE_CODE (orig);
2484
2485 default:
2486 return false;
2487 }
2488 }
2489
2490 /* Convert expression ARG to type TYPE. Used by the middle-end for
2491 simple conversions in preference to calling the front-end's convert. */
2492
2493 tree
2494 fold_convert (tree type, tree arg)
2495 {
2496 tree orig = TREE_TYPE (arg);
2497 tree tem;
2498
2499 if (type == orig)
2500 return arg;
2501
2502 if (TREE_CODE (arg) == ERROR_MARK
2503 || TREE_CODE (type) == ERROR_MARK
2504 || TREE_CODE (orig) == ERROR_MARK)
2505 return error_mark_node;
2506
2507 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig))
2508 return fold_build1 (NOP_EXPR, type, arg);
2509
2510 switch (TREE_CODE (type))
2511 {
2512 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
2513 case POINTER_TYPE: case REFERENCE_TYPE:
2514 case OFFSET_TYPE:
2515 if (TREE_CODE (arg) == INTEGER_CST)
2516 {
2517 tem = fold_convert_const (NOP_EXPR, type, arg);
2518 if (tem != NULL_TREE)
2519 return tem;
2520 }
2521 if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2522 || TREE_CODE (orig) == OFFSET_TYPE)
2523 return fold_build1 (NOP_EXPR, type, arg);
2524 if (TREE_CODE (orig) == COMPLEX_TYPE)
2525 {
2526 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2527 return fold_convert (type, tem);
2528 }
2529 gcc_assert (TREE_CODE (orig) == VECTOR_TYPE
2530 && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2531 return fold_build1 (NOP_EXPR, type, arg);
2532
2533 case REAL_TYPE:
2534 if (TREE_CODE (arg) == INTEGER_CST)
2535 {
2536 tem = fold_convert_const (FLOAT_EXPR, type, arg);
2537 if (tem != NULL_TREE)
2538 return tem;
2539 }
2540 else if (TREE_CODE (arg) == REAL_CST)
2541 {
2542 tem = fold_convert_const (NOP_EXPR, type, arg);
2543 if (tem != NULL_TREE)
2544 return tem;
2545 }
2546 else if (TREE_CODE (arg) == FIXED_CST)
2547 {
2548 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2549 if (tem != NULL_TREE)
2550 return tem;
2551 }
2552
2553 switch (TREE_CODE (orig))
2554 {
2555 case INTEGER_TYPE:
2556 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2557 case POINTER_TYPE: case REFERENCE_TYPE:
2558 return fold_build1 (FLOAT_EXPR, type, arg);
2559
2560 case REAL_TYPE:
2561 return fold_build1 (NOP_EXPR, type, arg);
2562
2563 case FIXED_POINT_TYPE:
2564 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2565
2566 case COMPLEX_TYPE:
2567 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2568 return fold_convert (type, tem);
2569
2570 default:
2571 gcc_unreachable ();
2572 }
2573
2574 case FIXED_POINT_TYPE:
2575 if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST
2576 || TREE_CODE (arg) == REAL_CST)
2577 {
2578 tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg);
2579 if (tem != NULL_TREE)
2580 return tem;
2581 }
2582
2583 switch (TREE_CODE (orig))
2584 {
2585 case FIXED_POINT_TYPE:
2586 case INTEGER_TYPE:
2587 case ENUMERAL_TYPE:
2588 case BOOLEAN_TYPE:
2589 case REAL_TYPE:
2590 return fold_build1 (FIXED_CONVERT_EXPR, type, arg);
2591
2592 case COMPLEX_TYPE:
2593 tem = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2594 return fold_convert (type, tem);
2595
2596 default:
2597 gcc_unreachable ();
2598 }
2599
2600 case COMPLEX_TYPE:
2601 switch (TREE_CODE (orig))
2602 {
2603 case INTEGER_TYPE:
2604 case BOOLEAN_TYPE: case ENUMERAL_TYPE:
2605 case POINTER_TYPE: case REFERENCE_TYPE:
2606 case REAL_TYPE:
2607 case FIXED_POINT_TYPE:
2608 return build2 (COMPLEX_EXPR, type,
2609 fold_convert (TREE_TYPE (type), arg),
2610 fold_convert (TREE_TYPE (type), integer_zero_node));
2611 case COMPLEX_TYPE:
2612 {
2613 tree rpart, ipart;
2614
2615 if (TREE_CODE (arg) == COMPLEX_EXPR)
2616 {
2617 rpart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 0));
2618 ipart = fold_convert (TREE_TYPE (type), TREE_OPERAND (arg, 1));
2619 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2620 }
2621
2622 arg = save_expr (arg);
2623 rpart = fold_build1 (REALPART_EXPR, TREE_TYPE (orig), arg);
2624 ipart = fold_build1 (IMAGPART_EXPR, TREE_TYPE (orig), arg);
2625 rpart = fold_convert (TREE_TYPE (type), rpart);
2626 ipart = fold_convert (TREE_TYPE (type), ipart);
2627 return fold_build2 (COMPLEX_EXPR, type, rpart, ipart);
2628 }
2629
2630 default:
2631 gcc_unreachable ();
2632 }
2633
2634 case VECTOR_TYPE:
2635 if (integer_zerop (arg))
2636 return build_zero_vector (type);
2637 gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig)));
2638 gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig)
2639 || TREE_CODE (orig) == VECTOR_TYPE);
2640 return fold_build1 (VIEW_CONVERT_EXPR, type, arg);
2641
2642 case VOID_TYPE:
2643 tem = fold_ignored_result (arg);
2644 if (TREE_CODE (tem) == MODIFY_EXPR)
2645 return tem;
2646 return fold_build1 (NOP_EXPR, type, tem);
2647
2648 default:
2649 gcc_unreachable ();
2650 }
2651 }
2652 \f
2653 /* Return false if expr can be assumed not to be an lvalue, true
2654 otherwise. */
2655
2656 static bool
2657 maybe_lvalue_p (const_tree x)
2658 {
2659 /* We only need to wrap lvalue tree codes. */
2660 switch (TREE_CODE (x))
2661 {
2662 case VAR_DECL:
2663 case PARM_DECL:
2664 case RESULT_DECL:
2665 case LABEL_DECL:
2666 case FUNCTION_DECL:
2667 case SSA_NAME:
2668
2669 case COMPONENT_REF:
2670 case INDIRECT_REF:
2671 case ALIGN_INDIRECT_REF:
2672 case MISALIGNED_INDIRECT_REF:
2673 case ARRAY_REF:
2674 case ARRAY_RANGE_REF:
2675 case BIT_FIELD_REF:
2676 case OBJ_TYPE_REF:
2677
2678 case REALPART_EXPR:
2679 case IMAGPART_EXPR:
2680 case PREINCREMENT_EXPR:
2681 case PREDECREMENT_EXPR:
2682 case SAVE_EXPR:
2683 case TRY_CATCH_EXPR:
2684 case WITH_CLEANUP_EXPR:
2685 case COMPOUND_EXPR:
2686 case MODIFY_EXPR:
2687 case TARGET_EXPR:
2688 case COND_EXPR:
2689 case BIND_EXPR:
2690 case MIN_EXPR:
2691 case MAX_EXPR:
2692 break;
2693
2694 default:
2695 /* Assume the worst for front-end tree codes. */
2696 if ((int)TREE_CODE (x) >= NUM_TREE_CODES)
2697 break;
2698 return false;
2699 }
2700
2701 return true;
2702 }
2703
2704 /* Return an expr equal to X but certainly not valid as an lvalue. */
2705
2706 tree
2707 non_lvalue (tree x)
2708 {
2709 /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to
2710 us. */
2711 if (in_gimple_form)
2712 return x;
2713
2714 if (! maybe_lvalue_p (x))
2715 return x;
2716 return build1 (NON_LVALUE_EXPR, TREE_TYPE (x), x);
2717 }
2718
2719 /* Nonzero means lvalues are limited to those valid in pedantic ANSI C.
2720 Zero means allow extended lvalues. */
2721
2722 int pedantic_lvalues;
2723
2724 /* When pedantic, return an expr equal to X but certainly not valid as a
2725 pedantic lvalue. Otherwise, return X. */
2726
2727 static tree
2728 pedantic_non_lvalue (tree x)
2729 {
2730 if (pedantic_lvalues)
2731 return non_lvalue (x);
2732 else
2733 return x;
2734 }
2735 \f
2736 /* Given a tree comparison code, return the code that is the logical inverse
2737 of the given code. It is not safe to do this for floating-point
2738 comparisons, except for NE_EXPR and EQ_EXPR, so we receive a machine mode
2739 as well: if reversing the comparison is unsafe, return ERROR_MARK. */
2740
2741 enum tree_code
2742 invert_tree_comparison (enum tree_code code, bool honor_nans)
2743 {
2744 if (honor_nans && flag_trapping_math)
2745 return ERROR_MARK;
2746
2747 switch (code)
2748 {
2749 case EQ_EXPR:
2750 return NE_EXPR;
2751 case NE_EXPR:
2752 return EQ_EXPR;
2753 case GT_EXPR:
2754 return honor_nans ? UNLE_EXPR : LE_EXPR;
2755 case GE_EXPR:
2756 return honor_nans ? UNLT_EXPR : LT_EXPR;
2757 case LT_EXPR:
2758 return honor_nans ? UNGE_EXPR : GE_EXPR;
2759 case LE_EXPR:
2760 return honor_nans ? UNGT_EXPR : GT_EXPR;
2761 case LTGT_EXPR:
2762 return UNEQ_EXPR;
2763 case UNEQ_EXPR:
2764 return LTGT_EXPR;
2765 case UNGT_EXPR:
2766 return LE_EXPR;
2767 case UNGE_EXPR:
2768 return LT_EXPR;
2769 case UNLT_EXPR:
2770 return GE_EXPR;
2771 case UNLE_EXPR:
2772 return GT_EXPR;
2773 case ORDERED_EXPR:
2774 return UNORDERED_EXPR;
2775 case UNORDERED_EXPR:
2776 return ORDERED_EXPR;
2777 default:
2778 gcc_unreachable ();
2779 }
2780 }
2781
2782 /* Similar, but return the comparison that results if the operands are
2783 swapped. This is safe for floating-point. */
2784
2785 enum tree_code
2786 swap_tree_comparison (enum tree_code code)
2787 {
2788 switch (code)
2789 {
2790 case EQ_EXPR:
2791 case NE_EXPR:
2792 case ORDERED_EXPR:
2793 case UNORDERED_EXPR:
2794 case LTGT_EXPR:
2795 case UNEQ_EXPR:
2796 return code;
2797 case GT_EXPR:
2798 return LT_EXPR;
2799 case GE_EXPR:
2800 return LE_EXPR;
2801 case LT_EXPR:
2802 return GT_EXPR;
2803 case LE_EXPR:
2804 return GE_EXPR;
2805 case UNGT_EXPR:
2806 return UNLT_EXPR;
2807 case UNGE_EXPR:
2808 return UNLE_EXPR;
2809 case UNLT_EXPR:
2810 return UNGT_EXPR;
2811 case UNLE_EXPR:
2812 return UNGE_EXPR;
2813 default:
2814 gcc_unreachable ();
2815 }
2816 }
2817
2818
2819 /* Convert a comparison tree code from an enum tree_code representation
2820 into a compcode bit-based encoding. This function is the inverse of
2821 compcode_to_comparison. */
2822
2823 static enum comparison_code
2824 comparison_to_compcode (enum tree_code code)
2825 {
2826 switch (code)
2827 {
2828 case LT_EXPR:
2829 return COMPCODE_LT;
2830 case EQ_EXPR:
2831 return COMPCODE_EQ;
2832 case LE_EXPR:
2833 return COMPCODE_LE;
2834 case GT_EXPR:
2835 return COMPCODE_GT;
2836 case NE_EXPR:
2837 return COMPCODE_NE;
2838 case GE_EXPR:
2839 return COMPCODE_GE;
2840 case ORDERED_EXPR:
2841 return COMPCODE_ORD;
2842 case UNORDERED_EXPR:
2843 return COMPCODE_UNORD;
2844 case UNLT_EXPR:
2845 return COMPCODE_UNLT;
2846 case UNEQ_EXPR:
2847 return COMPCODE_UNEQ;
2848 case UNLE_EXPR:
2849 return COMPCODE_UNLE;
2850 case UNGT_EXPR:
2851 return COMPCODE_UNGT;
2852 case LTGT_EXPR:
2853 return COMPCODE_LTGT;
2854 case UNGE_EXPR:
2855 return COMPCODE_UNGE;
2856 default:
2857 gcc_unreachable ();
2858 }
2859 }
2860
2861 /* Convert a compcode bit-based encoding of a comparison operator back
2862 to GCC's enum tree_code representation. This function is the
2863 inverse of comparison_to_compcode. */
2864
2865 static enum tree_code
2866 compcode_to_comparison (enum comparison_code code)
2867 {
2868 switch (code)
2869 {
2870 case COMPCODE_LT:
2871 return LT_EXPR;
2872 case COMPCODE_EQ:
2873 return EQ_EXPR;
2874 case COMPCODE_LE:
2875 return LE_EXPR;
2876 case COMPCODE_GT:
2877 return GT_EXPR;
2878 case COMPCODE_NE:
2879 return NE_EXPR;
2880 case COMPCODE_GE:
2881 return GE_EXPR;
2882 case COMPCODE_ORD:
2883 return ORDERED_EXPR;
2884 case COMPCODE_UNORD:
2885 return UNORDERED_EXPR;
2886 case COMPCODE_UNLT:
2887 return UNLT_EXPR;
2888 case COMPCODE_UNEQ:
2889 return UNEQ_EXPR;
2890 case COMPCODE_UNLE:
2891 return UNLE_EXPR;
2892 case COMPCODE_UNGT:
2893 return UNGT_EXPR;
2894 case COMPCODE_LTGT:
2895 return LTGT_EXPR;
2896 case COMPCODE_UNGE:
2897 return UNGE_EXPR;
2898 default:
2899 gcc_unreachable ();
2900 }
2901 }
2902
2903 /* Return a tree for the comparison which is the combination of
2904 doing the AND or OR (depending on CODE) of the two operations LCODE
2905 and RCODE on the identical operands LL_ARG and LR_ARG. Take into account
2906 the possibility of trapping if the mode has NaNs, and return NULL_TREE
2907 if this makes the transformation invalid. */
2908
2909 tree
2910 combine_comparisons (enum tree_code code, enum tree_code lcode,
2911 enum tree_code rcode, tree truth_type,
2912 tree ll_arg, tree lr_arg)
2913 {
2914 bool honor_nans = HONOR_NANS (TYPE_MODE (TREE_TYPE (ll_arg)));
2915 enum comparison_code lcompcode = comparison_to_compcode (lcode);
2916 enum comparison_code rcompcode = comparison_to_compcode (rcode);
2917 enum comparison_code compcode;
2918
2919 switch (code)
2920 {
2921 case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR:
2922 compcode = lcompcode & rcompcode;
2923 break;
2924
2925 case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR:
2926 compcode = lcompcode | rcompcode;
2927 break;
2928
2929 default:
2930 return NULL_TREE;
2931 }
2932
2933 if (!honor_nans)
2934 {
2935 /* Eliminate unordered comparisons, as well as LTGT and ORD
2936 which are not used unless the mode has NaNs. */
2937 compcode &= ~COMPCODE_UNORD;
2938 if (compcode == COMPCODE_LTGT)
2939 compcode = COMPCODE_NE;
2940 else if (compcode == COMPCODE_ORD)
2941 compcode = COMPCODE_TRUE;
2942 }
2943 else if (flag_trapping_math)
2944 {
2945 /* Check that the original operation and the optimized ones will trap
2946 under the same condition. */
2947 bool ltrap = (lcompcode & COMPCODE_UNORD) == 0
2948 && (lcompcode != COMPCODE_EQ)
2949 && (lcompcode != COMPCODE_ORD);
2950 bool rtrap = (rcompcode & COMPCODE_UNORD) == 0
2951 && (rcompcode != COMPCODE_EQ)
2952 && (rcompcode != COMPCODE_ORD);
2953 bool trap = (compcode & COMPCODE_UNORD) == 0
2954 && (compcode != COMPCODE_EQ)
2955 && (compcode != COMPCODE_ORD);
2956
2957 /* In a short-circuited boolean expression the LHS might be
2958 such that the RHS, if evaluated, will never trap. For
2959 example, in ORD (x, y) && (x < y), we evaluate the RHS only
2960 if neither x nor y is NaN. (This is a mixed blessing: for
2961 example, the expression above will never trap, hence
2962 optimizing it to x < y would be invalid). */
2963 if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD))
2964 || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD)))
2965 rtrap = false;
2966
2967 /* If the comparison was short-circuited, and only the RHS
2968 trapped, we may now generate a spurious trap. */
2969 if (rtrap && !ltrap
2970 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
2971 return NULL_TREE;
2972
2973 /* If we changed the conditions that cause a trap, we lose. */
2974 if ((ltrap || rtrap) != trap)
2975 return NULL_TREE;
2976 }
2977
2978 if (compcode == COMPCODE_TRUE)
2979 return constant_boolean_node (true, truth_type);
2980 else if (compcode == COMPCODE_FALSE)
2981 return constant_boolean_node (false, truth_type);
2982 else
2983 return fold_build2 (compcode_to_comparison (compcode),
2984 truth_type, ll_arg, lr_arg);
2985 }
2986 \f
2987 /* Return nonzero if two operands (typically of the same tree node)
2988 are necessarily equal. If either argument has side-effects this
2989 function returns zero. FLAGS modifies behavior as follows:
2990
2991 If OEP_ONLY_CONST is set, only return nonzero for constants.
2992 This function tests whether the operands are indistinguishable;
2993 it does not test whether they are equal using C's == operation.
2994 The distinction is important for IEEE floating point, because
2995 (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and
2996 (2) two NaNs may be indistinguishable, but NaN!=NaN.
2997
2998 If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself
2999 even though it may hold multiple values during a function.
3000 This is because a GCC tree node guarantees that nothing else is
3001 executed between the evaluation of its "operands" (which may often
3002 be evaluated in arbitrary order). Hence if the operands themselves
3003 don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the
3004 same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST
3005 unset means assuming isochronic (or instantaneous) tree equivalence.
3006 Unless comparing arbitrary expression trees, such as from different
3007 statements, this flag can usually be left unset.
3008
3009 If OEP_PURE_SAME is set, then pure functions with identical arguments
3010 are considered the same. It is used when the caller has other ways
3011 to ensure that global memory is unchanged in between. */
3012
3013 int
3014 operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags)
3015 {
3016 /* If either is ERROR_MARK, they aren't equal. */
3017 if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK)
3018 return 0;
3019
3020 /* Check equality of integer constants before bailing out due to
3021 precision differences. */
3022 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
3023 return tree_int_cst_equal (arg0, arg1);
3024
3025 /* If both types don't have the same signedness, then we can't consider
3026 them equal. We must check this before the STRIP_NOPS calls
3027 because they may change the signedness of the arguments. As pointers
3028 strictly don't have a signedness, require either two pointers or
3029 two non-pointers as well. */
3030 if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1))
3031 || POINTER_TYPE_P (TREE_TYPE (arg0)) != POINTER_TYPE_P (TREE_TYPE (arg1)))
3032 return 0;
3033
3034 /* If both types don't have the same precision, then it is not safe
3035 to strip NOPs. */
3036 if (TYPE_PRECISION (TREE_TYPE (arg0)) != TYPE_PRECISION (TREE_TYPE (arg1)))
3037 return 0;
3038
3039 STRIP_NOPS (arg0);
3040 STRIP_NOPS (arg1);
3041
3042 /* In case both args are comparisons but with different comparison
3043 code, try to swap the comparison operands of one arg to produce
3044 a match and compare that variant. */
3045 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3046 && COMPARISON_CLASS_P (arg0)
3047 && COMPARISON_CLASS_P (arg1))
3048 {
3049 enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1));
3050
3051 if (TREE_CODE (arg0) == swap_code)
3052 return operand_equal_p (TREE_OPERAND (arg0, 0),
3053 TREE_OPERAND (arg1, 1), flags)
3054 && operand_equal_p (TREE_OPERAND (arg0, 1),
3055 TREE_OPERAND (arg1, 0), flags);
3056 }
3057
3058 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3059 /* This is needed for conversions and for COMPONENT_REF.
3060 Might as well play it safe and always test this. */
3061 || TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK
3062 || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK
3063 || TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)))
3064 return 0;
3065
3066 /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal.
3067 We don't care about side effects in that case because the SAVE_EXPR
3068 takes care of that for us. In all other cases, two expressions are
3069 equal if they have no side effects. If we have two identical
3070 expressions with side effects that should be treated the same due
3071 to the only side effects being identical SAVE_EXPR's, that will
3072 be detected in the recursive calls below. */
3073 if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST)
3074 && (TREE_CODE (arg0) == SAVE_EXPR
3075 || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1))))
3076 return 1;
3077
3078 /* Next handle constant cases, those for which we can return 1 even
3079 if ONLY_CONST is set. */
3080 if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1))
3081 switch (TREE_CODE (arg0))
3082 {
3083 case INTEGER_CST:
3084 return tree_int_cst_equal (arg0, arg1);
3085
3086 case FIXED_CST:
3087 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0),
3088 TREE_FIXED_CST (arg1));
3089
3090 case REAL_CST:
3091 if (REAL_VALUES_IDENTICAL (TREE_REAL_CST (arg0),
3092 TREE_REAL_CST (arg1)))
3093 return 1;
3094
3095
3096 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0))))
3097 {
3098 /* If we do not distinguish between signed and unsigned zero,
3099 consider them equal. */
3100 if (real_zerop (arg0) && real_zerop (arg1))
3101 return 1;
3102 }
3103 return 0;
3104
3105 case VECTOR_CST:
3106 {
3107 tree v1, v2;
3108
3109 v1 = TREE_VECTOR_CST_ELTS (arg0);
3110 v2 = TREE_VECTOR_CST_ELTS (arg1);
3111 while (v1 && v2)
3112 {
3113 if (!operand_equal_p (TREE_VALUE (v1), TREE_VALUE (v2),
3114 flags))
3115 return 0;
3116 v1 = TREE_CHAIN (v1);
3117 v2 = TREE_CHAIN (v2);
3118 }
3119
3120 return v1 == v2;
3121 }
3122
3123 case COMPLEX_CST:
3124 return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1),
3125 flags)
3126 && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1),
3127 flags));
3128
3129 case STRING_CST:
3130 return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1)
3131 && ! memcmp (TREE_STRING_POINTER (arg0),
3132 TREE_STRING_POINTER (arg1),
3133 TREE_STRING_LENGTH (arg0)));
3134
3135 case ADDR_EXPR:
3136 return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0),
3137 0);
3138 default:
3139 break;
3140 }
3141
3142 if (flags & OEP_ONLY_CONST)
3143 return 0;
3144
3145 /* Define macros to test an operand from arg0 and arg1 for equality and a
3146 variant that allows null and views null as being different from any
3147 non-null value. In the latter case, if either is null, the both
3148 must be; otherwise, do the normal comparison. */
3149 #define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \
3150 TREE_OPERAND (arg1, N), flags)
3151
3152 #define OP_SAME_WITH_NULL(N) \
3153 ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \
3154 ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N))
3155
3156 switch (TREE_CODE_CLASS (TREE_CODE (arg0)))
3157 {
3158 case tcc_unary:
3159 /* Two conversions are equal only if signedness and modes match. */
3160 switch (TREE_CODE (arg0))
3161 {
3162 CASE_CONVERT:
3163 case FIX_TRUNC_EXPR:
3164 if (TYPE_UNSIGNED (TREE_TYPE (arg0))
3165 != TYPE_UNSIGNED (TREE_TYPE (arg1)))
3166 return 0;
3167 break;
3168 default:
3169 break;
3170 }
3171
3172 return OP_SAME (0);
3173
3174
3175 case tcc_comparison:
3176 case tcc_binary:
3177 if (OP_SAME (0) && OP_SAME (1))
3178 return 1;
3179
3180 /* For commutative ops, allow the other order. */
3181 return (commutative_tree_code (TREE_CODE (arg0))
3182 && operand_equal_p (TREE_OPERAND (arg0, 0),
3183 TREE_OPERAND (arg1, 1), flags)
3184 && operand_equal_p (TREE_OPERAND (arg0, 1),
3185 TREE_OPERAND (arg1, 0), flags));
3186
3187 case tcc_reference:
3188 /* If either of the pointer (or reference) expressions we are
3189 dereferencing contain a side effect, these cannot be equal. */
3190 if (TREE_SIDE_EFFECTS (arg0)
3191 || TREE_SIDE_EFFECTS (arg1))
3192 return 0;
3193
3194 switch (TREE_CODE (arg0))
3195 {
3196 case INDIRECT_REF:
3197 case ALIGN_INDIRECT_REF:
3198 case MISALIGNED_INDIRECT_REF:
3199 case REALPART_EXPR:
3200 case IMAGPART_EXPR:
3201 return OP_SAME (0);
3202
3203 case ARRAY_REF:
3204 case ARRAY_RANGE_REF:
3205 /* Operands 2 and 3 may be null.
3206 Compare the array index by value if it is constant first as we
3207 may have different types but same value here. */
3208 return (OP_SAME (0)
3209 && (tree_int_cst_equal (TREE_OPERAND (arg0, 1),
3210 TREE_OPERAND (arg1, 1))
3211 || OP_SAME (1))
3212 && OP_SAME_WITH_NULL (2)
3213 && OP_SAME_WITH_NULL (3));
3214
3215 case COMPONENT_REF:
3216 /* Handle operand 2 the same as for ARRAY_REF. Operand 0
3217 may be NULL when we're called to compare MEM_EXPRs. */
3218 return OP_SAME_WITH_NULL (0)
3219 && OP_SAME (1)
3220 && OP_SAME_WITH_NULL (2);
3221
3222 case BIT_FIELD_REF:
3223 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3224
3225 default:
3226 return 0;
3227 }
3228
3229 case tcc_expression:
3230 switch (TREE_CODE (arg0))
3231 {
3232 case ADDR_EXPR:
3233 case TRUTH_NOT_EXPR:
3234 return OP_SAME (0);
3235
3236 case TRUTH_ANDIF_EXPR:
3237 case TRUTH_ORIF_EXPR:
3238 return OP_SAME (0) && OP_SAME (1);
3239
3240 case TRUTH_AND_EXPR:
3241 case TRUTH_OR_EXPR:
3242 case TRUTH_XOR_EXPR:
3243 if (OP_SAME (0) && OP_SAME (1))
3244 return 1;
3245
3246 /* Otherwise take into account this is a commutative operation. */
3247 return (operand_equal_p (TREE_OPERAND (arg0, 0),
3248 TREE_OPERAND (arg1, 1), flags)
3249 && operand_equal_p (TREE_OPERAND (arg0, 1),
3250 TREE_OPERAND (arg1, 0), flags));
3251
3252 case COND_EXPR:
3253 return OP_SAME (0) && OP_SAME (1) && OP_SAME (2);
3254
3255 default:
3256 return 0;
3257 }
3258
3259 case tcc_vl_exp:
3260 switch (TREE_CODE (arg0))
3261 {
3262 case CALL_EXPR:
3263 /* If the CALL_EXPRs call different functions, then they
3264 clearly can not be equal. */
3265 if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1),
3266 flags))
3267 return 0;
3268
3269 {
3270 unsigned int cef = call_expr_flags (arg0);
3271 if (flags & OEP_PURE_SAME)
3272 cef &= ECF_CONST | ECF_PURE;
3273 else
3274 cef &= ECF_CONST;
3275 if (!cef)
3276 return 0;
3277 }
3278
3279 /* Now see if all the arguments are the same. */
3280 {
3281 const_call_expr_arg_iterator iter0, iter1;
3282 const_tree a0, a1;
3283 for (a0 = first_const_call_expr_arg (arg0, &iter0),
3284 a1 = first_const_call_expr_arg (arg1, &iter1);
3285 a0 && a1;
3286 a0 = next_const_call_expr_arg (&iter0),
3287 a1 = next_const_call_expr_arg (&iter1))
3288 if (! operand_equal_p (a0, a1, flags))
3289 return 0;
3290
3291 /* If we get here and both argument lists are exhausted
3292 then the CALL_EXPRs are equal. */
3293 return ! (a0 || a1);
3294 }
3295 default:
3296 return 0;
3297 }
3298
3299 case tcc_declaration:
3300 /* Consider __builtin_sqrt equal to sqrt. */
3301 return (TREE_CODE (arg0) == FUNCTION_DECL
3302 && DECL_BUILT_IN (arg0) && DECL_BUILT_IN (arg1)
3303 && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1)
3304 && DECL_FUNCTION_CODE (arg0) == DECL_FUNCTION_CODE (arg1));
3305
3306 default:
3307 return 0;
3308 }
3309
3310 #undef OP_SAME
3311 #undef OP_SAME_WITH_NULL
3312 }
3313 \f
3314 /* Similar to operand_equal_p, but see if ARG0 might have been made by
3315 shorten_compare from ARG1 when ARG1 was being compared with OTHER.
3316
3317 When in doubt, return 0. */
3318
3319 static int
3320 operand_equal_for_comparison_p (tree arg0, tree arg1, tree other)
3321 {
3322 int unsignedp1, unsignedpo;
3323 tree primarg0, primarg1, primother;
3324 unsigned int correct_width;
3325
3326 if (operand_equal_p (arg0, arg1, 0))
3327 return 1;
3328
3329 if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0))
3330 || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
3331 return 0;
3332
3333 /* Discard any conversions that don't change the modes of ARG0 and ARG1
3334 and see if the inner values are the same. This removes any
3335 signedness comparison, which doesn't matter here. */
3336 primarg0 = arg0, primarg1 = arg1;
3337 STRIP_NOPS (primarg0);
3338 STRIP_NOPS (primarg1);
3339 if (operand_equal_p (primarg0, primarg1, 0))
3340 return 1;
3341
3342 /* Duplicate what shorten_compare does to ARG1 and see if that gives the
3343 actual comparison operand, ARG0.
3344
3345 First throw away any conversions to wider types
3346 already present in the operands. */
3347
3348 primarg1 = get_narrower (arg1, &unsignedp1);
3349 primother = get_narrower (other, &unsignedpo);
3350
3351 correct_width = TYPE_PRECISION (TREE_TYPE (arg1));
3352 if (unsignedp1 == unsignedpo
3353 && TYPE_PRECISION (TREE_TYPE (primarg1)) < correct_width
3354 && TYPE_PRECISION (TREE_TYPE (primother)) < correct_width)
3355 {
3356 tree type = TREE_TYPE (arg0);
3357
3358 /* Make sure shorter operand is extended the right way
3359 to match the longer operand. */
3360 primarg1 = fold_convert (signed_or_unsigned_type_for
3361 (unsignedp1, TREE_TYPE (primarg1)), primarg1);
3362
3363 if (operand_equal_p (arg0, fold_convert (type, primarg1), 0))
3364 return 1;
3365 }
3366
3367 return 0;
3368 }
3369 \f
3370 /* See if ARG is an expression that is either a comparison or is performing
3371 arithmetic on comparisons. The comparisons must only be comparing
3372 two different values, which will be stored in *CVAL1 and *CVAL2; if
3373 they are nonzero it means that some operands have already been found.
3374 No variables may be used anywhere else in the expression except in the
3375 comparisons. If SAVE_P is true it means we removed a SAVE_EXPR around
3376 the expression and save_expr needs to be called with CVAL1 and CVAL2.
3377
3378 If this is true, return 1. Otherwise, return zero. */
3379
3380 static int
3381 twoval_comparison_p (tree arg, tree *cval1, tree *cval2, int *save_p)
3382 {
3383 enum tree_code code = TREE_CODE (arg);
3384 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3385
3386 /* We can handle some of the tcc_expression cases here. */
3387 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3388 tclass = tcc_unary;
3389 else if (tclass == tcc_expression
3390 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR
3391 || code == COMPOUND_EXPR))
3392 tclass = tcc_binary;
3393
3394 else if (tclass == tcc_expression && code == SAVE_EXPR
3395 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg, 0)))
3396 {
3397 /* If we've already found a CVAL1 or CVAL2, this expression is
3398 two complex to handle. */
3399 if (*cval1 || *cval2)
3400 return 0;
3401
3402 tclass = tcc_unary;
3403 *save_p = 1;
3404 }
3405
3406 switch (tclass)
3407 {
3408 case tcc_unary:
3409 return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p);
3410
3411 case tcc_binary:
3412 return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2, save_p)
3413 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3414 cval1, cval2, save_p));
3415
3416 case tcc_constant:
3417 return 1;
3418
3419 case tcc_expression:
3420 if (code == COND_EXPR)
3421 return (twoval_comparison_p (TREE_OPERAND (arg, 0),
3422 cval1, cval2, save_p)
3423 && twoval_comparison_p (TREE_OPERAND (arg, 1),
3424 cval1, cval2, save_p)
3425 && twoval_comparison_p (TREE_OPERAND (arg, 2),
3426 cval1, cval2, save_p));
3427 return 0;
3428
3429 case tcc_comparison:
3430 /* First see if we can handle the first operand, then the second. For
3431 the second operand, we know *CVAL1 can't be zero. It must be that
3432 one side of the comparison is each of the values; test for the
3433 case where this isn't true by failing if the two operands
3434 are the same. */
3435
3436 if (operand_equal_p (TREE_OPERAND (arg, 0),
3437 TREE_OPERAND (arg, 1), 0))
3438 return 0;
3439
3440 if (*cval1 == 0)
3441 *cval1 = TREE_OPERAND (arg, 0);
3442 else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0))
3443 ;
3444 else if (*cval2 == 0)
3445 *cval2 = TREE_OPERAND (arg, 0);
3446 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0))
3447 ;
3448 else
3449 return 0;
3450
3451 if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0))
3452 ;
3453 else if (*cval2 == 0)
3454 *cval2 = TREE_OPERAND (arg, 1);
3455 else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0))
3456 ;
3457 else
3458 return 0;
3459
3460 return 1;
3461
3462 default:
3463 return 0;
3464 }
3465 }
3466 \f
3467 /* ARG is a tree that is known to contain just arithmetic operations and
3468 comparisons. Evaluate the operations in the tree substituting NEW0 for
3469 any occurrence of OLD0 as an operand of a comparison and likewise for
3470 NEW1 and OLD1. */
3471
3472 static tree
3473 eval_subst (tree arg, tree old0, tree new0, tree old1, tree new1)
3474 {
3475 tree type = TREE_TYPE (arg);
3476 enum tree_code code = TREE_CODE (arg);
3477 enum tree_code_class tclass = TREE_CODE_CLASS (code);
3478
3479 /* We can handle some of the tcc_expression cases here. */
3480 if (tclass == tcc_expression && code == TRUTH_NOT_EXPR)
3481 tclass = tcc_unary;
3482 else if (tclass == tcc_expression
3483 && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR))
3484 tclass = tcc_binary;
3485
3486 switch (tclass)
3487 {
3488 case tcc_unary:
3489 return fold_build1 (code, type,
3490 eval_subst (TREE_OPERAND (arg, 0),
3491 old0, new0, old1, new1));
3492
3493 case tcc_binary:
3494 return fold_build2 (code, type,
3495 eval_subst (TREE_OPERAND (arg, 0),
3496 old0, new0, old1, new1),
3497 eval_subst (TREE_OPERAND (arg, 1),
3498 old0, new0, old1, new1));
3499
3500 case tcc_expression:
3501 switch (code)
3502 {
3503 case SAVE_EXPR:
3504 return eval_subst (TREE_OPERAND (arg, 0), old0, new0, old1, new1);
3505
3506 case COMPOUND_EXPR:
3507 return eval_subst (TREE_OPERAND (arg, 1), old0, new0, old1, new1);
3508
3509 case COND_EXPR:
3510 return fold_build3 (code, type,
3511 eval_subst (TREE_OPERAND (arg, 0),
3512 old0, new0, old1, new1),
3513 eval_subst (TREE_OPERAND (arg, 1),
3514 old0, new0, old1, new1),
3515 eval_subst (TREE_OPERAND (arg, 2),
3516 old0, new0, old1, new1));
3517 default:
3518 break;
3519 }
3520 /* Fall through - ??? */
3521
3522 case tcc_comparison:
3523 {
3524 tree arg0 = TREE_OPERAND (arg, 0);
3525 tree arg1 = TREE_OPERAND (arg, 1);
3526
3527 /* We need to check both for exact equality and tree equality. The
3528 former will be true if the operand has a side-effect. In that
3529 case, we know the operand occurred exactly once. */
3530
3531 if (arg0 == old0 || operand_equal_p (arg0, old0, 0))
3532 arg0 = new0;
3533 else if (arg0 == old1 || operand_equal_p (arg0, old1, 0))
3534 arg0 = new1;
3535
3536 if (arg1 == old0 || operand_equal_p (arg1, old0, 0))
3537 arg1 = new0;
3538 else if (arg1 == old1 || operand_equal_p (arg1, old1, 0))
3539 arg1 = new1;
3540
3541 return fold_build2 (code, type, arg0, arg1);
3542 }
3543
3544 default:
3545 return arg;
3546 }
3547 }
3548 \f
3549 /* Return a tree for the case when the result of an expression is RESULT
3550 converted to TYPE and OMITTED was previously an operand of the expression
3551 but is now not needed (e.g., we folded OMITTED * 0).
3552
3553 If OMITTED has side effects, we must evaluate it. Otherwise, just do
3554 the conversion of RESULT to TYPE. */
3555
3556 tree
3557 omit_one_operand (tree type, tree result, tree omitted)
3558 {
3559 tree t = fold_convert (type, result);
3560
3561 /* If the resulting operand is an empty statement, just return the omitted
3562 statement casted to void. */
3563 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3564 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3565
3566 if (TREE_SIDE_EFFECTS (omitted))
3567 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3568
3569 return non_lvalue (t);
3570 }
3571
3572 /* Similar, but call pedantic_non_lvalue instead of non_lvalue. */
3573
3574 static tree
3575 pedantic_omit_one_operand (tree type, tree result, tree omitted)
3576 {
3577 tree t = fold_convert (type, result);
3578
3579 /* If the resulting operand is an empty statement, just return the omitted
3580 statement casted to void. */
3581 if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted))
3582 return build1 (NOP_EXPR, void_type_node, fold_ignored_result (omitted));
3583
3584 if (TREE_SIDE_EFFECTS (omitted))
3585 return build2 (COMPOUND_EXPR, type, fold_ignored_result (omitted), t);
3586
3587 return pedantic_non_lvalue (t);
3588 }
3589
3590 /* Return a tree for the case when the result of an expression is RESULT
3591 converted to TYPE and OMITTED1 and OMITTED2 were previously operands
3592 of the expression but are now not needed.
3593
3594 If OMITTED1 or OMITTED2 has side effects, they must be evaluated.
3595 If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is
3596 evaluated before OMITTED2. Otherwise, if neither has side effects,
3597 just do the conversion of RESULT to TYPE. */
3598
3599 tree
3600 omit_two_operands (tree type, tree result, tree omitted1, tree omitted2)
3601 {
3602 tree t = fold_convert (type, result);
3603
3604 if (TREE_SIDE_EFFECTS (omitted2))
3605 t = build2 (COMPOUND_EXPR, type, omitted2, t);
3606 if (TREE_SIDE_EFFECTS (omitted1))
3607 t = build2 (COMPOUND_EXPR, type, omitted1, t);
3608
3609 return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue (t) : t;
3610 }
3611
3612 \f
3613 /* Return a simplified tree node for the truth-negation of ARG. This
3614 never alters ARG itself. We assume that ARG is an operation that
3615 returns a truth value (0 or 1).
3616
3617 FIXME: one would think we would fold the result, but it causes
3618 problems with the dominator optimizer. */
3619
3620 tree
3621 fold_truth_not_expr (tree arg)
3622 {
3623 tree type = TREE_TYPE (arg);
3624 enum tree_code code = TREE_CODE (arg);
3625
3626 /* If this is a comparison, we can simply invert it, except for
3627 floating-point non-equality comparisons, in which case we just
3628 enclose a TRUTH_NOT_EXPR around what we have. */
3629
3630 if (TREE_CODE_CLASS (code) == tcc_comparison)
3631 {
3632 tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0));
3633 if (FLOAT_TYPE_P (op_type)
3634 && flag_trapping_math
3635 && code != ORDERED_EXPR && code != UNORDERED_EXPR
3636 && code != NE_EXPR && code != EQ_EXPR)
3637 return NULL_TREE;
3638 else
3639 {
3640 code = invert_tree_comparison (code,
3641 HONOR_NANS (TYPE_MODE (op_type)));
3642 if (code == ERROR_MARK)
3643 return NULL_TREE;
3644 else
3645 return build2 (code, type,
3646 TREE_OPERAND (arg, 0), TREE_OPERAND (arg, 1));
3647 }
3648 }
3649
3650 switch (code)
3651 {
3652 case INTEGER_CST:
3653 return constant_boolean_node (integer_zerop (arg), type);
3654
3655 case TRUTH_AND_EXPR:
3656 return build2 (TRUTH_OR_EXPR, type,
3657 invert_truthvalue (TREE_OPERAND (arg, 0)),
3658 invert_truthvalue (TREE_OPERAND (arg, 1)));
3659
3660 case TRUTH_OR_EXPR:
3661 return build2 (TRUTH_AND_EXPR, type,
3662 invert_truthvalue (TREE_OPERAND (arg, 0)),
3663 invert_truthvalue (TREE_OPERAND (arg, 1)));
3664
3665 case TRUTH_XOR_EXPR:
3666 /* Here we can invert either operand. We invert the first operand
3667 unless the second operand is a TRUTH_NOT_EXPR in which case our
3668 result is the XOR of the first operand with the inside of the
3669 negation of the second operand. */
3670
3671 if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR)
3672 return build2 (TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0),
3673 TREE_OPERAND (TREE_OPERAND (arg, 1), 0));
3674 else
3675 return build2 (TRUTH_XOR_EXPR, type,
3676 invert_truthvalue (TREE_OPERAND (arg, 0)),
3677 TREE_OPERAND (arg, 1));
3678
3679 case TRUTH_ANDIF_EXPR:
3680 return build2 (TRUTH_ORIF_EXPR, type,
3681 invert_truthvalue (TREE_OPERAND (arg, 0)),
3682 invert_truthvalue (TREE_OPERAND (arg, 1)));
3683
3684 case TRUTH_ORIF_EXPR:
3685 return build2 (TRUTH_ANDIF_EXPR, type,
3686 invert_truthvalue (TREE_OPERAND (arg, 0)),
3687 invert_truthvalue (TREE_OPERAND (arg, 1)));
3688
3689 case TRUTH_NOT_EXPR:
3690 return TREE_OPERAND (arg, 0);
3691
3692 case COND_EXPR:
3693 {
3694 tree arg1 = TREE_OPERAND (arg, 1);
3695 tree arg2 = TREE_OPERAND (arg, 2);
3696 /* A COND_EXPR may have a throw as one operand, which
3697 then has void type. Just leave void operands
3698 as they are. */
3699 return build3 (COND_EXPR, type, TREE_OPERAND (arg, 0),
3700 VOID_TYPE_P (TREE_TYPE (arg1))
3701 ? arg1 : invert_truthvalue (arg1),
3702 VOID_TYPE_P (TREE_TYPE (arg2))
3703 ? arg2 : invert_truthvalue (arg2));
3704 }
3705
3706 case COMPOUND_EXPR:
3707 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg, 0),
3708 invert_truthvalue (TREE_OPERAND (arg, 1)));
3709
3710 case NON_LVALUE_EXPR:
3711 return invert_truthvalue (TREE_OPERAND (arg, 0));
3712
3713 case NOP_EXPR:
3714 if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE)
3715 return build1 (TRUTH_NOT_EXPR, type, arg);
3716
3717 case CONVERT_EXPR:
3718 case FLOAT_EXPR:
3719 return build1 (TREE_CODE (arg), type,
3720 invert_truthvalue (TREE_OPERAND (arg, 0)));
3721
3722 case BIT_AND_EXPR:
3723 if (!integer_onep (TREE_OPERAND (arg, 1)))
3724 break;
3725 return build2 (EQ_EXPR, type, arg,
3726 build_int_cst (type, 0));
3727
3728 case SAVE_EXPR:
3729 return build1 (TRUTH_NOT_EXPR, type, arg);
3730
3731 case CLEANUP_POINT_EXPR:
3732 return build1 (CLEANUP_POINT_EXPR, type,
3733 invert_truthvalue (TREE_OPERAND (arg, 0)));
3734
3735 default:
3736 break;
3737 }
3738
3739 return NULL_TREE;
3740 }
3741
3742 /* Return a simplified tree node for the truth-negation of ARG. This
3743 never alters ARG itself. We assume that ARG is an operation that
3744 returns a truth value (0 or 1).
3745
3746 FIXME: one would think we would fold the result, but it causes
3747 problems with the dominator optimizer. */
3748
3749 tree
3750 invert_truthvalue (tree arg)
3751 {
3752 tree tem;
3753
3754 if (TREE_CODE (arg) == ERROR_MARK)
3755 return arg;
3756
3757 tem = fold_truth_not_expr (arg);
3758 if (!tem)
3759 tem = build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg), arg);
3760
3761 return tem;
3762 }
3763
3764 /* Given a bit-wise operation CODE applied to ARG0 and ARG1, see if both
3765 operands are another bit-wise operation with a common input. If so,
3766 distribute the bit operations to save an operation and possibly two if
3767 constants are involved. For example, convert
3768 (A | B) & (A | C) into A | (B & C)
3769 Further simplification will occur if B and C are constants.
3770
3771 If this optimization cannot be done, 0 will be returned. */
3772
3773 static tree
3774 distribute_bit_expr (enum tree_code code, tree type, tree arg0, tree arg1)
3775 {
3776 tree common;
3777 tree left, right;
3778
3779 if (TREE_CODE (arg0) != TREE_CODE (arg1)
3780 || TREE_CODE (arg0) == code
3781 || (TREE_CODE (arg0) != BIT_AND_EXPR
3782 && TREE_CODE (arg0) != BIT_IOR_EXPR))
3783 return 0;
3784
3785 if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), 0))
3786 {
3787 common = TREE_OPERAND (arg0, 0);
3788 left = TREE_OPERAND (arg0, 1);
3789 right = TREE_OPERAND (arg1, 1);
3790 }
3791 else if (operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 1), 0))
3792 {
3793 common = TREE_OPERAND (arg0, 0);
3794 left = TREE_OPERAND (arg0, 1);
3795 right = TREE_OPERAND (arg1, 0);
3796 }
3797 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 0), 0))
3798 {
3799 common = TREE_OPERAND (arg0, 1);
3800 left = TREE_OPERAND (arg0, 0);
3801 right = TREE_OPERAND (arg1, 1);
3802 }
3803 else if (operand_equal_p (TREE_OPERAND (arg0, 1), TREE_OPERAND (arg1, 1), 0))
3804 {
3805 common = TREE_OPERAND (arg0, 1);
3806 left = TREE_OPERAND (arg0, 0);
3807 right = TREE_OPERAND (arg1, 0);
3808 }
3809 else
3810 return 0;
3811
3812 common = fold_convert (type, common);
3813 left = fold_convert (type, left);
3814 right = fold_convert (type, right);
3815 return fold_build2 (TREE_CODE (arg0), type, common,
3816 fold_build2 (code, type, left, right));
3817 }
3818
3819 /* Knowing that ARG0 and ARG1 are both RDIV_EXPRs, simplify a binary operation
3820 with code CODE. This optimization is unsafe. */
3821 static tree
3822 distribute_real_division (enum tree_code code, tree type, tree arg0, tree arg1)
3823 {
3824 bool mul0 = TREE_CODE (arg0) == MULT_EXPR;
3825 bool mul1 = TREE_CODE (arg1) == MULT_EXPR;
3826
3827 /* (A / C) +- (B / C) -> (A +- B) / C. */
3828 if (mul0 == mul1
3829 && operand_equal_p (TREE_OPERAND (arg0, 1),
3830 TREE_OPERAND (arg1, 1), 0))
3831 return fold_build2 (mul0 ? MULT_EXPR : RDIV_EXPR, type,
3832 fold_build2 (code, type,
3833 TREE_OPERAND (arg0, 0),
3834 TREE_OPERAND (arg1, 0)),
3835 TREE_OPERAND (arg0, 1));
3836
3837 /* (A / C1) +- (A / C2) -> A * (1 / C1 +- 1 / C2). */
3838 if (operand_equal_p (TREE_OPERAND (arg0, 0),
3839 TREE_OPERAND (arg1, 0), 0)
3840 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
3841 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
3842 {
3843 REAL_VALUE_TYPE r0, r1;
3844 r0 = TREE_REAL_CST (TREE_OPERAND (arg0, 1));
3845 r1 = TREE_REAL_CST (TREE_OPERAND (arg1, 1));
3846 if (!mul0)
3847 real_arithmetic (&r0, RDIV_EXPR, &dconst1, &r0);
3848 if (!mul1)
3849 real_arithmetic (&r1, RDIV_EXPR, &dconst1, &r1);
3850 real_arithmetic (&r0, code, &r0, &r1);
3851 return fold_build2 (MULT_EXPR, type,
3852 TREE_OPERAND (arg0, 0),
3853 build_real (type, r0));
3854 }
3855
3856 return NULL_TREE;
3857 }
3858 \f
3859 /* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER
3860 starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero. */
3861
3862 static tree
3863 make_bit_field_ref (tree inner, tree type, HOST_WIDE_INT bitsize,
3864 HOST_WIDE_INT bitpos, int unsignedp)
3865 {
3866 tree result, bftype;
3867
3868 if (bitpos == 0)
3869 {
3870 tree size = TYPE_SIZE (TREE_TYPE (inner));
3871 if ((INTEGRAL_TYPE_P (TREE_TYPE (inner))
3872 || POINTER_TYPE_P (TREE_TYPE (inner)))
3873 && host_integerp (size, 0)
3874 && tree_low_cst (size, 0) == bitsize)
3875 return fold_convert (type, inner);
3876 }
3877
3878 bftype = type;
3879 if (TYPE_PRECISION (bftype) != bitsize
3880 || TYPE_UNSIGNED (bftype) == !unsignedp)
3881 bftype = build_nonstandard_integer_type (bitsize, 0);
3882
3883 result = build3 (BIT_FIELD_REF, bftype, inner,
3884 size_int (bitsize), bitsize_int (bitpos));
3885
3886 if (bftype != type)
3887 result = fold_convert (type, result);
3888
3889 return result;
3890 }
3891
3892 /* Optimize a bit-field compare.
3893
3894 There are two cases: First is a compare against a constant and the
3895 second is a comparison of two items where the fields are at the same
3896 bit position relative to the start of a chunk (byte, halfword, word)
3897 large enough to contain it. In these cases we can avoid the shift
3898 implicit in bitfield extractions.
3899
3900 For constants, we emit a compare of the shifted constant with the
3901 BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being
3902 compared. For two fields at the same position, we do the ANDs with the
3903 similar mask and compare the result of the ANDs.
3904
3905 CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR.
3906 COMPARE_TYPE is the type of the comparison, and LHS and RHS
3907 are the left and right operands of the comparison, respectively.
3908
3909 If the optimization described above can be done, we return the resulting
3910 tree. Otherwise we return zero. */
3911
3912 static tree
3913 optimize_bit_field_compare (enum tree_code code, tree compare_type,
3914 tree lhs, tree rhs)
3915 {
3916 HOST_WIDE_INT lbitpos, lbitsize, rbitpos, rbitsize, nbitpos, nbitsize;
3917 tree type = TREE_TYPE (lhs);
3918 tree signed_type, unsigned_type;
3919 int const_p = TREE_CODE (rhs) == INTEGER_CST;
3920 enum machine_mode lmode, rmode, nmode;
3921 int lunsignedp, runsignedp;
3922 int lvolatilep = 0, rvolatilep = 0;
3923 tree linner, rinner = NULL_TREE;
3924 tree mask;
3925 tree offset;
3926
3927 /* Get all the information about the extractions being done. If the bit size
3928 if the same as the size of the underlying object, we aren't doing an
3929 extraction at all and so can do nothing. We also don't want to
3930 do anything if the inner expression is a PLACEHOLDER_EXPR since we
3931 then will no longer be able to replace it. */
3932 linner = get_inner_reference (lhs, &lbitsize, &lbitpos, &offset, &lmode,
3933 &lunsignedp, &lvolatilep, false);
3934 if (linner == lhs || lbitsize == GET_MODE_BITSIZE (lmode) || lbitsize < 0
3935 || offset != 0 || TREE_CODE (linner) == PLACEHOLDER_EXPR)
3936 return 0;
3937
3938 if (!const_p)
3939 {
3940 /* If this is not a constant, we can only do something if bit positions,
3941 sizes, and signedness are the same. */
3942 rinner = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode,
3943 &runsignedp, &rvolatilep, false);
3944
3945 if (rinner == rhs || lbitpos != rbitpos || lbitsize != rbitsize
3946 || lunsignedp != runsignedp || offset != 0
3947 || TREE_CODE (rinner) == PLACEHOLDER_EXPR)
3948 return 0;
3949 }
3950
3951 /* See if we can find a mode to refer to this field. We should be able to,
3952 but fail if we can't. */
3953 nmode = get_best_mode (lbitsize, lbitpos,
3954 const_p ? TYPE_ALIGN (TREE_TYPE (linner))
3955 : MIN (TYPE_ALIGN (TREE_TYPE (linner)),
3956 TYPE_ALIGN (TREE_TYPE (rinner))),
3957 word_mode, lvolatilep || rvolatilep);
3958 if (nmode == VOIDmode)
3959 return 0;
3960
3961 /* Set signed and unsigned types of the precision of this mode for the
3962 shifts below. */
3963 signed_type = lang_hooks.types.type_for_mode (nmode, 0);
3964 unsigned_type = lang_hooks.types.type_for_mode (nmode, 1);
3965
3966 /* Compute the bit position and size for the new reference and our offset
3967 within it. If the new reference is the same size as the original, we
3968 won't optimize anything, so return zero. */
3969 nbitsize = GET_MODE_BITSIZE (nmode);
3970 nbitpos = lbitpos & ~ (nbitsize - 1);
3971 lbitpos -= nbitpos;
3972 if (nbitsize == lbitsize)
3973 return 0;
3974
3975 if (BYTES_BIG_ENDIAN)
3976 lbitpos = nbitsize - lbitsize - lbitpos;
3977
3978 /* Make the mask to be used against the extracted field. */
3979 mask = build_int_cst_type (unsigned_type, -1);
3980 mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize), 0);
3981 mask = const_binop (RSHIFT_EXPR, mask,
3982 size_int (nbitsize - lbitsize - lbitpos), 0);
3983
3984 if (! const_p)
3985 /* If not comparing with constant, just rework the comparison
3986 and return. */
3987 return fold_build2 (code, compare_type,
3988 fold_build2 (BIT_AND_EXPR, unsigned_type,
3989 make_bit_field_ref (linner,
3990 unsigned_type,
3991 nbitsize, nbitpos,
3992 1),
3993 mask),
3994 fold_build2 (BIT_AND_EXPR, unsigned_type,
3995 make_bit_field_ref (rinner,
3996 unsigned_type,
3997 nbitsize, nbitpos,
3998 1),
3999 mask));
4000
4001 /* Otherwise, we are handling the constant case. See if the constant is too
4002 big for the field. Warn and return a tree of for 0 (false) if so. We do
4003 this not only for its own sake, but to avoid having to test for this
4004 error case below. If we didn't, we might generate wrong code.
4005
4006 For unsigned fields, the constant shifted right by the field length should
4007 be all zero. For signed fields, the high-order bits should agree with
4008 the sign bit. */
4009
4010 if (lunsignedp)
4011 {
4012 if (! integer_zerop (const_binop (RSHIFT_EXPR,
4013 fold_convert (unsigned_type, rhs),
4014 size_int (lbitsize), 0)))
4015 {
4016 warning (0, "comparison is always %d due to width of bit-field",
4017 code == NE_EXPR);
4018 return constant_boolean_node (code == NE_EXPR, compare_type);
4019 }
4020 }
4021 else
4022 {
4023 tree tem = const_binop (RSHIFT_EXPR, fold_convert (signed_type, rhs),
4024 size_int (lbitsize - 1), 0);
4025 if (! integer_zerop (tem) && ! integer_all_onesp (tem))
4026 {
4027 warning (0, "comparison is always %d due to width of bit-field",
4028 code == NE_EXPR);
4029 return constant_boolean_node (code == NE_EXPR, compare_type);
4030 }
4031 }
4032
4033 /* Single-bit compares should always be against zero. */
4034 if (lbitsize == 1 && ! integer_zerop (rhs))
4035 {
4036 code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR;
4037 rhs = build_int_cst (type, 0);
4038 }
4039
4040 /* Make a new bitfield reference, shift the constant over the
4041 appropriate number of bits and mask it with the computed mask
4042 (in case this was a signed field). If we changed it, make a new one. */
4043 lhs = make_bit_field_ref (linner, unsigned_type, nbitsize, nbitpos, 1);
4044 if (lvolatilep)
4045 {
4046 TREE_SIDE_EFFECTS (lhs) = 1;
4047 TREE_THIS_VOLATILE (lhs) = 1;
4048 }
4049
4050 rhs = const_binop (BIT_AND_EXPR,
4051 const_binop (LSHIFT_EXPR,
4052 fold_convert (unsigned_type, rhs),
4053 size_int (lbitpos), 0),
4054 mask, 0);
4055
4056 return build2 (code, compare_type,
4057 build2 (BIT_AND_EXPR, unsigned_type, lhs, mask),
4058 rhs);
4059 }
4060 \f
4061 /* Subroutine for fold_truthop: decode a field reference.
4062
4063 If EXP is a comparison reference, we return the innermost reference.
4064
4065 *PBITSIZE is set to the number of bits in the reference, *PBITPOS is
4066 set to the starting bit number.
4067
4068 If the innermost field can be completely contained in a mode-sized
4069 unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode.
4070
4071 *PVOLATILEP is set to 1 if the any expression encountered is volatile;
4072 otherwise it is not changed.
4073
4074 *PUNSIGNEDP is set to the signedness of the field.
4075
4076 *PMASK is set to the mask used. This is either contained in a
4077 BIT_AND_EXPR or derived from the width of the field.
4078
4079 *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any.
4080
4081 Return 0 if this is not a component reference or is one that we can't
4082 do anything with. */
4083
4084 static tree
4085 decode_field_reference (tree exp, HOST_WIDE_INT *pbitsize,
4086 HOST_WIDE_INT *pbitpos, enum machine_mode *pmode,
4087 int *punsignedp, int *pvolatilep,
4088 tree *pmask, tree *pand_mask)
4089 {
4090 tree outer_type = 0;
4091 tree and_mask = 0;
4092 tree mask, inner, offset;
4093 tree unsigned_type;
4094 unsigned int precision;
4095
4096 /* All the optimizations using this function assume integer fields.
4097 There are problems with FP fields since the type_for_size call
4098 below can fail for, e.g., XFmode. */
4099 if (! INTEGRAL_TYPE_P (TREE_TYPE (exp)))
4100 return 0;
4101
4102 /* We are interested in the bare arrangement of bits, so strip everything
4103 that doesn't affect the machine mode. However, record the type of the
4104 outermost expression if it may matter below. */
4105 if (CONVERT_EXPR_P (exp)
4106 || TREE_CODE (exp) == NON_LVALUE_EXPR)
4107 outer_type = TREE_TYPE (exp);
4108 STRIP_NOPS (exp);
4109
4110 if (TREE_CODE (exp) == BIT_AND_EXPR)
4111 {
4112 and_mask = TREE_OPERAND (exp, 1);
4113 exp = TREE_OPERAND (exp, 0);
4114 STRIP_NOPS (exp); STRIP_NOPS (and_mask);
4115 if (TREE_CODE (and_mask) != INTEGER_CST)
4116 return 0;
4117 }
4118
4119 inner = get_inner_reference (exp, pbitsize, pbitpos, &offset, pmode,
4120 punsignedp, pvolatilep, false);
4121 if ((inner == exp && and_mask == 0)
4122 || *pbitsize < 0 || offset != 0
4123 || TREE_CODE (inner) == PLACEHOLDER_EXPR)
4124 return 0;
4125
4126 /* If the number of bits in the reference is the same as the bitsize of
4127 the outer type, then the outer type gives the signedness. Otherwise
4128 (in case of a small bitfield) the signedness is unchanged. */
4129 if (outer_type && *pbitsize == TYPE_PRECISION (outer_type))
4130 *punsignedp = TYPE_UNSIGNED (outer_type);
4131
4132 /* Compute the mask to access the bitfield. */
4133 unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1);
4134 precision = TYPE_PRECISION (unsigned_type);
4135
4136 mask = build_int_cst_type (unsigned_type, -1);
4137
4138 mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4139 mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize), 0);
4140
4141 /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */
4142 if (and_mask != 0)
4143 mask = fold_build2 (BIT_AND_EXPR, unsigned_type,
4144 fold_convert (unsigned_type, and_mask), mask);
4145
4146 *pmask = mask;
4147 *pand_mask = and_mask;
4148 return inner;
4149 }
4150
4151 /* Return nonzero if MASK represents a mask of SIZE ones in the low-order
4152 bit positions. */
4153
4154 static int
4155 all_ones_mask_p (const_tree mask, int size)
4156 {
4157 tree type = TREE_TYPE (mask);
4158 unsigned int precision = TYPE_PRECISION (type);
4159 tree tmask;
4160
4161 tmask = build_int_cst_type (signed_type_for (type), -1);
4162
4163 return
4164 tree_int_cst_equal (mask,
4165 const_binop (RSHIFT_EXPR,
4166 const_binop (LSHIFT_EXPR, tmask,
4167 size_int (precision - size),
4168 0),
4169 size_int (precision - size), 0));
4170 }
4171
4172 /* Subroutine for fold: determine if VAL is the INTEGER_CONST that
4173 represents the sign bit of EXP's type. If EXP represents a sign
4174 or zero extension, also test VAL against the unextended type.
4175 The return value is the (sub)expression whose sign bit is VAL,
4176 or NULL_TREE otherwise. */
4177
4178 static tree
4179 sign_bit_p (tree exp, const_tree val)
4180 {
4181 unsigned HOST_WIDE_INT mask_lo, lo;
4182 HOST_WIDE_INT mask_hi, hi;
4183 int width;
4184 tree t;
4185
4186 /* Tree EXP must have an integral type. */
4187 t = TREE_TYPE (exp);
4188 if (! INTEGRAL_TYPE_P (t))
4189 return NULL_TREE;
4190
4191 /* Tree VAL must be an integer constant. */
4192 if (TREE_CODE (val) != INTEGER_CST
4193 || TREE_OVERFLOW (val))
4194 return NULL_TREE;
4195
4196 width = TYPE_PRECISION (t);
4197 if (width > HOST_BITS_PER_WIDE_INT)
4198 {
4199 hi = (unsigned HOST_WIDE_INT) 1 << (width - HOST_BITS_PER_WIDE_INT - 1);
4200 lo = 0;
4201
4202 mask_hi = ((unsigned HOST_WIDE_INT) -1
4203 >> (2 * HOST_BITS_PER_WIDE_INT - width));
4204 mask_lo = -1;
4205 }
4206 else
4207 {
4208 hi = 0;
4209 lo = (unsigned HOST_WIDE_INT) 1 << (width - 1);
4210
4211 mask_hi = 0;
4212 mask_lo = ((unsigned HOST_WIDE_INT) -1
4213 >> (HOST_BITS_PER_WIDE_INT - width));
4214 }
4215
4216 /* We mask off those bits beyond TREE_TYPE (exp) so that we can
4217 treat VAL as if it were unsigned. */
4218 if ((TREE_INT_CST_HIGH (val) & mask_hi) == hi
4219 && (TREE_INT_CST_LOW (val) & mask_lo) == lo)
4220 return exp;
4221
4222 /* Handle extension from a narrower type. */
4223 if (TREE_CODE (exp) == NOP_EXPR
4224 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width)
4225 return sign_bit_p (TREE_OPERAND (exp, 0), val);
4226
4227 return NULL_TREE;
4228 }
4229
4230 /* Subroutine for fold_truthop: determine if an operand is simple enough
4231 to be evaluated unconditionally. */
4232
4233 static int
4234 simple_operand_p (const_tree exp)
4235 {
4236 /* Strip any conversions that don't change the machine mode. */
4237 STRIP_NOPS (exp);
4238
4239 return (CONSTANT_CLASS_P (exp)
4240 || TREE_CODE (exp) == SSA_NAME
4241 || (DECL_P (exp)
4242 && ! TREE_ADDRESSABLE (exp)
4243 && ! TREE_THIS_VOLATILE (exp)
4244 && ! DECL_NONLOCAL (exp)
4245 /* Don't regard global variables as simple. They may be
4246 allocated in ways unknown to the compiler (shared memory,
4247 #pragma weak, etc). */
4248 && ! TREE_PUBLIC (exp)
4249 && ! DECL_EXTERNAL (exp)
4250 /* Loading a static variable is unduly expensive, but global
4251 registers aren't expensive. */
4252 && (! TREE_STATIC (exp) || DECL_REGISTER (exp))));
4253 }
4254 \f
4255 /* The following functions are subroutines to fold_range_test and allow it to
4256 try to change a logical combination of comparisons into a range test.
4257
4258 For example, both
4259 X == 2 || X == 3 || X == 4 || X == 5
4260 and
4261 X >= 2 && X <= 5
4262 are converted to
4263 (unsigned) (X - 2) <= 3
4264
4265 We describe each set of comparisons as being either inside or outside
4266 a range, using a variable named like IN_P, and then describe the
4267 range with a lower and upper bound. If one of the bounds is omitted,
4268 it represents either the highest or lowest value of the type.
4269
4270 In the comments below, we represent a range by two numbers in brackets
4271 preceded by a "+" to designate being inside that range, or a "-" to
4272 designate being outside that range, so the condition can be inverted by
4273 flipping the prefix. An omitted bound is represented by a "-". For
4274 example, "- [-, 10]" means being outside the range starting at the lowest
4275 possible value and ending at 10, in other words, being greater than 10.
4276 The range "+ [-, -]" is always true and hence the range "- [-, -]" is
4277 always false.
4278
4279 We set up things so that the missing bounds are handled in a consistent
4280 manner so neither a missing bound nor "true" and "false" need to be
4281 handled using a special case. */
4282
4283 /* Return the result of applying CODE to ARG0 and ARG1, but handle the case
4284 of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P
4285 and UPPER1_P are nonzero if the respective argument is an upper bound
4286 and zero for a lower. TYPE, if nonzero, is the type of the result; it
4287 must be specified for a comparison. ARG1 will be converted to ARG0's
4288 type if both are specified. */
4289
4290 static tree
4291 range_binop (enum tree_code code, tree type, tree arg0, int upper0_p,
4292 tree arg1, int upper1_p)
4293 {
4294 tree tem;
4295 int result;
4296 int sgn0, sgn1;
4297
4298 /* If neither arg represents infinity, do the normal operation.
4299 Else, if not a comparison, return infinity. Else handle the special
4300 comparison rules. Note that most of the cases below won't occur, but
4301 are handled for consistency. */
4302
4303 if (arg0 != 0 && arg1 != 0)
4304 {
4305 tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0),
4306 arg0, fold_convert (TREE_TYPE (arg0), arg1));
4307 STRIP_NOPS (tem);
4308 return TREE_CODE (tem) == INTEGER_CST ? tem : 0;
4309 }
4310
4311 if (TREE_CODE_CLASS (code) != tcc_comparison)
4312 return 0;
4313
4314 /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0
4315 for neither. In real maths, we cannot assume open ended ranges are
4316 the same. But, this is computer arithmetic, where numbers are finite.
4317 We can therefore make the transformation of any unbounded range with
4318 the value Z, Z being greater than any representable number. This permits
4319 us to treat unbounded ranges as equal. */
4320 sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1);
4321 sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1);
4322 switch (code)
4323 {
4324 case EQ_EXPR:
4325 result = sgn0 == sgn1;
4326 break;
4327 case NE_EXPR:
4328 result = sgn0 != sgn1;
4329 break;
4330 case LT_EXPR:
4331 result = sgn0 < sgn1;
4332 break;
4333 case LE_EXPR:
4334 result = sgn0 <= sgn1;
4335 break;
4336 case GT_EXPR:
4337 result = sgn0 > sgn1;
4338 break;
4339 case GE_EXPR:
4340 result = sgn0 >= sgn1;
4341 break;
4342 default:
4343 gcc_unreachable ();
4344 }
4345
4346 return constant_boolean_node (result, type);
4347 }
4348 \f
4349 /* Given EXP, a logical expression, set the range it is testing into
4350 variables denoted by PIN_P, PLOW, and PHIGH. Return the expression
4351 actually being tested. *PLOW and *PHIGH will be made of the same
4352 type as the returned expression. If EXP is not a comparison, we
4353 will most likely not be returning a useful value and range. Set
4354 *STRICT_OVERFLOW_P to true if the return value is only valid
4355 because signed overflow is undefined; otherwise, do not change
4356 *STRICT_OVERFLOW_P. */
4357
4358 static tree
4359 make_range (tree exp, int *pin_p, tree *plow, tree *phigh,
4360 bool *strict_overflow_p)
4361 {
4362 enum tree_code code;
4363 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
4364 tree exp_type = NULL_TREE, arg0_type = NULL_TREE;
4365 int in_p, n_in_p;
4366 tree low, high, n_low, n_high;
4367
4368 /* Start with simply saying "EXP != 0" and then look at the code of EXP
4369 and see if we can refine the range. Some of the cases below may not
4370 happen, but it doesn't seem worth worrying about this. We "continue"
4371 the outer loop when we've changed something; otherwise we "break"
4372 the switch, which will "break" the while. */
4373
4374 in_p = 0;
4375 low = high = build_int_cst (TREE_TYPE (exp), 0);
4376
4377 while (1)
4378 {
4379 code = TREE_CODE (exp);
4380 exp_type = TREE_TYPE (exp);
4381
4382 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
4383 {
4384 if (TREE_OPERAND_LENGTH (exp) > 0)
4385 arg0 = TREE_OPERAND (exp, 0);
4386 if (TREE_CODE_CLASS (code) == tcc_comparison
4387 || TREE_CODE_CLASS (code) == tcc_unary
4388 || TREE_CODE_CLASS (code) == tcc_binary)
4389 arg0_type = TREE_TYPE (arg0);
4390 if (TREE_CODE_CLASS (code) == tcc_binary
4391 || TREE_CODE_CLASS (code) == tcc_comparison
4392 || (TREE_CODE_CLASS (code) == tcc_expression
4393 && TREE_OPERAND_LENGTH (exp) > 1))
4394 arg1 = TREE_OPERAND (exp, 1);
4395 }
4396
4397 switch (code)
4398 {
4399 case TRUTH_NOT_EXPR:
4400 in_p = ! in_p, exp = arg0;
4401 continue;
4402
4403 case EQ_EXPR: case NE_EXPR:
4404 case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR:
4405 /* We can only do something if the range is testing for zero
4406 and if the second operand is an integer constant. Note that
4407 saying something is "in" the range we make is done by
4408 complementing IN_P since it will set in the initial case of
4409 being not equal to zero; "out" is leaving it alone. */
4410 if (low == 0 || high == 0
4411 || ! integer_zerop (low) || ! integer_zerop (high)
4412 || TREE_CODE (arg1) != INTEGER_CST)
4413 break;
4414
4415 switch (code)
4416 {
4417 case NE_EXPR: /* - [c, c] */
4418 low = high = arg1;
4419 break;
4420 case EQ_EXPR: /* + [c, c] */
4421 in_p = ! in_p, low = high = arg1;
4422 break;
4423 case GT_EXPR: /* - [-, c] */
4424 low = 0, high = arg1;
4425 break;
4426 case GE_EXPR: /* + [c, -] */
4427 in_p = ! in_p, low = arg1, high = 0;
4428 break;
4429 case LT_EXPR: /* - [c, -] */
4430 low = arg1, high = 0;
4431 break;
4432 case LE_EXPR: /* + [-, c] */
4433 in_p = ! in_p, low = 0, high = arg1;
4434 break;
4435 default:
4436 gcc_unreachable ();
4437 }
4438
4439 /* If this is an unsigned comparison, we also know that EXP is
4440 greater than or equal to zero. We base the range tests we make
4441 on that fact, so we record it here so we can parse existing
4442 range tests. We test arg0_type since often the return type
4443 of, e.g. EQ_EXPR, is boolean. */
4444 if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0))
4445 {
4446 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4447 in_p, low, high, 1,
4448 build_int_cst (arg0_type, 0),
4449 NULL_TREE))
4450 break;
4451
4452 in_p = n_in_p, low = n_low, high = n_high;
4453
4454 /* If the high bound is missing, but we have a nonzero low
4455 bound, reverse the range so it goes from zero to the low bound
4456 minus 1. */
4457 if (high == 0 && low && ! integer_zerop (low))
4458 {
4459 in_p = ! in_p;
4460 high = range_binop (MINUS_EXPR, NULL_TREE, low, 0,
4461 integer_one_node, 0);
4462 low = build_int_cst (arg0_type, 0);
4463 }
4464 }
4465
4466 exp = arg0;
4467 continue;
4468
4469 case NEGATE_EXPR:
4470 /* (-x) IN [a,b] -> x in [-b, -a] */
4471 n_low = range_binop (MINUS_EXPR, exp_type,
4472 build_int_cst (exp_type, 0),
4473 0, high, 1);
4474 n_high = range_binop (MINUS_EXPR, exp_type,
4475 build_int_cst (exp_type, 0),
4476 0, low, 0);
4477 low = n_low, high = n_high;
4478 exp = arg0;
4479 continue;
4480
4481 case BIT_NOT_EXPR:
4482 /* ~ X -> -X - 1 */
4483 exp = build2 (MINUS_EXPR, exp_type, negate_expr (arg0),
4484 build_int_cst (exp_type, 1));
4485 continue;
4486
4487 case PLUS_EXPR: case MINUS_EXPR:
4488 if (TREE_CODE (arg1) != INTEGER_CST)
4489 break;
4490
4491 /* If flag_wrapv and ARG0_TYPE is signed, then we cannot
4492 move a constant to the other side. */
4493 if (!TYPE_UNSIGNED (arg0_type)
4494 && !TYPE_OVERFLOW_UNDEFINED (arg0_type))
4495 break;
4496
4497 /* If EXP is signed, any overflow in the computation is undefined,
4498 so we don't worry about it so long as our computations on
4499 the bounds don't overflow. For unsigned, overflow is defined
4500 and this is exactly the right thing. */
4501 n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4502 arg0_type, low, 0, arg1, 0);
4503 n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR,
4504 arg0_type, high, 1, arg1, 0);
4505 if ((n_low != 0 && TREE_OVERFLOW (n_low))
4506 || (n_high != 0 && TREE_OVERFLOW (n_high)))
4507 break;
4508
4509 if (TYPE_OVERFLOW_UNDEFINED (arg0_type))
4510 *strict_overflow_p = true;
4511
4512 /* Check for an unsigned range which has wrapped around the maximum
4513 value thus making n_high < n_low, and normalize it. */
4514 if (n_low && n_high && tree_int_cst_lt (n_high, n_low))
4515 {
4516 low = range_binop (PLUS_EXPR, arg0_type, n_high, 0,
4517 integer_one_node, 0);
4518 high = range_binop (MINUS_EXPR, arg0_type, n_low, 0,
4519 integer_one_node, 0);
4520
4521 /* If the range is of the form +/- [ x+1, x ], we won't
4522 be able to normalize it. But then, it represents the
4523 whole range or the empty set, so make it
4524 +/- [ -, - ]. */
4525 if (tree_int_cst_equal (n_low, low)
4526 && tree_int_cst_equal (n_high, high))
4527 low = high = 0;
4528 else
4529 in_p = ! in_p;
4530 }
4531 else
4532 low = n_low, high = n_high;
4533
4534 exp = arg0;
4535 continue;
4536
4537 CASE_CONVERT: case NON_LVALUE_EXPR:
4538 if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type))
4539 break;
4540
4541 if (! INTEGRAL_TYPE_P (arg0_type)
4542 || (low != 0 && ! int_fits_type_p (low, arg0_type))
4543 || (high != 0 && ! int_fits_type_p (high, arg0_type)))
4544 break;
4545
4546 n_low = low, n_high = high;
4547
4548 if (n_low != 0)
4549 n_low = fold_convert (arg0_type, n_low);
4550
4551 if (n_high != 0)
4552 n_high = fold_convert (arg0_type, n_high);
4553
4554
4555 /* If we're converting arg0 from an unsigned type, to exp,
4556 a signed type, we will be doing the comparison as unsigned.
4557 The tests above have already verified that LOW and HIGH
4558 are both positive.
4559
4560 So we have to ensure that we will handle large unsigned
4561 values the same way that the current signed bounds treat
4562 negative values. */
4563
4564 if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type))
4565 {
4566 tree high_positive;
4567 tree equiv_type;
4568 /* For fixed-point modes, we need to pass the saturating flag
4569 as the 2nd parameter. */
4570 if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type)))
4571 equiv_type = lang_hooks.types.type_for_mode
4572 (TYPE_MODE (arg0_type),
4573 TYPE_SATURATING (arg0_type));
4574 else
4575 equiv_type = lang_hooks.types.type_for_mode
4576 (TYPE_MODE (arg0_type), 1);
4577
4578 /* A range without an upper bound is, naturally, unbounded.
4579 Since convert would have cropped a very large value, use
4580 the max value for the destination type. */
4581 high_positive
4582 = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type)
4583 : TYPE_MAX_VALUE (arg0_type);
4584
4585 if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type))
4586 high_positive = fold_build2 (RSHIFT_EXPR, arg0_type,
4587 fold_convert (arg0_type,
4588 high_positive),
4589 build_int_cst (arg0_type, 1));
4590
4591 /* If the low bound is specified, "and" the range with the
4592 range for which the original unsigned value will be
4593 positive. */
4594 if (low != 0)
4595 {
4596 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4597 1, n_low, n_high, 1,
4598 fold_convert (arg0_type,
4599 integer_zero_node),
4600 high_positive))
4601 break;
4602
4603 in_p = (n_in_p == in_p);
4604 }
4605 else
4606 {
4607 /* Otherwise, "or" the range with the range of the input
4608 that will be interpreted as negative. */
4609 if (! merge_ranges (&n_in_p, &n_low, &n_high,
4610 0, n_low, n_high, 1,
4611 fold_convert (arg0_type,
4612 integer_zero_node),
4613 high_positive))
4614 break;
4615
4616 in_p = (in_p != n_in_p);
4617 }
4618 }
4619
4620 exp = arg0;
4621 low = n_low, high = n_high;
4622 continue;
4623
4624 default:
4625 break;
4626 }
4627
4628 break;
4629 }
4630
4631 /* If EXP is a constant, we can evaluate whether this is true or false. */
4632 if (TREE_CODE (exp) == INTEGER_CST)
4633 {
4634 in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node,
4635 exp, 0, low, 0))
4636 && integer_onep (range_binop (LE_EXPR, integer_type_node,
4637 exp, 1, high, 1)));
4638 low = high = 0;
4639 exp = 0;
4640 }
4641
4642 *pin_p = in_p, *plow = low, *phigh = high;
4643 return exp;
4644 }
4645 \f
4646 /* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result
4647 type, TYPE, return an expression to test if EXP is in (or out of, depending
4648 on IN_P) the range. Return 0 if the test couldn't be created. */
4649
4650 static tree
4651 build_range_check (tree type, tree exp, int in_p, tree low, tree high)
4652 {
4653 tree etype = TREE_TYPE (exp);
4654 tree value;
4655
4656 #ifdef HAVE_canonicalize_funcptr_for_compare
4657 /* Disable this optimization for function pointer expressions
4658 on targets that require function pointer canonicalization. */
4659 if (HAVE_canonicalize_funcptr_for_compare
4660 && TREE_CODE (etype) == POINTER_TYPE
4661 && TREE_CODE (TREE_TYPE (etype)) == FUNCTION_TYPE)
4662 return NULL_TREE;
4663 #endif
4664
4665 if (! in_p)
4666 {
4667 value = build_range_check (type, exp, 1, low, high);
4668 if (value != 0)
4669 return invert_truthvalue (value);
4670
4671 return 0;
4672 }
4673
4674 if (low == 0 && high == 0)
4675 return build_int_cst (type, 1);
4676
4677 if (low == 0)
4678 return fold_build2 (LE_EXPR, type, exp,
4679 fold_convert (etype, high));
4680
4681 if (high == 0)
4682 return fold_build2 (GE_EXPR, type, exp,
4683 fold_convert (etype, low));
4684
4685 if (operand_equal_p (low, high, 0))
4686 return fold_build2 (EQ_EXPR, type, exp,
4687 fold_convert (etype, low));
4688
4689 if (integer_zerop (low))
4690 {
4691 if (! TYPE_UNSIGNED (etype))
4692 {
4693 etype = unsigned_type_for (etype);
4694 high = fold_convert (etype, high);
4695 exp = fold_convert (etype, exp);
4696 }
4697 return build_range_check (type, exp, 1, 0, high);
4698 }
4699
4700 /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */
4701 if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST)
4702 {
4703 unsigned HOST_WIDE_INT lo;
4704 HOST_WIDE_INT hi;
4705 int prec;
4706
4707 prec = TYPE_PRECISION (etype);
4708 if (prec <= HOST_BITS_PER_WIDE_INT)
4709 {
4710 hi = 0;
4711 lo = ((unsigned HOST_WIDE_INT) 1 << (prec - 1)) - 1;
4712 }
4713 else
4714 {
4715 hi = ((HOST_WIDE_INT) 1 << (prec - HOST_BITS_PER_WIDE_INT - 1)) - 1;
4716 lo = (unsigned HOST_WIDE_INT) -1;
4717 }
4718
4719 if (TREE_INT_CST_HIGH (high) == hi && TREE_INT_CST_LOW (high) == lo)
4720 {
4721 if (TYPE_UNSIGNED (etype))
4722 {
4723 tree signed_etype = signed_type_for (etype);
4724 if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype))
4725 etype
4726 = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0);
4727 else
4728 etype = signed_etype;
4729 exp = fold_convert (etype, exp);
4730 }
4731 return fold_build2 (GT_EXPR, type, exp,
4732 build_int_cst (etype, 0));
4733 }
4734 }
4735
4736 /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low).
4737 This requires wrap-around arithmetics for the type of the expression. */
4738 switch (TREE_CODE (etype))
4739 {
4740 case INTEGER_TYPE:
4741 /* There is no requirement that LOW be within the range of ETYPE
4742 if the latter is a subtype. It must, however, be within the base
4743 type of ETYPE. So be sure we do the subtraction in that type. */
4744 if (TREE_TYPE (etype))
4745 etype = TREE_TYPE (etype);
4746 break;
4747
4748 case ENUMERAL_TYPE:
4749 case BOOLEAN_TYPE:
4750 etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype),
4751 TYPE_UNSIGNED (etype));
4752 break;
4753
4754 default:
4755 break;
4756 }
4757
4758 /* If we don't have wrap-around arithmetics upfront, try to force it. */
4759 if (TREE_CODE (etype) == INTEGER_TYPE
4760 && !TYPE_OVERFLOW_WRAPS (etype))
4761 {
4762 tree utype, minv, maxv;
4763
4764 /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN
4765 for the type in question, as we rely on this here. */
4766 utype = unsigned_type_for (etype);
4767 maxv = fold_convert (utype, TYPE_MAX_VALUE (etype));
4768 maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1,
4769 integer_one_node, 1);
4770 minv = fold_convert (utype, TYPE_MIN_VALUE (etype));
4771
4772 if (integer_zerop (range_binop (NE_EXPR, integer_type_node,
4773 minv, 1, maxv, 1)))
4774 etype = utype;
4775 else
4776 return 0;
4777 }
4778
4779 high = fold_convert (etype, high);
4780 low = fold_convert (etype, low);
4781 exp = fold_convert (etype, exp);
4782
4783 value = const_binop (MINUS_EXPR, high, low, 0);
4784
4785
4786 if (POINTER_TYPE_P (etype))
4787 {
4788 if (value != 0 && !TREE_OVERFLOW (value))
4789 {
4790 low = fold_convert (sizetype, low);
4791 low = fold_build1 (NEGATE_EXPR, sizetype, low);
4792 return build_range_check (type,
4793 fold_build2 (POINTER_PLUS_EXPR, etype, exp, low),
4794 1, build_int_cst (etype, 0), value);
4795 }
4796 return 0;
4797 }
4798
4799 if (value != 0 && !TREE_OVERFLOW (value))
4800 return build_range_check (type,
4801 fold_build2 (MINUS_EXPR, etype, exp, low),
4802 1, build_int_cst (etype, 0), value);
4803
4804 return 0;
4805 }
4806 \f
4807 /* Return the predecessor of VAL in its type, handling the infinite case. */
4808
4809 static tree
4810 range_predecessor (tree val)
4811 {
4812 tree type = TREE_TYPE (val);
4813
4814 if (INTEGRAL_TYPE_P (type)
4815 && operand_equal_p (val, TYPE_MIN_VALUE (type), 0))
4816 return 0;
4817 else
4818 return range_binop (MINUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4819 }
4820
4821 /* Return the successor of VAL in its type, handling the infinite case. */
4822
4823 static tree
4824 range_successor (tree val)
4825 {
4826 tree type = TREE_TYPE (val);
4827
4828 if (INTEGRAL_TYPE_P (type)
4829 && operand_equal_p (val, TYPE_MAX_VALUE (type), 0))
4830 return 0;
4831 else
4832 return range_binop (PLUS_EXPR, NULL_TREE, val, 0, integer_one_node, 0);
4833 }
4834
4835 /* Given two ranges, see if we can merge them into one. Return 1 if we
4836 can, 0 if we can't. Set the output range into the specified parameters. */
4837
4838 static int
4839 merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0,
4840 tree high0, int in1_p, tree low1, tree high1)
4841 {
4842 int no_overlap;
4843 int subset;
4844 int temp;
4845 tree tem;
4846 int in_p;
4847 tree low, high;
4848 int lowequal = ((low0 == 0 && low1 == 0)
4849 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4850 low0, 0, low1, 0)));
4851 int highequal = ((high0 == 0 && high1 == 0)
4852 || integer_onep (range_binop (EQ_EXPR, integer_type_node,
4853 high0, 1, high1, 1)));
4854
4855 /* Make range 0 be the range that starts first, or ends last if they
4856 start at the same value. Swap them if it isn't. */
4857 if (integer_onep (range_binop (GT_EXPR, integer_type_node,
4858 low0, 0, low1, 0))
4859 || (lowequal
4860 && integer_onep (range_binop (GT_EXPR, integer_type_node,
4861 high1, 1, high0, 1))))
4862 {
4863 temp = in0_p, in0_p = in1_p, in1_p = temp;
4864 tem = low0, low0 = low1, low1 = tem;
4865 tem = high0, high0 = high1, high1 = tem;
4866 }
4867
4868 /* Now flag two cases, whether the ranges are disjoint or whether the
4869 second range is totally subsumed in the first. Note that the tests
4870 below are simplified by the ones above. */
4871 no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node,
4872 high0, 1, low1, 0));
4873 subset = integer_onep (range_binop (LE_EXPR, integer_type_node,
4874 high1, 1, high0, 1));
4875
4876 /* We now have four cases, depending on whether we are including or
4877 excluding the two ranges. */
4878 if (in0_p && in1_p)
4879 {
4880 /* If they don't overlap, the result is false. If the second range
4881 is a subset it is the result. Otherwise, the range is from the start
4882 of the second to the end of the first. */
4883 if (no_overlap)
4884 in_p = 0, low = high = 0;
4885 else if (subset)
4886 in_p = 1, low = low1, high = high1;
4887 else
4888 in_p = 1, low = low1, high = high0;
4889 }
4890
4891 else if (in0_p && ! in1_p)
4892 {
4893 /* If they don't overlap, the result is the first range. If they are
4894 equal, the result is false. If the second range is a subset of the
4895 first, and the ranges begin at the same place, we go from just after
4896 the end of the second range to the end of the first. If the second
4897 range is not a subset of the first, or if it is a subset and both
4898 ranges end at the same place, the range starts at the start of the
4899 first range and ends just before the second range.
4900 Otherwise, we can't describe this as a single range. */
4901 if (no_overlap)
4902 in_p = 1, low = low0, high = high0;
4903 else if (lowequal && highequal)
4904 in_p = 0, low = high = 0;
4905 else if (subset && lowequal)
4906 {
4907 low = range_successor (high1);
4908 high = high0;
4909 in_p = 1;
4910 if (low == 0)
4911 {
4912 /* We are in the weird situation where high0 > high1 but
4913 high1 has no successor. Punt. */
4914 return 0;
4915 }
4916 }
4917 else if (! subset || highequal)
4918 {
4919 low = low0;
4920 high = range_predecessor (low1);
4921 in_p = 1;
4922 if (high == 0)
4923 {
4924 /* low0 < low1 but low1 has no predecessor. Punt. */
4925 return 0;
4926 }
4927 }
4928 else
4929 return 0;
4930 }
4931
4932 else if (! in0_p && in1_p)
4933 {
4934 /* If they don't overlap, the result is the second range. If the second
4935 is a subset of the first, the result is false. Otherwise,
4936 the range starts just after the first range and ends at the
4937 end of the second. */
4938 if (no_overlap)
4939 in_p = 1, low = low1, high = high1;
4940 else if (subset || highequal)
4941 in_p = 0, low = high = 0;
4942 else
4943 {
4944 low = range_successor (high0);
4945 high = high1;
4946 in_p = 1;
4947 if (low == 0)
4948 {
4949 /* high1 > high0 but high0 has no successor. Punt. */
4950 return 0;
4951 }
4952 }
4953 }
4954
4955 else
4956 {
4957 /* The case where we are excluding both ranges. Here the complex case
4958 is if they don't overlap. In that case, the only time we have a
4959 range is if they are adjacent. If the second is a subset of the
4960 first, the result is the first. Otherwise, the range to exclude
4961 starts at the beginning of the first range and ends at the end of the
4962 second. */
4963 if (no_overlap)
4964 {
4965 if (integer_onep (range_binop (EQ_EXPR, integer_type_node,
4966 range_successor (high0),
4967 1, low1, 0)))
4968 in_p = 0, low = low0, high = high1;
4969 else
4970 {
4971 /* Canonicalize - [min, x] into - [-, x]. */
4972 if (low0 && TREE_CODE (low0) == INTEGER_CST)
4973 switch (TREE_CODE (TREE_TYPE (low0)))
4974 {
4975 case ENUMERAL_TYPE:
4976 if (TYPE_PRECISION (TREE_TYPE (low0))
4977 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low0))))
4978 break;
4979 /* FALLTHROUGH */
4980 case INTEGER_TYPE:
4981 if (tree_int_cst_equal (low0,
4982 TYPE_MIN_VALUE (TREE_TYPE (low0))))
4983 low0 = 0;
4984 break;
4985 case POINTER_TYPE:
4986 if (TYPE_UNSIGNED (TREE_TYPE (low0))
4987 && integer_zerop (low0))
4988 low0 = 0;
4989 break;
4990 default:
4991 break;
4992 }
4993
4994 /* Canonicalize - [x, max] into - [x, -]. */
4995 if (high1 && TREE_CODE (high1) == INTEGER_CST)
4996 switch (TREE_CODE (TREE_TYPE (high1)))
4997 {
4998 case ENUMERAL_TYPE:
4999 if (TYPE_PRECISION (TREE_TYPE (high1))
5000 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (high1))))
5001 break;
5002 /* FALLTHROUGH */
5003 case INTEGER_TYPE:
5004 if (tree_int_cst_equal (high1,
5005 TYPE_MAX_VALUE (TREE_TYPE (high1))))
5006 high1 = 0;
5007 break;
5008 case POINTER_TYPE:
5009 if (TYPE_UNSIGNED (TREE_TYPE (high1))
5010 && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE,
5011 high1, 1,
5012 integer_one_node, 1)))
5013 high1 = 0;
5014 break;
5015 default:
5016 break;
5017 }
5018
5019 /* The ranges might be also adjacent between the maximum and
5020 minimum values of the given type. For
5021 - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y
5022 return + [x + 1, y - 1]. */
5023 if (low0 == 0 && high1 == 0)
5024 {
5025 low = range_successor (high0);
5026 high = range_predecessor (low1);
5027 if (low == 0 || high == 0)
5028 return 0;
5029
5030 in_p = 1;
5031 }
5032 else
5033 return 0;
5034 }
5035 }
5036 else if (subset)
5037 in_p = 0, low = low0, high = high0;
5038 else
5039 in_p = 0, low = low0, high = high1;
5040 }
5041
5042 *pin_p = in_p, *plow = low, *phigh = high;
5043 return 1;
5044 }
5045 \f
5046
5047 /* Subroutine of fold, looking inside expressions of the form
5048 A op B ? A : C, where ARG0, ARG1 and ARG2 are the three operands
5049 of the COND_EXPR. This function is being used also to optimize
5050 A op B ? C : A, by reversing the comparison first.
5051
5052 Return a folded expression whose code is not a COND_EXPR
5053 anymore, or NULL_TREE if no folding opportunity is found. */
5054
5055 static tree
5056 fold_cond_expr_with_comparison (tree type, tree arg0, tree arg1, tree arg2)
5057 {
5058 enum tree_code comp_code = TREE_CODE (arg0);
5059 tree arg00 = TREE_OPERAND (arg0, 0);
5060 tree arg01 = TREE_OPERAND (arg0, 1);
5061 tree arg1_type = TREE_TYPE (arg1);
5062 tree tem;
5063
5064 STRIP_NOPS (arg1);
5065 STRIP_NOPS (arg2);
5066
5067 /* If we have A op 0 ? A : -A, consider applying the following
5068 transformations:
5069
5070 A == 0? A : -A same as -A
5071 A != 0? A : -A same as A
5072 A >= 0? A : -A same as abs (A)
5073 A > 0? A : -A same as abs (A)
5074 A <= 0? A : -A same as -abs (A)
5075 A < 0? A : -A same as -abs (A)
5076
5077 None of these transformations work for modes with signed
5078 zeros. If A is +/-0, the first two transformations will
5079 change the sign of the result (from +0 to -0, or vice
5080 versa). The last four will fix the sign of the result,
5081 even though the original expressions could be positive or
5082 negative, depending on the sign of A.
5083
5084 Note that all these transformations are correct if A is
5085 NaN, since the two alternatives (A and -A) are also NaNs. */
5086 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5087 && (FLOAT_TYPE_P (TREE_TYPE (arg01))
5088 ? real_zerop (arg01)
5089 : integer_zerop (arg01))
5090 && ((TREE_CODE (arg2) == NEGATE_EXPR
5091 && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0))
5092 /* In the case that A is of the form X-Y, '-A' (arg2) may
5093 have already been folded to Y-X, check for that. */
5094 || (TREE_CODE (arg1) == MINUS_EXPR
5095 && TREE_CODE (arg2) == MINUS_EXPR
5096 && operand_equal_p (TREE_OPERAND (arg1, 0),
5097 TREE_OPERAND (arg2, 1), 0)
5098 && operand_equal_p (TREE_OPERAND (arg1, 1),
5099 TREE_OPERAND (arg2, 0), 0))))
5100 switch (comp_code)
5101 {
5102 case EQ_EXPR:
5103 case UNEQ_EXPR:
5104 tem = fold_convert (arg1_type, arg1);
5105 return pedantic_non_lvalue (fold_convert (type, negate_expr (tem)));
5106 case NE_EXPR:
5107 case LTGT_EXPR:
5108 return pedantic_non_lvalue (fold_convert (type, arg1));
5109 case UNGE_EXPR:
5110 case UNGT_EXPR:
5111 if (flag_trapping_math)
5112 break;
5113 /* Fall through. */
5114 case GE_EXPR:
5115 case GT_EXPR:
5116 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5117 arg1 = fold_convert (signed_type_for
5118 (TREE_TYPE (arg1)), arg1);
5119 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5120 return pedantic_non_lvalue (fold_convert (type, tem));
5121 case UNLE_EXPR:
5122 case UNLT_EXPR:
5123 if (flag_trapping_math)
5124 break;
5125 case LE_EXPR:
5126 case LT_EXPR:
5127 if (TYPE_UNSIGNED (TREE_TYPE (arg1)))
5128 arg1 = fold_convert (signed_type_for
5129 (TREE_TYPE (arg1)), arg1);
5130 tem = fold_build1 (ABS_EXPR, TREE_TYPE (arg1), arg1);
5131 return negate_expr (fold_convert (type, tem));
5132 default:
5133 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5134 break;
5135 }
5136
5137 /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise
5138 A == 0 ? A : 0 is always 0 unless A is -0. Note that
5139 both transformations are correct when A is NaN: A != 0
5140 is then true, and A == 0 is false. */
5141
5142 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5143 && integer_zerop (arg01) && integer_zerop (arg2))
5144 {
5145 if (comp_code == NE_EXPR)
5146 return pedantic_non_lvalue (fold_convert (type, arg1));
5147 else if (comp_code == EQ_EXPR)
5148 return build_int_cst (type, 0);
5149 }
5150
5151 /* Try some transformations of A op B ? A : B.
5152
5153 A == B? A : B same as B
5154 A != B? A : B same as A
5155 A >= B? A : B same as max (A, B)
5156 A > B? A : B same as max (B, A)
5157 A <= B? A : B same as min (A, B)
5158 A < B? A : B same as min (B, A)
5159
5160 As above, these transformations don't work in the presence
5161 of signed zeros. For example, if A and B are zeros of
5162 opposite sign, the first two transformations will change
5163 the sign of the result. In the last four, the original
5164 expressions give different results for (A=+0, B=-0) and
5165 (A=-0, B=+0), but the transformed expressions do not.
5166
5167 The first two transformations are correct if either A or B
5168 is a NaN. In the first transformation, the condition will
5169 be false, and B will indeed be chosen. In the case of the
5170 second transformation, the condition A != B will be true,
5171 and A will be chosen.
5172
5173 The conversions to max() and min() are not correct if B is
5174 a number and A is not. The conditions in the original
5175 expressions will be false, so all four give B. The min()
5176 and max() versions would give a NaN instead. */
5177 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type))
5178 && operand_equal_for_comparison_p (arg01, arg2, arg00)
5179 /* Avoid these transformations if the COND_EXPR may be used
5180 as an lvalue in the C++ front-end. PR c++/19199. */
5181 && (in_gimple_form
5182 || (strcmp (lang_hooks.name, "GNU C++") != 0
5183 && strcmp (lang_hooks.name, "GNU Objective-C++") != 0)
5184 || ! maybe_lvalue_p (arg1)
5185 || ! maybe_lvalue_p (arg2)))
5186 {
5187 tree comp_op0 = arg00;
5188 tree comp_op1 = arg01;
5189 tree comp_type = TREE_TYPE (comp_op0);
5190
5191 /* Avoid adding NOP_EXPRs in case this is an lvalue. */
5192 if (TYPE_MAIN_VARIANT (comp_type) == TYPE_MAIN_VARIANT (type))
5193 {
5194 comp_type = type;
5195 comp_op0 = arg1;
5196 comp_op1 = arg2;
5197 }
5198
5199 switch (comp_code)
5200 {
5201 case EQ_EXPR:
5202 return pedantic_non_lvalue (fold_convert (type, arg2));
5203 case NE_EXPR:
5204 return pedantic_non_lvalue (fold_convert (type, arg1));
5205 case LE_EXPR:
5206 case LT_EXPR:
5207 case UNLE_EXPR:
5208 case UNLT_EXPR:
5209 /* In C++ a ?: expression can be an lvalue, so put the
5210 operand which will be used if they are equal first
5211 so that we can convert this back to the
5212 corresponding COND_EXPR. */
5213 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5214 {
5215 comp_op0 = fold_convert (comp_type, comp_op0);
5216 comp_op1 = fold_convert (comp_type, comp_op1);
5217 tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR)
5218 ? fold_build2 (MIN_EXPR, comp_type, comp_op0, comp_op1)
5219 : fold_build2 (MIN_EXPR, comp_type, comp_op1, comp_op0);
5220 return pedantic_non_lvalue (fold_convert (type, tem));
5221 }
5222 break;
5223 case GE_EXPR:
5224 case GT_EXPR:
5225 case UNGE_EXPR:
5226 case UNGT_EXPR:
5227 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5228 {
5229 comp_op0 = fold_convert (comp_type, comp_op0);
5230 comp_op1 = fold_convert (comp_type, comp_op1);
5231 tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR)
5232 ? fold_build2 (MAX_EXPR, comp_type, comp_op0, comp_op1)
5233 : fold_build2 (MAX_EXPR, comp_type, comp_op1, comp_op0);
5234 return pedantic_non_lvalue (fold_convert (type, tem));
5235 }
5236 break;
5237 case UNEQ_EXPR:
5238 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5239 return pedantic_non_lvalue (fold_convert (type, arg2));
5240 break;
5241 case LTGT_EXPR:
5242 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1))))
5243 return pedantic_non_lvalue (fold_convert (type, arg1));
5244 break;
5245 default:
5246 gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison);
5247 break;
5248 }
5249 }
5250
5251 /* If this is A op C1 ? A : C2 with C1 and C2 constant integers,
5252 we might still be able to simplify this. For example,
5253 if C1 is one less or one more than C2, this might have started
5254 out as a MIN or MAX and been transformed by this function.
5255 Only good for INTEGER_TYPEs, because we need TYPE_MAX_VALUE. */
5256
5257 if (INTEGRAL_TYPE_P (type)
5258 && TREE_CODE (arg01) == INTEGER_CST
5259 && TREE_CODE (arg2) == INTEGER_CST)
5260 switch (comp_code)
5261 {
5262 case EQ_EXPR:
5263 /* We can replace A with C1 in this case. */
5264 arg1 = fold_convert (type, arg01);
5265 return fold_build3 (COND_EXPR, type, arg0, arg1, arg2);
5266
5267 case LT_EXPR:
5268 /* If C1 is C2 + 1, this is min(A, C2). */
5269 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5270 OEP_ONLY_CONST)
5271 && operand_equal_p (arg01,
5272 const_binop (PLUS_EXPR, arg2,
5273 build_int_cst (type, 1), 0),
5274 OEP_ONLY_CONST))
5275 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5276 type,
5277 fold_convert (type, arg1),
5278 arg2));
5279 break;
5280
5281 case LE_EXPR:
5282 /* If C1 is C2 - 1, this is min(A, C2). */
5283 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5284 OEP_ONLY_CONST)
5285 && operand_equal_p (arg01,
5286 const_binop (MINUS_EXPR, arg2,
5287 build_int_cst (type, 1), 0),
5288 OEP_ONLY_CONST))
5289 return pedantic_non_lvalue (fold_build2 (MIN_EXPR,
5290 type,
5291 fold_convert (type, arg1),
5292 arg2));
5293 break;
5294
5295 case GT_EXPR:
5296 /* If C1 is C2 - 1, this is max(A, C2). */
5297 if (! operand_equal_p (arg2, TYPE_MIN_VALUE (type),
5298 OEP_ONLY_CONST)
5299 && operand_equal_p (arg01,
5300 const_binop (MINUS_EXPR, arg2,
5301 build_int_cst (type, 1), 0),
5302 OEP_ONLY_CONST))
5303 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5304 type,
5305 fold_convert (type, arg1),
5306 arg2));
5307 break;
5308
5309 case GE_EXPR:
5310 /* If C1 is C2 + 1, this is max(A, C2). */
5311 if (! operand_equal_p (arg2, TYPE_MAX_VALUE (type),
5312 OEP_ONLY_CONST)
5313 && operand_equal_p (arg01,
5314 const_binop (PLUS_EXPR, arg2,
5315 build_int_cst (type, 1), 0),
5316 OEP_ONLY_CONST))
5317 return pedantic_non_lvalue (fold_build2 (MAX_EXPR,
5318 type,
5319 fold_convert (type, arg1),
5320 arg2));
5321 break;
5322 case NE_EXPR:
5323 break;
5324 default:
5325 gcc_unreachable ();
5326 }
5327
5328 return NULL_TREE;
5329 }
5330
5331
5332 \f
5333 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
5334 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
5335 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
5336 false) >= 2)
5337 #endif
5338
5339 /* EXP is some logical combination of boolean tests. See if we can
5340 merge it into some range test. Return the new tree if so. */
5341
5342 static tree
5343 fold_range_test (enum tree_code code, tree type, tree op0, tree op1)
5344 {
5345 int or_op = (code == TRUTH_ORIF_EXPR
5346 || code == TRUTH_OR_EXPR);
5347 int in0_p, in1_p, in_p;
5348 tree low0, low1, low, high0, high1, high;
5349 bool strict_overflow_p = false;
5350 tree lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p);
5351 tree rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p);
5352 tree tem;
5353 const char * const warnmsg = G_("assuming signed overflow does not occur "
5354 "when simplifying range test");
5355
5356 /* If this is an OR operation, invert both sides; we will invert
5357 again at the end. */
5358 if (or_op)
5359 in0_p = ! in0_p, in1_p = ! in1_p;
5360
5361 /* If both expressions are the same, if we can merge the ranges, and we
5362 can build the range test, return it or it inverted. If one of the
5363 ranges is always true or always false, consider it to be the same
5364 expression as the other. */
5365 if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0))
5366 && merge_ranges (&in_p, &low, &high, in0_p, low0, high0,
5367 in1_p, low1, high1)
5368 && 0 != (tem = (build_range_check (type,
5369 lhs != 0 ? lhs
5370 : rhs != 0 ? rhs : integer_zero_node,
5371 in_p, low, high))))
5372 {
5373 if (strict_overflow_p)
5374 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
5375 return or_op ? invert_truthvalue (tem) : tem;
5376 }
5377
5378 /* On machines where the branch cost is expensive, if this is a
5379 short-circuited branch and the underlying object on both sides
5380 is the same, make a non-short-circuit operation. */
5381 else if (LOGICAL_OP_NON_SHORT_CIRCUIT
5382 && lhs != 0 && rhs != 0
5383 && (code == TRUTH_ANDIF_EXPR
5384 || code == TRUTH_ORIF_EXPR)
5385 && operand_equal_p (lhs, rhs, 0))
5386 {
5387 /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR
5388 unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in
5389 which cases we can't do this. */
5390 if (simple_operand_p (lhs))
5391 return build2 (code == TRUTH_ANDIF_EXPR
5392 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5393 type, op0, op1);
5394
5395 else if (lang_hooks.decls.global_bindings_p () == 0
5396 && ! CONTAINS_PLACEHOLDER_P (lhs))
5397 {
5398 tree common = save_expr (lhs);
5399
5400 if (0 != (lhs = build_range_check (type, common,
5401 or_op ? ! in0_p : in0_p,
5402 low0, high0))
5403 && (0 != (rhs = build_range_check (type, common,
5404 or_op ? ! in1_p : in1_p,
5405 low1, high1))))
5406 {
5407 if (strict_overflow_p)
5408 fold_overflow_warning (warnmsg,
5409 WARN_STRICT_OVERFLOW_COMPARISON);
5410 return build2 (code == TRUTH_ANDIF_EXPR
5411 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR,
5412 type, lhs, rhs);
5413 }
5414 }
5415 }
5416
5417 return 0;
5418 }
5419 \f
5420 /* Subroutine for fold_truthop: C is an INTEGER_CST interpreted as a P
5421 bit value. Arrange things so the extra bits will be set to zero if and
5422 only if C is signed-extended to its full width. If MASK is nonzero,
5423 it is an INTEGER_CST that should be AND'ed with the extra bits. */
5424
5425 static tree
5426 unextend (tree c, int p, int unsignedp, tree mask)
5427 {
5428 tree type = TREE_TYPE (c);
5429 int modesize = GET_MODE_BITSIZE (TYPE_MODE (type));
5430 tree temp;
5431
5432 if (p == modesize || unsignedp)
5433 return c;
5434
5435 /* We work by getting just the sign bit into the low-order bit, then
5436 into the high-order bit, then sign-extend. We then XOR that value
5437 with C. */
5438 temp = const_binop (RSHIFT_EXPR, c, size_int (p - 1), 0);
5439 temp = const_binop (BIT_AND_EXPR, temp, size_int (1), 0);
5440
5441 /* We must use a signed type in order to get an arithmetic right shift.
5442 However, we must also avoid introducing accidental overflows, so that
5443 a subsequent call to integer_zerop will work. Hence we must
5444 do the type conversion here. At this point, the constant is either
5445 zero or one, and the conversion to a signed type can never overflow.
5446 We could get an overflow if this conversion is done anywhere else. */
5447 if (TYPE_UNSIGNED (type))
5448 temp = fold_convert (signed_type_for (type), temp);
5449
5450 temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1), 0);
5451 temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1), 0);
5452 if (mask != 0)
5453 temp = const_binop (BIT_AND_EXPR, temp,
5454 fold_convert (TREE_TYPE (c), mask), 0);
5455 /* If necessary, convert the type back to match the type of C. */
5456 if (TYPE_UNSIGNED (type))
5457 temp = fold_convert (type, temp);
5458
5459 return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp, 0));
5460 }
5461 \f
5462 /* Find ways of folding logical expressions of LHS and RHS:
5463 Try to merge two comparisons to the same innermost item.
5464 Look for range tests like "ch >= '0' && ch <= '9'".
5465 Look for combinations of simple terms on machines with expensive branches
5466 and evaluate the RHS unconditionally.
5467
5468 For example, if we have p->a == 2 && p->b == 4 and we can make an
5469 object large enough to span both A and B, we can do this with a comparison
5470 against the object ANDed with the a mask.
5471
5472 If we have p->a == q->a && p->b == q->b, we may be able to use bit masking
5473 operations to do this with one comparison.
5474
5475 We check for both normal comparisons and the BIT_AND_EXPRs made this by
5476 function and the one above.
5477
5478 CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR,
5479 TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR.
5480
5481 TRUTH_TYPE is the type of the logical operand and LHS and RHS are its
5482 two operands.
5483
5484 We return the simplified tree or 0 if no optimization is possible. */
5485
5486 static tree
5487 fold_truthop (enum tree_code code, tree truth_type, tree lhs, tree rhs)
5488 {
5489 /* If this is the "or" of two comparisons, we can do something if
5490 the comparisons are NE_EXPR. If this is the "and", we can do something
5491 if the comparisons are EQ_EXPR. I.e.,
5492 (a->b == 2 && a->c == 4) can become (a->new == NEW).
5493
5494 WANTED_CODE is this operation code. For single bit fields, we can
5495 convert EQ_EXPR to NE_EXPR so we need not reject the "wrong"
5496 comparison for one-bit fields. */
5497
5498 enum tree_code wanted_code;
5499 enum tree_code lcode, rcode;
5500 tree ll_arg, lr_arg, rl_arg, rr_arg;
5501 tree ll_inner, lr_inner, rl_inner, rr_inner;
5502 HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos;
5503 HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos;
5504 HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos;
5505 HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos;
5506 int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp;
5507 enum machine_mode ll_mode, lr_mode, rl_mode, rr_mode;
5508 enum machine_mode lnmode, rnmode;
5509 tree ll_mask, lr_mask, rl_mask, rr_mask;
5510 tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask;
5511 tree l_const, r_const;
5512 tree lntype, rntype, result;
5513 HOST_WIDE_INT first_bit, end_bit;
5514 int volatilep;
5515 tree orig_lhs = lhs, orig_rhs = rhs;
5516 enum tree_code orig_code = code;
5517
5518 /* Start by getting the comparison codes. Fail if anything is volatile.
5519 If one operand is a BIT_AND_EXPR with the constant one, treat it as if
5520 it were surrounded with a NE_EXPR. */
5521
5522 if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs))
5523 return 0;
5524
5525 lcode = TREE_CODE (lhs);
5526 rcode = TREE_CODE (rhs);
5527
5528 if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1)))
5529 {
5530 lhs = build2 (NE_EXPR, truth_type, lhs,
5531 build_int_cst (TREE_TYPE (lhs), 0));
5532 lcode = NE_EXPR;
5533 }
5534
5535 if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1)))
5536 {
5537 rhs = build2 (NE_EXPR, truth_type, rhs,
5538 build_int_cst (TREE_TYPE (rhs), 0));
5539 rcode = NE_EXPR;
5540 }
5541
5542 if (TREE_CODE_CLASS (lcode) != tcc_comparison
5543 || TREE_CODE_CLASS (rcode) != tcc_comparison)
5544 return 0;
5545
5546 ll_arg = TREE_OPERAND (lhs, 0);
5547 lr_arg = TREE_OPERAND (lhs, 1);
5548 rl_arg = TREE_OPERAND (rhs, 0);
5549 rr_arg = TREE_OPERAND (rhs, 1);
5550
5551 /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */
5552 if (simple_operand_p (ll_arg)
5553 && simple_operand_p (lr_arg))
5554 {
5555 tree result;
5556 if (operand_equal_p (ll_arg, rl_arg, 0)
5557 && operand_equal_p (lr_arg, rr_arg, 0))
5558 {
5559 result = combine_comparisons (code, lcode, rcode,
5560 truth_type, ll_arg, lr_arg);
5561 if (result)
5562 return result;
5563 }
5564 else if (operand_equal_p (ll_arg, rr_arg, 0)
5565 && operand_equal_p (lr_arg, rl_arg, 0))
5566 {
5567 result = combine_comparisons (code, lcode,
5568 swap_tree_comparison (rcode),
5569 truth_type, ll_arg, lr_arg);
5570 if (result)
5571 return result;
5572 }
5573 }
5574
5575 code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR)
5576 ? TRUTH_AND_EXPR : TRUTH_OR_EXPR);
5577
5578 /* If the RHS can be evaluated unconditionally and its operands are
5579 simple, it wins to evaluate the RHS unconditionally on machines
5580 with expensive branches. In this case, this isn't a comparison
5581 that can be merged. Avoid doing this if the RHS is a floating-point
5582 comparison since those can trap. */
5583
5584 if (BRANCH_COST (optimize_function_for_speed_p (cfun),
5585 false) >= 2
5586 && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg))
5587 && simple_operand_p (rl_arg)
5588 && simple_operand_p (rr_arg))
5589 {
5590 /* Convert (a != 0) || (b != 0) into (a | b) != 0. */
5591 if (code == TRUTH_OR_EXPR
5592 && lcode == NE_EXPR && integer_zerop (lr_arg)
5593 && rcode == NE_EXPR && integer_zerop (rr_arg)
5594 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5595 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5596 return build2 (NE_EXPR, truth_type,
5597 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5598 ll_arg, rl_arg),
5599 build_int_cst (TREE_TYPE (ll_arg), 0));
5600
5601 /* Convert (a == 0) && (b == 0) into (a | b) == 0. */
5602 if (code == TRUTH_AND_EXPR
5603 && lcode == EQ_EXPR && integer_zerop (lr_arg)
5604 && rcode == EQ_EXPR && integer_zerop (rr_arg)
5605 && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg)
5606 && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg)))
5607 return build2 (EQ_EXPR, truth_type,
5608 build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg),
5609 ll_arg, rl_arg),
5610 build_int_cst (TREE_TYPE (ll_arg), 0));
5611
5612 if (LOGICAL_OP_NON_SHORT_CIRCUIT)
5613 {
5614 if (code != orig_code || lhs != orig_lhs || rhs != orig_rhs)
5615 return build2 (code, truth_type, lhs, rhs);
5616 return NULL_TREE;
5617 }
5618 }
5619
5620 /* See if the comparisons can be merged. Then get all the parameters for
5621 each side. */
5622
5623 if ((lcode != EQ_EXPR && lcode != NE_EXPR)
5624 || (rcode != EQ_EXPR && rcode != NE_EXPR))
5625 return 0;
5626
5627 volatilep = 0;
5628 ll_inner = decode_field_reference (ll_arg,
5629 &ll_bitsize, &ll_bitpos, &ll_mode,
5630 &ll_unsignedp, &volatilep, &ll_mask,
5631 &ll_and_mask);
5632 lr_inner = decode_field_reference (lr_arg,
5633 &lr_bitsize, &lr_bitpos, &lr_mode,
5634 &lr_unsignedp, &volatilep, &lr_mask,
5635 &lr_and_mask);
5636 rl_inner = decode_field_reference (rl_arg,
5637 &rl_bitsize, &rl_bitpos, &rl_mode,
5638 &rl_unsignedp, &volatilep, &rl_mask,
5639 &rl_and_mask);
5640 rr_inner = decode_field_reference (rr_arg,
5641 &rr_bitsize, &rr_bitpos, &rr_mode,
5642 &rr_unsignedp, &volatilep, &rr_mask,
5643 &rr_and_mask);
5644
5645 /* It must be true that the inner operation on the lhs of each
5646 comparison must be the same if we are to be able to do anything.
5647 Then see if we have constants. If not, the same must be true for
5648 the rhs's. */
5649 if (volatilep || ll_inner == 0 || rl_inner == 0
5650 || ! operand_equal_p (ll_inner, rl_inner, 0))
5651 return 0;
5652
5653 if (TREE_CODE (lr_arg) == INTEGER_CST
5654 && TREE_CODE (rr_arg) == INTEGER_CST)
5655 l_const = lr_arg, r_const = rr_arg;
5656 else if (lr_inner == 0 || rr_inner == 0
5657 || ! operand_equal_p (lr_inner, rr_inner, 0))
5658 return 0;
5659 else
5660 l_const = r_const = 0;
5661
5662 /* If either comparison code is not correct for our logical operation,
5663 fail. However, we can convert a one-bit comparison against zero into
5664 the opposite comparison against that bit being set in the field. */
5665
5666 wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR);
5667 if (lcode != wanted_code)
5668 {
5669 if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask))
5670 {
5671 /* Make the left operand unsigned, since we are only interested
5672 in the value of one bit. Otherwise we are doing the wrong
5673 thing below. */
5674 ll_unsignedp = 1;
5675 l_const = ll_mask;
5676 }
5677 else
5678 return 0;
5679 }
5680
5681 /* This is analogous to the code for l_const above. */
5682 if (rcode != wanted_code)
5683 {
5684 if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask))
5685 {
5686 rl_unsignedp = 1;
5687 r_const = rl_mask;
5688 }
5689 else
5690 return 0;
5691 }
5692
5693 /* See if we can find a mode that contains both fields being compared on
5694 the left. If we can't, fail. Otherwise, update all constants and masks
5695 to be relative to a field of that size. */
5696 first_bit = MIN (ll_bitpos, rl_bitpos);
5697 end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize);
5698 lnmode = get_best_mode (end_bit - first_bit, first_bit,
5699 TYPE_ALIGN (TREE_TYPE (ll_inner)), word_mode,
5700 volatilep);
5701 if (lnmode == VOIDmode)
5702 return 0;
5703
5704 lnbitsize = GET_MODE_BITSIZE (lnmode);
5705 lnbitpos = first_bit & ~ (lnbitsize - 1);
5706 lntype = lang_hooks.types.type_for_size (lnbitsize, 1);
5707 xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos;
5708
5709 if (BYTES_BIG_ENDIAN)
5710 {
5711 xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize;
5712 xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize;
5713 }
5714
5715 ll_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, ll_mask),
5716 size_int (xll_bitpos), 0);
5717 rl_mask = const_binop (LSHIFT_EXPR, fold_convert (lntype, rl_mask),
5718 size_int (xrl_bitpos), 0);
5719
5720 if (l_const)
5721 {
5722 l_const = fold_convert (lntype, l_const);
5723 l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask);
5724 l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos), 0);
5725 if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const,
5726 fold_build1 (BIT_NOT_EXPR,
5727 lntype, ll_mask),
5728 0)))
5729 {
5730 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5731
5732 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5733 }
5734 }
5735 if (r_const)
5736 {
5737 r_const = fold_convert (lntype, r_const);
5738 r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask);
5739 r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos), 0);
5740 if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const,
5741 fold_build1 (BIT_NOT_EXPR,
5742 lntype, rl_mask),
5743 0)))
5744 {
5745 warning (0, "comparison is always %d", wanted_code == NE_EXPR);
5746
5747 return constant_boolean_node (wanted_code == NE_EXPR, truth_type);
5748 }
5749 }
5750
5751 /* If the right sides are not constant, do the same for it. Also,
5752 disallow this optimization if a size or signedness mismatch occurs
5753 between the left and right sides. */
5754 if (l_const == 0)
5755 {
5756 if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize
5757 || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp
5758 /* Make sure the two fields on the right
5759 correspond to the left without being swapped. */
5760 || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos)
5761 return 0;
5762
5763 first_bit = MIN (lr_bitpos, rr_bitpos);
5764 end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize);
5765 rnmode = get_best_mode (end_bit - first_bit, first_bit,
5766 TYPE_ALIGN (TREE_TYPE (lr_inner)), word_mode,
5767 volatilep);
5768 if (rnmode == VOIDmode)
5769 return 0;
5770
5771 rnbitsize = GET_MODE_BITSIZE (rnmode);
5772 rnbitpos = first_bit & ~ (rnbitsize - 1);
5773 rntype = lang_hooks.types.type_for_size (rnbitsize, 1);
5774 xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos;
5775
5776 if (BYTES_BIG_ENDIAN)
5777 {
5778 xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize;
5779 xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize;
5780 }
5781
5782 lr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, lr_mask),
5783 size_int (xlr_bitpos), 0);
5784 rr_mask = const_binop (LSHIFT_EXPR, fold_convert (rntype, rr_mask),
5785 size_int (xrr_bitpos), 0);
5786
5787 /* Make a mask that corresponds to both fields being compared.
5788 Do this for both items being compared. If the operands are the
5789 same size and the bits being compared are in the same position
5790 then we can do this by masking both and comparing the masked
5791 results. */
5792 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5793 lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask, 0);
5794 if (lnbitsize == rnbitsize && xll_bitpos == xlr_bitpos)
5795 {
5796 lhs = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5797 ll_unsignedp || rl_unsignedp);
5798 if (! all_ones_mask_p (ll_mask, lnbitsize))
5799 lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask);
5800
5801 rhs = make_bit_field_ref (lr_inner, rntype, rnbitsize, rnbitpos,
5802 lr_unsignedp || rr_unsignedp);
5803 if (! all_ones_mask_p (lr_mask, rnbitsize))
5804 rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask);
5805
5806 return build2 (wanted_code, truth_type, lhs, rhs);
5807 }
5808
5809 /* There is still another way we can do something: If both pairs of
5810 fields being compared are adjacent, we may be able to make a wider
5811 field containing them both.
5812
5813 Note that we still must mask the lhs/rhs expressions. Furthermore,
5814 the mask must be shifted to account for the shift done by
5815 make_bit_field_ref. */
5816 if ((ll_bitsize + ll_bitpos == rl_bitpos
5817 && lr_bitsize + lr_bitpos == rr_bitpos)
5818 || (ll_bitpos == rl_bitpos + rl_bitsize
5819 && lr_bitpos == rr_bitpos + rr_bitsize))
5820 {
5821 tree type;
5822
5823 lhs = make_bit_field_ref (ll_inner, lntype, ll_bitsize + rl_bitsize,
5824 MIN (ll_bitpos, rl_bitpos), ll_unsignedp);
5825 rhs = make_bit_field_ref (lr_inner, rntype, lr_bitsize + rr_bitsize,
5826 MIN (lr_bitpos, rr_bitpos), lr_unsignedp);
5827
5828 ll_mask = const_binop (RSHIFT_EXPR, ll_mask,
5829 size_int (MIN (xll_bitpos, xrl_bitpos)), 0);
5830 lr_mask = const_binop (RSHIFT_EXPR, lr_mask,
5831 size_int (MIN (xlr_bitpos, xrr_bitpos)), 0);
5832
5833 /* Convert to the smaller type before masking out unwanted bits. */
5834 type = lntype;
5835 if (lntype != rntype)
5836 {
5837 if (lnbitsize > rnbitsize)
5838 {
5839 lhs = fold_convert (rntype, lhs);
5840 ll_mask = fold_convert (rntype, ll_mask);
5841 type = rntype;
5842 }
5843 else if (lnbitsize < rnbitsize)
5844 {
5845 rhs = fold_convert (lntype, rhs);
5846 lr_mask = fold_convert (lntype, lr_mask);
5847 type = lntype;
5848 }
5849 }
5850
5851 if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize))
5852 lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask);
5853
5854 if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize))
5855 rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask);
5856
5857 return build2 (wanted_code, truth_type, lhs, rhs);
5858 }
5859
5860 return 0;
5861 }
5862
5863 /* Handle the case of comparisons with constants. If there is something in
5864 common between the masks, those bits of the constants must be the same.
5865 If not, the condition is always false. Test for this to avoid generating
5866 incorrect code below. */
5867 result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask, 0);
5868 if (! integer_zerop (result)
5869 && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const, 0),
5870 const_binop (BIT_AND_EXPR, result, r_const, 0)) != 1)
5871 {
5872 if (wanted_code == NE_EXPR)
5873 {
5874 warning (0, "%<or%> of unmatched not-equal tests is always 1");
5875 return constant_boolean_node (true, truth_type);
5876 }
5877 else
5878 {
5879 warning (0, "%<and%> of mutually exclusive equal-tests is always 0");
5880 return constant_boolean_node (false, truth_type);
5881 }
5882 }
5883
5884 /* Construct the expression we will return. First get the component
5885 reference we will make. Unless the mask is all ones the width of
5886 that field, perform the mask operation. Then compare with the
5887 merged constant. */
5888 result = make_bit_field_ref (ll_inner, lntype, lnbitsize, lnbitpos,
5889 ll_unsignedp || rl_unsignedp);
5890
5891 ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask, 0);
5892 if (! all_ones_mask_p (ll_mask, lnbitsize))
5893 result = build2 (BIT_AND_EXPR, lntype, result, ll_mask);
5894
5895 return build2 (wanted_code, truth_type, result,
5896 const_binop (BIT_IOR_EXPR, l_const, r_const, 0));
5897 }
5898 \f
5899 /* Optimize T, which is a comparison of a MIN_EXPR or MAX_EXPR with a
5900 constant. */
5901
5902 static tree
5903 optimize_minmax_comparison (enum tree_code code, tree type, tree op0, tree op1)
5904 {
5905 tree arg0 = op0;
5906 enum tree_code op_code;
5907 tree comp_const;
5908 tree minmax_const;
5909 int consts_equal, consts_lt;
5910 tree inner;
5911
5912 STRIP_SIGN_NOPS (arg0);
5913
5914 op_code = TREE_CODE (arg0);
5915 minmax_const = TREE_OPERAND (arg0, 1);
5916 comp_const = fold_convert (TREE_TYPE (arg0), op1);
5917 consts_equal = tree_int_cst_equal (minmax_const, comp_const);
5918 consts_lt = tree_int_cst_lt (minmax_const, comp_const);
5919 inner = TREE_OPERAND (arg0, 0);
5920
5921 /* If something does not permit us to optimize, return the original tree. */
5922 if ((op_code != MIN_EXPR && op_code != MAX_EXPR)
5923 || TREE_CODE (comp_const) != INTEGER_CST
5924 || TREE_OVERFLOW (comp_const)
5925 || TREE_CODE (minmax_const) != INTEGER_CST
5926 || TREE_OVERFLOW (minmax_const))
5927 return NULL_TREE;
5928
5929 /* Now handle all the various comparison codes. We only handle EQ_EXPR
5930 and GT_EXPR, doing the rest with recursive calls using logical
5931 simplifications. */
5932 switch (code)
5933 {
5934 case NE_EXPR: case LT_EXPR: case LE_EXPR:
5935 {
5936 tree tem = optimize_minmax_comparison (invert_tree_comparison (code, false),
5937 type, op0, op1);
5938 if (tem)
5939 return invert_truthvalue (tem);
5940 return NULL_TREE;
5941 }
5942
5943 case GE_EXPR:
5944 return
5945 fold_build2 (TRUTH_ORIF_EXPR, type,
5946 optimize_minmax_comparison
5947 (EQ_EXPR, type, arg0, comp_const),
5948 optimize_minmax_comparison
5949 (GT_EXPR, type, arg0, comp_const));
5950
5951 case EQ_EXPR:
5952 if (op_code == MAX_EXPR && consts_equal)
5953 /* MAX (X, 0) == 0 -> X <= 0 */
5954 return fold_build2 (LE_EXPR, type, inner, comp_const);
5955
5956 else if (op_code == MAX_EXPR && consts_lt)
5957 /* MAX (X, 0) == 5 -> X == 5 */
5958 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5959
5960 else if (op_code == MAX_EXPR)
5961 /* MAX (X, 0) == -1 -> false */
5962 return omit_one_operand (type, integer_zero_node, inner);
5963
5964 else if (consts_equal)
5965 /* MIN (X, 0) == 0 -> X >= 0 */
5966 return fold_build2 (GE_EXPR, type, inner, comp_const);
5967
5968 else if (consts_lt)
5969 /* MIN (X, 0) == 5 -> false */
5970 return omit_one_operand (type, integer_zero_node, inner);
5971
5972 else
5973 /* MIN (X, 0) == -1 -> X == -1 */
5974 return fold_build2 (EQ_EXPR, type, inner, comp_const);
5975
5976 case GT_EXPR:
5977 if (op_code == MAX_EXPR && (consts_equal || consts_lt))
5978 /* MAX (X, 0) > 0 -> X > 0
5979 MAX (X, 0) > 5 -> X > 5 */
5980 return fold_build2 (GT_EXPR, type, inner, comp_const);
5981
5982 else if (op_code == MAX_EXPR)
5983 /* MAX (X, 0) > -1 -> true */
5984 return omit_one_operand (type, integer_one_node, inner);
5985
5986 else if (op_code == MIN_EXPR && (consts_equal || consts_lt))
5987 /* MIN (X, 0) > 0 -> false
5988 MIN (X, 0) > 5 -> false */
5989 return omit_one_operand (type, integer_zero_node, inner);
5990
5991 else
5992 /* MIN (X, 0) > -1 -> X > -1 */
5993 return fold_build2 (GT_EXPR, type, inner, comp_const);
5994
5995 default:
5996 return NULL_TREE;
5997 }
5998 }
5999 \f
6000 /* T is an integer expression that is being multiplied, divided, or taken a
6001 modulus (CODE says which and what kind of divide or modulus) by a
6002 constant C. See if we can eliminate that operation by folding it with
6003 other operations already in T. WIDE_TYPE, if non-null, is a type that
6004 should be used for the computation if wider than our type.
6005
6006 For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return
6007 (X * 2) + (Y * 4). We must, however, be assured that either the original
6008 expression would not overflow or that overflow is undefined for the type
6009 in the language in question.
6010
6011 If we return a non-null expression, it is an equivalent form of the
6012 original computation, but need not be in the original type.
6013
6014 We set *STRICT_OVERFLOW_P to true if the return values depends on
6015 signed overflow being undefined. Otherwise we do not change
6016 *STRICT_OVERFLOW_P. */
6017
6018 static tree
6019 extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type,
6020 bool *strict_overflow_p)
6021 {
6022 /* To avoid exponential search depth, refuse to allow recursion past
6023 three levels. Beyond that (1) it's highly unlikely that we'll find
6024 something interesting and (2) we've probably processed it before
6025 when we built the inner expression. */
6026
6027 static int depth;
6028 tree ret;
6029
6030 if (depth > 3)
6031 return NULL;
6032
6033 depth++;
6034 ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p);
6035 depth--;
6036
6037 return ret;
6038 }
6039
6040 static tree
6041 extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type,
6042 bool *strict_overflow_p)
6043 {
6044 tree type = TREE_TYPE (t);
6045 enum tree_code tcode = TREE_CODE (t);
6046 tree ctype = (wide_type != 0 && (GET_MODE_SIZE (TYPE_MODE (wide_type))
6047 > GET_MODE_SIZE (TYPE_MODE (type)))
6048 ? wide_type : type);
6049 tree t1, t2;
6050 int same_p = tcode == code;
6051 tree op0 = NULL_TREE, op1 = NULL_TREE;
6052 bool sub_strict_overflow_p;
6053
6054 /* Don't deal with constants of zero here; they confuse the code below. */
6055 if (integer_zerop (c))
6056 return NULL_TREE;
6057
6058 if (TREE_CODE_CLASS (tcode) == tcc_unary)
6059 op0 = TREE_OPERAND (t, 0);
6060
6061 if (TREE_CODE_CLASS (tcode) == tcc_binary)
6062 op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1);
6063
6064 /* Note that we need not handle conditional operations here since fold
6065 already handles those cases. So just do arithmetic here. */
6066 switch (tcode)
6067 {
6068 case INTEGER_CST:
6069 /* For a constant, we can always simplify if we are a multiply
6070 or (for divide and modulus) if it is a multiple of our constant. */
6071 if (code == MULT_EXPR
6072 || integer_zerop (const_binop (TRUNC_MOD_EXPR, t, c, 0)))
6073 return const_binop (code, fold_convert (ctype, t),
6074 fold_convert (ctype, c), 0);
6075 break;
6076
6077 CASE_CONVERT: case NON_LVALUE_EXPR:
6078 /* If op0 is an expression ... */
6079 if ((COMPARISON_CLASS_P (op0)
6080 || UNARY_CLASS_P (op0)
6081 || BINARY_CLASS_P (op0)
6082 || VL_EXP_CLASS_P (op0)
6083 || EXPRESSION_CLASS_P (op0))
6084 /* ... and has wrapping overflow, and its type is smaller
6085 than ctype, then we cannot pass through as widening. */
6086 && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0))
6087 && ! (TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE
6088 && TYPE_IS_SIZETYPE (TREE_TYPE (op0)))
6089 && (TYPE_PRECISION (ctype)
6090 > TYPE_PRECISION (TREE_TYPE (op0))))
6091 /* ... or this is a truncation (t is narrower than op0),
6092 then we cannot pass through this narrowing. */
6093 || (TYPE_PRECISION (type)
6094 < TYPE_PRECISION (TREE_TYPE (op0)))
6095 /* ... or signedness changes for division or modulus,
6096 then we cannot pass through this conversion. */
6097 || (code != MULT_EXPR
6098 && (TYPE_UNSIGNED (ctype)
6099 != TYPE_UNSIGNED (TREE_TYPE (op0))))
6100 /* ... or has undefined overflow while the converted to
6101 type has not, we cannot do the operation in the inner type
6102 as that would introduce undefined overflow. */
6103 || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))
6104 && !TYPE_OVERFLOW_UNDEFINED (type))))
6105 break;
6106
6107 /* Pass the constant down and see if we can make a simplification. If
6108 we can, replace this expression with the inner simplification for
6109 possible later conversion to our or some other type. */
6110 if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0
6111 && TREE_CODE (t2) == INTEGER_CST
6112 && !TREE_OVERFLOW (t2)
6113 && (0 != (t1 = extract_muldiv (op0, t2, code,
6114 code == MULT_EXPR
6115 ? ctype : NULL_TREE,
6116 strict_overflow_p))))
6117 return t1;
6118 break;
6119
6120 case ABS_EXPR:
6121 /* If widening the type changes it from signed to unsigned, then we
6122 must avoid building ABS_EXPR itself as unsigned. */
6123 if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type))
6124 {
6125 tree cstype = (*signed_type_for) (ctype);
6126 if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p))
6127 != 0)
6128 {
6129 t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1));
6130 return fold_convert (ctype, t1);
6131 }
6132 break;
6133 }
6134 /* If the constant is negative, we cannot simplify this. */
6135 if (tree_int_cst_sgn (c) == -1)
6136 break;
6137 /* FALLTHROUGH */
6138 case NEGATE_EXPR:
6139 if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p))
6140 != 0)
6141 return fold_build1 (tcode, ctype, fold_convert (ctype, t1));
6142 break;
6143
6144 case MIN_EXPR: case MAX_EXPR:
6145 /* If widening the type changes the signedness, then we can't perform
6146 this optimization as that changes the result. */
6147 if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type))
6148 break;
6149
6150 /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */
6151 sub_strict_overflow_p = false;
6152 if ((t1 = extract_muldiv (op0, c, code, wide_type,
6153 &sub_strict_overflow_p)) != 0
6154 && (t2 = extract_muldiv (op1, c, code, wide_type,
6155 &sub_strict_overflow_p)) != 0)
6156 {
6157 if (tree_int_cst_sgn (c) < 0)
6158 tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR);
6159 if (sub_strict_overflow_p)
6160 *strict_overflow_p = true;
6161 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6162 fold_convert (ctype, t2));
6163 }
6164 break;
6165
6166 case LSHIFT_EXPR: case RSHIFT_EXPR:
6167 /* If the second operand is constant, this is a multiplication
6168 or floor division, by a power of two, so we can treat it that
6169 way unless the multiplier or divisor overflows. Signed
6170 left-shift overflow is implementation-defined rather than
6171 undefined in C90, so do not convert signed left shift into
6172 multiplication. */
6173 if (TREE_CODE (op1) == INTEGER_CST
6174 && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0)))
6175 /* const_binop may not detect overflow correctly,
6176 so check for it explicitly here. */
6177 && TYPE_PRECISION (TREE_TYPE (size_one_node)) > TREE_INT_CST_LOW (op1)
6178 && TREE_INT_CST_HIGH (op1) == 0
6179 && 0 != (t1 = fold_convert (ctype,
6180 const_binop (LSHIFT_EXPR,
6181 size_one_node,
6182 op1, 0)))
6183 && !TREE_OVERFLOW (t1))
6184 return extract_muldiv (build2 (tcode == LSHIFT_EXPR
6185 ? MULT_EXPR : FLOOR_DIV_EXPR,
6186 ctype, fold_convert (ctype, op0), t1),
6187 c, code, wide_type, strict_overflow_p);
6188 break;
6189
6190 case PLUS_EXPR: case MINUS_EXPR:
6191 /* See if we can eliminate the operation on both sides. If we can, we
6192 can return a new PLUS or MINUS. If we can't, the only remaining
6193 cases where we can do anything are if the second operand is a
6194 constant. */
6195 sub_strict_overflow_p = false;
6196 t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p);
6197 t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p);
6198 if (t1 != 0 && t2 != 0
6199 && (code == MULT_EXPR
6200 /* If not multiplication, we can only do this if both operands
6201 are divisible by c. */
6202 || (multiple_of_p (ctype, op0, c)
6203 && multiple_of_p (ctype, op1, c))))
6204 {
6205 if (sub_strict_overflow_p)
6206 *strict_overflow_p = true;
6207 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6208 fold_convert (ctype, t2));
6209 }
6210
6211 /* If this was a subtraction, negate OP1 and set it to be an addition.
6212 This simplifies the logic below. */
6213 if (tcode == MINUS_EXPR)
6214 tcode = PLUS_EXPR, op1 = negate_expr (op1);
6215
6216 if (TREE_CODE (op1) != INTEGER_CST)
6217 break;
6218
6219 /* If either OP1 or C are negative, this optimization is not safe for
6220 some of the division and remainder types while for others we need
6221 to change the code. */
6222 if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0)
6223 {
6224 if (code == CEIL_DIV_EXPR)
6225 code = FLOOR_DIV_EXPR;
6226 else if (code == FLOOR_DIV_EXPR)
6227 code = CEIL_DIV_EXPR;
6228 else if (code != MULT_EXPR
6229 && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR)
6230 break;
6231 }
6232
6233 /* If it's a multiply or a division/modulus operation of a multiple
6234 of our constant, do the operation and verify it doesn't overflow. */
6235 if (code == MULT_EXPR
6236 || integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6237 {
6238 op1 = const_binop (code, fold_convert (ctype, op1),
6239 fold_convert (ctype, c), 0);
6240 /* We allow the constant to overflow with wrapping semantics. */
6241 if (op1 == 0
6242 || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype)))
6243 break;
6244 }
6245 else
6246 break;
6247
6248 /* If we have an unsigned type is not a sizetype, we cannot widen
6249 the operation since it will change the result if the original
6250 computation overflowed. */
6251 if (TYPE_UNSIGNED (ctype)
6252 && ! (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype))
6253 && ctype != type)
6254 break;
6255
6256 /* If we were able to eliminate our operation from the first side,
6257 apply our operation to the second side and reform the PLUS. */
6258 if (t1 != 0 && (TREE_CODE (t1) != code || code == MULT_EXPR))
6259 return fold_build2 (tcode, ctype, fold_convert (ctype, t1), op1);
6260
6261 /* The last case is if we are a multiply. In that case, we can
6262 apply the distributive law to commute the multiply and addition
6263 if the multiplication of the constants doesn't overflow. */
6264 if (code == MULT_EXPR)
6265 return fold_build2 (tcode, ctype,
6266 fold_build2 (code, ctype,
6267 fold_convert (ctype, op0),
6268 fold_convert (ctype, c)),
6269 op1);
6270
6271 break;
6272
6273 case MULT_EXPR:
6274 /* We have a special case here if we are doing something like
6275 (C * 8) % 4 since we know that's zero. */
6276 if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR
6277 || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR)
6278 /* If the multiplication can overflow we cannot optimize this.
6279 ??? Until we can properly mark individual operations as
6280 not overflowing we need to treat sizetype special here as
6281 stor-layout relies on this opimization to make
6282 DECL_FIELD_BIT_OFFSET always a constant. */
6283 && (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t))
6284 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6285 && TYPE_IS_SIZETYPE (TREE_TYPE (t))))
6286 && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST
6287 && integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6288 {
6289 *strict_overflow_p = true;
6290 return omit_one_operand (type, integer_zero_node, op0);
6291 }
6292
6293 /* ... fall through ... */
6294
6295 case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR:
6296 case ROUND_DIV_EXPR: case EXACT_DIV_EXPR:
6297 /* If we can extract our operation from the LHS, do so and return a
6298 new operation. Likewise for the RHS from a MULT_EXPR. Otherwise,
6299 do something only if the second operand is a constant. */
6300 if (same_p
6301 && (t1 = extract_muldiv (op0, c, code, wide_type,
6302 strict_overflow_p)) != 0)
6303 return fold_build2 (tcode, ctype, fold_convert (ctype, t1),
6304 fold_convert (ctype, op1));
6305 else if (tcode == MULT_EXPR && code == MULT_EXPR
6306 && (t1 = extract_muldiv (op1, c, code, wide_type,
6307 strict_overflow_p)) != 0)
6308 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6309 fold_convert (ctype, t1));
6310 else if (TREE_CODE (op1) != INTEGER_CST)
6311 return 0;
6312
6313 /* If these are the same operation types, we can associate them
6314 assuming no overflow. */
6315 if (tcode == code
6316 && 0 != (t1 = int_const_binop (MULT_EXPR, fold_convert (ctype, op1),
6317 fold_convert (ctype, c), 1))
6318 && 0 != (t1 = force_fit_type_double (ctype, TREE_INT_CST_LOW (t1),
6319 TREE_INT_CST_HIGH (t1),
6320 (TYPE_UNSIGNED (ctype)
6321 && tcode != MULT_EXPR) ? -1 : 1,
6322 TREE_OVERFLOW (t1)))
6323 && !TREE_OVERFLOW (t1))
6324 return fold_build2 (tcode, ctype, fold_convert (ctype, op0), t1);
6325
6326 /* If these operations "cancel" each other, we have the main
6327 optimizations of this pass, which occur when either constant is a
6328 multiple of the other, in which case we replace this with either an
6329 operation or CODE or TCODE.
6330
6331 If we have an unsigned type that is not a sizetype, we cannot do
6332 this since it will change the result if the original computation
6333 overflowed. */
6334 if ((TYPE_OVERFLOW_UNDEFINED (ctype)
6335 || (TREE_CODE (ctype) == INTEGER_TYPE && TYPE_IS_SIZETYPE (ctype)))
6336 && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR)
6337 || (tcode == MULT_EXPR
6338 && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR
6339 && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR
6340 && code != MULT_EXPR)))
6341 {
6342 if (integer_zerop (const_binop (TRUNC_MOD_EXPR, op1, c, 0)))
6343 {
6344 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6345 *strict_overflow_p = true;
6346 return fold_build2 (tcode, ctype, fold_convert (ctype, op0),
6347 fold_convert (ctype,
6348 const_binop (TRUNC_DIV_EXPR,
6349 op1, c, 0)));
6350 }
6351 else if (integer_zerop (const_binop (TRUNC_MOD_EXPR, c, op1, 0)))
6352 {
6353 if (TYPE_OVERFLOW_UNDEFINED (ctype))
6354 *strict_overflow_p = true;
6355 return fold_build2 (code, ctype, fold_convert (ctype, op0),
6356 fold_convert (ctype,
6357 const_binop (TRUNC_DIV_EXPR,
6358 c, op1, 0)));
6359 }
6360 }
6361 break;
6362
6363 default:
6364 break;
6365 }
6366
6367 return 0;
6368 }
6369 \f
6370 /* Return a node which has the indicated constant VALUE (either 0 or
6371 1), and is of the indicated TYPE. */
6372
6373 tree
6374 constant_boolean_node (int value, tree type)
6375 {
6376 if (type == integer_type_node)
6377 return value ? integer_one_node : integer_zero_node;
6378 else if (type == boolean_type_node)
6379 return value ? boolean_true_node : boolean_false_node;
6380 else
6381 return build_int_cst (type, value);
6382 }
6383
6384
6385 /* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'.
6386 Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here
6387 CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)'
6388 expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the
6389 COND is the first argument to CODE; otherwise (as in the example
6390 given here), it is the second argument. TYPE is the type of the
6391 original expression. Return NULL_TREE if no simplification is
6392 possible. */
6393
6394 static tree
6395 fold_binary_op_with_conditional_arg (enum tree_code code,
6396 tree type, tree op0, tree op1,
6397 tree cond, tree arg, int cond_first_p)
6398 {
6399 tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1);
6400 tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0);
6401 tree test, true_value, false_value;
6402 tree lhs = NULL_TREE;
6403 tree rhs = NULL_TREE;
6404
6405 /* This transformation is only worthwhile if we don't have to wrap
6406 arg in a SAVE_EXPR, and the operation can be simplified on at least
6407 one of the branches once its pushed inside the COND_EXPR. */
6408 if (!TREE_CONSTANT (arg))
6409 return NULL_TREE;
6410
6411 if (TREE_CODE (cond) == COND_EXPR)
6412 {
6413 test = TREE_OPERAND (cond, 0);
6414 true_value = TREE_OPERAND (cond, 1);
6415 false_value = TREE_OPERAND (cond, 2);
6416 /* If this operand throws an expression, then it does not make
6417 sense to try to perform a logical or arithmetic operation
6418 involving it. */
6419 if (VOID_TYPE_P (TREE_TYPE (true_value)))
6420 lhs = true_value;
6421 if (VOID_TYPE_P (TREE_TYPE (false_value)))
6422 rhs = false_value;
6423 }
6424 else
6425 {
6426 tree testtype = TREE_TYPE (cond);
6427 test = cond;
6428 true_value = constant_boolean_node (true, testtype);
6429 false_value = constant_boolean_node (false, testtype);
6430 }
6431
6432 arg = fold_convert (arg_type, arg);
6433 if (lhs == 0)
6434 {
6435 true_value = fold_convert (cond_type, true_value);
6436 if (cond_first_p)
6437 lhs = fold_build2 (code, type, true_value, arg);
6438 else
6439 lhs = fold_build2 (code, type, arg, true_value);
6440 }
6441 if (rhs == 0)
6442 {
6443 false_value = fold_convert (cond_type, false_value);
6444 if (cond_first_p)
6445 rhs = fold_build2 (code, type, false_value, arg);
6446 else
6447 rhs = fold_build2 (code, type, arg, false_value);
6448 }
6449
6450 test = fold_build3 (COND_EXPR, type, test, lhs, rhs);
6451 return fold_convert (type, test);
6452 }
6453
6454 \f
6455 /* Subroutine of fold() that checks for the addition of +/- 0.0.
6456
6457 If !NEGATE, return true if ADDEND is +/-0.0 and, for all X of type
6458 TYPE, X + ADDEND is the same as X. If NEGATE, return true if X -
6459 ADDEND is the same as X.
6460
6461 X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero
6462 and finite. The problematic cases are when X is zero, and its mode
6463 has signed zeros. In the case of rounding towards -infinity,
6464 X - 0 is not the same as X because 0 - 0 is -0. In other rounding
6465 modes, X + 0 is not the same as X because -0 + 0 is 0. */
6466
6467 bool
6468 fold_real_zero_addition_p (const_tree type, const_tree addend, int negate)
6469 {
6470 if (!real_zerop (addend))
6471 return false;
6472
6473 /* Don't allow the fold with -fsignaling-nans. */
6474 if (HONOR_SNANS (TYPE_MODE (type)))
6475 return false;
6476
6477 /* Allow the fold if zeros aren't signed, or their sign isn't important. */
6478 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
6479 return true;
6480
6481 /* Treat x + -0 as x - 0 and x - -0 as x + 0. */
6482 if (TREE_CODE (addend) == REAL_CST
6483 && REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (addend)))
6484 negate = !negate;
6485
6486 /* The mode has signed zeros, and we have to honor their sign.
6487 In this situation, there is only one case we can return true for.
6488 X - 0 is the same as X unless rounding towards -infinity is
6489 supported. */
6490 return negate && !HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (type));
6491 }
6492
6493 /* Subroutine of fold() that checks comparisons of built-in math
6494 functions against real constants.
6495
6496 FCODE is the DECL_FUNCTION_CODE of the built-in, CODE is the comparison
6497 operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, GE_EXPR or LE_EXPR. TYPE
6498 is the type of the result and ARG0 and ARG1 are the operands of the
6499 comparison. ARG1 must be a TREE_REAL_CST.
6500
6501 The function returns the constant folded tree if a simplification
6502 can be made, and NULL_TREE otherwise. */
6503
6504 static tree
6505 fold_mathfn_compare (enum built_in_function fcode, enum tree_code code,
6506 tree type, tree arg0, tree arg1)
6507 {
6508 REAL_VALUE_TYPE c;
6509
6510 if (BUILTIN_SQRT_P (fcode))
6511 {
6512 tree arg = CALL_EXPR_ARG (arg0, 0);
6513 enum machine_mode mode = TYPE_MODE (TREE_TYPE (arg0));
6514
6515 c = TREE_REAL_CST (arg1);
6516 if (REAL_VALUE_NEGATIVE (c))
6517 {
6518 /* sqrt(x) < y is always false, if y is negative. */
6519 if (code == EQ_EXPR || code == LT_EXPR || code == LE_EXPR)
6520 return omit_one_operand (type, integer_zero_node, arg);
6521
6522 /* sqrt(x) > y is always true, if y is negative and we
6523 don't care about NaNs, i.e. negative values of x. */
6524 if (code == NE_EXPR || !HONOR_NANS (mode))
6525 return omit_one_operand (type, integer_one_node, arg);
6526
6527 /* sqrt(x) > y is the same as x >= 0, if y is negative. */
6528 return fold_build2 (GE_EXPR, type, arg,
6529 build_real (TREE_TYPE (arg), dconst0));
6530 }
6531 else if (code == GT_EXPR || code == GE_EXPR)
6532 {
6533 REAL_VALUE_TYPE c2;
6534
6535 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6536 real_convert (&c2, mode, &c2);
6537
6538 if (REAL_VALUE_ISINF (c2))
6539 {
6540 /* sqrt(x) > y is x == +Inf, when y is very large. */
6541 if (HONOR_INFINITIES (mode))
6542 return fold_build2 (EQ_EXPR, type, arg,
6543 build_real (TREE_TYPE (arg), c2));
6544
6545 /* sqrt(x) > y is always false, when y is very large
6546 and we don't care about infinities. */
6547 return omit_one_operand (type, integer_zero_node, arg);
6548 }
6549
6550 /* sqrt(x) > c is the same as x > c*c. */
6551 return fold_build2 (code, type, arg,
6552 build_real (TREE_TYPE (arg), c2));
6553 }
6554 else if (code == LT_EXPR || code == LE_EXPR)
6555 {
6556 REAL_VALUE_TYPE c2;
6557
6558 REAL_ARITHMETIC (c2, MULT_EXPR, c, c);
6559 real_convert (&c2, mode, &c2);
6560
6561 if (REAL_VALUE_ISINF (c2))
6562 {
6563 /* sqrt(x) < y is always true, when y is a very large
6564 value and we don't care about NaNs or Infinities. */
6565 if (! HONOR_NANS (mode) && ! HONOR_INFINITIES (mode))
6566 return omit_one_operand (type, integer_one_node, arg);
6567
6568 /* sqrt(x) < y is x != +Inf when y is very large and we
6569 don't care about NaNs. */
6570 if (! HONOR_NANS (mode))
6571 return fold_build2 (NE_EXPR, type, arg,
6572 build_real (TREE_TYPE (arg), c2));
6573
6574 /* sqrt(x) < y is x >= 0 when y is very large and we
6575 don't care about Infinities. */
6576 if (! HONOR_INFINITIES (mode))
6577 return fold_build2 (GE_EXPR, type, arg,
6578 build_real (TREE_TYPE (arg), dconst0));
6579
6580 /* sqrt(x) < y is x >= 0 && x != +Inf, when y is large. */
6581 if (lang_hooks.decls.global_bindings_p () != 0
6582 || CONTAINS_PLACEHOLDER_P (arg))
6583 return NULL_TREE;
6584
6585 arg = save_expr (arg);
6586 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6587 fold_build2 (GE_EXPR, type, arg,
6588 build_real (TREE_TYPE (arg),
6589 dconst0)),
6590 fold_build2 (NE_EXPR, type, arg,
6591 build_real (TREE_TYPE (arg),
6592 c2)));
6593 }
6594
6595 /* sqrt(x) < c is the same as x < c*c, if we ignore NaNs. */
6596 if (! HONOR_NANS (mode))
6597 return fold_build2 (code, type, arg,
6598 build_real (TREE_TYPE (arg), c2));
6599
6600 /* sqrt(x) < c is the same as x >= 0 && x < c*c. */
6601 if (lang_hooks.decls.global_bindings_p () == 0
6602 && ! CONTAINS_PLACEHOLDER_P (arg))
6603 {
6604 arg = save_expr (arg);
6605 return fold_build2 (TRUTH_ANDIF_EXPR, type,
6606 fold_build2 (GE_EXPR, type, arg,
6607 build_real (TREE_TYPE (arg),
6608 dconst0)),
6609 fold_build2 (code, type, arg,
6610 build_real (TREE_TYPE (arg),
6611 c2)));
6612 }
6613 }
6614 }
6615
6616 return NULL_TREE;
6617 }
6618
6619 /* Subroutine of fold() that optimizes comparisons against Infinities,
6620 either +Inf or -Inf.
6621
6622 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6623 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6624 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6625
6626 The function returns the constant folded tree if a simplification
6627 can be made, and NULL_TREE otherwise. */
6628
6629 static tree
6630 fold_inf_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6631 {
6632 enum machine_mode mode;
6633 REAL_VALUE_TYPE max;
6634 tree temp;
6635 bool neg;
6636
6637 mode = TYPE_MODE (TREE_TYPE (arg0));
6638
6639 /* For negative infinity swap the sense of the comparison. */
6640 neg = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1));
6641 if (neg)
6642 code = swap_tree_comparison (code);
6643
6644 switch (code)
6645 {
6646 case GT_EXPR:
6647 /* x > +Inf is always false, if with ignore sNANs. */
6648 if (HONOR_SNANS (mode))
6649 return NULL_TREE;
6650 return omit_one_operand (type, integer_zero_node, arg0);
6651
6652 case LE_EXPR:
6653 /* x <= +Inf is always true, if we don't case about NaNs. */
6654 if (! HONOR_NANS (mode))
6655 return omit_one_operand (type, integer_one_node, arg0);
6656
6657 /* x <= +Inf is the same as x == x, i.e. isfinite(x). */
6658 if (lang_hooks.decls.global_bindings_p () == 0
6659 && ! CONTAINS_PLACEHOLDER_P (arg0))
6660 {
6661 arg0 = save_expr (arg0);
6662 return fold_build2 (EQ_EXPR, type, arg0, arg0);
6663 }
6664 break;
6665
6666 case EQ_EXPR:
6667 case GE_EXPR:
6668 /* x == +Inf and x >= +Inf are always equal to x > DBL_MAX. */
6669 real_maxval (&max, neg, mode);
6670 return fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6671 arg0, build_real (TREE_TYPE (arg0), max));
6672
6673 case LT_EXPR:
6674 /* x < +Inf is always equal to x <= DBL_MAX. */
6675 real_maxval (&max, neg, mode);
6676 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6677 arg0, build_real (TREE_TYPE (arg0), max));
6678
6679 case NE_EXPR:
6680 /* x != +Inf is always equal to !(x > DBL_MAX). */
6681 real_maxval (&max, neg, mode);
6682 if (! HONOR_NANS (mode))
6683 return fold_build2 (neg ? GE_EXPR : LE_EXPR, type,
6684 arg0, build_real (TREE_TYPE (arg0), max));
6685
6686 temp = fold_build2 (neg ? LT_EXPR : GT_EXPR, type,
6687 arg0, build_real (TREE_TYPE (arg0), max));
6688 return fold_build1 (TRUTH_NOT_EXPR, type, temp);
6689
6690 default:
6691 break;
6692 }
6693
6694 return NULL_TREE;
6695 }
6696
6697 /* Subroutine of fold() that optimizes comparisons of a division by
6698 a nonzero integer constant against an integer constant, i.e.
6699 X/C1 op C2.
6700
6701 CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR,
6702 GE_EXPR or LE_EXPR. TYPE is the type of the result and ARG0 and ARG1
6703 are the operands of the comparison. ARG1 must be a TREE_REAL_CST.
6704
6705 The function returns the constant folded tree if a simplification
6706 can be made, and NULL_TREE otherwise. */
6707
6708 static tree
6709 fold_div_compare (enum tree_code code, tree type, tree arg0, tree arg1)
6710 {
6711 tree prod, tmp, hi, lo;
6712 tree arg00 = TREE_OPERAND (arg0, 0);
6713 tree arg01 = TREE_OPERAND (arg0, 1);
6714 unsigned HOST_WIDE_INT lpart;
6715 HOST_WIDE_INT hpart;
6716 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (arg0));
6717 bool neg_overflow;
6718 int overflow;
6719
6720 /* We have to do this the hard way to detect unsigned overflow.
6721 prod = int_const_binop (MULT_EXPR, arg01, arg1, 0); */
6722 overflow = mul_double_with_sign (TREE_INT_CST_LOW (arg01),
6723 TREE_INT_CST_HIGH (arg01),
6724 TREE_INT_CST_LOW (arg1),
6725 TREE_INT_CST_HIGH (arg1),
6726 &lpart, &hpart, unsigned_p);
6727 prod = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6728 -1, overflow);
6729 neg_overflow = false;
6730
6731 if (unsigned_p)
6732 {
6733 tmp = int_const_binop (MINUS_EXPR, arg01,
6734 build_int_cst (TREE_TYPE (arg01), 1), 0);
6735 lo = prod;
6736
6737 /* Likewise hi = int_const_binop (PLUS_EXPR, prod, tmp, 0). */
6738 overflow = add_double_with_sign (TREE_INT_CST_LOW (prod),
6739 TREE_INT_CST_HIGH (prod),
6740 TREE_INT_CST_LOW (tmp),
6741 TREE_INT_CST_HIGH (tmp),
6742 &lpart, &hpart, unsigned_p);
6743 hi = force_fit_type_double (TREE_TYPE (arg00), lpart, hpart,
6744 -1, overflow | TREE_OVERFLOW (prod));
6745 }
6746 else if (tree_int_cst_sgn (arg01) >= 0)
6747 {
6748 tmp = int_const_binop (MINUS_EXPR, arg01,
6749 build_int_cst (TREE_TYPE (arg01), 1), 0);
6750 switch (tree_int_cst_sgn (arg1))
6751 {
6752 case -1:
6753 neg_overflow = true;
6754 lo = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6755 hi = prod;
6756 break;
6757
6758 case 0:
6759 lo = fold_negate_const (tmp, TREE_TYPE (arg0));
6760 hi = tmp;
6761 break;
6762
6763 case 1:
6764 hi = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6765 lo = prod;
6766 break;
6767
6768 default:
6769 gcc_unreachable ();
6770 }
6771 }
6772 else
6773 {
6774 /* A negative divisor reverses the relational operators. */
6775 code = swap_tree_comparison (code);
6776
6777 tmp = int_const_binop (PLUS_EXPR, arg01,
6778 build_int_cst (TREE_TYPE (arg01), 1), 0);
6779 switch (tree_int_cst_sgn (arg1))
6780 {
6781 case -1:
6782 hi = int_const_binop (MINUS_EXPR, prod, tmp, 0);
6783 lo = prod;
6784 break;
6785
6786 case 0:
6787 hi = fold_negate_const (tmp, TREE_TYPE (arg0));
6788 lo = tmp;
6789 break;
6790
6791 case 1:
6792 neg_overflow = true;
6793 lo = int_const_binop (PLUS_EXPR, prod, tmp, 0);
6794 hi = prod;
6795 break;
6796
6797 default:
6798 gcc_unreachable ();
6799 }
6800 }
6801
6802 switch (code)
6803 {
6804 case EQ_EXPR:
6805 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6806 return omit_one_operand (type, integer_zero_node, arg00);
6807 if (TREE_OVERFLOW (hi))
6808 return fold_build2 (GE_EXPR, type, arg00, lo);
6809 if (TREE_OVERFLOW (lo))
6810 return fold_build2 (LE_EXPR, type, arg00, hi);
6811 return build_range_check (type, arg00, 1, lo, hi);
6812
6813 case NE_EXPR:
6814 if (TREE_OVERFLOW (lo) && TREE_OVERFLOW (hi))
6815 return omit_one_operand (type, integer_one_node, arg00);
6816 if (TREE_OVERFLOW (hi))
6817 return fold_build2 (LT_EXPR, type, arg00, lo);
6818 if (TREE_OVERFLOW (lo))
6819 return fold_build2 (GT_EXPR, type, arg00, hi);
6820 return build_range_check (type, arg00, 0, lo, hi);
6821
6822 case LT_EXPR:
6823 if (TREE_OVERFLOW (lo))
6824 {
6825 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6826 return omit_one_operand (type, tmp, arg00);
6827 }
6828 return fold_build2 (LT_EXPR, type, arg00, lo);
6829
6830 case LE_EXPR:
6831 if (TREE_OVERFLOW (hi))
6832 {
6833 tmp = neg_overflow ? integer_zero_node : integer_one_node;
6834 return omit_one_operand (type, tmp, arg00);
6835 }
6836 return fold_build2 (LE_EXPR, type, arg00, hi);
6837
6838 case GT_EXPR:
6839 if (TREE_OVERFLOW (hi))
6840 {
6841 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6842 return omit_one_operand (type, tmp, arg00);
6843 }
6844 return fold_build2 (GT_EXPR, type, arg00, hi);
6845
6846 case GE_EXPR:
6847 if (TREE_OVERFLOW (lo))
6848 {
6849 tmp = neg_overflow ? integer_one_node : integer_zero_node;
6850 return omit_one_operand (type, tmp, arg00);
6851 }
6852 return fold_build2 (GE_EXPR, type, arg00, lo);
6853
6854 default:
6855 break;
6856 }
6857
6858 return NULL_TREE;
6859 }
6860
6861
6862 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6863 equality/inequality test, then return a simplified form of the test
6864 using a sign testing. Otherwise return NULL. TYPE is the desired
6865 result type. */
6866
6867 static tree
6868 fold_single_bit_test_into_sign_test (enum tree_code code, tree arg0, tree arg1,
6869 tree result_type)
6870 {
6871 /* If this is testing a single bit, we can optimize the test. */
6872 if ((code == NE_EXPR || code == EQ_EXPR)
6873 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6874 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6875 {
6876 /* If we have (A & C) != 0 where C is the sign bit of A, convert
6877 this into A < 0. Similarly for (A & C) == 0 into A >= 0. */
6878 tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
6879
6880 if (arg00 != NULL_TREE
6881 /* This is only a win if casting to a signed type is cheap,
6882 i.e. when arg00's type is not a partial mode. */
6883 && TYPE_PRECISION (TREE_TYPE (arg00))
6884 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg00))))
6885 {
6886 tree stype = signed_type_for (TREE_TYPE (arg00));
6887 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
6888 result_type, fold_convert (stype, arg00),
6889 build_int_cst (stype, 0));
6890 }
6891 }
6892
6893 return NULL_TREE;
6894 }
6895
6896 /* If CODE with arguments ARG0 and ARG1 represents a single bit
6897 equality/inequality test, then return a simplified form of
6898 the test using shifts and logical operations. Otherwise return
6899 NULL. TYPE is the desired result type. */
6900
6901 tree
6902 fold_single_bit_test (enum tree_code code, tree arg0, tree arg1,
6903 tree result_type)
6904 {
6905 /* If this is testing a single bit, we can optimize the test. */
6906 if ((code == NE_EXPR || code == EQ_EXPR)
6907 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
6908 && integer_pow2p (TREE_OPERAND (arg0, 1)))
6909 {
6910 tree inner = TREE_OPERAND (arg0, 0);
6911 tree type = TREE_TYPE (arg0);
6912 int bitnum = tree_log2 (TREE_OPERAND (arg0, 1));
6913 enum machine_mode operand_mode = TYPE_MODE (type);
6914 int ops_unsigned;
6915 tree signed_type, unsigned_type, intermediate_type;
6916 tree tem, one;
6917
6918 /* First, see if we can fold the single bit test into a sign-bit
6919 test. */
6920 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1,
6921 result_type);
6922 if (tem)
6923 return tem;
6924
6925 /* Otherwise we have (A & C) != 0 where C is a single bit,
6926 convert that into ((A >> C2) & 1). Where C2 = log2(C).
6927 Similarly for (A & C) == 0. */
6928
6929 /* If INNER is a right shift of a constant and it plus BITNUM does
6930 not overflow, adjust BITNUM and INNER. */
6931 if (TREE_CODE (inner) == RSHIFT_EXPR
6932 && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST
6933 && TREE_INT_CST_HIGH (TREE_OPERAND (inner, 1)) == 0
6934 && bitnum < TYPE_PRECISION (type)
6935 && 0 > compare_tree_int (TREE_OPERAND (inner, 1),
6936 bitnum - TYPE_PRECISION (type)))
6937 {
6938 bitnum += TREE_INT_CST_LOW (TREE_OPERAND (inner, 1));
6939 inner = TREE_OPERAND (inner, 0);
6940 }
6941
6942 /* If we are going to be able to omit the AND below, we must do our
6943 operations as unsigned. If we must use the AND, we have a choice.
6944 Normally unsigned is faster, but for some machines signed is. */
6945 #ifdef LOAD_EXTEND_OP
6946 ops_unsigned = (LOAD_EXTEND_OP (operand_mode) == SIGN_EXTEND
6947 && !flag_syntax_only) ? 0 : 1;
6948 #else
6949 ops_unsigned = 1;
6950 #endif
6951
6952 signed_type = lang_hooks.types.type_for_mode (operand_mode, 0);
6953 unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1);
6954 intermediate_type = ops_unsigned ? unsigned_type : signed_type;
6955 inner = fold_convert (intermediate_type, inner);
6956
6957 if (bitnum != 0)
6958 inner = build2 (RSHIFT_EXPR, intermediate_type,
6959 inner, size_int (bitnum));
6960
6961 one = build_int_cst (intermediate_type, 1);
6962
6963 if (code == EQ_EXPR)
6964 inner = fold_build2 (BIT_XOR_EXPR, intermediate_type, inner, one);
6965
6966 /* Put the AND last so it can combine with more things. */
6967 inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one);
6968
6969 /* Make sure to return the proper type. */
6970 inner = fold_convert (result_type, inner);
6971
6972 return inner;
6973 }
6974 return NULL_TREE;
6975 }
6976
6977 /* Check whether we are allowed to reorder operands arg0 and arg1,
6978 such that the evaluation of arg1 occurs before arg0. */
6979
6980 static bool
6981 reorder_operands_p (const_tree arg0, const_tree arg1)
6982 {
6983 if (! flag_evaluation_order)
6984 return true;
6985 if (TREE_CONSTANT (arg0) || TREE_CONSTANT (arg1))
6986 return true;
6987 return ! TREE_SIDE_EFFECTS (arg0)
6988 && ! TREE_SIDE_EFFECTS (arg1);
6989 }
6990
6991 /* Test whether it is preferable two swap two operands, ARG0 and
6992 ARG1, for example because ARG0 is an integer constant and ARG1
6993 isn't. If REORDER is true, only recommend swapping if we can
6994 evaluate the operands in reverse order. */
6995
6996 bool
6997 tree_swap_operands_p (const_tree arg0, const_tree arg1, bool reorder)
6998 {
6999 STRIP_SIGN_NOPS (arg0);
7000 STRIP_SIGN_NOPS (arg1);
7001
7002 if (TREE_CODE (arg1) == INTEGER_CST)
7003 return 0;
7004 if (TREE_CODE (arg0) == INTEGER_CST)
7005 return 1;
7006
7007 if (TREE_CODE (arg1) == REAL_CST)
7008 return 0;
7009 if (TREE_CODE (arg0) == REAL_CST)
7010 return 1;
7011
7012 if (TREE_CODE (arg1) == FIXED_CST)
7013 return 0;
7014 if (TREE_CODE (arg0) == FIXED_CST)
7015 return 1;
7016
7017 if (TREE_CODE (arg1) == COMPLEX_CST)
7018 return 0;
7019 if (TREE_CODE (arg0) == COMPLEX_CST)
7020 return 1;
7021
7022 if (TREE_CONSTANT (arg1))
7023 return 0;
7024 if (TREE_CONSTANT (arg0))
7025 return 1;
7026
7027 if (optimize_function_for_size_p (cfun))
7028 return 0;
7029
7030 if (reorder && flag_evaluation_order
7031 && (TREE_SIDE_EFFECTS (arg0) || TREE_SIDE_EFFECTS (arg1)))
7032 return 0;
7033
7034 /* It is preferable to swap two SSA_NAME to ensure a canonical form
7035 for commutative and comparison operators. Ensuring a canonical
7036 form allows the optimizers to find additional redundancies without
7037 having to explicitly check for both orderings. */
7038 if (TREE_CODE (arg0) == SSA_NAME
7039 && TREE_CODE (arg1) == SSA_NAME
7040 && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1))
7041 return 1;
7042
7043 /* Put SSA_NAMEs last. */
7044 if (TREE_CODE (arg1) == SSA_NAME)
7045 return 0;
7046 if (TREE_CODE (arg0) == SSA_NAME)
7047 return 1;
7048
7049 /* Put variables last. */
7050 if (DECL_P (arg1))
7051 return 0;
7052 if (DECL_P (arg0))
7053 return 1;
7054
7055 return 0;
7056 }
7057
7058 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where
7059 ARG0 is extended to a wider type. */
7060
7061 static tree
7062 fold_widened_comparison (enum tree_code code, tree type, tree arg0, tree arg1)
7063 {
7064 tree arg0_unw = get_unwidened (arg0, NULL_TREE);
7065 tree arg1_unw;
7066 tree shorter_type, outer_type;
7067 tree min, max;
7068 bool above, below;
7069
7070 if (arg0_unw == arg0)
7071 return NULL_TREE;
7072 shorter_type = TREE_TYPE (arg0_unw);
7073
7074 #ifdef HAVE_canonicalize_funcptr_for_compare
7075 /* Disable this optimization if we're casting a function pointer
7076 type on targets that require function pointer canonicalization. */
7077 if (HAVE_canonicalize_funcptr_for_compare
7078 && TREE_CODE (shorter_type) == POINTER_TYPE
7079 && TREE_CODE (TREE_TYPE (shorter_type)) == FUNCTION_TYPE)
7080 return NULL_TREE;
7081 #endif
7082
7083 if (TYPE_PRECISION (TREE_TYPE (arg0)) <= TYPE_PRECISION (shorter_type))
7084 return NULL_TREE;
7085
7086 arg1_unw = get_unwidened (arg1, NULL_TREE);
7087
7088 /* If possible, express the comparison in the shorter mode. */
7089 if ((code == EQ_EXPR || code == NE_EXPR
7090 || TYPE_UNSIGNED (TREE_TYPE (arg0)) == TYPE_UNSIGNED (shorter_type))
7091 && (TREE_TYPE (arg1_unw) == shorter_type
7092 || ((TYPE_PRECISION (shorter_type)
7093 >= TYPE_PRECISION (TREE_TYPE (arg1_unw)))
7094 && (TYPE_UNSIGNED (shorter_type)
7095 == TYPE_UNSIGNED (TREE_TYPE (arg1_unw))))
7096 || (TREE_CODE (arg1_unw) == INTEGER_CST
7097 && (TREE_CODE (shorter_type) == INTEGER_TYPE
7098 || TREE_CODE (shorter_type) == BOOLEAN_TYPE)
7099 && int_fits_type_p (arg1_unw, shorter_type))))
7100 return fold_build2 (code, type, arg0_unw,
7101 fold_convert (shorter_type, arg1_unw));
7102
7103 if (TREE_CODE (arg1_unw) != INTEGER_CST
7104 || TREE_CODE (shorter_type) != INTEGER_TYPE
7105 || !int_fits_type_p (arg1_unw, shorter_type))
7106 return NULL_TREE;
7107
7108 /* If we are comparing with the integer that does not fit into the range
7109 of the shorter type, the result is known. */
7110 outer_type = TREE_TYPE (arg1_unw);
7111 min = lower_bound_in_type (outer_type, shorter_type);
7112 max = upper_bound_in_type (outer_type, shorter_type);
7113
7114 above = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7115 max, arg1_unw));
7116 below = integer_nonzerop (fold_relational_const (LT_EXPR, type,
7117 arg1_unw, min));
7118
7119 switch (code)
7120 {
7121 case EQ_EXPR:
7122 if (above || below)
7123 return omit_one_operand (type, integer_zero_node, arg0);
7124 break;
7125
7126 case NE_EXPR:
7127 if (above || below)
7128 return omit_one_operand (type, integer_one_node, arg0);
7129 break;
7130
7131 case LT_EXPR:
7132 case LE_EXPR:
7133 if (above)
7134 return omit_one_operand (type, integer_one_node, arg0);
7135 else if (below)
7136 return omit_one_operand (type, integer_zero_node, arg0);
7137
7138 case GT_EXPR:
7139 case GE_EXPR:
7140 if (above)
7141 return omit_one_operand (type, integer_zero_node, arg0);
7142 else if (below)
7143 return omit_one_operand (type, integer_one_node, arg0);
7144
7145 default:
7146 break;
7147 }
7148
7149 return NULL_TREE;
7150 }
7151
7152 /* Fold comparison ARG0 CODE ARG1 (with result in TYPE), where for
7153 ARG0 just the signedness is changed. */
7154
7155 static tree
7156 fold_sign_changed_comparison (enum tree_code code, tree type,
7157 tree arg0, tree arg1)
7158 {
7159 tree arg0_inner;
7160 tree inner_type, outer_type;
7161
7162 if (!CONVERT_EXPR_P (arg0))
7163 return NULL_TREE;
7164
7165 outer_type = TREE_TYPE (arg0);
7166 arg0_inner = TREE_OPERAND (arg0, 0);
7167 inner_type = TREE_TYPE (arg0_inner);
7168
7169 #ifdef HAVE_canonicalize_funcptr_for_compare
7170 /* Disable this optimization if we're casting a function pointer
7171 type on targets that require function pointer canonicalization. */
7172 if (HAVE_canonicalize_funcptr_for_compare
7173 && TREE_CODE (inner_type) == POINTER_TYPE
7174 && TREE_CODE (TREE_TYPE (inner_type)) == FUNCTION_TYPE)
7175 return NULL_TREE;
7176 #endif
7177
7178 if (TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
7179 return NULL_TREE;
7180
7181 /* If the conversion is from an integral subtype to its basetype
7182 leave it alone. */
7183 if (TREE_TYPE (inner_type) == outer_type)
7184 return NULL_TREE;
7185
7186 if (TREE_CODE (arg1) != INTEGER_CST
7187 && !(CONVERT_EXPR_P (arg1)
7188 && TREE_TYPE (TREE_OPERAND (arg1, 0)) == inner_type))
7189 return NULL_TREE;
7190
7191 if ((TYPE_UNSIGNED (inner_type) != TYPE_UNSIGNED (outer_type)
7192 || POINTER_TYPE_P (inner_type) != POINTER_TYPE_P (outer_type))
7193 && code != NE_EXPR
7194 && code != EQ_EXPR)
7195 return NULL_TREE;
7196
7197 if (TREE_CODE (arg1) == INTEGER_CST)
7198 arg1 = force_fit_type_double (inner_type, TREE_INT_CST_LOW (arg1),
7199 TREE_INT_CST_HIGH (arg1), 0,
7200 TREE_OVERFLOW (arg1));
7201 else
7202 arg1 = fold_convert (inner_type, arg1);
7203
7204 return fold_build2 (code, type, arg0_inner, arg1);
7205 }
7206
7207 /* Tries to replace &a[idx] p+ s * delta with &a[idx + delta], if s is
7208 step of the array. Reconstructs s and delta in the case of s * delta
7209 being an integer constant (and thus already folded).
7210 ADDR is the address. MULT is the multiplicative expression.
7211 If the function succeeds, the new address expression is returned. Otherwise
7212 NULL_TREE is returned. */
7213
7214 static tree
7215 try_move_mult_to_index (tree addr, tree op1)
7216 {
7217 tree s, delta, step;
7218 tree ref = TREE_OPERAND (addr, 0), pref;
7219 tree ret, pos;
7220 tree itype;
7221 bool mdim = false;
7222
7223 /* Strip the nops that might be added when converting op1 to sizetype. */
7224 STRIP_NOPS (op1);
7225
7226 /* Canonicalize op1 into a possibly non-constant delta
7227 and an INTEGER_CST s. */
7228 if (TREE_CODE (op1) == MULT_EXPR)
7229 {
7230 tree arg0 = TREE_OPERAND (op1, 0), arg1 = TREE_OPERAND (op1, 1);
7231
7232 STRIP_NOPS (arg0);
7233 STRIP_NOPS (arg1);
7234
7235 if (TREE_CODE (arg0) == INTEGER_CST)
7236 {
7237 s = arg0;
7238 delta = arg1;
7239 }
7240 else if (TREE_CODE (arg1) == INTEGER_CST)
7241 {
7242 s = arg1;
7243 delta = arg0;
7244 }
7245 else
7246 return NULL_TREE;
7247 }
7248 else if (TREE_CODE (op1) == INTEGER_CST)
7249 {
7250 delta = op1;
7251 s = NULL_TREE;
7252 }
7253 else
7254 {
7255 /* Simulate we are delta * 1. */
7256 delta = op1;
7257 s = integer_one_node;
7258 }
7259
7260 for (;; ref = TREE_OPERAND (ref, 0))
7261 {
7262 if (TREE_CODE (ref) == ARRAY_REF)
7263 {
7264 /* Remember if this was a multi-dimensional array. */
7265 if (TREE_CODE (TREE_OPERAND (ref, 0)) == ARRAY_REF)
7266 mdim = true;
7267
7268 itype = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (ref, 0)));
7269 if (! itype)
7270 continue;
7271
7272 step = array_ref_element_size (ref);
7273 if (TREE_CODE (step) != INTEGER_CST)
7274 continue;
7275
7276 if (s)
7277 {
7278 if (! tree_int_cst_equal (step, s))
7279 continue;
7280 }
7281 else
7282 {
7283 /* Try if delta is a multiple of step. */
7284 tree tmp = div_if_zero_remainder (EXACT_DIV_EXPR, op1, step);
7285 if (! tmp)
7286 continue;
7287 delta = tmp;
7288 }
7289
7290 /* Only fold here if we can verify we do not overflow one
7291 dimension of a multi-dimensional array. */
7292 if (mdim)
7293 {
7294 tree tmp;
7295
7296 if (TREE_CODE (TREE_OPERAND (ref, 1)) != INTEGER_CST
7297 || !INTEGRAL_TYPE_P (itype)
7298 || !TYPE_MAX_VALUE (itype)
7299 || TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST)
7300 continue;
7301
7302 tmp = fold_binary (PLUS_EXPR, itype,
7303 fold_convert (itype,
7304 TREE_OPERAND (ref, 1)),
7305 fold_convert (itype, delta));
7306 if (!tmp
7307 || TREE_CODE (tmp) != INTEGER_CST
7308 || tree_int_cst_lt (TYPE_MAX_VALUE (itype), tmp))
7309 continue;
7310 }
7311
7312 break;
7313 }
7314 else
7315 mdim = false;
7316
7317 if (!handled_component_p (ref))
7318 return NULL_TREE;
7319 }
7320
7321 /* We found the suitable array reference. So copy everything up to it,
7322 and replace the index. */
7323
7324 pref = TREE_OPERAND (addr, 0);
7325 ret = copy_node (pref);
7326 pos = ret;
7327
7328 while (pref != ref)
7329 {
7330 pref = TREE_OPERAND (pref, 0);
7331 TREE_OPERAND (pos, 0) = copy_node (pref);
7332 pos = TREE_OPERAND (pos, 0);
7333 }
7334
7335 TREE_OPERAND (pos, 1) = fold_build2 (PLUS_EXPR, itype,
7336 fold_convert (itype,
7337 TREE_OPERAND (pos, 1)),
7338 fold_convert (itype, delta));
7339
7340 return fold_build1 (ADDR_EXPR, TREE_TYPE (addr), ret);
7341 }
7342
7343
7344 /* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y
7345 means A >= Y && A != MAX, but in this case we know that
7346 A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */
7347
7348 static tree
7349 fold_to_nonsharp_ineq_using_bound (tree ineq, tree bound)
7350 {
7351 tree a, typea, type = TREE_TYPE (ineq), a1, diff, y;
7352
7353 if (TREE_CODE (bound) == LT_EXPR)
7354 a = TREE_OPERAND (bound, 0);
7355 else if (TREE_CODE (bound) == GT_EXPR)
7356 a = TREE_OPERAND (bound, 1);
7357 else
7358 return NULL_TREE;
7359
7360 typea = TREE_TYPE (a);
7361 if (!INTEGRAL_TYPE_P (typea)
7362 && !POINTER_TYPE_P (typea))
7363 return NULL_TREE;
7364
7365 if (TREE_CODE (ineq) == LT_EXPR)
7366 {
7367 a1 = TREE_OPERAND (ineq, 1);
7368 y = TREE_OPERAND (ineq, 0);
7369 }
7370 else if (TREE_CODE (ineq) == GT_EXPR)
7371 {
7372 a1 = TREE_OPERAND (ineq, 0);
7373 y = TREE_OPERAND (ineq, 1);
7374 }
7375 else
7376 return NULL_TREE;
7377
7378 if (TREE_TYPE (a1) != typea)
7379 return NULL_TREE;
7380
7381 if (POINTER_TYPE_P (typea))
7382 {
7383 /* Convert the pointer types into integer before taking the difference. */
7384 tree ta = fold_convert (ssizetype, a);
7385 tree ta1 = fold_convert (ssizetype, a1);
7386 diff = fold_binary (MINUS_EXPR, ssizetype, ta1, ta);
7387 }
7388 else
7389 diff = fold_binary (MINUS_EXPR, typea, a1, a);
7390
7391 if (!diff || !integer_onep (diff))
7392 return NULL_TREE;
7393
7394 return fold_build2 (GE_EXPR, type, a, y);
7395 }
7396
7397 /* Fold a sum or difference of at least one multiplication.
7398 Returns the folded tree or NULL if no simplification could be made. */
7399
7400 static tree
7401 fold_plusminus_mult_expr (enum tree_code code, tree type, tree arg0, tree arg1)
7402 {
7403 tree arg00, arg01, arg10, arg11;
7404 tree alt0 = NULL_TREE, alt1 = NULL_TREE, same;
7405
7406 /* (A * C) +- (B * C) -> (A+-B) * C.
7407 (A * C) +- A -> A * (C+-1).
7408 We are most concerned about the case where C is a constant,
7409 but other combinations show up during loop reduction. Since
7410 it is not difficult, try all four possibilities. */
7411
7412 if (TREE_CODE (arg0) == MULT_EXPR)
7413 {
7414 arg00 = TREE_OPERAND (arg0, 0);
7415 arg01 = TREE_OPERAND (arg0, 1);
7416 }
7417 else if (TREE_CODE (arg0) == INTEGER_CST)
7418 {
7419 arg00 = build_one_cst (type);
7420 arg01 = arg0;
7421 }
7422 else
7423 {
7424 /* We cannot generate constant 1 for fract. */
7425 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7426 return NULL_TREE;
7427 arg00 = arg0;
7428 arg01 = build_one_cst (type);
7429 }
7430 if (TREE_CODE (arg1) == MULT_EXPR)
7431 {
7432 arg10 = TREE_OPERAND (arg1, 0);
7433 arg11 = TREE_OPERAND (arg1, 1);
7434 }
7435 else if (TREE_CODE (arg1) == INTEGER_CST)
7436 {
7437 arg10 = build_one_cst (type);
7438 /* As we canonicalize A - 2 to A + -2 get rid of that sign for
7439 the purpose of this canonicalization. */
7440 if (TREE_INT_CST_HIGH (arg1) == -1
7441 && negate_expr_p (arg1)
7442 && code == PLUS_EXPR)
7443 {
7444 arg11 = negate_expr (arg1);
7445 code = MINUS_EXPR;
7446 }
7447 else
7448 arg11 = arg1;
7449 }
7450 else
7451 {
7452 /* We cannot generate constant 1 for fract. */
7453 if (ALL_FRACT_MODE_P (TYPE_MODE (type)))
7454 return NULL_TREE;
7455 arg10 = arg1;
7456 arg11 = build_one_cst (type);
7457 }
7458 same = NULL_TREE;
7459
7460 if (operand_equal_p (arg01, arg11, 0))
7461 same = arg01, alt0 = arg00, alt1 = arg10;
7462 else if (operand_equal_p (arg00, arg10, 0))
7463 same = arg00, alt0 = arg01, alt1 = arg11;
7464 else if (operand_equal_p (arg00, arg11, 0))
7465 same = arg00, alt0 = arg01, alt1 = arg10;
7466 else if (operand_equal_p (arg01, arg10, 0))
7467 same = arg01, alt0 = arg00, alt1 = arg11;
7468
7469 /* No identical multiplicands; see if we can find a common
7470 power-of-two factor in non-power-of-two multiplies. This
7471 can help in multi-dimensional array access. */
7472 else if (host_integerp (arg01, 0)
7473 && host_integerp (arg11, 0))
7474 {
7475 HOST_WIDE_INT int01, int11, tmp;
7476 bool swap = false;
7477 tree maybe_same;
7478 int01 = TREE_INT_CST_LOW (arg01);
7479 int11 = TREE_INT_CST_LOW (arg11);
7480
7481 /* Move min of absolute values to int11. */
7482 if ((int01 >= 0 ? int01 : -int01)
7483 < (int11 >= 0 ? int11 : -int11))
7484 {
7485 tmp = int01, int01 = int11, int11 = tmp;
7486 alt0 = arg00, arg00 = arg10, arg10 = alt0;
7487 maybe_same = arg01;
7488 swap = true;
7489 }
7490 else
7491 maybe_same = arg11;
7492
7493 if (exact_log2 (abs (int11)) > 0 && int01 % int11 == 0)
7494 {
7495 alt0 = fold_build2 (MULT_EXPR, TREE_TYPE (arg00), arg00,
7496 build_int_cst (TREE_TYPE (arg00),
7497 int01 / int11));
7498 alt1 = arg10;
7499 same = maybe_same;
7500 if (swap)
7501 maybe_same = alt0, alt0 = alt1, alt1 = maybe_same;
7502 }
7503 }
7504
7505 if (same)
7506 return fold_build2 (MULT_EXPR, type,
7507 fold_build2 (code, type,
7508 fold_convert (type, alt0),
7509 fold_convert (type, alt1)),
7510 fold_convert (type, same));
7511
7512 return NULL_TREE;
7513 }
7514
7515 /* Subroutine of native_encode_expr. Encode the INTEGER_CST
7516 specified by EXPR into the buffer PTR of length LEN bytes.
7517 Return the number of bytes placed in the buffer, or zero
7518 upon failure. */
7519
7520 static int
7521 native_encode_int (const_tree expr, unsigned char *ptr, int len)
7522 {
7523 tree type = TREE_TYPE (expr);
7524 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7525 int byte, offset, word, words;
7526 unsigned char value;
7527
7528 if (total_bytes > len)
7529 return 0;
7530 words = total_bytes / UNITS_PER_WORD;
7531
7532 for (byte = 0; byte < total_bytes; byte++)
7533 {
7534 int bitpos = byte * BITS_PER_UNIT;
7535 if (bitpos < HOST_BITS_PER_WIDE_INT)
7536 value = (unsigned char) (TREE_INT_CST_LOW (expr) >> bitpos);
7537 else
7538 value = (unsigned char) (TREE_INT_CST_HIGH (expr)
7539 >> (bitpos - HOST_BITS_PER_WIDE_INT));
7540
7541 if (total_bytes > UNITS_PER_WORD)
7542 {
7543 word = byte / UNITS_PER_WORD;
7544 if (WORDS_BIG_ENDIAN)
7545 word = (words - 1) - word;
7546 offset = word * UNITS_PER_WORD;
7547 if (BYTES_BIG_ENDIAN)
7548 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7549 else
7550 offset += byte % UNITS_PER_WORD;
7551 }
7552 else
7553 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7554 ptr[offset] = value;
7555 }
7556 return total_bytes;
7557 }
7558
7559
7560 /* Subroutine of native_encode_expr. Encode the REAL_CST
7561 specified by EXPR into the buffer PTR of length LEN bytes.
7562 Return the number of bytes placed in the buffer, or zero
7563 upon failure. */
7564
7565 static int
7566 native_encode_real (const_tree expr, unsigned char *ptr, int len)
7567 {
7568 tree type = TREE_TYPE (expr);
7569 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7570 int byte, offset, word, words, bitpos;
7571 unsigned char value;
7572
7573 /* There are always 32 bits in each long, no matter the size of
7574 the hosts long. We handle floating point representations with
7575 up to 192 bits. */
7576 long tmp[6];
7577
7578 if (total_bytes > len)
7579 return 0;
7580 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7581
7582 real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type));
7583
7584 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7585 bitpos += BITS_PER_UNIT)
7586 {
7587 byte = (bitpos / BITS_PER_UNIT) & 3;
7588 value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31));
7589
7590 if (UNITS_PER_WORD < 4)
7591 {
7592 word = byte / UNITS_PER_WORD;
7593 if (WORDS_BIG_ENDIAN)
7594 word = (words - 1) - word;
7595 offset = word * UNITS_PER_WORD;
7596 if (BYTES_BIG_ENDIAN)
7597 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7598 else
7599 offset += byte % UNITS_PER_WORD;
7600 }
7601 else
7602 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7603 ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)] = value;
7604 }
7605 return total_bytes;
7606 }
7607
7608 /* Subroutine of native_encode_expr. Encode the COMPLEX_CST
7609 specified by EXPR into the buffer PTR of length LEN bytes.
7610 Return the number of bytes placed in the buffer, or zero
7611 upon failure. */
7612
7613 static int
7614 native_encode_complex (const_tree expr, unsigned char *ptr, int len)
7615 {
7616 int rsize, isize;
7617 tree part;
7618
7619 part = TREE_REALPART (expr);
7620 rsize = native_encode_expr (part, ptr, len);
7621 if (rsize == 0)
7622 return 0;
7623 part = TREE_IMAGPART (expr);
7624 isize = native_encode_expr (part, ptr+rsize, len-rsize);
7625 if (isize != rsize)
7626 return 0;
7627 return rsize + isize;
7628 }
7629
7630
7631 /* Subroutine of native_encode_expr. Encode the VECTOR_CST
7632 specified by EXPR into the buffer PTR of length LEN bytes.
7633 Return the number of bytes placed in the buffer, or zero
7634 upon failure. */
7635
7636 static int
7637 native_encode_vector (const_tree expr, unsigned char *ptr, int len)
7638 {
7639 int i, size, offset, count;
7640 tree itype, elem, elements;
7641
7642 offset = 0;
7643 elements = TREE_VECTOR_CST_ELTS (expr);
7644 count = TYPE_VECTOR_SUBPARTS (TREE_TYPE (expr));
7645 itype = TREE_TYPE (TREE_TYPE (expr));
7646 size = GET_MODE_SIZE (TYPE_MODE (itype));
7647 for (i = 0; i < count; i++)
7648 {
7649 if (elements)
7650 {
7651 elem = TREE_VALUE (elements);
7652 elements = TREE_CHAIN (elements);
7653 }
7654 else
7655 elem = NULL_TREE;
7656
7657 if (elem)
7658 {
7659 if (native_encode_expr (elem, ptr+offset, len-offset) != size)
7660 return 0;
7661 }
7662 else
7663 {
7664 if (offset + size > len)
7665 return 0;
7666 memset (ptr+offset, 0, size);
7667 }
7668 offset += size;
7669 }
7670 return offset;
7671 }
7672
7673
7674 /* Subroutine of native_encode_expr. Encode the STRING_CST
7675 specified by EXPR into the buffer PTR of length LEN bytes.
7676 Return the number of bytes placed in the buffer, or zero
7677 upon failure. */
7678
7679 static int
7680 native_encode_string (const_tree expr, unsigned char *ptr, int len)
7681 {
7682 tree type = TREE_TYPE (expr);
7683 HOST_WIDE_INT total_bytes;
7684
7685 if (TREE_CODE (type) != ARRAY_TYPE
7686 || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE
7687 || GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) != BITS_PER_UNIT
7688 || !host_integerp (TYPE_SIZE_UNIT (type), 0))
7689 return 0;
7690 total_bytes = tree_low_cst (TYPE_SIZE_UNIT (type), 0);
7691 if (total_bytes > len)
7692 return 0;
7693 if (TREE_STRING_LENGTH (expr) < total_bytes)
7694 {
7695 memcpy (ptr, TREE_STRING_POINTER (expr), TREE_STRING_LENGTH (expr));
7696 memset (ptr + TREE_STRING_LENGTH (expr), 0,
7697 total_bytes - TREE_STRING_LENGTH (expr));
7698 }
7699 else
7700 memcpy (ptr, TREE_STRING_POINTER (expr), total_bytes);
7701 return total_bytes;
7702 }
7703
7704
7705 /* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST,
7706 REAL_CST, COMPLEX_CST or VECTOR_CST specified by EXPR into the
7707 buffer PTR of length LEN bytes. Return the number of bytes
7708 placed in the buffer, or zero upon failure. */
7709
7710 int
7711 native_encode_expr (const_tree expr, unsigned char *ptr, int len)
7712 {
7713 switch (TREE_CODE (expr))
7714 {
7715 case INTEGER_CST:
7716 return native_encode_int (expr, ptr, len);
7717
7718 case REAL_CST:
7719 return native_encode_real (expr, ptr, len);
7720
7721 case COMPLEX_CST:
7722 return native_encode_complex (expr, ptr, len);
7723
7724 case VECTOR_CST:
7725 return native_encode_vector (expr, ptr, len);
7726
7727 case STRING_CST:
7728 return native_encode_string (expr, ptr, len);
7729
7730 default:
7731 return 0;
7732 }
7733 }
7734
7735
7736 /* Subroutine of native_interpret_expr. Interpret the contents of
7737 the buffer PTR of length LEN as an INTEGER_CST of type TYPE.
7738 If the buffer cannot be interpreted, return NULL_TREE. */
7739
7740 static tree
7741 native_interpret_int (tree type, const unsigned char *ptr, int len)
7742 {
7743 int total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7744 int byte, offset, word, words;
7745 unsigned char value;
7746 unsigned int HOST_WIDE_INT lo = 0;
7747 HOST_WIDE_INT hi = 0;
7748
7749 if (total_bytes > len)
7750 return NULL_TREE;
7751 if (total_bytes * BITS_PER_UNIT > 2 * HOST_BITS_PER_WIDE_INT)
7752 return NULL_TREE;
7753 words = total_bytes / UNITS_PER_WORD;
7754
7755 for (byte = 0; byte < total_bytes; byte++)
7756 {
7757 int bitpos = byte * BITS_PER_UNIT;
7758 if (total_bytes > UNITS_PER_WORD)
7759 {
7760 word = byte / UNITS_PER_WORD;
7761 if (WORDS_BIG_ENDIAN)
7762 word = (words - 1) - word;
7763 offset = word * UNITS_PER_WORD;
7764 if (BYTES_BIG_ENDIAN)
7765 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7766 else
7767 offset += byte % UNITS_PER_WORD;
7768 }
7769 else
7770 offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte;
7771 value = ptr[offset];
7772
7773 if (bitpos < HOST_BITS_PER_WIDE_INT)
7774 lo |= (unsigned HOST_WIDE_INT) value << bitpos;
7775 else
7776 hi |= (unsigned HOST_WIDE_INT) value
7777 << (bitpos - HOST_BITS_PER_WIDE_INT);
7778 }
7779
7780 return build_int_cst_wide_type (type, lo, hi);
7781 }
7782
7783
7784 /* Subroutine of native_interpret_expr. Interpret the contents of
7785 the buffer PTR of length LEN as a REAL_CST of type TYPE.
7786 If the buffer cannot be interpreted, return NULL_TREE. */
7787
7788 static tree
7789 native_interpret_real (tree type, const unsigned char *ptr, int len)
7790 {
7791 enum machine_mode mode = TYPE_MODE (type);
7792 int total_bytes = GET_MODE_SIZE (mode);
7793 int byte, offset, word, words, bitpos;
7794 unsigned char value;
7795 /* There are always 32 bits in each long, no matter the size of
7796 the hosts long. We handle floating point representations with
7797 up to 192 bits. */
7798 REAL_VALUE_TYPE r;
7799 long tmp[6];
7800
7801 total_bytes = GET_MODE_SIZE (TYPE_MODE (type));
7802 if (total_bytes > len || total_bytes > 24)
7803 return NULL_TREE;
7804 words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD;
7805
7806 memset (tmp, 0, sizeof (tmp));
7807 for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT;
7808 bitpos += BITS_PER_UNIT)
7809 {
7810 byte = (bitpos / BITS_PER_UNIT) & 3;
7811 if (UNITS_PER_WORD < 4)
7812 {
7813 word = byte / UNITS_PER_WORD;
7814 if (WORDS_BIG_ENDIAN)
7815 word = (words - 1) - word;
7816 offset = word * UNITS_PER_WORD;
7817 if (BYTES_BIG_ENDIAN)
7818 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
7819 else
7820 offset += byte % UNITS_PER_WORD;
7821 }
7822 else
7823 offset = BYTES_BIG_ENDIAN ? 3 - byte : byte;
7824 value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)];
7825
7826 tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31);
7827 }
7828
7829 real_from_target (&r, tmp, mode);
7830 return build_real (type, r);
7831 }
7832
7833
7834 /* Subroutine of native_interpret_expr. Interpret the contents of
7835 the buffer PTR of length LEN as a COMPLEX_CST of type TYPE.
7836 If the buffer cannot be interpreted, return NULL_TREE. */
7837
7838 static tree
7839 native_interpret_complex (tree type, const unsigned char *ptr, int len)
7840 {
7841 tree etype, rpart, ipart;
7842 int size;
7843
7844 etype = TREE_TYPE (type);
7845 size = GET_MODE_SIZE (TYPE_MODE (etype));
7846 if (size * 2 > len)
7847 return NULL_TREE;
7848 rpart = native_interpret_expr (etype, ptr, size);
7849 if (!rpart)
7850 return NULL_TREE;
7851 ipart = native_interpret_expr (etype, ptr+size, size);
7852 if (!ipart)
7853 return NULL_TREE;
7854 return build_complex (type, rpart, ipart);
7855 }
7856
7857
7858 /* Subroutine of native_interpret_expr. Interpret the contents of
7859 the buffer PTR of length LEN as a VECTOR_CST of type TYPE.
7860 If the buffer cannot be interpreted, return NULL_TREE. */
7861
7862 static tree
7863 native_interpret_vector (tree type, const unsigned char *ptr, int len)
7864 {
7865 tree etype, elem, elements;
7866 int i, size, count;
7867
7868 etype = TREE_TYPE (type);
7869 size = GET_MODE_SIZE (TYPE_MODE (etype));
7870 count = TYPE_VECTOR_SUBPARTS (type);
7871 if (size * count > len)
7872 return NULL_TREE;
7873
7874 elements = NULL_TREE;
7875 for (i = count - 1; i >= 0; i--)
7876 {
7877 elem = native_interpret_expr (etype, ptr+(i*size), size);
7878 if (!elem)
7879 return NULL_TREE;
7880 elements = tree_cons (NULL_TREE, elem, elements);
7881 }
7882 return build_vector (type, elements);
7883 }
7884
7885
7886 /* Subroutine of fold_view_convert_expr. Interpret the contents of
7887 the buffer PTR of length LEN as a constant of type TYPE. For
7888 INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P
7889 we return a REAL_CST, etc... If the buffer cannot be interpreted,
7890 return NULL_TREE. */
7891
7892 tree
7893 native_interpret_expr (tree type, const unsigned char *ptr, int len)
7894 {
7895 switch (TREE_CODE (type))
7896 {
7897 case INTEGER_TYPE:
7898 case ENUMERAL_TYPE:
7899 case BOOLEAN_TYPE:
7900 return native_interpret_int (type, ptr, len);
7901
7902 case REAL_TYPE:
7903 return native_interpret_real (type, ptr, len);
7904
7905 case COMPLEX_TYPE:
7906 return native_interpret_complex (type, ptr, len);
7907
7908 case VECTOR_TYPE:
7909 return native_interpret_vector (type, ptr, len);
7910
7911 default:
7912 return NULL_TREE;
7913 }
7914 }
7915
7916
7917 /* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type
7918 TYPE at compile-time. If we're unable to perform the conversion
7919 return NULL_TREE. */
7920
7921 static tree
7922 fold_view_convert_expr (tree type, tree expr)
7923 {
7924 /* We support up to 512-bit values (for V8DFmode). */
7925 unsigned char buffer[64];
7926 int len;
7927
7928 /* Check that the host and target are sane. */
7929 if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
7930 return NULL_TREE;
7931
7932 len = native_encode_expr (expr, buffer, sizeof (buffer));
7933 if (len == 0)
7934 return NULL_TREE;
7935
7936 return native_interpret_expr (type, buffer, len);
7937 }
7938
7939 /* Build an expression for the address of T. Folds away INDIRECT_REF
7940 to avoid confusing the gimplify process. When IN_FOLD is true
7941 avoid modifications of T. */
7942
7943 static tree
7944 build_fold_addr_expr_with_type_1 (tree t, tree ptrtype, bool in_fold)
7945 {
7946 /* The size of the object is not relevant when talking about its address. */
7947 if (TREE_CODE (t) == WITH_SIZE_EXPR)
7948 t = TREE_OPERAND (t, 0);
7949
7950 /* Note: doesn't apply to ALIGN_INDIRECT_REF */
7951 if (TREE_CODE (t) == INDIRECT_REF
7952 || TREE_CODE (t) == MISALIGNED_INDIRECT_REF)
7953 {
7954 t = TREE_OPERAND (t, 0);
7955
7956 if (TREE_TYPE (t) != ptrtype)
7957 t = build1 (NOP_EXPR, ptrtype, t);
7958 }
7959 else if (!in_fold)
7960 {
7961 tree base = t;
7962
7963 while (handled_component_p (base))
7964 base = TREE_OPERAND (base, 0);
7965
7966 if (DECL_P (base))
7967 TREE_ADDRESSABLE (base) = 1;
7968
7969 t = build1 (ADDR_EXPR, ptrtype, t);
7970 }
7971 else
7972 t = build1 (ADDR_EXPR, ptrtype, t);
7973
7974 return t;
7975 }
7976
7977 /* Build an expression for the address of T with type PTRTYPE. This
7978 function modifies the input parameter 'T' by sometimes setting the
7979 TREE_ADDRESSABLE flag. */
7980
7981 tree
7982 build_fold_addr_expr_with_type (tree t, tree ptrtype)
7983 {
7984 return build_fold_addr_expr_with_type_1 (t, ptrtype, false);
7985 }
7986
7987 /* Build an expression for the address of T. This function modifies
7988 the input parameter 'T' by sometimes setting the TREE_ADDRESSABLE
7989 flag. When called from fold functions, use fold_addr_expr instead. */
7990
7991 tree
7992 build_fold_addr_expr (tree t)
7993 {
7994 return build_fold_addr_expr_with_type_1 (t,
7995 build_pointer_type (TREE_TYPE (t)),
7996 false);
7997 }
7998
7999 /* Same as build_fold_addr_expr, builds an expression for the address
8000 of T, but avoids touching the input node 't'. Fold functions
8001 should use this version. */
8002
8003 static tree
8004 fold_addr_expr (tree t)
8005 {
8006 tree ptrtype = build_pointer_type (TREE_TYPE (t));
8007
8008 return build_fold_addr_expr_with_type_1 (t, ptrtype, true);
8009 }
8010
8011 /* Fold a unary expression of code CODE and type TYPE with operand
8012 OP0. Return the folded expression if folding is successful.
8013 Otherwise, return NULL_TREE. */
8014
8015 tree
8016 fold_unary (enum tree_code code, tree type, tree op0)
8017 {
8018 tree tem;
8019 tree arg0;
8020 enum tree_code_class kind = TREE_CODE_CLASS (code);
8021
8022 gcc_assert (IS_EXPR_CODE_CLASS (kind)
8023 && TREE_CODE_LENGTH (code) == 1);
8024
8025 arg0 = op0;
8026 if (arg0)
8027 {
8028 if (CONVERT_EXPR_CODE_P (code)
8029 || code == FLOAT_EXPR || code == ABS_EXPR)
8030 {
8031 /* Don't use STRIP_NOPS, because signedness of argument type
8032 matters. */
8033 STRIP_SIGN_NOPS (arg0);
8034 }
8035 else
8036 {
8037 /* Strip any conversions that don't change the mode. This
8038 is safe for every expression, except for a comparison
8039 expression because its signedness is derived from its
8040 operands.
8041
8042 Note that this is done as an internal manipulation within
8043 the constant folder, in order to find the simplest
8044 representation of the arguments so that their form can be
8045 studied. In any cases, the appropriate type conversions
8046 should be put back in the tree that will get out of the
8047 constant folder. */
8048 STRIP_NOPS (arg0);
8049 }
8050 }
8051
8052 if (TREE_CODE_CLASS (code) == tcc_unary)
8053 {
8054 if (TREE_CODE (arg0) == COMPOUND_EXPR)
8055 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
8056 fold_build1 (code, type,
8057 fold_convert (TREE_TYPE (op0),
8058 TREE_OPERAND (arg0, 1))));
8059 else if (TREE_CODE (arg0) == COND_EXPR)
8060 {
8061 tree arg01 = TREE_OPERAND (arg0, 1);
8062 tree arg02 = TREE_OPERAND (arg0, 2);
8063 if (! VOID_TYPE_P (TREE_TYPE (arg01)))
8064 arg01 = fold_build1 (code, type,
8065 fold_convert (TREE_TYPE (op0), arg01));
8066 if (! VOID_TYPE_P (TREE_TYPE (arg02)))
8067 arg02 = fold_build1 (code, type,
8068 fold_convert (TREE_TYPE (op0), arg02));
8069 tem = fold_build3 (COND_EXPR, type, TREE_OPERAND (arg0, 0),
8070 arg01, arg02);
8071
8072 /* If this was a conversion, and all we did was to move into
8073 inside the COND_EXPR, bring it back out. But leave it if
8074 it is a conversion from integer to integer and the
8075 result precision is no wider than a word since such a
8076 conversion is cheap and may be optimized away by combine,
8077 while it couldn't if it were outside the COND_EXPR. Then return
8078 so we don't get into an infinite recursion loop taking the
8079 conversion out and then back in. */
8080
8081 if ((CONVERT_EXPR_CODE_P (code)
8082 || code == NON_LVALUE_EXPR)
8083 && TREE_CODE (tem) == COND_EXPR
8084 && TREE_CODE (TREE_OPERAND (tem, 1)) == code
8085 && TREE_CODE (TREE_OPERAND (tem, 2)) == code
8086 && ! VOID_TYPE_P (TREE_OPERAND (tem, 1))
8087 && ! VOID_TYPE_P (TREE_OPERAND (tem, 2))
8088 && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))
8089 == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0)))
8090 && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8091 && (INTEGRAL_TYPE_P
8092 (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0))))
8093 && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD)
8094 || flag_syntax_only))
8095 tem = build1 (code, type,
8096 build3 (COND_EXPR,
8097 TREE_TYPE (TREE_OPERAND
8098 (TREE_OPERAND (tem, 1), 0)),
8099 TREE_OPERAND (tem, 0),
8100 TREE_OPERAND (TREE_OPERAND (tem, 1), 0),
8101 TREE_OPERAND (TREE_OPERAND (tem, 2), 0)));
8102 return tem;
8103 }
8104 else if (COMPARISON_CLASS_P (arg0))
8105 {
8106 if (TREE_CODE (type) == BOOLEAN_TYPE)
8107 {
8108 arg0 = copy_node (arg0);
8109 TREE_TYPE (arg0) = type;
8110 return arg0;
8111 }
8112 else if (TREE_CODE (type) != INTEGER_TYPE)
8113 return fold_build3 (COND_EXPR, type, arg0,
8114 fold_build1 (code, type,
8115 integer_one_node),
8116 fold_build1 (code, type,
8117 integer_zero_node));
8118 }
8119 }
8120
8121 switch (code)
8122 {
8123 case PAREN_EXPR:
8124 /* Re-association barriers around constants and other re-association
8125 barriers can be removed. */
8126 if (CONSTANT_CLASS_P (op0)
8127 || TREE_CODE (op0) == PAREN_EXPR)
8128 return fold_convert (type, op0);
8129 return NULL_TREE;
8130
8131 CASE_CONVERT:
8132 case FLOAT_EXPR:
8133 case FIX_TRUNC_EXPR:
8134 if (TREE_TYPE (op0) == type)
8135 return op0;
8136
8137 /* If we have (type) (a CMP b) and type is an integral type, return
8138 new expression involving the new type. */
8139 if (COMPARISON_CLASS_P (op0) && INTEGRAL_TYPE_P (type))
8140 return fold_build2 (TREE_CODE (op0), type, TREE_OPERAND (op0, 0),
8141 TREE_OPERAND (op0, 1));
8142
8143 /* Handle cases of two conversions in a row. */
8144 if (CONVERT_EXPR_P (op0))
8145 {
8146 tree inside_type = TREE_TYPE (TREE_OPERAND (op0, 0));
8147 tree inter_type = TREE_TYPE (op0);
8148 int inside_int = INTEGRAL_TYPE_P (inside_type);
8149 int inside_ptr = POINTER_TYPE_P (inside_type);
8150 int inside_float = FLOAT_TYPE_P (inside_type);
8151 int inside_vec = TREE_CODE (inside_type) == VECTOR_TYPE;
8152 unsigned int inside_prec = TYPE_PRECISION (inside_type);
8153 int inside_unsignedp = TYPE_UNSIGNED (inside_type);
8154 int inter_int = INTEGRAL_TYPE_P (inter_type);
8155 int inter_ptr = POINTER_TYPE_P (inter_type);
8156 int inter_float = FLOAT_TYPE_P (inter_type);
8157 int inter_vec = TREE_CODE (inter_type) == VECTOR_TYPE;
8158 unsigned int inter_prec = TYPE_PRECISION (inter_type);
8159 int inter_unsignedp = TYPE_UNSIGNED (inter_type);
8160 int final_int = INTEGRAL_TYPE_P (type);
8161 int final_ptr = POINTER_TYPE_P (type);
8162 int final_float = FLOAT_TYPE_P (type);
8163 int final_vec = TREE_CODE (type) == VECTOR_TYPE;
8164 unsigned int final_prec = TYPE_PRECISION (type);
8165 int final_unsignedp = TYPE_UNSIGNED (type);
8166
8167 /* In addition to the cases of two conversions in a row
8168 handled below, if we are converting something to its own
8169 type via an object of identical or wider precision, neither
8170 conversion is needed. */
8171 if (TYPE_MAIN_VARIANT (inside_type) == TYPE_MAIN_VARIANT (type)
8172 && (((inter_int || inter_ptr) && final_int)
8173 || (inter_float && final_float))
8174 && inter_prec >= final_prec)
8175 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8176
8177 /* Likewise, if the intermediate and final types are either both
8178 float or both integer, we don't need the middle conversion if
8179 it is wider than the final type and doesn't change the signedness
8180 (for integers). Avoid this if the final type is a pointer
8181 since then we sometimes need the inner conversion. Likewise if
8182 the outer has a precision not equal to the size of its mode. */
8183 if (((inter_int && inside_int)
8184 || (inter_float && inside_float)
8185 || (inter_vec && inside_vec))
8186 && inter_prec >= inside_prec
8187 && (inter_float || inter_vec
8188 || inter_unsignedp == inside_unsignedp)
8189 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8190 && TYPE_MODE (type) == TYPE_MODE (inter_type))
8191 && ! final_ptr
8192 && (! final_vec || inter_prec == inside_prec))
8193 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8194
8195 /* If we have a sign-extension of a zero-extended value, we can
8196 replace that by a single zero-extension. */
8197 if (inside_int && inter_int && final_int
8198 && inside_prec < inter_prec && inter_prec < final_prec
8199 && inside_unsignedp && !inter_unsignedp)
8200 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8201
8202 /* Two conversions in a row are not needed unless:
8203 - some conversion is floating-point (overstrict for now), or
8204 - some conversion is a vector (overstrict for now), or
8205 - the intermediate type is narrower than both initial and
8206 final, or
8207 - the intermediate type and innermost type differ in signedness,
8208 and the outermost type is wider than the intermediate, or
8209 - the initial type is a pointer type and the precisions of the
8210 intermediate and final types differ, or
8211 - the final type is a pointer type and the precisions of the
8212 initial and intermediate types differ. */
8213 if (! inside_float && ! inter_float && ! final_float
8214 && ! inside_vec && ! inter_vec && ! final_vec
8215 && (inter_prec >= inside_prec || inter_prec >= final_prec)
8216 && ! (inside_int && inter_int
8217 && inter_unsignedp != inside_unsignedp
8218 && inter_prec < final_prec)
8219 && ((inter_unsignedp && inter_prec > inside_prec)
8220 == (final_unsignedp && final_prec > inter_prec))
8221 && ! (inside_ptr && inter_prec != final_prec)
8222 && ! (final_ptr && inside_prec != inter_prec)
8223 && ! (final_prec != GET_MODE_BITSIZE (TYPE_MODE (type))
8224 && TYPE_MODE (type) == TYPE_MODE (inter_type)))
8225 return fold_build1 (code, type, TREE_OPERAND (op0, 0));
8226 }
8227
8228 /* Handle (T *)&A.B.C for A being of type T and B and C
8229 living at offset zero. This occurs frequently in
8230 C++ upcasting and then accessing the base. */
8231 if (TREE_CODE (op0) == ADDR_EXPR
8232 && POINTER_TYPE_P (type)
8233 && handled_component_p (TREE_OPERAND (op0, 0)))
8234 {
8235 HOST_WIDE_INT bitsize, bitpos;
8236 tree offset;
8237 enum machine_mode mode;
8238 int unsignedp, volatilep;
8239 tree base = TREE_OPERAND (op0, 0);
8240 base = get_inner_reference (base, &bitsize, &bitpos, &offset,
8241 &mode, &unsignedp, &volatilep, false);
8242 /* If the reference was to a (constant) zero offset, we can use
8243 the address of the base if it has the same base type
8244 as the result type. */
8245 if (! offset && bitpos == 0
8246 && TYPE_MAIN_VARIANT (TREE_TYPE (type))
8247 == TYPE_MAIN_VARIANT (TREE_TYPE (base)))
8248 return fold_convert (type, fold_addr_expr (base));
8249 }
8250
8251 if (TREE_CODE (op0) == MODIFY_EXPR
8252 && TREE_CONSTANT (TREE_OPERAND (op0, 1))
8253 /* Detect assigning a bitfield. */
8254 && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF
8255 && DECL_BIT_FIELD
8256 (TREE_OPERAND (TREE_OPERAND (op0, 0), 1))))
8257 {
8258 /* Don't leave an assignment inside a conversion
8259 unless assigning a bitfield. */
8260 tem = fold_build1 (code, type, TREE_OPERAND (op0, 1));
8261 /* First do the assignment, then return converted constant. */
8262 tem = build2 (COMPOUND_EXPR, TREE_TYPE (tem), op0, tem);
8263 TREE_NO_WARNING (tem) = 1;
8264 TREE_USED (tem) = 1;
8265 return tem;
8266 }
8267
8268 /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer
8269 constants (if x has signed type, the sign bit cannot be set
8270 in c). This folds extension into the BIT_AND_EXPR.
8271 ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they
8272 very likely don't have maximal range for their precision and this
8273 transformation effectively doesn't preserve non-maximal ranges. */
8274 if (TREE_CODE (type) == INTEGER_TYPE
8275 && TREE_CODE (op0) == BIT_AND_EXPR
8276 && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST
8277 /* Not if the conversion is to the sub-type. */
8278 && TREE_TYPE (type) != TREE_TYPE (op0))
8279 {
8280 tree and = op0;
8281 tree and0 = TREE_OPERAND (and, 0), and1 = TREE_OPERAND (and, 1);
8282 int change = 0;
8283
8284 if (TYPE_UNSIGNED (TREE_TYPE (and))
8285 || (TYPE_PRECISION (type)
8286 <= TYPE_PRECISION (TREE_TYPE (and))))
8287 change = 1;
8288 else if (TYPE_PRECISION (TREE_TYPE (and1))
8289 <= HOST_BITS_PER_WIDE_INT
8290 && host_integerp (and1, 1))
8291 {
8292 unsigned HOST_WIDE_INT cst;
8293
8294 cst = tree_low_cst (and1, 1);
8295 cst &= (HOST_WIDE_INT) -1
8296 << (TYPE_PRECISION (TREE_TYPE (and1)) - 1);
8297 change = (cst == 0);
8298 #ifdef LOAD_EXTEND_OP
8299 if (change
8300 && !flag_syntax_only
8301 && (LOAD_EXTEND_OP (TYPE_MODE (TREE_TYPE (and0)))
8302 == ZERO_EXTEND))
8303 {
8304 tree uns = unsigned_type_for (TREE_TYPE (and0));
8305 and0 = fold_convert (uns, and0);
8306 and1 = fold_convert (uns, and1);
8307 }
8308 #endif
8309 }
8310 if (change)
8311 {
8312 tem = force_fit_type_double (type, TREE_INT_CST_LOW (and1),
8313 TREE_INT_CST_HIGH (and1), 0,
8314 TREE_OVERFLOW (and1));
8315 return fold_build2 (BIT_AND_EXPR, type,
8316 fold_convert (type, and0), tem);
8317 }
8318 }
8319
8320 /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type,
8321 when one of the new casts will fold away. Conservatively we assume
8322 that this happens when X or Y is NOP_EXPR or Y is INTEGER_CST. */
8323 if (POINTER_TYPE_P (type)
8324 && TREE_CODE (arg0) == POINTER_PLUS_EXPR
8325 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8326 || TREE_CODE (TREE_OPERAND (arg0, 0)) == NOP_EXPR
8327 || TREE_CODE (TREE_OPERAND (arg0, 1)) == NOP_EXPR))
8328 {
8329 tree arg00 = TREE_OPERAND (arg0, 0);
8330 tree arg01 = TREE_OPERAND (arg0, 1);
8331
8332 return fold_build2 (TREE_CODE (arg0), type, fold_convert (type, arg00),
8333 fold_convert (sizetype, arg01));
8334 }
8335
8336 /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types
8337 of the same precision, and X is an integer type not narrower than
8338 types T1 or T2, i.e. the cast (T2)X isn't an extension. */
8339 if (INTEGRAL_TYPE_P (type)
8340 && TREE_CODE (op0) == BIT_NOT_EXPR
8341 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8342 && CONVERT_EXPR_P (TREE_OPERAND (op0, 0))
8343 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0)))
8344 {
8345 tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0);
8346 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
8347 && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem)))
8348 return fold_build1 (BIT_NOT_EXPR, type, fold_convert (type, tem));
8349 }
8350
8351 /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the
8352 type of X and Y (integer types only). */
8353 if (INTEGRAL_TYPE_P (type)
8354 && TREE_CODE (op0) == MULT_EXPR
8355 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8356 && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0)))
8357 {
8358 /* Be careful not to introduce new overflows. */
8359 tree mult_type;
8360 if (TYPE_OVERFLOW_WRAPS (type))
8361 mult_type = type;
8362 else
8363 mult_type = unsigned_type_for (type);
8364
8365 if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0)))
8366 {
8367 tem = fold_build2 (MULT_EXPR, mult_type,
8368 fold_convert (mult_type,
8369 TREE_OPERAND (op0, 0)),
8370 fold_convert (mult_type,
8371 TREE_OPERAND (op0, 1)));
8372 return fold_convert (type, tem);
8373 }
8374 }
8375
8376 tem = fold_convert_const (code, type, op0);
8377 return tem ? tem : NULL_TREE;
8378
8379 case FIXED_CONVERT_EXPR:
8380 tem = fold_convert_const (code, type, arg0);
8381 return tem ? tem : NULL_TREE;
8382
8383 case VIEW_CONVERT_EXPR:
8384 if (TREE_TYPE (op0) == type)
8385 return op0;
8386 if (TREE_CODE (op0) == VIEW_CONVERT_EXPR)
8387 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8388
8389 /* For integral conversions with the same precision or pointer
8390 conversions use a NOP_EXPR instead. */
8391 if ((INTEGRAL_TYPE_P (type)
8392 || POINTER_TYPE_P (type))
8393 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8394 || POINTER_TYPE_P (TREE_TYPE (op0)))
8395 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))
8396 /* Do not muck with VIEW_CONVERT_EXPRs that convert from
8397 a sub-type to its base type as generated by the Ada FE. */
8398 && !(INTEGRAL_TYPE_P (TREE_TYPE (op0))
8399 && TREE_TYPE (TREE_TYPE (op0))))
8400 return fold_convert (type, op0);
8401
8402 /* Strip inner integral conversions that do not change the precision. */
8403 if (CONVERT_EXPR_P (op0)
8404 && (INTEGRAL_TYPE_P (TREE_TYPE (op0))
8405 || POINTER_TYPE_P (TREE_TYPE (op0)))
8406 && (INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0)))
8407 || POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (op0, 0))))
8408 && (TYPE_PRECISION (TREE_TYPE (op0))
8409 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op0, 0)))))
8410 return fold_build1 (VIEW_CONVERT_EXPR, type, TREE_OPERAND (op0, 0));
8411
8412 return fold_view_convert_expr (type, op0);
8413
8414 case NEGATE_EXPR:
8415 tem = fold_negate_expr (arg0);
8416 if (tem)
8417 return fold_convert (type, tem);
8418 return NULL_TREE;
8419
8420 case ABS_EXPR:
8421 if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST)
8422 return fold_abs_const (arg0, type);
8423 else if (TREE_CODE (arg0) == NEGATE_EXPR)
8424 return fold_build1 (ABS_EXPR, type, TREE_OPERAND (arg0, 0));
8425 /* Convert fabs((double)float) into (double)fabsf(float). */
8426 else if (TREE_CODE (arg0) == NOP_EXPR
8427 && TREE_CODE (type) == REAL_TYPE)
8428 {
8429 tree targ0 = strip_float_extensions (arg0);
8430 if (targ0 != arg0)
8431 return fold_convert (type, fold_build1 (ABS_EXPR,
8432 TREE_TYPE (targ0),
8433 targ0));
8434 }
8435 /* ABS_EXPR<ABS_EXPR<x>> = ABS_EXPR<x> even if flag_wrapv is on. */
8436 else if (TREE_CODE (arg0) == ABS_EXPR)
8437 return arg0;
8438 else if (tree_expr_nonnegative_p (arg0))
8439 return arg0;
8440
8441 /* Strip sign ops from argument. */
8442 if (TREE_CODE (type) == REAL_TYPE)
8443 {
8444 tem = fold_strip_sign_ops (arg0);
8445 if (tem)
8446 return fold_build1 (ABS_EXPR, type, fold_convert (type, tem));
8447 }
8448 return NULL_TREE;
8449
8450 case CONJ_EXPR:
8451 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8452 return fold_convert (type, arg0);
8453 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8454 {
8455 tree itype = TREE_TYPE (type);
8456 tree rpart = fold_convert (itype, TREE_OPERAND (arg0, 0));
8457 tree ipart = fold_convert (itype, TREE_OPERAND (arg0, 1));
8458 return fold_build2 (COMPLEX_EXPR, type, rpart, negate_expr (ipart));
8459 }
8460 if (TREE_CODE (arg0) == COMPLEX_CST)
8461 {
8462 tree itype = TREE_TYPE (type);
8463 tree rpart = fold_convert (itype, TREE_REALPART (arg0));
8464 tree ipart = fold_convert (itype, TREE_IMAGPART (arg0));
8465 return build_complex (type, rpart, negate_expr (ipart));
8466 }
8467 if (TREE_CODE (arg0) == CONJ_EXPR)
8468 return fold_convert (type, TREE_OPERAND (arg0, 0));
8469 return NULL_TREE;
8470
8471 case BIT_NOT_EXPR:
8472 if (TREE_CODE (arg0) == INTEGER_CST)
8473 return fold_not_const (arg0, type);
8474 else if (TREE_CODE (arg0) == BIT_NOT_EXPR)
8475 return fold_convert (type, TREE_OPERAND (arg0, 0));
8476 /* Convert ~ (-A) to A - 1. */
8477 else if (INTEGRAL_TYPE_P (type) && TREE_CODE (arg0) == NEGATE_EXPR)
8478 return fold_build2 (MINUS_EXPR, type,
8479 fold_convert (type, TREE_OPERAND (arg0, 0)),
8480 build_int_cst (type, 1));
8481 /* Convert ~ (A - 1) or ~ (A + -1) to -A. */
8482 else if (INTEGRAL_TYPE_P (type)
8483 && ((TREE_CODE (arg0) == MINUS_EXPR
8484 && integer_onep (TREE_OPERAND (arg0, 1)))
8485 || (TREE_CODE (arg0) == PLUS_EXPR
8486 && integer_all_onesp (TREE_OPERAND (arg0, 1)))))
8487 return fold_build1 (NEGATE_EXPR, type,
8488 fold_convert (type, TREE_OPERAND (arg0, 0)));
8489 /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */
8490 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8491 && (tem = fold_unary (BIT_NOT_EXPR, type,
8492 fold_convert (type,
8493 TREE_OPERAND (arg0, 0)))))
8494 return fold_build2 (BIT_XOR_EXPR, type, tem,
8495 fold_convert (type, TREE_OPERAND (arg0, 1)));
8496 else if (TREE_CODE (arg0) == BIT_XOR_EXPR
8497 && (tem = fold_unary (BIT_NOT_EXPR, type,
8498 fold_convert (type,
8499 TREE_OPERAND (arg0, 1)))))
8500 return fold_build2 (BIT_XOR_EXPR, type,
8501 fold_convert (type, TREE_OPERAND (arg0, 0)), tem);
8502 /* Perform BIT_NOT_EXPR on each element individually. */
8503 else if (TREE_CODE (arg0) == VECTOR_CST)
8504 {
8505 tree elements = TREE_VECTOR_CST_ELTS (arg0), elem, list = NULL_TREE;
8506 int count = TYPE_VECTOR_SUBPARTS (type), i;
8507
8508 for (i = 0; i < count; i++)
8509 {
8510 if (elements)
8511 {
8512 elem = TREE_VALUE (elements);
8513 elem = fold_unary (BIT_NOT_EXPR, TREE_TYPE (type), elem);
8514 if (elem == NULL_TREE)
8515 break;
8516 elements = TREE_CHAIN (elements);
8517 }
8518 else
8519 elem = build_int_cst (TREE_TYPE (type), -1);
8520 list = tree_cons (NULL_TREE, elem, list);
8521 }
8522 if (i == count)
8523 return build_vector (type, nreverse (list));
8524 }
8525
8526 return NULL_TREE;
8527
8528 case TRUTH_NOT_EXPR:
8529 /* The argument to invert_truthvalue must have Boolean type. */
8530 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
8531 arg0 = fold_convert (boolean_type_node, arg0);
8532
8533 /* Note that the operand of this must be an int
8534 and its values must be 0 or 1.
8535 ("true" is a fixed value perhaps depending on the language,
8536 but we don't handle values other than 1 correctly yet.) */
8537 tem = fold_truth_not_expr (arg0);
8538 if (!tem)
8539 return NULL_TREE;
8540 return fold_convert (type, tem);
8541
8542 case REALPART_EXPR:
8543 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8544 return fold_convert (type, arg0);
8545 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8546 return omit_one_operand (type, TREE_OPERAND (arg0, 0),
8547 TREE_OPERAND (arg0, 1));
8548 if (TREE_CODE (arg0) == COMPLEX_CST)
8549 return fold_convert (type, TREE_REALPART (arg0));
8550 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8551 {
8552 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8553 tem = fold_build2 (TREE_CODE (arg0), itype,
8554 fold_build1 (REALPART_EXPR, itype,
8555 TREE_OPERAND (arg0, 0)),
8556 fold_build1 (REALPART_EXPR, itype,
8557 TREE_OPERAND (arg0, 1)));
8558 return fold_convert (type, tem);
8559 }
8560 if (TREE_CODE (arg0) == CONJ_EXPR)
8561 {
8562 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8563 tem = fold_build1 (REALPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8564 return fold_convert (type, tem);
8565 }
8566 if (TREE_CODE (arg0) == CALL_EXPR)
8567 {
8568 tree fn = get_callee_fndecl (arg0);
8569 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8570 switch (DECL_FUNCTION_CODE (fn))
8571 {
8572 CASE_FLT_FN (BUILT_IN_CEXPI):
8573 fn = mathfn_built_in (type, BUILT_IN_COS);
8574 if (fn)
8575 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8576 break;
8577
8578 default:
8579 break;
8580 }
8581 }
8582 return NULL_TREE;
8583
8584 case IMAGPART_EXPR:
8585 if (TREE_CODE (TREE_TYPE (arg0)) != COMPLEX_TYPE)
8586 return fold_convert (type, integer_zero_node);
8587 if (TREE_CODE (arg0) == COMPLEX_EXPR)
8588 return omit_one_operand (type, TREE_OPERAND (arg0, 1),
8589 TREE_OPERAND (arg0, 0));
8590 if (TREE_CODE (arg0) == COMPLEX_CST)
8591 return fold_convert (type, TREE_IMAGPART (arg0));
8592 if (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8593 {
8594 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8595 tem = fold_build2 (TREE_CODE (arg0), itype,
8596 fold_build1 (IMAGPART_EXPR, itype,
8597 TREE_OPERAND (arg0, 0)),
8598 fold_build1 (IMAGPART_EXPR, itype,
8599 TREE_OPERAND (arg0, 1)));
8600 return fold_convert (type, tem);
8601 }
8602 if (TREE_CODE (arg0) == CONJ_EXPR)
8603 {
8604 tree itype = TREE_TYPE (TREE_TYPE (arg0));
8605 tem = fold_build1 (IMAGPART_EXPR, itype, TREE_OPERAND (arg0, 0));
8606 return fold_convert (type, negate_expr (tem));
8607 }
8608 if (TREE_CODE (arg0) == CALL_EXPR)
8609 {
8610 tree fn = get_callee_fndecl (arg0);
8611 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
8612 switch (DECL_FUNCTION_CODE (fn))
8613 {
8614 CASE_FLT_FN (BUILT_IN_CEXPI):
8615 fn = mathfn_built_in (type, BUILT_IN_SIN);
8616 if (fn)
8617 return build_call_expr (fn, 1, CALL_EXPR_ARG (arg0, 0));
8618 break;
8619
8620 default:
8621 break;
8622 }
8623 }
8624 return NULL_TREE;
8625
8626 default:
8627 return NULL_TREE;
8628 } /* switch (code) */
8629 }
8630
8631 /* Fold a binary expression of code CODE and type TYPE with operands
8632 OP0 and OP1, containing either a MIN-MAX or a MAX-MIN combination.
8633 Return the folded expression if folding is successful. Otherwise,
8634 return NULL_TREE. */
8635
8636 static tree
8637 fold_minmax (enum tree_code code, tree type, tree op0, tree op1)
8638 {
8639 enum tree_code compl_code;
8640
8641 if (code == MIN_EXPR)
8642 compl_code = MAX_EXPR;
8643 else if (code == MAX_EXPR)
8644 compl_code = MIN_EXPR;
8645 else
8646 gcc_unreachable ();
8647
8648 /* MIN (MAX (a, b), b) == b. */
8649 if (TREE_CODE (op0) == compl_code
8650 && operand_equal_p (TREE_OPERAND (op0, 1), op1, 0))
8651 return omit_one_operand (type, op1, TREE_OPERAND (op0, 0));
8652
8653 /* MIN (MAX (b, a), b) == b. */
8654 if (TREE_CODE (op0) == compl_code
8655 && operand_equal_p (TREE_OPERAND (op0, 0), op1, 0)
8656 && reorder_operands_p (TREE_OPERAND (op0, 1), op1))
8657 return omit_one_operand (type, op1, TREE_OPERAND (op0, 1));
8658
8659 /* MIN (a, MAX (a, b)) == a. */
8660 if (TREE_CODE (op1) == compl_code
8661 && operand_equal_p (op0, TREE_OPERAND (op1, 0), 0)
8662 && reorder_operands_p (op0, TREE_OPERAND (op1, 1)))
8663 return omit_one_operand (type, op0, TREE_OPERAND (op1, 1));
8664
8665 /* MIN (a, MAX (b, a)) == a. */
8666 if (TREE_CODE (op1) == compl_code
8667 && operand_equal_p (op0, TREE_OPERAND (op1, 1), 0)
8668 && reorder_operands_p (op0, TREE_OPERAND (op1, 0)))
8669 return omit_one_operand (type, op0, TREE_OPERAND (op1, 0));
8670
8671 return NULL_TREE;
8672 }
8673
8674 /* Helper that tries to canonicalize the comparison ARG0 CODE ARG1
8675 by changing CODE to reduce the magnitude of constants involved in
8676 ARG0 of the comparison.
8677 Returns a canonicalized comparison tree if a simplification was
8678 possible, otherwise returns NULL_TREE.
8679 Set *STRICT_OVERFLOW_P to true if the canonicalization is only
8680 valid if signed overflow is undefined. */
8681
8682 static tree
8683 maybe_canonicalize_comparison_1 (enum tree_code code, tree type,
8684 tree arg0, tree arg1,
8685 bool *strict_overflow_p)
8686 {
8687 enum tree_code code0 = TREE_CODE (arg0);
8688 tree t, cst0 = NULL_TREE;
8689 int sgn0;
8690 bool swap = false;
8691
8692 /* Match A +- CST code arg1 and CST code arg1. We can change the
8693 first form only if overflow is undefined. */
8694 if (!((TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
8695 /* In principle pointers also have undefined overflow behavior,
8696 but that causes problems elsewhere. */
8697 && !POINTER_TYPE_P (TREE_TYPE (arg0))
8698 && (code0 == MINUS_EXPR
8699 || code0 == PLUS_EXPR)
8700 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
8701 || code0 == INTEGER_CST))
8702 return NULL_TREE;
8703
8704 /* Identify the constant in arg0 and its sign. */
8705 if (code0 == INTEGER_CST)
8706 cst0 = arg0;
8707 else
8708 cst0 = TREE_OPERAND (arg0, 1);
8709 sgn0 = tree_int_cst_sgn (cst0);
8710
8711 /* Overflowed constants and zero will cause problems. */
8712 if (integer_zerop (cst0)
8713 || TREE_OVERFLOW (cst0))
8714 return NULL_TREE;
8715
8716 /* See if we can reduce the magnitude of the constant in
8717 arg0 by changing the comparison code. */
8718 if (code0 == INTEGER_CST)
8719 {
8720 /* CST <= arg1 -> CST-1 < arg1. */
8721 if (code == LE_EXPR && sgn0 == 1)
8722 code = LT_EXPR;
8723 /* -CST < arg1 -> -CST-1 <= arg1. */
8724 else if (code == LT_EXPR && sgn0 == -1)
8725 code = LE_EXPR;
8726 /* CST > arg1 -> CST-1 >= arg1. */
8727 else if (code == GT_EXPR && sgn0 == 1)
8728 code = GE_EXPR;
8729 /* -CST >= arg1 -> -CST-1 > arg1. */
8730 else if (code == GE_EXPR && sgn0 == -1)
8731 code = GT_EXPR;
8732 else
8733 return NULL_TREE;
8734 /* arg1 code' CST' might be more canonical. */
8735 swap = true;
8736 }
8737 else
8738 {
8739 /* A - CST < arg1 -> A - CST-1 <= arg1. */
8740 if (code == LT_EXPR
8741 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8742 code = LE_EXPR;
8743 /* A + CST > arg1 -> A + CST-1 >= arg1. */
8744 else if (code == GT_EXPR
8745 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8746 code = GE_EXPR;
8747 /* A + CST <= arg1 -> A + CST-1 < arg1. */
8748 else if (code == LE_EXPR
8749 && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR))
8750 code = LT_EXPR;
8751 /* A - CST >= arg1 -> A - CST-1 > arg1. */
8752 else if (code == GE_EXPR
8753 && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR))
8754 code = GT_EXPR;
8755 else
8756 return NULL_TREE;
8757 *strict_overflow_p = true;
8758 }
8759
8760 /* Now build the constant reduced in magnitude. But not if that
8761 would produce one outside of its types range. */
8762 if (INTEGRAL_TYPE_P (TREE_TYPE (cst0))
8763 && ((sgn0 == 1
8764 && TYPE_MIN_VALUE (TREE_TYPE (cst0))
8765 && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0))))
8766 || (sgn0 == -1
8767 && TYPE_MAX_VALUE (TREE_TYPE (cst0))
8768 && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0))))))
8769 /* We cannot swap the comparison here as that would cause us to
8770 endlessly recurse. */
8771 return NULL_TREE;
8772
8773 t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR,
8774 cst0, build_int_cst (TREE_TYPE (cst0), 1), 0);
8775 if (code0 != INTEGER_CST)
8776 t = fold_build2 (code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t);
8777
8778 /* If swapping might yield to a more canonical form, do so. */
8779 if (swap)
8780 return fold_build2 (swap_tree_comparison (code), type, arg1, t);
8781 else
8782 return fold_build2 (code, type, t, arg1);
8783 }
8784
8785 /* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined
8786 overflow further. Try to decrease the magnitude of constants involved
8787 by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa
8788 and put sole constants at the second argument position.
8789 Returns the canonicalized tree if changed, otherwise NULL_TREE. */
8790
8791 static tree
8792 maybe_canonicalize_comparison (enum tree_code code, tree type,
8793 tree arg0, tree arg1)
8794 {
8795 tree t;
8796 bool strict_overflow_p;
8797 const char * const warnmsg = G_("assuming signed overflow does not occur "
8798 "when reducing constant in comparison");
8799
8800 /* Try canonicalization by simplifying arg0. */
8801 strict_overflow_p = false;
8802 t = maybe_canonicalize_comparison_1 (code, type, arg0, arg1,
8803 &strict_overflow_p);
8804 if (t)
8805 {
8806 if (strict_overflow_p)
8807 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8808 return t;
8809 }
8810
8811 /* Try canonicalization by simplifying arg1 using the swapped
8812 comparison. */
8813 code = swap_tree_comparison (code);
8814 strict_overflow_p = false;
8815 t = maybe_canonicalize_comparison_1 (code, type, arg1, arg0,
8816 &strict_overflow_p);
8817 if (t && strict_overflow_p)
8818 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE);
8819 return t;
8820 }
8821
8822 /* Return whether BASE + OFFSET + BITPOS may wrap around the address
8823 space. This is used to avoid issuing overflow warnings for
8824 expressions like &p->x which can not wrap. */
8825
8826 static bool
8827 pointer_may_wrap_p (tree base, tree offset, HOST_WIDE_INT bitpos)
8828 {
8829 unsigned HOST_WIDE_INT offset_low, total_low;
8830 HOST_WIDE_INT size, offset_high, total_high;
8831
8832 if (!POINTER_TYPE_P (TREE_TYPE (base)))
8833 return true;
8834
8835 if (bitpos < 0)
8836 return true;
8837
8838 if (offset == NULL_TREE)
8839 {
8840 offset_low = 0;
8841 offset_high = 0;
8842 }
8843 else if (TREE_CODE (offset) != INTEGER_CST || TREE_OVERFLOW (offset))
8844 return true;
8845 else
8846 {
8847 offset_low = TREE_INT_CST_LOW (offset);
8848 offset_high = TREE_INT_CST_HIGH (offset);
8849 }
8850
8851 if (add_double_with_sign (offset_low, offset_high,
8852 bitpos / BITS_PER_UNIT, 0,
8853 &total_low, &total_high,
8854 true))
8855 return true;
8856
8857 if (total_high != 0)
8858 return true;
8859
8860 size = int_size_in_bytes (TREE_TYPE (TREE_TYPE (base)));
8861 if (size <= 0)
8862 return true;
8863
8864 /* We can do slightly better for SIZE if we have an ADDR_EXPR of an
8865 array. */
8866 if (TREE_CODE (base) == ADDR_EXPR)
8867 {
8868 HOST_WIDE_INT base_size;
8869
8870 base_size = int_size_in_bytes (TREE_TYPE (TREE_OPERAND (base, 0)));
8871 if (base_size > 0 && size < base_size)
8872 size = base_size;
8873 }
8874
8875 return total_low > (unsigned HOST_WIDE_INT) size;
8876 }
8877
8878 /* Subroutine of fold_binary. This routine performs all of the
8879 transformations that are common to the equality/inequality
8880 operators (EQ_EXPR and NE_EXPR) and the ordering operators
8881 (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than
8882 fold_binary should call fold_binary. Fold a comparison with
8883 tree code CODE and type TYPE with operands OP0 and OP1. Return
8884 the folded comparison or NULL_TREE. */
8885
8886 static tree
8887 fold_comparison (enum tree_code code, tree type, tree op0, tree op1)
8888 {
8889 tree arg0, arg1, tem;
8890
8891 arg0 = op0;
8892 arg1 = op1;
8893
8894 STRIP_SIGN_NOPS (arg0);
8895 STRIP_SIGN_NOPS (arg1);
8896
8897 tem = fold_relational_const (code, type, arg0, arg1);
8898 if (tem != NULL_TREE)
8899 return tem;
8900
8901 /* If one arg is a real or integer constant, put it last. */
8902 if (tree_swap_operands_p (arg0, arg1, true))
8903 return fold_build2 (swap_tree_comparison (code), type, op1, op0);
8904
8905 /* Transform comparisons of the form X +- C1 CMP C2 to X CMP C2 +- C1. */
8906 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
8907 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
8908 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
8909 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
8910 && (TREE_CODE (arg1) == INTEGER_CST
8911 && !TREE_OVERFLOW (arg1)))
8912 {
8913 tree const1 = TREE_OPERAND (arg0, 1);
8914 tree const2 = arg1;
8915 tree variable = TREE_OPERAND (arg0, 0);
8916 tree lhs;
8917 int lhs_add;
8918 lhs_add = TREE_CODE (arg0) != PLUS_EXPR;
8919
8920 lhs = fold_build2 (lhs_add ? PLUS_EXPR : MINUS_EXPR,
8921 TREE_TYPE (arg1), const2, const1);
8922
8923 /* If the constant operation overflowed this can be
8924 simplified as a comparison against INT_MAX/INT_MIN. */
8925 if (TREE_CODE (lhs) == INTEGER_CST
8926 && TREE_OVERFLOW (lhs))
8927 {
8928 int const1_sgn = tree_int_cst_sgn (const1);
8929 enum tree_code code2 = code;
8930
8931 /* Get the sign of the constant on the lhs if the
8932 operation were VARIABLE + CONST1. */
8933 if (TREE_CODE (arg0) == MINUS_EXPR)
8934 const1_sgn = -const1_sgn;
8935
8936 /* The sign of the constant determines if we overflowed
8937 INT_MAX (const1_sgn == -1) or INT_MIN (const1_sgn == 1).
8938 Canonicalize to the INT_MIN overflow by swapping the comparison
8939 if necessary. */
8940 if (const1_sgn == -1)
8941 code2 = swap_tree_comparison (code);
8942
8943 /* We now can look at the canonicalized case
8944 VARIABLE + 1 CODE2 INT_MIN
8945 and decide on the result. */
8946 if (code2 == LT_EXPR
8947 || code2 == LE_EXPR
8948 || code2 == EQ_EXPR)
8949 return omit_one_operand (type, boolean_false_node, variable);
8950 else if (code2 == NE_EXPR
8951 || code2 == GE_EXPR
8952 || code2 == GT_EXPR)
8953 return omit_one_operand (type, boolean_true_node, variable);
8954 }
8955
8956 if (TREE_CODE (lhs) == TREE_CODE (arg1)
8957 && (TREE_CODE (lhs) != INTEGER_CST
8958 || !TREE_OVERFLOW (lhs)))
8959 {
8960 fold_overflow_warning (("assuming signed overflow does not occur "
8961 "when changing X +- C1 cmp C2 to "
8962 "X cmp C1 +- C2"),
8963 WARN_STRICT_OVERFLOW_COMPARISON);
8964 return fold_build2 (code, type, variable, lhs);
8965 }
8966 }
8967
8968 /* For comparisons of pointers we can decompose it to a compile time
8969 comparison of the base objects and the offsets into the object.
8970 This requires at least one operand being an ADDR_EXPR or a
8971 POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */
8972 if (POINTER_TYPE_P (TREE_TYPE (arg0))
8973 && (TREE_CODE (arg0) == ADDR_EXPR
8974 || TREE_CODE (arg1) == ADDR_EXPR
8975 || TREE_CODE (arg0) == POINTER_PLUS_EXPR
8976 || TREE_CODE (arg1) == POINTER_PLUS_EXPR))
8977 {
8978 tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE;
8979 HOST_WIDE_INT bitsize, bitpos0 = 0, bitpos1 = 0;
8980 enum machine_mode mode;
8981 int volatilep, unsignedp;
8982 bool indirect_base0 = false, indirect_base1 = false;
8983
8984 /* Get base and offset for the access. Strip ADDR_EXPR for
8985 get_inner_reference, but put it back by stripping INDIRECT_REF
8986 off the base object if possible. indirect_baseN will be true
8987 if baseN is not an address but refers to the object itself. */
8988 base0 = arg0;
8989 if (TREE_CODE (arg0) == ADDR_EXPR)
8990 {
8991 base0 = get_inner_reference (TREE_OPERAND (arg0, 0),
8992 &bitsize, &bitpos0, &offset0, &mode,
8993 &unsignedp, &volatilep, false);
8994 if (TREE_CODE (base0) == INDIRECT_REF)
8995 base0 = TREE_OPERAND (base0, 0);
8996 else
8997 indirect_base0 = true;
8998 }
8999 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9000 {
9001 base0 = TREE_OPERAND (arg0, 0);
9002 offset0 = TREE_OPERAND (arg0, 1);
9003 }
9004
9005 base1 = arg1;
9006 if (TREE_CODE (arg1) == ADDR_EXPR)
9007 {
9008 base1 = get_inner_reference (TREE_OPERAND (arg1, 0),
9009 &bitsize, &bitpos1, &offset1, &mode,
9010 &unsignedp, &volatilep, false);
9011 if (TREE_CODE (base1) == INDIRECT_REF)
9012 base1 = TREE_OPERAND (base1, 0);
9013 else
9014 indirect_base1 = true;
9015 }
9016 else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR)
9017 {
9018 base1 = TREE_OPERAND (arg1, 0);
9019 offset1 = TREE_OPERAND (arg1, 1);
9020 }
9021
9022 /* If we have equivalent bases we might be able to simplify. */
9023 if (indirect_base0 == indirect_base1
9024 && operand_equal_p (base0, base1, 0))
9025 {
9026 /* We can fold this expression to a constant if the non-constant
9027 offset parts are equal. */
9028 if ((offset0 == offset1
9029 || (offset0 && offset1
9030 && operand_equal_p (offset0, offset1, 0)))
9031 && (code == EQ_EXPR
9032 || code == NE_EXPR
9033 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9034
9035 {
9036 if (code != EQ_EXPR
9037 && code != NE_EXPR
9038 && bitpos0 != bitpos1
9039 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9040 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9041 fold_overflow_warning (("assuming pointer wraparound does not "
9042 "occur when comparing P +- C1 with "
9043 "P +- C2"),
9044 WARN_STRICT_OVERFLOW_CONDITIONAL);
9045
9046 switch (code)
9047 {
9048 case EQ_EXPR:
9049 return constant_boolean_node (bitpos0 == bitpos1, type);
9050 case NE_EXPR:
9051 return constant_boolean_node (bitpos0 != bitpos1, type);
9052 case LT_EXPR:
9053 return constant_boolean_node (bitpos0 < bitpos1, type);
9054 case LE_EXPR:
9055 return constant_boolean_node (bitpos0 <= bitpos1, type);
9056 case GE_EXPR:
9057 return constant_boolean_node (bitpos0 >= bitpos1, type);
9058 case GT_EXPR:
9059 return constant_boolean_node (bitpos0 > bitpos1, type);
9060 default:;
9061 }
9062 }
9063 /* We can simplify the comparison to a comparison of the variable
9064 offset parts if the constant offset parts are equal.
9065 Be careful to use signed size type here because otherwise we
9066 mess with array offsets in the wrong way. This is possible
9067 because pointer arithmetic is restricted to retain within an
9068 object and overflow on pointer differences is undefined as of
9069 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */
9070 else if (bitpos0 == bitpos1
9071 && ((code == EQ_EXPR || code == NE_EXPR)
9072 || POINTER_TYPE_OVERFLOW_UNDEFINED))
9073 {
9074 tree signed_size_type_node;
9075 signed_size_type_node = signed_type_for (size_type_node);
9076
9077 /* By converting to signed size type we cover middle-end pointer
9078 arithmetic which operates on unsigned pointer types of size
9079 type size and ARRAY_REF offsets which are properly sign or
9080 zero extended from their type in case it is narrower than
9081 size type. */
9082 if (offset0 == NULL_TREE)
9083 offset0 = build_int_cst (signed_size_type_node, 0);
9084 else
9085 offset0 = fold_convert (signed_size_type_node, offset0);
9086 if (offset1 == NULL_TREE)
9087 offset1 = build_int_cst (signed_size_type_node, 0);
9088 else
9089 offset1 = fold_convert (signed_size_type_node, offset1);
9090
9091 if (code != EQ_EXPR
9092 && code != NE_EXPR
9093 && (pointer_may_wrap_p (base0, offset0, bitpos0)
9094 || pointer_may_wrap_p (base1, offset1, bitpos1)))
9095 fold_overflow_warning (("assuming pointer wraparound does not "
9096 "occur when comparing P +- C1 with "
9097 "P +- C2"),
9098 WARN_STRICT_OVERFLOW_COMPARISON);
9099
9100 return fold_build2 (code, type, offset0, offset1);
9101 }
9102 }
9103 /* For non-equal bases we can simplify if they are addresses
9104 of local binding decls or constants. */
9105 else if (indirect_base0 && indirect_base1
9106 /* We know that !operand_equal_p (base0, base1, 0)
9107 because the if condition was false. But make
9108 sure two decls are not the same. */
9109 && base0 != base1
9110 && TREE_CODE (arg0) == ADDR_EXPR
9111 && TREE_CODE (arg1) == ADDR_EXPR
9112 && (((TREE_CODE (base0) == VAR_DECL
9113 || TREE_CODE (base0) == PARM_DECL)
9114 && (targetm.binds_local_p (base0)
9115 || CONSTANT_CLASS_P (base1)))
9116 || CONSTANT_CLASS_P (base0))
9117 && (((TREE_CODE (base1) == VAR_DECL
9118 || TREE_CODE (base1) == PARM_DECL)
9119 && (targetm.binds_local_p (base1)
9120 || CONSTANT_CLASS_P (base0)))
9121 || CONSTANT_CLASS_P (base1)))
9122 {
9123 if (code == EQ_EXPR)
9124 return omit_two_operands (type, boolean_false_node, arg0, arg1);
9125 else if (code == NE_EXPR)
9126 return omit_two_operands (type, boolean_true_node, arg0, arg1);
9127 }
9128 /* For equal offsets we can simplify to a comparison of the
9129 base addresses. */
9130 else if (bitpos0 == bitpos1
9131 && (indirect_base0
9132 ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0)
9133 && (indirect_base1
9134 ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1)
9135 && ((offset0 == offset1)
9136 || (offset0 && offset1
9137 && operand_equal_p (offset0, offset1, 0))))
9138 {
9139 if (indirect_base0)
9140 base0 = fold_addr_expr (base0);
9141 if (indirect_base1)
9142 base1 = fold_addr_expr (base1);
9143 return fold_build2 (code, type, base0, base1);
9144 }
9145 }
9146
9147 /* Transform comparisons of the form X +- C1 CMP Y +- C2 to
9148 X CMP Y +- C2 +- C1 for signed X, Y. This is valid if
9149 the resulting offset is smaller in absolute value than the
9150 original one. */
9151 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9152 && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
9153 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9154 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9155 && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR)
9156 && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9157 && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1))))
9158 {
9159 tree const1 = TREE_OPERAND (arg0, 1);
9160 tree const2 = TREE_OPERAND (arg1, 1);
9161 tree variable1 = TREE_OPERAND (arg0, 0);
9162 tree variable2 = TREE_OPERAND (arg1, 0);
9163 tree cst;
9164 const char * const warnmsg = G_("assuming signed overflow does not "
9165 "occur when combining constants around "
9166 "a comparison");
9167
9168 /* Put the constant on the side where it doesn't overflow and is
9169 of lower absolute value than before. */
9170 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9171 ? MINUS_EXPR : PLUS_EXPR,
9172 const2, const1, 0);
9173 if (!TREE_OVERFLOW (cst)
9174 && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2))
9175 {
9176 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9177 return fold_build2 (code, type,
9178 variable1,
9179 fold_build2 (TREE_CODE (arg1), TREE_TYPE (arg1),
9180 variable2, cst));
9181 }
9182
9183 cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1)
9184 ? MINUS_EXPR : PLUS_EXPR,
9185 const1, const2, 0);
9186 if (!TREE_OVERFLOW (cst)
9187 && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1))
9188 {
9189 fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON);
9190 return fold_build2 (code, type,
9191 fold_build2 (TREE_CODE (arg0), TREE_TYPE (arg0),
9192 variable1, cst),
9193 variable2);
9194 }
9195 }
9196
9197 /* Transform comparisons of the form X * C1 CMP 0 to X CMP 0 in the
9198 signed arithmetic case. That form is created by the compiler
9199 often enough for folding it to be of value. One example is in
9200 computing loop trip counts after Operator Strength Reduction. */
9201 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))
9202 && TREE_CODE (arg0) == MULT_EXPR
9203 && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9204 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1)))
9205 && integer_zerop (arg1))
9206 {
9207 tree const1 = TREE_OPERAND (arg0, 1);
9208 tree const2 = arg1; /* zero */
9209 tree variable1 = TREE_OPERAND (arg0, 0);
9210 enum tree_code cmp_code = code;
9211
9212 gcc_assert (!integer_zerop (const1));
9213
9214 fold_overflow_warning (("assuming signed overflow does not occur when "
9215 "eliminating multiplication in comparison "
9216 "with zero"),
9217 WARN_STRICT_OVERFLOW_COMPARISON);
9218
9219 /* If const1 is negative we swap the sense of the comparison. */
9220 if (tree_int_cst_sgn (const1) < 0)
9221 cmp_code = swap_tree_comparison (cmp_code);
9222
9223 return fold_build2 (cmp_code, type, variable1, const2);
9224 }
9225
9226 tem = maybe_canonicalize_comparison (code, type, op0, op1);
9227 if (tem)
9228 return tem;
9229
9230 if (FLOAT_TYPE_P (TREE_TYPE (arg0)))
9231 {
9232 tree targ0 = strip_float_extensions (arg0);
9233 tree targ1 = strip_float_extensions (arg1);
9234 tree newtype = TREE_TYPE (targ0);
9235
9236 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
9237 newtype = TREE_TYPE (targ1);
9238
9239 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
9240 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
9241 return fold_build2 (code, type, fold_convert (newtype, targ0),
9242 fold_convert (newtype, targ1));
9243
9244 /* (-a) CMP (-b) -> b CMP a */
9245 if (TREE_CODE (arg0) == NEGATE_EXPR
9246 && TREE_CODE (arg1) == NEGATE_EXPR)
9247 return fold_build2 (code, type, TREE_OPERAND (arg1, 0),
9248 TREE_OPERAND (arg0, 0));
9249
9250 if (TREE_CODE (arg1) == REAL_CST)
9251 {
9252 REAL_VALUE_TYPE cst;
9253 cst = TREE_REAL_CST (arg1);
9254
9255 /* (-a) CMP CST -> a swap(CMP) (-CST) */
9256 if (TREE_CODE (arg0) == NEGATE_EXPR)
9257 return fold_build2 (swap_tree_comparison (code), type,
9258 TREE_OPERAND (arg0, 0),
9259 build_real (TREE_TYPE (arg1),
9260 REAL_VALUE_NEGATE (cst)));
9261
9262 /* IEEE doesn't distinguish +0 and -0 in comparisons. */
9263 /* a CMP (-0) -> a CMP 0 */
9264 if (REAL_VALUE_MINUS_ZERO (cst))
9265 return fold_build2 (code, type, arg0,
9266 build_real (TREE_TYPE (arg1), dconst0));
9267
9268 /* x != NaN is always true, other ops are always false. */
9269 if (REAL_VALUE_ISNAN (cst)
9270 && ! HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg1))))
9271 {
9272 tem = (code == NE_EXPR) ? integer_one_node : integer_zero_node;
9273 return omit_one_operand (type, tem, arg0);
9274 }
9275
9276 /* Fold comparisons against infinity. */
9277 if (REAL_VALUE_ISINF (cst))
9278 {
9279 tem = fold_inf_compare (code, type, arg0, arg1);
9280 if (tem != NULL_TREE)
9281 return tem;
9282 }
9283 }
9284
9285 /* If this is a comparison of a real constant with a PLUS_EXPR
9286 or a MINUS_EXPR of a real constant, we can convert it into a
9287 comparison with a revised real constant as long as no overflow
9288 occurs when unsafe_math_optimizations are enabled. */
9289 if (flag_unsafe_math_optimizations
9290 && TREE_CODE (arg1) == REAL_CST
9291 && (TREE_CODE (arg0) == PLUS_EXPR
9292 || TREE_CODE (arg0) == MINUS_EXPR)
9293 && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
9294 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
9295 ? MINUS_EXPR : PLUS_EXPR,
9296 arg1, TREE_OPERAND (arg0, 1), 0))
9297 && !TREE_OVERFLOW (tem))
9298 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
9299
9300 /* Likewise, we can simplify a comparison of a real constant with
9301 a MINUS_EXPR whose first operand is also a real constant, i.e.
9302 (c1 - x) < c2 becomes x > c1-c2. Reordering is allowed on
9303 floating-point types only if -fassociative-math is set. */
9304 if (flag_associative_math
9305 && TREE_CODE (arg1) == REAL_CST
9306 && TREE_CODE (arg0) == MINUS_EXPR
9307 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST
9308 && 0 != (tem = const_binop (MINUS_EXPR, TREE_OPERAND (arg0, 0),
9309 arg1, 0))
9310 && !TREE_OVERFLOW (tem))
9311 return fold_build2 (swap_tree_comparison (code), type,
9312 TREE_OPERAND (arg0, 1), tem);
9313
9314 /* Fold comparisons against built-in math functions. */
9315 if (TREE_CODE (arg1) == REAL_CST
9316 && flag_unsafe_math_optimizations
9317 && ! flag_errno_math)
9318 {
9319 enum built_in_function fcode = builtin_mathfn_code (arg0);
9320
9321 if (fcode != END_BUILTINS)
9322 {
9323 tem = fold_mathfn_compare (fcode, code, type, arg0, arg1);
9324 if (tem != NULL_TREE)
9325 return tem;
9326 }
9327 }
9328 }
9329
9330 if (TREE_CODE (TREE_TYPE (arg0)) == INTEGER_TYPE
9331 && CONVERT_EXPR_P (arg0))
9332 {
9333 /* If we are widening one operand of an integer comparison,
9334 see if the other operand is similarly being widened. Perhaps we
9335 can do the comparison in the narrower type. */
9336 tem = fold_widened_comparison (code, type, arg0, arg1);
9337 if (tem)
9338 return tem;
9339
9340 /* Or if we are changing signedness. */
9341 tem = fold_sign_changed_comparison (code, type, arg0, arg1);
9342 if (tem)
9343 return tem;
9344 }
9345
9346 /* If this is comparing a constant with a MIN_EXPR or a MAX_EXPR of a
9347 constant, we can simplify it. */
9348 if (TREE_CODE (arg1) == INTEGER_CST
9349 && (TREE_CODE (arg0) == MIN_EXPR
9350 || TREE_CODE (arg0) == MAX_EXPR)
9351 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
9352 {
9353 tem = optimize_minmax_comparison (code, type, op0, op1);
9354 if (tem)
9355 return tem;
9356 }
9357
9358 /* Simplify comparison of something with itself. (For IEEE
9359 floating-point, we can only do some of these simplifications.) */
9360 if (operand_equal_p (arg0, arg1, 0))
9361 {
9362 switch (code)
9363 {
9364 case EQ_EXPR:
9365 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9366 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9367 return constant_boolean_node (1, type);
9368 break;
9369
9370 case GE_EXPR:
9371 case LE_EXPR:
9372 if (! FLOAT_TYPE_P (TREE_TYPE (arg0))
9373 || ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9374 return constant_boolean_node (1, type);
9375 return fold_build2 (EQ_EXPR, type, arg0, arg1);
9376
9377 case NE_EXPR:
9378 /* For NE, we can only do this simplification if integer
9379 or we don't honor IEEE floating point NaNs. */
9380 if (FLOAT_TYPE_P (TREE_TYPE (arg0))
9381 && HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0))))
9382 break;
9383 /* ... fall through ... */
9384 case GT_EXPR:
9385 case LT_EXPR:
9386 return constant_boolean_node (0, type);
9387 default:
9388 gcc_unreachable ();
9389 }
9390 }
9391
9392 /* If we are comparing an expression that just has comparisons
9393 of two integer values, arithmetic expressions of those comparisons,
9394 and constants, we can simplify it. There are only three cases
9395 to check: the two values can either be equal, the first can be
9396 greater, or the second can be greater. Fold the expression for
9397 those three values. Since each value must be 0 or 1, we have
9398 eight possibilities, each of which corresponds to the constant 0
9399 or 1 or one of the six possible comparisons.
9400
9401 This handles common cases like (a > b) == 0 but also handles
9402 expressions like ((x > y) - (y > x)) > 0, which supposedly
9403 occur in macroized code. */
9404
9405 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST)
9406 {
9407 tree cval1 = 0, cval2 = 0;
9408 int save_p = 0;
9409
9410 if (twoval_comparison_p (arg0, &cval1, &cval2, &save_p)
9411 /* Don't handle degenerate cases here; they should already
9412 have been handled anyway. */
9413 && cval1 != 0 && cval2 != 0
9414 && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2))
9415 && TREE_TYPE (cval1) == TREE_TYPE (cval2)
9416 && INTEGRAL_TYPE_P (TREE_TYPE (cval1))
9417 && TYPE_MAX_VALUE (TREE_TYPE (cval1))
9418 && TYPE_MAX_VALUE (TREE_TYPE (cval2))
9419 && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)),
9420 TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0))
9421 {
9422 tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1));
9423 tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1));
9424
9425 /* We can't just pass T to eval_subst in case cval1 or cval2
9426 was the same as ARG1. */
9427
9428 tree high_result
9429 = fold_build2 (code, type,
9430 eval_subst (arg0, cval1, maxval,
9431 cval2, minval),
9432 arg1);
9433 tree equal_result
9434 = fold_build2 (code, type,
9435 eval_subst (arg0, cval1, maxval,
9436 cval2, maxval),
9437 arg1);
9438 tree low_result
9439 = fold_build2 (code, type,
9440 eval_subst (arg0, cval1, minval,
9441 cval2, maxval),
9442 arg1);
9443
9444 /* All three of these results should be 0 or 1. Confirm they are.
9445 Then use those values to select the proper code to use. */
9446
9447 if (TREE_CODE (high_result) == INTEGER_CST
9448 && TREE_CODE (equal_result) == INTEGER_CST
9449 && TREE_CODE (low_result) == INTEGER_CST)
9450 {
9451 /* Make a 3-bit mask with the high-order bit being the
9452 value for `>', the next for '=', and the low for '<'. */
9453 switch ((integer_onep (high_result) * 4)
9454 + (integer_onep (equal_result) * 2)
9455 + integer_onep (low_result))
9456 {
9457 case 0:
9458 /* Always false. */
9459 return omit_one_operand (type, integer_zero_node, arg0);
9460 case 1:
9461 code = LT_EXPR;
9462 break;
9463 case 2:
9464 code = EQ_EXPR;
9465 break;
9466 case 3:
9467 code = LE_EXPR;
9468 break;
9469 case 4:
9470 code = GT_EXPR;
9471 break;
9472 case 5:
9473 code = NE_EXPR;
9474 break;
9475 case 6:
9476 code = GE_EXPR;
9477 break;
9478 case 7:
9479 /* Always true. */
9480 return omit_one_operand (type, integer_one_node, arg0);
9481 }
9482
9483 if (save_p)
9484 return save_expr (build2 (code, type, cval1, cval2));
9485 return fold_build2 (code, type, cval1, cval2);
9486 }
9487 }
9488 }
9489
9490 /* We can fold X/C1 op C2 where C1 and C2 are integer constants
9491 into a single range test. */
9492 if ((TREE_CODE (arg0) == TRUNC_DIV_EXPR
9493 || TREE_CODE (arg0) == EXACT_DIV_EXPR)
9494 && TREE_CODE (arg1) == INTEGER_CST
9495 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9496 && !integer_zerop (TREE_OPERAND (arg0, 1))
9497 && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))
9498 && !TREE_OVERFLOW (arg1))
9499 {
9500 tem = fold_div_compare (code, type, arg0, arg1);
9501 if (tem != NULL_TREE)
9502 return tem;
9503 }
9504
9505 /* Fold ~X op ~Y as Y op X. */
9506 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9507 && TREE_CODE (arg1) == BIT_NOT_EXPR)
9508 {
9509 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9510 return fold_build2 (code, type,
9511 fold_convert (cmp_type, TREE_OPERAND (arg1, 0)),
9512 TREE_OPERAND (arg0, 0));
9513 }
9514
9515 /* Fold ~X op C as X op' ~C, where op' is the swapped comparison. */
9516 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9517 && TREE_CODE (arg1) == INTEGER_CST)
9518 {
9519 tree cmp_type = TREE_TYPE (TREE_OPERAND (arg0, 0));
9520 return fold_build2 (swap_tree_comparison (code), type,
9521 TREE_OPERAND (arg0, 0),
9522 fold_build1 (BIT_NOT_EXPR, cmp_type,
9523 fold_convert (cmp_type, arg1)));
9524 }
9525
9526 return NULL_TREE;
9527 }
9528
9529
9530 /* Subroutine of fold_binary. Optimize complex multiplications of the
9531 form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The
9532 argument EXPR represents the expression "z" of type TYPE. */
9533
9534 static tree
9535 fold_mult_zconjz (tree type, tree expr)
9536 {
9537 tree itype = TREE_TYPE (type);
9538 tree rpart, ipart, tem;
9539
9540 if (TREE_CODE (expr) == COMPLEX_EXPR)
9541 {
9542 rpart = TREE_OPERAND (expr, 0);
9543 ipart = TREE_OPERAND (expr, 1);
9544 }
9545 else if (TREE_CODE (expr) == COMPLEX_CST)
9546 {
9547 rpart = TREE_REALPART (expr);
9548 ipart = TREE_IMAGPART (expr);
9549 }
9550 else
9551 {
9552 expr = save_expr (expr);
9553 rpart = fold_build1 (REALPART_EXPR, itype, expr);
9554 ipart = fold_build1 (IMAGPART_EXPR, itype, expr);
9555 }
9556
9557 rpart = save_expr (rpart);
9558 ipart = save_expr (ipart);
9559 tem = fold_build2 (PLUS_EXPR, itype,
9560 fold_build2 (MULT_EXPR, itype, rpart, rpart),
9561 fold_build2 (MULT_EXPR, itype, ipart, ipart));
9562 return fold_build2 (COMPLEX_EXPR, type, tem,
9563 fold_convert (itype, integer_zero_node));
9564 }
9565
9566
9567 /* Subroutine of fold_binary. If P is the value of EXPR, computes
9568 power-of-two M and (arbitrary) N such that M divides (P-N). This condition
9569 guarantees that P and N have the same least significant log2(M) bits.
9570 N is not otherwise constrained. In particular, N is not normalized to
9571 0 <= N < M as is common. In general, the precise value of P is unknown.
9572 M is chosen as large as possible such that constant N can be determined.
9573
9574 Returns M and sets *RESIDUE to N. */
9575
9576 static unsigned HOST_WIDE_INT
9577 get_pointer_modulus_and_residue (tree expr, unsigned HOST_WIDE_INT *residue)
9578 {
9579 enum tree_code code;
9580
9581 *residue = 0;
9582
9583 code = TREE_CODE (expr);
9584 if (code == ADDR_EXPR)
9585 {
9586 expr = TREE_OPERAND (expr, 0);
9587 if (handled_component_p (expr))
9588 {
9589 HOST_WIDE_INT bitsize, bitpos;
9590 tree offset;
9591 enum machine_mode mode;
9592 int unsignedp, volatilep;
9593
9594 expr = get_inner_reference (expr, &bitsize, &bitpos, &offset,
9595 &mode, &unsignedp, &volatilep, false);
9596 *residue = bitpos / BITS_PER_UNIT;
9597 if (offset)
9598 {
9599 if (TREE_CODE (offset) == INTEGER_CST)
9600 *residue += TREE_INT_CST_LOW (offset);
9601 else
9602 /* We don't handle more complicated offset expressions. */
9603 return 1;
9604 }
9605 }
9606
9607 if (DECL_P (expr) && TREE_CODE (expr) != FUNCTION_DECL)
9608 return DECL_ALIGN_UNIT (expr);
9609 }
9610 else if (code == POINTER_PLUS_EXPR)
9611 {
9612 tree op0, op1;
9613 unsigned HOST_WIDE_INT modulus;
9614 enum tree_code inner_code;
9615
9616 op0 = TREE_OPERAND (expr, 0);
9617 STRIP_NOPS (op0);
9618 modulus = get_pointer_modulus_and_residue (op0, residue);
9619
9620 op1 = TREE_OPERAND (expr, 1);
9621 STRIP_NOPS (op1);
9622 inner_code = TREE_CODE (op1);
9623 if (inner_code == INTEGER_CST)
9624 {
9625 *residue += TREE_INT_CST_LOW (op1);
9626 return modulus;
9627 }
9628 else if (inner_code == MULT_EXPR)
9629 {
9630 op1 = TREE_OPERAND (op1, 1);
9631 if (TREE_CODE (op1) == INTEGER_CST)
9632 {
9633 unsigned HOST_WIDE_INT align;
9634
9635 /* Compute the greatest power-of-2 divisor of op1. */
9636 align = TREE_INT_CST_LOW (op1);
9637 align &= -align;
9638
9639 /* If align is non-zero and less than *modulus, replace
9640 *modulus with align., If align is 0, then either op1 is 0
9641 or the greatest power-of-2 divisor of op1 doesn't fit in an
9642 unsigned HOST_WIDE_INT. In either case, no additional
9643 constraint is imposed. */
9644 if (align)
9645 modulus = MIN (modulus, align);
9646
9647 return modulus;
9648 }
9649 }
9650 }
9651
9652 /* If we get here, we were unable to determine anything useful about the
9653 expression. */
9654 return 1;
9655 }
9656
9657
9658 /* Fold a binary expression of code CODE and type TYPE with operands
9659 OP0 and OP1. Return the folded expression if folding is
9660 successful. Otherwise, return NULL_TREE. */
9661
9662 tree
9663 fold_binary (enum tree_code code, tree type, tree op0, tree op1)
9664 {
9665 enum tree_code_class kind = TREE_CODE_CLASS (code);
9666 tree arg0, arg1, tem;
9667 tree t1 = NULL_TREE;
9668 bool strict_overflow_p;
9669
9670 gcc_assert (IS_EXPR_CODE_CLASS (kind)
9671 && TREE_CODE_LENGTH (code) == 2
9672 && op0 != NULL_TREE
9673 && op1 != NULL_TREE);
9674
9675 arg0 = op0;
9676 arg1 = op1;
9677
9678 /* Strip any conversions that don't change the mode. This is
9679 safe for every expression, except for a comparison expression
9680 because its signedness is derived from its operands. So, in
9681 the latter case, only strip conversions that don't change the
9682 signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments
9683 preserved.
9684
9685 Note that this is done as an internal manipulation within the
9686 constant folder, in order to find the simplest representation
9687 of the arguments so that their form can be studied. In any
9688 cases, the appropriate type conversions should be put back in
9689 the tree that will get out of the constant folder. */
9690
9691 if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR)
9692 {
9693 STRIP_SIGN_NOPS (arg0);
9694 STRIP_SIGN_NOPS (arg1);
9695 }
9696 else
9697 {
9698 STRIP_NOPS (arg0);
9699 STRIP_NOPS (arg1);
9700 }
9701
9702 /* Note that TREE_CONSTANT isn't enough: static var addresses are
9703 constant but we can't do arithmetic on them. */
9704 if ((TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9705 || (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
9706 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == FIXED_CST)
9707 || (TREE_CODE (arg0) == FIXED_CST && TREE_CODE (arg1) == INTEGER_CST)
9708 || (TREE_CODE (arg0) == COMPLEX_CST && TREE_CODE (arg1) == COMPLEX_CST)
9709 || (TREE_CODE (arg0) == VECTOR_CST && TREE_CODE (arg1) == VECTOR_CST))
9710 {
9711 if (kind == tcc_binary)
9712 {
9713 /* Make sure type and arg0 have the same saturating flag. */
9714 gcc_assert (TYPE_SATURATING (type)
9715 == TYPE_SATURATING (TREE_TYPE (arg0)));
9716 tem = const_binop (code, arg0, arg1, 0);
9717 }
9718 else if (kind == tcc_comparison)
9719 tem = fold_relational_const (code, type, arg0, arg1);
9720 else
9721 tem = NULL_TREE;
9722
9723 if (tem != NULL_TREE)
9724 {
9725 if (TREE_TYPE (tem) != type)
9726 tem = fold_convert (type, tem);
9727 return tem;
9728 }
9729 }
9730
9731 /* If this is a commutative operation, and ARG0 is a constant, move it
9732 to ARG1 to reduce the number of tests below. */
9733 if (commutative_tree_code (code)
9734 && tree_swap_operands_p (arg0, arg1, true))
9735 return fold_build2 (code, type, op1, op0);
9736
9737 /* ARG0 is the first operand of EXPR, and ARG1 is the second operand.
9738
9739 First check for cases where an arithmetic operation is applied to a
9740 compound, conditional, or comparison operation. Push the arithmetic
9741 operation inside the compound or conditional to see if any folding
9742 can then be done. Convert comparison to conditional for this purpose.
9743 The also optimizes non-constant cases that used to be done in
9744 expand_expr.
9745
9746 Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR,
9747 one of the operands is a comparison and the other is a comparison, a
9748 BIT_AND_EXPR with the constant 1, or a truth value. In that case, the
9749 code below would make the expression more complex. Change it to a
9750 TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to
9751 TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */
9752
9753 if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR
9754 || code == EQ_EXPR || code == NE_EXPR)
9755 && ((truth_value_p (TREE_CODE (arg0))
9756 && (truth_value_p (TREE_CODE (arg1))
9757 || (TREE_CODE (arg1) == BIT_AND_EXPR
9758 && integer_onep (TREE_OPERAND (arg1, 1)))))
9759 || (truth_value_p (TREE_CODE (arg1))
9760 && (truth_value_p (TREE_CODE (arg0))
9761 || (TREE_CODE (arg0) == BIT_AND_EXPR
9762 && integer_onep (TREE_OPERAND (arg0, 1)))))))
9763 {
9764 tem = fold_build2 (code == BIT_AND_EXPR ? TRUTH_AND_EXPR
9765 : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR
9766 : TRUTH_XOR_EXPR,
9767 boolean_type_node,
9768 fold_convert (boolean_type_node, arg0),
9769 fold_convert (boolean_type_node, arg1));
9770
9771 if (code == EQ_EXPR)
9772 tem = invert_truthvalue (tem);
9773
9774 return fold_convert (type, tem);
9775 }
9776
9777 if (TREE_CODE_CLASS (code) == tcc_binary
9778 || TREE_CODE_CLASS (code) == tcc_comparison)
9779 {
9780 if (TREE_CODE (arg0) == COMPOUND_EXPR)
9781 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0),
9782 fold_build2 (code, type,
9783 fold_convert (TREE_TYPE (op0),
9784 TREE_OPERAND (arg0, 1)),
9785 op1));
9786 if (TREE_CODE (arg1) == COMPOUND_EXPR
9787 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
9788 return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0),
9789 fold_build2 (code, type, op0,
9790 fold_convert (TREE_TYPE (op1),
9791 TREE_OPERAND (arg1, 1))));
9792
9793 if (TREE_CODE (arg0) == COND_EXPR || COMPARISON_CLASS_P (arg0))
9794 {
9795 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9796 arg0, arg1,
9797 /*cond_first_p=*/1);
9798 if (tem != NULL_TREE)
9799 return tem;
9800 }
9801
9802 if (TREE_CODE (arg1) == COND_EXPR || COMPARISON_CLASS_P (arg1))
9803 {
9804 tem = fold_binary_op_with_conditional_arg (code, type, op0, op1,
9805 arg1, arg0,
9806 /*cond_first_p=*/0);
9807 if (tem != NULL_TREE)
9808 return tem;
9809 }
9810 }
9811
9812 switch (code)
9813 {
9814 case POINTER_PLUS_EXPR:
9815 /* 0 +p index -> (type)index */
9816 if (integer_zerop (arg0))
9817 return non_lvalue (fold_convert (type, arg1));
9818
9819 /* PTR +p 0 -> PTR */
9820 if (integer_zerop (arg1))
9821 return non_lvalue (fold_convert (type, arg0));
9822
9823 /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */
9824 if (INTEGRAL_TYPE_P (TREE_TYPE (arg1))
9825 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9826 return fold_convert (type, fold_build2 (PLUS_EXPR, sizetype,
9827 fold_convert (sizetype, arg1),
9828 fold_convert (sizetype, arg0)));
9829
9830 /* index +p PTR -> PTR +p index */
9831 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9832 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9833 return fold_build2 (POINTER_PLUS_EXPR, type,
9834 fold_convert (type, arg1),
9835 fold_convert (sizetype, arg0));
9836
9837 /* (PTR +p B) +p A -> PTR +p (B + A) */
9838 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
9839 {
9840 tree inner;
9841 tree arg01 = fold_convert (sizetype, TREE_OPERAND (arg0, 1));
9842 tree arg00 = TREE_OPERAND (arg0, 0);
9843 inner = fold_build2 (PLUS_EXPR, sizetype,
9844 arg01, fold_convert (sizetype, arg1));
9845 return fold_convert (type,
9846 fold_build2 (POINTER_PLUS_EXPR,
9847 TREE_TYPE (arg00), arg00, inner));
9848 }
9849
9850 /* PTR_CST +p CST -> CST1 */
9851 if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST)
9852 return fold_build2 (PLUS_EXPR, type, arg0, fold_convert (type, arg1));
9853
9854 /* Try replacing &a[i1] +p c * i2 with &a[i1 + i2], if c is step
9855 of the array. Loop optimizer sometimes produce this type of
9856 expressions. */
9857 if (TREE_CODE (arg0) == ADDR_EXPR)
9858 {
9859 tem = try_move_mult_to_index (arg0, fold_convert (sizetype, arg1));
9860 if (tem)
9861 return fold_convert (type, tem);
9862 }
9863
9864 return NULL_TREE;
9865
9866 case PLUS_EXPR:
9867 /* PTR + INT -> (INT)(PTR p+ INT) */
9868 if (POINTER_TYPE_P (TREE_TYPE (arg0))
9869 && INTEGRAL_TYPE_P (TREE_TYPE (arg1)))
9870 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9871 TREE_TYPE (arg0),
9872 arg0,
9873 fold_convert (sizetype, arg1)));
9874 /* INT + PTR -> (INT)(PTR p+ INT) */
9875 if (POINTER_TYPE_P (TREE_TYPE (arg1))
9876 && INTEGRAL_TYPE_P (TREE_TYPE (arg0)))
9877 return fold_convert (type, fold_build2 (POINTER_PLUS_EXPR,
9878 TREE_TYPE (arg1),
9879 arg1,
9880 fold_convert (sizetype, arg0)));
9881 /* A + (-B) -> A - B */
9882 if (TREE_CODE (arg1) == NEGATE_EXPR)
9883 return fold_build2 (MINUS_EXPR, type,
9884 fold_convert (type, arg0),
9885 fold_convert (type, TREE_OPERAND (arg1, 0)));
9886 /* (-A) + B -> B - A */
9887 if (TREE_CODE (arg0) == NEGATE_EXPR
9888 && reorder_operands_p (TREE_OPERAND (arg0, 0), arg1))
9889 return fold_build2 (MINUS_EXPR, type,
9890 fold_convert (type, arg1),
9891 fold_convert (type, TREE_OPERAND (arg0, 0)));
9892
9893 if (INTEGRAL_TYPE_P (type))
9894 {
9895 /* Convert ~A + 1 to -A. */
9896 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9897 && integer_onep (arg1))
9898 return fold_build1 (NEGATE_EXPR, type,
9899 fold_convert (type, TREE_OPERAND (arg0, 0)));
9900
9901 /* ~X + X is -1. */
9902 if (TREE_CODE (arg0) == BIT_NOT_EXPR
9903 && !TYPE_OVERFLOW_TRAPS (type))
9904 {
9905 tree tem = TREE_OPERAND (arg0, 0);
9906
9907 STRIP_NOPS (tem);
9908 if (operand_equal_p (tem, arg1, 0))
9909 {
9910 t1 = build_int_cst_type (type, -1);
9911 return omit_one_operand (type, t1, arg1);
9912 }
9913 }
9914
9915 /* X + ~X is -1. */
9916 if (TREE_CODE (arg1) == BIT_NOT_EXPR
9917 && !TYPE_OVERFLOW_TRAPS (type))
9918 {
9919 tree tem = TREE_OPERAND (arg1, 0);
9920
9921 STRIP_NOPS (tem);
9922 if (operand_equal_p (arg0, tem, 0))
9923 {
9924 t1 = build_int_cst_type (type, -1);
9925 return omit_one_operand (type, t1, arg0);
9926 }
9927 }
9928
9929 /* X + (X / CST) * -CST is X % CST. */
9930 if (TREE_CODE (arg1) == MULT_EXPR
9931 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
9932 && operand_equal_p (arg0,
9933 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0))
9934 {
9935 tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1);
9936 tree cst1 = TREE_OPERAND (arg1, 1);
9937 tree sum = fold_binary (PLUS_EXPR, TREE_TYPE (cst1), cst1, cst0);
9938 if (sum && integer_zerop (sum))
9939 return fold_convert (type,
9940 fold_build2 (TRUNC_MOD_EXPR,
9941 TREE_TYPE (arg0), arg0, cst0));
9942 }
9943 }
9944
9945 /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the
9946 same or one. Make sure type is not saturating.
9947 fold_plusminus_mult_expr will re-associate. */
9948 if ((TREE_CODE (arg0) == MULT_EXPR
9949 || TREE_CODE (arg1) == MULT_EXPR)
9950 && !TYPE_SATURATING (type)
9951 && (!FLOAT_TYPE_P (type) || flag_associative_math))
9952 {
9953 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
9954 if (tem)
9955 return tem;
9956 }
9957
9958 if (! FLOAT_TYPE_P (type))
9959 {
9960 if (integer_zerop (arg1))
9961 return non_lvalue (fold_convert (type, arg0));
9962
9963 /* If we are adding two BIT_AND_EXPR's, both of which are and'ing
9964 with a constant, and the two constants have no bits in common,
9965 we should treat this as a BIT_IOR_EXPR since this may produce more
9966 simplifications. */
9967 if (TREE_CODE (arg0) == BIT_AND_EXPR
9968 && TREE_CODE (arg1) == BIT_AND_EXPR
9969 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
9970 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
9971 && integer_zerop (const_binop (BIT_AND_EXPR,
9972 TREE_OPERAND (arg0, 1),
9973 TREE_OPERAND (arg1, 1), 0)))
9974 {
9975 code = BIT_IOR_EXPR;
9976 goto bit_ior;
9977 }
9978
9979 /* Reassociate (plus (plus (mult) (foo)) (mult)) as
9980 (plus (plus (mult) (mult)) (foo)) so that we can
9981 take advantage of the factoring cases below. */
9982 if (((TREE_CODE (arg0) == PLUS_EXPR
9983 || TREE_CODE (arg0) == MINUS_EXPR)
9984 && TREE_CODE (arg1) == MULT_EXPR)
9985 || ((TREE_CODE (arg1) == PLUS_EXPR
9986 || TREE_CODE (arg1) == MINUS_EXPR)
9987 && TREE_CODE (arg0) == MULT_EXPR))
9988 {
9989 tree parg0, parg1, parg, marg;
9990 enum tree_code pcode;
9991
9992 if (TREE_CODE (arg1) == MULT_EXPR)
9993 parg = arg0, marg = arg1;
9994 else
9995 parg = arg1, marg = arg0;
9996 pcode = TREE_CODE (parg);
9997 parg0 = TREE_OPERAND (parg, 0);
9998 parg1 = TREE_OPERAND (parg, 1);
9999 STRIP_NOPS (parg0);
10000 STRIP_NOPS (parg1);
10001
10002 if (TREE_CODE (parg0) == MULT_EXPR
10003 && TREE_CODE (parg1) != MULT_EXPR)
10004 return fold_build2 (pcode, type,
10005 fold_build2 (PLUS_EXPR, type,
10006 fold_convert (type, parg0),
10007 fold_convert (type, marg)),
10008 fold_convert (type, parg1));
10009 if (TREE_CODE (parg0) != MULT_EXPR
10010 && TREE_CODE (parg1) == MULT_EXPR)
10011 return fold_build2 (PLUS_EXPR, type,
10012 fold_convert (type, parg0),
10013 fold_build2 (pcode, type,
10014 fold_convert (type, marg),
10015 fold_convert (type,
10016 parg1)));
10017 }
10018 }
10019 else
10020 {
10021 /* See if ARG1 is zero and X + ARG1 reduces to X. */
10022 if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 0))
10023 return non_lvalue (fold_convert (type, arg0));
10024
10025 /* Likewise if the operands are reversed. */
10026 if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10027 return non_lvalue (fold_convert (type, arg1));
10028
10029 /* Convert X + -C into X - C. */
10030 if (TREE_CODE (arg1) == REAL_CST
10031 && REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1)))
10032 {
10033 tem = fold_negate_const (arg1, type);
10034 if (!TREE_OVERFLOW (arg1) || !flag_trapping_math)
10035 return fold_build2 (MINUS_EXPR, type,
10036 fold_convert (type, arg0),
10037 fold_convert (type, tem));
10038 }
10039
10040 /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y )
10041 to __complex__ ( x, y ). This is not the same for SNaNs or
10042 if signed zeros are involved. */
10043 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10044 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10045 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10046 {
10047 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10048 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10049 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10050 bool arg0rz = false, arg0iz = false;
10051 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10052 || (arg0i && (arg0iz = real_zerop (arg0i))))
10053 {
10054 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10055 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10056 if (arg0rz && arg1i && real_zerop (arg1i))
10057 {
10058 tree rp = arg1r ? arg1r
10059 : build1 (REALPART_EXPR, rtype, arg1);
10060 tree ip = arg0i ? arg0i
10061 : build1 (IMAGPART_EXPR, rtype, arg0);
10062 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10063 }
10064 else if (arg0iz && arg1r && real_zerop (arg1r))
10065 {
10066 tree rp = arg0r ? arg0r
10067 : build1 (REALPART_EXPR, rtype, arg0);
10068 tree ip = arg1i ? arg1i
10069 : build1 (IMAGPART_EXPR, rtype, arg1);
10070 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10071 }
10072 }
10073 }
10074
10075 if (flag_unsafe_math_optimizations
10076 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10077 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10078 && (tem = distribute_real_division (code, type, arg0, arg1)))
10079 return tem;
10080
10081 /* Convert x+x into x*2.0. */
10082 if (operand_equal_p (arg0, arg1, 0)
10083 && SCALAR_FLOAT_TYPE_P (type))
10084 return fold_build2 (MULT_EXPR, type, arg0,
10085 build_real (type, dconst2));
10086
10087 /* Convert a + (b*c + d*e) into (a + b*c) + d*e.
10088 We associate floats only if the user has specified
10089 -fassociative-math. */
10090 if (flag_associative_math
10091 && TREE_CODE (arg1) == PLUS_EXPR
10092 && TREE_CODE (arg0) != MULT_EXPR)
10093 {
10094 tree tree10 = TREE_OPERAND (arg1, 0);
10095 tree tree11 = TREE_OPERAND (arg1, 1);
10096 if (TREE_CODE (tree11) == MULT_EXPR
10097 && TREE_CODE (tree10) == MULT_EXPR)
10098 {
10099 tree tree0;
10100 tree0 = fold_build2 (PLUS_EXPR, type, arg0, tree10);
10101 return fold_build2 (PLUS_EXPR, type, tree0, tree11);
10102 }
10103 }
10104 /* Convert (b*c + d*e) + a into b*c + (d*e +a).
10105 We associate floats only if the user has specified
10106 -fassociative-math. */
10107 if (flag_associative_math
10108 && TREE_CODE (arg0) == PLUS_EXPR
10109 && TREE_CODE (arg1) != MULT_EXPR)
10110 {
10111 tree tree00 = TREE_OPERAND (arg0, 0);
10112 tree tree01 = TREE_OPERAND (arg0, 1);
10113 if (TREE_CODE (tree01) == MULT_EXPR
10114 && TREE_CODE (tree00) == MULT_EXPR)
10115 {
10116 tree tree0;
10117 tree0 = fold_build2 (PLUS_EXPR, type, tree01, arg1);
10118 return fold_build2 (PLUS_EXPR, type, tree00, tree0);
10119 }
10120 }
10121 }
10122
10123 bit_rotate:
10124 /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A
10125 is a rotate of A by C1 bits. */
10126 /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A
10127 is a rotate of A by B bits. */
10128 {
10129 enum tree_code code0, code1;
10130 tree rtype;
10131 code0 = TREE_CODE (arg0);
10132 code1 = TREE_CODE (arg1);
10133 if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR)
10134 || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR))
10135 && operand_equal_p (TREE_OPERAND (arg0, 0),
10136 TREE_OPERAND (arg1, 0), 0)
10137 && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)),
10138 TYPE_UNSIGNED (rtype))
10139 /* Only create rotates in complete modes. Other cases are not
10140 expanded properly. */
10141 && TYPE_PRECISION (rtype) == GET_MODE_PRECISION (TYPE_MODE (rtype)))
10142 {
10143 tree tree01, tree11;
10144 enum tree_code code01, code11;
10145
10146 tree01 = TREE_OPERAND (arg0, 1);
10147 tree11 = TREE_OPERAND (arg1, 1);
10148 STRIP_NOPS (tree01);
10149 STRIP_NOPS (tree11);
10150 code01 = TREE_CODE (tree01);
10151 code11 = TREE_CODE (tree11);
10152 if (code01 == INTEGER_CST
10153 && code11 == INTEGER_CST
10154 && TREE_INT_CST_HIGH (tree01) == 0
10155 && TREE_INT_CST_HIGH (tree11) == 0
10156 && ((TREE_INT_CST_LOW (tree01) + TREE_INT_CST_LOW (tree11))
10157 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)))))
10158 return build2 (LROTATE_EXPR, type, TREE_OPERAND (arg0, 0),
10159 code0 == LSHIFT_EXPR ? tree01 : tree11);
10160 else if (code11 == MINUS_EXPR)
10161 {
10162 tree tree110, tree111;
10163 tree110 = TREE_OPERAND (tree11, 0);
10164 tree111 = TREE_OPERAND (tree11, 1);
10165 STRIP_NOPS (tree110);
10166 STRIP_NOPS (tree111);
10167 if (TREE_CODE (tree110) == INTEGER_CST
10168 && 0 == compare_tree_int (tree110,
10169 TYPE_PRECISION
10170 (TREE_TYPE (TREE_OPERAND
10171 (arg0, 0))))
10172 && operand_equal_p (tree01, tree111, 0))
10173 return build2 ((code0 == LSHIFT_EXPR
10174 ? LROTATE_EXPR
10175 : RROTATE_EXPR),
10176 type, TREE_OPERAND (arg0, 0), tree01);
10177 }
10178 else if (code01 == MINUS_EXPR)
10179 {
10180 tree tree010, tree011;
10181 tree010 = TREE_OPERAND (tree01, 0);
10182 tree011 = TREE_OPERAND (tree01, 1);
10183 STRIP_NOPS (tree010);
10184 STRIP_NOPS (tree011);
10185 if (TREE_CODE (tree010) == INTEGER_CST
10186 && 0 == compare_tree_int (tree010,
10187 TYPE_PRECISION
10188 (TREE_TYPE (TREE_OPERAND
10189 (arg0, 0))))
10190 && operand_equal_p (tree11, tree011, 0))
10191 return build2 ((code0 != LSHIFT_EXPR
10192 ? LROTATE_EXPR
10193 : RROTATE_EXPR),
10194 type, TREE_OPERAND (arg0, 0), tree11);
10195 }
10196 }
10197 }
10198
10199 associate:
10200 /* In most languages, can't associate operations on floats through
10201 parentheses. Rather than remember where the parentheses were, we
10202 don't associate floats at all, unless the user has specified
10203 -fassociative-math.
10204 And, we need to make sure type is not saturating. */
10205
10206 if ((! FLOAT_TYPE_P (type) || flag_associative_math)
10207 && !TYPE_SATURATING (type))
10208 {
10209 tree var0, con0, lit0, minus_lit0;
10210 tree var1, con1, lit1, minus_lit1;
10211 bool ok = true;
10212
10213 /* Split both trees into variables, constants, and literals. Then
10214 associate each group together, the constants with literals,
10215 then the result with variables. This increases the chances of
10216 literals being recombined later and of generating relocatable
10217 expressions for the sum of a constant and literal. */
10218 var0 = split_tree (arg0, code, &con0, &lit0, &minus_lit0, 0);
10219 var1 = split_tree (arg1, code, &con1, &lit1, &minus_lit1,
10220 code == MINUS_EXPR);
10221
10222 /* With undefined overflow we can only associate constants
10223 with one variable. */
10224 if (((POINTER_TYPE_P (type) && POINTER_TYPE_OVERFLOW_UNDEFINED)
10225 || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type)))
10226 && var0 && var1)
10227 {
10228 tree tmp0 = var0;
10229 tree tmp1 = var1;
10230
10231 if (TREE_CODE (tmp0) == NEGATE_EXPR)
10232 tmp0 = TREE_OPERAND (tmp0, 0);
10233 if (TREE_CODE (tmp1) == NEGATE_EXPR)
10234 tmp1 = TREE_OPERAND (tmp1, 0);
10235 /* The only case we can still associate with two variables
10236 is if they are the same, modulo negation. */
10237 if (!operand_equal_p (tmp0, tmp1, 0))
10238 ok = false;
10239 }
10240
10241 /* Only do something if we found more than two objects. Otherwise,
10242 nothing has changed and we risk infinite recursion. */
10243 if (ok
10244 && (2 < ((var0 != 0) + (var1 != 0)
10245 + (con0 != 0) + (con1 != 0)
10246 + (lit0 != 0) + (lit1 != 0)
10247 + (minus_lit0 != 0) + (minus_lit1 != 0))))
10248 {
10249 /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */
10250 if (code == MINUS_EXPR)
10251 code = PLUS_EXPR;
10252
10253 var0 = associate_trees (var0, var1, code, type);
10254 con0 = associate_trees (con0, con1, code, type);
10255 lit0 = associate_trees (lit0, lit1, code, type);
10256 minus_lit0 = associate_trees (minus_lit0, minus_lit1, code, type);
10257
10258 /* Preserve the MINUS_EXPR if the negative part of the literal is
10259 greater than the positive part. Otherwise, the multiplicative
10260 folding code (i.e extract_muldiv) may be fooled in case
10261 unsigned constants are subtracted, like in the following
10262 example: ((X*2 + 4) - 8U)/2. */
10263 if (minus_lit0 && lit0)
10264 {
10265 if (TREE_CODE (lit0) == INTEGER_CST
10266 && TREE_CODE (minus_lit0) == INTEGER_CST
10267 && tree_int_cst_lt (lit0, minus_lit0))
10268 {
10269 minus_lit0 = associate_trees (minus_lit0, lit0,
10270 MINUS_EXPR, type);
10271 lit0 = 0;
10272 }
10273 else
10274 {
10275 lit0 = associate_trees (lit0, minus_lit0,
10276 MINUS_EXPR, type);
10277 minus_lit0 = 0;
10278 }
10279 }
10280 if (minus_lit0)
10281 {
10282 if (con0 == 0)
10283 return fold_convert (type,
10284 associate_trees (var0, minus_lit0,
10285 MINUS_EXPR, type));
10286 else
10287 {
10288 con0 = associate_trees (con0, minus_lit0,
10289 MINUS_EXPR, type);
10290 return fold_convert (type,
10291 associate_trees (var0, con0,
10292 PLUS_EXPR, type));
10293 }
10294 }
10295
10296 con0 = associate_trees (con0, lit0, code, type);
10297 return fold_convert (type, associate_trees (var0, con0,
10298 code, type));
10299 }
10300 }
10301
10302 return NULL_TREE;
10303
10304 case MINUS_EXPR:
10305 /* Pointer simplifications for subtraction, simple reassociations. */
10306 if (POINTER_TYPE_P (TREE_TYPE (arg1)) && POINTER_TYPE_P (TREE_TYPE (arg0)))
10307 {
10308 /* (PTR0 p+ A) - (PTR1 p+ B) -> (PTR0 - PTR1) + (A - B) */
10309 if (TREE_CODE (arg0) == POINTER_PLUS_EXPR
10310 && TREE_CODE (arg1) == POINTER_PLUS_EXPR)
10311 {
10312 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10313 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10314 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10315 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10316 return fold_build2 (PLUS_EXPR, type,
10317 fold_build2 (MINUS_EXPR, type, arg00, arg10),
10318 fold_build2 (MINUS_EXPR, type, arg01, arg11));
10319 }
10320 /* (PTR0 p+ A) - PTR1 -> (PTR0 - PTR1) + A, assuming PTR0 - PTR1 simplifies. */
10321 else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR)
10322 {
10323 tree arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
10324 tree arg01 = fold_convert (type, TREE_OPERAND (arg0, 1));
10325 tree tmp = fold_binary (MINUS_EXPR, type, arg00, fold_convert (type, arg1));
10326 if (tmp)
10327 return fold_build2 (PLUS_EXPR, type, tmp, arg01);
10328 }
10329 }
10330 /* A - (-B) -> A + B */
10331 if (TREE_CODE (arg1) == NEGATE_EXPR)
10332 return fold_build2 (PLUS_EXPR, type, op0,
10333 fold_convert (type, TREE_OPERAND (arg1, 0)));
10334 /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */
10335 if (TREE_CODE (arg0) == NEGATE_EXPR
10336 && (FLOAT_TYPE_P (type)
10337 || INTEGRAL_TYPE_P (type))
10338 && negate_expr_p (arg1)
10339 && reorder_operands_p (arg0, arg1))
10340 return fold_build2 (MINUS_EXPR, type,
10341 fold_convert (type, negate_expr (arg1)),
10342 fold_convert (type, TREE_OPERAND (arg0, 0)));
10343 /* Convert -A - 1 to ~A. */
10344 if (INTEGRAL_TYPE_P (type)
10345 && TREE_CODE (arg0) == NEGATE_EXPR
10346 && integer_onep (arg1)
10347 && !TYPE_OVERFLOW_TRAPS (type))
10348 return fold_build1 (BIT_NOT_EXPR, type,
10349 fold_convert (type, TREE_OPERAND (arg0, 0)));
10350
10351 /* Convert -1 - A to ~A. */
10352 if (INTEGRAL_TYPE_P (type)
10353 && integer_all_onesp (arg0))
10354 return fold_build1 (BIT_NOT_EXPR, type, op1);
10355
10356
10357 /* X - (X / CST) * CST is X % CST. */
10358 if (INTEGRAL_TYPE_P (type)
10359 && TREE_CODE (arg1) == MULT_EXPR
10360 && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR
10361 && operand_equal_p (arg0,
10362 TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)
10363 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg1, 0), 1),
10364 TREE_OPERAND (arg1, 1), 0))
10365 return fold_convert (type,
10366 fold_build2 (TRUNC_MOD_EXPR, TREE_TYPE (arg0),
10367 arg0, TREE_OPERAND (arg1, 1)));
10368
10369 if (! FLOAT_TYPE_P (type))
10370 {
10371 if (integer_zerop (arg0))
10372 return negate_expr (fold_convert (type, arg1));
10373 if (integer_zerop (arg1))
10374 return non_lvalue (fold_convert (type, arg0));
10375
10376 /* Fold A - (A & B) into ~B & A. */
10377 if (!TREE_SIDE_EFFECTS (arg0)
10378 && TREE_CODE (arg1) == BIT_AND_EXPR)
10379 {
10380 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0))
10381 {
10382 tree arg10 = fold_convert (type, TREE_OPERAND (arg1, 0));
10383 return fold_build2 (BIT_AND_EXPR, type,
10384 fold_build1 (BIT_NOT_EXPR, type, arg10),
10385 fold_convert (type, arg0));
10386 }
10387 if (operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10388 {
10389 tree arg11 = fold_convert (type, TREE_OPERAND (arg1, 1));
10390 return fold_build2 (BIT_AND_EXPR, type,
10391 fold_build1 (BIT_NOT_EXPR, type, arg11),
10392 fold_convert (type, arg0));
10393 }
10394 }
10395
10396 /* Fold (A & ~B) - (A & B) into (A ^ B) - B, where B is
10397 any power of 2 minus 1. */
10398 if (TREE_CODE (arg0) == BIT_AND_EXPR
10399 && TREE_CODE (arg1) == BIT_AND_EXPR
10400 && operand_equal_p (TREE_OPERAND (arg0, 0),
10401 TREE_OPERAND (arg1, 0), 0))
10402 {
10403 tree mask0 = TREE_OPERAND (arg0, 1);
10404 tree mask1 = TREE_OPERAND (arg1, 1);
10405 tree tem = fold_build1 (BIT_NOT_EXPR, type, mask0);
10406
10407 if (operand_equal_p (tem, mask1, 0))
10408 {
10409 tem = fold_build2 (BIT_XOR_EXPR, type,
10410 TREE_OPERAND (arg0, 0), mask1);
10411 return fold_build2 (MINUS_EXPR, type, tem, mask1);
10412 }
10413 }
10414 }
10415
10416 /* See if ARG1 is zero and X - ARG1 reduces to X. */
10417 else if (fold_real_zero_addition_p (TREE_TYPE (arg0), arg1, 1))
10418 return non_lvalue (fold_convert (type, arg0));
10419
10420 /* (ARG0 - ARG1) is the same as (-ARG1 + ARG0). So check whether
10421 ARG0 is zero and X + ARG0 reduces to X, since that would mean
10422 (-ARG1 + ARG0) reduces to -ARG1. */
10423 else if (fold_real_zero_addition_p (TREE_TYPE (arg1), arg0, 0))
10424 return negate_expr (fold_convert (type, arg1));
10425
10426 /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to
10427 __complex__ ( x, -y ). This is not the same for SNaNs or if
10428 signed zeros are involved. */
10429 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10430 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10431 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)))
10432 {
10433 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10434 tree arg0r = fold_unary (REALPART_EXPR, rtype, arg0);
10435 tree arg0i = fold_unary (IMAGPART_EXPR, rtype, arg0);
10436 bool arg0rz = false, arg0iz = false;
10437 if ((arg0r && (arg0rz = real_zerop (arg0r)))
10438 || (arg0i && (arg0iz = real_zerop (arg0i))))
10439 {
10440 tree arg1r = fold_unary (REALPART_EXPR, rtype, arg1);
10441 tree arg1i = fold_unary (IMAGPART_EXPR, rtype, arg1);
10442 if (arg0rz && arg1i && real_zerop (arg1i))
10443 {
10444 tree rp = fold_build1 (NEGATE_EXPR, rtype,
10445 arg1r ? arg1r
10446 : build1 (REALPART_EXPR, rtype, arg1));
10447 tree ip = arg0i ? arg0i
10448 : build1 (IMAGPART_EXPR, rtype, arg0);
10449 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10450 }
10451 else if (arg0iz && arg1r && real_zerop (arg1r))
10452 {
10453 tree rp = arg0r ? arg0r
10454 : build1 (REALPART_EXPR, rtype, arg0);
10455 tree ip = fold_build1 (NEGATE_EXPR, rtype,
10456 arg1i ? arg1i
10457 : build1 (IMAGPART_EXPR, rtype, arg1));
10458 return fold_build2 (COMPLEX_EXPR, type, rp, ip);
10459 }
10460 }
10461 }
10462
10463 /* Fold &x - &x. This can happen from &x.foo - &x.
10464 This is unsafe for certain floats even in non-IEEE formats.
10465 In IEEE, it is unsafe because it does wrong for NaNs.
10466 Also note that operand_equal_p is always false if an operand
10467 is volatile. */
10468
10469 if ((!FLOAT_TYPE_P (type) || !HONOR_NANS (TYPE_MODE (type)))
10470 && operand_equal_p (arg0, arg1, 0))
10471 return fold_convert (type, integer_zero_node);
10472
10473 /* A - B -> A + (-B) if B is easily negatable. */
10474 if (negate_expr_p (arg1)
10475 && ((FLOAT_TYPE_P (type)
10476 /* Avoid this transformation if B is a positive REAL_CST. */
10477 && (TREE_CODE (arg1) != REAL_CST
10478 || REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg1))))
10479 || INTEGRAL_TYPE_P (type)))
10480 return fold_build2 (PLUS_EXPR, type,
10481 fold_convert (type, arg0),
10482 fold_convert (type, negate_expr (arg1)));
10483
10484 /* Try folding difference of addresses. */
10485 {
10486 HOST_WIDE_INT diff;
10487
10488 if ((TREE_CODE (arg0) == ADDR_EXPR
10489 || TREE_CODE (arg1) == ADDR_EXPR)
10490 && ptr_difference_const (arg0, arg1, &diff))
10491 return build_int_cst_type (type, diff);
10492 }
10493
10494 /* Fold &a[i] - &a[j] to i-j. */
10495 if (TREE_CODE (arg0) == ADDR_EXPR
10496 && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF
10497 && TREE_CODE (arg1) == ADDR_EXPR
10498 && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF)
10499 {
10500 tree aref0 = TREE_OPERAND (arg0, 0);
10501 tree aref1 = TREE_OPERAND (arg1, 0);
10502 if (operand_equal_p (TREE_OPERAND (aref0, 0),
10503 TREE_OPERAND (aref1, 0), 0))
10504 {
10505 tree op0 = fold_convert (type, TREE_OPERAND (aref0, 1));
10506 tree op1 = fold_convert (type, TREE_OPERAND (aref1, 1));
10507 tree esz = array_ref_element_size (aref0);
10508 tree diff = build2 (MINUS_EXPR, type, op0, op1);
10509 return fold_build2 (MULT_EXPR, type, diff,
10510 fold_convert (type, esz));
10511
10512 }
10513 }
10514
10515 if (flag_unsafe_math_optimizations
10516 && (TREE_CODE (arg0) == RDIV_EXPR || TREE_CODE (arg0) == MULT_EXPR)
10517 && (TREE_CODE (arg1) == RDIV_EXPR || TREE_CODE (arg1) == MULT_EXPR)
10518 && (tem = distribute_real_division (code, type, arg0, arg1)))
10519 return tem;
10520
10521 /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the
10522 same or one. Make sure type is not saturating.
10523 fold_plusminus_mult_expr will re-associate. */
10524 if ((TREE_CODE (arg0) == MULT_EXPR
10525 || TREE_CODE (arg1) == MULT_EXPR)
10526 && !TYPE_SATURATING (type)
10527 && (!FLOAT_TYPE_P (type) || flag_associative_math))
10528 {
10529 tree tem = fold_plusminus_mult_expr (code, type, arg0, arg1);
10530 if (tem)
10531 return tem;
10532 }
10533
10534 goto associate;
10535
10536 case MULT_EXPR:
10537 /* (-A) * (-B) -> A * B */
10538 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
10539 return fold_build2 (MULT_EXPR, type,
10540 fold_convert (type, TREE_OPERAND (arg0, 0)),
10541 fold_convert (type, negate_expr (arg1)));
10542 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
10543 return fold_build2 (MULT_EXPR, type,
10544 fold_convert (type, negate_expr (arg0)),
10545 fold_convert (type, TREE_OPERAND (arg1, 0)));
10546
10547 if (! FLOAT_TYPE_P (type))
10548 {
10549 if (integer_zerop (arg1))
10550 return omit_one_operand (type, arg1, arg0);
10551 if (integer_onep (arg1))
10552 return non_lvalue (fold_convert (type, arg0));
10553 /* Transform x * -1 into -x. Make sure to do the negation
10554 on the original operand with conversions not stripped
10555 because we can only strip non-sign-changing conversions. */
10556 if (integer_all_onesp (arg1))
10557 return fold_convert (type, negate_expr (op0));
10558 /* Transform x * -C into -x * C if x is easily negatable. */
10559 if (TREE_CODE (arg1) == INTEGER_CST
10560 && tree_int_cst_sgn (arg1) == -1
10561 && negate_expr_p (arg0)
10562 && (tem = negate_expr (arg1)) != arg1
10563 && !TREE_OVERFLOW (tem))
10564 return fold_build2 (MULT_EXPR, type,
10565 fold_convert (type, negate_expr (arg0)), tem);
10566
10567 /* (a * (1 << b)) is (a << b) */
10568 if (TREE_CODE (arg1) == LSHIFT_EXPR
10569 && integer_onep (TREE_OPERAND (arg1, 0)))
10570 return fold_build2 (LSHIFT_EXPR, type, op0,
10571 TREE_OPERAND (arg1, 1));
10572 if (TREE_CODE (arg0) == LSHIFT_EXPR
10573 && integer_onep (TREE_OPERAND (arg0, 0)))
10574 return fold_build2 (LSHIFT_EXPR, type, op1,
10575 TREE_OPERAND (arg0, 1));
10576
10577 /* (A + A) * C -> A * 2 * C */
10578 if (TREE_CODE (arg0) == PLUS_EXPR
10579 && TREE_CODE (arg1) == INTEGER_CST
10580 && operand_equal_p (TREE_OPERAND (arg0, 0),
10581 TREE_OPERAND (arg0, 1), 0))
10582 return fold_build2 (MULT_EXPR, type,
10583 omit_one_operand (type, TREE_OPERAND (arg0, 0),
10584 TREE_OPERAND (arg0, 1)),
10585 fold_build2 (MULT_EXPR, type,
10586 build_int_cst (type, 2) , arg1));
10587
10588 strict_overflow_p = false;
10589 if (TREE_CODE (arg1) == INTEGER_CST
10590 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
10591 &strict_overflow_p)))
10592 {
10593 if (strict_overflow_p)
10594 fold_overflow_warning (("assuming signed overflow does not "
10595 "occur when simplifying "
10596 "multiplication"),
10597 WARN_STRICT_OVERFLOW_MISC);
10598 return fold_convert (type, tem);
10599 }
10600
10601 /* Optimize z * conj(z) for integer complex numbers. */
10602 if (TREE_CODE (arg0) == CONJ_EXPR
10603 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10604 return fold_mult_zconjz (type, arg1);
10605 if (TREE_CODE (arg1) == CONJ_EXPR
10606 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10607 return fold_mult_zconjz (type, arg0);
10608 }
10609 else
10610 {
10611 /* Maybe fold x * 0 to 0. The expressions aren't the same
10612 when x is NaN, since x * 0 is also NaN. Nor are they the
10613 same in modes with signed zeros, since multiplying a
10614 negative value by 0 gives -0, not +0. */
10615 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10616 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10617 && real_zerop (arg1))
10618 return omit_one_operand (type, arg1, arg0);
10619 /* In IEEE floating point, x*1 is not equivalent to x for snans. */
10620 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10621 && real_onep (arg1))
10622 return non_lvalue (fold_convert (type, arg0));
10623
10624 /* Transform x * -1.0 into -x. */
10625 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
10626 && real_minus_onep (arg1))
10627 return fold_convert (type, negate_expr (arg0));
10628
10629 /* Convert (C1/X)*C2 into (C1*C2)/X. This transformation may change
10630 the result for floating point types due to rounding so it is applied
10631 only if -fassociative-math was specify. */
10632 if (flag_associative_math
10633 && TREE_CODE (arg0) == RDIV_EXPR
10634 && TREE_CODE (arg1) == REAL_CST
10635 && TREE_CODE (TREE_OPERAND (arg0, 0)) == REAL_CST)
10636 {
10637 tree tem = const_binop (MULT_EXPR, TREE_OPERAND (arg0, 0),
10638 arg1, 0);
10639 if (tem)
10640 return fold_build2 (RDIV_EXPR, type, tem,
10641 TREE_OPERAND (arg0, 1));
10642 }
10643
10644 /* Strip sign operations from X in X*X, i.e. -Y*-Y -> Y*Y. */
10645 if (operand_equal_p (arg0, arg1, 0))
10646 {
10647 tree tem = fold_strip_sign_ops (arg0);
10648 if (tem != NULL_TREE)
10649 {
10650 tem = fold_convert (type, tem);
10651 return fold_build2 (MULT_EXPR, type, tem, tem);
10652 }
10653 }
10654
10655 /* Fold z * +-I to __complex__ (-+__imag z, +-__real z).
10656 This is not the same for NaNs or if signed zeros are
10657 involved. */
10658 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
10659 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg0)))
10660 && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
10661 && TREE_CODE (arg1) == COMPLEX_CST
10662 && real_zerop (TREE_REALPART (arg1)))
10663 {
10664 tree rtype = TREE_TYPE (TREE_TYPE (arg0));
10665 if (real_onep (TREE_IMAGPART (arg1)))
10666 return fold_build2 (COMPLEX_EXPR, type,
10667 negate_expr (fold_build1 (IMAGPART_EXPR,
10668 rtype, arg0)),
10669 fold_build1 (REALPART_EXPR, rtype, arg0));
10670 else if (real_minus_onep (TREE_IMAGPART (arg1)))
10671 return fold_build2 (COMPLEX_EXPR, type,
10672 fold_build1 (IMAGPART_EXPR, rtype, arg0),
10673 negate_expr (fold_build1 (REALPART_EXPR,
10674 rtype, arg0)));
10675 }
10676
10677 /* Optimize z * conj(z) for floating point complex numbers.
10678 Guarded by flag_unsafe_math_optimizations as non-finite
10679 imaginary components don't produce scalar results. */
10680 if (flag_unsafe_math_optimizations
10681 && TREE_CODE (arg0) == CONJ_EXPR
10682 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10683 return fold_mult_zconjz (type, arg1);
10684 if (flag_unsafe_math_optimizations
10685 && TREE_CODE (arg1) == CONJ_EXPR
10686 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10687 return fold_mult_zconjz (type, arg0);
10688
10689 if (flag_unsafe_math_optimizations)
10690 {
10691 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
10692 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
10693
10694 /* Optimizations of root(...)*root(...). */
10695 if (fcode0 == fcode1 && BUILTIN_ROOT_P (fcode0))
10696 {
10697 tree rootfn, arg;
10698 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10699 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10700
10701 /* Optimize sqrt(x)*sqrt(x) as x. */
10702 if (BUILTIN_SQRT_P (fcode0)
10703 && operand_equal_p (arg00, arg10, 0)
10704 && ! HONOR_SNANS (TYPE_MODE (type)))
10705 return arg00;
10706
10707 /* Optimize root(x)*root(y) as root(x*y). */
10708 rootfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10709 arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10710 return build_call_expr (rootfn, 1, arg);
10711 }
10712
10713 /* Optimize expN(x)*expN(y) as expN(x+y). */
10714 if (fcode0 == fcode1 && BUILTIN_EXPONENT_P (fcode0))
10715 {
10716 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10717 tree arg = fold_build2 (PLUS_EXPR, type,
10718 CALL_EXPR_ARG (arg0, 0),
10719 CALL_EXPR_ARG (arg1, 0));
10720 return build_call_expr (expfn, 1, arg);
10721 }
10722
10723 /* Optimizations of pow(...)*pow(...). */
10724 if ((fcode0 == BUILT_IN_POW && fcode1 == BUILT_IN_POW)
10725 || (fcode0 == BUILT_IN_POWF && fcode1 == BUILT_IN_POWF)
10726 || (fcode0 == BUILT_IN_POWL && fcode1 == BUILT_IN_POWL))
10727 {
10728 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10729 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10730 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10731 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10732
10733 /* Optimize pow(x,y)*pow(z,y) as pow(x*z,y). */
10734 if (operand_equal_p (arg01, arg11, 0))
10735 {
10736 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10737 tree arg = fold_build2 (MULT_EXPR, type, arg00, arg10);
10738 return build_call_expr (powfn, 2, arg, arg01);
10739 }
10740
10741 /* Optimize pow(x,y)*pow(x,z) as pow(x,y+z). */
10742 if (operand_equal_p (arg00, arg10, 0))
10743 {
10744 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10745 tree arg = fold_build2 (PLUS_EXPR, type, arg01, arg11);
10746 return build_call_expr (powfn, 2, arg00, arg);
10747 }
10748 }
10749
10750 /* Optimize tan(x)*cos(x) as sin(x). */
10751 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_COS)
10752 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_COSF)
10753 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_COSL)
10754 || (fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_TAN)
10755 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_TANF)
10756 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_TANL))
10757 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
10758 CALL_EXPR_ARG (arg1, 0), 0))
10759 {
10760 tree sinfn = mathfn_built_in (type, BUILT_IN_SIN);
10761
10762 if (sinfn != NULL_TREE)
10763 return build_call_expr (sinfn, 1, CALL_EXPR_ARG (arg0, 0));
10764 }
10765
10766 /* Optimize x*pow(x,c) as pow(x,c+1). */
10767 if (fcode1 == BUILT_IN_POW
10768 || fcode1 == BUILT_IN_POWF
10769 || fcode1 == BUILT_IN_POWL)
10770 {
10771 tree arg10 = CALL_EXPR_ARG (arg1, 0);
10772 tree arg11 = CALL_EXPR_ARG (arg1, 1);
10773 if (TREE_CODE (arg11) == REAL_CST
10774 && !TREE_OVERFLOW (arg11)
10775 && operand_equal_p (arg0, arg10, 0))
10776 {
10777 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
10778 REAL_VALUE_TYPE c;
10779 tree arg;
10780
10781 c = TREE_REAL_CST (arg11);
10782 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10783 arg = build_real (type, c);
10784 return build_call_expr (powfn, 2, arg0, arg);
10785 }
10786 }
10787
10788 /* Optimize pow(x,c)*x as pow(x,c+1). */
10789 if (fcode0 == BUILT_IN_POW
10790 || fcode0 == BUILT_IN_POWF
10791 || fcode0 == BUILT_IN_POWL)
10792 {
10793 tree arg00 = CALL_EXPR_ARG (arg0, 0);
10794 tree arg01 = CALL_EXPR_ARG (arg0, 1);
10795 if (TREE_CODE (arg01) == REAL_CST
10796 && !TREE_OVERFLOW (arg01)
10797 && operand_equal_p (arg1, arg00, 0))
10798 {
10799 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
10800 REAL_VALUE_TYPE c;
10801 tree arg;
10802
10803 c = TREE_REAL_CST (arg01);
10804 real_arithmetic (&c, PLUS_EXPR, &c, &dconst1);
10805 arg = build_real (type, c);
10806 return build_call_expr (powfn, 2, arg1, arg);
10807 }
10808 }
10809
10810 /* Optimize x*x as pow(x,2.0), which is expanded as x*x. */
10811 if (optimize_function_for_speed_p (cfun)
10812 && operand_equal_p (arg0, arg1, 0))
10813 {
10814 tree powfn = mathfn_built_in (type, BUILT_IN_POW);
10815
10816 if (powfn)
10817 {
10818 tree arg = build_real (type, dconst2);
10819 return build_call_expr (powfn, 2, arg0, arg);
10820 }
10821 }
10822 }
10823 }
10824 goto associate;
10825
10826 case BIT_IOR_EXPR:
10827 bit_ior:
10828 if (integer_all_onesp (arg1))
10829 return omit_one_operand (type, arg1, arg0);
10830 if (integer_zerop (arg1))
10831 return non_lvalue (fold_convert (type, arg0));
10832 if (operand_equal_p (arg0, arg1, 0))
10833 return non_lvalue (fold_convert (type, arg0));
10834
10835 /* ~X | X is -1. */
10836 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10837 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10838 {
10839 t1 = fold_convert (type, integer_zero_node);
10840 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10841 return omit_one_operand (type, t1, arg1);
10842 }
10843
10844 /* X | ~X is -1. */
10845 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10846 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10847 {
10848 t1 = fold_convert (type, integer_zero_node);
10849 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10850 return omit_one_operand (type, t1, arg0);
10851 }
10852
10853 /* Canonicalize (X & C1) | C2. */
10854 if (TREE_CODE (arg0) == BIT_AND_EXPR
10855 && TREE_CODE (arg1) == INTEGER_CST
10856 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
10857 {
10858 unsigned HOST_WIDE_INT hi1, lo1, hi2, lo2, hi3, lo3, mlo, mhi;
10859 int width = TYPE_PRECISION (type), w;
10860 hi1 = TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1));
10861 lo1 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
10862 hi2 = TREE_INT_CST_HIGH (arg1);
10863 lo2 = TREE_INT_CST_LOW (arg1);
10864
10865 /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */
10866 if ((hi1 & hi2) == hi1 && (lo1 & lo2) == lo1)
10867 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10868
10869 if (width > HOST_BITS_PER_WIDE_INT)
10870 {
10871 mhi = (unsigned HOST_WIDE_INT) -1
10872 >> (2 * HOST_BITS_PER_WIDE_INT - width);
10873 mlo = -1;
10874 }
10875 else
10876 {
10877 mhi = 0;
10878 mlo = (unsigned HOST_WIDE_INT) -1
10879 >> (HOST_BITS_PER_WIDE_INT - width);
10880 }
10881
10882 /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */
10883 if ((~(hi1 | hi2) & mhi) == 0 && (~(lo1 | lo2) & mlo) == 0)
10884 return fold_build2 (BIT_IOR_EXPR, type,
10885 TREE_OPERAND (arg0, 0), arg1);
10886
10887 /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2,
10888 unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some
10889 mode which allows further optimizations. */
10890 hi1 &= mhi;
10891 lo1 &= mlo;
10892 hi2 &= mhi;
10893 lo2 &= mlo;
10894 hi3 = hi1 & ~hi2;
10895 lo3 = lo1 & ~lo2;
10896 for (w = BITS_PER_UNIT;
10897 w <= width && w <= HOST_BITS_PER_WIDE_INT;
10898 w <<= 1)
10899 {
10900 unsigned HOST_WIDE_INT mask
10901 = (unsigned HOST_WIDE_INT) -1 >> (HOST_BITS_PER_WIDE_INT - w);
10902 if (((lo1 | lo2) & mask) == mask
10903 && (lo1 & ~mask) == 0 && hi1 == 0)
10904 {
10905 hi3 = 0;
10906 lo3 = mask;
10907 break;
10908 }
10909 }
10910 if (hi3 != hi1 || lo3 != lo1)
10911 return fold_build2 (BIT_IOR_EXPR, type,
10912 fold_build2 (BIT_AND_EXPR, type,
10913 TREE_OPERAND (arg0, 0),
10914 build_int_cst_wide (type,
10915 lo3, hi3)),
10916 arg1);
10917 }
10918
10919 /* (X & Y) | Y is (X, Y). */
10920 if (TREE_CODE (arg0) == BIT_AND_EXPR
10921 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
10922 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
10923 /* (X & Y) | X is (Y, X). */
10924 if (TREE_CODE (arg0) == BIT_AND_EXPR
10925 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
10926 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
10927 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
10928 /* X | (X & Y) is (Y, X). */
10929 if (TREE_CODE (arg1) == BIT_AND_EXPR
10930 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
10931 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
10932 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
10933 /* X | (Y & X) is (Y, X). */
10934 if (TREE_CODE (arg1) == BIT_AND_EXPR
10935 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
10936 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
10937 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
10938
10939 t1 = distribute_bit_expr (code, type, arg0, arg1);
10940 if (t1 != NULL_TREE)
10941 return t1;
10942
10943 /* Convert (or (not arg0) (not arg1)) to (not (and (arg0) (arg1))).
10944
10945 This results in more efficient code for machines without a NAND
10946 instruction. Combine will canonicalize to the first form
10947 which will allow use of NAND instructions provided by the
10948 backend if they exist. */
10949 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10950 && TREE_CODE (arg1) == BIT_NOT_EXPR)
10951 {
10952 return fold_build1 (BIT_NOT_EXPR, type,
10953 build2 (BIT_AND_EXPR, type,
10954 fold_convert (type,
10955 TREE_OPERAND (arg0, 0)),
10956 fold_convert (type,
10957 TREE_OPERAND (arg1, 0))));
10958 }
10959
10960 /* See if this can be simplified into a rotate first. If that
10961 is unsuccessful continue in the association code. */
10962 goto bit_rotate;
10963
10964 case BIT_XOR_EXPR:
10965 if (integer_zerop (arg1))
10966 return non_lvalue (fold_convert (type, arg0));
10967 if (integer_all_onesp (arg1))
10968 return fold_build1 (BIT_NOT_EXPR, type, op0);
10969 if (operand_equal_p (arg0, arg1, 0))
10970 return omit_one_operand (type, integer_zero_node, arg0);
10971
10972 /* ~X ^ X is -1. */
10973 if (TREE_CODE (arg0) == BIT_NOT_EXPR
10974 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
10975 {
10976 t1 = fold_convert (type, integer_zero_node);
10977 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10978 return omit_one_operand (type, t1, arg1);
10979 }
10980
10981 /* X ^ ~X is -1. */
10982 if (TREE_CODE (arg1) == BIT_NOT_EXPR
10983 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
10984 {
10985 t1 = fold_convert (type, integer_zero_node);
10986 t1 = fold_unary (BIT_NOT_EXPR, type, t1);
10987 return omit_one_operand (type, t1, arg0);
10988 }
10989
10990 /* If we are XORing two BIT_AND_EXPR's, both of which are and'ing
10991 with a constant, and the two constants have no bits in common,
10992 we should treat this as a BIT_IOR_EXPR since this may produce more
10993 simplifications. */
10994 if (TREE_CODE (arg0) == BIT_AND_EXPR
10995 && TREE_CODE (arg1) == BIT_AND_EXPR
10996 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
10997 && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST
10998 && integer_zerop (const_binop (BIT_AND_EXPR,
10999 TREE_OPERAND (arg0, 1),
11000 TREE_OPERAND (arg1, 1), 0)))
11001 {
11002 code = BIT_IOR_EXPR;
11003 goto bit_ior;
11004 }
11005
11006 /* (X | Y) ^ X -> Y & ~ X*/
11007 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11008 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11009 {
11010 tree t2 = TREE_OPERAND (arg0, 1);
11011 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
11012 arg1);
11013 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11014 fold_convert (type, t1));
11015 return t1;
11016 }
11017
11018 /* (Y | X) ^ X -> Y & ~ X*/
11019 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11020 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11021 {
11022 tree t2 = TREE_OPERAND (arg0, 0);
11023 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1),
11024 arg1);
11025 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11026 fold_convert (type, t1));
11027 return t1;
11028 }
11029
11030 /* X ^ (X | Y) -> Y & ~ X*/
11031 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11032 && operand_equal_p (TREE_OPERAND (arg1, 0), arg0, 0))
11033 {
11034 tree t2 = TREE_OPERAND (arg1, 1);
11035 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
11036 arg0);
11037 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11038 fold_convert (type, t1));
11039 return t1;
11040 }
11041
11042 /* X ^ (Y | X) -> Y & ~ X*/
11043 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11044 && operand_equal_p (TREE_OPERAND (arg1, 1), arg0, 0))
11045 {
11046 tree t2 = TREE_OPERAND (arg1, 0);
11047 t1 = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg0),
11048 arg0);
11049 t1 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, t2),
11050 fold_convert (type, t1));
11051 return t1;
11052 }
11053
11054 /* Convert ~X ^ ~Y to X ^ Y. */
11055 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11056 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11057 return fold_build2 (code, type,
11058 fold_convert (type, TREE_OPERAND (arg0, 0)),
11059 fold_convert (type, TREE_OPERAND (arg1, 0)));
11060
11061 /* Convert ~X ^ C to X ^ ~C. */
11062 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11063 && TREE_CODE (arg1) == INTEGER_CST)
11064 return fold_build2 (code, type,
11065 fold_convert (type, TREE_OPERAND (arg0, 0)),
11066 fold_build1 (BIT_NOT_EXPR, type, arg1));
11067
11068 /* Fold (X & 1) ^ 1 as (X & 1) == 0. */
11069 if (TREE_CODE (arg0) == BIT_AND_EXPR
11070 && integer_onep (TREE_OPERAND (arg0, 1))
11071 && integer_onep (arg1))
11072 return fold_build2 (EQ_EXPR, type, arg0,
11073 build_int_cst (TREE_TYPE (arg0), 0));
11074
11075 /* Fold (X & Y) ^ Y as ~X & Y. */
11076 if (TREE_CODE (arg0) == BIT_AND_EXPR
11077 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11078 {
11079 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
11080 return fold_build2 (BIT_AND_EXPR, type,
11081 fold_build1 (BIT_NOT_EXPR, type, tem),
11082 fold_convert (type, arg1));
11083 }
11084 /* Fold (X & Y) ^ X as ~Y & X. */
11085 if (TREE_CODE (arg0) == BIT_AND_EXPR
11086 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11087 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11088 {
11089 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
11090 return fold_build2 (BIT_AND_EXPR, type,
11091 fold_build1 (BIT_NOT_EXPR, type, tem),
11092 fold_convert (type, arg1));
11093 }
11094 /* Fold X ^ (X & Y) as X & ~Y. */
11095 if (TREE_CODE (arg1) == BIT_AND_EXPR
11096 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11097 {
11098 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
11099 return fold_build2 (BIT_AND_EXPR, type,
11100 fold_convert (type, arg0),
11101 fold_build1 (BIT_NOT_EXPR, type, tem));
11102 }
11103 /* Fold X ^ (Y & X) as ~Y & X. */
11104 if (TREE_CODE (arg1) == BIT_AND_EXPR
11105 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11106 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11107 {
11108 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
11109 return fold_build2 (BIT_AND_EXPR, type,
11110 fold_build1 (BIT_NOT_EXPR, type, tem),
11111 fold_convert (type, arg0));
11112 }
11113
11114 /* See if this can be simplified into a rotate first. If that
11115 is unsuccessful continue in the association code. */
11116 goto bit_rotate;
11117
11118 case BIT_AND_EXPR:
11119 if (integer_all_onesp (arg1))
11120 return non_lvalue (fold_convert (type, arg0));
11121 if (integer_zerop (arg1))
11122 return omit_one_operand (type, arg1, arg0);
11123 if (operand_equal_p (arg0, arg1, 0))
11124 return non_lvalue (fold_convert (type, arg0));
11125
11126 /* ~X & X is always zero. */
11127 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11128 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
11129 return omit_one_operand (type, integer_zero_node, arg1);
11130
11131 /* X & ~X is always zero. */
11132 if (TREE_CODE (arg1) == BIT_NOT_EXPR
11133 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11134 return omit_one_operand (type, integer_zero_node, arg0);
11135
11136 /* Canonicalize (X | C1) & C2 as (X & C2) | (C1 & C2). */
11137 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11138 && TREE_CODE (arg1) == INTEGER_CST
11139 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11140 {
11141 tree tmp1 = fold_convert (type, arg1);
11142 tree tmp2 = fold_convert (type, TREE_OPERAND (arg0, 0));
11143 tree tmp3 = fold_convert (type, TREE_OPERAND (arg0, 1));
11144 tmp2 = fold_build2 (BIT_AND_EXPR, type, tmp2, tmp1);
11145 tmp3 = fold_build2 (BIT_AND_EXPR, type, tmp3, tmp1);
11146 return fold_convert (type,
11147 fold_build2 (BIT_IOR_EXPR, type, tmp2, tmp3));
11148 }
11149
11150 /* (X | Y) & Y is (X, Y). */
11151 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11152 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11153 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 0));
11154 /* (X | Y) & X is (Y, X). */
11155 if (TREE_CODE (arg0) == BIT_IOR_EXPR
11156 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11157 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11158 return omit_one_operand (type, arg1, TREE_OPERAND (arg0, 1));
11159 /* X & (X | Y) is (Y, X). */
11160 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11161 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)
11162 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 1)))
11163 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 1));
11164 /* X & (Y | X) is (Y, X). */
11165 if (TREE_CODE (arg1) == BIT_IOR_EXPR
11166 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11167 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11168 return omit_one_operand (type, arg0, TREE_OPERAND (arg1, 0));
11169
11170 /* Fold (X ^ 1) & 1 as (X & 1) == 0. */
11171 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11172 && integer_onep (TREE_OPERAND (arg0, 1))
11173 && integer_onep (arg1))
11174 {
11175 tem = TREE_OPERAND (arg0, 0);
11176 return fold_build2 (EQ_EXPR, type,
11177 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
11178 build_int_cst (TREE_TYPE (tem), 1)),
11179 build_int_cst (TREE_TYPE (tem), 0));
11180 }
11181 /* Fold ~X & 1 as (X & 1) == 0. */
11182 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11183 && integer_onep (arg1))
11184 {
11185 tem = TREE_OPERAND (arg0, 0);
11186 return fold_build2 (EQ_EXPR, type,
11187 fold_build2 (BIT_AND_EXPR, TREE_TYPE (tem), tem,
11188 build_int_cst (TREE_TYPE (tem), 1)),
11189 build_int_cst (TREE_TYPE (tem), 0));
11190 }
11191
11192 /* Fold (X ^ Y) & Y as ~X & Y. */
11193 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11194 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
11195 {
11196 tem = fold_convert (type, TREE_OPERAND (arg0, 0));
11197 return fold_build2 (BIT_AND_EXPR, type,
11198 fold_build1 (BIT_NOT_EXPR, type, tem),
11199 fold_convert (type, arg1));
11200 }
11201 /* Fold (X ^ Y) & X as ~Y & X. */
11202 if (TREE_CODE (arg0) == BIT_XOR_EXPR
11203 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
11204 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
11205 {
11206 tem = fold_convert (type, TREE_OPERAND (arg0, 1));
11207 return fold_build2 (BIT_AND_EXPR, type,
11208 fold_build1 (BIT_NOT_EXPR, type, tem),
11209 fold_convert (type, arg1));
11210 }
11211 /* Fold X & (X ^ Y) as X & ~Y. */
11212 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11213 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
11214 {
11215 tem = fold_convert (type, TREE_OPERAND (arg1, 1));
11216 return fold_build2 (BIT_AND_EXPR, type,
11217 fold_convert (type, arg0),
11218 fold_build1 (BIT_NOT_EXPR, type, tem));
11219 }
11220 /* Fold X & (Y ^ X) as ~Y & X. */
11221 if (TREE_CODE (arg1) == BIT_XOR_EXPR
11222 && operand_equal_p (arg0, TREE_OPERAND (arg1, 1), 0)
11223 && reorder_operands_p (arg0, TREE_OPERAND (arg1, 0)))
11224 {
11225 tem = fold_convert (type, TREE_OPERAND (arg1, 0));
11226 return fold_build2 (BIT_AND_EXPR, type,
11227 fold_build1 (BIT_NOT_EXPR, type, tem),
11228 fold_convert (type, arg0));
11229 }
11230
11231 t1 = distribute_bit_expr (code, type, arg0, arg1);
11232 if (t1 != NULL_TREE)
11233 return t1;
11234 /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */
11235 if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR
11236 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0))))
11237 {
11238 unsigned int prec
11239 = TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 0)));
11240
11241 if (prec < BITS_PER_WORD && prec < HOST_BITS_PER_WIDE_INT
11242 && (~TREE_INT_CST_LOW (arg1)
11243 & (((HOST_WIDE_INT) 1 << prec) - 1)) == 0)
11244 return fold_convert (type, TREE_OPERAND (arg0, 0));
11245 }
11246
11247 /* Convert (and (not arg0) (not arg1)) to (not (or (arg0) (arg1))).
11248
11249 This results in more efficient code for machines without a NOR
11250 instruction. Combine will canonicalize to the first form
11251 which will allow use of NOR instructions provided by the
11252 backend if they exist. */
11253 if (TREE_CODE (arg0) == BIT_NOT_EXPR
11254 && TREE_CODE (arg1) == BIT_NOT_EXPR)
11255 {
11256 return fold_build1 (BIT_NOT_EXPR, type,
11257 build2 (BIT_IOR_EXPR, type,
11258 fold_convert (type,
11259 TREE_OPERAND (arg0, 0)),
11260 fold_convert (type,
11261 TREE_OPERAND (arg1, 0))));
11262 }
11263
11264 /* If arg0 is derived from the address of an object or function, we may
11265 be able to fold this expression using the object or function's
11266 alignment. */
11267 if (POINTER_TYPE_P (TREE_TYPE (arg0)) && host_integerp (arg1, 1))
11268 {
11269 unsigned HOST_WIDE_INT modulus, residue;
11270 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (arg1);
11271
11272 modulus = get_pointer_modulus_and_residue (arg0, &residue);
11273
11274 /* This works because modulus is a power of 2. If this weren't the
11275 case, we'd have to replace it by its greatest power-of-2
11276 divisor: modulus & -modulus. */
11277 if (low < modulus)
11278 return build_int_cst (type, residue & low);
11279 }
11280
11281 /* Fold (X << C1) & C2 into (X << C1) & (C2 | ((1 << C1) - 1))
11282 (X >> C1) & C2 into (X >> C1) & (C2 | ~((type) -1 >> C1))
11283 if the new mask might be further optimized. */
11284 if ((TREE_CODE (arg0) == LSHIFT_EXPR
11285 || TREE_CODE (arg0) == RSHIFT_EXPR)
11286 && host_integerp (TREE_OPERAND (arg0, 1), 1)
11287 && host_integerp (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)))
11288 && tree_low_cst (TREE_OPERAND (arg0, 1), 1)
11289 < TYPE_PRECISION (TREE_TYPE (arg0))
11290 && TYPE_PRECISION (TREE_TYPE (arg0)) <= HOST_BITS_PER_WIDE_INT
11291 && tree_low_cst (TREE_OPERAND (arg0, 1), 1) > 0)
11292 {
11293 unsigned int shiftc = tree_low_cst (TREE_OPERAND (arg0, 1), 1);
11294 unsigned HOST_WIDE_INT mask
11295 = tree_low_cst (arg1, TYPE_UNSIGNED (TREE_TYPE (arg1)));
11296 unsigned HOST_WIDE_INT newmask, zerobits = 0;
11297 tree shift_type = TREE_TYPE (arg0);
11298
11299 if (TREE_CODE (arg0) == LSHIFT_EXPR)
11300 zerobits = ((((unsigned HOST_WIDE_INT) 1) << shiftc) - 1);
11301 else if (TREE_CODE (arg0) == RSHIFT_EXPR
11302 && TYPE_PRECISION (TREE_TYPE (arg0))
11303 == GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (arg0))))
11304 {
11305 unsigned int prec = TYPE_PRECISION (TREE_TYPE (arg0));
11306 tree arg00 = TREE_OPERAND (arg0, 0);
11307 /* See if more bits can be proven as zero because of
11308 zero extension. */
11309 if (TREE_CODE (arg00) == NOP_EXPR
11310 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg00, 0))))
11311 {
11312 tree inner_type = TREE_TYPE (TREE_OPERAND (arg00, 0));
11313 if (TYPE_PRECISION (inner_type)
11314 == GET_MODE_BITSIZE (TYPE_MODE (inner_type))
11315 && TYPE_PRECISION (inner_type) < prec)
11316 {
11317 prec = TYPE_PRECISION (inner_type);
11318 /* See if we can shorten the right shift. */
11319 if (shiftc < prec)
11320 shift_type = inner_type;
11321 }
11322 }
11323 zerobits = ~(unsigned HOST_WIDE_INT) 0;
11324 zerobits >>= HOST_BITS_PER_WIDE_INT - shiftc;
11325 zerobits <<= prec - shiftc;
11326 /* For arithmetic shift if sign bit could be set, zerobits
11327 can contain actually sign bits, so no transformation is
11328 possible, unless MASK masks them all away. In that
11329 case the shift needs to be converted into logical shift. */
11330 if (!TYPE_UNSIGNED (TREE_TYPE (arg0))
11331 && prec == TYPE_PRECISION (TREE_TYPE (arg0)))
11332 {
11333 if ((mask & zerobits) == 0)
11334 shift_type = unsigned_type_for (TREE_TYPE (arg0));
11335 else
11336 zerobits = 0;
11337 }
11338 }
11339
11340 /* ((X << 16) & 0xff00) is (X, 0). */
11341 if ((mask & zerobits) == mask)
11342 return omit_one_operand (type, build_int_cst (type, 0), arg0);
11343
11344 newmask = mask | zerobits;
11345 if (newmask != mask && (newmask & (newmask + 1)) == 0)
11346 {
11347 unsigned int prec;
11348
11349 /* Only do the transformation if NEWMASK is some integer
11350 mode's mask. */
11351 for (prec = BITS_PER_UNIT;
11352 prec < HOST_BITS_PER_WIDE_INT; prec <<= 1)
11353 if (newmask == (((unsigned HOST_WIDE_INT) 1) << prec) - 1)
11354 break;
11355 if (prec < HOST_BITS_PER_WIDE_INT
11356 || newmask == ~(unsigned HOST_WIDE_INT) 0)
11357 {
11358 if (shift_type != TREE_TYPE (arg0))
11359 {
11360 tem = fold_build2 (TREE_CODE (arg0), shift_type,
11361 fold_convert (shift_type,
11362 TREE_OPERAND (arg0, 0)),
11363 TREE_OPERAND (arg0, 1));
11364 tem = fold_convert (type, tem);
11365 }
11366 else
11367 tem = op0;
11368 return fold_build2 (BIT_AND_EXPR, type, tem,
11369 build_int_cst_type (TREE_TYPE (op1),
11370 newmask));
11371 }
11372 }
11373 }
11374
11375 goto associate;
11376
11377 case RDIV_EXPR:
11378 /* Don't touch a floating-point divide by zero unless the mode
11379 of the constant can represent infinity. */
11380 if (TREE_CODE (arg1) == REAL_CST
11381 && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1)))
11382 && real_zerop (arg1))
11383 return NULL_TREE;
11384
11385 /* Optimize A / A to 1.0 if we don't care about
11386 NaNs or Infinities. Skip the transformation
11387 for non-real operands. */
11388 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (arg0))
11389 && ! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
11390 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg0)))
11391 && operand_equal_p (arg0, arg1, 0))
11392 {
11393 tree r = build_real (TREE_TYPE (arg0), dconst1);
11394
11395 return omit_two_operands (type, r, arg0, arg1);
11396 }
11397
11398 /* The complex version of the above A / A optimization. */
11399 if (COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))
11400 && operand_equal_p (arg0, arg1, 0))
11401 {
11402 tree elem_type = TREE_TYPE (TREE_TYPE (arg0));
11403 if (! HONOR_NANS (TYPE_MODE (elem_type))
11404 && ! HONOR_INFINITIES (TYPE_MODE (elem_type)))
11405 {
11406 tree r = build_real (elem_type, dconst1);
11407 /* omit_two_operands will call fold_convert for us. */
11408 return omit_two_operands (type, r, arg0, arg1);
11409 }
11410 }
11411
11412 /* (-A) / (-B) -> A / B */
11413 if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1))
11414 return fold_build2 (RDIV_EXPR, type,
11415 TREE_OPERAND (arg0, 0),
11416 negate_expr (arg1));
11417 if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0))
11418 return fold_build2 (RDIV_EXPR, type,
11419 negate_expr (arg0),
11420 TREE_OPERAND (arg1, 0));
11421
11422 /* In IEEE floating point, x/1 is not equivalent to x for snans. */
11423 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11424 && real_onep (arg1))
11425 return non_lvalue (fold_convert (type, arg0));
11426
11427 /* In IEEE floating point, x/-1 is not equivalent to -x for snans. */
11428 if (!HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0)))
11429 && real_minus_onep (arg1))
11430 return non_lvalue (fold_convert (type, negate_expr (arg0)));
11431
11432 /* If ARG1 is a constant, we can convert this to a multiply by the
11433 reciprocal. This does not have the same rounding properties,
11434 so only do this if -freciprocal-math. We can actually
11435 always safely do it if ARG1 is a power of two, but it's hard to
11436 tell if it is or not in a portable manner. */
11437 if (TREE_CODE (arg1) == REAL_CST)
11438 {
11439 if (flag_reciprocal_math
11440 && 0 != (tem = const_binop (code, build_real (type, dconst1),
11441 arg1, 0)))
11442 return fold_build2 (MULT_EXPR, type, arg0, tem);
11443 /* Find the reciprocal if optimizing and the result is exact. */
11444 if (optimize)
11445 {
11446 REAL_VALUE_TYPE r;
11447 r = TREE_REAL_CST (arg1);
11448 if (exact_real_inverse (TYPE_MODE(TREE_TYPE(arg0)), &r))
11449 {
11450 tem = build_real (type, r);
11451 return fold_build2 (MULT_EXPR, type,
11452 fold_convert (type, arg0), tem);
11453 }
11454 }
11455 }
11456 /* Convert A/B/C to A/(B*C). */
11457 if (flag_reciprocal_math
11458 && TREE_CODE (arg0) == RDIV_EXPR)
11459 return fold_build2 (RDIV_EXPR, type, TREE_OPERAND (arg0, 0),
11460 fold_build2 (MULT_EXPR, type,
11461 TREE_OPERAND (arg0, 1), arg1));
11462
11463 /* Convert A/(B/C) to (A/B)*C. */
11464 if (flag_reciprocal_math
11465 && TREE_CODE (arg1) == RDIV_EXPR)
11466 return fold_build2 (MULT_EXPR, type,
11467 fold_build2 (RDIV_EXPR, type, arg0,
11468 TREE_OPERAND (arg1, 0)),
11469 TREE_OPERAND (arg1, 1));
11470
11471 /* Convert C1/(X*C2) into (C1/C2)/X. */
11472 if (flag_reciprocal_math
11473 && TREE_CODE (arg1) == MULT_EXPR
11474 && TREE_CODE (arg0) == REAL_CST
11475 && TREE_CODE (TREE_OPERAND (arg1, 1)) == REAL_CST)
11476 {
11477 tree tem = const_binop (RDIV_EXPR, arg0,
11478 TREE_OPERAND (arg1, 1), 0);
11479 if (tem)
11480 return fold_build2 (RDIV_EXPR, type, tem,
11481 TREE_OPERAND (arg1, 0));
11482 }
11483
11484 if (flag_unsafe_math_optimizations)
11485 {
11486 enum built_in_function fcode0 = builtin_mathfn_code (arg0);
11487 enum built_in_function fcode1 = builtin_mathfn_code (arg1);
11488
11489 /* Optimize sin(x)/cos(x) as tan(x). */
11490 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_COS)
11491 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_COSF)
11492 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_COSL))
11493 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11494 CALL_EXPR_ARG (arg1, 0), 0))
11495 {
11496 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11497
11498 if (tanfn != NULL_TREE)
11499 return build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11500 }
11501
11502 /* Optimize cos(x)/sin(x) as 1.0/tan(x). */
11503 if (((fcode0 == BUILT_IN_COS && fcode1 == BUILT_IN_SIN)
11504 || (fcode0 == BUILT_IN_COSF && fcode1 == BUILT_IN_SINF)
11505 || (fcode0 == BUILT_IN_COSL && fcode1 == BUILT_IN_SINL))
11506 && operand_equal_p (CALL_EXPR_ARG (arg0, 0),
11507 CALL_EXPR_ARG (arg1, 0), 0))
11508 {
11509 tree tanfn = mathfn_built_in (type, BUILT_IN_TAN);
11510
11511 if (tanfn != NULL_TREE)
11512 {
11513 tree tmp = build_call_expr (tanfn, 1, CALL_EXPR_ARG (arg0, 0));
11514 return fold_build2 (RDIV_EXPR, type,
11515 build_real (type, dconst1), tmp);
11516 }
11517 }
11518
11519 /* Optimize sin(x)/tan(x) as cos(x) if we don't care about
11520 NaNs or Infinities. */
11521 if (((fcode0 == BUILT_IN_SIN && fcode1 == BUILT_IN_TAN)
11522 || (fcode0 == BUILT_IN_SINF && fcode1 == BUILT_IN_TANF)
11523 || (fcode0 == BUILT_IN_SINL && fcode1 == BUILT_IN_TANL)))
11524 {
11525 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11526 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11527
11528 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11529 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11530 && operand_equal_p (arg00, arg01, 0))
11531 {
11532 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11533
11534 if (cosfn != NULL_TREE)
11535 return build_call_expr (cosfn, 1, arg00);
11536 }
11537 }
11538
11539 /* Optimize tan(x)/sin(x) as 1.0/cos(x) if we don't care about
11540 NaNs or Infinities. */
11541 if (((fcode0 == BUILT_IN_TAN && fcode1 == BUILT_IN_SIN)
11542 || (fcode0 == BUILT_IN_TANF && fcode1 == BUILT_IN_SINF)
11543 || (fcode0 == BUILT_IN_TANL && fcode1 == BUILT_IN_SINL)))
11544 {
11545 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11546 tree arg01 = CALL_EXPR_ARG (arg1, 0);
11547
11548 if (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg00)))
11549 && ! HONOR_INFINITIES (TYPE_MODE (TREE_TYPE (arg00)))
11550 && operand_equal_p (arg00, arg01, 0))
11551 {
11552 tree cosfn = mathfn_built_in (type, BUILT_IN_COS);
11553
11554 if (cosfn != NULL_TREE)
11555 {
11556 tree tmp = build_call_expr (cosfn, 1, arg00);
11557 return fold_build2 (RDIV_EXPR, type,
11558 build_real (type, dconst1),
11559 tmp);
11560 }
11561 }
11562 }
11563
11564 /* Optimize pow(x,c)/x as pow(x,c-1). */
11565 if (fcode0 == BUILT_IN_POW
11566 || fcode0 == BUILT_IN_POWF
11567 || fcode0 == BUILT_IN_POWL)
11568 {
11569 tree arg00 = CALL_EXPR_ARG (arg0, 0);
11570 tree arg01 = CALL_EXPR_ARG (arg0, 1);
11571 if (TREE_CODE (arg01) == REAL_CST
11572 && !TREE_OVERFLOW (arg01)
11573 && operand_equal_p (arg1, arg00, 0))
11574 {
11575 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg0), 0);
11576 REAL_VALUE_TYPE c;
11577 tree arg;
11578
11579 c = TREE_REAL_CST (arg01);
11580 real_arithmetic (&c, MINUS_EXPR, &c, &dconst1);
11581 arg = build_real (type, c);
11582 return build_call_expr (powfn, 2, arg1, arg);
11583 }
11584 }
11585
11586 /* Optimize a/root(b/c) into a*root(c/b). */
11587 if (BUILTIN_ROOT_P (fcode1))
11588 {
11589 tree rootarg = CALL_EXPR_ARG (arg1, 0);
11590
11591 if (TREE_CODE (rootarg) == RDIV_EXPR)
11592 {
11593 tree rootfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11594 tree b = TREE_OPERAND (rootarg, 0);
11595 tree c = TREE_OPERAND (rootarg, 1);
11596
11597 tree tmp = fold_build2 (RDIV_EXPR, type, c, b);
11598
11599 tmp = build_call_expr (rootfn, 1, tmp);
11600 return fold_build2 (MULT_EXPR, type, arg0, tmp);
11601 }
11602 }
11603
11604 /* Optimize x/expN(y) into x*expN(-y). */
11605 if (BUILTIN_EXPONENT_P (fcode1))
11606 {
11607 tree expfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11608 tree arg = negate_expr (CALL_EXPR_ARG (arg1, 0));
11609 arg1 = build_call_expr (expfn, 1, fold_convert (type, arg));
11610 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11611 }
11612
11613 /* Optimize x/pow(y,z) into x*pow(y,-z). */
11614 if (fcode1 == BUILT_IN_POW
11615 || fcode1 == BUILT_IN_POWF
11616 || fcode1 == BUILT_IN_POWL)
11617 {
11618 tree powfn = TREE_OPERAND (CALL_EXPR_FN (arg1), 0);
11619 tree arg10 = CALL_EXPR_ARG (arg1, 0);
11620 tree arg11 = CALL_EXPR_ARG (arg1, 1);
11621 tree neg11 = fold_convert (type, negate_expr (arg11));
11622 arg1 = build_call_expr (powfn, 2, arg10, neg11);
11623 return fold_build2 (MULT_EXPR, type, arg0, arg1);
11624 }
11625 }
11626 return NULL_TREE;
11627
11628 case TRUNC_DIV_EXPR:
11629 case FLOOR_DIV_EXPR:
11630 /* Simplify A / (B << N) where A and B are positive and B is
11631 a power of 2, to A >> (N + log2(B)). */
11632 strict_overflow_p = false;
11633 if (TREE_CODE (arg1) == LSHIFT_EXPR
11634 && (TYPE_UNSIGNED (type)
11635 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11636 {
11637 tree sval = TREE_OPERAND (arg1, 0);
11638 if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0)
11639 {
11640 tree sh_cnt = TREE_OPERAND (arg1, 1);
11641 unsigned long pow2 = exact_log2 (TREE_INT_CST_LOW (sval));
11642
11643 if (strict_overflow_p)
11644 fold_overflow_warning (("assuming signed overflow does not "
11645 "occur when simplifying A / (B << N)"),
11646 WARN_STRICT_OVERFLOW_MISC);
11647
11648 sh_cnt = fold_build2 (PLUS_EXPR, TREE_TYPE (sh_cnt),
11649 sh_cnt, build_int_cst (NULL_TREE, pow2));
11650 return fold_build2 (RSHIFT_EXPR, type,
11651 fold_convert (type, arg0), sh_cnt);
11652 }
11653 }
11654
11655 /* For unsigned integral types, FLOOR_DIV_EXPR is the same as
11656 TRUNC_DIV_EXPR. Rewrite into the latter in this case. */
11657 if (INTEGRAL_TYPE_P (type)
11658 && TYPE_UNSIGNED (type)
11659 && code == FLOOR_DIV_EXPR)
11660 return fold_build2 (TRUNC_DIV_EXPR, type, op0, op1);
11661
11662 /* Fall thru */
11663
11664 case ROUND_DIV_EXPR:
11665 case CEIL_DIV_EXPR:
11666 case EXACT_DIV_EXPR:
11667 if (integer_onep (arg1))
11668 return non_lvalue (fold_convert (type, arg0));
11669 if (integer_zerop (arg1))
11670 return NULL_TREE;
11671 /* X / -1 is -X. */
11672 if (!TYPE_UNSIGNED (type)
11673 && TREE_CODE (arg1) == INTEGER_CST
11674 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11675 && TREE_INT_CST_HIGH (arg1) == -1)
11676 return fold_convert (type, negate_expr (arg0));
11677
11678 /* Convert -A / -B to A / B when the type is signed and overflow is
11679 undefined. */
11680 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11681 && TREE_CODE (arg0) == NEGATE_EXPR
11682 && negate_expr_p (arg1))
11683 {
11684 if (INTEGRAL_TYPE_P (type))
11685 fold_overflow_warning (("assuming signed overflow does not occur "
11686 "when distributing negation across "
11687 "division"),
11688 WARN_STRICT_OVERFLOW_MISC);
11689 return fold_build2 (code, type,
11690 fold_convert (type, TREE_OPERAND (arg0, 0)),
11691 fold_convert (type, negate_expr (arg1)));
11692 }
11693 if ((!INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type))
11694 && TREE_CODE (arg1) == NEGATE_EXPR
11695 && negate_expr_p (arg0))
11696 {
11697 if (INTEGRAL_TYPE_P (type))
11698 fold_overflow_warning (("assuming signed overflow does not occur "
11699 "when distributing negation across "
11700 "division"),
11701 WARN_STRICT_OVERFLOW_MISC);
11702 return fold_build2 (code, type,
11703 fold_convert (type, negate_expr (arg0)),
11704 fold_convert (type, TREE_OPERAND (arg1, 0)));
11705 }
11706
11707 /* If arg0 is a multiple of arg1, then rewrite to the fastest div
11708 operation, EXACT_DIV_EXPR.
11709
11710 Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now.
11711 At one time others generated faster code, it's not clear if they do
11712 after the last round to changes to the DIV code in expmed.c. */
11713 if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR)
11714 && multiple_of_p (type, arg0, arg1))
11715 return fold_build2 (EXACT_DIV_EXPR, type, arg0, arg1);
11716
11717 strict_overflow_p = false;
11718 if (TREE_CODE (arg1) == INTEGER_CST
11719 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11720 &strict_overflow_p)))
11721 {
11722 if (strict_overflow_p)
11723 fold_overflow_warning (("assuming signed overflow does not occur "
11724 "when simplifying division"),
11725 WARN_STRICT_OVERFLOW_MISC);
11726 return fold_convert (type, tem);
11727 }
11728
11729 return NULL_TREE;
11730
11731 case CEIL_MOD_EXPR:
11732 case FLOOR_MOD_EXPR:
11733 case ROUND_MOD_EXPR:
11734 case TRUNC_MOD_EXPR:
11735 /* X % 1 is always zero, but be sure to preserve any side
11736 effects in X. */
11737 if (integer_onep (arg1))
11738 return omit_one_operand (type, integer_zero_node, arg0);
11739
11740 /* X % 0, return X % 0 unchanged so that we can get the
11741 proper warnings and errors. */
11742 if (integer_zerop (arg1))
11743 return NULL_TREE;
11744
11745 /* 0 % X is always zero, but be sure to preserve any side
11746 effects in X. Place this after checking for X == 0. */
11747 if (integer_zerop (arg0))
11748 return omit_one_operand (type, integer_zero_node, arg1);
11749
11750 /* X % -1 is zero. */
11751 if (!TYPE_UNSIGNED (type)
11752 && TREE_CODE (arg1) == INTEGER_CST
11753 && TREE_INT_CST_LOW (arg1) == (unsigned HOST_WIDE_INT) -1
11754 && TREE_INT_CST_HIGH (arg1) == -1)
11755 return omit_one_operand (type, integer_zero_node, arg0);
11756
11757 /* Optimize TRUNC_MOD_EXPR by a power of two into a BIT_AND_EXPR,
11758 i.e. "X % C" into "X & (C - 1)", if X and C are positive. */
11759 strict_overflow_p = false;
11760 if ((code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR)
11761 && (TYPE_UNSIGNED (type)
11762 || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p)))
11763 {
11764 tree c = arg1;
11765 /* Also optimize A % (C << N) where C is a power of 2,
11766 to A & ((C << N) - 1). */
11767 if (TREE_CODE (arg1) == LSHIFT_EXPR)
11768 c = TREE_OPERAND (arg1, 0);
11769
11770 if (integer_pow2p (c) && tree_int_cst_sgn (c) > 0)
11771 {
11772 tree mask = fold_build2 (MINUS_EXPR, TREE_TYPE (arg1), arg1,
11773 build_int_cst (TREE_TYPE (arg1), 1));
11774 if (strict_overflow_p)
11775 fold_overflow_warning (("assuming signed overflow does not "
11776 "occur when simplifying "
11777 "X % (power of two)"),
11778 WARN_STRICT_OVERFLOW_MISC);
11779 return fold_build2 (BIT_AND_EXPR, type,
11780 fold_convert (type, arg0),
11781 fold_convert (type, mask));
11782 }
11783 }
11784
11785 /* X % -C is the same as X % C. */
11786 if (code == TRUNC_MOD_EXPR
11787 && !TYPE_UNSIGNED (type)
11788 && TREE_CODE (arg1) == INTEGER_CST
11789 && !TREE_OVERFLOW (arg1)
11790 && TREE_INT_CST_HIGH (arg1) < 0
11791 && !TYPE_OVERFLOW_TRAPS (type)
11792 /* Avoid this transformation if C is INT_MIN, i.e. C == -C. */
11793 && !sign_bit_p (arg1, arg1))
11794 return fold_build2 (code, type, fold_convert (type, arg0),
11795 fold_convert (type, negate_expr (arg1)));
11796
11797 /* X % -Y is the same as X % Y. */
11798 if (code == TRUNC_MOD_EXPR
11799 && !TYPE_UNSIGNED (type)
11800 && TREE_CODE (arg1) == NEGATE_EXPR
11801 && !TYPE_OVERFLOW_TRAPS (type))
11802 return fold_build2 (code, type, fold_convert (type, arg0),
11803 fold_convert (type, TREE_OPERAND (arg1, 0)));
11804
11805 if (TREE_CODE (arg1) == INTEGER_CST
11806 && 0 != (tem = extract_muldiv (op0, arg1, code, NULL_TREE,
11807 &strict_overflow_p)))
11808 {
11809 if (strict_overflow_p)
11810 fold_overflow_warning (("assuming signed overflow does not occur "
11811 "when simplifying modulus"),
11812 WARN_STRICT_OVERFLOW_MISC);
11813 return fold_convert (type, tem);
11814 }
11815
11816 return NULL_TREE;
11817
11818 case LROTATE_EXPR:
11819 case RROTATE_EXPR:
11820 if (integer_all_onesp (arg0))
11821 return omit_one_operand (type, arg0, arg1);
11822 goto shift;
11823
11824 case RSHIFT_EXPR:
11825 /* Optimize -1 >> x for arithmetic right shifts. */
11826 if (integer_all_onesp (arg0) && !TYPE_UNSIGNED (type)
11827 && tree_expr_nonnegative_p (arg1))
11828 return omit_one_operand (type, arg0, arg1);
11829 /* ... fall through ... */
11830
11831 case LSHIFT_EXPR:
11832 shift:
11833 if (integer_zerop (arg1))
11834 return non_lvalue (fold_convert (type, arg0));
11835 if (integer_zerop (arg0))
11836 return omit_one_operand (type, arg0, arg1);
11837
11838 /* Since negative shift count is not well-defined,
11839 don't try to compute it in the compiler. */
11840 if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0)
11841 return NULL_TREE;
11842
11843 /* Turn (a OP c1) OP c2 into a OP (c1+c2). */
11844 if (TREE_CODE (op0) == code && host_integerp (arg1, false)
11845 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11846 && host_integerp (TREE_OPERAND (arg0, 1), false)
11847 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11848 {
11849 HOST_WIDE_INT low = (TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1))
11850 + TREE_INT_CST_LOW (arg1));
11851
11852 /* Deal with a OP (c1 + c2) being undefined but (a OP c1) OP c2
11853 being well defined. */
11854 if (low >= TYPE_PRECISION (type))
11855 {
11856 if (code == LROTATE_EXPR || code == RROTATE_EXPR)
11857 low = low % TYPE_PRECISION (type);
11858 else if (TYPE_UNSIGNED (type) || code == LSHIFT_EXPR)
11859 return build_int_cst (type, 0);
11860 else
11861 low = TYPE_PRECISION (type) - 1;
11862 }
11863
11864 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
11865 build_int_cst (type, low));
11866 }
11867
11868 /* Transform (x >> c) << c into x & (-1<<c), or transform (x << c) >> c
11869 into x & ((unsigned)-1 >> c) for unsigned types. */
11870 if (((code == LSHIFT_EXPR && TREE_CODE (arg0) == RSHIFT_EXPR)
11871 || (TYPE_UNSIGNED (type)
11872 && code == RSHIFT_EXPR && TREE_CODE (arg0) == LSHIFT_EXPR))
11873 && host_integerp (arg1, false)
11874 && TREE_INT_CST_LOW (arg1) < TYPE_PRECISION (type)
11875 && host_integerp (TREE_OPERAND (arg0, 1), false)
11876 && TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)) < TYPE_PRECISION (type))
11877 {
11878 HOST_WIDE_INT low0 = TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1));
11879 HOST_WIDE_INT low1 = TREE_INT_CST_LOW (arg1);
11880 tree lshift;
11881 tree arg00;
11882
11883 if (low0 == low1)
11884 {
11885 arg00 = fold_convert (type, TREE_OPERAND (arg0, 0));
11886
11887 lshift = build_int_cst (type, -1);
11888 lshift = int_const_binop (code, lshift, arg1, 0);
11889
11890 return fold_build2 (BIT_AND_EXPR, type, arg00, lshift);
11891 }
11892 }
11893
11894 /* Rewrite an LROTATE_EXPR by a constant into an
11895 RROTATE_EXPR by a new constant. */
11896 if (code == LROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST)
11897 {
11898 tree tem = build_int_cst (TREE_TYPE (arg1),
11899 TYPE_PRECISION (type));
11900 tem = const_binop (MINUS_EXPR, tem, arg1, 0);
11901 return fold_build2 (RROTATE_EXPR, type, op0, tem);
11902 }
11903
11904 /* If we have a rotate of a bit operation with the rotate count and
11905 the second operand of the bit operation both constant,
11906 permute the two operations. */
11907 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11908 && (TREE_CODE (arg0) == BIT_AND_EXPR
11909 || TREE_CODE (arg0) == BIT_IOR_EXPR
11910 || TREE_CODE (arg0) == BIT_XOR_EXPR)
11911 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11912 return fold_build2 (TREE_CODE (arg0), type,
11913 fold_build2 (code, type,
11914 TREE_OPERAND (arg0, 0), arg1),
11915 fold_build2 (code, type,
11916 TREE_OPERAND (arg0, 1), arg1));
11917
11918 /* Two consecutive rotates adding up to the precision of the
11919 type can be ignored. */
11920 if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST
11921 && TREE_CODE (arg0) == RROTATE_EXPR
11922 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
11923 && TREE_INT_CST_HIGH (arg1) == 0
11924 && TREE_INT_CST_HIGH (TREE_OPERAND (arg0, 1)) == 0
11925 && ((TREE_INT_CST_LOW (arg1)
11926 + TREE_INT_CST_LOW (TREE_OPERAND (arg0, 1)))
11927 == (unsigned int) TYPE_PRECISION (type)))
11928 return TREE_OPERAND (arg0, 0);
11929
11930 /* Fold (X & C2) << C1 into (X << C1) & (C2 << C1)
11931 (X & C2) >> C1 into (X >> C1) & (C2 >> C1)
11932 if the latter can be further optimized. */
11933 if ((code == LSHIFT_EXPR || code == RSHIFT_EXPR)
11934 && TREE_CODE (arg0) == BIT_AND_EXPR
11935 && TREE_CODE (arg1) == INTEGER_CST
11936 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
11937 {
11938 tree mask = fold_build2 (code, type,
11939 fold_convert (type, TREE_OPERAND (arg0, 1)),
11940 arg1);
11941 tree shift = fold_build2 (code, type,
11942 fold_convert (type, TREE_OPERAND (arg0, 0)),
11943 arg1);
11944 tem = fold_binary (BIT_AND_EXPR, type, shift, mask);
11945 if (tem)
11946 return tem;
11947 }
11948
11949 return NULL_TREE;
11950
11951 case MIN_EXPR:
11952 if (operand_equal_p (arg0, arg1, 0))
11953 return omit_one_operand (type, arg0, arg1);
11954 if (INTEGRAL_TYPE_P (type)
11955 && operand_equal_p (arg1, TYPE_MIN_VALUE (type), OEP_ONLY_CONST))
11956 return omit_one_operand (type, arg1, arg0);
11957 tem = fold_minmax (MIN_EXPR, type, arg0, arg1);
11958 if (tem)
11959 return tem;
11960 goto associate;
11961
11962 case MAX_EXPR:
11963 if (operand_equal_p (arg0, arg1, 0))
11964 return omit_one_operand (type, arg0, arg1);
11965 if (INTEGRAL_TYPE_P (type)
11966 && TYPE_MAX_VALUE (type)
11967 && operand_equal_p (arg1, TYPE_MAX_VALUE (type), OEP_ONLY_CONST))
11968 return omit_one_operand (type, arg1, arg0);
11969 tem = fold_minmax (MAX_EXPR, type, arg0, arg1);
11970 if (tem)
11971 return tem;
11972 goto associate;
11973
11974 case TRUTH_ANDIF_EXPR:
11975 /* Note that the operands of this must be ints
11976 and their values must be 0 or 1.
11977 ("true" is a fixed value perhaps depending on the language.) */
11978 /* If first arg is constant zero, return it. */
11979 if (integer_zerop (arg0))
11980 return fold_convert (type, arg0);
11981 case TRUTH_AND_EXPR:
11982 /* If either arg is constant true, drop it. */
11983 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
11984 return non_lvalue (fold_convert (type, arg1));
11985 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)
11986 /* Preserve sequence points. */
11987 && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
11988 return non_lvalue (fold_convert (type, arg0));
11989 /* If second arg is constant zero, result is zero, but first arg
11990 must be evaluated. */
11991 if (integer_zerop (arg1))
11992 return omit_one_operand (type, arg1, arg0);
11993 /* Likewise for first arg, but note that only the TRUTH_AND_EXPR
11994 case will be handled here. */
11995 if (integer_zerop (arg0))
11996 return omit_one_operand (type, arg0, arg1);
11997
11998 /* !X && X is always false. */
11999 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12000 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12001 return omit_one_operand (type, integer_zero_node, arg1);
12002 /* X && !X is always false. */
12003 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12004 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12005 return omit_one_operand (type, integer_zero_node, arg0);
12006
12007 /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y
12008 means A >= Y && A != MAX, but in this case we know that
12009 A < X <= MAX. */
12010
12011 if (!TREE_SIDE_EFFECTS (arg0)
12012 && !TREE_SIDE_EFFECTS (arg1))
12013 {
12014 tem = fold_to_nonsharp_ineq_using_bound (arg0, arg1);
12015 if (tem && !operand_equal_p (tem, arg0, 0))
12016 return fold_build2 (code, type, tem, arg1);
12017
12018 tem = fold_to_nonsharp_ineq_using_bound (arg1, arg0);
12019 if (tem && !operand_equal_p (tem, arg1, 0))
12020 return fold_build2 (code, type, arg0, tem);
12021 }
12022
12023 truth_andor:
12024 /* We only do these simplifications if we are optimizing. */
12025 if (!optimize)
12026 return NULL_TREE;
12027
12028 /* Check for things like (A || B) && (A || C). We can convert this
12029 to A || (B && C). Note that either operator can be any of the four
12030 truth and/or operations and the transformation will still be
12031 valid. Also note that we only care about order for the
12032 ANDIF and ORIF operators. If B contains side effects, this
12033 might change the truth-value of A. */
12034 if (TREE_CODE (arg0) == TREE_CODE (arg1)
12035 && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR
12036 || TREE_CODE (arg0) == TRUTH_ORIF_EXPR
12037 || TREE_CODE (arg0) == TRUTH_AND_EXPR
12038 || TREE_CODE (arg0) == TRUTH_OR_EXPR)
12039 && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1)))
12040 {
12041 tree a00 = TREE_OPERAND (arg0, 0);
12042 tree a01 = TREE_OPERAND (arg0, 1);
12043 tree a10 = TREE_OPERAND (arg1, 0);
12044 tree a11 = TREE_OPERAND (arg1, 1);
12045 int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR
12046 || TREE_CODE (arg0) == TRUTH_AND_EXPR)
12047 && (code == TRUTH_AND_EXPR
12048 || code == TRUTH_OR_EXPR));
12049
12050 if (operand_equal_p (a00, a10, 0))
12051 return fold_build2 (TREE_CODE (arg0), type, a00,
12052 fold_build2 (code, type, a01, a11));
12053 else if (commutative && operand_equal_p (a00, a11, 0))
12054 return fold_build2 (TREE_CODE (arg0), type, a00,
12055 fold_build2 (code, type, a01, a10));
12056 else if (commutative && operand_equal_p (a01, a10, 0))
12057 return fold_build2 (TREE_CODE (arg0), type, a01,
12058 fold_build2 (code, type, a00, a11));
12059
12060 /* This case if tricky because we must either have commutative
12061 operators or else A10 must not have side-effects. */
12062
12063 else if ((commutative || ! TREE_SIDE_EFFECTS (a10))
12064 && operand_equal_p (a01, a11, 0))
12065 return fold_build2 (TREE_CODE (arg0), type,
12066 fold_build2 (code, type, a00, a10),
12067 a01);
12068 }
12069
12070 /* See if we can build a range comparison. */
12071 if (0 != (tem = fold_range_test (code, type, op0, op1)))
12072 return tem;
12073
12074 /* Check for the possibility of merging component references. If our
12075 lhs is another similar operation, try to merge its rhs with our
12076 rhs. Then try to merge our lhs and rhs. */
12077 if (TREE_CODE (arg0) == code
12078 && 0 != (tem = fold_truthop (code, type,
12079 TREE_OPERAND (arg0, 1), arg1)))
12080 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12081
12082 if ((tem = fold_truthop (code, type, arg0, arg1)) != 0)
12083 return tem;
12084
12085 return NULL_TREE;
12086
12087 case TRUTH_ORIF_EXPR:
12088 /* Note that the operands of this must be ints
12089 and their values must be 0 or true.
12090 ("true" is a fixed value perhaps depending on the language.) */
12091 /* If first arg is constant true, return it. */
12092 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12093 return fold_convert (type, arg0);
12094 case TRUTH_OR_EXPR:
12095 /* If either arg is constant zero, drop it. */
12096 if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0))
12097 return non_lvalue (fold_convert (type, arg1));
12098 if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1)
12099 /* Preserve sequence points. */
12100 && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0)))
12101 return non_lvalue (fold_convert (type, arg0));
12102 /* If second arg is constant true, result is true, but we must
12103 evaluate first arg. */
12104 if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1))
12105 return omit_one_operand (type, arg1, arg0);
12106 /* Likewise for first arg, but note this only occurs here for
12107 TRUTH_OR_EXPR. */
12108 if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0))
12109 return omit_one_operand (type, arg0, arg1);
12110
12111 /* !X || X is always true. */
12112 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12113 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12114 return omit_one_operand (type, integer_one_node, arg1);
12115 /* X || !X is always true. */
12116 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12117 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12118 return omit_one_operand (type, integer_one_node, arg0);
12119
12120 goto truth_andor;
12121
12122 case TRUTH_XOR_EXPR:
12123 /* If the second arg is constant zero, drop it. */
12124 if (integer_zerop (arg1))
12125 return non_lvalue (fold_convert (type, arg0));
12126 /* If the second arg is constant true, this is a logical inversion. */
12127 if (integer_onep (arg1))
12128 {
12129 /* Only call invert_truthvalue if operand is a truth value. */
12130 if (TREE_CODE (TREE_TYPE (arg0)) != BOOLEAN_TYPE)
12131 tem = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (arg0), arg0);
12132 else
12133 tem = invert_truthvalue (arg0);
12134 return non_lvalue (fold_convert (type, tem));
12135 }
12136 /* Identical arguments cancel to zero. */
12137 if (operand_equal_p (arg0, arg1, 0))
12138 return omit_one_operand (type, integer_zero_node, arg0);
12139
12140 /* !X ^ X is always true. */
12141 if (TREE_CODE (arg0) == TRUTH_NOT_EXPR
12142 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0))
12143 return omit_one_operand (type, integer_one_node, arg1);
12144
12145 /* X ^ !X is always true. */
12146 if (TREE_CODE (arg1) == TRUTH_NOT_EXPR
12147 && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0))
12148 return omit_one_operand (type, integer_one_node, arg0);
12149
12150 return NULL_TREE;
12151
12152 case EQ_EXPR:
12153 case NE_EXPR:
12154 tem = fold_comparison (code, type, op0, op1);
12155 if (tem != NULL_TREE)
12156 return tem;
12157
12158 /* bool_var != 0 becomes bool_var. */
12159 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12160 && code == NE_EXPR)
12161 return non_lvalue (fold_convert (type, arg0));
12162
12163 /* bool_var == 1 becomes bool_var. */
12164 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12165 && code == EQ_EXPR)
12166 return non_lvalue (fold_convert (type, arg0));
12167
12168 /* bool_var != 1 becomes !bool_var. */
12169 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1)
12170 && code == NE_EXPR)
12171 return fold_build1 (TRUTH_NOT_EXPR, type, fold_convert (type, arg0));
12172
12173 /* bool_var == 0 becomes !bool_var. */
12174 if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1)
12175 && code == EQ_EXPR)
12176 return fold_build1 (TRUTH_NOT_EXPR, type, fold_convert (type, arg0));
12177
12178 /* If this is an equality comparison of the address of two non-weak,
12179 unaliased symbols neither of which are extern (since we do not
12180 have access to attributes for externs), then we know the result. */
12181 if (TREE_CODE (arg0) == ADDR_EXPR
12182 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg0, 0))
12183 && ! DECL_WEAK (TREE_OPERAND (arg0, 0))
12184 && ! lookup_attribute ("alias",
12185 DECL_ATTRIBUTES (TREE_OPERAND (arg0, 0)))
12186 && ! DECL_EXTERNAL (TREE_OPERAND (arg0, 0))
12187 && TREE_CODE (arg1) == ADDR_EXPR
12188 && VAR_OR_FUNCTION_DECL_P (TREE_OPERAND (arg1, 0))
12189 && ! DECL_WEAK (TREE_OPERAND (arg1, 0))
12190 && ! lookup_attribute ("alias",
12191 DECL_ATTRIBUTES (TREE_OPERAND (arg1, 0)))
12192 && ! DECL_EXTERNAL (TREE_OPERAND (arg1, 0)))
12193 {
12194 /* We know that we're looking at the address of two
12195 non-weak, unaliased, static _DECL nodes.
12196
12197 It is both wasteful and incorrect to call operand_equal_p
12198 to compare the two ADDR_EXPR nodes. It is wasteful in that
12199 all we need to do is test pointer equality for the arguments
12200 to the two ADDR_EXPR nodes. It is incorrect to use
12201 operand_equal_p as that function is NOT equivalent to a
12202 C equality test. It can in fact return false for two
12203 objects which would test as equal using the C equality
12204 operator. */
12205 bool equal = TREE_OPERAND (arg0, 0) == TREE_OPERAND (arg1, 0);
12206 return constant_boolean_node (equal
12207 ? code == EQ_EXPR : code != EQ_EXPR,
12208 type);
12209 }
12210
12211 /* If this is an EQ or NE comparison of a constant with a PLUS_EXPR or
12212 a MINUS_EXPR of a constant, we can convert it into a comparison with
12213 a revised constant as long as no overflow occurs. */
12214 if (TREE_CODE (arg1) == INTEGER_CST
12215 && (TREE_CODE (arg0) == PLUS_EXPR
12216 || TREE_CODE (arg0) == MINUS_EXPR)
12217 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12218 && 0 != (tem = const_binop (TREE_CODE (arg0) == PLUS_EXPR
12219 ? MINUS_EXPR : PLUS_EXPR,
12220 fold_convert (TREE_TYPE (arg0), arg1),
12221 TREE_OPERAND (arg0, 1), 0))
12222 && !TREE_OVERFLOW (tem))
12223 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12224
12225 /* Similarly for a NEGATE_EXPR. */
12226 if (TREE_CODE (arg0) == NEGATE_EXPR
12227 && TREE_CODE (arg1) == INTEGER_CST
12228 && 0 != (tem = negate_expr (arg1))
12229 && TREE_CODE (tem) == INTEGER_CST
12230 && !TREE_OVERFLOW (tem))
12231 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), tem);
12232
12233 /* Similarly for a BIT_XOR_EXPR; X ^ C1 == C2 is X == (C1 ^ C2). */
12234 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12235 && TREE_CODE (arg1) == INTEGER_CST
12236 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12237 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12238 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg0),
12239 fold_convert (TREE_TYPE (arg0), arg1),
12240 TREE_OPERAND (arg0, 1)));
12241
12242 /* Transform comparisons of the form X +- C CMP X. */
12243 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12244 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12245 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12246 && (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
12247 || POINTER_TYPE_P (TREE_TYPE (arg0))))
12248 {
12249 tree cst = TREE_OPERAND (arg0, 1);
12250
12251 if (code == EQ_EXPR
12252 && !integer_zerop (cst))
12253 return omit_two_operands (type, boolean_false_node,
12254 TREE_OPERAND (arg0, 0), arg1);
12255 else
12256 return omit_two_operands (type, boolean_true_node,
12257 TREE_OPERAND (arg0, 0), arg1);
12258 }
12259
12260 /* If we have X - Y == 0, we can convert that to X == Y and similarly
12261 for !=. Don't do this for ordered comparisons due to overflow. */
12262 if (TREE_CODE (arg0) == MINUS_EXPR
12263 && integer_zerop (arg1))
12264 return fold_build2 (code, type,
12265 TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1));
12266
12267 /* Convert ABS_EXPR<x> == 0 or ABS_EXPR<x> != 0 to x == 0 or x != 0. */
12268 if (TREE_CODE (arg0) == ABS_EXPR
12269 && (integer_zerop (arg1) || real_zerop (arg1)))
12270 return fold_build2 (code, type, TREE_OPERAND (arg0, 0), arg1);
12271
12272 /* If this is an EQ or NE comparison with zero and ARG0 is
12273 (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require
12274 two operations, but the latter can be done in one less insn
12275 on machines that have only two-operand insns or on which a
12276 constant cannot be the first operand. */
12277 if (TREE_CODE (arg0) == BIT_AND_EXPR
12278 && integer_zerop (arg1))
12279 {
12280 tree arg00 = TREE_OPERAND (arg0, 0);
12281 tree arg01 = TREE_OPERAND (arg0, 1);
12282 if (TREE_CODE (arg00) == LSHIFT_EXPR
12283 && integer_onep (TREE_OPERAND (arg00, 0)))
12284 {
12285 tree tem = fold_build2 (RSHIFT_EXPR, TREE_TYPE (arg00),
12286 arg01, TREE_OPERAND (arg00, 1));
12287 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12288 build_int_cst (TREE_TYPE (arg0), 1));
12289 return fold_build2 (code, type,
12290 fold_convert (TREE_TYPE (arg1), tem), arg1);
12291 }
12292 else if (TREE_CODE (arg01) == LSHIFT_EXPR
12293 && integer_onep (TREE_OPERAND (arg01, 0)))
12294 {
12295 tree tem = fold_build2 (RSHIFT_EXPR, TREE_TYPE (arg01),
12296 arg00, TREE_OPERAND (arg01, 1));
12297 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0), tem,
12298 build_int_cst (TREE_TYPE (arg0), 1));
12299 return fold_build2 (code, type,
12300 fold_convert (TREE_TYPE (arg1), tem), arg1);
12301 }
12302 }
12303
12304 /* If this is an NE or EQ comparison of zero against the result of a
12305 signed MOD operation whose second operand is a power of 2, make
12306 the MOD operation unsigned since it is simpler and equivalent. */
12307 if (integer_zerop (arg1)
12308 && !TYPE_UNSIGNED (TREE_TYPE (arg0))
12309 && (TREE_CODE (arg0) == TRUNC_MOD_EXPR
12310 || TREE_CODE (arg0) == CEIL_MOD_EXPR
12311 || TREE_CODE (arg0) == FLOOR_MOD_EXPR
12312 || TREE_CODE (arg0) == ROUND_MOD_EXPR)
12313 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12314 {
12315 tree newtype = unsigned_type_for (TREE_TYPE (arg0));
12316 tree newmod = fold_build2 (TREE_CODE (arg0), newtype,
12317 fold_convert (newtype,
12318 TREE_OPERAND (arg0, 0)),
12319 fold_convert (newtype,
12320 TREE_OPERAND (arg0, 1)));
12321
12322 return fold_build2 (code, type, newmod,
12323 fold_convert (newtype, arg1));
12324 }
12325
12326 /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where
12327 C1 is a valid shift constant, and C2 is a power of two, i.e.
12328 a single bit. */
12329 if (TREE_CODE (arg0) == BIT_AND_EXPR
12330 && TREE_CODE (TREE_OPERAND (arg0, 0)) == RSHIFT_EXPR
12331 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))
12332 == INTEGER_CST
12333 && integer_pow2p (TREE_OPERAND (arg0, 1))
12334 && integer_zerop (arg1))
12335 {
12336 tree itype = TREE_TYPE (arg0);
12337 unsigned HOST_WIDE_INT prec = TYPE_PRECISION (itype);
12338 tree arg001 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 1);
12339
12340 /* Check for a valid shift count. */
12341 if (TREE_INT_CST_HIGH (arg001) == 0
12342 && TREE_INT_CST_LOW (arg001) < prec)
12343 {
12344 tree arg01 = TREE_OPERAND (arg0, 1);
12345 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12346 unsigned HOST_WIDE_INT log2 = tree_log2 (arg01);
12347 /* If (C2 << C1) doesn't overflow, then ((X >> C1) & C2) != 0
12348 can be rewritten as (X & (C2 << C1)) != 0. */
12349 if ((log2 + TREE_INT_CST_LOW (arg001)) < prec)
12350 {
12351 tem = fold_build2 (LSHIFT_EXPR, itype, arg01, arg001);
12352 tem = fold_build2 (BIT_AND_EXPR, itype, arg000, tem);
12353 return fold_build2 (code, type, tem, arg1);
12354 }
12355 /* Otherwise, for signed (arithmetic) shifts,
12356 ((X >> C1) & C2) != 0 is rewritten as X < 0, and
12357 ((X >> C1) & C2) == 0 is rewritten as X >= 0. */
12358 else if (!TYPE_UNSIGNED (itype))
12359 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR, type,
12360 arg000, build_int_cst (itype, 0));
12361 /* Otherwise, of unsigned (logical) shifts,
12362 ((X >> C1) & C2) != 0 is rewritten as (X,false), and
12363 ((X >> C1) & C2) == 0 is rewritten as (X,true). */
12364 else
12365 return omit_one_operand (type,
12366 code == EQ_EXPR ? integer_one_node
12367 : integer_zero_node,
12368 arg000);
12369 }
12370 }
12371
12372 /* If this is an NE comparison of zero with an AND of one, remove the
12373 comparison since the AND will give the correct value. */
12374 if (code == NE_EXPR
12375 && integer_zerop (arg1)
12376 && TREE_CODE (arg0) == BIT_AND_EXPR
12377 && integer_onep (TREE_OPERAND (arg0, 1)))
12378 return fold_convert (type, arg0);
12379
12380 /* If we have (A & C) == C where C is a power of 2, convert this into
12381 (A & C) != 0. Similarly for NE_EXPR. */
12382 if (TREE_CODE (arg0) == BIT_AND_EXPR
12383 && integer_pow2p (TREE_OPERAND (arg0, 1))
12384 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12385 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12386 arg0, fold_convert (TREE_TYPE (arg0),
12387 integer_zero_node));
12388
12389 /* If we have (A & C) != 0 or (A & C) == 0 and C is the sign
12390 bit, then fold the expression into A < 0 or A >= 0. */
12391 tem = fold_single_bit_test_into_sign_test (code, arg0, arg1, type);
12392 if (tem)
12393 return tem;
12394
12395 /* If we have (A & C) == D where D & ~C != 0, convert this into 0.
12396 Similarly for NE_EXPR. */
12397 if (TREE_CODE (arg0) == BIT_AND_EXPR
12398 && TREE_CODE (arg1) == INTEGER_CST
12399 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12400 {
12401 tree notc = fold_build1 (BIT_NOT_EXPR,
12402 TREE_TYPE (TREE_OPERAND (arg0, 1)),
12403 TREE_OPERAND (arg0, 1));
12404 tree dandnotc = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12405 arg1, notc);
12406 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12407 if (integer_nonzerop (dandnotc))
12408 return omit_one_operand (type, rslt, arg0);
12409 }
12410
12411 /* If we have (A | C) == D where C & ~D != 0, convert this into 0.
12412 Similarly for NE_EXPR. */
12413 if (TREE_CODE (arg0) == BIT_IOR_EXPR
12414 && TREE_CODE (arg1) == INTEGER_CST
12415 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12416 {
12417 tree notd = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (arg1), arg1);
12418 tree candnotd = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12419 TREE_OPERAND (arg0, 1), notd);
12420 tree rslt = code == EQ_EXPR ? integer_zero_node : integer_one_node;
12421 if (integer_nonzerop (candnotd))
12422 return omit_one_operand (type, rslt, arg0);
12423 }
12424
12425 /* If this is a comparison of a field, we may be able to simplify it. */
12426 if ((TREE_CODE (arg0) == COMPONENT_REF
12427 || TREE_CODE (arg0) == BIT_FIELD_REF)
12428 /* Handle the constant case even without -O
12429 to make sure the warnings are given. */
12430 && (optimize || TREE_CODE (arg1) == INTEGER_CST))
12431 {
12432 t1 = optimize_bit_field_compare (code, type, arg0, arg1);
12433 if (t1)
12434 return t1;
12435 }
12436
12437 /* Optimize comparisons of strlen vs zero to a compare of the
12438 first character of the string vs zero. To wit,
12439 strlen(ptr) == 0 => *ptr == 0
12440 strlen(ptr) != 0 => *ptr != 0
12441 Other cases should reduce to one of these two (or a constant)
12442 due to the return value of strlen being unsigned. */
12443 if (TREE_CODE (arg0) == CALL_EXPR
12444 && integer_zerop (arg1))
12445 {
12446 tree fndecl = get_callee_fndecl (arg0);
12447
12448 if (fndecl
12449 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
12450 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_STRLEN
12451 && call_expr_nargs (arg0) == 1
12452 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) == POINTER_TYPE)
12453 {
12454 tree iref = build_fold_indirect_ref (CALL_EXPR_ARG (arg0, 0));
12455 return fold_build2 (code, type, iref,
12456 build_int_cst (TREE_TYPE (iref), 0));
12457 }
12458 }
12459
12460 /* Fold (X >> C) != 0 into X < 0 if C is one less than the width
12461 of X. Similarly fold (X >> C) == 0 into X >= 0. */
12462 if (TREE_CODE (arg0) == RSHIFT_EXPR
12463 && integer_zerop (arg1)
12464 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12465 {
12466 tree arg00 = TREE_OPERAND (arg0, 0);
12467 tree arg01 = TREE_OPERAND (arg0, 1);
12468 tree itype = TREE_TYPE (arg00);
12469 if (TREE_INT_CST_HIGH (arg01) == 0
12470 && TREE_INT_CST_LOW (arg01)
12471 == (unsigned HOST_WIDE_INT) (TYPE_PRECISION (itype) - 1))
12472 {
12473 if (TYPE_UNSIGNED (itype))
12474 {
12475 itype = signed_type_for (itype);
12476 arg00 = fold_convert (itype, arg00);
12477 }
12478 return fold_build2 (code == EQ_EXPR ? GE_EXPR : LT_EXPR,
12479 type, arg00, build_int_cst (itype, 0));
12480 }
12481 }
12482
12483 /* (X ^ Y) == 0 becomes X == Y, and (X ^ Y) != 0 becomes X != Y. */
12484 if (integer_zerop (arg1)
12485 && TREE_CODE (arg0) == BIT_XOR_EXPR)
12486 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12487 TREE_OPERAND (arg0, 1));
12488
12489 /* (X ^ Y) == Y becomes X == 0. We know that Y has no side-effects. */
12490 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12491 && operand_equal_p (TREE_OPERAND (arg0, 1), arg1, 0))
12492 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12493 build_int_cst (TREE_TYPE (arg1), 0));
12494 /* Likewise (X ^ Y) == X becomes Y == 0. X has no side-effects. */
12495 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12496 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12497 && reorder_operands_p (TREE_OPERAND (arg0, 1), arg1))
12498 return fold_build2 (code, type, TREE_OPERAND (arg0, 1),
12499 build_int_cst (TREE_TYPE (arg1), 0));
12500
12501 /* (X ^ C1) op C2 can be rewritten as X op (C1 ^ C2). */
12502 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12503 && TREE_CODE (arg1) == INTEGER_CST
12504 && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)
12505 return fold_build2 (code, type, TREE_OPERAND (arg0, 0),
12506 fold_build2 (BIT_XOR_EXPR, TREE_TYPE (arg1),
12507 TREE_OPERAND (arg0, 1), arg1));
12508
12509 /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into
12510 (X & C) == 0 when C is a single bit. */
12511 if (TREE_CODE (arg0) == BIT_AND_EXPR
12512 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR
12513 && integer_zerop (arg1)
12514 && integer_pow2p (TREE_OPERAND (arg0, 1)))
12515 {
12516 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg0),
12517 TREE_OPERAND (TREE_OPERAND (arg0, 0), 0),
12518 TREE_OPERAND (arg0, 1));
12519 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR,
12520 type, tem, arg1);
12521 }
12522
12523 /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the
12524 constant C is a power of two, i.e. a single bit. */
12525 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12526 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
12527 && integer_zerop (arg1)
12528 && integer_pow2p (TREE_OPERAND (arg0, 1))
12529 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12530 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12531 {
12532 tree arg00 = TREE_OPERAND (arg0, 0);
12533 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12534 arg00, build_int_cst (TREE_TYPE (arg00), 0));
12535 }
12536
12537 /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0,
12538 when is C is a power of two, i.e. a single bit. */
12539 if (TREE_CODE (arg0) == BIT_AND_EXPR
12540 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR
12541 && integer_zerop (arg1)
12542 && integer_pow2p (TREE_OPERAND (arg0, 1))
12543 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
12544 TREE_OPERAND (arg0, 1), OEP_ONLY_CONST))
12545 {
12546 tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0);
12547 tem = fold_build2 (BIT_AND_EXPR, TREE_TYPE (arg000),
12548 arg000, TREE_OPERAND (arg0, 1));
12549 return fold_build2 (code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type,
12550 tem, build_int_cst (TREE_TYPE (tem), 0));
12551 }
12552
12553 if (integer_zerop (arg1)
12554 && tree_expr_nonzero_p (arg0))
12555 {
12556 tree res = constant_boolean_node (code==NE_EXPR, type);
12557 return omit_one_operand (type, res, arg0);
12558 }
12559
12560 /* Fold -X op -Y as X op Y, where op is eq/ne. */
12561 if (TREE_CODE (arg0) == NEGATE_EXPR
12562 && TREE_CODE (arg1) == NEGATE_EXPR)
12563 return fold_build2 (code, type,
12564 TREE_OPERAND (arg0, 0),
12565 TREE_OPERAND (arg1, 0));
12566
12567 /* Fold (X & C) op (Y & C) as (X ^ Y) & C op 0", and symmetries. */
12568 if (TREE_CODE (arg0) == BIT_AND_EXPR
12569 && TREE_CODE (arg1) == BIT_AND_EXPR)
12570 {
12571 tree arg00 = TREE_OPERAND (arg0, 0);
12572 tree arg01 = TREE_OPERAND (arg0, 1);
12573 tree arg10 = TREE_OPERAND (arg1, 0);
12574 tree arg11 = TREE_OPERAND (arg1, 1);
12575 tree itype = TREE_TYPE (arg0);
12576
12577 if (operand_equal_p (arg01, arg11, 0))
12578 return fold_build2 (code, type,
12579 fold_build2 (BIT_AND_EXPR, itype,
12580 fold_build2 (BIT_XOR_EXPR, itype,
12581 arg00, arg10),
12582 arg01),
12583 build_int_cst (itype, 0));
12584
12585 if (operand_equal_p (arg01, arg10, 0))
12586 return fold_build2 (code, type,
12587 fold_build2 (BIT_AND_EXPR, itype,
12588 fold_build2 (BIT_XOR_EXPR, itype,
12589 arg00, arg11),
12590 arg01),
12591 build_int_cst (itype, 0));
12592
12593 if (operand_equal_p (arg00, arg11, 0))
12594 return fold_build2 (code, type,
12595 fold_build2 (BIT_AND_EXPR, itype,
12596 fold_build2 (BIT_XOR_EXPR, itype,
12597 arg01, arg10),
12598 arg00),
12599 build_int_cst (itype, 0));
12600
12601 if (operand_equal_p (arg00, arg10, 0))
12602 return fold_build2 (code, type,
12603 fold_build2 (BIT_AND_EXPR, itype,
12604 fold_build2 (BIT_XOR_EXPR, itype,
12605 arg01, arg11),
12606 arg00),
12607 build_int_cst (itype, 0));
12608 }
12609
12610 if (TREE_CODE (arg0) == BIT_XOR_EXPR
12611 && TREE_CODE (arg1) == BIT_XOR_EXPR)
12612 {
12613 tree arg00 = TREE_OPERAND (arg0, 0);
12614 tree arg01 = TREE_OPERAND (arg0, 1);
12615 tree arg10 = TREE_OPERAND (arg1, 0);
12616 tree arg11 = TREE_OPERAND (arg1, 1);
12617 tree itype = TREE_TYPE (arg0);
12618
12619 /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries.
12620 operand_equal_p guarantees no side-effects so we don't need
12621 to use omit_one_operand on Z. */
12622 if (operand_equal_p (arg01, arg11, 0))
12623 return fold_build2 (code, type, arg00, arg10);
12624 if (operand_equal_p (arg01, arg10, 0))
12625 return fold_build2 (code, type, arg00, arg11);
12626 if (operand_equal_p (arg00, arg11, 0))
12627 return fold_build2 (code, type, arg01, arg10);
12628 if (operand_equal_p (arg00, arg10, 0))
12629 return fold_build2 (code, type, arg01, arg11);
12630
12631 /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */
12632 if (TREE_CODE (arg01) == INTEGER_CST
12633 && TREE_CODE (arg11) == INTEGER_CST)
12634 return fold_build2 (code, type,
12635 fold_build2 (BIT_XOR_EXPR, itype, arg00,
12636 fold_build2 (BIT_XOR_EXPR, itype,
12637 arg01, arg11)),
12638 arg10);
12639 }
12640
12641 /* Attempt to simplify equality/inequality comparisons of complex
12642 values. Only lower the comparison if the result is known or
12643 can be simplified to a single scalar comparison. */
12644 if ((TREE_CODE (arg0) == COMPLEX_EXPR
12645 || TREE_CODE (arg0) == COMPLEX_CST)
12646 && (TREE_CODE (arg1) == COMPLEX_EXPR
12647 || TREE_CODE (arg1) == COMPLEX_CST))
12648 {
12649 tree real0, imag0, real1, imag1;
12650 tree rcond, icond;
12651
12652 if (TREE_CODE (arg0) == COMPLEX_EXPR)
12653 {
12654 real0 = TREE_OPERAND (arg0, 0);
12655 imag0 = TREE_OPERAND (arg0, 1);
12656 }
12657 else
12658 {
12659 real0 = TREE_REALPART (arg0);
12660 imag0 = TREE_IMAGPART (arg0);
12661 }
12662
12663 if (TREE_CODE (arg1) == COMPLEX_EXPR)
12664 {
12665 real1 = TREE_OPERAND (arg1, 0);
12666 imag1 = TREE_OPERAND (arg1, 1);
12667 }
12668 else
12669 {
12670 real1 = TREE_REALPART (arg1);
12671 imag1 = TREE_IMAGPART (arg1);
12672 }
12673
12674 rcond = fold_binary (code, type, real0, real1);
12675 if (rcond && TREE_CODE (rcond) == INTEGER_CST)
12676 {
12677 if (integer_zerop (rcond))
12678 {
12679 if (code == EQ_EXPR)
12680 return omit_two_operands (type, boolean_false_node,
12681 imag0, imag1);
12682 return fold_build2 (NE_EXPR, type, imag0, imag1);
12683 }
12684 else
12685 {
12686 if (code == NE_EXPR)
12687 return omit_two_operands (type, boolean_true_node,
12688 imag0, imag1);
12689 return fold_build2 (EQ_EXPR, type, imag0, imag1);
12690 }
12691 }
12692
12693 icond = fold_binary (code, type, imag0, imag1);
12694 if (icond && TREE_CODE (icond) == INTEGER_CST)
12695 {
12696 if (integer_zerop (icond))
12697 {
12698 if (code == EQ_EXPR)
12699 return omit_two_operands (type, boolean_false_node,
12700 real0, real1);
12701 return fold_build2 (NE_EXPR, type, real0, real1);
12702 }
12703 else
12704 {
12705 if (code == NE_EXPR)
12706 return omit_two_operands (type, boolean_true_node,
12707 real0, real1);
12708 return fold_build2 (EQ_EXPR, type, real0, real1);
12709 }
12710 }
12711 }
12712
12713 return NULL_TREE;
12714
12715 case LT_EXPR:
12716 case GT_EXPR:
12717 case LE_EXPR:
12718 case GE_EXPR:
12719 tem = fold_comparison (code, type, op0, op1);
12720 if (tem != NULL_TREE)
12721 return tem;
12722
12723 /* Transform comparisons of the form X +- C CMP X. */
12724 if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR)
12725 && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)
12726 && ((TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST
12727 && !HONOR_SNANS (TYPE_MODE (TREE_TYPE (arg0))))
12728 || (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST
12729 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))))
12730 {
12731 tree arg01 = TREE_OPERAND (arg0, 1);
12732 enum tree_code code0 = TREE_CODE (arg0);
12733 int is_positive;
12734
12735 if (TREE_CODE (arg01) == REAL_CST)
12736 is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1;
12737 else
12738 is_positive = tree_int_cst_sgn (arg01);
12739
12740 /* (X - c) > X becomes false. */
12741 if (code == GT_EXPR
12742 && ((code0 == MINUS_EXPR && is_positive >= 0)
12743 || (code0 == PLUS_EXPR && is_positive <= 0)))
12744 {
12745 if (TREE_CODE (arg01) == INTEGER_CST
12746 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12747 fold_overflow_warning (("assuming signed overflow does not "
12748 "occur when assuming that (X - c) > X "
12749 "is always false"),
12750 WARN_STRICT_OVERFLOW_ALL);
12751 return constant_boolean_node (0, type);
12752 }
12753
12754 /* Likewise (X + c) < X becomes false. */
12755 if (code == LT_EXPR
12756 && ((code0 == PLUS_EXPR && is_positive >= 0)
12757 || (code0 == MINUS_EXPR && is_positive <= 0)))
12758 {
12759 if (TREE_CODE (arg01) == INTEGER_CST
12760 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12761 fold_overflow_warning (("assuming signed overflow does not "
12762 "occur when assuming that "
12763 "(X + c) < X is always false"),
12764 WARN_STRICT_OVERFLOW_ALL);
12765 return constant_boolean_node (0, type);
12766 }
12767
12768 /* Convert (X - c) <= X to true. */
12769 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12770 && code == LE_EXPR
12771 && ((code0 == MINUS_EXPR && is_positive >= 0)
12772 || (code0 == PLUS_EXPR && is_positive <= 0)))
12773 {
12774 if (TREE_CODE (arg01) == INTEGER_CST
12775 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12776 fold_overflow_warning (("assuming signed overflow does not "
12777 "occur when assuming that "
12778 "(X - c) <= X is always true"),
12779 WARN_STRICT_OVERFLOW_ALL);
12780 return constant_boolean_node (1, type);
12781 }
12782
12783 /* Convert (X + c) >= X to true. */
12784 if (!HONOR_NANS (TYPE_MODE (TREE_TYPE (arg1)))
12785 && code == GE_EXPR
12786 && ((code0 == PLUS_EXPR && is_positive >= 0)
12787 || (code0 == MINUS_EXPR && is_positive <= 0)))
12788 {
12789 if (TREE_CODE (arg01) == INTEGER_CST
12790 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12791 fold_overflow_warning (("assuming signed overflow does not "
12792 "occur when assuming that "
12793 "(X + c) >= X is always true"),
12794 WARN_STRICT_OVERFLOW_ALL);
12795 return constant_boolean_node (1, type);
12796 }
12797
12798 if (TREE_CODE (arg01) == INTEGER_CST)
12799 {
12800 /* Convert X + c > X and X - c < X to true for integers. */
12801 if (code == GT_EXPR
12802 && ((code0 == PLUS_EXPR && is_positive > 0)
12803 || (code0 == MINUS_EXPR && is_positive < 0)))
12804 {
12805 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12806 fold_overflow_warning (("assuming signed overflow does "
12807 "not occur when assuming that "
12808 "(X + c) > X is always true"),
12809 WARN_STRICT_OVERFLOW_ALL);
12810 return constant_boolean_node (1, type);
12811 }
12812
12813 if (code == LT_EXPR
12814 && ((code0 == MINUS_EXPR && is_positive > 0)
12815 || (code0 == PLUS_EXPR && is_positive < 0)))
12816 {
12817 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12818 fold_overflow_warning (("assuming signed overflow does "
12819 "not occur when assuming that "
12820 "(X - c) < X is always true"),
12821 WARN_STRICT_OVERFLOW_ALL);
12822 return constant_boolean_node (1, type);
12823 }
12824
12825 /* Convert X + c <= X and X - c >= X to false for integers. */
12826 if (code == LE_EXPR
12827 && ((code0 == PLUS_EXPR && is_positive > 0)
12828 || (code0 == MINUS_EXPR && is_positive < 0)))
12829 {
12830 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12831 fold_overflow_warning (("assuming signed overflow does "
12832 "not occur when assuming that "
12833 "(X + c) <= X is always false"),
12834 WARN_STRICT_OVERFLOW_ALL);
12835 return constant_boolean_node (0, type);
12836 }
12837
12838 if (code == GE_EXPR
12839 && ((code0 == MINUS_EXPR && is_positive > 0)
12840 || (code0 == PLUS_EXPR && is_positive < 0)))
12841 {
12842 if (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg1)))
12843 fold_overflow_warning (("assuming signed overflow does "
12844 "not occur when assuming that "
12845 "(X - c) >= X is always false"),
12846 WARN_STRICT_OVERFLOW_ALL);
12847 return constant_boolean_node (0, type);
12848 }
12849 }
12850 }
12851
12852 /* Comparisons with the highest or lowest possible integer of
12853 the specified precision will have known values. */
12854 {
12855 tree arg1_type = TREE_TYPE (arg1);
12856 unsigned int width = TYPE_PRECISION (arg1_type);
12857
12858 if (TREE_CODE (arg1) == INTEGER_CST
12859 && width <= 2 * HOST_BITS_PER_WIDE_INT
12860 && (INTEGRAL_TYPE_P (arg1_type) || POINTER_TYPE_P (arg1_type)))
12861 {
12862 HOST_WIDE_INT signed_max_hi;
12863 unsigned HOST_WIDE_INT signed_max_lo;
12864 unsigned HOST_WIDE_INT max_hi, max_lo, min_hi, min_lo;
12865
12866 if (width <= HOST_BITS_PER_WIDE_INT)
12867 {
12868 signed_max_lo = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12869 - 1;
12870 signed_max_hi = 0;
12871 max_hi = 0;
12872
12873 if (TYPE_UNSIGNED (arg1_type))
12874 {
12875 max_lo = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12876 min_lo = 0;
12877 min_hi = 0;
12878 }
12879 else
12880 {
12881 max_lo = signed_max_lo;
12882 min_lo = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12883 min_hi = -1;
12884 }
12885 }
12886 else
12887 {
12888 width -= HOST_BITS_PER_WIDE_INT;
12889 signed_max_lo = -1;
12890 signed_max_hi = ((unsigned HOST_WIDE_INT) 1 << (width - 1))
12891 - 1;
12892 max_lo = -1;
12893 min_lo = 0;
12894
12895 if (TYPE_UNSIGNED (arg1_type))
12896 {
12897 max_hi = ((unsigned HOST_WIDE_INT) 2 << (width - 1)) - 1;
12898 min_hi = 0;
12899 }
12900 else
12901 {
12902 max_hi = signed_max_hi;
12903 min_hi = ((unsigned HOST_WIDE_INT) -1 << (width - 1));
12904 }
12905 }
12906
12907 if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1) == max_hi
12908 && TREE_INT_CST_LOW (arg1) == max_lo)
12909 switch (code)
12910 {
12911 case GT_EXPR:
12912 return omit_one_operand (type, integer_zero_node, arg0);
12913
12914 case GE_EXPR:
12915 return fold_build2 (EQ_EXPR, type, op0, op1);
12916
12917 case LE_EXPR:
12918 return omit_one_operand (type, integer_one_node, arg0);
12919
12920 case LT_EXPR:
12921 return fold_build2 (NE_EXPR, type, op0, op1);
12922
12923 /* The GE_EXPR and LT_EXPR cases above are not normally
12924 reached because of previous transformations. */
12925
12926 default:
12927 break;
12928 }
12929 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12930 == max_hi
12931 && TREE_INT_CST_LOW (arg1) == max_lo - 1)
12932 switch (code)
12933 {
12934 case GT_EXPR:
12935 arg1 = const_binop (PLUS_EXPR, arg1,
12936 build_int_cst (TREE_TYPE (arg1), 1), 0);
12937 return fold_build2 (EQ_EXPR, type,
12938 fold_convert (TREE_TYPE (arg1), arg0),
12939 arg1);
12940 case LE_EXPR:
12941 arg1 = const_binop (PLUS_EXPR, arg1,
12942 build_int_cst (TREE_TYPE (arg1), 1), 0);
12943 return fold_build2 (NE_EXPR, type,
12944 fold_convert (TREE_TYPE (arg1), arg0),
12945 arg1);
12946 default:
12947 break;
12948 }
12949 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12950 == min_hi
12951 && TREE_INT_CST_LOW (arg1) == min_lo)
12952 switch (code)
12953 {
12954 case LT_EXPR:
12955 return omit_one_operand (type, integer_zero_node, arg0);
12956
12957 case LE_EXPR:
12958 return fold_build2 (EQ_EXPR, type, op0, op1);
12959
12960 case GE_EXPR:
12961 return omit_one_operand (type, integer_one_node, arg0);
12962
12963 case GT_EXPR:
12964 return fold_build2 (NE_EXPR, type, op0, op1);
12965
12966 default:
12967 break;
12968 }
12969 else if ((unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (arg1)
12970 == min_hi
12971 && TREE_INT_CST_LOW (arg1) == min_lo + 1)
12972 switch (code)
12973 {
12974 case GE_EXPR:
12975 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12976 return fold_build2 (NE_EXPR, type,
12977 fold_convert (TREE_TYPE (arg1), arg0),
12978 arg1);
12979 case LT_EXPR:
12980 arg1 = const_binop (MINUS_EXPR, arg1, integer_one_node, 0);
12981 return fold_build2 (EQ_EXPR, type,
12982 fold_convert (TREE_TYPE (arg1), arg0),
12983 arg1);
12984 default:
12985 break;
12986 }
12987
12988 else if (TREE_INT_CST_HIGH (arg1) == signed_max_hi
12989 && TREE_INT_CST_LOW (arg1) == signed_max_lo
12990 && TYPE_UNSIGNED (arg1_type)
12991 /* We will flip the signedness of the comparison operator
12992 associated with the mode of arg1, so the sign bit is
12993 specified by this mode. Check that arg1 is the signed
12994 max associated with this sign bit. */
12995 && width == GET_MODE_BITSIZE (TYPE_MODE (arg1_type))
12996 /* signed_type does not work on pointer types. */
12997 && INTEGRAL_TYPE_P (arg1_type))
12998 {
12999 /* The following case also applies to X < signed_max+1
13000 and X >= signed_max+1 because previous transformations. */
13001 if (code == LE_EXPR || code == GT_EXPR)
13002 {
13003 tree st;
13004 st = signed_type_for (TREE_TYPE (arg1));
13005 return fold_build2 (code == LE_EXPR ? GE_EXPR : LT_EXPR,
13006 type, fold_convert (st, arg0),
13007 build_int_cst (st, 0));
13008 }
13009 }
13010 }
13011 }
13012
13013 /* If we are comparing an ABS_EXPR with a constant, we can
13014 convert all the cases into explicit comparisons, but they may
13015 well not be faster than doing the ABS and one comparison.
13016 But ABS (X) <= C is a range comparison, which becomes a subtraction
13017 and a comparison, and is probably faster. */
13018 if (code == LE_EXPR
13019 && TREE_CODE (arg1) == INTEGER_CST
13020 && TREE_CODE (arg0) == ABS_EXPR
13021 && ! TREE_SIDE_EFFECTS (arg0)
13022 && (0 != (tem = negate_expr (arg1)))
13023 && TREE_CODE (tem) == INTEGER_CST
13024 && !TREE_OVERFLOW (tem))
13025 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13026 build2 (GE_EXPR, type,
13027 TREE_OPERAND (arg0, 0), tem),
13028 build2 (LE_EXPR, type,
13029 TREE_OPERAND (arg0, 0), arg1));
13030
13031 /* Convert ABS_EXPR<x> >= 0 to true. */
13032 strict_overflow_p = false;
13033 if (code == GE_EXPR
13034 && (integer_zerop (arg1)
13035 || (! HONOR_NANS (TYPE_MODE (TREE_TYPE (arg0)))
13036 && real_zerop (arg1)))
13037 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13038 {
13039 if (strict_overflow_p)
13040 fold_overflow_warning (("assuming signed overflow does not occur "
13041 "when simplifying comparison of "
13042 "absolute value and zero"),
13043 WARN_STRICT_OVERFLOW_CONDITIONAL);
13044 return omit_one_operand (type, integer_one_node, arg0);
13045 }
13046
13047 /* Convert ABS_EXPR<x> < 0 to false. */
13048 strict_overflow_p = false;
13049 if (code == LT_EXPR
13050 && (integer_zerop (arg1) || real_zerop (arg1))
13051 && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p))
13052 {
13053 if (strict_overflow_p)
13054 fold_overflow_warning (("assuming signed overflow does not occur "
13055 "when simplifying comparison of "
13056 "absolute value and zero"),
13057 WARN_STRICT_OVERFLOW_CONDITIONAL);
13058 return omit_one_operand (type, integer_zero_node, arg0);
13059 }
13060
13061 /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0
13062 and similarly for >= into !=. */
13063 if ((code == LT_EXPR || code == GE_EXPR)
13064 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13065 && TREE_CODE (arg1) == LSHIFT_EXPR
13066 && integer_onep (TREE_OPERAND (arg1, 0)))
13067 return build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13068 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13069 TREE_OPERAND (arg1, 1)),
13070 build_int_cst (TREE_TYPE (arg0), 0));
13071
13072 if ((code == LT_EXPR || code == GE_EXPR)
13073 && TYPE_UNSIGNED (TREE_TYPE (arg0))
13074 && CONVERT_EXPR_P (arg1)
13075 && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR
13076 && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0)))
13077 return
13078 build2 (code == LT_EXPR ? EQ_EXPR : NE_EXPR, type,
13079 fold_convert (TREE_TYPE (arg0),
13080 build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0,
13081 TREE_OPERAND (TREE_OPERAND (arg1, 0),
13082 1))),
13083 build_int_cst (TREE_TYPE (arg0), 0));
13084
13085 return NULL_TREE;
13086
13087 case UNORDERED_EXPR:
13088 case ORDERED_EXPR:
13089 case UNLT_EXPR:
13090 case UNLE_EXPR:
13091 case UNGT_EXPR:
13092 case UNGE_EXPR:
13093 case UNEQ_EXPR:
13094 case LTGT_EXPR:
13095 if (TREE_CODE (arg0) == REAL_CST && TREE_CODE (arg1) == REAL_CST)
13096 {
13097 t1 = fold_relational_const (code, type, arg0, arg1);
13098 if (t1 != NULL_TREE)
13099 return t1;
13100 }
13101
13102 /* If the first operand is NaN, the result is constant. */
13103 if (TREE_CODE (arg0) == REAL_CST
13104 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg0))
13105 && (code != LTGT_EXPR || ! flag_trapping_math))
13106 {
13107 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13108 ? integer_zero_node
13109 : integer_one_node;
13110 return omit_one_operand (type, t1, arg1);
13111 }
13112
13113 /* If the second operand is NaN, the result is constant. */
13114 if (TREE_CODE (arg1) == REAL_CST
13115 && REAL_VALUE_ISNAN (TREE_REAL_CST (arg1))
13116 && (code != LTGT_EXPR || ! flag_trapping_math))
13117 {
13118 t1 = (code == ORDERED_EXPR || code == LTGT_EXPR)
13119 ? integer_zero_node
13120 : integer_one_node;
13121 return omit_one_operand (type, t1, arg0);
13122 }
13123
13124 /* Simplify unordered comparison of something with itself. */
13125 if ((code == UNLE_EXPR || code == UNGE_EXPR || code == UNEQ_EXPR)
13126 && operand_equal_p (arg0, arg1, 0))
13127 return constant_boolean_node (1, type);
13128
13129 if (code == LTGT_EXPR
13130 && !flag_trapping_math
13131 && operand_equal_p (arg0, arg1, 0))
13132 return constant_boolean_node (0, type);
13133
13134 /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */
13135 {
13136 tree targ0 = strip_float_extensions (arg0);
13137 tree targ1 = strip_float_extensions (arg1);
13138 tree newtype = TREE_TYPE (targ0);
13139
13140 if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype))
13141 newtype = TREE_TYPE (targ1);
13142
13143 if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0)))
13144 return fold_build2 (code, type, fold_convert (newtype, targ0),
13145 fold_convert (newtype, targ1));
13146 }
13147
13148 return NULL_TREE;
13149
13150 case COMPOUND_EXPR:
13151 /* When pedantic, a compound expression can be neither an lvalue
13152 nor an integer constant expression. */
13153 if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1))
13154 return NULL_TREE;
13155 /* Don't let (0, 0) be null pointer constant. */
13156 tem = integer_zerop (arg1) ? build1 (NOP_EXPR, type, arg1)
13157 : fold_convert (type, arg1);
13158 return pedantic_non_lvalue (tem);
13159
13160 case COMPLEX_EXPR:
13161 if ((TREE_CODE (arg0) == REAL_CST
13162 && TREE_CODE (arg1) == REAL_CST)
13163 || (TREE_CODE (arg0) == INTEGER_CST
13164 && TREE_CODE (arg1) == INTEGER_CST))
13165 return build_complex (type, arg0, arg1);
13166 return NULL_TREE;
13167
13168 case ASSERT_EXPR:
13169 /* An ASSERT_EXPR should never be passed to fold_binary. */
13170 gcc_unreachable ();
13171
13172 default:
13173 return NULL_TREE;
13174 } /* switch (code) */
13175 }
13176
13177 /* Callback for walk_tree, looking for LABEL_EXPR.
13178 Returns tree TP if it is LABEL_EXPR. Otherwise it returns NULL_TREE.
13179 Do not check the sub-tree of GOTO_EXPR. */
13180
13181 static tree
13182 contains_label_1 (tree *tp,
13183 int *walk_subtrees,
13184 void *data ATTRIBUTE_UNUSED)
13185 {
13186 switch (TREE_CODE (*tp))
13187 {
13188 case LABEL_EXPR:
13189 return *tp;
13190 case GOTO_EXPR:
13191 *walk_subtrees = 0;
13192 /* no break */
13193 default:
13194 return NULL_TREE;
13195 }
13196 }
13197
13198 /* Checks whether the sub-tree ST contains a label LABEL_EXPR which is
13199 accessible from outside the sub-tree. Returns NULL_TREE if no
13200 addressable label is found. */
13201
13202 static bool
13203 contains_label_p (tree st)
13204 {
13205 return (walk_tree (&st, contains_label_1 , NULL, NULL) != NULL_TREE);
13206 }
13207
13208 /* Fold a ternary expression of code CODE and type TYPE with operands
13209 OP0, OP1, and OP2. Return the folded expression if folding is
13210 successful. Otherwise, return NULL_TREE. */
13211
13212 tree
13213 fold_ternary (enum tree_code code, tree type, tree op0, tree op1, tree op2)
13214 {
13215 tree tem;
13216 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
13217 enum tree_code_class kind = TREE_CODE_CLASS (code);
13218
13219 gcc_assert (IS_EXPR_CODE_CLASS (kind)
13220 && TREE_CODE_LENGTH (code) == 3);
13221
13222 /* Strip any conversions that don't change the mode. This is safe
13223 for every expression, except for a comparison expression because
13224 its signedness is derived from its operands. So, in the latter
13225 case, only strip conversions that don't change the signedness.
13226
13227 Note that this is done as an internal manipulation within the
13228 constant folder, in order to find the simplest representation of
13229 the arguments so that their form can be studied. In any cases,
13230 the appropriate type conversions should be put back in the tree
13231 that will get out of the constant folder. */
13232 if (op0)
13233 {
13234 arg0 = op0;
13235 STRIP_NOPS (arg0);
13236 }
13237
13238 if (op1)
13239 {
13240 arg1 = op1;
13241 STRIP_NOPS (arg1);
13242 }
13243
13244 switch (code)
13245 {
13246 case COMPONENT_REF:
13247 if (TREE_CODE (arg0) == CONSTRUCTOR
13248 && ! type_contains_placeholder_p (TREE_TYPE (arg0)))
13249 {
13250 unsigned HOST_WIDE_INT idx;
13251 tree field, value;
13252 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value)
13253 if (field == arg1)
13254 return value;
13255 }
13256 return NULL_TREE;
13257
13258 case COND_EXPR:
13259 /* Pedantic ANSI C says that a conditional expression is never an lvalue,
13260 so all simple results must be passed through pedantic_non_lvalue. */
13261 if (TREE_CODE (arg0) == INTEGER_CST)
13262 {
13263 tree unused_op = integer_zerop (arg0) ? op1 : op2;
13264 tem = integer_zerop (arg0) ? op2 : op1;
13265 /* Only optimize constant conditions when the selected branch
13266 has the same type as the COND_EXPR. This avoids optimizing
13267 away "c ? x : throw", where the throw has a void type.
13268 Avoid throwing away that operand which contains label. */
13269 if ((!TREE_SIDE_EFFECTS (unused_op)
13270 || !contains_label_p (unused_op))
13271 && (! VOID_TYPE_P (TREE_TYPE (tem))
13272 || VOID_TYPE_P (type)))
13273 return pedantic_non_lvalue (tem);
13274 return NULL_TREE;
13275 }
13276 if (operand_equal_p (arg1, op2, 0))
13277 return pedantic_omit_one_operand (type, arg1, arg0);
13278
13279 /* If we have A op B ? A : C, we may be able to convert this to a
13280 simpler expression, depending on the operation and the values
13281 of B and C. Signed zeros prevent all of these transformations,
13282 for reasons given above each one.
13283
13284 Also try swapping the arguments and inverting the conditional. */
13285 if (COMPARISON_CLASS_P (arg0)
13286 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13287 arg1, TREE_OPERAND (arg0, 1))
13288 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
13289 {
13290 tem = fold_cond_expr_with_comparison (type, arg0, op1, op2);
13291 if (tem)
13292 return tem;
13293 }
13294
13295 if (COMPARISON_CLASS_P (arg0)
13296 && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0),
13297 op2,
13298 TREE_OPERAND (arg0, 1))
13299 && !HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (op2))))
13300 {
13301 tem = fold_truth_not_expr (arg0);
13302 if (tem && COMPARISON_CLASS_P (tem))
13303 {
13304 tem = fold_cond_expr_with_comparison (type, tem, op2, op1);
13305 if (tem)
13306 return tem;
13307 }
13308 }
13309
13310 /* If the second operand is simpler than the third, swap them
13311 since that produces better jump optimization results. */
13312 if (truth_value_p (TREE_CODE (arg0))
13313 && tree_swap_operands_p (op1, op2, false))
13314 {
13315 /* See if this can be inverted. If it can't, possibly because
13316 it was a floating-point inequality comparison, don't do
13317 anything. */
13318 tem = fold_truth_not_expr (arg0);
13319 if (tem)
13320 return fold_build3 (code, type, tem, op2, op1);
13321 }
13322
13323 /* Convert A ? 1 : 0 to simply A. */
13324 if (integer_onep (op1)
13325 && integer_zerop (op2)
13326 /* If we try to convert OP0 to our type, the
13327 call to fold will try to move the conversion inside
13328 a COND, which will recurse. In that case, the COND_EXPR
13329 is probably the best choice, so leave it alone. */
13330 && type == TREE_TYPE (arg0))
13331 return pedantic_non_lvalue (arg0);
13332
13333 /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR
13334 over COND_EXPR in cases such as floating point comparisons. */
13335 if (integer_zerop (op1)
13336 && integer_onep (op2)
13337 && truth_value_p (TREE_CODE (arg0)))
13338 return pedantic_non_lvalue (fold_convert (type,
13339 invert_truthvalue (arg0)));
13340
13341 /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */
13342 if (TREE_CODE (arg0) == LT_EXPR
13343 && integer_zerop (TREE_OPERAND (arg0, 1))
13344 && integer_zerop (op2)
13345 && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1)))
13346 {
13347 /* sign_bit_p only checks ARG1 bits within A's precision.
13348 If <sign bit of A> has wider type than A, bits outside
13349 of A's precision in <sign bit of A> need to be checked.
13350 If they are all 0, this optimization needs to be done
13351 in unsigned A's type, if they are all 1 in signed A's type,
13352 otherwise this can't be done. */
13353 if (TYPE_PRECISION (TREE_TYPE (tem))
13354 < TYPE_PRECISION (TREE_TYPE (arg1))
13355 && TYPE_PRECISION (TREE_TYPE (tem))
13356 < TYPE_PRECISION (type))
13357 {
13358 unsigned HOST_WIDE_INT mask_lo;
13359 HOST_WIDE_INT mask_hi;
13360 int inner_width, outer_width;
13361 tree tem_type;
13362
13363 inner_width = TYPE_PRECISION (TREE_TYPE (tem));
13364 outer_width = TYPE_PRECISION (TREE_TYPE (arg1));
13365 if (outer_width > TYPE_PRECISION (type))
13366 outer_width = TYPE_PRECISION (type);
13367
13368 if (outer_width > HOST_BITS_PER_WIDE_INT)
13369 {
13370 mask_hi = ((unsigned HOST_WIDE_INT) -1
13371 >> (2 * HOST_BITS_PER_WIDE_INT - outer_width));
13372 mask_lo = -1;
13373 }
13374 else
13375 {
13376 mask_hi = 0;
13377 mask_lo = ((unsigned HOST_WIDE_INT) -1
13378 >> (HOST_BITS_PER_WIDE_INT - outer_width));
13379 }
13380 if (inner_width > HOST_BITS_PER_WIDE_INT)
13381 {
13382 mask_hi &= ~((unsigned HOST_WIDE_INT) -1
13383 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13384 mask_lo = 0;
13385 }
13386 else
13387 mask_lo &= ~((unsigned HOST_WIDE_INT) -1
13388 >> (HOST_BITS_PER_WIDE_INT - inner_width));
13389
13390 if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == mask_hi
13391 && (TREE_INT_CST_LOW (arg1) & mask_lo) == mask_lo)
13392 {
13393 tem_type = signed_type_for (TREE_TYPE (tem));
13394 tem = fold_convert (tem_type, tem);
13395 }
13396 else if ((TREE_INT_CST_HIGH (arg1) & mask_hi) == 0
13397 && (TREE_INT_CST_LOW (arg1) & mask_lo) == 0)
13398 {
13399 tem_type = unsigned_type_for (TREE_TYPE (tem));
13400 tem = fold_convert (tem_type, tem);
13401 }
13402 else
13403 tem = NULL;
13404 }
13405
13406 if (tem)
13407 return fold_convert (type,
13408 fold_build2 (BIT_AND_EXPR,
13409 TREE_TYPE (tem), tem,
13410 fold_convert (TREE_TYPE (tem),
13411 arg1)));
13412 }
13413
13414 /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was
13415 already handled above. */
13416 if (TREE_CODE (arg0) == BIT_AND_EXPR
13417 && integer_onep (TREE_OPERAND (arg0, 1))
13418 && integer_zerop (op2)
13419 && integer_pow2p (arg1))
13420 {
13421 tree tem = TREE_OPERAND (arg0, 0);
13422 STRIP_NOPS (tem);
13423 if (TREE_CODE (tem) == RSHIFT_EXPR
13424 && TREE_CODE (TREE_OPERAND (tem, 1)) == INTEGER_CST
13425 && (unsigned HOST_WIDE_INT) tree_log2 (arg1) ==
13426 TREE_INT_CST_LOW (TREE_OPERAND (tem, 1)))
13427 return fold_build2 (BIT_AND_EXPR, type,
13428 TREE_OPERAND (tem, 0), arg1);
13429 }
13430
13431 /* A & N ? N : 0 is simply A & N if N is a power of two. This
13432 is probably obsolete because the first operand should be a
13433 truth value (that's why we have the two cases above), but let's
13434 leave it in until we can confirm this for all front-ends. */
13435 if (integer_zerop (op2)
13436 && TREE_CODE (arg0) == NE_EXPR
13437 && integer_zerop (TREE_OPERAND (arg0, 1))
13438 && integer_pow2p (arg1)
13439 && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR
13440 && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1),
13441 arg1, OEP_ONLY_CONST))
13442 return pedantic_non_lvalue (fold_convert (type,
13443 TREE_OPERAND (arg0, 0)));
13444
13445 /* Convert A ? B : 0 into A && B if A and B are truth values. */
13446 if (integer_zerop (op2)
13447 && truth_value_p (TREE_CODE (arg0))
13448 && truth_value_p (TREE_CODE (arg1)))
13449 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13450 fold_convert (type, arg0),
13451 arg1);
13452
13453 /* Convert A ? B : 1 into !A || B if A and B are truth values. */
13454 if (integer_onep (op2)
13455 && truth_value_p (TREE_CODE (arg0))
13456 && truth_value_p (TREE_CODE (arg1)))
13457 {
13458 /* Only perform transformation if ARG0 is easily inverted. */
13459 tem = fold_truth_not_expr (arg0);
13460 if (tem)
13461 return fold_build2 (TRUTH_ORIF_EXPR, type,
13462 fold_convert (type, tem),
13463 arg1);
13464 }
13465
13466 /* Convert A ? 0 : B into !A && B if A and B are truth values. */
13467 if (integer_zerop (arg1)
13468 && truth_value_p (TREE_CODE (arg0))
13469 && truth_value_p (TREE_CODE (op2)))
13470 {
13471 /* Only perform transformation if ARG0 is easily inverted. */
13472 tem = fold_truth_not_expr (arg0);
13473 if (tem)
13474 return fold_build2 (TRUTH_ANDIF_EXPR, type,
13475 fold_convert (type, tem),
13476 op2);
13477 }
13478
13479 /* Convert A ? 1 : B into A || B if A and B are truth values. */
13480 if (integer_onep (arg1)
13481 && truth_value_p (TREE_CODE (arg0))
13482 && truth_value_p (TREE_CODE (op2)))
13483 return fold_build2 (TRUTH_ORIF_EXPR, type,
13484 fold_convert (type, arg0),
13485 op2);
13486
13487 return NULL_TREE;
13488
13489 case CALL_EXPR:
13490 /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses
13491 of fold_ternary on them. */
13492 gcc_unreachable ();
13493
13494 case BIT_FIELD_REF:
13495 if ((TREE_CODE (arg0) == VECTOR_CST
13496 || (TREE_CODE (arg0) == CONSTRUCTOR && TREE_CONSTANT (arg0)))
13497 && type == TREE_TYPE (TREE_TYPE (arg0)))
13498 {
13499 unsigned HOST_WIDE_INT width = tree_low_cst (arg1, 1);
13500 unsigned HOST_WIDE_INT idx = tree_low_cst (op2, 1);
13501
13502 if (width != 0
13503 && simple_cst_equal (arg1, TYPE_SIZE (type)) == 1
13504 && (idx % width) == 0
13505 && (idx = idx / width)
13506 < TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))
13507 {
13508 tree elements = NULL_TREE;
13509
13510 if (TREE_CODE (arg0) == VECTOR_CST)
13511 elements = TREE_VECTOR_CST_ELTS (arg0);
13512 else
13513 {
13514 unsigned HOST_WIDE_INT idx;
13515 tree value;
13516
13517 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (arg0), idx, value)
13518 elements = tree_cons (NULL_TREE, value, elements);
13519 }
13520 while (idx-- > 0 && elements)
13521 elements = TREE_CHAIN (elements);
13522 if (elements)
13523 return TREE_VALUE (elements);
13524 else
13525 return fold_convert (type, integer_zero_node);
13526 }
13527 }
13528
13529 /* A bit-field-ref that referenced the full argument can be stripped. */
13530 if (INTEGRAL_TYPE_P (TREE_TYPE (arg0))
13531 && TYPE_PRECISION (TREE_TYPE (arg0)) == tree_low_cst (arg1, 1)
13532 && integer_zerop (op2))
13533 return fold_convert (type, arg0);
13534
13535 return NULL_TREE;
13536
13537 default:
13538 return NULL_TREE;
13539 } /* switch (code) */
13540 }
13541
13542 /* Perform constant folding and related simplification of EXPR.
13543 The related simplifications include x*1 => x, x*0 => 0, etc.,
13544 and application of the associative law.
13545 NOP_EXPR conversions may be removed freely (as long as we
13546 are careful not to change the type of the overall expression).
13547 We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR,
13548 but we can constant-fold them if they have constant operands. */
13549
13550 #ifdef ENABLE_FOLD_CHECKING
13551 # define fold(x) fold_1 (x)
13552 static tree fold_1 (tree);
13553 static
13554 #endif
13555 tree
13556 fold (tree expr)
13557 {
13558 const tree t = expr;
13559 enum tree_code code = TREE_CODE (t);
13560 enum tree_code_class kind = TREE_CODE_CLASS (code);
13561 tree tem;
13562
13563 /* Return right away if a constant. */
13564 if (kind == tcc_constant)
13565 return t;
13566
13567 /* CALL_EXPR-like objects with variable numbers of operands are
13568 treated specially. */
13569 if (kind == tcc_vl_exp)
13570 {
13571 if (code == CALL_EXPR)
13572 {
13573 tem = fold_call_expr (expr, false);
13574 return tem ? tem : expr;
13575 }
13576 return expr;
13577 }
13578
13579 if (IS_EXPR_CODE_CLASS (kind))
13580 {
13581 tree type = TREE_TYPE (t);
13582 tree op0, op1, op2;
13583
13584 switch (TREE_CODE_LENGTH (code))
13585 {
13586 case 1:
13587 op0 = TREE_OPERAND (t, 0);
13588 tem = fold_unary (code, type, op0);
13589 return tem ? tem : expr;
13590 case 2:
13591 op0 = TREE_OPERAND (t, 0);
13592 op1 = TREE_OPERAND (t, 1);
13593 tem = fold_binary (code, type, op0, op1);
13594 return tem ? tem : expr;
13595 case 3:
13596 op0 = TREE_OPERAND (t, 0);
13597 op1 = TREE_OPERAND (t, 1);
13598 op2 = TREE_OPERAND (t, 2);
13599 tem = fold_ternary (code, type, op0, op1, op2);
13600 return tem ? tem : expr;
13601 default:
13602 break;
13603 }
13604 }
13605
13606 switch (code)
13607 {
13608 case ARRAY_REF:
13609 {
13610 tree op0 = TREE_OPERAND (t, 0);
13611 tree op1 = TREE_OPERAND (t, 1);
13612
13613 if (TREE_CODE (op1) == INTEGER_CST
13614 && TREE_CODE (op0) == CONSTRUCTOR
13615 && ! type_contains_placeholder_p (TREE_TYPE (op0)))
13616 {
13617 VEC(constructor_elt,gc) *elts = CONSTRUCTOR_ELTS (op0);
13618 unsigned HOST_WIDE_INT end = VEC_length (constructor_elt, elts);
13619 unsigned HOST_WIDE_INT begin = 0;
13620
13621 /* Find a matching index by means of a binary search. */
13622 while (begin != end)
13623 {
13624 unsigned HOST_WIDE_INT middle = (begin + end) / 2;
13625 tree index = VEC_index (constructor_elt, elts, middle)->index;
13626
13627 if (TREE_CODE (index) == INTEGER_CST
13628 && tree_int_cst_lt (index, op1))
13629 begin = middle + 1;
13630 else if (TREE_CODE (index) == INTEGER_CST
13631 && tree_int_cst_lt (op1, index))
13632 end = middle;
13633 else if (TREE_CODE (index) == RANGE_EXPR
13634 && tree_int_cst_lt (TREE_OPERAND (index, 1), op1))
13635 begin = middle + 1;
13636 else if (TREE_CODE (index) == RANGE_EXPR
13637 && tree_int_cst_lt (op1, TREE_OPERAND (index, 0)))
13638 end = middle;
13639 else
13640 return VEC_index (constructor_elt, elts, middle)->value;
13641 }
13642 }
13643
13644 return t;
13645 }
13646
13647 case CONST_DECL:
13648 return fold (DECL_INITIAL (t));
13649
13650 default:
13651 return t;
13652 } /* switch (code) */
13653 }
13654
13655 #ifdef ENABLE_FOLD_CHECKING
13656 #undef fold
13657
13658 static void fold_checksum_tree (const_tree, struct md5_ctx *, htab_t);
13659 static void fold_check_failed (const_tree, const_tree);
13660 void print_fold_checksum (const_tree);
13661
13662 /* When --enable-checking=fold, compute a digest of expr before
13663 and after actual fold call to see if fold did not accidentally
13664 change original expr. */
13665
13666 tree
13667 fold (tree expr)
13668 {
13669 tree ret;
13670 struct md5_ctx ctx;
13671 unsigned char checksum_before[16], checksum_after[16];
13672 htab_t ht;
13673
13674 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13675 md5_init_ctx (&ctx);
13676 fold_checksum_tree (expr, &ctx, ht);
13677 md5_finish_ctx (&ctx, checksum_before);
13678 htab_empty (ht);
13679
13680 ret = fold_1 (expr);
13681
13682 md5_init_ctx (&ctx);
13683 fold_checksum_tree (expr, &ctx, ht);
13684 md5_finish_ctx (&ctx, checksum_after);
13685 htab_delete (ht);
13686
13687 if (memcmp (checksum_before, checksum_after, 16))
13688 fold_check_failed (expr, ret);
13689
13690 return ret;
13691 }
13692
13693 void
13694 print_fold_checksum (const_tree expr)
13695 {
13696 struct md5_ctx ctx;
13697 unsigned char checksum[16], cnt;
13698 htab_t ht;
13699
13700 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13701 md5_init_ctx (&ctx);
13702 fold_checksum_tree (expr, &ctx, ht);
13703 md5_finish_ctx (&ctx, checksum);
13704 htab_delete (ht);
13705 for (cnt = 0; cnt < 16; ++cnt)
13706 fprintf (stderr, "%02x", checksum[cnt]);
13707 putc ('\n', stderr);
13708 }
13709
13710 static void
13711 fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED)
13712 {
13713 internal_error ("fold check: original tree changed by fold");
13714 }
13715
13716 static void
13717 fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, htab_t ht)
13718 {
13719 const void **slot;
13720 enum tree_code code;
13721 union tree_node buf;
13722 int i, len;
13723
13724 recursive_label:
13725
13726 gcc_assert ((sizeof (struct tree_exp) + 5 * sizeof (tree)
13727 <= sizeof (struct tree_function_decl))
13728 && sizeof (struct tree_type) <= sizeof (struct tree_function_decl));
13729 if (expr == NULL)
13730 return;
13731 slot = (const void **) htab_find_slot (ht, expr, INSERT);
13732 if (*slot != NULL)
13733 return;
13734 *slot = expr;
13735 code = TREE_CODE (expr);
13736 if (TREE_CODE_CLASS (code) == tcc_declaration
13737 && DECL_ASSEMBLER_NAME_SET_P (expr))
13738 {
13739 /* Allow DECL_ASSEMBLER_NAME to be modified. */
13740 memcpy ((char *) &buf, expr, tree_size (expr));
13741 SET_DECL_ASSEMBLER_NAME ((tree)&buf, NULL);
13742 expr = (tree) &buf;
13743 }
13744 else if (TREE_CODE_CLASS (code) == tcc_type
13745 && (TYPE_POINTER_TO (expr)
13746 || TYPE_REFERENCE_TO (expr)
13747 || TYPE_CACHED_VALUES_P (expr)
13748 || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr)
13749 || TYPE_NEXT_VARIANT (expr)))
13750 {
13751 /* Allow these fields to be modified. */
13752 tree tmp;
13753 memcpy ((char *) &buf, expr, tree_size (expr));
13754 expr = tmp = (tree) &buf;
13755 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0;
13756 TYPE_POINTER_TO (tmp) = NULL;
13757 TYPE_REFERENCE_TO (tmp) = NULL;
13758 TYPE_NEXT_VARIANT (tmp) = NULL;
13759 if (TYPE_CACHED_VALUES_P (tmp))
13760 {
13761 TYPE_CACHED_VALUES_P (tmp) = 0;
13762 TYPE_CACHED_VALUES (tmp) = NULL;
13763 }
13764 }
13765 md5_process_bytes (expr, tree_size (expr), ctx);
13766 fold_checksum_tree (TREE_TYPE (expr), ctx, ht);
13767 if (TREE_CODE_CLASS (code) != tcc_type
13768 && TREE_CODE_CLASS (code) != tcc_declaration
13769 && code != TREE_LIST
13770 && code != SSA_NAME)
13771 fold_checksum_tree (TREE_CHAIN (expr), ctx, ht);
13772 switch (TREE_CODE_CLASS (code))
13773 {
13774 case tcc_constant:
13775 switch (code)
13776 {
13777 case STRING_CST:
13778 md5_process_bytes (TREE_STRING_POINTER (expr),
13779 TREE_STRING_LENGTH (expr), ctx);
13780 break;
13781 case COMPLEX_CST:
13782 fold_checksum_tree (TREE_REALPART (expr), ctx, ht);
13783 fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht);
13784 break;
13785 case VECTOR_CST:
13786 fold_checksum_tree (TREE_VECTOR_CST_ELTS (expr), ctx, ht);
13787 break;
13788 default:
13789 break;
13790 }
13791 break;
13792 case tcc_exceptional:
13793 switch (code)
13794 {
13795 case TREE_LIST:
13796 fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht);
13797 fold_checksum_tree (TREE_VALUE (expr), ctx, ht);
13798 expr = TREE_CHAIN (expr);
13799 goto recursive_label;
13800 break;
13801 case TREE_VEC:
13802 for (i = 0; i < TREE_VEC_LENGTH (expr); ++i)
13803 fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht);
13804 break;
13805 default:
13806 break;
13807 }
13808 break;
13809 case tcc_expression:
13810 case tcc_reference:
13811 case tcc_comparison:
13812 case tcc_unary:
13813 case tcc_binary:
13814 case tcc_statement:
13815 case tcc_vl_exp:
13816 len = TREE_OPERAND_LENGTH (expr);
13817 for (i = 0; i < len; ++i)
13818 fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht);
13819 break;
13820 case tcc_declaration:
13821 fold_checksum_tree (DECL_NAME (expr), ctx, ht);
13822 fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht);
13823 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON))
13824 {
13825 fold_checksum_tree (DECL_SIZE (expr), ctx, ht);
13826 fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht);
13827 fold_checksum_tree (DECL_INITIAL (expr), ctx, ht);
13828 fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht);
13829 fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht);
13830 }
13831 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_WITH_VIS))
13832 fold_checksum_tree (DECL_SECTION_NAME (expr), ctx, ht);
13833
13834 if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON))
13835 {
13836 fold_checksum_tree (DECL_VINDEX (expr), ctx, ht);
13837 fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht);
13838 fold_checksum_tree (DECL_ARGUMENT_FLD (expr), ctx, ht);
13839 }
13840 break;
13841 case tcc_type:
13842 if (TREE_CODE (expr) == ENUMERAL_TYPE)
13843 fold_checksum_tree (TYPE_VALUES (expr), ctx, ht);
13844 fold_checksum_tree (TYPE_SIZE (expr), ctx, ht);
13845 fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht);
13846 fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht);
13847 fold_checksum_tree (TYPE_NAME (expr), ctx, ht);
13848 if (INTEGRAL_TYPE_P (expr)
13849 || SCALAR_FLOAT_TYPE_P (expr))
13850 {
13851 fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht);
13852 fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht);
13853 }
13854 fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht);
13855 if (TREE_CODE (expr) == RECORD_TYPE
13856 || TREE_CODE (expr) == UNION_TYPE
13857 || TREE_CODE (expr) == QUAL_UNION_TYPE)
13858 fold_checksum_tree (TYPE_BINFO (expr), ctx, ht);
13859 fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht);
13860 break;
13861 default:
13862 break;
13863 }
13864 }
13865
13866 /* Helper function for outputting the checksum of a tree T. When
13867 debugging with gdb, you can "define mynext" to be "next" followed
13868 by "call debug_fold_checksum (op0)", then just trace down till the
13869 outputs differ. */
13870
13871 void
13872 debug_fold_checksum (const_tree t)
13873 {
13874 int i;
13875 unsigned char checksum[16];
13876 struct md5_ctx ctx;
13877 htab_t ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13878
13879 md5_init_ctx (&ctx);
13880 fold_checksum_tree (t, &ctx, ht);
13881 md5_finish_ctx (&ctx, checksum);
13882 htab_empty (ht);
13883
13884 for (i = 0; i < 16; i++)
13885 fprintf (stderr, "%d ", checksum[i]);
13886
13887 fprintf (stderr, "\n");
13888 }
13889
13890 #endif
13891
13892 /* Fold a unary tree expression with code CODE of type TYPE with an
13893 operand OP0. Return a folded expression if successful. Otherwise,
13894 return a tree expression with code CODE of type TYPE with an
13895 operand OP0. */
13896
13897 tree
13898 fold_build1_stat (enum tree_code code, tree type, tree op0 MEM_STAT_DECL)
13899 {
13900 tree tem;
13901 #ifdef ENABLE_FOLD_CHECKING
13902 unsigned char checksum_before[16], checksum_after[16];
13903 struct md5_ctx ctx;
13904 htab_t ht;
13905
13906 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13907 md5_init_ctx (&ctx);
13908 fold_checksum_tree (op0, &ctx, ht);
13909 md5_finish_ctx (&ctx, checksum_before);
13910 htab_empty (ht);
13911 #endif
13912
13913 tem = fold_unary (code, type, op0);
13914 if (!tem)
13915 tem = build1_stat (code, type, op0 PASS_MEM_STAT);
13916
13917 #ifdef ENABLE_FOLD_CHECKING
13918 md5_init_ctx (&ctx);
13919 fold_checksum_tree (op0, &ctx, ht);
13920 md5_finish_ctx (&ctx, checksum_after);
13921 htab_delete (ht);
13922
13923 if (memcmp (checksum_before, checksum_after, 16))
13924 fold_check_failed (op0, tem);
13925 #endif
13926 return tem;
13927 }
13928
13929 /* Fold a binary tree expression with code CODE of type TYPE with
13930 operands OP0 and OP1. Return a folded expression if successful.
13931 Otherwise, return a tree expression with code CODE of type TYPE
13932 with operands OP0 and OP1. */
13933
13934 tree
13935 fold_build2_stat (enum tree_code code, tree type, tree op0, tree op1
13936 MEM_STAT_DECL)
13937 {
13938 tree tem;
13939 #ifdef ENABLE_FOLD_CHECKING
13940 unsigned char checksum_before_op0[16],
13941 checksum_before_op1[16],
13942 checksum_after_op0[16],
13943 checksum_after_op1[16];
13944 struct md5_ctx ctx;
13945 htab_t ht;
13946
13947 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
13948 md5_init_ctx (&ctx);
13949 fold_checksum_tree (op0, &ctx, ht);
13950 md5_finish_ctx (&ctx, checksum_before_op0);
13951 htab_empty (ht);
13952
13953 md5_init_ctx (&ctx);
13954 fold_checksum_tree (op1, &ctx, ht);
13955 md5_finish_ctx (&ctx, checksum_before_op1);
13956 htab_empty (ht);
13957 #endif
13958
13959 tem = fold_binary (code, type, op0, op1);
13960 if (!tem)
13961 tem = build2_stat (code, type, op0, op1 PASS_MEM_STAT);
13962
13963 #ifdef ENABLE_FOLD_CHECKING
13964 md5_init_ctx (&ctx);
13965 fold_checksum_tree (op0, &ctx, ht);
13966 md5_finish_ctx (&ctx, checksum_after_op0);
13967 htab_empty (ht);
13968
13969 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
13970 fold_check_failed (op0, tem);
13971
13972 md5_init_ctx (&ctx);
13973 fold_checksum_tree (op1, &ctx, ht);
13974 md5_finish_ctx (&ctx, checksum_after_op1);
13975 htab_delete (ht);
13976
13977 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
13978 fold_check_failed (op1, tem);
13979 #endif
13980 return tem;
13981 }
13982
13983 /* Fold a ternary tree expression with code CODE of type TYPE with
13984 operands OP0, OP1, and OP2. Return a folded expression if
13985 successful. Otherwise, return a tree expression with code CODE of
13986 type TYPE with operands OP0, OP1, and OP2. */
13987
13988 tree
13989 fold_build3_stat (enum tree_code code, tree type, tree op0, tree op1, tree op2
13990 MEM_STAT_DECL)
13991 {
13992 tree tem;
13993 #ifdef ENABLE_FOLD_CHECKING
13994 unsigned char checksum_before_op0[16],
13995 checksum_before_op1[16],
13996 checksum_before_op2[16],
13997 checksum_after_op0[16],
13998 checksum_after_op1[16],
13999 checksum_after_op2[16];
14000 struct md5_ctx ctx;
14001 htab_t ht;
14002
14003 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14004 md5_init_ctx (&ctx);
14005 fold_checksum_tree (op0, &ctx, ht);
14006 md5_finish_ctx (&ctx, checksum_before_op0);
14007 htab_empty (ht);
14008
14009 md5_init_ctx (&ctx);
14010 fold_checksum_tree (op1, &ctx, ht);
14011 md5_finish_ctx (&ctx, checksum_before_op1);
14012 htab_empty (ht);
14013
14014 md5_init_ctx (&ctx);
14015 fold_checksum_tree (op2, &ctx, ht);
14016 md5_finish_ctx (&ctx, checksum_before_op2);
14017 htab_empty (ht);
14018 #endif
14019
14020 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
14021 tem = fold_ternary (code, type, op0, op1, op2);
14022 if (!tem)
14023 tem = build3_stat (code, type, op0, op1, op2 PASS_MEM_STAT);
14024
14025 #ifdef ENABLE_FOLD_CHECKING
14026 md5_init_ctx (&ctx);
14027 fold_checksum_tree (op0, &ctx, ht);
14028 md5_finish_ctx (&ctx, checksum_after_op0);
14029 htab_empty (ht);
14030
14031 if (memcmp (checksum_before_op0, checksum_after_op0, 16))
14032 fold_check_failed (op0, tem);
14033
14034 md5_init_ctx (&ctx);
14035 fold_checksum_tree (op1, &ctx, ht);
14036 md5_finish_ctx (&ctx, checksum_after_op1);
14037 htab_empty (ht);
14038
14039 if (memcmp (checksum_before_op1, checksum_after_op1, 16))
14040 fold_check_failed (op1, tem);
14041
14042 md5_init_ctx (&ctx);
14043 fold_checksum_tree (op2, &ctx, ht);
14044 md5_finish_ctx (&ctx, checksum_after_op2);
14045 htab_delete (ht);
14046
14047 if (memcmp (checksum_before_op2, checksum_after_op2, 16))
14048 fold_check_failed (op2, tem);
14049 #endif
14050 return tem;
14051 }
14052
14053 /* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS
14054 arguments in ARGARRAY, and a null static chain.
14055 Return a folded expression if successful. Otherwise, return a CALL_EXPR
14056 of type TYPE from the given operands as constructed by build_call_array. */
14057
14058 tree
14059 fold_build_call_array (tree type, tree fn, int nargs, tree *argarray)
14060 {
14061 tree tem;
14062 #ifdef ENABLE_FOLD_CHECKING
14063 unsigned char checksum_before_fn[16],
14064 checksum_before_arglist[16],
14065 checksum_after_fn[16],
14066 checksum_after_arglist[16];
14067 struct md5_ctx ctx;
14068 htab_t ht;
14069 int i;
14070
14071 ht = htab_create (32, htab_hash_pointer, htab_eq_pointer, NULL);
14072 md5_init_ctx (&ctx);
14073 fold_checksum_tree (fn, &ctx, ht);
14074 md5_finish_ctx (&ctx, checksum_before_fn);
14075 htab_empty (ht);
14076
14077 md5_init_ctx (&ctx);
14078 for (i = 0; i < nargs; i++)
14079 fold_checksum_tree (argarray[i], &ctx, ht);
14080 md5_finish_ctx (&ctx, checksum_before_arglist);
14081 htab_empty (ht);
14082 #endif
14083
14084 tem = fold_builtin_call_array (type, fn, nargs, argarray);
14085
14086 #ifdef ENABLE_FOLD_CHECKING
14087 md5_init_ctx (&ctx);
14088 fold_checksum_tree (fn, &ctx, ht);
14089 md5_finish_ctx (&ctx, checksum_after_fn);
14090 htab_empty (ht);
14091
14092 if (memcmp (checksum_before_fn, checksum_after_fn, 16))
14093 fold_check_failed (fn, tem);
14094
14095 md5_init_ctx (&ctx);
14096 for (i = 0; i < nargs; i++)
14097 fold_checksum_tree (argarray[i], &ctx, ht);
14098 md5_finish_ctx (&ctx, checksum_after_arglist);
14099 htab_delete (ht);
14100
14101 if (memcmp (checksum_before_arglist, checksum_after_arglist, 16))
14102 fold_check_failed (NULL_TREE, tem);
14103 #endif
14104 return tem;
14105 }
14106
14107 /* Perform constant folding and related simplification of initializer
14108 expression EXPR. These behave identically to "fold_buildN" but ignore
14109 potential run-time traps and exceptions that fold must preserve. */
14110
14111 #define START_FOLD_INIT \
14112 int saved_signaling_nans = flag_signaling_nans;\
14113 int saved_trapping_math = flag_trapping_math;\
14114 int saved_rounding_math = flag_rounding_math;\
14115 int saved_trapv = flag_trapv;\
14116 int saved_folding_initializer = folding_initializer;\
14117 flag_signaling_nans = 0;\
14118 flag_trapping_math = 0;\
14119 flag_rounding_math = 0;\
14120 flag_trapv = 0;\
14121 folding_initializer = 1;
14122
14123 #define END_FOLD_INIT \
14124 flag_signaling_nans = saved_signaling_nans;\
14125 flag_trapping_math = saved_trapping_math;\
14126 flag_rounding_math = saved_rounding_math;\
14127 flag_trapv = saved_trapv;\
14128 folding_initializer = saved_folding_initializer;
14129
14130 tree
14131 fold_build1_initializer (enum tree_code code, tree type, tree op)
14132 {
14133 tree result;
14134 START_FOLD_INIT;
14135
14136 result = fold_build1 (code, type, op);
14137
14138 END_FOLD_INIT;
14139 return result;
14140 }
14141
14142 tree
14143 fold_build2_initializer (enum tree_code code, tree type, tree op0, tree op1)
14144 {
14145 tree result;
14146 START_FOLD_INIT;
14147
14148 result = fold_build2 (code, type, op0, op1);
14149
14150 END_FOLD_INIT;
14151 return result;
14152 }
14153
14154 tree
14155 fold_build3_initializer (enum tree_code code, tree type, tree op0, tree op1,
14156 tree op2)
14157 {
14158 tree result;
14159 START_FOLD_INIT;
14160
14161 result = fold_build3 (code, type, op0, op1, op2);
14162
14163 END_FOLD_INIT;
14164 return result;
14165 }
14166
14167 tree
14168 fold_build_call_array_initializer (tree type, tree fn,
14169 int nargs, tree *argarray)
14170 {
14171 tree result;
14172 START_FOLD_INIT;
14173
14174 result = fold_build_call_array (type, fn, nargs, argarray);
14175
14176 END_FOLD_INIT;
14177 return result;
14178 }
14179
14180 #undef START_FOLD_INIT
14181 #undef END_FOLD_INIT
14182
14183 /* Determine if first argument is a multiple of second argument. Return 0 if
14184 it is not, or we cannot easily determined it to be.
14185
14186 An example of the sort of thing we care about (at this point; this routine
14187 could surely be made more general, and expanded to do what the *_DIV_EXPR's
14188 fold cases do now) is discovering that
14189
14190 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14191
14192 is a multiple of
14193
14194 SAVE_EXPR (J * 8)
14195
14196 when we know that the two SAVE_EXPR (J * 8) nodes are the same node.
14197
14198 This code also handles discovering that
14199
14200 SAVE_EXPR (I) * SAVE_EXPR (J * 8)
14201
14202 is a multiple of 8 so we don't have to worry about dealing with a
14203 possible remainder.
14204
14205 Note that we *look* inside a SAVE_EXPR only to determine how it was
14206 calculated; it is not safe for fold to do much of anything else with the
14207 internals of a SAVE_EXPR, since it cannot know when it will be evaluated
14208 at run time. For example, the latter example above *cannot* be implemented
14209 as SAVE_EXPR (I) * J or any variant thereof, since the value of J at
14210 evaluation time of the original SAVE_EXPR is not necessarily the same at
14211 the time the new expression is evaluated. The only optimization of this
14212 sort that would be valid is changing
14213
14214 SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8)
14215
14216 divided by 8 to
14217
14218 SAVE_EXPR (I) * SAVE_EXPR (J)
14219
14220 (where the same SAVE_EXPR (J) is used in the original and the
14221 transformed version). */
14222
14223 int
14224 multiple_of_p (tree type, const_tree top, const_tree bottom)
14225 {
14226 if (operand_equal_p (top, bottom, 0))
14227 return 1;
14228
14229 if (TREE_CODE (type) != INTEGER_TYPE)
14230 return 0;
14231
14232 switch (TREE_CODE (top))
14233 {
14234 case BIT_AND_EXPR:
14235 /* Bitwise and provides a power of two multiple. If the mask is
14236 a multiple of BOTTOM then TOP is a multiple of BOTTOM. */
14237 if (!integer_pow2p (bottom))
14238 return 0;
14239 /* FALLTHRU */
14240
14241 case MULT_EXPR:
14242 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14243 || multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14244
14245 case PLUS_EXPR:
14246 case MINUS_EXPR:
14247 return (multiple_of_p (type, TREE_OPERAND (top, 0), bottom)
14248 && multiple_of_p (type, TREE_OPERAND (top, 1), bottom));
14249
14250 case LSHIFT_EXPR:
14251 if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST)
14252 {
14253 tree op1, t1;
14254
14255 op1 = TREE_OPERAND (top, 1);
14256 /* const_binop may not detect overflow correctly,
14257 so check for it explicitly here. */
14258 if (TYPE_PRECISION (TREE_TYPE (size_one_node))
14259 > TREE_INT_CST_LOW (op1)
14260 && TREE_INT_CST_HIGH (op1) == 0
14261 && 0 != (t1 = fold_convert (type,
14262 const_binop (LSHIFT_EXPR,
14263 size_one_node,
14264 op1, 0)))
14265 && !TREE_OVERFLOW (t1))
14266 return multiple_of_p (type, t1, bottom);
14267 }
14268 return 0;
14269
14270 case NOP_EXPR:
14271 /* Can't handle conversions from non-integral or wider integral type. */
14272 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE)
14273 || (TYPE_PRECISION (type)
14274 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0)))))
14275 return 0;
14276
14277 /* .. fall through ... */
14278
14279 case SAVE_EXPR:
14280 return multiple_of_p (type, TREE_OPERAND (top, 0), bottom);
14281
14282 case INTEGER_CST:
14283 if (TREE_CODE (bottom) != INTEGER_CST
14284 || integer_zerop (bottom)
14285 || (TYPE_UNSIGNED (type)
14286 && (tree_int_cst_sgn (top) < 0
14287 || tree_int_cst_sgn (bottom) < 0)))
14288 return 0;
14289 return integer_zerop (int_const_binop (TRUNC_MOD_EXPR,
14290 top, bottom, 0));
14291
14292 default:
14293 return 0;
14294 }
14295 }
14296
14297 /* Return true if CODE or TYPE is known to be non-negative. */
14298
14299 static bool
14300 tree_simple_nonnegative_warnv_p (enum tree_code code, tree type)
14301 {
14302 if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type))
14303 && truth_value_p (code))
14304 /* Truth values evaluate to 0 or 1, which is nonnegative unless we
14305 have a signed:1 type (where the value is -1 and 0). */
14306 return true;
14307 return false;
14308 }
14309
14310 /* Return true if (CODE OP0) is known to be non-negative. If the return
14311 value is based on the assumption that signed overflow is undefined,
14312 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14313 *STRICT_OVERFLOW_P. */
14314
14315 bool
14316 tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14317 bool *strict_overflow_p)
14318 {
14319 if (TYPE_UNSIGNED (type))
14320 return true;
14321
14322 switch (code)
14323 {
14324 case ABS_EXPR:
14325 /* We can't return 1 if flag_wrapv is set because
14326 ABS_EXPR<INT_MIN> = INT_MIN. */
14327 if (!INTEGRAL_TYPE_P (type))
14328 return true;
14329 if (TYPE_OVERFLOW_UNDEFINED (type))
14330 {
14331 *strict_overflow_p = true;
14332 return true;
14333 }
14334 break;
14335
14336 case NON_LVALUE_EXPR:
14337 case FLOAT_EXPR:
14338 case FIX_TRUNC_EXPR:
14339 return tree_expr_nonnegative_warnv_p (op0,
14340 strict_overflow_p);
14341
14342 case NOP_EXPR:
14343 {
14344 tree inner_type = TREE_TYPE (op0);
14345 tree outer_type = type;
14346
14347 if (TREE_CODE (outer_type) == REAL_TYPE)
14348 {
14349 if (TREE_CODE (inner_type) == REAL_TYPE)
14350 return tree_expr_nonnegative_warnv_p (op0,
14351 strict_overflow_p);
14352 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14353 {
14354 if (TYPE_UNSIGNED (inner_type))
14355 return true;
14356 return tree_expr_nonnegative_warnv_p (op0,
14357 strict_overflow_p);
14358 }
14359 }
14360 else if (TREE_CODE (outer_type) == INTEGER_TYPE)
14361 {
14362 if (TREE_CODE (inner_type) == REAL_TYPE)
14363 return tree_expr_nonnegative_warnv_p (op0,
14364 strict_overflow_p);
14365 if (TREE_CODE (inner_type) == INTEGER_TYPE)
14366 return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type)
14367 && TYPE_UNSIGNED (inner_type);
14368 }
14369 }
14370 break;
14371
14372 default:
14373 return tree_simple_nonnegative_warnv_p (code, type);
14374 }
14375
14376 /* We don't know sign of `t', so be conservative and return false. */
14377 return false;
14378 }
14379
14380 /* Return true if (CODE OP0 OP1) is known to be non-negative. If the return
14381 value is based on the assumption that signed overflow is undefined,
14382 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14383 *STRICT_OVERFLOW_P. */
14384
14385 bool
14386 tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0,
14387 tree op1, bool *strict_overflow_p)
14388 {
14389 if (TYPE_UNSIGNED (type))
14390 return true;
14391
14392 switch (code)
14393 {
14394 case POINTER_PLUS_EXPR:
14395 case PLUS_EXPR:
14396 if (FLOAT_TYPE_P (type))
14397 return (tree_expr_nonnegative_warnv_p (op0,
14398 strict_overflow_p)
14399 && tree_expr_nonnegative_warnv_p (op1,
14400 strict_overflow_p));
14401
14402 /* zero_extend(x) + zero_extend(y) is non-negative if x and y are
14403 both unsigned and at least 2 bits shorter than the result. */
14404 if (TREE_CODE (type) == INTEGER_TYPE
14405 && TREE_CODE (op0) == NOP_EXPR
14406 && TREE_CODE (op1) == NOP_EXPR)
14407 {
14408 tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0));
14409 tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0));
14410 if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1)
14411 && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2))
14412 {
14413 unsigned int prec = MAX (TYPE_PRECISION (inner1),
14414 TYPE_PRECISION (inner2)) + 1;
14415 return prec < TYPE_PRECISION (type);
14416 }
14417 }
14418 break;
14419
14420 case MULT_EXPR:
14421 if (FLOAT_TYPE_P (type))
14422 {
14423 /* x * x for floating point x is always non-negative. */
14424 if (operand_equal_p (op0, op1, 0))
14425 return true;
14426 return (tree_expr_nonnegative_warnv_p (op0,
14427 strict_overflow_p)
14428 && tree_expr_nonnegative_warnv_p (op1,
14429 strict_overflow_p));
14430 }
14431
14432 /* zero_extend(x) * zero_extend(y) is non-negative if x and y are
14433 both unsigned and their total bits is shorter than the result. */
14434 if (TREE_CODE (type) == INTEGER_TYPE
14435 && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST)
14436 && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST))
14437 {
14438 tree inner0 = (TREE_CODE (op0) == NOP_EXPR)
14439 ? TREE_TYPE (TREE_OPERAND (op0, 0))
14440 : TREE_TYPE (op0);
14441 tree inner1 = (TREE_CODE (op1) == NOP_EXPR)
14442 ? TREE_TYPE (TREE_OPERAND (op1, 0))
14443 : TREE_TYPE (op1);
14444
14445 bool unsigned0 = TYPE_UNSIGNED (inner0);
14446 bool unsigned1 = TYPE_UNSIGNED (inner1);
14447
14448 if (TREE_CODE (op0) == INTEGER_CST)
14449 unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0;
14450
14451 if (TREE_CODE (op1) == INTEGER_CST)
14452 unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0;
14453
14454 if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0
14455 && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1)
14456 {
14457 unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST)
14458 ? tree_int_cst_min_precision (op0, /*unsignedp=*/true)
14459 : TYPE_PRECISION (inner0);
14460
14461 unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST)
14462 ? tree_int_cst_min_precision (op1, /*unsignedp=*/true)
14463 : TYPE_PRECISION (inner1);
14464
14465 return precision0 + precision1 < TYPE_PRECISION (type);
14466 }
14467 }
14468 return false;
14469
14470 case BIT_AND_EXPR:
14471 case MAX_EXPR:
14472 return (tree_expr_nonnegative_warnv_p (op0,
14473 strict_overflow_p)
14474 || tree_expr_nonnegative_warnv_p (op1,
14475 strict_overflow_p));
14476
14477 case BIT_IOR_EXPR:
14478 case BIT_XOR_EXPR:
14479 case MIN_EXPR:
14480 case RDIV_EXPR:
14481 case TRUNC_DIV_EXPR:
14482 case CEIL_DIV_EXPR:
14483 case FLOOR_DIV_EXPR:
14484 case ROUND_DIV_EXPR:
14485 return (tree_expr_nonnegative_warnv_p (op0,
14486 strict_overflow_p)
14487 && tree_expr_nonnegative_warnv_p (op1,
14488 strict_overflow_p));
14489
14490 case TRUNC_MOD_EXPR:
14491 case CEIL_MOD_EXPR:
14492 case FLOOR_MOD_EXPR:
14493 case ROUND_MOD_EXPR:
14494 return tree_expr_nonnegative_warnv_p (op0,
14495 strict_overflow_p);
14496 default:
14497 return tree_simple_nonnegative_warnv_p (code, type);
14498 }
14499
14500 /* We don't know sign of `t', so be conservative and return false. */
14501 return false;
14502 }
14503
14504 /* Return true if T is known to be non-negative. If the return
14505 value is based on the assumption that signed overflow is undefined,
14506 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14507 *STRICT_OVERFLOW_P. */
14508
14509 bool
14510 tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14511 {
14512 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14513 return true;
14514
14515 switch (TREE_CODE (t))
14516 {
14517 case INTEGER_CST:
14518 return tree_int_cst_sgn (t) >= 0;
14519
14520 case REAL_CST:
14521 return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t));
14522
14523 case FIXED_CST:
14524 return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t));
14525
14526 case COND_EXPR:
14527 return (tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14528 strict_overflow_p)
14529 && tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 2),
14530 strict_overflow_p));
14531 default:
14532 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14533 TREE_TYPE (t));
14534 }
14535 /* We don't know sign of `t', so be conservative and return false. */
14536 return false;
14537 }
14538
14539 /* Return true if T is known to be non-negative. If the return
14540 value is based on the assumption that signed overflow is undefined,
14541 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14542 *STRICT_OVERFLOW_P. */
14543
14544 bool
14545 tree_call_nonnegative_warnv_p (tree type, tree fndecl,
14546 tree arg0, tree arg1, bool *strict_overflow_p)
14547 {
14548 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
14549 switch (DECL_FUNCTION_CODE (fndecl))
14550 {
14551 CASE_FLT_FN (BUILT_IN_ACOS):
14552 CASE_FLT_FN (BUILT_IN_ACOSH):
14553 CASE_FLT_FN (BUILT_IN_CABS):
14554 CASE_FLT_FN (BUILT_IN_COSH):
14555 CASE_FLT_FN (BUILT_IN_ERFC):
14556 CASE_FLT_FN (BUILT_IN_EXP):
14557 CASE_FLT_FN (BUILT_IN_EXP10):
14558 CASE_FLT_FN (BUILT_IN_EXP2):
14559 CASE_FLT_FN (BUILT_IN_FABS):
14560 CASE_FLT_FN (BUILT_IN_FDIM):
14561 CASE_FLT_FN (BUILT_IN_HYPOT):
14562 CASE_FLT_FN (BUILT_IN_POW10):
14563 CASE_INT_FN (BUILT_IN_FFS):
14564 CASE_INT_FN (BUILT_IN_PARITY):
14565 CASE_INT_FN (BUILT_IN_POPCOUNT):
14566 case BUILT_IN_BSWAP32:
14567 case BUILT_IN_BSWAP64:
14568 /* Always true. */
14569 return true;
14570
14571 CASE_FLT_FN (BUILT_IN_SQRT):
14572 /* sqrt(-0.0) is -0.0. */
14573 if (!HONOR_SIGNED_ZEROS (TYPE_MODE (type)))
14574 return true;
14575 return tree_expr_nonnegative_warnv_p (arg0,
14576 strict_overflow_p);
14577
14578 CASE_FLT_FN (BUILT_IN_ASINH):
14579 CASE_FLT_FN (BUILT_IN_ATAN):
14580 CASE_FLT_FN (BUILT_IN_ATANH):
14581 CASE_FLT_FN (BUILT_IN_CBRT):
14582 CASE_FLT_FN (BUILT_IN_CEIL):
14583 CASE_FLT_FN (BUILT_IN_ERF):
14584 CASE_FLT_FN (BUILT_IN_EXPM1):
14585 CASE_FLT_FN (BUILT_IN_FLOOR):
14586 CASE_FLT_FN (BUILT_IN_FMOD):
14587 CASE_FLT_FN (BUILT_IN_FREXP):
14588 CASE_FLT_FN (BUILT_IN_LCEIL):
14589 CASE_FLT_FN (BUILT_IN_LDEXP):
14590 CASE_FLT_FN (BUILT_IN_LFLOOR):
14591 CASE_FLT_FN (BUILT_IN_LLCEIL):
14592 CASE_FLT_FN (BUILT_IN_LLFLOOR):
14593 CASE_FLT_FN (BUILT_IN_LLRINT):
14594 CASE_FLT_FN (BUILT_IN_LLROUND):
14595 CASE_FLT_FN (BUILT_IN_LRINT):
14596 CASE_FLT_FN (BUILT_IN_LROUND):
14597 CASE_FLT_FN (BUILT_IN_MODF):
14598 CASE_FLT_FN (BUILT_IN_NEARBYINT):
14599 CASE_FLT_FN (BUILT_IN_RINT):
14600 CASE_FLT_FN (BUILT_IN_ROUND):
14601 CASE_FLT_FN (BUILT_IN_SCALB):
14602 CASE_FLT_FN (BUILT_IN_SCALBLN):
14603 CASE_FLT_FN (BUILT_IN_SCALBN):
14604 CASE_FLT_FN (BUILT_IN_SIGNBIT):
14605 CASE_FLT_FN (BUILT_IN_SIGNIFICAND):
14606 CASE_FLT_FN (BUILT_IN_SINH):
14607 CASE_FLT_FN (BUILT_IN_TANH):
14608 CASE_FLT_FN (BUILT_IN_TRUNC):
14609 /* True if the 1st argument is nonnegative. */
14610 return tree_expr_nonnegative_warnv_p (arg0,
14611 strict_overflow_p);
14612
14613 CASE_FLT_FN (BUILT_IN_FMAX):
14614 /* True if the 1st OR 2nd arguments are nonnegative. */
14615 return (tree_expr_nonnegative_warnv_p (arg0,
14616 strict_overflow_p)
14617 || (tree_expr_nonnegative_warnv_p (arg1,
14618 strict_overflow_p)));
14619
14620 CASE_FLT_FN (BUILT_IN_FMIN):
14621 /* True if the 1st AND 2nd arguments are nonnegative. */
14622 return (tree_expr_nonnegative_warnv_p (arg0,
14623 strict_overflow_p)
14624 && (tree_expr_nonnegative_warnv_p (arg1,
14625 strict_overflow_p)));
14626
14627 CASE_FLT_FN (BUILT_IN_COPYSIGN):
14628 /* True if the 2nd argument is nonnegative. */
14629 return tree_expr_nonnegative_warnv_p (arg1,
14630 strict_overflow_p);
14631
14632 CASE_FLT_FN (BUILT_IN_POWI):
14633 /* True if the 1st argument is nonnegative or the second
14634 argument is an even integer. */
14635 if (TREE_CODE (arg1) == INTEGER_CST
14636 && (TREE_INT_CST_LOW (arg1) & 1) == 0)
14637 return true;
14638 return tree_expr_nonnegative_warnv_p (arg0,
14639 strict_overflow_p);
14640
14641 CASE_FLT_FN (BUILT_IN_POW):
14642 /* True if the 1st argument is nonnegative or the second
14643 argument is an even integer valued real. */
14644 if (TREE_CODE (arg1) == REAL_CST)
14645 {
14646 REAL_VALUE_TYPE c;
14647 HOST_WIDE_INT n;
14648
14649 c = TREE_REAL_CST (arg1);
14650 n = real_to_integer (&c);
14651 if ((n & 1) == 0)
14652 {
14653 REAL_VALUE_TYPE cint;
14654 real_from_integer (&cint, VOIDmode, n,
14655 n < 0 ? -1 : 0, 0);
14656 if (real_identical (&c, &cint))
14657 return true;
14658 }
14659 }
14660 return tree_expr_nonnegative_warnv_p (arg0,
14661 strict_overflow_p);
14662
14663 default:
14664 break;
14665 }
14666 return tree_simple_nonnegative_warnv_p (CALL_EXPR,
14667 type);
14668 }
14669
14670 /* Return true if T is known to be non-negative. If the return
14671 value is based on the assumption that signed overflow is undefined,
14672 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14673 *STRICT_OVERFLOW_P. */
14674
14675 bool
14676 tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14677 {
14678 enum tree_code code = TREE_CODE (t);
14679 if (TYPE_UNSIGNED (TREE_TYPE (t)))
14680 return true;
14681
14682 switch (code)
14683 {
14684 case TARGET_EXPR:
14685 {
14686 tree temp = TARGET_EXPR_SLOT (t);
14687 t = TARGET_EXPR_INITIAL (t);
14688
14689 /* If the initializer is non-void, then it's a normal expression
14690 that will be assigned to the slot. */
14691 if (!VOID_TYPE_P (t))
14692 return tree_expr_nonnegative_warnv_p (t, strict_overflow_p);
14693
14694 /* Otherwise, the initializer sets the slot in some way. One common
14695 way is an assignment statement at the end of the initializer. */
14696 while (1)
14697 {
14698 if (TREE_CODE (t) == BIND_EXPR)
14699 t = expr_last (BIND_EXPR_BODY (t));
14700 else if (TREE_CODE (t) == TRY_FINALLY_EXPR
14701 || TREE_CODE (t) == TRY_CATCH_EXPR)
14702 t = expr_last (TREE_OPERAND (t, 0));
14703 else if (TREE_CODE (t) == STATEMENT_LIST)
14704 t = expr_last (t);
14705 else
14706 break;
14707 }
14708 if (TREE_CODE (t) == MODIFY_EXPR
14709 && TREE_OPERAND (t, 0) == temp)
14710 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14711 strict_overflow_p);
14712
14713 return false;
14714 }
14715
14716 case CALL_EXPR:
14717 {
14718 tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE;
14719 tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE;
14720
14721 return tree_call_nonnegative_warnv_p (TREE_TYPE (t),
14722 get_callee_fndecl (t),
14723 arg0,
14724 arg1,
14725 strict_overflow_p);
14726 }
14727 case COMPOUND_EXPR:
14728 case MODIFY_EXPR:
14729 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 1),
14730 strict_overflow_p);
14731 case BIND_EXPR:
14732 return tree_expr_nonnegative_warnv_p (expr_last (TREE_OPERAND (t, 1)),
14733 strict_overflow_p);
14734 case SAVE_EXPR:
14735 return tree_expr_nonnegative_warnv_p (TREE_OPERAND (t, 0),
14736 strict_overflow_p);
14737
14738 default:
14739 return tree_simple_nonnegative_warnv_p (TREE_CODE (t),
14740 TREE_TYPE (t));
14741 }
14742
14743 /* We don't know sign of `t', so be conservative and return false. */
14744 return false;
14745 }
14746
14747 /* Return true if T is known to be non-negative. If the return
14748 value is based on the assumption that signed overflow is undefined,
14749 set *STRICT_OVERFLOW_P to true; otherwise, don't change
14750 *STRICT_OVERFLOW_P. */
14751
14752 bool
14753 tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p)
14754 {
14755 enum tree_code code;
14756 if (t == error_mark_node)
14757 return false;
14758
14759 code = TREE_CODE (t);
14760 switch (TREE_CODE_CLASS (code))
14761 {
14762 case tcc_binary:
14763 case tcc_comparison:
14764 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14765 TREE_TYPE (t),
14766 TREE_OPERAND (t, 0),
14767 TREE_OPERAND (t, 1),
14768 strict_overflow_p);
14769
14770 case tcc_unary:
14771 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14772 TREE_TYPE (t),
14773 TREE_OPERAND (t, 0),
14774 strict_overflow_p);
14775
14776 case tcc_constant:
14777 case tcc_declaration:
14778 case tcc_reference:
14779 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14780
14781 default:
14782 break;
14783 }
14784
14785 switch (code)
14786 {
14787 case TRUTH_AND_EXPR:
14788 case TRUTH_OR_EXPR:
14789 case TRUTH_XOR_EXPR:
14790 return tree_binary_nonnegative_warnv_p (TREE_CODE (t),
14791 TREE_TYPE (t),
14792 TREE_OPERAND (t, 0),
14793 TREE_OPERAND (t, 1),
14794 strict_overflow_p);
14795 case TRUTH_NOT_EXPR:
14796 return tree_unary_nonnegative_warnv_p (TREE_CODE (t),
14797 TREE_TYPE (t),
14798 TREE_OPERAND (t, 0),
14799 strict_overflow_p);
14800
14801 case COND_EXPR:
14802 case CONSTRUCTOR:
14803 case OBJ_TYPE_REF:
14804 case ASSERT_EXPR:
14805 case ADDR_EXPR:
14806 case WITH_SIZE_EXPR:
14807 case EXC_PTR_EXPR:
14808 case SSA_NAME:
14809 case FILTER_EXPR:
14810 return tree_single_nonnegative_warnv_p (t, strict_overflow_p);
14811
14812 default:
14813 return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p);
14814 }
14815 }
14816
14817 /* Return true if `t' is known to be non-negative. Handle warnings
14818 about undefined signed overflow. */
14819
14820 bool
14821 tree_expr_nonnegative_p (tree t)
14822 {
14823 bool ret, strict_overflow_p;
14824
14825 strict_overflow_p = false;
14826 ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p);
14827 if (strict_overflow_p)
14828 fold_overflow_warning (("assuming signed overflow does not occur when "
14829 "determining that expression is always "
14830 "non-negative"),
14831 WARN_STRICT_OVERFLOW_MISC);
14832 return ret;
14833 }
14834
14835
14836 /* Return true when (CODE OP0) is an address and is known to be nonzero.
14837 For floating point we further ensure that T is not denormal.
14838 Similar logic is present in nonzero_address in rtlanal.h.
14839
14840 If the return value is based on the assumption that signed overflow
14841 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14842 change *STRICT_OVERFLOW_P. */
14843
14844 bool
14845 tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0,
14846 bool *strict_overflow_p)
14847 {
14848 switch (code)
14849 {
14850 case ABS_EXPR:
14851 return tree_expr_nonzero_warnv_p (op0,
14852 strict_overflow_p);
14853
14854 case NOP_EXPR:
14855 {
14856 tree inner_type = TREE_TYPE (op0);
14857 tree outer_type = type;
14858
14859 return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
14860 && tree_expr_nonzero_warnv_p (op0,
14861 strict_overflow_p));
14862 }
14863 break;
14864
14865 case NON_LVALUE_EXPR:
14866 return tree_expr_nonzero_warnv_p (op0,
14867 strict_overflow_p);
14868
14869 default:
14870 break;
14871 }
14872
14873 return false;
14874 }
14875
14876 /* Return true when (CODE OP0 OP1) is an address and is known to be nonzero.
14877 For floating point we further ensure that T is not denormal.
14878 Similar logic is present in nonzero_address in rtlanal.h.
14879
14880 If the return value is based on the assumption that signed overflow
14881 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14882 change *STRICT_OVERFLOW_P. */
14883
14884 bool
14885 tree_binary_nonzero_warnv_p (enum tree_code code,
14886 tree type,
14887 tree op0,
14888 tree op1, bool *strict_overflow_p)
14889 {
14890 bool sub_strict_overflow_p;
14891 switch (code)
14892 {
14893 case POINTER_PLUS_EXPR:
14894 case PLUS_EXPR:
14895 if (TYPE_OVERFLOW_UNDEFINED (type))
14896 {
14897 /* With the presence of negative values it is hard
14898 to say something. */
14899 sub_strict_overflow_p = false;
14900 if (!tree_expr_nonnegative_warnv_p (op0,
14901 &sub_strict_overflow_p)
14902 || !tree_expr_nonnegative_warnv_p (op1,
14903 &sub_strict_overflow_p))
14904 return false;
14905 /* One of operands must be positive and the other non-negative. */
14906 /* We don't set *STRICT_OVERFLOW_P here: even if this value
14907 overflows, on a twos-complement machine the sum of two
14908 nonnegative numbers can never be zero. */
14909 return (tree_expr_nonzero_warnv_p (op0,
14910 strict_overflow_p)
14911 || tree_expr_nonzero_warnv_p (op1,
14912 strict_overflow_p));
14913 }
14914 break;
14915
14916 case MULT_EXPR:
14917 if (TYPE_OVERFLOW_UNDEFINED (type))
14918 {
14919 if (tree_expr_nonzero_warnv_p (op0,
14920 strict_overflow_p)
14921 && tree_expr_nonzero_warnv_p (op1,
14922 strict_overflow_p))
14923 {
14924 *strict_overflow_p = true;
14925 return true;
14926 }
14927 }
14928 break;
14929
14930 case MIN_EXPR:
14931 sub_strict_overflow_p = false;
14932 if (tree_expr_nonzero_warnv_p (op0,
14933 &sub_strict_overflow_p)
14934 && tree_expr_nonzero_warnv_p (op1,
14935 &sub_strict_overflow_p))
14936 {
14937 if (sub_strict_overflow_p)
14938 *strict_overflow_p = true;
14939 }
14940 break;
14941
14942 case MAX_EXPR:
14943 sub_strict_overflow_p = false;
14944 if (tree_expr_nonzero_warnv_p (op0,
14945 &sub_strict_overflow_p))
14946 {
14947 if (sub_strict_overflow_p)
14948 *strict_overflow_p = true;
14949
14950 /* When both operands are nonzero, then MAX must be too. */
14951 if (tree_expr_nonzero_warnv_p (op1,
14952 strict_overflow_p))
14953 return true;
14954
14955 /* MAX where operand 0 is positive is positive. */
14956 return tree_expr_nonnegative_warnv_p (op0,
14957 strict_overflow_p);
14958 }
14959 /* MAX where operand 1 is positive is positive. */
14960 else if (tree_expr_nonzero_warnv_p (op1,
14961 &sub_strict_overflow_p)
14962 && tree_expr_nonnegative_warnv_p (op1,
14963 &sub_strict_overflow_p))
14964 {
14965 if (sub_strict_overflow_p)
14966 *strict_overflow_p = true;
14967 return true;
14968 }
14969 break;
14970
14971 case BIT_IOR_EXPR:
14972 return (tree_expr_nonzero_warnv_p (op1,
14973 strict_overflow_p)
14974 || tree_expr_nonzero_warnv_p (op0,
14975 strict_overflow_p));
14976
14977 default:
14978 break;
14979 }
14980
14981 return false;
14982 }
14983
14984 /* Return true when T is an address and is known to be nonzero.
14985 For floating point we further ensure that T is not denormal.
14986 Similar logic is present in nonzero_address in rtlanal.h.
14987
14988 If the return value is based on the assumption that signed overflow
14989 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
14990 change *STRICT_OVERFLOW_P. */
14991
14992 bool
14993 tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p)
14994 {
14995 bool sub_strict_overflow_p;
14996 switch (TREE_CODE (t))
14997 {
14998 case INTEGER_CST:
14999 return !integer_zerop (t);
15000
15001 case ADDR_EXPR:
15002 {
15003 tree base = get_base_address (TREE_OPERAND (t, 0));
15004
15005 if (!base)
15006 return false;
15007
15008 /* Weak declarations may link to NULL. */
15009 if (VAR_OR_FUNCTION_DECL_P (base))
15010 return !DECL_WEAK (base);
15011
15012 /* Constants are never weak. */
15013 if (CONSTANT_CLASS_P (base))
15014 return true;
15015
15016 return false;
15017 }
15018
15019 case COND_EXPR:
15020 sub_strict_overflow_p = false;
15021 if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15022 &sub_strict_overflow_p)
15023 && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2),
15024 &sub_strict_overflow_p))
15025 {
15026 if (sub_strict_overflow_p)
15027 *strict_overflow_p = true;
15028 return true;
15029 }
15030 break;
15031
15032 default:
15033 break;
15034 }
15035 return false;
15036 }
15037
15038 /* Return true when T is an address and is known to be nonzero.
15039 For floating point we further ensure that T is not denormal.
15040 Similar logic is present in nonzero_address in rtlanal.h.
15041
15042 If the return value is based on the assumption that signed overflow
15043 is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't
15044 change *STRICT_OVERFLOW_P. */
15045
15046 bool
15047 tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p)
15048 {
15049 tree type = TREE_TYPE (t);
15050 enum tree_code code;
15051
15052 /* Doing something useful for floating point would need more work. */
15053 if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type))
15054 return false;
15055
15056 code = TREE_CODE (t);
15057 switch (TREE_CODE_CLASS (code))
15058 {
15059 case tcc_unary:
15060 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15061 strict_overflow_p);
15062 case tcc_binary:
15063 case tcc_comparison:
15064 return tree_binary_nonzero_warnv_p (code, type,
15065 TREE_OPERAND (t, 0),
15066 TREE_OPERAND (t, 1),
15067 strict_overflow_p);
15068 case tcc_constant:
15069 case tcc_declaration:
15070 case tcc_reference:
15071 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15072
15073 default:
15074 break;
15075 }
15076
15077 switch (code)
15078 {
15079 case TRUTH_NOT_EXPR:
15080 return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0),
15081 strict_overflow_p);
15082
15083 case TRUTH_AND_EXPR:
15084 case TRUTH_OR_EXPR:
15085 case TRUTH_XOR_EXPR:
15086 return tree_binary_nonzero_warnv_p (code, type,
15087 TREE_OPERAND (t, 0),
15088 TREE_OPERAND (t, 1),
15089 strict_overflow_p);
15090
15091 case COND_EXPR:
15092 case CONSTRUCTOR:
15093 case OBJ_TYPE_REF:
15094 case ASSERT_EXPR:
15095 case ADDR_EXPR:
15096 case WITH_SIZE_EXPR:
15097 case EXC_PTR_EXPR:
15098 case SSA_NAME:
15099 case FILTER_EXPR:
15100 return tree_single_nonzero_warnv_p (t, strict_overflow_p);
15101
15102 case COMPOUND_EXPR:
15103 case MODIFY_EXPR:
15104 case BIND_EXPR:
15105 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1),
15106 strict_overflow_p);
15107
15108 case SAVE_EXPR:
15109 return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0),
15110 strict_overflow_p);
15111
15112 case CALL_EXPR:
15113 return alloca_call_p (t);
15114
15115 default:
15116 break;
15117 }
15118 return false;
15119 }
15120
15121 /* Return true when T is an address and is known to be nonzero.
15122 Handle warnings about undefined signed overflow. */
15123
15124 bool
15125 tree_expr_nonzero_p (tree t)
15126 {
15127 bool ret, strict_overflow_p;
15128
15129 strict_overflow_p = false;
15130 ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p);
15131 if (strict_overflow_p)
15132 fold_overflow_warning (("assuming signed overflow does not occur when "
15133 "determining that expression is always "
15134 "non-zero"),
15135 WARN_STRICT_OVERFLOW_MISC);
15136 return ret;
15137 }
15138
15139 /* Given the components of a binary expression CODE, TYPE, OP0 and OP1,
15140 attempt to fold the expression to a constant without modifying TYPE,
15141 OP0 or OP1.
15142
15143 If the expression could be simplified to a constant, then return
15144 the constant. If the expression would not be simplified to a
15145 constant, then return NULL_TREE. */
15146
15147 tree
15148 fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1)
15149 {
15150 tree tem = fold_binary (code, type, op0, op1);
15151 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15152 }
15153
15154 /* Given the components of a unary expression CODE, TYPE and OP0,
15155 attempt to fold the expression to a constant without modifying
15156 TYPE or OP0.
15157
15158 If the expression could be simplified to a constant, then return
15159 the constant. If the expression would not be simplified to a
15160 constant, then return NULL_TREE. */
15161
15162 tree
15163 fold_unary_to_constant (enum tree_code code, tree type, tree op0)
15164 {
15165 tree tem = fold_unary (code, type, op0);
15166 return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE;
15167 }
15168
15169 /* If EXP represents referencing an element in a constant string
15170 (either via pointer arithmetic or array indexing), return the
15171 tree representing the value accessed, otherwise return NULL. */
15172
15173 tree
15174 fold_read_from_constant_string (tree exp)
15175 {
15176 if ((TREE_CODE (exp) == INDIRECT_REF
15177 || TREE_CODE (exp) == ARRAY_REF)
15178 && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE)
15179 {
15180 tree exp1 = TREE_OPERAND (exp, 0);
15181 tree index;
15182 tree string;
15183
15184 if (TREE_CODE (exp) == INDIRECT_REF)
15185 string = string_constant (exp1, &index);
15186 else
15187 {
15188 tree low_bound = array_ref_low_bound (exp);
15189 index = fold_convert (sizetype, TREE_OPERAND (exp, 1));
15190
15191 /* Optimize the special-case of a zero lower bound.
15192
15193 We convert the low_bound to sizetype to avoid some problems
15194 with constant folding. (E.g. suppose the lower bound is 1,
15195 and its mode is QI. Without the conversion,l (ARRAY
15196 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
15197 +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */
15198 if (! integer_zerop (low_bound))
15199 index = size_diffop (index, fold_convert (sizetype, low_bound));
15200
15201 string = exp1;
15202 }
15203
15204 if (string
15205 && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))
15206 && TREE_CODE (string) == STRING_CST
15207 && TREE_CODE (index) == INTEGER_CST
15208 && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0
15209 && (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))))
15210 == MODE_INT)
15211 && (GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (TREE_TYPE (string)))) == 1))
15212 return build_int_cst_type (TREE_TYPE (exp),
15213 (TREE_STRING_POINTER (string)
15214 [TREE_INT_CST_LOW (index)]));
15215 }
15216 return NULL;
15217 }
15218
15219 /* Return the tree for neg (ARG0) when ARG0 is known to be either
15220 an integer constant, real, or fixed-point constant.
15221
15222 TYPE is the type of the result. */
15223
15224 static tree
15225 fold_negate_const (tree arg0, tree type)
15226 {
15227 tree t = NULL_TREE;
15228
15229 switch (TREE_CODE (arg0))
15230 {
15231 case INTEGER_CST:
15232 {
15233 unsigned HOST_WIDE_INT low;
15234 HOST_WIDE_INT high;
15235 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
15236 TREE_INT_CST_HIGH (arg0),
15237 &low, &high);
15238 t = force_fit_type_double (type, low, high, 1,
15239 (overflow | TREE_OVERFLOW (arg0))
15240 && !TYPE_UNSIGNED (type));
15241 break;
15242 }
15243
15244 case REAL_CST:
15245 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
15246 break;
15247
15248 case FIXED_CST:
15249 {
15250 FIXED_VALUE_TYPE f;
15251 bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR,
15252 &(TREE_FIXED_CST (arg0)), NULL,
15253 TYPE_SATURATING (type));
15254 t = build_fixed (type, f);
15255 /* Propagate overflow flags. */
15256 if (overflow_p | TREE_OVERFLOW (arg0))
15257 {
15258 TREE_OVERFLOW (t) = 1;
15259 TREE_CONSTANT_OVERFLOW (t) = 1;
15260 }
15261 else if (TREE_CONSTANT_OVERFLOW (arg0))
15262 TREE_CONSTANT_OVERFLOW (t) = 1;
15263 break;
15264 }
15265
15266 default:
15267 gcc_unreachable ();
15268 }
15269
15270 return t;
15271 }
15272
15273 /* Return the tree for abs (ARG0) when ARG0 is known to be either
15274 an integer constant or real constant.
15275
15276 TYPE is the type of the result. */
15277
15278 tree
15279 fold_abs_const (tree arg0, tree type)
15280 {
15281 tree t = NULL_TREE;
15282
15283 switch (TREE_CODE (arg0))
15284 {
15285 case INTEGER_CST:
15286 /* If the value is unsigned, then the absolute value is
15287 the same as the ordinary value. */
15288 if (TYPE_UNSIGNED (type))
15289 t = arg0;
15290 /* Similarly, if the value is non-negative. */
15291 else if (INT_CST_LT (integer_minus_one_node, arg0))
15292 t = arg0;
15293 /* If the value is negative, then the absolute value is
15294 its negation. */
15295 else
15296 {
15297 unsigned HOST_WIDE_INT low;
15298 HOST_WIDE_INT high;
15299 int overflow = neg_double (TREE_INT_CST_LOW (arg0),
15300 TREE_INT_CST_HIGH (arg0),
15301 &low, &high);
15302 t = force_fit_type_double (type, low, high, -1,
15303 overflow | TREE_OVERFLOW (arg0));
15304 }
15305 break;
15306
15307 case REAL_CST:
15308 if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0)))
15309 t = build_real (type, REAL_VALUE_NEGATE (TREE_REAL_CST (arg0)));
15310 else
15311 t = arg0;
15312 break;
15313
15314 default:
15315 gcc_unreachable ();
15316 }
15317
15318 return t;
15319 }
15320
15321 /* Return the tree for not (ARG0) when ARG0 is known to be an integer
15322 constant. TYPE is the type of the result. */
15323
15324 static tree
15325 fold_not_const (tree arg0, tree type)
15326 {
15327 tree t = NULL_TREE;
15328
15329 gcc_assert (TREE_CODE (arg0) == INTEGER_CST);
15330
15331 t = force_fit_type_double (type, ~TREE_INT_CST_LOW (arg0),
15332 ~TREE_INT_CST_HIGH (arg0), 0,
15333 TREE_OVERFLOW (arg0));
15334
15335 return t;
15336 }
15337
15338 /* Given CODE, a relational operator, the target type, TYPE and two
15339 constant operands OP0 and OP1, return the result of the
15340 relational operation. If the result is not a compile time
15341 constant, then return NULL_TREE. */
15342
15343 static tree
15344 fold_relational_const (enum tree_code code, tree type, tree op0, tree op1)
15345 {
15346 int result, invert;
15347
15348 /* From here on, the only cases we handle are when the result is
15349 known to be a constant. */
15350
15351 if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST)
15352 {
15353 const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0);
15354 const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1);
15355
15356 /* Handle the cases where either operand is a NaN. */
15357 if (real_isnan (c0) || real_isnan (c1))
15358 {
15359 switch (code)
15360 {
15361 case EQ_EXPR:
15362 case ORDERED_EXPR:
15363 result = 0;
15364 break;
15365
15366 case NE_EXPR:
15367 case UNORDERED_EXPR:
15368 case UNLT_EXPR:
15369 case UNLE_EXPR:
15370 case UNGT_EXPR:
15371 case UNGE_EXPR:
15372 case UNEQ_EXPR:
15373 result = 1;
15374 break;
15375
15376 case LT_EXPR:
15377 case LE_EXPR:
15378 case GT_EXPR:
15379 case GE_EXPR:
15380 case LTGT_EXPR:
15381 if (flag_trapping_math)
15382 return NULL_TREE;
15383 result = 0;
15384 break;
15385
15386 default:
15387 gcc_unreachable ();
15388 }
15389
15390 return constant_boolean_node (result, type);
15391 }
15392
15393 return constant_boolean_node (real_compare (code, c0, c1), type);
15394 }
15395
15396 if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST)
15397 {
15398 const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0);
15399 const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1);
15400 return constant_boolean_node (fixed_compare (code, c0, c1), type);
15401 }
15402
15403 /* Handle equality/inequality of complex constants. */
15404 if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST)
15405 {
15406 tree rcond = fold_relational_const (code, type,
15407 TREE_REALPART (op0),
15408 TREE_REALPART (op1));
15409 tree icond = fold_relational_const (code, type,
15410 TREE_IMAGPART (op0),
15411 TREE_IMAGPART (op1));
15412 if (code == EQ_EXPR)
15413 return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond);
15414 else if (code == NE_EXPR)
15415 return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond);
15416 else
15417 return NULL_TREE;
15418 }
15419
15420 /* From here on we only handle LT, LE, GT, GE, EQ and NE.
15421
15422 To compute GT, swap the arguments and do LT.
15423 To compute GE, do LT and invert the result.
15424 To compute LE, swap the arguments, do LT and invert the result.
15425 To compute NE, do EQ and invert the result.
15426
15427 Therefore, the code below must handle only EQ and LT. */
15428
15429 if (code == LE_EXPR || code == GT_EXPR)
15430 {
15431 tree tem = op0;
15432 op0 = op1;
15433 op1 = tem;
15434 code = swap_tree_comparison (code);
15435 }
15436
15437 /* Note that it is safe to invert for real values here because we
15438 have already handled the one case that it matters. */
15439
15440 invert = 0;
15441 if (code == NE_EXPR || code == GE_EXPR)
15442 {
15443 invert = 1;
15444 code = invert_tree_comparison (code, false);
15445 }
15446
15447 /* Compute a result for LT or EQ if args permit;
15448 Otherwise return T. */
15449 if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST)
15450 {
15451 if (code == EQ_EXPR)
15452 result = tree_int_cst_equal (op0, op1);
15453 else if (TYPE_UNSIGNED (TREE_TYPE (op0)))
15454 result = INT_CST_LT_UNSIGNED (op0, op1);
15455 else
15456 result = INT_CST_LT (op0, op1);
15457 }
15458 else
15459 return NULL_TREE;
15460
15461 if (invert)
15462 result ^= 1;
15463 return constant_boolean_node (result, type);
15464 }
15465
15466 /* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the
15467 indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR
15468 itself. */
15469
15470 tree
15471 fold_build_cleanup_point_expr (tree type, tree expr)
15472 {
15473 /* If the expression does not have side effects then we don't have to wrap
15474 it with a cleanup point expression. */
15475 if (!TREE_SIDE_EFFECTS (expr))
15476 return expr;
15477
15478 /* If the expression is a return, check to see if the expression inside the
15479 return has no side effects or the right hand side of the modify expression
15480 inside the return. If either don't have side effects set we don't need to
15481 wrap the expression in a cleanup point expression. Note we don't check the
15482 left hand side of the modify because it should always be a return decl. */
15483 if (TREE_CODE (expr) == RETURN_EXPR)
15484 {
15485 tree op = TREE_OPERAND (expr, 0);
15486 if (!op || !TREE_SIDE_EFFECTS (op))
15487 return expr;
15488 op = TREE_OPERAND (op, 1);
15489 if (!TREE_SIDE_EFFECTS (op))
15490 return expr;
15491 }
15492
15493 return build1 (CLEANUP_POINT_EXPR, type, expr);
15494 }
15495
15496 /* Given a pointer value OP0 and a type TYPE, return a simplified version
15497 of an indirection through OP0, or NULL_TREE if no simplification is
15498 possible. */
15499
15500 tree
15501 fold_indirect_ref_1 (tree type, tree op0)
15502 {
15503 tree sub = op0;
15504 tree subtype;
15505
15506 STRIP_NOPS (sub);
15507 subtype = TREE_TYPE (sub);
15508 if (!POINTER_TYPE_P (subtype))
15509 return NULL_TREE;
15510
15511 if (TREE_CODE (sub) == ADDR_EXPR)
15512 {
15513 tree op = TREE_OPERAND (sub, 0);
15514 tree optype = TREE_TYPE (op);
15515 /* *&CONST_DECL -> to the value of the const decl. */
15516 if (TREE_CODE (op) == CONST_DECL)
15517 return DECL_INITIAL (op);
15518 /* *&p => p; make sure to handle *&"str"[cst] here. */
15519 if (type == optype)
15520 {
15521 tree fop = fold_read_from_constant_string (op);
15522 if (fop)
15523 return fop;
15524 else
15525 return op;
15526 }
15527 /* *(foo *)&fooarray => fooarray[0] */
15528 else if (TREE_CODE (optype) == ARRAY_TYPE
15529 && type == TREE_TYPE (optype))
15530 {
15531 tree type_domain = TYPE_DOMAIN (optype);
15532 tree min_val = size_zero_node;
15533 if (type_domain && TYPE_MIN_VALUE (type_domain))
15534 min_val = TYPE_MIN_VALUE (type_domain);
15535 return build4 (ARRAY_REF, type, op, min_val, NULL_TREE, NULL_TREE);
15536 }
15537 /* *(foo *)&complexfoo => __real__ complexfoo */
15538 else if (TREE_CODE (optype) == COMPLEX_TYPE
15539 && type == TREE_TYPE (optype))
15540 return fold_build1 (REALPART_EXPR, type, op);
15541 /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */
15542 else if (TREE_CODE (optype) == VECTOR_TYPE
15543 && type == TREE_TYPE (optype))
15544 {
15545 tree part_width = TYPE_SIZE (type);
15546 tree index = bitsize_int (0);
15547 return fold_build3 (BIT_FIELD_REF, type, op, part_width, index);
15548 }
15549 }
15550
15551 /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */
15552 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15553 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15554 {
15555 tree op00 = TREE_OPERAND (sub, 0);
15556 tree op01 = TREE_OPERAND (sub, 1);
15557 tree op00type;
15558
15559 STRIP_NOPS (op00);
15560 op00type = TREE_TYPE (op00);
15561 if (TREE_CODE (op00) == ADDR_EXPR
15562 && TREE_CODE (TREE_TYPE (op00type)) == VECTOR_TYPE
15563 && type == TREE_TYPE (TREE_TYPE (op00type)))
15564 {
15565 HOST_WIDE_INT offset = tree_low_cst (op01, 0);
15566 tree part_width = TYPE_SIZE (type);
15567 unsigned HOST_WIDE_INT part_widthi = tree_low_cst (part_width, 0)/BITS_PER_UNIT;
15568 unsigned HOST_WIDE_INT indexi = offset * BITS_PER_UNIT;
15569 tree index = bitsize_int (indexi);
15570
15571 if (offset/part_widthi <= TYPE_VECTOR_SUBPARTS (TREE_TYPE (op00type)))
15572 return fold_build3 (BIT_FIELD_REF, type, TREE_OPERAND (op00, 0),
15573 part_width, index);
15574
15575 }
15576 }
15577
15578
15579 /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */
15580 if (TREE_CODE (sub) == POINTER_PLUS_EXPR
15581 && TREE_CODE (TREE_OPERAND (sub, 1)) == INTEGER_CST)
15582 {
15583 tree op00 = TREE_OPERAND (sub, 0);
15584 tree op01 = TREE_OPERAND (sub, 1);
15585 tree op00type;
15586
15587 STRIP_NOPS (op00);
15588 op00type = TREE_TYPE (op00);
15589 if (TREE_CODE (op00) == ADDR_EXPR
15590 && TREE_CODE (TREE_TYPE (op00type)) == COMPLEX_TYPE
15591 && type == TREE_TYPE (TREE_TYPE (op00type)))
15592 {
15593 tree size = TYPE_SIZE_UNIT (type);
15594 if (tree_int_cst_equal (size, op01))
15595 return fold_build1 (IMAGPART_EXPR, type, TREE_OPERAND (op00, 0));
15596 }
15597 }
15598
15599 /* *(foo *)fooarrptr => (*fooarrptr)[0] */
15600 if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE
15601 && type == TREE_TYPE (TREE_TYPE (subtype)))
15602 {
15603 tree type_domain;
15604 tree min_val = size_zero_node;
15605 sub = build_fold_indirect_ref (sub);
15606 type_domain = TYPE_DOMAIN (TREE_TYPE (sub));
15607 if (type_domain && TYPE_MIN_VALUE (type_domain))
15608 min_val = TYPE_MIN_VALUE (type_domain);
15609 return build4 (ARRAY_REF, type, sub, min_val, NULL_TREE, NULL_TREE);
15610 }
15611
15612 return NULL_TREE;
15613 }
15614
15615 /* Builds an expression for an indirection through T, simplifying some
15616 cases. */
15617
15618 tree
15619 build_fold_indirect_ref (tree t)
15620 {
15621 tree type = TREE_TYPE (TREE_TYPE (t));
15622 tree sub = fold_indirect_ref_1 (type, t);
15623
15624 if (sub)
15625 return sub;
15626 else
15627 return build1 (INDIRECT_REF, type, t);
15628 }
15629
15630 /* Given an INDIRECT_REF T, return either T or a simplified version. */
15631
15632 tree
15633 fold_indirect_ref (tree t)
15634 {
15635 tree sub = fold_indirect_ref_1 (TREE_TYPE (t), TREE_OPERAND (t, 0));
15636
15637 if (sub)
15638 return sub;
15639 else
15640 return t;
15641 }
15642
15643 /* Strip non-trapping, non-side-effecting tree nodes from an expression
15644 whose result is ignored. The type of the returned tree need not be
15645 the same as the original expression. */
15646
15647 tree
15648 fold_ignored_result (tree t)
15649 {
15650 if (!TREE_SIDE_EFFECTS (t))
15651 return integer_zero_node;
15652
15653 for (;;)
15654 switch (TREE_CODE_CLASS (TREE_CODE (t)))
15655 {
15656 case tcc_unary:
15657 t = TREE_OPERAND (t, 0);
15658 break;
15659
15660 case tcc_binary:
15661 case tcc_comparison:
15662 if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15663 t = TREE_OPERAND (t, 0);
15664 else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0)))
15665 t = TREE_OPERAND (t, 1);
15666 else
15667 return t;
15668 break;
15669
15670 case tcc_expression:
15671 switch (TREE_CODE (t))
15672 {
15673 case COMPOUND_EXPR:
15674 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)))
15675 return t;
15676 t = TREE_OPERAND (t, 0);
15677 break;
15678
15679 case COND_EXPR:
15680 if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))
15681 || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2)))
15682 return t;
15683 t = TREE_OPERAND (t, 0);
15684 break;
15685
15686 default:
15687 return t;
15688 }
15689 break;
15690
15691 default:
15692 return t;
15693 }
15694 }
15695
15696 /* Return the value of VALUE, rounded up to a multiple of DIVISOR.
15697 This can only be applied to objects of a sizetype. */
15698
15699 tree
15700 round_up (tree value, int divisor)
15701 {
15702 tree div = NULL_TREE;
15703
15704 gcc_assert (divisor > 0);
15705 if (divisor == 1)
15706 return value;
15707
15708 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15709 have to do anything. Only do this when we are not given a const,
15710 because in that case, this check is more expensive than just
15711 doing it. */
15712 if (TREE_CODE (value) != INTEGER_CST)
15713 {
15714 div = build_int_cst (TREE_TYPE (value), divisor);
15715
15716 if (multiple_of_p (TREE_TYPE (value), value, div))
15717 return value;
15718 }
15719
15720 /* If divisor is a power of two, simplify this to bit manipulation. */
15721 if (divisor == (divisor & -divisor))
15722 {
15723 if (TREE_CODE (value) == INTEGER_CST)
15724 {
15725 unsigned HOST_WIDE_INT low = TREE_INT_CST_LOW (value);
15726 unsigned HOST_WIDE_INT high;
15727 bool overflow_p;
15728
15729 if ((low & (divisor - 1)) == 0)
15730 return value;
15731
15732 overflow_p = TREE_OVERFLOW (value);
15733 high = TREE_INT_CST_HIGH (value);
15734 low &= ~(divisor - 1);
15735 low += divisor;
15736 if (low == 0)
15737 {
15738 high++;
15739 if (high == 0)
15740 overflow_p = true;
15741 }
15742
15743 return force_fit_type_double (TREE_TYPE (value), low, high,
15744 -1, overflow_p);
15745 }
15746 else
15747 {
15748 tree t;
15749
15750 t = build_int_cst (TREE_TYPE (value), divisor - 1);
15751 value = size_binop (PLUS_EXPR, value, t);
15752 t = build_int_cst (TREE_TYPE (value), -divisor);
15753 value = size_binop (BIT_AND_EXPR, value, t);
15754 }
15755 }
15756 else
15757 {
15758 if (!div)
15759 div = build_int_cst (TREE_TYPE (value), divisor);
15760 value = size_binop (CEIL_DIV_EXPR, value, div);
15761 value = size_binop (MULT_EXPR, value, div);
15762 }
15763
15764 return value;
15765 }
15766
15767 /* Likewise, but round down. */
15768
15769 tree
15770 round_down (tree value, int divisor)
15771 {
15772 tree div = NULL_TREE;
15773
15774 gcc_assert (divisor > 0);
15775 if (divisor == 1)
15776 return value;
15777
15778 /* See if VALUE is already a multiple of DIVISOR. If so, we don't
15779 have to do anything. Only do this when we are not given a const,
15780 because in that case, this check is more expensive than just
15781 doing it. */
15782 if (TREE_CODE (value) != INTEGER_CST)
15783 {
15784 div = build_int_cst (TREE_TYPE (value), divisor);
15785
15786 if (multiple_of_p (TREE_TYPE (value), value, div))
15787 return value;
15788 }
15789
15790 /* If divisor is a power of two, simplify this to bit manipulation. */
15791 if (divisor == (divisor & -divisor))
15792 {
15793 tree t;
15794
15795 t = build_int_cst (TREE_TYPE (value), -divisor);
15796 value = size_binop (BIT_AND_EXPR, value, t);
15797 }
15798 else
15799 {
15800 if (!div)
15801 div = build_int_cst (TREE_TYPE (value), divisor);
15802 value = size_binop (FLOOR_DIV_EXPR, value, div);
15803 value = size_binop (MULT_EXPR, value, div);
15804 }
15805
15806 return value;
15807 }
15808
15809 /* Returns the pointer to the base of the object addressed by EXP and
15810 extracts the information about the offset of the access, storing it
15811 to PBITPOS and POFFSET. */
15812
15813 static tree
15814 split_address_to_core_and_offset (tree exp,
15815 HOST_WIDE_INT *pbitpos, tree *poffset)
15816 {
15817 tree core;
15818 enum machine_mode mode;
15819 int unsignedp, volatilep;
15820 HOST_WIDE_INT bitsize;
15821
15822 if (TREE_CODE (exp) == ADDR_EXPR)
15823 {
15824 core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos,
15825 poffset, &mode, &unsignedp, &volatilep,
15826 false);
15827 core = fold_addr_expr (core);
15828 }
15829 else
15830 {
15831 core = exp;
15832 *pbitpos = 0;
15833 *poffset = NULL_TREE;
15834 }
15835
15836 return core;
15837 }
15838
15839 /* Returns true if addresses of E1 and E2 differ by a constant, false
15840 otherwise. If they do, E1 - E2 is stored in *DIFF. */
15841
15842 bool
15843 ptr_difference_const (tree e1, tree e2, HOST_WIDE_INT *diff)
15844 {
15845 tree core1, core2;
15846 HOST_WIDE_INT bitpos1, bitpos2;
15847 tree toffset1, toffset2, tdiff, type;
15848
15849 core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1);
15850 core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2);
15851
15852 if (bitpos1 % BITS_PER_UNIT != 0
15853 || bitpos2 % BITS_PER_UNIT != 0
15854 || !operand_equal_p (core1, core2, 0))
15855 return false;
15856
15857 if (toffset1 && toffset2)
15858 {
15859 type = TREE_TYPE (toffset1);
15860 if (type != TREE_TYPE (toffset2))
15861 toffset2 = fold_convert (type, toffset2);
15862
15863 tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2);
15864 if (!cst_and_fits_in_hwi (tdiff))
15865 return false;
15866
15867 *diff = int_cst_value (tdiff);
15868 }
15869 else if (toffset1 || toffset2)
15870 {
15871 /* If only one of the offsets is non-constant, the difference cannot
15872 be a constant. */
15873 return false;
15874 }
15875 else
15876 *diff = 0;
15877
15878 *diff += (bitpos1 - bitpos2) / BITS_PER_UNIT;
15879 return true;
15880 }
15881
15882 /* Simplify the floating point expression EXP when the sign of the
15883 result is not significant. Return NULL_TREE if no simplification
15884 is possible. */
15885
15886 tree
15887 fold_strip_sign_ops (tree exp)
15888 {
15889 tree arg0, arg1;
15890
15891 switch (TREE_CODE (exp))
15892 {
15893 case ABS_EXPR:
15894 case NEGATE_EXPR:
15895 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15896 return arg0 ? arg0 : TREE_OPERAND (exp, 0);
15897
15898 case MULT_EXPR:
15899 case RDIV_EXPR:
15900 if (HONOR_SIGN_DEPENDENT_ROUNDING (TYPE_MODE (TREE_TYPE (exp))))
15901 return NULL_TREE;
15902 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 0));
15903 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15904 if (arg0 != NULL_TREE || arg1 != NULL_TREE)
15905 return fold_build2 (TREE_CODE (exp), TREE_TYPE (exp),
15906 arg0 ? arg0 : TREE_OPERAND (exp, 0),
15907 arg1 ? arg1 : TREE_OPERAND (exp, 1));
15908 break;
15909
15910 case COMPOUND_EXPR:
15911 arg0 = TREE_OPERAND (exp, 0);
15912 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15913 if (arg1)
15914 return fold_build2 (COMPOUND_EXPR, TREE_TYPE (exp), arg0, arg1);
15915 break;
15916
15917 case COND_EXPR:
15918 arg0 = fold_strip_sign_ops (TREE_OPERAND (exp, 1));
15919 arg1 = fold_strip_sign_ops (TREE_OPERAND (exp, 2));
15920 if (arg0 || arg1)
15921 return fold_build3 (COND_EXPR, TREE_TYPE (exp), TREE_OPERAND (exp, 0),
15922 arg0 ? arg0 : TREE_OPERAND (exp, 1),
15923 arg1 ? arg1 : TREE_OPERAND (exp, 2));
15924 break;
15925
15926 case CALL_EXPR:
15927 {
15928 const enum built_in_function fcode = builtin_mathfn_code (exp);
15929 switch (fcode)
15930 {
15931 CASE_FLT_FN (BUILT_IN_COPYSIGN):
15932 /* Strip copysign function call, return the 1st argument. */
15933 arg0 = CALL_EXPR_ARG (exp, 0);
15934 arg1 = CALL_EXPR_ARG (exp, 1);
15935 return omit_one_operand (TREE_TYPE (exp), arg0, arg1);
15936
15937 default:
15938 /* Strip sign ops from the argument of "odd" math functions. */
15939 if (negate_mathfn_p (fcode))
15940 {
15941 arg0 = fold_strip_sign_ops (CALL_EXPR_ARG (exp, 0));
15942 if (arg0)
15943 return build_call_expr (get_callee_fndecl (exp), 1, arg0);
15944 }
15945 break;
15946 }
15947 }
15948 break;
15949
15950 default:
15951 break;
15952 }
15953 return NULL_TREE;
15954 }